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A B S T R A C T

Inability of low-resolution ocean models to simulate many important aspects of the large-scale general
circulation is a common problem. In the view of physics, the main reason for this failure are the missed
dynamical effects of the unresolved small scales of motion on the explicitly resolved large-scale circulation.
Complimentary to this mainstream physics-based perspective, we propose to address this failure from the
dynamical systems point of view, namely, as the persistent tendency of phase space trajectories representing
the low-resolution solution to escape the right region of the corresponding phase space, which is occupied
by the reference eddy-resolving solution. Based on this concept, we propose to use methods of constrained
optimization to confine the low-resolution solution to remain within the correct phase space region, without
attempting to amend the eddy physics by introducing a process-based parameterization. This approach is
advocated as a novel framework for data-driven hyper-parameterizations of mesoscale oceanic eddies in
non-eddy-resolving models. We tested the idea in the context of classical, baroclinic beta-plane turbulence
model and showed that non-eddy-resolving solution can be substantially improved towards the reference
eddy-resolving benchmark.
1. Introduction

The problem of reproducing large-scale flow structures in low-
resolution ocean simulations is among the most challenging ones in
ocean modelling, and this is mostly due to the lack of information
from the small, unresolved scales. The mainstream approach to this
problem is to use parameterizations, that is, mathematically simple and
physically justified approximations of the key unresolved and under-
resolved small-scale processes (e.g., Gent and Mcwilliams (1990), Duan
and Nadiga (2007), Frederiksen et al. (2012), Jansen and Held (2014),
Mana and Zanna (2014), Cooper and Zanna (2015), Grooms et al.
(2015), Berloff (2016, 2018), Danilov et al. (2019), Ryzhov et al.
(2019), Juricke et al. (2020a,b), Cotter et al. (2019), Ryzhov et al.
(2020), Cotter et al. (2020a,b,c)). Despite the decades of research effort
invested in this direction, the problem remains mainly unresolved for
various reasons, the majority of which is due to inaccurate description
of small-scales physics and energy transfers between scales.

This work takes a new angle on this long-standing problem. Namely,
we propose to look at the problem from the dynamical system point of
view and consider the inability of the low-resolution model to repro-
duce the large-scale flow structures as the persistent tendency of phase
space trajectories representing the low-resolution solution to escape the
right region of the corresponding phase space, which is occupied by
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the reference eddy-resolving solution. Thus, instead of parameterizing
directly the action of unresolved scales onto the resolved ones, our
approach is to constrain the low-resolution flow dynamics to the right
region of the phase space. Two other methods based on this approach
were developed and tested earlier. The first method computes the low-
resolution solution as the phase space trajectory of the image point,
which is dynamically governed by the reference solution (Shevchenko
and Berloff, 2021a). The second method reconstructs a dynamical
system from the reference solution, and then explicitly uses this system
to predict the low-resolutions circulation (Shevchenko and Berloff,
2022). In this study we propose a new method: the employed low-
resolution model, which is integrated explicitly, is constrained by an
optimization procedure that restricts the solution to stay within the
right region of phase space, as defined from the reference solution.
For the proof-of-concept stage, we consider, first, the Lorenz model,
and, then, the classical, baroclinic quasigeostrophic (QG) model of the
beta-plane turbulence.

2. The method

We run the mathematical model of the studied phenomenon (here,
the QG model) at low resolution and restrict its solution to the reference
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Fig. 1. Shown are (a) solution of the Lorenz system (3) projected on the (𝑥, 𝑧)-plane and (b) the corresponding solution constrained to a ball of radius 𝑟 = 40 (blue line) centred
t (0, 0, 0) for 𝑡 = [0, 50].
g

egion of phase space defined by a set of constraints 𝑔 (a ball of
adius 𝑟 in our case). The method is based on solving a constrained
inimization problem of the form (e.g., Bertsekas (1996)):

min 𝑓 (𝐱),
ubject to 𝑔(𝐱) ≤ 0 ,

(1)

here 𝑓 and 𝑔 are given functions. In order to inject the constraint into
he minimization problem, we use the barrier function 𝜙 = −1∕𝑔(𝐱),
hich leads to the following unconstrained minimization problem:

in 𝑓 (𝐱) + 𝜇
𝑔(𝐱)

, 𝜇 → 0 , (2)

where parameter 𝜇 > 0 regulates accuracy for finding the minimum. In
our case, a very accurate approximation of the minimum is not required
as the problem is chaotic, and the goal of constraining will be achieved
anyway. However, we expect that a systematically wrong choice of
𝜇 over relatively long periods of time can potentially lead to a flow
dynamics with different (compared to the reference solution) large-
scale features not to mention small-scale ones. Without compromising
the main message, we leave further technicalities beyond the scope of
our work and refer readers to Bertsekas (1996).

As an example, we first consider the Lorenz 63 system (Lorenz,
1963):

𝐱′(𝑡) = 𝐅(𝐱(𝑡)), 𝐅 ∶=
⎛

⎜

⎜

⎝

𝜎(𝑦 − 𝑥)
𝑥(𝜌 − 𝑧) − 𝑦
𝑥𝑦 − 𝛽𝑧

⎞

⎟

⎟

⎠

,

subject to 𝑔(𝐱) ∶= 𝑥2 + 𝑦2 + 𝑧2 − 𝑟2 ≤ 0 ,

(3)

where prime denotes a derivative with respect to time, and 𝐱(𝑡) =
(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)).

In order to reformulate the constrained Lorenz system (3) as an
unconstrained minimization problem, we first choose an integrator (the
Euler method in our case) and then define the objective function 𝑓 (𝐱)
and the constraint 𝑔(𝐱) as follows:

(𝐱) ∶= 1
2
‖𝐱𝑛+1−𝐱𝑛−𝛥𝑡𝐅(𝐱𝑛)‖22 , 𝑔(𝐱𝑛+1) ∶= 𝑥2𝑛+1+𝑦

2
𝑛+1+𝑧

2
𝑛+1− 𝑟

2 ≤ 0 ,

(4)

where 𝛥𝑡 is the time step, and 𝐱𝑛 denotes the solution at discrete time
𝑛 = 𝑛𝛥𝑡, 𝑛 ≥ 0. The solution to the unconstrained minimization
roblem (2) with given functions 𝑓 (𝐱) and 𝑔(𝐱) can be found with an
ptimization method; we use Newton’s method. The initial point, 𝐱0𝑛+1
or the optimization method must be feasible, i.e. satisfy the constraint
(𝐱0𝑛+1) ≤ 0; otherwise, the method fails to find the optimal solution.

In order to solve the constrained Lorenz system, we take 𝜎 = 10,
= 8∕3, 𝜌 = 28; and the initial condition 𝐱(𝑡0) = (−4.32,−6.00, 18.34) is

chosen close to the Lorenz attractor. The results are presented in Fig. 1.
2

As seen in Fig. 1a, the solution to the Lorenz system remains on the
attractor over the whole simulation time, and there are no constraints
influencing the trajectory. If trajectory is to be restricted to some region
of the phase space, then a set of constraints needs to be introduced. We
chose a ball of radius 𝑟 = 40 centred at (0, 0, 0) to be the constraining
phase space region, and the constrained solution remains in it over
the whole simulation (Fig. 1b). But, the constrained solution is not the
same as the original one even within the ball interior — the region
where the trajectory is allowed to evolve with no constraints, as long as
the constraints are satisfied. It happens because the constraints deform
the structure of the original phase space by imposing extra restrictions
on the solution. If we keep decreasing the radius, the deformation
eventually becomes so large that the constrained system completely
fails to reproduce the Lorenz attractor (not shown). This indicates that
the Lorenz system should be somehow modified, but discussing this is
beyond the scope of our study.

The above example shows how one can use the constrained opti-
mization approach in more sophisticated settings. For instance, one can
take the primitive-equations or a QG ocean model, compute its eddy-
resolving reference solution, project it onto the coarse grid, and find
(approximately) a spherical region of the phase space that is occupied
by this solution. If the unconstrained low-resolution model configura-
tion cannot reproduce the (nominally resolved) reference circulation,
then implementation of constraint is justified, and the questions are
whether it works and how can it be tuned and optimized.

3. Multilayer quasi-geostrophic equations

In this section we apply the method to the two-layer QG model
describing evolution of the potential vorticity (PV) anomaly 𝐪 = (𝑞1, 𝑞2)
in a domain 𝛺 (Pedlosky, 1987):
𝜕𝑞1
𝜕𝑡

+ 𝐮1 ⋅ ∇𝑞1 = 𝜈∇4𝜓1 − 𝛽
𝜕𝜓1
𝜕𝑥

,

𝜕𝑞2
𝜕𝑡

+ 𝐮2 ⋅ ∇𝑞2 = 𝜈∇4𝜓2 − 𝜇∇2𝜓2 − 𝛽
𝜕𝜓2
𝜕𝑥

,
(5)

where 𝝍 = (𝜓1, 𝜓2) is the velocity streamfunction in the top and bottom
layers, respectively; 𝛽 = 2 × 10−11 m−1 s−1 is the planetary vorticity
radient; 𝜇 = 4 × 10−9 s−1 is the bottom friction parameter; 𝜈 is the

lateral eddy viscosity (to be specified later), and 𝐮 = (𝑢, 𝑣) is the flow
velocity vector. The ocean basin 𝛺 = [0, 𝐿𝑥] × [0, 𝐿𝑦] × [0,𝐻] is zonally
periodic flat-bottom channel with horizontal dimensions 𝐿𝑥 = 1800 km
and 𝐿𝑦 = 𝐿𝑥∕2, with the depth 𝐻 = 𝐻1 + 𝐻2, and filled out by two
stacked isopycnal fluid layers of depths 𝐻1 = 1.0 km and 𝐻2 = 3.0 km.
More details about the problem formulation, the flow dynamics in the
channel and large-small scale interactions can be found in Berloff and
Kamenkovich (2013b).
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Forcing in (5) is introduced via a vertically sheared, baroclinically
nstable, background flow (e.g., Berloff and Kamenkovich (2013a)):

𝑖 → −𝑈𝑖 𝑦 + 𝜓𝑖, 𝑖 = 1, 2 , (6)

ith the zonal velocities 𝑈 = [6.0, 0.0] cm s−1.
The layer-wise PV anomalies and streamfunctions are related

hrough the pair of coupled elliptic equations:

1 = ∇2𝜓1 + 𝑠1(𝜓2 − 𝜓1), (7a)

2 = ∇2𝜓2 + 𝑠2(𝜓1 − 𝜓2) , (7b)

with stratification parameters 𝑠1 = 4.22 ⋅ 10−3 km−2 and 𝑠2 = 1.41 ⋅
10−3 km−2 chosen so that the first baroclinic Rossby deformation radius
is 𝑅𝑑1 = 25 km. The mass and momentum constraints are imposed
following McWilliams (1977). System (5)–(7) is augmented by the
periodic horizontal boundary conditions set at the eastern (𝛤2) and
western (𝛤4) boundaries:

𝝍||
|𝛤2

= 𝝍||
|𝛤4

, 𝝍 = (𝜓1, 𝜓2) , (8)

and no-slip boundary conditions,

𝒖||
|𝛤1

= 𝒖||
|𝛤3

= 0 , (9)

are imposed at the northern (𝛤1) and southern (𝛤3) boundaries. We
se 513 × 257 uniform spatial grid, take the eddy viscosity value
= 25m2 s−1, and spin up the model from the state of rest to 𝑡 = 0

ver the time interval 𝑇𝑠𝑝𝑖𝑛 = [−10, 0] years, so that the statistically
equilibrated flow regime is established. For the low-resolution model,
we use the same set-up, except for much coarser grid 129 × 65 and
much larger eddy viscosity value 𝜈 = 250m2 s−1. Note that dimensional
units can be converted to their non-dimensional analogues by using the
velocity scale 0.01m s−1 and the grid interval as the length scale.

In order to apply the method to the QG equations (5) one has to
choose the variable or variables to constrain. For this role we take
the PV anomaly 𝐪 that leads to the inequality 𝑔(𝐪) ≤ 0; however, the
method is not limited to this particular choice, and other constraints
can be implemented. For example, one can constrain the velocity field
or individual terms in the equations. To solve the constrained optimiza-
tion problem (2) for the QG model (5) we use the same algorithm as
for the Lorenz system (3). The only difference is the time integrator,
which is the Leapfrog scheme for the QG equations.

As seen in Fig. 2a, in each direction the reference solution has
4 well-pronounced horizontal jets, which the (unconstrained) low-
resolution model fails to reproduce (Fig. 2b). This is because the
low-resolution solution trajectory quickly escapes the right phase space
region, even when we start it from the right initial condition. The phase
space is constrained as

𝑔(𝐪) ∶= ‖𝐪 − ⟨𝐪⟩‖22 − 𝑟
2 ≤ 0, ⟨𝐪⟩ ∶= 1

𝑇 ∫

𝑇

0
𝐪(𝑡) 𝑑𝑡,

𝑟 ∶= 1
𝑇 ∫

𝑇

0
‖𝐪(𝑡) − ⟨𝐪⟩‖2 𝑑𝑡 , (10)

here 𝑟 = 846 (non-dimensional units), 𝑇 = 4 years, and 𝐪 denotes the
onstrained low-resolution solution restricted to the ball of radius 𝑟.
onstraint (10) corresponds to the ball of radius 𝑟 centred at the 4-year
ime mean of the reference eddy-resolving solution ⟨𝐪⟩; and the radius
s found as the mean distance of the 4-year long reference solution from
𝐪⟩. Here, the ball is the simplest approximation of the real reference-
olution attractor in the phase space. It might seem reasonable to find
value of 𝑟 such that the low-resolution constrained solution 𝐪 is a
ore accurate approximation to the reference solution 𝐪. However, we
o not recommend this, since 𝑟 is an approximation to the reference
hase volume, i.e. even knowing its optimal value does not guarantee a
ignificantly more accurate solution, as the coarse-grain trajectory may
ot visit the attractor regions populated by the reference solution. A

etter way would be to more accurately approximate the shape of the

3

eference phase space volume. For example, one could find a hyper-
llipsoid that takes into account the actual spread of the attractor along
ifferent coordinate axes.

When the model is constrained, the 4 jets in the top layer are
ecovered both in the instantaneous and time-mean fields (Fig. 2c). The
elative blurriness of the jet edges comes from the use of an order-of-
agnitude larger viscosity. Perhaps, the jet edges can be sharpened up

y injecting noise into the advection operator, as in the SALT approach
e.g. Cotter et al. (2019, 2020a,b,c)), or simply by adding it as a forcing.
n the other hand, the jets in the bottom layer are much weaker
ompared to those in the top layer but even in this case the constrained
odel reproduces them, although these jets are less smeared compared

o the reference ones. We hypothesize that our approximation of the
eference phase space is too rough to accurately capture the jets in the
ottom layer.

To see how the radius of the ball influences the dynamics, we
ook the ball of a larger radius 𝑟 = 923 (this is the maximum radius
or the 10-year-long reference solution). In this case, the constrained
olution still has the jets, which are, however, noticeably corrupted
Fig. 2d), especially after 10 years of simulation (see the jet near
he southern boundary). However, the 10-year average of the bottom
ayer PV anomaly (Fig. 2d) shows relatively good agreement with the
eference solution (Fig. 2a), with particular improvement over the 𝑟 =
46 case (Fig. 2c). This indicates that increasing the radius improves
he representation of the PV anomaly mean field in the bottom layer
the 10 year average). This contrasts with the observed behaviour of
he upper layer when increasing the radius, which corrupts the PV
nomaly fields in the upper layer. It suggests that the ball of a fixed
adius is likely not the most appropriate representation of the shape of
eference phase space. On the other note, the separation between the
wo southern jets becomes less evident (see the time-average subplot)
nd the standard deviation does not show as pronounced jets as those
f the reference solution or the solution constrained in the smaller ball.
his is explained by the fact that the solution constrained by a larger
all drifts farther away from the right phase space region. Based on
his evidence, one could think that a tighter ball would yield a more
ccurate solution, but this is not necessarily the case, since an over-
onstrained QG model can lead to significantly incorrect dynamics. As
n example, we found the solution for 𝑟 = 796 (this is the minimum
adius for the 10-year-long reference solution) and obtained the results
ery similar to those with 𝑟 = 846 (not shown). This another suggestion
hat the ball is not an accurate approximation of the reference phase
pace when finer structures of the solution have to be modelled. As an
lternative, one should focus on methods that can better approximate
he reference phase space.

In order to get better insights in the low-resolution dynamics in
he phase space we compute the Euclidean distance 𝐷(𝑡) of different
olutions from the reference time mean (Fig. 3).

As it follows from the results the constrained low-resolution solution
volves near the boundary of the constrained region, since the low-
esolution solution (Fig. 2b) is too crude an approximation to the
eference solution (Fig. 2a), and therefore the low-resolution solution
lways tries to escape the constrained region. However, even in this
ase the method restores the nominally-resolved flow patterns that are
ot present in the unconstrained low-resolution solution.

. Conclusions and discussion

In this work we have further developed alternative hyper-
arameterization approach for parameterizing effects of mesoscale
ceanic eddies on the large-scale ocean circulation. Complimentary to
he mainstream physics-based perspective, we propose to deal with the
ddy effects from the dynamical systems point of view, and interpret
he lack of them as the persistent tendency of phase space trajectories
epresenting the low-resolution solution to escape the right region of
he corresponding phase space, which is occupied by the reference
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Fig. 2. Shown are snapshots of the PV anomaly and standard deviation calculated for each simulation of: (a) the reference solution 𝐪 (computed with 𝜈 = 25m2 s−1 on the grid
13 × 257 and then projected on the grid 129 × 65); (b) the unconstrained low-resolution solution 𝐪 (computed on the coarse grid 129 × 65 with 𝜈 = 250m2 s−1); (c) the
onstrained low-resolution solution, 𝐪, restricted to the ball of radius 𝑟 = 846 (non-dimensional units); (d) the same as (c) but for 𝑟 = 923. The time-mean ⟨𝐪⟩ in (10) is kept
onstant for different values of 𝑟. Units of the PV anomaly fields are non-dimensional. Note that the constrained solution (c) preserves the nominally-resolved flow structures (the
jets) both in the snapshots and time mean, whereas the unconstrained one fails on this (b).
s
s
s
t
t

f
g

ddy-resolving solution. Based on this concept, we propose to use
ethods of constrained optimization to confine the low-resolution

olution to remain within the correct phase space region, without
ttempting to amend the eddy physics by introducing a process-based
arameterization. Formally speaking, the constrained optimization can
e thought of as being a generalization of the classical nudging ap-
roach when the solution is nudged to a reference volume in phase
pace with the nudging parameter tending to infinity at the boundary of
he sphere; in the classical nudging the solution is nudged to a reference
 t

4

olution (not to a reference volume) and the nudging parameter is
upposed to be fixed. It is worth mentioning that the development of
uch a nudging method can involve a highly-sophisticated control of
he nudging parameter (or parameters) that should, probably, reflect
he structure of the reference phase space.

We used the Lorenz 63 system as a simple conceptual toy model
or the proof of concept. Then, we considered the baroclinic, quasi-
eostrophic (QG) model of the beta-plane turbulence and showed that
he low-resolution solution cannot reproduce such nominally-resolved
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Fig. 3. Shown is the Euclidean distance 𝐷(𝑡) for the reference solution 𝐪 (black), unconstrained low-resolution solution 𝐪 (blue), constrained low-resolution solution 𝐪 for 𝑟 = 923
(magenta), and constrained low-resolution solution 𝐪 for 𝑟 = 823 (red). The unconstrained solution evolves far away from the reference time mean while the constrained solutions
are much closer to the reference time mean (depending on the radius) but they evolve in the neighbourhood of the boundary of the constrained region.
flow structures, as the multiple alternating zonal jets, which are ro-
bustly present in the reference eddy-resolving solution. Implementa-
tion of the proposed hyper-parameterization approach significantly
improves the low-resolution model and recovers the top-layer jets. The
bottom-layer jets are much weaker compared to the top-layer ones, but
even in this case the constrained model reproduces them too. However,
the reference bottom-layer jets are more defused than those of the
constrained model. There might be two reasons for that. Firstly, the
viscosity in the constrained model is one order of magnitude larger
compared to that in the reference model. It can significantly change
both the dimension and structure of the attractor (compared to the
reference) that leads to the second reason. Namely, our approximation
of the reference phase space might be too rough (we used a ball, with
the radius found as the time-mean distance of the 4-year-long reference
solution from its time mean, and centred at the 4-year time mean of
the reference solution) to accurately capture the jets in the bottom
layer. This suggests that a more accurate approximation of the reference
phase space might be needed to accurately represent the flow dynamics
in the deep ocean.

It is worth drawing reader’s attention to the fact that only 4 years
of the reference solution have been used to find the centre of the ball
and its radius, and this turned out to be enough to reproduce the jets
in the 10-year-long run at low resolution. This demonstrates that the
proposed method gives robust results, as soon as it is supplied with
sufficient data. On the other hand, for more sophisticated models or
even for different setups of the QG model, longer or shorter runs might
be needed to accurately estimate the centre and radius.

In addition, we have studied how the radius of the ball influ-
ences the ability of the constrained QG model to reproduce nominally-
resolved structures and found that too large radius eventually lead
to the solution degradation, due to the detrimental drift in the phase
space, whereas too small radius does not allow for an accurate approx-
imation of the shape of the reference phase space. Thus, there is the
optimal strength of the constraint. The analysis of the constrained solu-
tion shows that it evolves near the boundary of the constrained region,
as its dynamics is governed by the low-resolution QG model which is
too crude an approximation to the reference solution, and therefore
the constrained solution always tries to escape the constrained region.
However, even in this case the method restores the nominally-resolved
flow patterns (that are not present in the unconstrained low-resolution
solution) thus giving another level of reassurance that it will likely work
well in more sophisticated settings.

The utility of the proposed method is that it does not require in-
depth physical knowledge of interactions between the scales of motion,
and it does not require any modification of the governing equations, as
in the case of traditional parameterizations. The method falls into the
5

category of data-driven methods as it requires either observations or
their substitute in terms of some eddy-resolving solution data. In this
work we use the projection of the high-resolution solution on the coarse
grid (which we refer to as the reference solution) to compute the radius
of the sphere (the boundary for the constrained optimization) and its
centre in the reference phase space. If this information can be ob-
tained without computing the reference solution (for example, through
physical insights or using observational data) then the high-resolution
solution is not needed. Obviously, the advantage of the method may
turn into a possible drawback, as often information presented in data
is not sufficient (for example, characteristics of the constraining ball
may be inaccurately estimated). This can be mitigated by using more
accurate approximations of the constraining geometry (for example,
a hyper-ellipsoid instead of the ball to take into account the spread
of the solution along different coordinate axes) and of the attractor
reconstruction. Another intriguing avenue for future research extension
is the so called term-wise constraining, which deals with individual
dynamical terms, rather than with the whole solution, like in this study.

The proposed method can be implemented into the dynamic core
of oceanic general circulation models by constraining solutions of
different equations and terms, or their combinations. This is, in turn,
the open broad research agenda on the effects of different data-driven
constraints of the governing equations (e.g., Shevchenko and Berloff
(2021c)). It can also be applied to comprehensive ocean–atmosphere
models with many dynamical variables, changing external conditions,
and different dynamical regimes. These models can be thought of as
being either monostable chaotic systems (chaotic systems with only
one chaotic attractor) or multistable chaotic systems (chaotic systems
with several chaotic attractors for a given set of parameters). In case
of monostable systems, different dynamical regimes are realized in
different regions of one attractor. When the solution switches between
different regions of the attractor it is observed as a different dynamical
regime. In case of multistable systems, the solution switches between
different attractors. The method should properly approximate the refer-
ence solution for monostable systems, if the coarse-grid trajectory can
visit the regions of the attractor corresponding to different dynamical
regimes. The method can also be used for multistable systems given that
the chaotic attractors are present in the data provided. The accuracy of
the method for monostable and multistable systems can be improved if
combined with parameterizations of the coarse-grid model.

On the other note, the attractor might be extremely complex in
a more complicated model, and it is not clear that defining a ball
or ellipsoid would yield a useful constraint. Assuming more detailed
knowledge of the structure of the attractor requires further knowledge
of the reference flow dynamics, potentially making it more difficult
to configure the method. All-in-all, the accuracy of the method for
comprehensive ocean–atmosphere models remains uncharted territory

worth exploring in the future.
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