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ABSTRACT

This study aims to understand the ocean’s circulation, which is characterized by the presence of multiple

alternating zonal jets and transient mesoscale eddies, by systematic analysis of the underlying linear dynamics

of this system. For this purpose, properties of the linear normalmodes such as growth rates, dispersion, spatial

structure, and nonlinear self-interactions are explored for a hierarchy of idealized, vertically, and horizontally

sheared flows with increasing complexity. The authors find that large-scale background vertical shear, al-

ternating multiple zonal jets, bottom friction, and the Reynolds number have important effects on these

modes. This study hypothesizes that when these effects are taken into account, the linear results can be used to

predict many properties of nonlinear mesoscale eddies. This hypothesis is confirmed in Part II of this paper.

1. Introduction

a. Motivations and main questions

Mesoscale oceanic eddies are found virtually every-

where in the world’s oceans (e.g., Chelton et al. 2011),

and they play an important role in ocean processes by

affecting material transport, large-scale stratification

and currents, air–sea interaction, etc. The last decades

have seen remarkable progress in understanding phys-

ics governing eddies and their effects (e.g., review by

McWilliams 2013), but many fundamental issues still

remain unresolved. One of such issues is the subject of

this paper.

The main goal of this two-part paper is to make some

progress in understanding to what extent and how prop-

erties of eddies are controlled by the underlying linear

dynamics. In the linear regime, the solution consists of

a mean background state and linear modes, and the in-

teractions between the modes are ignored. The linear

control, that is, whether and how much predictions of

the linear dynamics can be used for characterizing the

nonlinearly equilibrated eddies, is a controversial topic.

From the ocean observations, it is not clear whether

eddies are strongly nonlinear (Chelton et al. 2011) or

governed by the underlying linear dynamics (Wunsch

2009; Tulloch et al. 2009). Direct comparison of linear

and nonlinear results is not straightforward. From the

theoretical perspective, solving the full linear problem

for the observed mean state of the ocean circulation and

stratification is unfeasible. Bypassing this problem through

applying local linearizations (e.g., Eden 2011) simplifies

the problem, but the relevance and accuracy of this ap-

proach is questionable because there is no clear scale

separation between inhomogeneities of the mean state

and the linear normal modes. In this situation, the nec-

essary first step is to examine the degree of the linear

control in idealized eddy-resolving models solved at a

large Reynolds number Re. However, so far even this

approach remains largely unexplored and controversial.

For example, some eddy-resolving studies argue that

eddies are strongly nonlinear and cannot be adequately

described by linear properties (e.g., Galperin et al. 2010),

whereas some other studies report significant linear con-

trol of eddies (e.g., Berloff et al. 2009b). One of the main

reasons for this controversy is in the appropriate defi-

nition of themean state, which in many ways determines

the properties of the linear solution. In particular, proper
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linearization must take into account alterations of large-

scale potential vorticity (PV) gradients induced by

eddies because such alterations may result in profound

and spatially nonlocal transformations of the linear

normal modes. The other reason for the controversy is

that a systematic analysis of the linear properties should

not be restricted to the most unstable linear normal

modes, and should also consider other parts of the spec-

trum, which can be energized by the nonlinear inter-

actions and be important in the nonlinear equilibration.

Finally, we argue that the extent of the linear control

must be established beyond the usual prediction of the

length and time scales, by considering many other useful

properties of the linear normal modes.

Our approach is to focus on an idealized, high-resolution

model of anisotropic geostrophic turbulence, to ana-

lyze its solution, and to sort out the linear control

question in a systematic and comprehensive way. The

model equations are solved at the largest achievable Re

to make their solutions the most nonlinear and turbu-

lent. The model is baroclinic and driven by dynamically

consistent instabilities of the imposed large-scale back-

ground flow—this formulation allows us to avoid im-

posing artificial and poorly constrained small-scale

external forcing mimicking baroclinic-eddy dynamical

effects. Because of the intrinsic anisotropicity, from the

meridional variation of the Coriolis parameter and the

imposed zonal flow, the eddying solutions develop mul-

tiple alternating zonal jets, which substantiallymodify the

mean state and, thus, have profound effect on the un-

derlying linear-dynamics properties. Accounting for the

effects of the alternating jets places our study in the

rich context of recent vigorous research on this subject

(section 1b).

Our methodology in Part I of this paper aims to un-

derstand the underlying linear dynamics in terms of

the linear normal modes and their properties. This is

achieved by a systematic analysis of a hierarchy of back-

ground flows, from the simplest horizontally uniform

currents to those that include the alternating jets. The

corresponding linear normalmodes are characterized by

their dispersion relationships, horizontal and vertical

structure, correlations with multiple jets, and nonlinear

self-interactions, which can directly affect the jets. In

Part II of this paper (Berloff and Kamenkovich 2013,

hereafter Part II) these linear results are used to in-

terpret the nonlinear solutions and to establish the de-

gree of the linear control; and we argue that several

important properties of the nonlinear eddies are very

significantly controlled by the underlying linear dynamics.

The plan of the paper (Part I) is the following. The

background is briefly outlined in section 1b; the formu-

lation of the dynamical model and a general description

of the solutions follow in section 1c. The linear analysis

is in section 2, which deals with a hierarchy of linear

problems. Sections 2a and 2b deal with uniform and

idealized nonuniform background flows, respectively,

and in section 2c we account for the realistic alternating

jets by introducing the concept of ‘‘linear ensemble-

averaged spectra.’’ In section 2d, we analyze the non-

linear self-interactions of the linear normal modes in

the presence of the jets.

b. Background

The focus of this study is on the anisotropic geo-

strophic turbulence, which is a dynamically rich system

of interacting multiple alternating zonal jets, eddies, and

isolated vortices. In general, the anisotropic geostrophic

turbulence is controlled by the large-scale PV gradients

that support planetary waves and by the large-scale sour-

ces of available potential energy that feeds growing in-

stabilities. These instabilities result in the generation of

mesoscale eddies that stir and redistribute the under-

lying PV, and this redistribution results in generation of

the multiple jets that alter the mean PV distribution and

thus feed back on eddies.

Over the last decade, observations of the multiple,

quasi-zonal, alternating, latent jets in the global oceans

came from the sea surface altimetrymeasurements, float

trajectories, and tracer distributions, as well as from the

eddy-resolving solutions of the primitive equation gen-

eral circulation models [e.g., see the literature cited in

Berloff et al. (2011)]. Reviews of the relevant theoretical

ideas can be found in Rhines (1994), Dritschel and

McIntyre (2008), and Berloff et al. (2011). The ubiquitous

jets are formed because of anisotropic upscale energy

transfers (e.g., Vallis and Maltrud 1993) but not neces-

sarily through the energy cascade (e.g., Srinivasan and

Young 2012). An important open question is to what

extent the nonlinear dynamics of the jets and eddies is

controlled by the underlying linear-wave properties of

the large-scale PV distribution? Although there are in-

dications that this control is significant at small Re (Berloff

et al. 2009b; Yoo and Lee 2010), the issue was not ex-

plored in depth, particularly for large values of Re.

Some properties of the most unstable linear normal

modes of the alternating jets, as well as their roles in the

nonlinear dynamics, were addressed in Berloff et al.

(2009b, 2011). Here, we extend these preliminary re-

sults and explore the whole spectrum of the normal

modes and in a comprehensive and systematic way.

Propagation of oceanic eddies represents another im-

portant and controversial aspect of the relative impor-

tance of linear dynamics. There are indications that

significantly nondispersive propagation of the eddies

is largely inconsistent with linear Rossby waves; these
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discrepancies led some authors to conclude that non-

linear dynamics is required to interpret propagating

signals (Chelton et al. 2011; Early et al. 2011). However,

an alternative point of view suggests that this nondis-

persive propagation can be explained using linear ar-

guments, by strong coupling between the barotropic and

baroclinic modes (Wunsch 2009). This issue calls for a

direct comparison of the linear and nonlinear dynamical

properties—this is the main subject of our two-part paper.

c. Dynamical model

Our model of anisotropic geostrophic turbulence was

widely used in the past for studying baroclinic multiple

alternating jets (e.g., Haidvogel and Held 1980; Panetta

1993; Berloff et al. 2009a). The model is configured on

the b plane, in a flat-bottomed zonal channel, with two

isopycnal layers. The forcing is represented by an im-

posed, uniform zonal background flow with vertical

shear; because this shear is unstable, it generates me-

soscale eddies. The motivation for these idealizations

is to establish a simple, but physically relevant, starting

point, so that more physical complexity can be system-

atically added later on. However, Re is large, by ocean-

ographic standards. Hence, solutions are very nonlinear.

The model domain is a zonal channel with meridional

width of Ly 5 3600 km, and zonal extent Lx 5 2Ly. The

midchannel Coriolis parameter f05 0.833 1024 s21, and

the background planetary vorticity gradient b 5 2 3
10211m21 s21. There are two dynamically active iso-

pycnal layers, and their thicknesses at rest areH15 1 km

(upper layer) and H2 5 3 km (deep layer). The corre-

sponding stratification parameters in the governing equa-

tions are

S15
f 20

H1g
0
1

and S25
f 20

H2g
0
1

, (1)

where g01 is the reduced gravity coefficient associated

with the density jump between the isopycnal layers. We

chose g01 so that the first baroclinic Rossby deformation

radius Rd1 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g01H1H2

p
=( f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1 1H2

p
), which is the

fundamental length scale for the jets and ambient eddies

(Berloff et al. 2009b), is 25 km.

The governing quasigeostrophic PV equations (e.g.,

Pedlosky 1987) are

›q1
›t

1 J(c1,q1)5 n=4c1 and (2)

›q2
›t

1 J(c2,q2)5 n=4c22 g=2c2 , (3)

where the layer index starts from the top; the x and y

coordinates correspond to the zonal and meridional

directions, respectively; J( , ) is the Jacobian operator;

and the terms with n and g are the (Newtonian) lateral-

eddy viscosity and the bottom friction, respectively. The

eddy viscosity in our model represents momentum trans-

fers by unresolved small-scale ageostrophic motions, and

in the real ocean it is estimated to be on the order of 1–

10m2 s21 (Muller 1976). The bottom friction parame-

terizes flow damping by the bottom boundary layer;

in the real ocean, its value is expected to correspond to

spindown time on the order of a month [see also Berloff

et al. (2011), where effects of the bottom friction pa-

rameter are discussed in detail]. Isopycnal potential vor-

ticities qi are related to horizontal velocity streamfunctions

ci through the PV inversion:

q15=2c1 1S1(c22c1)1by and (4)

q25=2c21 S2(c12c2)1by . (5)

No-slip lateral-boundary conditions are used on the

sidewalls, and the mass and momentum constraints are

imposed following McWilliams (1977). The forcing in

the governing equations is introduced through an im-

posed, vertically sheared, baroclinically unstable back-

ground flow:

ci /2Uiy1ci , (6)

where parameters Ui are the background-flow zonal

velocities, and we consider both east- and westward

background flows.

For the flow consisting of the background-flowUi and

linear perturbations ci, governing equations become

›z1
›t

1 J(c1, z1)1 [b1 S1(U1 2U2)]
›c1

›x

5 n=4c12U1

›z1
›x

and (7)

›z2
›t

1 J(c2, z2)1 [b2 S2(U1 1U2)]
›c2

›x

5 n=4c22U2

›z2
›x

2 g=2c2 , (8)

where advection of the PV anomalies by the background

flow can be interpreted as the external forcing, which

energizes some eddies by instabilities of the background

flow. The perturbation PVs zi are given by

z1 5=2c12 S1(c12c2) and z25=2c22 S2(c22c1) .

(9)

The model is solved in terms of isopycnal-layer func-

tions, but the solutions can be conveniently expressed in
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terms of barotropic fBT and baroclinic fBC vertical

modes using the linear transformation

fBT 5
H1

H1 1H2

c11
H2

H1 1H2

c2 and fBC 5c12c2 ,

(10)

which is used for various analyses.

The bottom friction coefficient (i.e., g), the eddy vis-

cosity (i.e., n), and the upper-layer background-flow

velocityU5U1 are the key variable parameters, and we

examined the following 12 solutions for two U, two n,

and three g (Table 1). The two background flows yield

dynamically different regimes (Berloff et al. 2009a):

eastward background (EB) flow with U 5 6 cm s21 and

westward background (WB) flow with U 5 23 cm s21,

respectively; U2 5 0 for both cases. Both east- and

westward shears are moderately supercritical. Variation

of n allows us to study effects of the Reynolds number

Re5
URd1

n
, (11)

which measures the nonlinearity of the flow; and the

default hypothesis is that the larger Re, the weaker is

underlying linear-dynamics control. Note that we based

our definition of Re on fundamentally important scale

Rd1, rather than on the channel width, which is larger

by two orders of magnitude. We consider n 5 50 and

2m2 s21, which correspond to moderate and large (by

oceanmodeling standards) values of Re, respectively. In

the moderate-Re case, WB and EB regimes are char-

acterized by Re equal to 15 and 30, respectively; and in

the large-Re case,WB and EB regimes have Re equal to

375 and 750, respectively. By varying the bottom friction

coefficient, we obtain flow regimes with different de-

grees of latency of the alternating jets (Berloff et al.

2011): strong (nonlatent) jets, moderate (latent) jets,

and no stationary jets. In the EB-flow regime, the small-,

medium-, and large-g cases correspond to g 5 1028,

1027, and 1026 s21, respectively; and in the WB-flow

regime, the corresponding cases are for g 5 1028, 4 3
1028, and 1027 s21, respectively (Table 1).

The model equations are solved by a high-resolution

numerical method (Karabasov et al. 2009), on the

horizontal grid with 2048 3 1025 points (3.7-km reso-

lution), and numerical convergence of these solutions

was confirmed in Berloff et al. (2011) by several simu-

lations with 4096 3 2049 grid spacing. For each set of

parameters the model is integrated in time until a sta-

tistically equilibrated flow regime is reached (typically,

after 20–40 yr of integration), and the next 60 yr are

saved on a coarse 512 3 256 grid for analysis. In Fig. 1

instantaneous snapshots of the EB- and WB-flow solu-

tions for large Re and intermediate g illustrate the com-

plexity of the flow.

We took special care in identification of statistically

equilibrated-flow regimes to avoid sharp transitions of

the linear properties. In particular, after initial-flow

equilibrium is achieved following the first 10–20 yr of

integration, some jets tend to merge over the next 20–

40yr. We examined latitude–time (Hovm€oller) diagrams

of zonally averaged flow (Fig. 2) to ensure that none of

the solutions is contaminated by such jet mergers. Also,

visual inspection of the latitude–time diagrams suggests

that the jets are robustly present in the solutions at all

times and most of the variability of the jet strength and

position occurs on the annual and interannual time scales

(Fig. 2). The latter implies that most of the interesting

time scales of eddy variability are likely to be captured

accurately by linearizations with respect to zonally av-

eraged jets.

2. Linear analysis

In this section, we solve a hierarchy of linear problems—

with and without multiple alternating zonal jets in the

background state—focusing on the dispersion prop-

erties and growth/decay rates of the linear normal

modes.

a. Uniform background flow

First, we consider the simplest case of a horizontally

uniform background flow (i.e., Phillips 1954) but in the

presence of bottom friction and eddy viscosity. Past

studies have focused mostly on the most unstable nor-

mal modes, whereas here we are interested in properties

of all normal modes. Our background-flow velocity is

predominantly baroclinic (the baroclinic is 4 times larger

than the barotropic velocity component for all cases).

Therefore, most of the background-flow effect on the

dispersion properties is associated with the altered back-

groundPV, rather thanwith the barotropicDoppler shift

of the phase velocities.

All the details of the linearization and the notations

are in the appendix.

The resulting dispersion curves (Fig. 3) show

frequencies—that is, the real parts of v(1)(k) and

TABLE 1. List of the 12 reference solutions. Each of the hori-

zontal rows, corresponding to EB- and WB-flow solutions, in-

dicates three solutions for each value of the eddy viscosity. Each

solution is indicated by the corresponding g(1027 s21).

n 5 50 n 5 2

EB 0.1 — 1.0 10 0.1 — 1.0 10

WB 0.1 0.4 1.0 — 0.1 0.4 1.0 —
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v(2)(k)—for a discrete set of 10 values of meridional

wavenumber l, uniformly distributed over the same

range of values as those used on this figure for zonal

wavenumber k. When the frequency is negative, we

trade its sign for the negative sign of k. Thus, normal

modes with a negative/positive k have west-/eastward

phase speeds. We used a value of g 5 1027 s21, which in

terms of our set of solutions is the medium value for

the EB case but is a large value for the WB case. Three

values of the background flow are discussed here:U523

FIG. 1. Snapshots of (a) EB and (b) WB large Re–flow solutions. (left) Upper-ocean PV anomalies (color) and (right) the corresponding

zonally averaged zonal velocity profiles are shown for the medium values of bottom friction. PV anomaly values are normalized by f.

FIG. 2. Temporal and meridional variability of the jets. Latitude–time (Hovm€oller) diagrams of zonally averaged

upper-ocean streamfunction in (a) EB- and (b) WB-flow regimes with medium values of g. The corresponding

instantaneous snapshots are in Fig. 1. Streamfunction is normalized by its max absolute value.
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(equivalent to the nonlinear WB case), U 5 0, and U 5
6 cms21 (equivalent to the nonlinear EB case); these

values illustrate continuous changes found over this

range of U. We classify the normal modes in terms of

their growth rates (imaginary parts of the eigenfrequencies)

vi: unstable (0 day21 , vi), weakly damped (20.001 ,
vi # 0 day21), moderately damped (20.002 , vi #

20.001 day21), and strongly damped (vi # 20.002 day21).

FIG. 3. Linear two-layer dispersion relationship. TheU is (a),(d)23 (WB case); (b),(e) 0; and (c),(f) 6 cms21 (EB case). The g5 1027 s21,

n5 10m2 s21, andRd5 25km. The (left) first and (right) second families of the dispersion curves for the normalmodes are shown.Negative/

positive zonal wavenumbers correspond to west-/eastward propagation of the phase. Each panel shows 10 curves corresponding to equally

spaced values of l; these values are in the same range as those of k; and curves corresponding to l5 0 are labeled. Red-colored segments of

dispersion curves are unstable, that is, they correspond to eigenmodes with positive growth rates; orange-colored segments are weakly

damped, in the sense that the corresponding eigenmodes have slightly negative growth rates; and blue- and dark blue–colored segments are

stable and themost stable, respectively [as indicated by the color coding in (b)]. Tilted black lines correspond to the upper-layer background

velocity U1, which is also equal to the baroclinic background velocity; the barotropic background velocity is 4 times smaller.
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With U 5 0, unstable modes do not exist and all modes

propagate to the west (Figs. 3b,e). The barotropicmodes

are damped to a larger degree than the baroclinic

modes because the baroclinic modes have a smaller

amplitude in the bottom layer and are less affected by

the bottom friction. In the presence of the background

flow, dispersion properties of the normal modes change

profoundly. In the WB case, the modes retain westward

phase velocities but become unstable in the region of

weakly dispersive ‘‘tongue’’ seen in Figs. 3a and 3d.

In the EB case, the first family of the modes rotates

clockwise around the origin of the dispersion diagram

and most of its members become eastward propagating

(Fig. 3c). Also, most of thesemodes, except for thosewith

relatively large k and l, become unstable. Some of the

second-family modes also become eastward propagat-

ing, but none of them become unstable (Fig. 3f). Thus,

an important difference between the WB and EB re-

gimes is that in the former one there are two types of

unstable modes, whereas in the latter one there is only

one type of unstable mode.

In the absence of the background flow and bottom

friction, the first family of themodes is purely baroclinic,

that is, it projects [see (10)] only on the baroclinic ver-

tical mode, whereas the second family is purely baro-

tropic, that is, it projects only on the barotropic vertical

mode. A common view is that the ocean is populated

by purely barotropic and baroclinic eddies that become

substantially coupled by nonlinearity in nonlinear eddies.

To what extent is this barotropic–baroclinic segregation

affected by the presence of a background flow and bot-

tom friction (the lateral friction has no effect on this

aspect)? To address this question quantitatively, we in-

troduce a vertical-mode mixing coefficient m 5 m(k, l),

that is defined as fBT/fBC for the first family and as

fBC/fBT for the second family of the modes (this par-

ticular ordering is not very important): m 5 0 or m 5 ‘
implies that the normal mode is ‘‘pure,’’ that is, it proj-

ects on the single vertical mode.

Modes with 0.25 , m , 4.0 are referred to as signif-

icantly mixed normal modes, and we examined how

the fraction of the spectrum corresponding to this group

depends upon parameters of the problem. We varied

U and g (Fig. 4) and found that this fraction tends to

increase with jUj, and it is 30%–40% even for jUj 5
;0.5 cm s21, which is a relatively small value for oceanic

currents. There is noticeable asymmetry between neg-

ative and positive U, and the WB flow always results in

stronger vertical-mode mixing. Bottom friction signifi-

cantly enhances vertical-mode mixing, even in the ab-

sence of the background flow, and with nonzero g the

second family of normal modes has systematically larger

values of m than the first family. Overall, the analysis of

m suggests that the presence of a background flow or

bottom friction imposes strong coupling between the

barotropic and baroclinic modes, even in the absence of

nonlinear coupling. A more detailed picture of vertical-

mode mixing is given by plotting m(k, l) (Fig. 5) for the

set of dispersion curves shown in Fig. 3. In this plot, we

sort out the modes into strongly baroclinic (m , 0.4),

weakly baroclinic (0.4,m, 0.8), well-mixed (0.8,m,
1.25), weakly barotropic (1.25 , m , 2.5), and strongly

barotropic (2.5 , m). With U 5 0 and g 5 1027 s21, the

first family is strongly baroclinic, and the second family

is mostly strongly barotropic, except for the moderately

barotropic modes characterized by relatively large

values of l and k. In the WB case, there is substantial

diversity of vertical structures of the modes within both

FIG. 4. Dependence of normal-mode vertical mixing on background-flow strength. Fraction

of significantly mixed normal modes, that is, those with 0.25, m , 4.0 is shown as function of

U and g. The n is zero. The three sets of curves correspond to the three values of g (0, 1027, and

1026 s21).

DECEMBER 2013 BERLOF F AND KAMENKOV ICH 2511



families (Figs. 5a,d). In the EB case similar diversity is

found only for the second family, whereas the first family

remains weakly baroclinic. Themost unstableWBmodes

are the following: weakly and strongly baroclinic in the

first family, and well-mixed and weakly barotropic in the

second family; and the most unstable EB modes are

weakly baroclinic. The fast westward-propagatingmodes,

which are descendants of purely barotropic modes in the

U5 g5 0 case, also become substantially mixed, except

for the fastest ones.

In the two-layer system (characterized by 2 vertical

degrees of freedom) two quantities are needed for the

description of the vertical structure. Above, we discussed

ratio of the amplitudes of the barotropic and baroclinic

FIG. 5. Vertical mixing of the eigenmodes whereU is (a),(d)23; (b),(e) 0; and (c),(f) 6 cm s21. Color coding indicates the vertical mixing

coefficient m(k, l) for the eigenmodes shown in Fig. 3. The modes are sorted out into strongly baroclinic, weakly baroclinic, well-mixed,

weakly barotropic, and strongly barotropic, relative to the value of m, as color coded in (b).
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modes, and now we turn our attention to their phase

relationship. For this purpose, we calculated correlation

between the barotropic and baroclinic components of

each mode:

Cvert(k,v)5
<(fBT)<(fBC)1J(fBT)J(fBC)

jfBTjjfBCj
. (12)

This correlation quantifies coupling between the vertical

modes, and, thus, serves as a convenient secondmeasure

of vertical-mode mixing. A large positive number sug-

gests surface-intensified or bottom-compensated flow;

such modes can be expected to be less affected by the

bottom friction. In the EB-flow case, Cvert is mostly

positive and large, and the only significant concentration

of its negative values corresponds to the eastward-

propagating normal modes with short k. In theWB-flow

case,Cvert is mostly weakly negative, but in some parts of

the k–v space neighboring dispersion curves have Cvert

of either sign.

We find that distribution of m(k, v) is rather inter-

mittent, in the sense that neighboring branches of dis-

persion curves can be characterized by very different

values of m. Hence, provided significant linear control,

estimation of m from k–v-filtered time series of the

nonlinear solution will unavoidably mix up contribu-

tions from the normal modes with different vertical

structures. On the contrary, distribution ofCvert(k,v) is

substantially more uniform. Therefore, it is more ap-

plicable for k–v spectral diagnostics of the nonlinear

solutions (Part II).

The effect of eddy viscosity is weak (in the considered

range of wavenumbers) and limited to enhanced damp-

ing, particularly at large wavenumbers. The bottom fric-

tion stabilizes the second family but further destabilizes

the unstable tongue in the WB case (cf. Figs. 3 and 6).

The effect on the first family of modes depends on the

background-flow direction: in theWB case it is stabilizing,

but in the EB case it is destabilizing. We find that the

largest considered value of g 5 1026 s21 changes only

FIG. 6. Effect of disabling bottom friction on the dispersion relationship whereU is (a),(c)23 and (b),(d) is 6 cm s21. The color coding

for eigenmode growth rates (b) is the same as in Fig. 3. In theWB case, the eigenmodes are significantly stabilized by the bottom friction.

In the EB case, only the barotropic family is stabilized, whereas the baroclinic family is destabilized by the bottom friction. Another effect

of the bottom friction is in smoothing out local derivatives of the dispersion curves (i.e., group velocities).
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growth rates and makes stable modes even more dam-

ped and unstable modes even faster growing; and the

corresponding changes of the shapes of the dispersion

curves are minimal (not shown).

In this section we focused on the linear analysis of

uniform background flows and showed that (i) in the

WB case all unstable modes are westward propagating,

whereas in the EB case there are unstable modes prop-

agating in either direction; (ii) the unstablemodes occupy

clearly defined regions of the k–v space, and in the WB

case they form the characteristic nearly nondispersive

tongue; (iii) most of the modes are significantly mixed

in vertical, even for weak background shears, and the

bottom friction enhances this mixing; and (iv) large bot-

tom friction increases the contrast between the growth

rates of the normalmodes, by damping stablemodes and

destabilizing unstable modes even more, and by making

stable/unstable modes more barotropic/baroclinic.

b. Nonuniform background flow

In this section, we consider a more complex back-

ground flow with idealized multiple alternating zonal

jets on top of the uniform WB and EB flows. The line-

arized problem is formulated in the appendix. To ex-

amine the effects of the jets, we varied their amplitude

from zero to the values observed in the nonlinear solu-

tions. The numerical eigenvalue problem solver does

not discriminate between the first and second families of

the normal modes (section 2a), because the analytical

tractability is lost. The new normal modes are presented

for the background flows corresponding to the WB- and

EB-flow regimes, and for the situations with weak (U15
0.5 and 1.0 cm s21 for the WB and EB cases, respec-

tively) and moderate (U1 5 3.0 and 6.0 cm s21 for the

WB and EB cases, respectively) jets (Fig. 7). As in the

case of the uniform flow, the modes are sorted out by

their growth rates into the following: unstable (0 day21 ,
vi), weakly damped (20.0005 , vi # 0 day21), moder-

ately damped (20.001 , vi # 20.0005 day21), and

strongly damped (vi#20.001 day21). There are several

new effects because of the presence of the jets. First,

there is clustering of the dispersion curves; that is, in

some k–v regions there are many normal modes and the

dispersion curves overlap and cluster together. Second,

most of the normal modes are meridionally localized on

either east- or westward jets, and we discuss this in more

detail in section 2c. The localization was reported pre-

viously for themost unstablemodes (Berloff et al. 2009b),

but here we observe it for most of the modes. Third,

there is significant stabilization of many dispersion curves,

and this is indicated by reduction of the unstable (red)

curves in Figs. 7b and 7d relative to Figs. 7a and 7c. We

conjecture that the underlying stabilization mechanism

is similar to the one proposed by James (1987), who argues

that a barotropic shear can suppress baroclinic insta-

bility by localizing the critical disturbances. Finally, the

jets result in a broader range of phase speeds of the

normal modes, and this is due to the fact that the modes

localized on the east-/westward jets propagate faster to

the east/west, both from the barotropic Doppler shift

and the altered PV gradients. For example, appearance

of eastward-propagating modes in the WB case is only

due to the jets.

We studied the effects of bottom friction by changing

g from 1028 s21 (Figs. 7b,d) to 1027 and 1026 s21 (Fig. 8).

Only strong bottom friction has an effect by noticeably

reducing the number of unstable and marginally stable

normal modes, by wiping out some of the westward-

propagating nearly barotropic modes (except for the

fastest ones), and by making most of the normal modes

nearly baroclinic rather than vertically mixed. Over-

all, we argue that the indirect effect of the bottom

friction associated with the weakening of the jets

(Berloff et al. 2011) is more important than the direct

friction-induced modifications of the normal modes,

which are obtained by linearizing around the pronounced

jets.

c. Linear ensemble-averaged spectra

Up to now, all linear analyses of section 2 focused

on idealized-flow configurations. We now proceed with

linear analysis of the time-dependent background flow

diagnosed directly from the nonlinear solutions. The so-

lution is linearized around a slowly varyingmean (zonally

uniform) state, assuming that the time scale of linear

modes is much faster than the evolution of the mean

state. As demonstrated below, this approach leads to

results most closely corresponding to the nonlinear re-

sults (Part II). To follow this approach, we developed

the concept of linear ensemble-averaged spectrum,which

is the k–v spectrum worked out from an ensemble of

dispersion relationships. Each dispersion relationship is

calculated as in the previous section, but for the mean

state taken to be the zonal average of the full nonlinear-

model flow, in 2-day snapshots. The k–v domain is

binned into 4003 100 bins, and the normal-mode growth

rates corresponding to the ensemble of dispersion curves

are mapped into these bins. If at least one dispersion

curve passes through a bin, then the largest growth rate

is assigned to this bin, otherwise the bin is left ‘‘white,’’

that is, without information. This technique provides an

upper bound on the growth rates; we have also tried

averaging growth rates in each bin, but the outcome of

this is qualitatively similar.

We focus the presentation on four families of solu-

tions calculated for moderate (EB: Fig. 9; WB: Fig. 10)
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and large (EB: Fig. 11; WB: Fig. 12) Re. The figures

show the corresponding linear ensemble-averaged

k–v spectra, and the main features of these plots are the

following. First, parts of the spectra populated by the nor-

mal modes are much broader at large Re, due to the

appearance of faster eastward- and westward-propagating

modes meridionally localized on the east- and westward

jets, respectively. Second, there are well-defined parts of

the spectra corresponding to growing modes, outlined

by quadrangles for future use in the nonlinear analysis

FIG. 7. Dispersion relationships for finite-amplitude multiple zonal jets. The WB case with amplitudes of the

synthetic jets (a) 0.5 and (b) 3 cm s21 and the EB case with the amplitudes (c) 1 and (d) 6 cm s21 are shown. The

bottom friction is set to zero. The color coding is indicated in the top panel.
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(Part II). Third, around the unstable (shown in red) parts

of spectra, there aremuch broader regions corresponding

to nearly neutral (or, weakly damped) modes (shown in

green). These modes can be easily energized by eddy–

eddy nonlinear interactions; as shown in Part II, they

play an important role in the nonlinear spectra. Fourth,

at moderate Re some of the individual dispersion curves

are visible in the ensemble spectra, but at large Re they

are smeared out owing to more substantial variability

of the background jets. Finally, we notice weakly

FIG. 8. Effects of bottom friction on dispersion relationships for finite-amplitude multiple zonal jets. The jets are

the same as in Fig. 7. The WB case is shown for g equal to (a) 1027 and (b) 1026 s21, and the EB case is shown for

g equal to (c) 1027 and (d) 1026 s21.
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dampedwestward-propagating and fast-growing eastward-

propagating modes in the EB case with strong bottom

friction, and no eastward-propagating modes in the WB

case—all of this is in accord with findings of sections 2a

and 2b.

d. Eddy forcing of the normal modes

Analyses of the previous sections identified important

effects of the jets on properties of the linear normal

modes. Our next step is to explore feedbacks of the

modes on the underlying jets by using the concept of

internally generated eddy forcing (i.e., nonlinear self-

interaction of a normal mode). In the nonlinear regime,

normal modes can interact with each other through res-

onant triad interactions (e.g., Pedlosky 1987). In partic-

ular, self-interactions of normal modes can project on

purely zonal (k 5 0) stationary (v 5 0) modes corre-

sponding to the jets. In this case, zonal jets can be

FIG. 9. Ensemble-average linear spectra: EB-flow case, moderate Re. Color scale indicates

growth rates of the eigenmodes in the same units as the time frequency, andwhite areas have no

eigenmodes. Three different values of g are shown: (a) 1028, (b) 1027, and (c) 1026 s21. Each

run has Re 5 30 (n 5 50m2 s21). Quadrangles outline regions of max (positive) growth rates;

they are used for filtering the nonlinear solution.
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maintained/resisted by eddy forcings that positively/

negatively correlate with the jets. We have analyzed the

normal-mode eddy forcings for all flow regimes consid-

ered here, but because the general outcomes are quali-

tatively similar, the discussion below is limited only to the

large-Re EB case with moderate bottom friction. The

background flow corresponds to Fig. 1a, and the corre-

sponding linear ensemble-averaged spectrum is shown in

Fig. 11b.

First, we characterize meridional positioning of the

normal modes relative to the jets and find that most of

the normal modes straddle (i.e., are meridionally local-

ized on) either east- or westward jets. For this purpose,

we calculate spatial correlations between these modes

and the background flow over those latitude intervals

where themode amplitude is significant. More precisely,

we normalize the meridional structure of each mode by

its maximum amplitude and consider latitude intervals

FIG. 10. Ensemble-average linear spectra: WB-flow case, moderate Re. Color scale indicates

growth rates of the eigenmodes in the same units as the time frequency, andwhite areas have no

eigenmodes. Three different values of g are shown: (a) 1028, (b) 4 3 1028, and (c) 1027 s21.

Each run has Re 5 15 (n 5 50m2 s21). Quadrangles outline regions of max (positive) growth

rates; they are used for filtering the nonlinear solution.
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on which the normalized amplitude is greater than 0.02

in absolute value. Over the set of these intervals, we cor-

relate the meridional profile of each mode with the jets in

each layer and average over two layers. This correlation is

applied only over the region of significant amplitude

because the normal modes tend to be localized on in-

dividual jets; therefore, correlating them over the entire

domain would bias correlations toward small values. (In

the nonlinear analysis of Part II such conditioning of

the eddy amplitude is not needed, because at a given

wavenumber and frequency all jets are straddled by the

eddies.) The correlations between the normal modes

and jets show that most of the modes are localized on

either east- or westward jets, thus, resulting in clear zona-

tion of the k–v spectrum in terms of this property (Fig. 13).

The largest correlations (Fig. 13) correspond to the k–v

regions with the largest growth rates of the normal

modes (section 2c), thus, indicating that potentially the

FIG. 11. Ensemble-average linear spectra: EB-flow case, large Re. Color scale indicates

growth rates of the eigenmodes in the same units as the time frequency, andwhite areas have no

eigenmodes. Three different values of g are shown: (a) 1028, (b) 1027, and (c) 1026 s21. Each

run has Re 5 750 (n 5 2m2 s21). Quadrangles outline regions of max (positive) growth rates;

they are used for filtering the nonlinear solution.
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most active normal modes are also the most meridio-

nally localized on the jets. Short waves (large k) strad-

dling eastward jets propagate eastward; longer waves

can move in either direction. The modes straddling the

westward jets tend to have larger zonal wavenumbers

than the ones straddling the eastward jets and tend to

propagate in both directions.

We next analyze the spatial patterns of the eddy

forcings associated with the normal modes and project

them on the jets. The eddy forcing is convergence of

the eddy PV flux, which consists of fluxes of relative

vorticity

Ri 5=2ci , (13)

and isopycnal stretching (or buoyancy anomaly)

B15 S1(c22c1) and B25 S2(c12c2) . (14)

FIG. 12. Ensemble-average linear spectra: WB-flow case, large Re. Color scale indicates

growth rates of the eigenmodes in the same units as the time frequency, andwhite areas have no

eigenmodes. Three different values of g are shown: (a) 1028, (b) 4 3 1028, and (c) 1027 s21.

Each run has Re 5 375 (n 5 2m2 s21). Quadrangles outline regions of max (positive) growth

rates; they are used for filtering the nonlinear solution.
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The time- (indicated by overbar) and zonally averaged

(indicated by angular brackets) eddy forcing

Fi(y)52h$u0iq0ii52h$u0iR0
ii2 h$u0iB0

ii (15)

can be split into divergence of the relative vorticity flux

[i.e., Reynolds stress (RS) forcing] and divergence of the

buoyancy flux [i.e., form stress (FS) forcing]. Next, we

define barotropic FBT and baroclinic FBC eddy forcings

by projecting the governing equations on the vertical

barotropic and baroclinic modes (Berloff et al. 2009a).

The barotropic-eddy forcing is a sumofReynolds stresses

produced by barotropic–barotropic and baroclinic–

baroclinic nonlinear interactions, and we look at these

components individually. The baroclinic-eddy forcing

is a sum of the Reynolds (barotropic–baroclinic and

baroclinic–baroclinic) and form stresses, and we also

look at these components individually.

For each normal mode, we calculated spatial corre-

lations between FBT(y), FBC(y), and their components,

and the corresponding meridional PV anomalies asso-

ciated with the barotropic and baroclinic components

of the jets, respectively. These correlations measure ef-

ficiencies of the corresponding eddy forcings and their

components for maintaining (positive correlations) or

resisting (negative correlations) the jets. As in the al-

gorithm described above, each correlation is only cal-

culated over the set of intervals on which normalized

amplitude of the normal mode is significant (i.e., larger

than 0.02; varying this number by a factor of 2 makes no

noticeably changes in the outcome).

The main result of the above analysis is an under-

standing of how the k–v spectrum is partitioned in terms

of the fundamental properties of the eddy forcing. In

particular, Figs. 14a and 14b show which eigenmodes

have barotropic-eddy forcing (i.e., FBT) with positive/

negative feedback on the barotropic component of the

jets; and Figs. 14c and 14d show the same relationship,

but for the baroclinic-eddy forcing (i.e., FBC) and the

baroclinic component of the jets. From these plots, we

find that most of the unstable eastward-propagating

modes that straddle the eastward jets act strongly to

maintain the barotropic jet but very few of those modes

maintain the baroclinic jets. In contrast, most of the

unstable westward-propagating modes that straddle the

westward jets weakly resist the barotropic jets, but

strongly maintain the baroclinic jets. There is, however,

a well-pronounced ‘‘wedge’’ of the westward-propagating

modes, characterized by relatively fast phase speeds and

low wavenumbers, which strongly resists the baroclinic

jets (Fig. 14d).As for the high-frequency, low-wavenumber,

FIG. 13. Positions of the normal modes relative to the jets. The linear problem was solved for an instantaneous

zonal average of the EB’s large-Re solution with medium bottom friction. All normal modes with growth rates larger

than20.001 day21 are considered and correlated with the jets. Shown on the figure are dispersion properties of the

modes with the correlation coefficient: (a) larger than 0.1 and (b) smaller than 20.1.
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westward-propagating, near-barotropicmodes, they have

weak correlations with the eastward jets and tend to

maintain both the barotropic and baroclinic jets. Over-

all, most of the normal modes tend to support either

barotropic or baroclinic (or both) jets. The jet-resisting

modes, most of which resist either barotropic or baro-

clinic jets but not both of them, tend to populate lower

frequencies and wavenumbers.

FIG. 14. Action of the normal-mode eddy forcing on the underlying jets. Considered are the same linear problem

and the same normal modes as in Fig. 13. Modes with barotropic-eddy forcings that have (a) positive (correlation

more than 0.1) and (b) negative (less than20.1) correlations with the barotropic jets are shown. Modes with similar

(c) positive and (d) negative correlations, but for the baroclinic-eddy forcings and baroclinic jets, are shown. Fatter

dots indicate modes with the corresponding correlations larger than 0.4 and smaller than 20.4.
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The effects of the normal-mode RS and FS forcings

can be different. Textbook theory on the baroclinic-

eddying jets (e.g., Panetta 1993) states that in the EB

flows, the jets are maintained by the RS and resisted by

the FS, and the former process prevails. This RS effect is

often described in terms of ‘‘negative viscosity’’ phe-

nomenon, whereas the FS effect results from the baro-

clinic instability of the jets. For the WB flows, however,

Berloff et al. (2009a,b) showed that this scenario is not

valid, and the RS and FS eddy forcings exchange their

roles, so that the RS resists the jets and the FS maintains

them, and showed that this effect can be traced to the

properties of the most unstable normal modes. Here,

we extend these preliminary results to the whole k–v

spectrum of the normal modes, by calculating all modal

FS and RS eddy-forcing components and their correla-

tions with the underlying baroclinic jets (Fig. 15). The

outcome is that we found clear partitioning of the spec-

trum into several dynamically distinct zones corresponding

to different classes of the normal modes. We found that

thewhole family of themost unstable eastward-propagating

modes maintains the baroclinic jets by the RS and resists

them by the FS, both in the EB- and WB-flow regimes.

On the other hand, the family of the most unstable

westward-propagating modes maintains the jets by the

FS and weakly resists them by the RS. In general, the

normalmodeswith lower frequencies have jet-maintaining

FS, whereas the eastward-propagating modes with higher

frequencies tend to have jet-resisting FS.

3. Conclusions

The main goal of this paper is to make further prog-

ress in understanding to what extent and how properties

of oceanic eddies are controlled by the underlying linear

dynamics. It is still not clear whether the observed eddies

are strongly nonlinear (e.g., Chelton et al. 2011) or sig-

nificantly controlled by the underlying linear dynamics

(e.g., Wunsch 2009). There is a similar controversy on

the theoretical side, with idealized numerical-modeling

studies arguing either for (Berloff et al. 2011) or against

(Galperin et al. 2010) significant linear-dynamics control

exerted on eddies. There are two main reasons for this

controversy. First, the linear dynamics is governed by

the interactions between transient motions (eddies) and

steady or slowly evolving background (mean) state, and

a dynamically consistent definition of the mean state is

essential. In particular, we demonstrate that alterations

of the large-scale potential vorticity gradients induced

by eddies must be taken into account, and that the re-

alistic mean state can dramatically modify horizontal

and vertical structure as well as dispersive behavior of

the linear solutions. Second, we argue that the level of

the linear control must be established far beyond the

traditional linear-stability prediction of the eddy length

and time scales, by considering not only many other

properties of the linear normal modes, but also all parts

of their full spectrum that can be energized by nonlinear

interactions and feedback on the mean state through

mode self-interactions.

Our approach is the following. We consider solutions

of an idealized, turbulent nonlinear model of mesoscale

eddies generated by unstable, vertically sheared zonal

flows at moderate and large Reynolds numbers (i.e.,

Re). Zonally averaged instantaneous solutions contain

multiple alternating zonal jets that exist because of the

action of eddies and can strongly modify eddies, as well

as the underlying linear properties. Properties of the jets

are used in a hierarchy of linear problems, which we

solve and analyze. These problems start from the uni-

form background flow, then incorporate alterations of

this flow by eddies, in the form of simple idealized jets,

and then the jets observed in the nonlinear solutions. In

each case the corresponding linear normal modes and

their zonal wavenumber/frequency dispersion relations

are found and referred to as ‘‘linear spectra.’’ The re-

sulting linear spectra, as well as other properties of the

normal modes, are used for interpreting the nonlinear

spectral-analysis results of Part II.

The linear normal-mode properties are characterized

by the dispersion relationships, horizontal patterns,

vertical structure, correlations with the multiple jets,

as well as by the nonlinear modal self-interactions and

their projections on the jets. We explored how all of

these properties depend on the mean state and frictional

parameters. First, we found that in the presence of even

weak uniform background flow, the vertical structure of

most linear normalmodes ceases to be purely barotropic

or baroclinic; and instead it becomes ‘‘mixed.’’ This re-

sult strongly suggests that flow decomposition into the

barotropic and baroclinic eddies is dynamically incon-

sistent in most parts of the global ocean. This implies

that considering separate barotropic and baroclinic spec-

tral energy transfers, and even cascades (e.g., Scott and

Arbic 2007), may need to be upgraded to account for

coupling between the vertical modes. Second, we find

that in the presence of the westward (vertically sheared)

background flow, the unstable linear normalmodes have

a tendency to be nearly nondispersive and westward

propagating. In the eastward background flow, distri-

bution of the unstable modes is more complicated, but

because the westward flows are a prominent part of the

wind-driven gyres, it is tempting to hypothesize that the

observed nondispersive westward propagation of most

of the eddies (Wunsch 2009; Chelton et al. 2011) can be

explained by the linear control. We found that, for the
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FIG. 15. Action of the Re and form stress components of the normal-mode baroclinic-eddy forcing on the un-

derlying baroclinic jets. Considered are the same linear problem and the same normal modes as in Fig. 13. Modes

with the form stress components that have (a) positive (correlationmore than 0.1) and (b) negative (less than20.1)

correlations with the baroclinic jets are shown.Modes with similar (c) positive and (d) negative correlations, but for

the Re components, are shown. Fatter dots indicate modes with the corresponding correlations larger than 0.7 and

smaller than 20.7 (a),(b); and larger than 0.3 and smaller than 20.3 (c),(d).
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parameters of the problem, the unstable and marginally

stable linear normal modes occupy large regions of the

spectral domain, and in Part II we show that these are

the regions of significant spectral power of the nonlinear

eddies. Next, we identified spectral regions with maxi-

mum growth rates, under the hypothesis that in the non-

linear solutions these regions correspond to the maximum

energy input from the background flow to the eddies;

this hypothesis is confirmed in Part II.

We explored different flow regimes in order to un-

derstand the roles of the vertical and meridional shears

in the linear control and in shaping the normal modes.

For this purpose, we considered flows with (i) manifest

jets (low friction), (ii) moderately latent jets (medium

friction), and (iii) very latent transient jets [high friction;

see a discussion of these flow regimes in Berloff et al.

(2011)]. We also studied less and more turbulent- and

nonlinear-flow regimes, by considering intermediate and

large, by the oceanographic standards, values of Re. The

Reynolds number effect is mostly due to the fact that the

jets become stronger, when the eddy viscosity becomes

smaller. We found that the jets meridionally localize

most of the normal mode amplitudes on either east- or

westward jets. This process strongly modifies the spatial

structure of the normal modes and changes their dis-

persion properties. Higher Re also expands those parts

of the spectrum that are occupied by the unstable and

marginally stable normal modes.

Our linear approach effectively uncouples nonlinear

dynamical processes, which is the important advantage

in such a complex system. In particular, in addition to

the analysis of the influence of the mean state on eddies,

we analyzed the eddy feedback on the mean state by

finding correlations between the normal modes and the

jets, as well as correlations between the eddy forcing

(i.e., nonlinear self-interaction of themode) and the jets.

We found the following important properties: (i) the

modes straddling the eastward jets tend to have shorter

zonal wavenumbers and larger frequencies; (ii) the

modes with eddy forcing that maintains/resists the baro-

tropic jets tend to have faster/slower phase speeds; (iii)

most of the modes have eddy forcing that maintains,

rather than resists, the baroclinic jets; (iv) the modes

that have the eddy forcing resisting the baroclinic jets via

the form stress tend to be fast and eastward propagating,

whereas the slower eastward-propagating and most of

the westward-propagating modes tend to have the form

stress acting in the opposite way; and (v) the modes that

have the eddy forcing resisting the barotropic jets via

the Reynolds stress tend to have both short zonal wave-

numbers and low frequencies, whereas the modes with

relatively high frequencies, and even more so those

propagating to the east, tend to have the Reynolds stress

acting in the opposite way. We hypothesize that in the

nonlinear solutions, the spectral power accumulated in

the modes of certain type defines the roles of the baro-

clinic and barotropic-eddy forcings, and of the form

and Reynolds stresses. In the classical problem with

‘‘negative viscosity’’ effect—an eddy-driven midlatitude

eastward jet—the mean jet is maintained by the eddy

Reynolds stresses and resisted by the eddy form stresses;

however, our results suggest that this mechanism is not

generic, and there can be other alternatives [see also

Berloff et al. (2009a)]. It will be interesting to find simple

and clear physical arguments explaining spectral zona-

tion of the normal modes in terms of their eddy-forcing

properties, but this is beyond the scope of the present

study.
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APPENDIX

Linearization of the Governing Equations

In the case of horizontally uniform, zonal background

flow, with the velocities U1 and U2 in the upper and

lower layer, respectively, the linearization of the gov-

erning equations around the background flow yields:

›

›t
(=2c1 2S1c11 S1c2)52U1=

2›c1

›x
2U1S1

›c2

›x

1U2S1
›c1

›x
2b

›c1

›x
1 n=4c1

and

(A1)

›

›t
(=2c11 S2c12 S2c2)52U2=

2›c2

›x
2U2S2

›c1

›x

1U1S2
›c2

›x
2b

›c2

›x
1 n=4c2

2 g=2c2 .

(A2)

These equations are Fourier transformed in space and

time, and their solutions are sought in the full spectral

form:

ci /
~ci exp[i(kx1 ly2vt)] , (A3)
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where k and l are zonal and meridional wavenumbers,

respectively, the corresponding eigenfrequency isv, and

the corresponding eigenvector is (~c1, ~c2). The Fourier-

transformed (A1) and (A2) are as follows:

v[2(k1S1)
~c11 S1

~c2]5k(b2 S1U22 kU1)
~c1

1kS1U1
~c21 ink2~c1 and

(A4)

v[S2
~c12 (k1 S2)

~c2]5 kS2U2
~c11 k(b2 S2U12 kU2)

~c2

1 ink2~c21 igk~c2 ,

(A5)

where k 5 k2 1 l2. For existence of a solution, the de-

terminant of this system of linear equations must be

zero. This condition yields the following quadratic

equation for v:

v2[(k1 S1)(k1 S2)2 S1S2]1v[khb(2k1 S11 S2)2U1k(k1 2S2)2U2k(k1 2S1)i1 ikhnk(k1 S2)

1g(k1 S1)i]1 [k(b2S1U22 kU1)1 ink2][k(b2 S2U12 kU2)1 igkk1 ink2]5 0. (A6)

For each pair of k and l, there is unique solution of (A6)

given by the pair of eigenvalues, [v(1), v(2)]. Substitution

of v(n) into (A4) and (A5) yields the solution pair, ~c
(n)

1

and ~c
(n)

2 , for n 5 1, 2:

~c
(n)
1 5 [v(n)(k1 S2)1k(b2 S2U12 kU2)

1 ik(g1 nk)]fS2[v(n) 2kU2]g21~c
(n)
2 . (A7)

We refer to the first (n 5 1) and second (n 5 2) pair of

solutions, as the first and second families of the eigen-

modes. For consistency with the nonlinear model, in the

following analysis we set U1 5 U and U2 5 0.

In the presence of multiple alternating zonal jets on

top of the uniform background flow, the background-

flow-velocity streamfunction is

Ci 52Uiy2

ðy
0
ui(y) dy , (A8)

where ui(y) is either idealized or dynamically consistent

zonal velocity profile. For the latter, we used ensembles

of zonally averaged solutions of the nonlinear model

(section 1c). For the idealized velocity profile, we as-

sume meridional periodicity; hence, the problem is

treated as doubly periodic and there are no zonal walls.

For simplicity, we used a sinusoid with the period

specified by N and the amplitude specified by Ui:

ui(y)5Ui sin

 
2pN

y

Ly

!
. (A9)

We used N 5 8 for the EB case and N 5 7 for the WB

case, as those are approximate fits to the nonlinear so-

lutions with medium values of the bottom friction (Fig.

1). To reduce the number of parameters in this problem,

we also fixed ratio U2/U1 5 0:5, and treated U1 as the

only control parameter for the background-flow jets.

The perturbation streamfunction is Fourier trans-

formed only in time and x:

ci /ci(y) exp[i(kx2vt)] , (A10)

and the Fourier-transformed linearized equations are as

follows:

v[c00
1 2 (k21 S1)c11 S1c2]5 incIV

1 1k(U11 u1 2 i2kn)c00
1 1 fk[b2 k2(U11 u1)2 u00

1
2 S1(U2 1u2)]

1 ink4gc1 1 [kS1(U1 1u1)]c2, and (A11)

v[c00
2 2 (k2 1S2)c21 S2c1]5 incIV

2 1 [k(U21 u22 i2kn)2 ig]c00
2 1 fk[b2 k2(U21 u2)2 u00

2

2 S2(U11 u1)]1 i(nk41 gk2)gc21 [kS2(U21 u2)]c1 . (A12)

In principle, the eigenvalue problem can be solved ana-

lytically by looking for solutions in terms of themeridional

Fourier series, but we have not done this. The above

equations were discretized with second-order finite dif-

ferences, the no-slip boundary conditions were applied on

the sidewalls, and the resulting generalized eigenproblem

was solved numerically. We tested that the outcome is not

sensitive to further refinement of the spatial grid. The so-

lutions were obtained in terms of the eigenmodes for each

zonalwavenumber and complex frequencies (eigenvalues).
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