[1] Meacham, J., and P. Berloff, 2024: Clustering of buoyant tracer in quasigeostrophic coherent structures. J. Fluid Mech., submitted.
[2] Berloff, P. and G. Sutyrin, 2024: Baroclinic vortex pulsars in unstable westward flows. Physica D, 467, 134263. DOI: 10.1016/j.physd.2024.134263
[3] Davies, J., I. Shevchenko, P. Berloff, and G. Sutyrin, 2024: Linear instability and weakly nonlinear effects in eastward dipoles. Physica D, 460, 134068. DOI: 10.1016/j.physd.2024.134068
[4] Meacham, J., and P. Berloff, 2024: Clustering as a mechanism for enhanced reaction of buoyant species. J. Marine Systems, 243, 103952. DOI: 10.1016/j.jmarsys.2023.103952
[5] Davies, J., G. Sutyrin, M. Crowe, and P. Berloff, 2023b: Deformation and destruction of north-eastward drifting dipoles. Phys. Fluids, 35, 116601. DOI: 10.1063/5.0171909
[6] Shevchenko, I., and P. Berloff, 2023b:   On a probabilistic evolutionary approach to ocean modelling: From Lorenz-63 to idealized ocean models. Ocean Modelling, 186, 102278. DOI: 10.1016/j.ocemod.2023.102278
[7] Shevchenko, I., and P. Berloff, 2023a:   A hyper-parameterization method for comprehensive ocean models: Advection of the image point. Ocean Modelling, 184, 102208. DOI: 10.1016/j.ocemod.2023.102208
[8] Meacham, J., and P. Berloff, 2023: On clustering of floating tracers in random velocity fields. J. Adv. Model. Earth Sys., 15, e2022MS003484. DOI: 10.1029/2022ms003484
[9] Kurashina, R., and P. Berloff, 2023: Low-frequency variability enhancement of the midlatitude climate in an eddy-resolving, coupled ocean-atmosphere model. Part II: Ocean mechanisms. Climate Dynamics, DOI: 10.1007/s00382-023-06767-x
[10] Kurashina, R., and P. Berloff, 2023: Low-frequency variability enhancement of the midlatitude climate in an eddy-resolving, coupled ocean-atmosphere model. Part I: Anatomy. Climate Dynamics, DOI: 10.1007/s00382-023-06782-y
[11] Davies, J., G, Sutyrin, and P. Berloff, 2023a: On the spontaneous symmetry breaking of eastward propagating dipoles. Phys. Fluids, 35, 041707. DOI: 10.1063/5.0149470
[12] Lu, Y., I. Kamenkovich, and P. Berloff, 2022: Properties of the lateral mesoscale eddy-induced transport in a high-resolution model: Beyond the flux-gradient relation. J. Phys. Ocean., 52, 3273--3295. DOI: 10.1175/jpo-d-22-0108.1
[13] Shevchenko, I., and P. Berloff, 2022: A method for preserving nominally-resolved flow patterns in low-resolution ocean simulations: Constrained dynamics. Ocean Modelling, 178, 102098. DOI: 10.1016/j.ocemod.2022.102098
[14] Ryzhov, E., and P. Berloff, 2022: On transport tensor of dynamically unresolved oceanic mesoscale eddies. J. Fluid Mech., 939, A7. DOI: 10.1017/jfm.2022.169
[15] Haigh, M., and P. Berloff, 2022: On the stability of tracer simulations with opposite-signed diffusivities. J. Fluid Mech., 937, R3. DOI: 10.1017/jfm.2022.126
[16] Shevchenko, I., and P. Berloff, 2022: A method for preserving nominally-resolved flow patterns in low-resolution ocean simulations: Dynamical system reconstruction. Ocean Modelling, 170, 101939. DOI: 10.1016/j.ocemod.2021.101939
[17] Shevchenko, I., and P. Berloff, 2021: On a minimum set of equations for parameterisations in comprehensive ocean circulation models. Ocean Modelling, 168, 101913. DOI: 10.1016/j.ocemod.2021.101913
[18] Haigh, M., and P. Berloff, 2021: On co-existing diffusive and anti-diffusive tracer transport by oceanic mesoscale eddies. Ocean Modelling, 168, 101909. DOI: 10.1016/j.ocemod.2021.101909
[19] Agarwal, N., D. Kondrashov, P. Dueben, E. Ryzhov, and P. Berloff, 2021: A comparison of data-driven approaches to build low-dimensional ocean models. J. Adv. Model. Earth Sys., 13, e2021MS002537. DOI: 10.1029/2021ms002537
[20] Agarwal, N., E. Ryzhov, D. Kondrashov, and P. Berloff, 2021: Correlation-based flow decomposition and statistical analysis of the eddy forcing. J. Fluid Mech., 924, A5. DOI: 10.1017/jfm.2021.604
[21] Haigh, M., L. Sun, J. McWilliams, and P. Berloff, 2021b: On eddy transport in the ocean. Part II: The advection tensor. Ocean Modelling, 165, 101845. DOI: 10.1016/j.ocemod.2021.101845
[22] Haigh, M., L. Sun, J. McWilliams, and P. Berloff, 2021a: On eddy transport in the ocean. Part I: The diffusion tensor. Ocean Modelling, 164, 101831. DOI: 10.1016/j.ocemod.2021.101831
[23] Berloff, P., E. Ryzhov, and I. Shevchenko, 2021: On dynamically unresolved oceanic mesoscale motions. J. Fluid Mech., 920, A41. DOI: 10.1017/jfm.2021.477
[24] Sun, L., M. Haigh, I. Shevchenko, P. Berloff, and I. Kamenkovich, 2021: On non-uniqueness of the mesoscale eddy diffusivity. J. Fluid Mech., 920, A32. DOI: 10.1017/jfm.2021.472
[25] Kurashina, R., P. Berloff, and I. Shevchenko, 2021: Western boundary layer nonlinear control of the oceanic gyres. J. Fluid Mech., 918, A43. DOI: 10.1017/jfm.2021.384
[26] Shevchenko, I., and P. Berloff, 2021: A method for preserving large-scale flow patterns in low-resolution ocean simulations. Ocean Modelling, 161, 101795. DOI: 10.1016/j.ocemod.2021.101795
[27] Kamenkovich, I., P. Berloff, M. Haigh, L. Sun, and Y. Lu, 2021: Complexity of mesoscale eddy diffusivity in the ocean. Geophys. Res. Lett., 48, e2020GL091719. DOI: 10.1029/2020gl091719
[28] Davies, J., H. Khatri, and P. Berloff, 2021: Linear stability analysis for flows over sinusoidal bottom topography. J. Fluid Mech., 911, A33, doi:10.1017/jfm.2020.1082. DOI: 10.1017/jfm.2020.1082
[29] Ryzhov, E., D. Kondrashov, N. Agarwal, J. McWilliams, and P. Berloff, 2020: On data-driven induction of the low-frequency variability in a coarse-resolution ocean model. Ocean Modelling, 153, 101664. DOI: 10.1016/j.ocemod.2020.101664
[30] Stepanov, D., E. Ryzhov, P. Berloff, and K. Koshel, 2020: Floating tracer clustering in divergent random flows modulated by an unsteady mesoscale ocean field. Geophys. Astrophys. Fluid Dyn., DOI: 10.1080/03091929.2020.1786551
[31] Kondrashov, D., E. Ryzhov, and P. Berloff, 2020: Data-adaptive harmonic analysis of oceanic waves and turbulent flows. Chaos, 30, 061105. DOI: 10.1063/5.0012077
[32] Haigh, M., L. Sun, I. Shevchenko, and P. Berloff, 2020: Tracer-based estimates of eddy-induced diffusivities. Deep-Sea Research, 160, 103264. DOI: 10.1016/j.dsr.2020.103264
[33] Haigh, M., and P. Berloff, 2020: Rossby waves and zonal momentum redistribution induced by localised forcing in the rotating shallow-water model. J. Fluid Mech., 885, A43. DOI: 10.1017/jfm.2019.1032
[34] Stepanov, D., E. Ryzhov, P. Zagumennov, P. Berloff, and K. Koshel, 2020: Clustering of floating tracer due to mesoscale vortex and submesoscale fields. Geophys. Res. Lett., 48, e2019GL086504. DOI: 10.1029/2019gl086504
[35] Koshel, K., D. Stepanov, E. Ryzhov, P. Berloff, and V. Klyatskin, 2019: Clustering of floating tracers in weakly divergent velocity fields. Physical Review E, 100, 063108. DOI: 10.1103/physreve.100.063108
[36] Khatri, H., and P. Berloff, 2019: Tilted drifting jets over a zonally sloped topography: Effects of vanishing eddy viscosity. J. Fluid Mech., 876, 939--961. DOI: 10.1017/jfm.2019.579
[37] Ryzhov, E., D. Kondrashov, N. Agarwal, and P. Berloff, 2019: On data-driven augmentation of low-resolution ocean model dynamics. Ocean Modelling, 142, 101464. DOI: 10.1016/j.ocemod.2019.101464
[38] Kamenkovich, I., P. Berloff, and I. Rypina, 2019: Anisotropic and inhomogeneous eddy-induced transport in flows with jets. Zonal Jets, B. Galperin and P. Read, eds., Cambridge University Press, Cambridge, 550pp.
[39] Berloff, P., and I. Kamenkovich, 2019: Dynamics of baroclinic multiple zonal jets. Zonal Jets, B. Galperin and P. Read, eds., Cambridge University Press, Cambridge, 550pp.
[40] Khatri, H., and P. Berloff, 2018: Role of eddies in the maintenance of multiple jets embedded in eastward and westward baroclinic shears. Fluids, 3, 91, DOI: 10.3390/fluids3040091.
[41] Haigh, M., and P. Berloff, 2018: Potential vorticity redistribution by localised transient forcing in the shallow-water model. J. Fluid Mech., 852, 199--225. DOI: 10.1017/jfm.2018.547
[42] Berloff, P., 2018: Dynamically consistent parameterization of mesoscale eddies. Part III: Deterministic approach. Ocean Modelling, 127, 1--15. DOI: 10.1016/j.ocemod.2018.04.009
[43] Khatri, H., and P. Berloff, 2018: A mechanism for jet drift over topography. J. Fluid Mech., 845, 392--416. DOI: 10.1017/jfm.2018.260
[44] Kondrashov, D., M. Chekroun, and P. Berloff, 2018: Multiscale Stuart-Landau emulators: Application to wind-driven ocean gyres. Fluids, 3, 21. DOI: 10.3390/fluids3010021
[45] van Sebille, E., S. Griffies, ..., P. Berloff, ..., 2018: Lagrangian ocean analysis: Fundamentals and practices. Ocean Modelling, 121, 49-75. DOI: 10.1016/j.ocemod.2017.11.008
[46] Kamenkovich, I., and P. Berloff, 2017: Role of nonlinear eddy forcing in the dynamics of multiple zonal jets. Advances in Nonlinear Geosciences, A. Tsonis, eds., Springer, 707pp.
[47] Shevchenko, I., and P. Berloff, 2017: On the roles of baroclinic modes in eddy-resolving midlatitude ocean dynamics. Ocean Modelling, 111, 55--65. DOI: 10.1016/j.ocemod.2017.02.003
[48] Chen, C., I. Kamenkovich, and P. Berloff, 2016: Eddy trains and striations in quasigeostrophic simulations and the ocean. J. Phys. Oceanogr., 46, 2807--2825. DOI: 10.1175/jpo-d-16-0066.1
[49] Berloff, P., 2016: Dynamically consistent parameterization of mesoscale eddies. Part II: Eddy fluxes and diffusivity from transient impulses. Fluids, 1, 22, DOI: 10.3390/fluids1030022
[50] Shevchenko, I., and P. Berloff, 2016: Eddy backscatter and counter-rotating gyre anomalies of midlatitude ocean dynamics. Fluids, 1, 28, DOI: 10.3390/fluids1030028
[51] Shevchenko, I., P. Berloff, D. Guerrero-Lopez, and J. Roman, 2016: On low-frequency variability of the midlatitude ocean gyres. J. Fluid Mech., 795, 423--442. DOI: 10.1017/jfm.2016.208
[52] Shevchenko, I., and P. Berloff, 2015: Multi-layer quasi-geostrophic ocean dynamics in eddy-resolving regimes. Ocean Modelling, 94, 1--14. DOI: 10.1016/j.ocemod.2015.07.018
[53] Kondrashov, D., and P. Berloff, 2015: Stochastic modeling of decadal variability in ocean gyres. Geophys. Res. Lett., 42, 1543--1553. DOI: 10.1002/2014gl062871
[54] Kamenkovich, I., I. Rypina, and P. Berloff, 2015: Properties and origins of the anisotropic eddy-induced transport in the North Atlantic. J. Phys. Oceanogr., 45, 778--791. DOI: 10.1175/jpo-d-14-0164.1
[55] Chen, C., I. Kamenkovich, and P. Berloff, 2015: On the dynamics of flows induced by topographic ridges. J. Phys. Oceanogr., 45, 927--940. DOI: 10.1175/jpo-d-14-0143.1
[56] Berloff, P., 2015: Dynamically consistent parameterization of mesoscale eddies. Part I: Simple model. Ocean Modelling, 87, 1--19. DOI: 10.1016/j.ocemod.2014.12.008
[57] Berloff, P. and I. Kamenkovich, 2013a: On spectral analysis of mesoscale eddies. Part I: Linear analysis. J. Phys. Oceanogr., 43, 2505--2527. DOI: 10.1175/jpo-d-12-0232.1
[58] Berloff, P. and I. Kamenkovich, 2013b: On spectral analysis of mesoscale eddies. Part II: Nonlinear analysis. J. Phys. Oceanogr., 43, 2528--2544. DOI: 10.1175/jpo-d-12-0233.1
[59] Rypina, I., I. Kamenkovich, P. Berloff, and L. Pratt, 2012: Eddy-induced particle dispersion in the near-surface North Atlantic. J. Phys. Oceanogr., 42, 2206--2228. DOI: 10.1175/jpo-d-11-0191.1
[60] Marshall, D., J. Maddison, and P. Berloff, 2012: A framework for parameterizing eddy potential vorticity fluxes. J. Phys. Oceanogr., 42, 539--557. DOI: 10.1175/jpo-d-11-048.1
[61] Hogg, A., W. Dewar, P. Berloff, and M. Ward, 2011: Kelvin wave hydraulic control induced by interactions between vortices and topography. J. Fluid Mech., 687, 194--208. DOI: 10.1017/jfm.2011.344
[62] Berloff, P., S. Karabasov, T. Farrar, and I. Kamenkovich, 2011: On latency of multiple zonal jets in the oceans. J. Fluid Mech., 686, 534--567. DOI: 10.1017/jfm.2011.345
[63] Dewar, W., P. Berloff, and A. Hogg, 2011: Submesoscale generation by boundaries. J. Mar. Res., 69, 501--522. DOI: 10.1357/002224011799849345
[64] Deremble, B., A. Hogg, P. Berloff, and W. Dewar, 2011: On the application of no-slip lateral boundary conditions to coarsely resolved ocean models. Ocean Modelling, 39, 411--415. DOI: 10.1016/j.ocemod.2011.05.002
[65] Kamenkovich, I., P. Berloff, and J. Pedlosky, 2009b: Anisotropic material transport by eddies and eddy-driven currents in a model of the North Atlantic. J. Phys. Oceanogr., 39, 3162--3175. DOI: 10.1175/2009jpo4239.1
[66] Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009a: A model of multiple zonal jets in the oceans: Dynamical and kinematical analysis. J. Phys. Oceanogr., 39, 2711--2734. DOI: 10.1175/2009jpo4093.1
[67] Hogg, A., W. Dewar, P. Berloff, S. Kravtsov, and D. Hutchinson, 2009: The effects of mesoscale ocean-atmosphere coupling on the large-scale ocean circulation. J. Climate, 22, 4066--4082. DOI: 10.1175/2009jcli2629.1
[68] Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009b: A mechanism of formation of multiple zonal jets in the oceans. J. Fluid Mech., 628, 395--425. DOI: 10.1017/s0022112009006375
[69] Kamenkovich, I., P. Berloff, and J. Pedlosky, 2009a: Role of eddy forcing in the dynamics of multiple zonal jets in the North Atlantic. J. Phys. Oceanogr., 39, 1361--1379. DOI: 10.1175/2008jpo4096.1
[70] Karabasov, S., P. Berloff, and V. Goloviznin, 2009: CABARET in the ocean gyres. Ocean Modelling, 30, 155--168. DOI: 10.1016/j.ocemod.2009.06.009
[71] Kravtsov, S., W. Dewar, M. Ghil, J. McWilliams, and P. Berloff, 2008: A mechanistic model of mid-latitude decadal climate variability. Physica D, 237, 584--599. DOI: 10.1016/j.physd.2007.09.025
[72] Kravtsov, S., W. Dewar, M. Ghil, P. Berloff, and J. McWilliams, 2008: North Atlantic climate variability in coupled models and data. Nonlin. Proc. Geophys., 15, 13--24. DOI: 10.5194/npg-15-13-2008
[73] Berloff, P., A. Hogg, and W. Dewar, 2007b: The turbulent oscillator: A mechanism of low-frequency variability of the wind-driven ocean gyres. J. Phys. Oceanogr., 37, 2363--2386. DOI: 10.1175/jpo3118.1
[74] Kravtsov, S., W. Dewar, P. Berloff, J. McWilliams, and M. Ghil, 2007: A highly nonlinear coupled mode of decadal variability in a midlatitude ocean-atmosphere model. Dyn. Atmos. Ocean., 43, 123--150. DOI: 10.1016/j.dynatmoce.2006.08.001
[75] Berloff, P., S. Kravtsov, W. Dewar, and J. McWilliams, 2007a: Ocean eddy dynamics in a coupled ocean-atmosphere model. J. Phys. Oceanogr., 37, 1103--1121. DOI: 10.1175/jpo3041.1
[76] Kravtsov, S., P. Berloff, W. Dewar, M. Ghil, and J. McWilliams, 2006: Dynamical origin of low-frequency variability in a highly nonlinear midlatitude coupled model. J. Climate, 19, 6391--6408. DOI: 10.1175/jcli3976.1
[77] Berloff, P., 2005: On rectification of randomly forced flows. J. Mar. Res., 63, 497--527. DOI: 10.1357/0022240054307894
[78] Berloff, P., 2005: Random-forcing model of the mesoscale oceanic eddies. J. Fluid Mech., 529, 71--95. DOI: 10.1017/s0022112005003393
[79] Berloff, P., 2005: On dynamically consistent eddy fluxes. Dyn. Atmos. Ocean., 38, 123--146. DOI: 10.1016/j.dynatmoce.2004.11.003
[80] Berloff, P., and J. McWilliams, 2003: Material transport in oceanic gyres. Part III: Randomized stochastic models. J. Phys. Oceanogr., 33, 1416--1445. DOI: 10.1175/1520-0485(2003)033<1416:mtiogp>2.0.co;2
[81] Berloff, P., J. McWilliams, and A. Bracco, 2002: Material transport in oceanic gyres. Part I: Phenomenology. J. Phys. Oceanogr., 32, 764--796. DOI: 10.1175/1520-0485(2002)032<0764:mtiogp>2.0.co;2
[82] Berloff, P., and J. McWilliams, 2002: Material transport in oceanic gyres. Part II: Hierarchy of stochastic models. J. Phys. Oceanogr., 32, 797--830. DOI: 10.1175/1520-0485(2002)032<0797:mtiogp>2.0.co;2
[83] Siegel, A., J. Weiss, J. Toomre, J. McWilliams, P. Berloff and I. Yavneh, 2001: Eddies and vortices in ocean basin dynamics. Geophys. Res. Lett., 28, 3183--3187. DOI: 10.1029/1999gl011246
[84] Berloff, P., and J. McWilliams, 1999: Quasigeostrophic dynamics of the western boundary current. J. Phys. Oceanogr., 29, 2607--2634. DOI: 10.1175/1520-0485(1999)029<2607:qdotwb>2.0.co;2
[85] Berloff, P., and J. McWilliams, 1999: Large-scale, low-frequency variability in wind-driven ocean gyres. J. Phys. Oceanogr., 29, 1925--1949. DOI: 10.1175/1520-0485(1999)029<1925:lslfvi>2.0.co;2
[86] Berloff, P., and S. Meacham, 1998: On the stability of the wind-driven circulation. J. Mar. Res., 56, 937--993. DOI: 10.1357/002224098765173437
[87] Berloff, P., and S. Meacham, 1998: The dynamics of a simple baroclinic model of the wind-driven circulation. J. Phys. Oceanogr., 28, 361--388. DOI: 10.1175/1520-0485(1998)028<0361:tdoasb>2.0.co;2
[88] Meacham, S., and P. Berloff, 1997b: Instabilities of a steady, barotropic, wind-driven circulation. J. Mar. Res., 55, 885--913. DOI: 10.1357/0022240973224166
[89] Berloff, P., and S. Meacham, 1997: The dynamics of an equivalent-barotropic model of the wind-driven circulation. J. Mar. Res., 55, 407--451. DOI: 10.1357/0022240973224319
[90] Meacham, S., and P. Berloff, 1997a: Barotropic, wind-driven circulation in a small basin. J. Mar. Res., 55, 523--563. DOI: 10.1357/0022240973224364
[91] Berlov, P. and B. Boubnov, 1992: An experimental study of convective motion under a local heating from below. Izvestya Akad. Nauk, Phys. of Atmos. Ocean, 28, 240--252.