[1] Meacham, J., and P. Berloff, 2024:   Clustering of buoyant tracer in quasigeostrophic coherent structures.   J. Fluid Mech., submitted.

[2] Berloff, P. and G. Sutyrin, 2024:   Baroclinic vortex pulsars in unstable westward flows.   Physica D, 467, 134263. DOI: 10.1016/j.physd.2024.134263

[3] Davies, J., I. Shevchenko, P. Berloff, and G. Sutyrin, 2024:   Linear instability and weakly nonlinear effects in eastward dipoles.   Physica D, 460, 134068. DOI: 10.1016/j.physd.2024.134068

[4] Meacham, J., and P. Berloff, 2024:   Clustering as a mechanism for enhanced reaction of buoyant species.   J. Marine Systems, 243, 103952. DOI: 10.1016/j.jmarsys.2023.103952

[5] Davies, J., G. Sutyrin, M. Crowe, and P. Berloff, 2023b:   Deformation and destruction of north-eastward drifting dipoles.   Phys. Fluids, 35, 116601. DOI: 10.1063/5.0171909

[6] Shevchenko, I., and P. Berloff, 2023b:   On a probabilistic evolutionary approach to ocean modelling: From Lorenz-63 to idealized ocean models.   Ocean Modelling, 186, 102278. DOI: 10.1016/j.ocemod.2023.102278

[7] Shevchenko, I., and P. Berloff, 2023a:   A hyper-parameterization method for comprehensive ocean models: Advection of the image point.   Ocean Modelling, 184, 102208. DOI: 10.1016/j.ocemod.2023.102208

[8] Meacham, J., and P. Berloff, 2023:   On clustering of floating tracers in random velocity fields.   J. Adv. Model. Earth Sys., 15, e2022MS003484. DOI: 10.1029/2022ms003484

[9] Kurashina, R., and P. Berloff, 2023:   Low-frequency variability enhancement of the midlatitude climate in an eddy-resolving, coupled ocean-atmosphere model. Part II: Ocean mechanisms.   Climate Dynamics, DOI: 10.1007/s00382-023-06767-x

[10] Kurashina, R., and P. Berloff, 2023:   Low-frequency variability enhancement of the midlatitude climate in an eddy-resolving, coupled ocean-atmosphere model. Part I: Anatomy.   Climate Dynamics, DOI: 10.1007/s00382-023-06782-y

[11] Davies, J., G, Sutyrin, and P. Berloff, 2023a:   On the spontaneous symmetry breaking of eastward propagating dipoles.   Phys. Fluids, 35, 041707. DOI: 10.1063/5.0149470

[12] Lu, Y., I. Kamenkovich, and P. Berloff, 2022:   Properties of the lateral mesoscale eddy-induced transport in a high-resolution model: Beyond the flux-gradient relation.   J. Phys. Ocean., 52, 3273--3295. DOI: 10.1175/jpo-d-22-0108.1

[13] Shevchenko, I., and P. Berloff, 2022: A method for preserving nominally-resolved flow patterns in low-resolution ocean simulations: Constrained dynamics.   Ocean Modelling, 178, 102098. DOI: 10.1016/j.ocemod.2022.102098

[14] Ryzhov, E., and P. Berloff, 2022:   On transport tensor of dynamically unresolved oceanic mesoscale eddies.   J. Fluid Mech., 939, A7. DOI: 10.1017/jfm.2022.169

[15] Haigh, M., and P. Berloff, 2022:   On the stability of tracer simulations with opposite-signed diffusivities.   J. Fluid Mech., 937, R3. DOI: 10.1017/jfm.2022.126

[16] Shevchenko, I., and P. Berloff, 2022:   A method for preserving nominally-resolved flow patterns in low-resolution ocean simulations: Dynamical system reconstruction.   Ocean Modelling, 170, 101939. DOI: 10.1016/j.ocemod.2021.101939

[17] Shevchenko, I., and P. Berloff, 2021:   On a minimum set of equations for parameterisations in comprehensive ocean circulation models.   Ocean Modelling, 168, 101913. DOI: 10.1016/j.ocemod.2021.101913

[18] Haigh, M., and P. Berloff, 2021:   On co-existing diffusive and anti-diffusive tracer transport by oceanic mesoscale eddies.   Ocean Modelling, 168, 101909. DOI: 10.1016/j.ocemod.2021.101909

[19] Agarwal, N., D. Kondrashov, P. Dueben, E. Ryzhov, and P. Berloff, 2021:   A comparison of data-driven approaches to build low-dimensional ocean models.   J. Adv. Model. Earth Sys., 13, e2021MS002537. DOI: 10.1029/2021ms002537

[20] Agarwal, N., E. Ryzhov, D. Kondrashov, and P. Berloff, 2021:   Correlation-based flow decomposition and statistical analysis of the eddy forcing.   J. Fluid Mech., 924, A5. DOI: 10.1017/jfm.2021.604

[21] Haigh, M., L. Sun, J. McWilliams, and P. Berloff, 2021b:     On eddy transport in the ocean. Part II: The advection tensor.   Ocean Modelling, 165, 101845. DOI: 10.1016/j.ocemod.2021.101845

[22] Haigh, M., L. Sun, J. McWilliams, and P. Berloff, 2021a:   On eddy transport in the ocean. Part I: The diffusion tensor.   Ocean Modelling, 164, 101831. DOI: 10.1016/j.ocemod.2021.101831

[23] Berloff, P., E. Ryzhov, and I. Shevchenko, 2021:   On dynamically unresolved oceanic mesoscale motions.   J. Fluid Mech., 920, A41. DOI: 10.1017/jfm.2021.477

[24] Sun, L., M. Haigh, I. Shevchenko, P. Berloff, and I. Kamenkovich, 2021:   On non-uniqueness of the mesoscale eddy diffusivity.   J. Fluid Mech., 920, A32. DOI: 10.1017/jfm.2021.472

[25] Kurashina, R., P. Berloff, and I. Shevchenko, 2021:   Western boundary layer nonlinear control of the oceanic gyres.   J. Fluid Mech., 918, A43. DOI: 10.1017/jfm.2021.384

[26] Shevchenko, I., and P. Berloff, 2021:   A method for preserving large-scale flow patterns in low-resolution ocean simulations.   Ocean Modelling, 161, 101795. DOI: 10.1016/j.ocemod.2021.101795

[27] Kamenkovich, I., P. Berloff, M. Haigh, L. Sun, and Y. Lu, 2021:   Complexity of mesoscale eddy diffusivity in the ocean.   Geophys. Res. Lett., 48, e2020GL091719. DOI: 10.1029/2020gl091719

[28] Davies, J., H. Khatri, and P. Berloff, 2021:   Linear stability analysis for flows over sinusoidal bottom topography.   J. Fluid Mech., 911, A33, doi:10.1017/jfm.2020.1082. DOI: 10.1017/jfm.2020.1082

[29] Ryzhov, E., D. Kondrashov, N. Agarwal, J. McWilliams, and P. Berloff, 2020:   On data-driven induction of the low-frequency variability in a coarse-resolution ocean model.   Ocean Modelling, 153, 101664. DOI: 10.1016/j.ocemod.2020.101664

[30] Stepanov, D., E. Ryzhov, P. Berloff, and K. Koshel, 2020:   Floating tracer clustering in divergent random flows modulated by an unsteady mesoscale ocean field.   Geophys. Astrophys. Fluid Dyn., DOI: 10.1080/03091929.2020.1786551

[31] Kondrashov, D., E. Ryzhov, and P. Berloff, 2020:   Data-adaptive harmonic analysis of oceanic waves and turbulent flows.   Chaos, 30, 061105. DOI: 10.1063/5.0012077

[32] Haigh, M., L. Sun, I. Shevchenko, and P. Berloff, 2020:   Tracer-based estimates of eddy-induced diffusivities.   Deep-Sea Research, 160, 103264. DOI: 10.1016/j.dsr.2020.103264

[33] Haigh, M., and P. Berloff, 2020:   Rossby waves and zonal momentum redistribution induced by localised forcing in the rotating shallow-water model.   J. Fluid Mech., 885, A43. DOI: 10.1017/jfm.2019.1032

[34] Stepanov, D., E. Ryzhov, P. Zagumennov, P. Berloff, and K. Koshel, 2020:   Clustering of floating tracer due to mesoscale vortex and submesoscale fields.   Geophys. Res. Lett., 48, e2019GL086504. DOI: 10.1029/2019gl086504

[35] Koshel, K., D. Stepanov, E. Ryzhov, P. Berloff, and V. Klyatskin, 2019:   Clustering of floating tracers in weakly divergent velocity fields.   Physical Review E, 100, 063108. DOI: 10.1103/physreve.100.063108

[36] Khatri, H., and P. Berloff, 2019:   Tilted drifting jets over a zonally sloped topography: Effects of vanishing eddy viscosity.   J. Fluid Mech., 876, 939--961. DOI: 10.1017/jfm.2019.579

[37] Ryzhov, E., D. Kondrashov, N. Agarwal, and P. Berloff, 2019:   On data-driven augmentation of low-resolution ocean model dynamics.   Ocean Modelling, 142, 101464. DOI: 10.1016/j.ocemod.2019.101464

[38] Kamenkovich, I., P. Berloff, and I. Rypina, 2019:   Anisotropic and inhomogeneous eddy-induced transport in flows with jets.   Zonal Jets, B. Galperin and P. Read, eds., Cambridge University Press, Cambridge, 550pp.

[39] Berloff, P., and I. Kamenkovich, 2019:   Dynamics of baroclinic multiple zonal jets.   Zonal Jets, B. Galperin and P. Read, eds., Cambridge University Press, Cambridge, 550pp.

[40] Khatri, H., and P. Berloff, 2018:   Role of eddies in the maintenance of multiple jets embedded in eastward and westward baroclinic shears.   Fluids, 3, 91, DOI: 10.3390/fluids3040091.

[41] Haigh, M., and P. Berloff, 2018:   Potential vorticity redistribution by localised transient forcing in the shallow-water model.   J. Fluid Mech., 852, 199--225. DOI: 10.1017/jfm.2018.547

[42] Berloff, P., 2018:   Dynamically consistent parameterization of mesoscale eddies. Part III: Deterministic approach.   Ocean Modelling, 127, 1--15. DOI: 10.1016/j.ocemod.2018.04.009

[43] Khatri, H., and P. Berloff, 2018:   A mechanism for jet drift over topography.   J. Fluid Mech., 845, 392--416. DOI: 10.1017/jfm.2018.260

[44] Kondrashov, D., M. Chekroun, and P. Berloff, 2018:   Multiscale Stuart-Landau emulators: Application to wind-driven ocean gyres.   Fluids, 3, 21. DOI: 10.3390/fluids3010021

[45] van Sebille, E., S. Griffies, ..., P. Berloff, ..., 2018:   Lagrangian ocean analysis: Fundamentals and practices.   Ocean Modelling, 121, 49-75. DOI: 10.1016/j.ocemod.2017.11.008

[46] Kamenkovich, I., and P. Berloff, 2017:   Role of nonlinear eddy forcing in the dynamics of multiple zonal jets.   Advances in Nonlinear Geosciences, A. Tsonis, eds., Springer, 707pp.

[47] Shevchenko, I., and P. Berloff, 2017:   On the roles of baroclinic modes in eddy-resolving midlatitude ocean dynamics.   Ocean Modelling, 111, 55--65. DOI: 10.1016/j.ocemod.2017.02.003

[48] Chen, C., I. Kamenkovich, and P. Berloff, 2016:   Eddy trains and striations in quasigeostrophic simulations and the ocean.   J. Phys. Oceanogr., 46, 2807--2825. DOI: 10.1175/jpo-d-16-0066.1

[49] Berloff, P., 2016:   Dynamically consistent parameterization of mesoscale eddies. Part II: Eddy fluxes and diffusivity from transient impulses.   Fluids, 1, 22, DOI: 10.3390/fluids1030022

[50] Shevchenko, I., and P. Berloff, 2016:   Eddy backscatter and counter-rotating gyre anomalies of midlatitude ocean dynamics.   Fluids, 1, 28, DOI: 10.3390/fluids1030028

[51] Shevchenko, I., P. Berloff, D. Guerrero-Lopez, and J. Roman, 2016:   On low-frequency variability of the midlatitude ocean gyres.   J. Fluid Mech., 795, 423--442. DOI: 10.1017/jfm.2016.208

[52] Shevchenko, I., and P. Berloff, 2015:   Multi-layer quasi-geostrophic ocean dynamics in eddy-resolving regimes.   Ocean Modelling, 94, 1--14. DOI: 10.1016/j.ocemod.2015.07.018

[53] Kondrashov, D., and P. Berloff, 2015:   Stochastic modeling of decadal variability in ocean gyres.   Geophys. Res. Lett., 42, 1543--1553. DOI: 10.1002/2014gl062871

[54] Kamenkovich, I., I. Rypina, and P. Berloff, 2015:   Properties and origins of the anisotropic eddy-induced transport in the North Atlantic.   J. Phys. Oceanogr., 45, 778--791. DOI: 10.1175/jpo-d-14-0164.1

[55] Chen, C., I. Kamenkovich, and P. Berloff, 2015:   On the dynamics of flows induced by topographic ridges.   J. Phys. Oceanogr., 45, 927--940. DOI: 10.1175/jpo-d-14-0143.1

[56] Berloff, P., 2015:   Dynamically consistent parameterization of mesoscale eddies. Part I: Simple model.   Ocean Modelling, 87, 1--19. DOI: 10.1016/j.ocemod.2014.12.008

[57] Berloff, P. and I. Kamenkovich, 2013a:   On spectral analysis of mesoscale eddies. Part I: Linear analysis.   J. Phys. Oceanogr., 43, 2505--2527. DOI: 10.1175/jpo-d-12-0232.1

[58] Berloff, P. and I. Kamenkovich, 2013b:   On spectral analysis of mesoscale eddies. Part II: Nonlinear analysis.   J. Phys. Oceanogr., 43, 2528--2544. DOI: 10.1175/jpo-d-12-0233.1

[59] Rypina, I., I. Kamenkovich, P. Berloff, and L. Pratt, 2012:   Eddy-induced particle dispersion in the near-surface North Atlantic.   J. Phys. Oceanogr., 42, 2206--2228. DOI: 10.1175/jpo-d-11-0191.1

[60] Marshall, D., J. Maddison, and P. Berloff, 2012:   A framework for parameterizing eddy potential vorticity fluxes.   J. Phys. Oceanogr., 42, 539--557. DOI: 10.1175/jpo-d-11-048.1

[61] Hogg, A., W. Dewar, P. Berloff, and M. Ward, 2011:   Kelvin wave hydraulic control induced by interactions between vortices and topography.   J. Fluid Mech., 687, 194--208. DOI: 10.1017/jfm.2011.344

[62] Berloff, P., S. Karabasov, T. Farrar, and I. Kamenkovich, 2011:   On latency of multiple zonal jets in the oceans.   J. Fluid Mech., 686, 534--567. DOI: 10.1017/jfm.2011.345

[63] Dewar, W., P. Berloff, and A. Hogg, 2011:   Submesoscale generation by boundaries.   J. Mar. Res., 69, 501--522. DOI: 10.1357/002224011799849345

[64] Deremble, B., A. Hogg, P. Berloff, and W. Dewar, 2011:   On the application of no-slip lateral boundary conditions to coarsely resolved ocean models.   Ocean Modelling, 39, 411--415. DOI: 10.1016/j.ocemod.2011.05.002

[65] Kamenkovich, I., P. Berloff, and J. Pedlosky, 2009b:   Anisotropic material transport by eddies and eddy-driven currents in a model of the North Atlantic.   J. Phys. Oceanogr., 39, 3162--3175. DOI: 10.1175/2009jpo4239.1

[66] Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009a:   A model of multiple zonal jets in the oceans: Dynamical and kinematical analysis.   J. Phys. Oceanogr., 39, 2711--2734. DOI: 10.1175/2009jpo4093.1

[67] Hogg, A., W. Dewar, P. Berloff, S. Kravtsov, and D. Hutchinson, 2009:   The effects of mesoscale ocean-atmosphere coupling on the large-scale ocean circulation.   J. Climate, 22, 4066--4082. DOI: 10.1175/2009jcli2629.1

[68] Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009b:   A mechanism of formation of multiple zonal jets in the oceans.   J. Fluid Mech., 628, 395--425. DOI: 10.1017/s0022112009006375

[69] Kamenkovich, I., P. Berloff, and J. Pedlosky, 2009a:   Role of eddy forcing in the dynamics of multiple zonal jets in the North Atlantic.   J. Phys. Oceanogr., 39, 1361--1379. DOI: 10.1175/2008jpo4096.1

[70] Karabasov, S., P. Berloff, and V. Goloviznin, 2009:   CABARET in the ocean gyres.   Ocean Modelling, 30, 155--168. DOI: 10.1016/j.ocemod.2009.06.009

[71] Kravtsov, S., W. Dewar, M. Ghil, J. McWilliams, and P. Berloff, 2008:   A mechanistic model of mid-latitude decadal climate variability.   Physica D, 237, 584--599. DOI: 10.1016/j.physd.2007.09.025

[72] Kravtsov, S., W. Dewar, M. Ghil, P. Berloff, and J. McWilliams, 2008:   North Atlantic climate variability in coupled models and data.   Nonlin. Proc. Geophys., 15, 13--24. DOI: 10.5194/npg-15-13-2008

[73] Berloff, P., A. Hogg, and W. Dewar, 2007b:   The turbulent oscillator: A mechanism of low-frequency variability of the wind-driven ocean gyres.   J. Phys. Oceanogr., 37, 2363--2386. DOI: 10.1175/jpo3118.1

[74] Kravtsov, S., W. Dewar, P. Berloff, J. McWilliams, and M. Ghil, 2007:   A highly nonlinear coupled mode of decadal variability in a midlatitude ocean-atmosphere model.   Dyn. Atmos. Ocean., 43, 123--150. DOI: 10.1016/j.dynatmoce.2006.08.001

[75] Berloff, P., S. Kravtsov, W. Dewar, and J. McWilliams, 2007a:   Ocean eddy dynamics in a coupled ocean-atmosphere model.   J. Phys. Oceanogr., 37, 1103--1121. DOI: 10.1175/jpo3041.1

[76] Kravtsov, S., P. Berloff, W. Dewar, M. Ghil, and J. McWilliams, 2006:   Dynamical origin of low-frequency variability in a highly nonlinear midlatitude coupled model.   J. Climate, 19, 6391--6408. DOI: 10.1175/jcli3976.1

[77] Berloff, P., 2005:   On rectification of randomly forced flows.   J. Mar. Res., 63, 497--527. DOI: 10.1357/0022240054307894

[78] Berloff, P., 2005:   Random-forcing model of the mesoscale oceanic eddies.   J. Fluid Mech., 529, 71--95. DOI: 10.1017/s0022112005003393

[79] Berloff, P., 2005:   On dynamically consistent eddy fluxes.   Dyn. Atmos. Ocean., 38, 123--146. DOI: 10.1016/j.dynatmoce.2004.11.003

[80] Berloff, P., and J. McWilliams, 2003:   Material transport in oceanic gyres. Part III: Randomized stochastic models.   J. Phys. Oceanogr., 33, 1416--1445. DOI: 10.1175/1520-0485(2003)033<1416:mtiogp>2.0.co;2

[81] Berloff, P., J. McWilliams, and A. Bracco, 2002:   Material transport in oceanic gyres. Part I: Phenomenology.   J. Phys. Oceanogr., 32, 764--796. DOI: 10.1175/1520-0485(2002)032<0764:mtiogp>2.0.co;2

[82] Berloff, P., and J. McWilliams, 2002:   Material transport in oceanic gyres. Part II: Hierarchy of stochastic models.   J. Phys. Oceanogr., 32, 797--830. DOI: 10.1175/1520-0485(2002)032<0797:mtiogp>2.0.co;2

[83] Siegel, A., J. Weiss, J. Toomre, J. McWilliams, P. Berloff and I. Yavneh, 2001:   Eddies and vortices in ocean basin dynamics.   Geophys. Res. Lett., 28, 3183--3187. DOI: 10.1029/1999gl011246

[84] Berloff, P., and J. McWilliams, 1999:   Quasigeostrophic dynamics of the western boundary current.   J. Phys. Oceanogr., 29, 2607--2634. DOI: 10.1175/1520-0485(1999)029<2607:qdotwb>2.0.co;2

[85] Berloff, P., and J. McWilliams, 1999:   Large-scale, low-frequency variability in wind-driven ocean gyres.   J. Phys. Oceanogr., 29, 1925--1949. DOI: 10.1175/1520-0485(1999)029<1925:lslfvi>2.0.co;2

[86] Berloff, P., and S. Meacham, 1998:   On the stability of the wind-driven circulation.   J. Mar. Res., 56, 937--993. DOI: 10.1357/002224098765173437

[87] Berloff, P., and S. Meacham, 1998:   The dynamics of a simple baroclinic model of the wind-driven circulation.   J. Phys. Oceanogr., 28, 361--388. DOI: 10.1175/1520-0485(1998)028<0361:tdoasb>2.0.co;2

[88] Meacham, S., and P. Berloff, 1997b:   Instabilities of a steady, barotropic, wind-driven circulation.   J. Mar. Res., 55, 885--913. DOI: 10.1357/0022240973224166

[89] Berloff, P., and S. Meacham, 1997:   The dynamics of an equivalent-barotropic model of the wind-driven circulation.   J. Mar. Res., 55, 407--451. DOI: 10.1357/0022240973224319

[90] Meacham, S., and P. Berloff, 1997a:   Barotropic, wind-driven circulation in a small basin.   J. Mar. Res., 55, 523--563. DOI: 10.1357/0022240973224364

[91] Berlov, P. and B. Boubnov, 1992:   An experimental study of convective motion under a local heating from below.   Izvestya Akad. Nauk, Phys. of Atmos. Ocean, 28, 240--252.