[0] Meacham, J., and P. Berloff, 2022:   On clustering of floating tracers in random velocity fields.   J. Fluid Mech., submitted.

[0] Lu, Y., I. Kamenkovich, and P. Berloff, 2022:   Properties of the lateral mesoscale eddy-induced transport in a high-resolution model: Beyond the flux-gradient relation.   J. Phys. Ocean., submitted.

[1] Shevchenko, I., and P. Berloff, 2022: A method for preserving nominally-resolved flow patterns in low-resolution ocean simulations: Constrained dynamics.   Ocean Modelling, submitted.

[2] Ryzhov, E., and P. Berloff, 2022:   On transport tensor of dynamically unresolved oceanic mesoscale eddies.   J. Fluid Mech., 939, A7.

[3] Haigh, M., and P. Berloff, 2022:   On the stability of tracer simulations with opposite-signed diffusivities.   J. Fluid Mech., 937, R3.

[4] Shevchenko, I., and P. Berloff, 2022:   A method for preserving nominally-resolved flow patterns in low-resolution ocean simulations: Dynamical system reconstruction.   Ocean Modelling, 170, 101939.

[5] Shevchenko, I., and P. Berloff, 2021:   On a minimum set of equations for parameterisations in comprehensive ocean circulation models.   Ocean Modelling, 168, 101913.

[6] Haigh, M., and P. Berloff, 2021:   On co-existing diffusive and anti-diffusive tracer transport by oceanic mesoscale eddies.   Ocean Modelling, 168, 101909.

[7] Agarwal, N., D. Kondrashov, P. Dueben, E. Ryzhov, and P. Berloff, 2021:   A comparison of data-driven approaches to build low-dimensional ocean models.   J. Adv. Model. Earth Sys., 13, e2021MS002537.

[8] Haigh, M., L. Sun, J. McWilliams, and P. Berloff, 2021b:     On eddy transport in the ocean. Part II: The advection tensor.   Ocean Modelling, 165, 101845.

[9] Agarwal, N., E. Ryzhov, D. Kondrashov, and P. Berloff, 2021:   Correlation-based flow decomposition and statistical analysis of the eddy forcing.   J. Fluid Mech., 924, A5.

[10] Haigh, M., L. Sun, J. McWilliams, and P. Berloff, 2021a:   On eddy transport in the ocean. Part I: The diffusion tensor.   Ocean Modelling, 164, 101831.

[11] Berloff, P., E. Ryzhov, and I. Shevchenko, 2021:   On dynamically unresolved oceanic mesoscale motions.   J. Fluid Mech., 920, A41.

[12] Sun, L., M. Haigh, I. Shevchenko, P. Berloff, and I. Kamenkovich, 2021:   On non-uniqueness of the mesoscale eddy diffusivity.   J. Fluid Mech., 920, A32.

[13] Kurashina, R., P. Berloff, and I. Shevchenko, 2021:   Western boundary layer nonlinear control of the oceanic gyres.   J. Fluid Mech., 918, A43.

[14] Shevchenko, I., and P. Berloff, 2021:   A method for preserving large-scale flow patterns in low-resolution ocean simulations.   Ocean Modelling, 161, 101795.

[15] Kamenkovich, I., P. Berloff, M. Haigh, L. Sun, and Y. Lu, 2021:   Complexity of mesoscale eddy diffusivity in the ocean.   Geophys. Res. Lett., 48, e2020GL091719.

[16] Davies, J., H. Khatri, and P. Berloff, 2021:   Linear stability analysis for flows over sinusoidal bottom topography.   J. Fluid Mech., 911, A33, doi:10.1017/jfm.2020.1082.

[17] Ryzhov, E., D. Kondrashov, N. Agarwal, J. McWilliams, and P. Berloff, 2020:   On data-driven induction of the low-frequency variability in a coarse-resolution ocean model.   Ocean Modelling, 153, 101664.

[18] Stepanov, D., E. Ryzhov, P. Berloff, and K. Koshel, 2020:   Floating tracer clustering in divergent random flows modulated by an unsteady mesoscale ocean field.   Geophys. Astrophys. Fluid Dyn., doi: 10.1080/03091929.2020.1786551.

[19] Kondrashov, D., E. Ryzhov, and P. Berloff, 2020:   Data-adaptive harmonic analysis of oceanic waves and turbulent flows.   Chaos, 30, 061105.

[20] Haigh, M., L. Sun, I. Shevchenko, and P. Berloff, 2020:   Tracer-based estimates of eddy-induced diffusivities.   Deep-Sea Research, 160, 103264.

[21] Haigh, M., and P. Berloff, 2020:   Rossby waves and zonal momentum redistribution induced by localised forcing in the rotating shallow-water model.   J. Fluid Mech., 885, A43.

[22] Stepanov, D., E. Ryzhov, P. Zagumennov, P. Berloff, and K. Koshel, 2020:   Clustering of floating tracer due to mesoscale vortex and submesoscale fields.   Geophys. Res. Lett., 48, e2019GL086504.

[23] Koshel, K., D. Stepanov, E. Ryzhov, P. Berloff, and V. Klyatskin, 2019:   Clustering of floating tracers in weakly divergent velocity fields.   Physical Review E, 100, 063108.

[24] Khatri, H., and P. Berloff, 2019:   Tilted drifting jets over a zonally sloped topography: Effects of vanishing eddy viscosity.   J. Fluid Mech., 876, 939--961.

[25] Ryzhov, E., D. Kondrashov, N. Agarwal, and P. Berloff, 2019:   On data-driven augmentation of low-resolution ocean model dynamics.   Ocean Modelling, 142, 101464.

[26] Kamenkovich, I., P. Berloff, and I. Rypina, 2019:   Anisotropic and inhomogeneous eddy-induced transport in flows with jets.   Zonal Jets, B. Galperin and P. Read, eds., Cambridge University Press, Cambridge, 550pp.

[27] Berloff, P., and I. Kamenkovich, 2019:   Dynamics of baroclinic multiple zonal jets.   Zonal Jets, B. Galperin and P. Read, eds., Cambridge University Press, Cambridge, 550pp.

[28] Khatri, H., and P. Berloff, 2018:   Role of eddies in the maintenance of multiple jets embedded in eastward and westward baroclinic shears.   Fluids, 3, 91, doi:10.3390/fluids3040091.

[29] Haigh, M., and P. Berloff, 2018:   Potential vorticity redistribution by localised transient forcing in the shallow-water model.   J. Fluid Mech., 852, 199--225.

[30] Berloff, P., 2018:   Dynamically consistent parameterization of mesoscale eddies. Part III: Deterministic approach.   Ocean Modelling, 127, 1--15.

[31] Khatri, H., and P. Berloff, 2018:   A mechanism for jet drift over topography.   J. Fluid Mech., 845, 392--416.

[32] Kondrashov, D., M. Chekroun, and P. Berloff, 2018:   Multiscale Stuart-Landau emulators: Application to wind-driven ocean gyres.   Fluids, 3, 21. doi:10.3390/fluids3010021.

[33] van Sebille, E., S. Griffies, ..., P. Berloff, ..., 2018: Lagrangian ocean analysis: Fundamentals and practices. Ocean Modelling, 121, 49-75.

[34] Kamenkovich, I., and P. Berloff, 2017:   Role of nonlinear eddy forcing in the dynamics of multiple zonal jets.   Advances in Nonlinear Geosciences, A. Tsonis, eds., Springer, 707pp.

[35] Shevchenko, I., and P. Berloff, 2017:   On the roles of baroclinic modes in eddy-resolving midlatitude ocean dynamics.   Ocean Modelling, 111, 55--65.

[36] Chen, C., I. Kamenkovich, and P. Berloff, 2016:   Eddy trains and striations in quasigeostrophic simulations and the ocean.   J. Phys. Oceanogr., 46, 2807--2825.

[37] Berloff, P., 2016:   Dynamically consistent parameterization of mesoscale eddies. Part II: Eddy fluxes and diffusivity from transient impulses.   Fluids, 1, 22, doi:10.3390/fluids1030022.

[38] Shevchenko, I., and P. Berloff, 2016:   Eddy backscatter and counter-rotating gyre anomalies of midlatitude ocean dynamics.   Fluids, 1, 28, doi:10.3390/fluids1030028.

[39] Shevchenko, I., P. Berloff, D. Guerrero-Lopez, and J. Roman, 2016:   On low-frequency variability of the midlatitude ocean gyres.   J. Fluid Mech., 795, 423--442.

[40] Shevchenko, I., and P. Berloff, 2015:   Multi-layer quasi-geostrophic ocean dynamics in eddy-resolving regimes.   Ocean Modelling, 94, 1--14.

[41] Kondrashov, D., and P. Berloff, 2015:   Stochastic modeling of decadal variability in ocean gyres.   Geophys. Res. Lett., 42, 1543--1553.

[42] Kamenkovich, I., I. Rypina, and P. Berloff, 2015:   Properties and origins of the anisotropic eddy-induced transport in the North Atlantic.   J. Phys. Oceanogr., 45, 778--791.

[43] Chen, C., I. Kamenkovich, and P. Berloff, 2015:   On the dynamics of flows induced by topographic ridges.   J. Phys. Oceanogr., 45, 927--940.

[44] Berloff, P., 2015:   Dynamically consistent parameterization of mesoscale eddies. Part I: Simple model.   Ocean Modelling, 87, 1--19.

[45] Berloff, P. and I. Kamenkovich, 2013a:   On spectral analysis of mesoscale eddies. Part I: Linear analysis.   J. Phys. Oceanogr., 43, 2505--2527.

[46] Berloff, P. and I. Kamenkovich, 2013b:   On spectral analysis of mesoscale eddies. Part II: Nonlinear analysis.   J. Phys. Oceanogr., 43, 2528--2544.

[47] Rypina, I., I. Kamenkovich, P. Berloff, and L. Pratt, 2012:   Eddy-induced particle dispersion in the near-surface North Atlantic.   J. Phys. Oceanogr., 42, 2206--2228.

[48] Marshall, D., J. Maddison, and P. Berloff, 2012:   A framework for parameterizing eddy potential vorticity fluxes.   J. Phys. Oceanogr., 42, 539--557.

[49] Hogg, A., W. Dewar, P. Berloff, and M. Ward, 2011:   Kelvin wave hydraulic control induced by interactions between vortices and topography.   J. Fluid Mech., 687, 194--208.

[50] Berloff, P., S. Karabasov, T. Farrar, and I. Kamenkovich, 2011:   On latency of multiple zonal jets in the oceans.   J. Fluid Mech., 686, 534--567.

[51] Dewar, W., P. Berloff, and A. Hogg, 2011:   Submesoscale generation by boundaries.   J. Mar. Res., 69, 501--522.

[52] Deremble, B., A. Hogg, P. Berloff, and W. Dewar, 2011:   On the application of no-slip lateral boundary conditions to coarsely resolved ocean models.   Ocean Modelling, 39, 411--415.

[53] Kamenkovich, I., P. Berloff, and J. Pedlosky, 2009b:   Anisotropic material transport by eddies and eddy-driven currents in a model of the North Atlantic.   J. Phys. Oceanogr., 39, 3162--3175.

[54] Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009a:   A model of multiple zonal jets in the oceans: Dynamical and kinematical analysis.   J. Phys. Oceanogr., 39, 2711--2734.

[55] Hogg, A., W. Dewar, P. Berloff, S. Kravtsov, and D. Hutchinson, 2009:   The effects of mesoscale ocean-atmosphere coupling on the large-scale ocean circulation.   J. Climate, 22, 4066--4082.

[56] Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009b:   A mechanism of formation of multiple zonal jets in the oceans.   J. Fluid Mech., 628, 395--425.

[57] Kamenkovich, I., P. Berloff, and J. Pedlosky, 2009a:   Role of eddy forcing in the dynamics of multiple zonal jets in the North Atlantic.   J. Phys. Oceanogr., 39, 1361--1379.

[58] Karabasov, S., P. Berloff, and V. Goloviznin, 2009:   CABARET in the ocean gyres.   Ocean Modelling, 30, 155--168.

[59] Kravtsov, S., W. Dewar, M. Ghil, J. McWilliams, and P. Berloff, 2008:   A mechanistic model of mid-latitude decadal climate variability.   Physica D, 237, 584--599.

[60] Kravtsov, S., W. Dewar, M. Ghil, P. Berloff, and J. McWilliams, 2008:   North Atlantic climate variability in coupled models and data.   Nonlin. Proc. Geophys., 15, 13--24.

[61] Berloff, P., A. Hogg, and W. Dewar, 2007b:   The turbulent oscillator: A mechanism of low-frequency variability of the wind-driven ocean gyres.   J. Phys. Oceanogr., 37, 2363--2386.

[62] Kravtsov, S., W. Dewar, P. Berloff, J. McWilliams, and M. Ghil, 2007:   A highly nonlinear coupled mode of decadal variability in a midlatitude ocean-atmosphere model.   Dyn. Atmos. Ocean., 43, 123--150.

[63] Berloff, P., S. Kravtsov, W. Dewar, and J. McWilliams, 2007a:   Ocean eddy dynamics in a coupled ocean-atmosphere model.   J. Phys. Oceanogr., 37, 1103--1121.

[64] Kravtsov, S., P. Berloff, W. Dewar, M. Ghil, and J. McWilliams, 2006:   Dynamical origin of low-frequency variability in a highly nonlinear midlatitude coupled model.   J. Climate, 19, 6391--6408.

[65] Berloff, P., 2005:   On rectification of randomly forced flows.   J. Mar. Res., 63, 497--527.

[66] Berloff, P., 2005:   Random-forcing model of the mesoscale oceanic eddies.   J. Fluid Mech., 529, 71--95.

[67] Berloff, P., 2005:   On dynamically consistent eddy fluxes.   Dyn. Atmos. Ocean., 38, 123--146.

[68] Berloff, P., and J. McWilliams, 2003:   Material transport in oceanic gyres. Part III: Randomized stochastic models.   J. Phys. Oceanogr., 33, 1416--1445.

[69] Berloff, P., J. McWilliams, and A. Bracco, 2002:   Material transport in oceanic gyres. Part I: Phenomenology.   J. Phys. Oceanogr., 32, 764--796.

[70] Berloff, P., and J. McWilliams, 2002:   Material transport in oceanic gyres. Part II: Hierarchy of stochastic models.   J. Phys. Oceanogr., 32, 797--830.

[71] Siegel, A., J. Weiss, J. Toomre, J. McWilliams, P. Berloff and I. Yavneh, 2001:   Eddies and vortices in ocean basin dynamics.   Geophys. Res. Lett., 28, 3183--3187.

[72] Berloff, P., and J. McWilliams, 1999:   Quasigeostrophic dynamics of the western boundary current.   J. Phys. Oceanogr., 29, 2607--2634.

[73] Berloff, P., and J. McWilliams, 1999:   Large-scale, low-frequency variability in wind-driven ocean gyres.   J. Phys. Oceanogr., 29, 1925--1949.

[74] Berloff, P., and S. Meacham, 1998:   On the stability of the wind-driven circulation.   J. Mar. Res., 56, 937--993.

[75] Berloff, P., and S. Meacham, 1998:   The dynamics of a simple baroclinic model of the wind-driven circulation.   J. Phys. Oceanogr., 28, 361--388.

[76] Meacham, S., and P. Berloff, 1997b:   Instabilities of a steady, barotropic, wind-driven circulation.   J. Mar. Res., 55, 885--913.

[77] Berloff, P., and S. Meacham, 1997:   The dynamics of an equivalent-barotropic model of the wind-driven circulation.   J. Mar. Res., 55, 407--451.

[78] Meacham, S., and P. Berloff, 1997a:   Barotropic, wind-driven circulation in a small basin.   J. Mar. Res., 55, 523--563.

[79] Berlov, P. and B. Boubnov, 1992:   An experimental study of convective motion under a local heating from below.   Izvestya Akad. Nauk, Phys. of Atmos. Ocean, 28, 240--252.