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a b s t r a c t 

This work concerns how different baroclinic modes interact and influence solutions of the midlatitude 

ocean dynamics described by the eddy-resolving quasi-geostrophic model of wind-driven gyres. We de- 

veloped multi-modal energetics analysis to illuminate dynamical roles of the vertical modes, carried out 

a systematic analysis of modal energetics and found that the eddy-resolving dynamics of the eastward jet 

extension of the western boundary currents, such as the Gulf Stream or Kuroshio, is dominated by the 

barotropic, and the first and second baroclinic modes, which become more energized with smaller eddy 

viscosity. In the absence of high baroclinic modes, the energy input from the wind is more efficiently 

focused onto the lower modes, therefore, the eddy backscatter maintaining the eastward jet and its adja- 

cent recirculation zones is the strongest and overestimated with respect to cases including higher baro- 

clinic modes. In the presence of high baroclinic modes, the eddy backscatter effect on the eastward jet 

is much weaker. Thus, the higher baroclinic modes play effectively the inhibiting role in the backscatter, 

which is opposite to what has been previously thought. The higher baroclinic modes are less energetic 

and have progressively decreasing effect on the flow dynamics; nevertheless, they still play important 

roles in inter-mode energy transfers (by injecting energy into the region of the most intensive eddy forc- 

ing, in the neighborhood of the eastward jet) that have to be taken into account for correct representation 

of the backscatter and, thus, for determining the eastward jet extension. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Dynamics of the large-scale ocean circulation is tackled

rom various perspectives ranging from theoretical analyses

f light process-oriented problems to extremely large com-

utations of comprehensive ocean general circulation models

OGCMs)(e.g., Marsh et al., 2009; Treguier et al., 2014; Gula et al.,

015 ). In this paper we consider the classical double-gyre QG

odel in three-, six- and twelve-layer configurations and study

he dynamical roles of the vertical baroclinic modes that be-

ome available with progressively increasing vertical resolution.

eing process-oriented and computationally inexpensive relative

o modern OGCMs, the QG model allows one to analyse eddy-

esolving flow regimes for a wide range of parameters. In the

ast, QG studies helped to understand various effects of mesoscale

ddies (e.g., Berloff, 2005a; McWilliams, 2008 ), patterns arising

rom early bifurcations (e.g., Simonnet et al., 2005; Dijkstra and

hil, 2005; Sapsis and Dijkstra, 2013 ), coupling with the atmo-

phere (e.g., Hogg et al., 2009 ), and other aspects of flow dynam-
∗ Corresponding author. 
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cs. However, the roles of high baroclinic modes (the modes which

re higher than the second baroclinic mode) have received little

ttention and remain poorly understood, both in general and in

he specific physical mechanisms affecting the eastward jet exten-

ion of the western boundary currents, such as the Gulf Stream or

uroshio. 

A rare study of the influence of horizontal and vertical reso-

utions on the eastward jet extension is by Barnier et al. (1991) ,

ho focused on the eddy-permitting three- and six-layer QG dou-

le gyres and concluded that the third and higher baroclinic modes

lay a catalytic role resulting in the nonlinear amplification of

he eastward jet. Another series of works ( Smith and Vallis, 2001,

002 ) studied more idealized, horizontally homogeneous, eddy-

esolving QG dynamics and found that, for ocean-like stratifica-

ion, the kinetic energy is transferred from high baroclinic modes

hrough the first baroclinic mode to the barotropic one. To what

xtent these energy transfers occur from smaller to larger scales,

hat is, by the inverse cascade (also known as eddy backscat-

er) ( Vallis, 2006 ), and affect the eastward jet extension are poorly

nderstood. Although, the impact of the horizontal resolution on

he flow dynamics has been extensively studied in QG double gyres

e.g., Shevchenko and Berloff, 2015 ) and to some extent in com-

http://dx.doi.org/10.1016/j.ocemod.2017.02.003
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Table 1 

The depths of isopycnal layers (in [m]) for 3L, 6L and 12L models. 

Layers H 1 H 2 H 3 H 4 H 5 H 6 H 7 H 8 H 9 H 10 H 11 H 12 

3 0 .25 0 .75 3 .0 

6 0 .25 0 .25 0 .25 0 .25 1 .00 2 .0 

12 0 .125 0 .125 0 .15 0 .15 0 .15 0 .15 0 .15 0 .2 0 .3 0 .5 1 .0 1 .0 
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prehensive OGCMs (e.g., Kirtman et al., 2012 ), no studies have at-

tempted to understand the higher vertical baroclinic modes and

their influence on the eastward jet in fully eddy-resolving double

gyres. The novelty of this work is a systematic study filling this gap

in knowledge. 

It is well established (e.g., Wunsch (1997) ) that ocean circu-

lation is dominated by the barotropic and first baroclinic modal

components, but it is also shown that there is significant energy

in the higher modes, and the higher is the mode, the less en-

ergy it contains. What does this energy do for the lower modes

and large-scale flows? Surprisingly little attention has been paid

to the dynamical roles of the latter. There is indeed gazing infor-

mation gap, and the singular exception to it is study by Barnier

et al. (1991) , which we overhaul and extend. At the moment, we

can only assume that just the first few of the higher baroclinic

modes do something significant, and the other ones are dynami-

cally inert, because they have too little energy. Our study verifies

this assumption in the canonical double-gyre model. 

2. Double-gyre model 

We consider the classical double-gyre QG model, describing

idealized midlatitude ocean circulation, in three-, six- and twelve-

layer configurations denoted as 3L, 6L and 12L, respectively. The

multi-layer QG equations ( Pedlosky, 1987; Vallis, 2006 ) for the po-

tential vorticity (PV) anomaly q in a domain � are 

∂ t q i + J ( ψ i , q i + βy ) = δ1 i F w 

− δiN μ�ψ i + ν�2 ψ i , 1 ≤ i ≤ N , 

(1)

where J( f, g) ≡ f x g y − f y g x , and δij is the Kronecker symbol; N =
{ 3 , 6 , 12 } is the corresponding number of stacked isopycnal fluid

layers with depths given in Table 1 , and with both density and

index increasing downward. The computational domain � is a

square, closed, flat-bottom basin of dimensions L × L × 4 km, with

L = 3840 km . The asymmetric wind curl is the only forcing (i.e., Ek-

man pumping) that drives the double-gyre ocean circulation, and

it is given by 

F w 

= 

{−1 . 80 π τ0 sin ( πy/y 0 ) , y ∈ [0 , y 0 ) , 

2 . 22 π τ0 sin ( π(y − y 0 ) / (L − y 0 ) ) , y ∈ [ y 0 , L ] , 

with a wind stress τ0 = 0 . 3 N m 

−2 and the tilted zero forcing line

y 0 = 0 . 4 L + 0 . 2 x, x ∈ [0, L ], used to avoid the symmetric solu-

tion ( Berloff and McWilliams, 1999a; Berloff et al., 2007 ). In or-

der for the 12L model to be consistent with the 3L and 6L case,

the wind forcing is applied to the first two layers, since H 

(12) 
1 

=
H 

(12) 
2 

= 0 . 5 H 

(6) 
1 

, where the superscript indicates the number of the

model. The planetary vorticity gradient is β = 2 × 10 −11 m 

−1 s −1 ,

the bottom friction parameter is μ = 4 × 10 −8 s −1 and the lateral

eddy viscosity ν is a variable parameter specified further below. 

The layerwise PV anomaly q i and the velocity streamfunction

ψ i are dynamically coupled through the system of elliptic equa-

tions: 

q i = �ψ i − (1 − δi 1 ) S i 1 (ψ i − ψ i −1 ) − (1 − δiN ) S i 2 (ψ i − ψ i +1 ) , 

1 ≤ i ≤ N , (2)

with the stratification parameters S i 1 , S i 2 (Section 5.3.2 in Vallis

(2006) ) chosen so that to make Rossby deformation radii as similar
s possible between the models ( Table 2 ). Note that for consistency

he first Rossby radius ( Rd 1 = 40 km ) is the same across all model

tratifications. System (1) - (2) is augmented with the integral mass

onservation constraints ( McWilliams, 1977 ): 

 t 

∫ ∫ 
�
(ψ i − ψ i +1 ) d yd x = 0 , 1 ≤ i ≤ N − 1 , (3)

ith the zero initial condition, and with the partial-slip lateral

oundary condition: 

 nn ψ i − α−1 ∂ n ψ i = 0 , 1 ≤ i ≤ N , (4)

here α = 120 km ( Berloff and McWilliams, 1999b ) and n is

he normal-to-wall and facing inward unit vector. This condition,

hich is a simple parameterization of dynamically unresolved

ear-boundary processes, prescribes the tangential velocity compo-

ent in terms of the exponential decay law based on the charac-

eristic boundary layer thickness α. Along with the boundary con-

ition (4) we ensure no normal flow condition on ψ i , 1 ≤ i ≤ N . 

The QG model (1) –(4) is solved on the appropriate grid

ith the high-resolution CABARET method based on a second-

rder, non-dissipative and low-dispersive conservative advection

cheme ( Karabasov et al., 2009 ). The distinctive feature of this

ethod is its ability to simulate large-Reynolds flow regimes cost-

fficiently. 

The model is initially spun up from the state of rest over the

ime interval T spin (about 20 years), which depends on the eddy

iscosity ν and vertical resolution N , until the solution becomes

tatistically equilibrated, as indicated by the total energy time se-

ies. Then, the solution is computed for another T sim 

= 40 years

nd analyzed. To guarantee converged solutions for the eddy vis-

osities ν = { 50 , 100 } m 

2 s −1 , which are considered in the paper,

ll our numerical experiments were carried out on the appropriate

niform horizontal grids G = { 257 2 , 513 2 } , where the grid size X ×
 is indicated as X 

2 . We assume that the solution is converged if

he l 2 -norm relative difference δ( f, g) = ‖ g − f‖ 2 / ‖ f‖ 2 between a

oarse- and fine-grid solutions g and f is sufficiently small (less

han 5%). We also use the relative error δ to compare different

olutions and their characteristics. More details on the solution

onvergence at these and much smaller values of ν can be found

n Shevchenko and Berloff (2015) . 

Note that the horizontal resolution in the analyzed solutions

ay look insufficient, but we have performed a formal numeri-

al convergence study to make sure that all dynamically important

cales in the model and flow regime considered are resolved. In

onfirmation of this we have compared 257 2 and 513 2 solutions for

= 100 m 

2 s −1 in 3L and 6L cases, and found a less than 5% differ-

nce between the coarse and refined time-mean solutions, as well

s between the corresponding energy diagrams, although the lat-

er show a less than 10% difference, since using flow energetics as

 metric of convergence assumes higher resolution for the solution

o be converged. This result disregards the importance of resolving

he smallest length scales in the considered ocean model and flow

egime. Other flow regimes, such as those dominated by surface

G dynamics may exhibit much stronger dependence on finer grid

esolution, but this is apparently not our case, which focuses on

he dynamics of the main pycnoline. In our case horizontal eddy

cales are dominated by the deformation scales of the lowest ver-

ical modes. 
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Table 2 

The Rossby deformation radii (in [km]) for 3L, 6L and 12L models. 

Layers Rd 1 Rd 2 Rd 3 Rd 4 Rd 5 Rd 6 Rd 7 Rd 8 Rd 9 Rd 10 Rd 11 

3 40 .0 23 .0 

6 40 .0 16 .0 11 .6 9 .8 7 .8 

12 40 .0 15 .7 10 .7 8 .2 6 .6 6 .2 5 .3 4 .6 3 .9 3 .6 3 .2 
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. Analyses of the double-gyre solutions 

In this section we study effects of vertical modes in 3L, 6L and

2L solutions. As the starting point, we decompose each flow field

nto its time-mean and fluctuating components, denoted by an

verbar and a prime, respectively, and derive the energy balance

quations for the QG model (1) - (4) in the layer- and mode-wise

ormulations. To make the derivation clearer to the reader and to

void unnecessary complications, we will write the derivation for

he 3L model followed by its modewise analogue; the derivation

or the 6L and 12L cases follows the same lines. 

sopycnal layers 

The layerwise energy equations can be obtained by multiplying

1) by a vector −ψ = −(ψ 1 , ψ 2 , ψ 3 ) 
T and recasting the result in

he following form 

ψ 1 
∂q 1 
∂t 

− ψ 1 J 1 = −ψ 1 F w 

− ψ 1 ν�2 ψ 1 , 

ψ 2 
∂q 2 
∂t 

− ψ 2 J 2 = −ψ 2 ν�2 ψ 2 , 

ψ 3 
∂q 3 
∂t 

− ψ 3 J 3 = ψ 3 μ�ψ 3 − ψ 3 ν�2 ψ 3 , (5) 

here J i = J ( ψ i , q i + βy ) . 

Using the identity 

1 

2 

∂ 

∂t 
(∇χ) 2 = ∇ · χ∇ 

(
∂χ

∂t 

)
− χ�

(
∂χ

∂t 

)
(6) 

nd substituting (2) into (5) leads to 

1 

2 

∂ 

∂t 

(
(∇ψ 1 ) 

2 + S 12 ψ 

2 
1 

)
−∇ · T 1 = −ψ 1 F w 

− ψ 1 ν�2 ψ

1 

2 

∂ 

∂t 

(
(∇ψ 2 ) 

2 + (S 21 + S 22 ) ψ 

2 
2 

)
−∇ · T 2 = −ψ 2 ν�2 ψ 2 + ψ 2 

(
1 

2 

∂ 

∂t 

(
(∇ψ 3 ) 

2 + S 31 ψ 

2 
3 

)
−∇ · T 3 = ψ 3 μ�ψ 3 − ψ 3 ν�

with the energy flux vector 

 i = 

ψ 

2 
i 

2 

(
∂q i 
∂y 

+ β, −∂q i 
∂x 

)
+ ψ i ∇ 

(
∂ψ i 

∂t 

)
, 1 ≤ i ≤ 3 . 

By applying the vector identities 

ψ�ψ = ∇ · (ψ ∇ψ ) − ( ∇ψ ) 
2 
, 

�2 ψ = ∇ · ( ψ ∇(�ψ ) − �ψ ∇ψ ) + ( �ψ ) 
2 

e split the term ψ i �
2 ψ i on the right hand side of (7) into the

endency term and divergent parts: 

1 

2 

∂ 

∂t 

(
(∇ψ 1 ) 

2 + S 12 ψ 

2 
1 

)
−∇ · B 1 = F 1 + ψ 1 S 12 

∂ψ 2 

∂t 
, 

1 

2 

∂ 

∂t 

(
(∇ψ 2 ) 

2 + (S 21 + S 22 ) ψ 

2 
2 

)
−∇ · B 2 = F 2 + ψ 2 

(
S 21 

∂ψ 1 

∂t 
+ S 22 

∂ψ 3 

∂t 

)
1 

2 

∂ 

∂t 

(
(∇ψ 3 ) 

2 + S 31 ψ 

2 
3 

)
−∇ · B 3 = F 3 + ψ 3 S 31 

∂ψ 2 

∂t 
, 

(8) 
 1 S 12 
∂ψ 2 

∂t 
, 

ψ 1 

∂t 
+ S 22 

∂ψ 3 

∂t 

)
, 

+ ψ 3 S 31 
∂ψ 2 

∂t 
, 

(7) 

here 

 21 = 

H 1 

H 2 

S 12 , S 22 = 

H 1 

H 2 

γ S 12 , S 31 = 

H 1 

H 3 

γ S 12 , γ = 

S 22 

S 21 

, 

nd 

 i = 

ψ 

2 
i 

2 

(
∂q i 
∂y 

+ β, −∂q i 
∂x 

)
+ ψ i ∇ 

(
∂ψ i 

∂t 

)
−ν( ψ i ∇(�ψ i ) − �ψ i ∇ψ i ) + δ3 i μ( ψ i ∇ψ i ) , 1 ≤ i ≤ 3 , 

ith 

 i = 

⎧ ⎨ ⎩ 

F w 

− D 1 ,ν for i = 1 , 

− D 2 ,ν for i = 2 , 

−D μ − D 3 ,ν for i = 3 , 

nd 

 w 

= −ψ 1 F w 

, D i,ν = ν(�ψ i ) 
2 , D μ = μ(∇ψ 3 ) 

2 . 

In order to obtain the available potential energy, the last term

n the right hand side of each equation in (8) has to be brought

nder the time derivative on the left hand side. To this end, we

ultiply the i -th equation (8) by H i / H and write it as 

∂E i 
∂t 

− H i 

H 

∇ · B i = 

H i 

H 

F i , 1 ≤ i ≤ 3 , (9)

ith 

 i = K i + AP E i , 

here the kinetic energy of the i -th layer is K i = 

1 

2 

H i 

H 

(∇ψ i ) 
2 , and

he available potential energy APE i is distributed vertically as 

P E i = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

H 1 

H 

S 12 

4 

[ ψ] 2 12 for i = 1 , 

H 1 

H 

S 12 

4 

(
[ ψ ] 2 21 + γ [ ψ ] 2 23 

)
for i = 2 , 

H 1 

H 

S 12 

4 

γ [ ψ] 2 32 for i = 3 , 

ith H = 

∑ 3 

i =1 
H i and [ ψ ] i j = ψ i − ψ j . 

To proceed, we define the total basin-average time-mean K i and

P E i of the flow as follows 

 i = 

1 

2 

H i 

HA 

∫ ∫ 
�

(∇ψ i ) 2 d x d y , 
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and 

AP E i = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 

4 

H 1 

HA 

∫ ∫ 
�

H 1 

H 

S 12 

4 

[ ψ] 2 
12 

d x d y for i = 1 , 

1 

4 

H 1 

HA 

∫ ∫ 
�

H 1 

H 

S 12 

4 

(
[ ψ ] 2 

21 
+ γ [ ψ ] 2 

23 

)
d x d y for i = 2 , 

1 

4 

H 1 

HA 

∫ ∫ 
�

H 1 

H 

S 12 

4 

γ [ ψ] 2 
32 

d x d y for i = 3 , 

where A = L x L y H. 

We also define the time-mean kinetic energy of eddies K 

′ 
i 

as 

K 

′ 
i 
= 

1 

2 

H i 

HA 

∫ ∫ 
�

(∇ψ 

′ 
i 
) 2 d x d y , 1 ≤ i ≤ 3 , 

and the time-mean available potential energy of eddies AP E ′ as 

AP E ′ 
i 
= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 

4 

H 1 

HA 

∫ ∫ 
�

H 1 

H 

S 12 

4 

[ ψ 

′ ] 2 
12 

d x d y for i = 1 , 

1 

4 

H 1 

HA 

∫ ∫ 
�

H 1 

H 

S 12 

4 

(
[ ψ 

′ ] 2 
21 

+ γ [ ψ 

′ ] 2 
23 

)
d x d y for i = 2 , 

1 

4 

H 1 

HA 

∫ ∫ 
�

H 1 

H 

S 12 

4 

γ [ ψ 

′ ] 2 
32 

d x d y for i = 3 . 

Thus, the mean-flow energy on the i -th layer < E > is given by 

〈 E i 〉 = E i − E ′ 
i 
, 1 ≤ i ≤ 3 . 

In order to study how the energy is transferred between the

layers, we extracted the energy transfer terms C ij from the diver-

gence operator in system (9) , and after further manipulations ob-

tained 

∂E 1 
∂t 

− ∇ ·
(

H 1 

H 

G 1 + 

H 1 

H 

C 1 

)
= 

H 1 

H 

F 1 + C 12 , 

∂E 2 
∂t 

− ∇ ·
(

H 2 

H 

G 2 + 

H 1 

H 

C 2 

)
= 

H 2 

H 

F 2 − C 12 + C 23 , 

∂E 3 
∂t 

− ∇ ·
(

H 3 

H 

G 3 + 

H 1 

H 

C 3 

)
= 

H 3 

H 

F 3 − C 23 , (10)

with 

G i = 

ψ 

2 
i 

2 

(
∂ 

∂y 
�ψ i + β, − ∂ 

∂x 
�ψ i 

)
+ ψ i ∇ 

(
∂ψ i 

∂t 

)
−ν( ψ i ∇(�ψ i ) −�ψ i ∇ψ i ) +δ3 i μ( ψ i ∇ψ i ) , 1 ≤ i ≤ 3 , (11)

and 

C i = 

S 12 

4 

(1 − δ3 i ) 

(
ψ 

2 
i 

∂ψ i +1 

∂y 
+ ψ 

2 
i +1 

∂ψ i 

∂y 
, −ψ 

2 
i 

∂ψ i +1 

∂x 
− ψ 

2 
i +1 

∂ψ i 

∂x 

)
+ γ

S 12 

4 

(1 − δ1 i ) 

(
ψ 

2 
i −1 

∂ψ i 

∂y 
+ ψ 

2 
i 

∂ψ i −1 

∂y 
, 

−ψ 

2 
i −1 

∂ψ i 

∂x 
− ψ 

2 
i 

∂ψ i −1 

∂x 

)
, 1 ≤ i ≤ 3 , (12

where the terms C ij (responsible for the energy transfer between

the i -th and j -th layers) are 

 12 = 

H 1 

H 

S 12 

2 

J(ψ 1 , ψ 2 )(ψ 1 + ψ 2 ) , 

 23 = γ
H 1 

H 

S 12 

2 

J(ψ 2 , ψ 3 )(ψ 2 + ψ 3 ) . 

Next, we time averaged equations (10) , integrated them over

the basin �, and applied the Gauss–Ostrogradsky theorem: 

−H 1 

H 

∮ 
�

G 1 · n d� = 〈 F w 

〉 − 〈 D 1 ,ν〉 + 〈 C 12 〉 , 

−H 2 

H 

∮ 
�

G 2 · n d� = −〈 D 2 ,ν〉 − 〈 C 12 〉 + 〈 C 23 〉 , 

−H 3 

H 

∮ 
�

G 3 · n d� = −〈 D μ〉 − 〈 D 3 ,ν〉 − 〈 C 23 〉 , (13)
here 〈 F w 

〉 is the basin-average wind forcing F w 

, 〈 C i j 〉 is the en-

rgy transfer rate between the layers, 〈 D l,ν〉 and 〈 D μ〉 are the en-

rgy dissipation due to the eddy viscosity and bottom friction, re-

pectively. Here, the overbar and the angle brackets denote the

ime and basin averages, respectively. 

As it follows from the boundary condition (4) , the total flux

cross the boundary � in equation (13) does not vanish and be-

omes 

 �,i ≡ −H i 

H 

∮ 
�

G i · n d� = −H i 

H 

∮ 
�

[ ( 

ψ 

2 
i 

2 

∂ω i 

∂y 
, −ψ 

2 
i 

2 

∂ω i 

∂x 

) 

· n 

+ αψ i 

∂ ̂  ω i 

∂t 
− ν

(
ψ i 

∂ω i 

∂n 

− αω i ̂  ω i 

)
+ δ3 i μαψ i ̂  ω i 

]
d� , (14)

here ω i = �ψ i , ̂ ω i = ∂ nn ψ i . We decompose I �,i = I + 
�,i 

+ I −
�,i 

, re-

ocate it to the right hand side of (13) and treat it, depending on

he sign, as the forcing I + 
�,i 

or dissipation I −
�,i 

. Thus, the layerwise

nergy balance equations become 

 = 〈 F ′ 1 〉 − 〈 D 

′ 
1 〉 + 〈 C 12 〉 , 

 = 〈 F ′ 2 〉 − 〈 D 

′ 
2 〉 − 〈 C 12 〉 + 〈 C 23 〉 , 

 = 〈 F ′ 3 〉 − 〈 D 

′ 
3 〉 − 〈 C 23 〉 , (15)

here 〈 F ′ i 〉 = δ1 i 〈 F w 

〉 + I + 
�,i 

, 〈 D 

′ 
i 〉 = −δ3 i 〈 D μ〉 − 〈 D i,ν〉 + I −

�,i 
, 1 ≤

 ≤ 3. 

ertical modes 

In order to express the QG equations (1) in terms of the vertical

odes φ we make use of the stratification matrix 

 = 

( 

S 12 −S 12 0 

−S 21 S 21 + S 22 −S 22 

0 −S 31 S 31 

) 

nd rewrite the system of elliptic equations (2) in the vector form

s 

 = �ψ − S ψ . (16)

Multiplying (16) by some matrix � yields 

q = ��ψ − �S ψ . (17)

he matrix � is chosen so that � = �S �−1 , where � is the di-

gonal matrix of the eigenvalues of the stratification matrix S , and

olumns of �−1 are the corresponding eigenvectors of S . Hence,

quation (17) can be rewritten as 

q = ��ψ − ��ψ . (18)

Thus, the QG equations (1) can be projected from layers onto

odes by the linear transformation �: ψ → φ, where φ =
(φ0 , φ1 , φ2 ) , φ0 is the barotropic mode, and φ1 , φ2 are the first

nd second baroclinic modes. The inverse transformation is given

y �−1 : φ → ψ . To keep the notations consistent with the defi-

ition of the modes we enumerated the entries θ ij and 

˜ θi j of the

atrices � and �−1 from 0 to N − 1 . 

Substitution of (16) into (1) and subsequent multiplication of

he i -th equation in (1) by θ ji lead to 

j1 

(
�

(
∂ψ 1 

∂t 

)
− S 12 

(
∂ψ 1 

∂t 
− ∂ψ 2 

∂t 

)
+ J 11 

)
= θ j1 

(
F w 

+ ν�2 ψ 1 

)
, 

j2 

(
�

(
∂ψ 2 

∂t 

)
− S 21 

(
∂ψ 2 

∂t 
− ∂ψ 1 

∂t 

)
−S 22 

(
∂ψ 2 

∂t 
− ∂ψ 3 

∂t 

)
+ J 22 

)
= θ j2 ν�2 ψ 2 , 
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j3 

(
�

(
∂ψ 3 

∂t 

)
− S 31 

(
∂ψ 3 

∂t 
− ∂ψ 2 

∂t 

)
+ J 33 

)
= θ j3 

(
ν�2 ψ 3 − μ�ψ 3 

)
, (19) 

here 1 ≤ j ≤ 3 and J ii = J(ψ i , q i ) . 

Summing up equations (19) and taking into account (18) gives

he following equations for the vertical modes: (
∂φm 

∂t 

)
− λm 

∂φm 

∂t 
+ 

3 ∑ 

i =1 

θmi J ii 

= θm 1 F w 

− θm 3 μ�ψ 3 + ν�2 φm 

, 0 ≤ m ≤ 2 , (20) 

here λm 

is the m -th eigenvalue of the matrix �. 

The modewise energy equations can be derived similarly to

heir layerwise analogues (15) by multiplying the m -th equation

20) by −φm 

to have 

1 

2 

∂ ̃  E m 

∂t 
− ∇ · ˜ G m 

− φm 

3 ∑ 

i =1 

θmi ̃
 J i, 2 , 2 

= ̃

 F m, w 

− ˜ D m,μ − ˜ D m,ν , 0 ≤ m ≤ 2 , (21) 

here a tilde represents modal values, and the modal energies are

iven by 

 

 m 

= ̃

 K m 

+ ̃

 P m 

, ˜ K m 

= (∇φm 

) 2 , ˜ P m 

= λm 

φ2 
m 

, 

nd the modal form of the energy flux given by 

 

 m 

= 

(
β

2 

φ2 
m 

, 1 

)
+ φm 

∇ 

(
∂φm 

∂t 

)
− ν( φm 

∇(�φm 

) − �φm 

∇φm 

) 

+ θm 3 ̃
 θ3 m 

μ( φm 

∇φm 

) . (22) 

he modal representation of the Jacobian 

˜ J i,k 1 ,l 1 in (21) is 

 

 i,k ′ ,l ′ = 

k 1 ∑ 

k =0 

l 1 ∑ 

l=0 

J 
(˜ θik φk , ̃

 θil ξl 

)
, (23) 

here ξ is the modal PV anomaly. The modal forcing and dissipa-

ion in (21) are given by 

˜ F m, w 

= −θm 1 φm 

F w 

, ˜ D m,μ = θm 3 μ
3 ∑ 

i =1 ̃

 θ3 i ∇ φi · ∇ φm 

, 

˜ 

 m,ν = ν( �φm 

) 
2 
. 

As in the layerwise case, we average (21) in time and space, and

pply the Gauss–Ostrogradsky theorem resulting in ∮ 
�

˜ G m 

· n − 〈 ̃  C mp 〉 
= 〈 ̃  F m, w 

〉 − 〈 ̃  D m,μ〉 − 〈 ̃  D m,ν〉 0 ≤ m ≤ 2 , p = 0 , 1 , 2 , (24) 

ith the energy transfer terms between the m -th and p -th modes

iven by 

 ̃

 C mp 〉 = 

〈 

φm 

3 ∑ 

i =1 

θmi ̃
 J i,k 1 ,l 1 

〉 

, k 1 = l 1 = { m, p} . 

We denote the boundary integral in (24) by ˜ I �,m 

and decom-

ose it into the sum of the forcing ̃  I + 
�,m 

and dissipative ̃  I −
�,m 

terms,

s in the layerwise case. Thus, the modewise energy balance equa-

ions become 

 = 〈 ̃  F m 

〉 − 〈 ̃  D m 

〉 + 〈 ̃  C 01 〉 + 〈 ̃  C 02 〉 , 
 = 〈 ̃  F m 

〉 − 〈 ̃  D m 

〉 + 〈 ̃  C 10 〉 + 〈 ̃  C 12 〉 , 
 = 〈 ̃  F m 

〉 − 〈 ̃  D m 

〉 + 〈 ̃  C 20 〉 + 〈 ̃  C 21 〉 , (25) 

here 〈 ̃  F m 

〉 = 〈 ̃  F m, w 

〉 + ̃

 I + 
�,m 

, 〈 ̃  D m 

〉 = 〈 ̃  D m,μ〉 + 〈 ̃  D m,ν〉 + ̃

 I −
�,m 

. 
From the modewise energy balance equations (25) , we com-

uted the energy transfers between the modes, as well as the ener-

ies of the time-mean flow 〈 ̃  E 〉 and the fluctuating 〈 ̃  E ′ 〉 component

f the mode. The formalism was extended to the 6L and 12L mod-

ls, and used to estimate how the difference between 3L, 6L and

2L solutions is reflected in the modal energetics. 

odal energetics 

Here we study how the decreasing eddy viscosity ν influences

he flow dynamics. In particular, we analyze the penetration length

f the eastward jet L p (defined as the distance from the western

oundary to the most eastern point at the tip of the time-mean jet,

here the time-mean flow speed is less than 0 . 1 m s −1 ), the vol-

me transport Q (the difference between the maximum and mini-

um of the time-mean barotropic transport streamfunction given

n [Sv]), and the relative l 2 -norm difference δ between two fields. 

As seen in Fig. 1 , the smaller is ν , the stronger is the east-

ard jet extension and the larger is Q ( Table 3 ); also, L p and Q

re in general larger with fewer layers and smaller ν , although

here might be some small exceptions. The global relative dif-

erence between 3L and 6L solutions is δ( ψ 

(3) 

1 , ψ 

(6) 

1 ) = 0 . 61 and

he analogous local difference reaches its maximum in the east-

ard jet region. However, the 6L and 12L solutions are similar, and

( ψ 

(6) 

1 , ψ 

(12) 

1 ) = 0 . 05 . 

The discrepancy between 3L and 6L solutions is due to the

iffering vertical resolution, but such an explanation misses the

nderlying physical mechanism which involves higher baroclinic

odes. To address this issue we studied more thoroughly the so-

utions with ν = 100 m 

2 s −1 , while leaving out (due to the lack of

omputational resources) similarly detailed analyses of the prob-

em with ν = 50 m 

2 s −1 . However, on the basis of qualitative com-

arison of the 3L and 6L solutions in Shevchenko and Berloff

2015) and our present analysis, we argue that the dynamics at 

= 50 m 

2 s −1 is qualitatively similar, though more energetic. Thus,

e treat the dynamics at ν = 100 m 

2 s −1 as the reference one. 

We use the modewise energy balance equations (25) to study

ow the difference between 3L and 6L solutions is reflected in the

odal energetics. The modewise energy diagrams for the 3L and

L solutions ( Figs. 2 and 3 ) show that in all solutions the main

nergy transfers are between the barotropic, first and second baro-

linic modes, and in the 6L solution both the energy of the time-

ean flow and the energies of the fluctuating components of these

odes are larger. Note that all energy terms in the energy dia-

rams are non-dimensional and normalized to the total layerwise

nergy (the total energy integrated over all the layers); the velocity

s defined in units u s = cm s −1 , the length scale is l s = L/ ( 
√ 

G − 1)

the grid interval) and the time scale t s = l s /u s . As one can see in

 Figs. 2 and 3 , the energy of fluctuations is concentrated in the

ower modes φ0 , φ1 , φ2 . Moreover, the energy exchanges between

hese modes dominate and make the barotropic, first and second

aroclinic modes players of fundamental importance in determin-

ng the eastward jet extension. To support this conclusion further,

e amplified each mode with extra forcing and observed the re-

ulting amplifications of the eastward jet. For this we introduced

he modewise forcing anomaly 

 

 = �−1 
(̃

 f � F 
)
, 

n which ̃

 f = ( ̃  f 0 , ̃
 f 1 , ̃

 f 2 ) 
T and the symbol � denotes a component-

ise multiplication, namely ˜ f � F = ( ̃  f 0 F 0 , ̃
 f 1 F 1 , ̃

 f 2 F 2 ) , where F i is

he projection of the wind forcing F w 

onto the i -th mode. For the

patial pattern of F it is natural to take the wind forcing F w 

, since

t affects all the modes and does not project on the eastward jet,

lthough other choices can be also justified. Thus, the modewise
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Fig. 1. A sequence of time-mean solutions for decreasing eddy viscosity ν . The time-mean transport velocity streamfunction ψ 1 for different models, grids G and viscosities 

ν [m 

2 s −1 ] ; contour interval is 0.5 Sv. Note that L (3) 
p > L (6) 

p , but L (6) 
p ≈ L (12) 

p for ν = { 50 , 100 } m 

2 s −1 . 

Table 3 

Large-scale flow properties. The time-mean eastward jet penetration length L p [km], the total 

volume transport Q [Sv], and the relative errors δ for different values of the eddy-viscosity 

ν [m 

2 s −1 ] in the 3L, 6L and 12L solutions. 

ν L (3) 
p L (6) 

p L (12) 
p Q (3) Q (6) Q (12) δ( ψ 

(3) 

1 , ψ 

(6) 

1 ) δ( ψ 

(6) 

1 , ψ 

(12) 

1 ) 

100 2370 1740 1755 103 90 91 0 .61 0 .05 

50 2865 2360 2302 123 119 113 0 .57 0 .05 

F 0 D0

φ0
K0 = 1.02

K0 = 6.87

P0 = 0.00

P0 = 0.00

F 1

D1

φ1
K1 = 2.13

K1 = 3.82

P1 = 173.81

P1 = 30.42

F 2

D2

φ2
K2 = 0.61

K2 = 0.86

P2 = 35.64

P2 = 1.70

1.03

0.58

0.36

0.25 1.65

1.66

1.20

1.50

0.55

Fig. 2. Modewise energy diagram for the 3L solution at ν = 100 m 

2 s −1 ; only transfers of total energy are depicted in the diagram. The overbar and angle brackets denote 

the time and basin averages, respectively; and the prime stands for the fluctuating component of the quantity. Kinetic and potential energies of the i -th mode is denoted by ˜ K i and ̃  P i , while its forcing and dissipation by ̃  F i and ̃  D i , respectively. The size of the arrows is normalized to the maximum amplitude of the energy transfer, and the color 

indicates forcing (red) and dissipation (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. Modewise energy diagram for the 6L solution at ν = 100 m 

2 s −1 ; only transfers of total energy are depicted in the diagram. Note that terms of order less than 10 −2 

are not shown due to their negligible influence. The overbar and angle brackets denote the time and basin averages, respectively; and the prime stands for the fluctuating 

component of the quantity. Kinetic and potential energies of the i -th mode is denoted by ˜ K i and ̃  P i , while its forcing and dissipation by ̃  F i and ̃  D i , respectively. The size of 

the arrows is normalized to the maximum amplitude of the energy transfer, and the color indicates forcing (red) and dissipation (blue). 
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orcing ˜ F adds the forcing with the amplitude ˜ f m 

only to the m -th

ode, thereby altering its energy intake. 

We introduced ̂

 e m 

as the standard unit basis vector (a vector of

eros with one at the position m ) and 

˜ f as the forcing amplitude,

nd carried out a series of numerical experiments for ˜ f = ̃

 f ̂  e m 

,

ith the goal to understand how the extra forcing of individual

odes influences the eastward jet characteristics and the energy

f flow fluctuations ˜ E ′ . 
In the 3L case, relatively moderate forcing ˜ F of φ0 , φ2 (we

pplied up to 10% of the full reference wind stress with τ0 =
 . 3 N m 

−2 , rather than of the corresponding wind forcing compo-

ent projected on the forced mode) results in 5% increase of the

astward jet length, while the same forcing being applied to φ1 

longates the jet by 10%. Further increase of the forcing of φ0 , φ2 

eads to no changes in the jet length, while the jet does become

onger by 15%, if only φ1 is forced ( Table 4 ). In the 6L case, the

astward jet length L (6) 
p always increases as the modes φ0 , φ1 are

orced, whereas for φ2 this increase takes place up to only 10% of
he forcing, and then L (6) 
p decreases ( Table 5 ). Forcing of the higher

aroclinic modes φm 

(m = 3 , 4 , 5) up to the 10% of the initial forc-

ng only slightly increases L (6) 
p , which remains nearly constant for

he stronger forcing. Thus, we conclude that the higher baroclinic

odes have much weaker effect on the eastward jet, and φ1 is

he most efficient mode in the eddy backscatter, however a deeper

nalysis addressing the physical mechanism making φ1 the most

fficient mode is beyond the scope of this paper. 

Analysing the modewise energetics, we found that the higher is

he intensity of the modewise forcing ˜ F , the larger are the modal

nergies of the mean flow and fluctuations, and that the energy

nequality 

 

 

′ 
1 

> ̃

 E ′ 
2 

> ̃

 E ′ 
0 

s well as its analogue normalized to the total layerwise energy 

 

 1 > ̃

 E 2 > ̃

 E 0 
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0 1 2 3 4 5 6 7 8 9 10 11

50

100

150

200 3L

6L

12L

layers

Fig. 4. Typical behaviour of the total modewise energy ̃  E of the 3L, 6L and 12L solutions normalized to its total layer-wise energy E (the total energy integrated over all 

the layers) for ν = 100 m 

2 s −1 and the wind forcing ˜ F w . Note that the inequality ˜ E 1 > ̃

 E 2 > ̃

 E 0 holds true for all solutions thus making the first three modes players of 

fundamental importance in setting the behaviour the eastward jet extension of the western boundary currents. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Table 4 

Efficiency of 3L modes. Effect of the mode- 

wise forcing ̃  f = ̃

 f m ̂  e m , 0 ≤ m ≤ 2 on the east- 

ward jet penetration length L (3) 
p and vol- 

ume transport Q (3) , in the 3L solution at ν = 

100 m 

2 s −1 . Note that the L (3) 
p = 2370 km and 

Q (3) = 102 . 60 Sv for ˜ f = 0 . 

m -th mode ˜ f m L (3) 
p [km] Q (3) [Sv] 

0 0 .1 2500 107 

1 0 .1 2600 104 

2 0 .1 2500 96 

0 0 .2 2500 103 

1 0 .2 2650 119 

2 0 .2 2500 112 

0 0 .4 2500 118 

1 0 .4 2750 128 

2 0 .4 2500 102 

Table 5 

Efficiency of 6L modes. Effect of the mode- 

wise forcing ̃  f = ̃

 f m ̂  e m , 0 ≤ m ≤ 5 on the east- 

ward jet penetration length L (6) 
p and vol- 

ume transport Q (6) , in the 6L solution at ν = 

100 m 

2 s −1 . Note that the L (6) 
p = 1740 km and 

Q (6) = 90 . 06 Sv for ˜ f = 0 . 

m -th mode ˜ f m L (6) 
p [km] Q (6) [Sv] 

0 0 .1 1800 91 

1 0 .1 1900 94 

2 0 .1 1800 85 

3 0 .1 1700 87 

4 0 .1 1750 86 

5 0 .1 1750 83 

0 0 .2 1800 90 

1 0 .2 20 0 0 113 

2 0 .2 1450 81 

3 0 .2 1600 85 

4 0 .2 1700 84 

5 0 .2 1750 88 

0 0 .4 1950 104 

1 0 .4 2200 130 

2 0 .4 1500 80 

3 0 .4 1750 94 

4 0 .4 1700 82 

5 0 .4 1800 83 
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old true for both 3L, 6L and 12L solutions ( Fig. 4 ), and for all val-

es of ˜ F studied. This also confirms the dominant role of the low

odes φ0 , φ1 and φ2 in the eastward jet maintaining the eddy

ackscatter. The higher baroclinic modes are less energetic, their

ntermodal energy transfer rates are much lower compared to the

ower modes, and their influences on the eastward jet length and

olume transport are progressively weaker. Although, the higher

aroclinic modes have a smaller effect, they still play an important

pecial role (discussed below) in maintaining the eastward jet. 

To study how the higher baroclinic modes affect the eastward

et, we damped them one by one and observed how this influences

he flow dynamics. As an illustration of our approach, let us con-

ider the highest 6L baroclinic mode φ5 , which is seemingly neg-

igible in the energy diagram, as we can judge from both its en-

rgy and intermodal energy transfers ( Fig. 3 ), and filter it out from

he solution by a strong mode-selective damping. Surprisingly, the

uppression of this low-energy mode causes significant changes in

he large-scale solution: L (6) 
p increases by 3.5%, and Q 

(6) increases

y 6.7%, and most of the resulting flow anomaly is induced in the

rst baroclinic mode. These changes may seem small, but if we

ake into account the minuscule intermodal energy transfer (of or-

er 10 −8 to 10 −4 , non-dimensional units), the induced changes are

elatively large. When we damped the more energetic mode φ3 ,

he consequences were even more pronounced: L (6) 
p and Q 

(6) de-

reased by 18% and 5%, respectively. All this leads us to the impor-

ant conclusion that although the higher baroclinic modes cannot

ignificantly elongate the eastward jet in isolation from the other

odes, they are actively involved in the intermodal energy trans-

er that influences the jet indirectly. We studied this phenomenon

urther, by analysing the energy transfer terms between differ-

nt modes, and found that the disproportion between the small

mounts of energy transferred from the higher baroclinic modes

o the lower modes and its relatively large effect on the eastward

et is explained by the fact that all this energy is injected locally

nto the neighborhood of the eastward jet. The energy injection

egion coincides with the region of the most intensive eddy forc-

ng ( Shevchenko and Berloff, 2015 ) that drives the eddy backscat-

er maintaining the eastward jet. The injections themselves can be

iewed as parts of the inverse and spatially local energy cascade

rom high baroclinic to the first baroclinic and barotropic modes,

hich are the most efficient for the eddy backscatter. 



I. Shevchenko, P. Berloff / Ocean Modelling 111 (2017) 55–65 63 

Fig. 5. Modewise energy diagram for the 12L solution at ν = 100 m 

2 s −1 ; only transfers of total energy are depicted in the diagram. Note that terms of order less than 10 −2 

are not shown due to their negligible influence. The overbar and angle brackets denote the time and basin averages, respectively; and the prime stands for the fluctuating 

component of the quantity. Kinetic and potential energies of the i -th mode is denoted by ˜ K i and ̃  P i , while its forcing and dissipation by ̃  F i and ̃  D i , respectively. The size of 

the arrows is normalized to the maximum amplitude of the energy transfer, and the color indicates forcing (red) and dissipation (blue). (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

 

c  

c  

t  

(  

d  

φ  

f  

s  

e  

e  

m  

a  

e  

i  

a  

h  

m

 

w  
In order to better understand how even higher than φ5 baro-

linic modes influence the flow dynamics for ν = 100 m 

2 s −1 we

omputed the 12L model solution. From its analysis we found that

he dynamics produces not only familiar upscale energy transfers

from higher to lower modes), as in the 6L case, but also some

ownscale transfers (from lower to higher modes, namely φ1 →
2 ; Fig. 5 ); understanding significance and mechanisms of these

orward energy transfers (the energy flow from larger to smaller

cales ( Vallis, 2006 )) is beyond the scope of this paper. How-

ver, the overall effect of the baroclinic modes φ , i = 6 , 11 on the
i 
astward jet is much smaller compared to the 6L high baroclinic

odes, namely both L (12) 
p and Q 

(12) differ from the 6L case by

round 1%. Although, the modes in the 12L solution are more en-

rgetic, and the intermodal energy transfers are more intense than

n the 6L case ( Fig. 5 ). Thus, we conclude that six isopycnal layers

re enough to resolve vertically the essential geostrophically and

ydrostatically balanced double-gyre dynamics concentrated in the

ain pycnoline. 

Finally, we studied how the eddy viscosity ν affects the mode-

ise energetics. We found that the outcome for the twice smaller
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ν = 50 m 

2 s −1 is qualitatively similar, but the flow and intermodal

energy transfers are more energetic. Besides, we compared the 6L

and 12L solutions at ν = 50 m 

2 s −1 and found that in the 12L

case the volume transport is 5% larger. This is expected result,

since both eddy energy and diverging eddy fluxes keep growing

with decreasing ν , without signs of saturation, and this growth

is even steeper with higher vertical resolution and lower viscos-

ity ( Shevchenko and Berloff, 2015 ), suggesting more active roles of

the highest modes. 

Summarizing the findings of this section, we conclude that as

the eddy viscosity decreases, both the energy of individual modes

and the intermodal energy transfers increase. The bulk of energy

drains from higher modes into the barotropic mode and the first

baroclinic mode. From the latter it is also transferred down to the

barotropic mode, thus making it the main recipient of the energy,

followed by the first and second baroclinic modes. These find-

ings are partly consistent with the conclusion of Smith and Val-

lis (20 01) ; 20 02 ), who argued that in horizontally homogeneous,

eddy-resolving QG dynamics, the energy is transfered through the

first baroclinic mode to the barotropic mode. Our results not only

confirm this in more comprehensive model but also show that di-

rect high-baroclinic-to-barotropic transfers are also possible. The

energy exchange with the higher than φ5 baroclinic modes is rela-

tively minuscule, thus, supporting our previous conclusion that us-

ing more than six modes is not necessary for capturing the essen-

tial eddy effects in the double gyres. 

4. Conclusions and discussion 

The goal of this study was to understand how the vertical baro-

clinic modes affect the eddy-resolving dynamics of the ocean gyres

including the eastward jet extension of the western boundary cur-

rents, such as the Gulf Stream or Kuroshio, and their adjacent

recirculation zones. Analyzing the difference between three- (3L)

and six-layer (6L) solutions of the multi-layer quasi-geostrophic

(QG) model of the wind-driven ocean gyres, we arrived at the

conclusion that the higher baroclinic modes have an overall in-

hibitory effect on the eastward jet that is also in agreement with

the conclusions in Shevchenko and Berloff (2015) . This is opposite

to what has been thought over the last 25 years since ( Barnier

et al., 1991 ). The main reason for the difference between our re-

sults and the ones reported in Barnier et al. (1991) is that the so-

lutions in Barnier et al. (1991) were both symmetrically forced and

underresolved. The former effect makes the eastward jet unrealis-

tically long and strong, whereas the effect of the latter is opposite;

the outcome was misleading, as we found (our solutions repeating

the results of Barnier et al. (1991) are not shown for brevity). 

We found that in the absence of high baroclinic modes, the

energy input from the wind is more efficiently focused onto the

lower modes, therefore, the eddy backscatter is stronger, and am-

plification of the eastward jet is dominated by the first baroclinic

mode. However, the higher baroclinic modes still play an impor-

tant role by transferring energy to the lower modes locally, di-

rectly into the most active eddy backscatter region around the

eastward jet. The overall effect of the high baroclinic modes upon

the eastward jet is such that the higher than the fifth baroclinic

modes play negligible roles, hence, keeping only six isopycnal lay-

ers should be enough to resolve the mesoscale eddy dynamics and

backscatter in the ocean gyres. This conclusion are pertinent to

the explored range of eddy viscosity values, and further analyses

at much lower viscosities remaint to be carried out. 

Our conclusions are consistent with those of Smith and Val-

lis (20 01 , 20 02 ), who studied horizontally homogeneous, eddy-

resolving QG dynamics. More specifically, in Smith and Vallis

(20 01 , 20 02 ) it has been found that the energy in high baroclinic

modes (higher than the first one) is transferred to the barotropic
ode through the first baroclinic mode. This finding is partially

onfirmed in our work. We found that both the energy in the high

aroclinic modes does transfer to the barotropic mode, but not

ecessarily through the first baroclinic mode, as there are also di-

ect transfers. Another finding is that the 12L model exhibits both

orward and backward energy cascades, although the latter sub-

tantially prevails. 

We have also studied how decrease in the eddy viscosity is re-

ected in the modewise energetics and found that the modes and

he eddy backscatter in less viscous flows become more energetic,

ut the overall eddy effects remain qualitatively similar. We con-

lude that although the 3L QG model captures the essential eddy

ynamics, it significantly overestimates the backscatter (with re-

pect to the 6L and 12L cases) and the higher baroclinic modes are

equired for a quantitatively accurate representation of the eddy

ffects. 

Further extensions of our results can focus on more realistic

rimitive-equation models of the North Atlantic, and on the deeper

nderstanding of the eddy backscatter. On the other hand, success-

ul application of the multi-modal energetics analysis in the QG

ontext suggests its extension into primitive equations for similar

ynamical analyses in comprehensive OGCMs. 
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