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ABSTRACT
Clustering of tracers floating on the ocean surface and evolv-
ing due to combined velocity fields consisting of a deterministic
mesoscale component and a kinematic random component is anal-
ysed. The random component represents the influence of subme-
soscalemotions. A theory of exponential clustering in random veloc-
ity fields is applied to characterise the obtained clustering scenar-
ios in both steady and unsteady time-dependent mesoscale flows,
as simulated by a comprehensive realistic, eddy-resolving, general
circulation model for the Japan/East Sea. The mesoscale flow field
abounds in transient eddy-like patterns modulating and branching
the main currents, and the underlying time-mean flow component
features closed recirculation zones that can entrap the tracer. The
submesoscale flow component is modelled kinematically, as a diver-
gent random velocity field with a prescribed correlation radius and
variance. The combined flow induces tracer clustering, that is, the
exponential growth of tracer density in patcheswith vanishing areas.
The statistical topography methodology, which provides integral
characteristics to quantify the emerging clusters, uncovers drastic
dependence of the clustering rates on whether the mesoscale flow
component is taken to be steady or time-dependent. The former
situation favours robust exponential clustering, similar to the theo-
retically understood case of purely divergent and zero-mean random
velocity. The latter situation, on the contrary, hinders exponential
clustering due to significant advection of the tracer out of the nearly
enclosed eddies, at the rate faster than the clustering rate.
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1. Introduction

Tracer transport at the ocean surface is one of the challenging problems that
attract much attention due to the complexity of the dynamical processes involved
in generating the transport patterns. The main difficulty in understanding these pat-
terns comes from the multi-scale nature of the ocean currents. There are large-
scale circulations (e.g. ocean gyres and currents separating them) that induce
the large-scale mean advection (Pedlosky 1996, Vallis 2017). Then, the mesoscale
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advection is induced by mostly transient synoptic eddies (Gryanik et al. 2006,
Chelton et al. 2007, McWilliams 2008, Reznik 2010, Reznik and Kizner 2010, Chelton
et al. 2011, Sokolovskiy and Verron 2014, Koshel et al. 2019), which are hard to resolve
in the comprehensive general circulation models, and whose dynamics is often nonlin-
early complicated and difficult to be parameterised. Further downscale there are largely
unresolved submesoscale motions (Berti et al. 2011, Schroeder et al. 2012, Zhong and
Bracco 2013, Berta et al. 2016, McWilliams 2016, Haza et al. 2016, Ohlmann et al. 2019),
increasingly more researched due to the improved observational skills and spatial reso-
lution of the circulation models. The simplistic view on the problem assumes that these
scales are well separated in the spectra and, thus, can be treated separately. We also adopt
this approach, but note that often these scales are intertwined and interact via complex
backscatters (Jansen andHeld 2014, Jansen et al. 2015, Shevchenko and Berloff 2016, Bach-
man et al. 2017, Berloff 2018). All these scales contribute significantly to the floating tracer
patterns and ideally should be taken into account.

Because of themany scales ofmotion involved, the resulting tracer patterns often exhibit
spatial inhomogeneities with sharp local aggregations of tracer (Okubo 1980, McComb
1990, Law et al. 2010, Cozar et al. 2014, Martinez et al. 2009, Maximenko et al. 2012, Väli
et al. 2018) that survive for long times. This effect is called clustering and attributed to
the effect of the surface velocity divergence (Klyatskin et al. 1996, Koshel and Alexan-
drova 1999, Klyatskin and Koshel 2000, Huntley et al. 2015, Jacobs et al. 2016, Koshel
et al. 2019, Stepanov et al. 2020) on the scales by orders of magnitude smaller than those
of the dynamically dominant, coherent mesoscale eddies. The main objective of this paper
is to show that the clustering process can be significantly and nontrivially altered by the
interplay between the mesoscale and submesoscale velocity components.

The Eulerian evolution of the floating-tracer density, considered on the ocean surface
and subject to its 2D velocity field U(R, t), is governed by the equation

∂

∂t
ρ(R, t) + ∇R (U(R, t)ρ(R, t)) = 0, ρ(R, 0) = ρ0(R), (1)

where R = (x, y) is the horizontal position vector, ∇R is the horizontal gradient, ρ(R, t)
is the tracer density distribution, ρ0(R) is the initial tracer density, and the 2D veloc-
ity field U(R, t) generally has both divergent and rotational components. We consider a
combination of deterministic mesoscale and random submesoscale velocity fields

U(R, t) = 〈U(R, t)〉︸ ︷︷ ︸
mesoscale

+ γUp(R, t) + (1 − γ )U s(R, t)︸ ︷︷ ︸
submesoscale

. (2)

Here, superscripts s and p stand for rotational (solenoidal) and divergent (potential) ran-
dom velocity components, and 〈. . . 〉 is the averaging over an ensemble of random velocity
field realisations. The deterministic (mesoscale) component 〈U(R, t)〉 is given by a realis-
tic eddy-resolving simulation of the Japan/East Sea (JES) circulation and can be treated as
either steady or time-dependent. The submesoscale component is modelled by a random
kinematic velocity field that comprises both divergent and rotational components, whose
relative contributions are defined by parameter 0 ≤ γ ≤ 1. The resulting clustering pro-
cess is ultimately induced by the velocity divergence (Klyatskin et al. 1996a, 1996b, Saichev
andWoyczynski 1996, Falkovich et al. 2001, Eckhardt and Schumacher 2001, Schumacher
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and Eckhardt 2002, Cressman and Goldburg 2003, Bec et al. 2004, Fouxon 2012, Kly-
atskin 2015, Huntley et al. 2015, Jacobs et al. 2016, Klyatskin 2016, Väli et al. 2018).
Our previous papers dealt with clustering in kinematic, zero-mean, random velocity fields
(Koshel et al. 2019), and also in such fields with the additional, deterministic, steady veloc-
ity component represented by realistic mesoscale flow features (Stepanov et al. 2020). The
present work generalises and extends the previous results by considering a more complex,
unsteady time-dependent mesoscale flow component and its influence on the clustering
processes.

2. Themesoscale deterministic flow component model

For the deterministic flowvelocity component, we use the horizontal velocity field obtained
from the realistic, primitive-equations general circulation INMOM model of the JES,
which is of the sigma-coordinate type (i.e. with the vertical coordinate following the
bathymetry). For detailed descriptions of the numerical implementations and other details
(see Marchuk et al. 2005, Zalesny et al. 2017, Stepanov et al. 2018). Examples of the
INMOM implementations include modelling of the global ocean and marginal seas
(Danabasoglu et al. 2014, Gusev and Diansky 2014, Stepanov 2017, 2018).

For modelling the JES circulation system, several factors have to be taken into account:
e.g. the atmospheric forcing and water exchange through the JES straits (Chang and
Teague 2004, Chang et al. 2016). The water exchange is taken into account by enlarging
the model domain to include the adjacent parts of the East China Sea, Okhotsk Sea and
PacificOcean. This approach enables one to generate the unforcedwater inflow through the
Korea/Tsushima strait in the south and the outflow through the Tsugaru and Soya straits
in the east.

The lateral boundaries of the enlarged domain are no-slip for velocity, while the heat
and salt fluxes are equal to zero. Near the open boundaries, we implemented the relaxation
layers with spatial extent ∼ 1◦, where the potential temperature and salinity profiles are
nudged to their climatological monthly means (Locarnini et al. 2013, Zweng et al. 2013,
taken from the WOA2013 v2.0 dataset:).

The model has horizontal resolution of 1/12◦ in both zonal and meridional directions.
Since the first baroclinic Rossby radius of deformation is 10–15km in the southern part
of the domain (to the south of 41◦N) and 5–10 km in the northern part, the spatial res-
olution varies from eddy-resolving in the south to eddy-permitting in the north. The
sigma-coordinate levels, which characterise the vertical resolution, are finer near the sur-
face and bottom, thus, enabling a better resolution of the surface and bottom boundary
layers.

The second- and fourth-order Laplacians are used to account for the horizontal turbu-
lent viscosity and diffusivity, respectively; the vertical turbulent viscosity and diffusivity
are factored in through the Pacanowski-Philander parameterisation (Pacanowski and
Philander 1981). Table 1 lists the implemented parameter values.

The surface atmospheric forcing, represented by a combination of heat, fresh-water,
and momentum fluxes, is given by the bulk relations (Large and Yeager 2009). The atmo-
spheric parameters are taken from the JRA55-do dataset (Tsujino et al. 2018), as presented
in table 2.
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Table 1. Parameters of the JES model.

Modelling region 123E – 147.25E; 28.3N – 52.1332N
Horizontal resolution 1/12◦ × 1/12◦
Vertical resolution 25 sigma-levels
Sea ice model Thermodynamic model
Unresolved scale parameterisation 2- and 4-order Laplacian along geopotential surfaces
Heat and salinity diffusivity of the second order 10m2/s
Heat and salinity diffusivity of the fourth order 7 · 109 m4/s
Turbulent viscosity of the second order 50m2/s
Turbulent viscosity of the fourth order 7 · 109 m4/s
Vertical viscosity and diffusion parameterisation Pacanowski-Philander
Vertical diffusivity from 10−6 to 0.005m2/s
Vertical viscosity from 10−4 to 0.025m2/s

Table 2. Atmospheric forcing parameters from JRA55-do dataset.

Horizontal resolution 0.5625◦ in the meridional and zonal directions
Time interval 1958 – 2017
Time resolution
Meridional and zonal wind speed at height 10m 3 h
Air temperature at height 10m 3 h
Air humidity at height 10m 3 h
Pressure at the sea surface 3 h
Long- and short-wave solar radiation and rain precipitation averaging every 3 h
Daily-averaged river flows included

The temperature conditions in the JES favour ice formation in its northern part – this
significantly alters the temperature and fresh-water balances at the surface and, thus, may
influence the Primorye current. Hence, for a better representation of the JES circulation,
we also exploit the thermodynamic and dynamic ice cores of the INMOM (Yakovlev 2009).

For the initial conditions, we use potential temperature and salinity fields from the
WOA2013v2.0 dataset (spatial resolution 1/4◦ with 102 standard depth levels). Various
factors, such as the model configuration’s overall simplicity, inaccuracies of parameteri-
sations and boundary conditions, contributed towards accumulated simulation errors, as
compared to the observed mean values. To ameliorate the errors, we nudge potential tem-
perature and salinity in the 50-meter mixed layer to their climatological values, with the
nudging coefficients of 1 month for potential temperature and 3 months for salinity.

The model is run from 1958 to 2017. After 10 years, the kinetic energy and tempera-
ture, averaged over the JES at various depth layers, become nearly stationary. For the tracer
transport and our clustering analysis, we used the velocity field on the sea surface from 01
March to 30 April 2000.

The spatial pattern of the multi-year mean surface circulation (figure 1) features the
pronounced Tsushima Warm Current (TWC) (Chang et al. 2016), flowing through the
Korea/Tsushima Strait to the JES. Its shore branch (theNeashore branch of the TWC) flows
through the strait’s eastern part and extends along the eastern part of the JES. The current
outflows partially through the Tsugaru Strait, another part branches near 44N to the north-
western part of the JES, while the rest of the current follows to the north and exits through
the Soya Strait. The western branch of the TCW inflows through the strait’s western part,
and then splits into the East Korea Warm Current (EKWC) and Offshore Branch of the
TWC. The EKWC generates a mesoscale anticyclonic eddy.
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Figure 1. Multi-year mean (from 1980 to 2008) surface velocity field of the JES (shading, cm s−1) from
the eddy-resolving model. (Colour online).

2.1. Characteristics of the deterministic velocity component

For further analysis of the tracer evolution and clustering in combined determinis-
tic/random velocity field, we chose a subdomain of JES, which is indicated by a red square
in figure 1. The subdomain is characterised by strong mesoscale activity throughout the
year, thus, demonstrating highly nonstationary flow patterns, which induce complex tracer
transport. Since one of our goals is to compare tracer clustering scenarios for stationary and
nonstationary deterministic velocity components, first, we assess the characteristics of the
averaged over March 2000 velocity field: in figure 2 arrows represent the velocity field, and
colour-coded are both relative vorticity (figure 2(a)) normalised by the Coriolis parameter,
f, and 2D velocity divergence ∇R·〈U(R, t)〉 (figure 2(b)).
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Figure 2. Time-averaged (over March 2000) surface velocity field (arrows in both panels) from the
model. (a) Relative vorticity (ξ ) (shading) and (b) velocity divergence (∇R·V , where V = 〈U(R, t)〉)
(shading) (both normalised by the Coriolis parameter f ). Tracer deployment sites are marked by letters
(see explanation in the text). Purple points denote the centres of the mesoscale eddies. (Colour online).

The averaged velocity field features many cyclonic and anticyclonic coherent eddy-like
structures (see the relative vorticity in figure 2(a)) with strong horizontal shears. Charac-
teristic length scale of the eddies (∼ 40 km), which is 2-2.5 times the local first baroclinic
Rossby radius, allows us to categorise these structures as mesoscale ones. The 2D surface
velocity attests that the eddies are associated with zones of significant surface divergence
(convergence).

The divergence (figure 2(b)) reaches its extreme values mostly along the jets and at
periphery of the eddies. At the periphery of cyclonic eddies ∇R·〈U(R, t)〉 < 0 (cyclone
C), while for the anticyclone peripheries this is on the opposite ∇R·〈U(R, t)〉 > 0 (anti-
cyclone A1). At the centres of cyclones/anticyclones, the absolute value of divergence is
noticeably smaller, and the divergence is predominantly positive/negative.

Since the velocity field is nonstationary (taken with the hourly data and interpolated in
time), both divergence and vorticity significantly deviate from their means. We consider
full time dependence of the mesoscale field from 01 March to 30 April of 2000. Instanta-
neous snapshots of the velocity field with the overlayed vorticity, normalised by f (figure 3)
illustrate that the currents have weakened during this time interval. Certain eddy struc-
tures (anticyclone A2 and smaller eddies AAC) are absent from the instantaneous field but



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 7

Figure 3. Instantaneous velocity snapshots overlayed with vorticity (ξ ) normalised by the Coriolis
parameter f (colour-coded) at depth level 50m in year 2000: (a) 1 March, (b) 5 March, (c) 20 March and
d) 8 April. (Colour online).

Figure 4. The same as in figure 3, but with colour-coded divergence ∇R·〈U(R, t)〉 normalised by the
Coriolis parameter (f ). (Colour online).

present in the mean field. Cyclone C and anticyclone A1, on the other hand, persist but are
significantly deformed.

The corresponding divergence field (figure 4), also normalised by f, is significantly
spatially inhomogeneous. The largest gradients of the divergence are observed near the
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regions, where eddies interact with the large-scale flow. Particularly, we observe that dur-
ing several days divergence at the periphery of cyclone C alters its sign; after that the jet
weakens, and the absolute value of divergence decreases. Another example shows how
divergence at the anticyclone A2 centre noticeably subsides in only a few days. These big
changes in the divergence and vorticity fields influence tracer advection and clustering rates
and will be addressed further.

3. Random velocity field as amodel for submesoscale motions

The submesoscale component is assumed to be represented by a random velocity field,
which is statistically homogeneous in space and stationary in time, and consists of
solenoidal (non-divergent) and potential (divergent) components. We also assume that
these components have Gaussian PDFs, and are statistically isotropic in space and δ-
correlated in time. Then, the space-time correlation tensor (Klyatskin 1994, 2015) for
spatial shift R′ and time lag η is

Bjαβ(R′, η) = 〈Uj
α(R, t)Uj

β(R + R′, t + η)〉 =
∫

dk Ejαβ(k, η)eik·R′
, (3)

where indices α and β represent x and y, index j stands for p (potential) and s (solenoidal),
and indicates different tensors; k = (kx, ky) is the 2D wavevector, k = |k|.

The following spectral densities are implemented

Epαβ(k, η) = Ep(k, η)
kαkβ

k2
, Esαβ(k, η) = Es(k, η)

(
δαβ − kαkβ

k2

)
, (4)

where δαβ is the Kroeneker delta. Single-point correlations define the velocity variance σ 2
U ,

such that

σ 2
U = Bαα(0, 0) =

∫
dk E(k, 0), (5a)

Bjαβ(0, 0) = 〈Uj
α(R, t)Uj

β(R, t)〉 = 1
2σ

2
Uδαβ . (5b)

3.1. Numerical implementation of the random velocity field

A spectral representation of the velocity field (Roberts and Teubner 1995, Zirbel and
Cinlar 1997, Koshel and Alexandrova 1999, Klyatskin and Koshel 2017) is given by

Up
β(R, t) = σU

∫
dk
(
a(k, t) + ib(k, t)

)kβ

k
exp(ik·R), (6a)

Us
x(R, t) = σU

∫
dk
(
a(k, t) + ib(k, t)

)ky
k
exp(ik·R), (6b)

Us
y(R, t) = −σU

∫
dk
(
a(k, t) + ib(k, t)

)kx
k
exp(ik·R), (6c)

where σU controls the intensity; index β stands for either x or y; a(k, t) and b(k, t) are
Gaussian, random, δ-correlated in time, spectral coefficients to satisfy
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Figure 5. A realisationof the randomvelocity field; shownona smaller subdomain, for parametersσU =
0.1, l = 0.08, and γ = 0.5. Colour-coded is the length of the random velocity vector. (Colour online).

〈a(k, t)〉 = 〈b(k, t)〉 = 〈
a(k, t)b(k′, t′)

〉 = 0, (7a)〈
a(k, t)a(k′, t′)

〉 = 〈
b(k, t)b(k′, t′)

〉 = E(k)δ(k − k′)δ(t − t′) . (7b)

The inverse Fourier transform of a realisation yields random velocity field with the corre-
lation tensor (3). The implemented spectral density with a prescribed correlation radius l
is

E(k; l) = 1
2π

l4

4
k2 exp

(
−1
2
k2l2

)
. (8)

In the physical space, the random velocity field is generated on the uniform grid 2048 ×
2048. Figure 5 illustrates one random velocity realisation with equal relative contributions
of the potential and rotational components (γ = 0.5).

3.2. Lagrangian approach for solving the advection equation

The governing equation (1) is solved using the Lagrangian representation

dR(t)
dt

= U(R(t), t), R(0) = ξ , (9a)

dρ
dt

= ∇R·U(R(t), t)ρ(t), ρ(0) = ρ0(ξ). (9b)
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The tracer initial distribution is given by a set of particles with positions ξ i, (1 ≤ i ≤ N).
The tracer patch size is chosen to encompass eddies in the deterministic flow. Each particle
trajectory, together with particle tracer density, is followed by solving the system of char-
acteristic equations (9) as a set of stochastic ODEs, by using the standard Euler-Îto scheme
(Kloeden and Platen 1992, Koshel and Alexandrova 1999). The Eulerian density can be
approximated by coarse graining over the particles.

3.3. Statistical topography of randomfields

To analyse clustering properties of the numerical solutions, we resort to the statistical
topography methodology (Isichenko 1992, Klyatskin 2003) and find the key integral char-
acteristics. Themethod involves calculating effective diffusion coefficients for the potential
(Dp) and solenoidal (Ds) velocity components:

Dp =
∫ ∞

0
dη
∫

dk k2Ep(k, η)

=
∫ ∞

0
dη
〈(∇R·U(R, t + η)

) (∇R·U(R, t)
)〉 = γ 2D0, (10a)

Ds =
∫ ∞

0
dη
∫

dk k2Es(k, η)

= 1
2

∫ ∞

0
dη
〈(∇ × U(R, t + η)

)· (∇×U(R, t)
)〉 = (1 − γ )2 D0, (10b)

D0 = σ 2
U
l2

t0, (10c)

where D0 depends on the free parameters σU and l, and on the dimensional time scale t0
chosen to be equal to the numerical discretisation time step. The diffusion coefficients are
associated with the effective correlation tensor and its second derivatives

Beffkl (r) =
∫ ∞

0
dτ Bkl(r, τ), Beffkl (0) = D0δkl,

∂

∂ri
Beffkl (0) = 0, (11a)

− 8
∂2

∂ri∂rj
Beffkl (0) = Ds(2δklδij − δkiδlj − δkjδli

)+ Dp(2δklδij + δkiδlj + δkjδli
)
. (11b)

Statistical topography characteristics are defined through the indicator function

ϕ(R, t; ρ′) = δ(ρ(R, t) − ρ′), (12)

which filters out values of the density ρ(R, t) different from a prescribed value ρ ′, by using
the Dirac δ-function. The total area of the regions, where ρ exceeds some threshold ρ̄, is
referred to as the cluster area. The total mass of the floating tracer within the cluster area
is referred to as the cluster mass. Then, the area occupied by the clustered tracer and the
corresponding mass are found as

S(t; ρ̄) =
∫

dR θ
(
ρ(R, t) − ρ̄

) =
∫

dR
∫ ∞

ρ̄

dρ′ϕ(R, t; ρ′), (13a)
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M(t; ρ̄) =
∫

dR ρ(R, t)θ
(
ρ(R, t) − ρ̄

) =
∫

dR
∫ ∞

ρ̄

dρ′ρ′ϕ(R, t; ρ′), (13b)

where θ(·) is the Heaviside (step) function and ρ̄ is a given density threshold value.
The exponential clustering of tracer with the netmassM0 is, then, defined as both limits

lim
t→∞ S(t; ρ̄) → 0, (14a)

lim
t→∞M(t; ρ̄) → M0 (14b)

are simultaneously satisfied for any threshold ρ̄.
It is instrumental to write down established asymptotics for the purely divergent case,

when the limits are satisfied, signifying that tracer clustering occurs with probability one
(Klyatskin 1994, 2015). Ensemble averaging over many realisations of the random velocity
field yields

〈S(t; ρ̄)〉 =
∫

dR
∫ ∞

ρ̄

dρ′P(R, t; ρ′), (15a)

〈M(t; ρ̄)〉 =
∫

dR
∫ ∞

ρ̄

dρ′ρ′P(R, t; ρ′), (15b)

written through the one-point PDF

P(R, t; ρ) = 〈
δ
(
ρ(R, t) − ρ

)〉
. (16)

Following Klyatskin (1994, 2015), one can write down expressions for the ensemble-
averaged cluster area and mass

〈shom(t, ρ̄)〉 = Pr

(
ln(ρ0 e−Dpt/ρ̄)√

2Dpt

)

= P{ρ (R, t) > ρ̄} ≈
√

ρ0

πρ̄Dpt
exp

(− 1
4D

pt
)
, (17a)

〈mhom(t, ρ̄)〉 = Pr

(
ln(ρ0 eD

pt/ρ̄)√
2Dpt

)
, (17b)

〈mhom(t, ρ̄)〉
ρ0

≈ 1 −
√

ρ0

πρ̄Dpt
exp

(− 1
4D

pt
)
, (17c)

where ρ0 is the initial density, which we choose equal to 1. These estimates frame the max-
imal rates of clustering achieved in purely divergent flows; they will be used to benchmark
the other solutions. It is convenient to define the diffusion time

τ = Dpt = t/τp, τp = 1/Dp, (18)

with the diffusion time scale τp.
In the numerical simulations, we define the cluster mass to be proportional to the num-

ber of particles with the density exceeding the given threshold, whereas the cluster area is
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the sum of all the areas of these particles, each of which is defined asmp/ρ
p
i (t), wherem

p is
the constant mass of a particle (prescribed and the same for each particle) and ρ

p
i (t) is the

density of i-th particle. The Eulerian tracer density is obtained by averaging information on
the particles over the grid cell. All the integral characteristics are calculatedwithout averag-
ing. Moreover, since computing trajectories for millions of particles is expensive, the tracer
evolution is assessed only in subdomain designated in figure 1 and containing qualitatively
different flow regimes.

4. Clustering constrained by themesoscale velocity field

Our main goal is to analyse the tracer evolution and clustering rates, when constrained
by nonstationary deterministic velocity fields. For the stationary and nonstationary cases
of the deterministic mesoscale field, we formulated the following 4 experiments aiming to
clarify the range of possible behaviours:

(i) EXP1 – only the mesoscale field without a submesoscale (random) one;
(ii) EXP2 – plus the purely solenoidal random velocity field (γ = 0);
(iii) EXP3 – plus the purely divergent random velocity field (γ = 1);
(iv) EXP4 – plus the mixed random velocity field (γ = 0.5).

The numerical implementation involves interpolating the deterministic velocity com-
ponent onto 2048 × 2048 grid, where the randomvelocity field is defined. The dimensional
units are the grid size 250m, time step 84 s, submesoscale (random) velocity scale 3m s−1

with its dimensionless standard deviation σU = 0.1 and correlation radius l = 2 km, all
chosen so that the Rossby number is close to one. The time intervals with the saved
deterministic velocity data are one hour (with linear interpolation in between).

Before plotting the density distributions, we first average them as follows. In each grid
cell, an averaged density is plotted, i.e. the netmass of all Lagrangian particles located in the
cellm(i, j)divided by the area taken by the particles. The area is proportional to

∑n
q=1 1/ρq,

where n is the number of particles in the cell, ρq is the Lagrangian density of a particle
accumulated along its trajectory.

4.1. Stationarymesoscale field

To establish reference solutions, we first consider a stationary deterministic velocity field
(Stepanov et al. 2020) with the time averaging over March 2000. The initial tracer distri-
bution (dimensionless time t = 0) is marked by a grey square in the following figures; and
their upper panels correspond to ∼ 20 days, the bottom ones correspond to (∼ 40 days).

When velocity field consists only of the deterministic component (EXP1), the tracer
is simply advected around. The tracer distribution initially remains qualitatively the
same (figure 6). If the tracer is initially enclosed inside an eddy (cyclone C and anticy-
clone/cyclone pairAC in figure 2), it remains there permanently since the eddy is stationary
and tracer trajectories move along constant pressure levels; and the tracer initialised
outside the eddy regions is advected out of the domain.

Adding the purely rotational (γ = 0 in (2)) submesoscale component insignificantly
changes the tracer pattern (figure 7) and slightly erodes tracer boundaries, in a way similar
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Figure 6. Tracer density evolution of cyclone C and pair AC in EXP1 after: (a) 20 days and (b) 40 days.
(Colour online).

to the effect of diffusion (Koshel et al. 2013, 2015). Exponential clustering, as the theory
predicts, does not occur. The largest density values do not exceed ρmax/ρ0 ∼ 30 (in the
averaging sense over the velocity grid cell; without averaging the value does not change
from the initial one), and they remain bounded for the integration time.

The clustering does occur when the submesoscale component is purely divergent (γ =
1), i.e. in EXP3 (figure 8), and the tracer is clustered in narrow stripes with high density
values. Maximal density values observed are of the order ρmax/ρ0 ∼ 1012 − 1014 at time
∼ 20 days, and they are as large as ρmax/ρ0 ∼ 1018 − 1021 for ∼40 days. These anomalous
values attest to the exponential nature of clustering.

Clustering also manifests itself with mixed submesoscale component (γ = 0.5), i.e. in
EXP4 (figure 9), but the clustering rates and maximum density values are orders of mag-
nitude smaller than in EXP3. Maximum density values are 105 − 106 for ∼ 20 days and
108 − 109 for ∼ 40 days.

To present further evidence of the exponential nature of clustering, we explore statistical
topography characteristics: clustering area (s) and mass (m). In the exponential clustering
process, the clustering area tends to zero, whilst the clustering mass tends to the net tracer
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Figure 7. The same as in figure 6, but for EXP2. Advected patterns remainmostly unchanged, whilst the
tracer boundaries are eroded. (Colour online).

mass. All the tracer is clustered in the infinite time limit, but only finite times are at our
disposal in the numerical simulations.

The clustering rates for the divergent and mixed submesoscale velocity cases exhibit
clear exponential tendencies (the top curves in figure 10(a) indicate the accumulated clus-
tering mass, the bottom curves indicate the clustering area; compare to the thick top black
line that shows the asymptotic tendency (17) for the purely divergent case without deter-
ministic component). Despite the fact that the purely divergent case (EXP3) yields much
larger density values, in comparison with the mixed case (EXP4), the statistical topogra-
phy characteristics demonstrate similar clustering behaviours in both cases (solid curves –
EXP3; dashed curves – EXP4 in figure 10(a,b)). Moreover, clustering rates remain largely
the same for different tracer deployment sites (blue curves correspond to the cyclonic eddy
C; red curves correspond to the anticyclone/cyclone pair AC).

Logarithmic-scale curves (figure 10(b)) illustrate impact of themesoscale field. It is weak
on short time scale (∼ τp) and results in reduced clustering rates, which correspond to the
asymptotic diffusion coefficient 0.75Dp. Clustering mass curves (figure 10(c)) also demon-
strate reduced clustering rate on short time scales (τ ∼ 4 − 8). For EXP3 the long-term
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Figure 8. The same as in figure 6, but for EXP3 after: (a) 20 days (τ = 7.915718), (b) 40 days (τ =
15.831436). Tracer is mostly clustered (high density values in red) within the regions of interest forming
patterns of elongated stripes. (Colour online).

mass accumulation rate is slower compared to the corresponding clustering area shrink-
age rate but still exhibits exponential tendencies. For EXP4 themass accumulation is either
drastically hindered or stopped altogether at levels of total mass accumulation close to 1
(0.85–0.95). For both EXP3 and EXP4, in terms of the non-normalised time (figure 10(d)),
the clustering rate is proportional to γ 2, and the area is clustered at a reduced rate (by 75%).

As expected from the theory, the clustering rates are controlled by the divergent veloc-
ity component, nevertheless, the fact, that the mixed velocity case still exhibits clustering,
although at slower rates (of order γ 2, see 10(d)), is worth attention and account.

5. Clustering constrained by the nonstationary mesoscale field

Since the mesoscale eddy fields are non-stationary (McWilliams 1984, Chelton
et al. 2007, 2011, Barbosa Aguiar et al. 2013, Samelson 2013, Abernathey and Haller 2018),
it is important to understand sensitivity of clustering to the unsteadiness. The clustering
can be significantly hindered because the characteristic time scales for tracer aggregation
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Figure 9. The same as in figure 6, but for EXP4 after: (a) 20 days (τ = 1.978930), (b) 40 days (τ =
3.957860). Significant part of the tracer is clustered (high density values in red), however the rate of
clustering is much slower than in the purely divergent case. (Colour online).

can be constrained by themesoscale variability time scales.Here, we do not attempt to anal-
yse in detail the relation between these time scales and only point out the general possibility
of the above scenario.

Now, instead of considering the average mesoscale velocity field, we make use of
interpolated hourly outputs of the mesoscale model and consider the same experiments
EXP1–EXP4, but nowwith the time-dependent deterministic flow. Two tracer deployment
sites correspond to the anticyclonic and cyclonic eddies (marked in figure 2 as A2 and C,
respectively).

When only themesoscale velocity acts on tracer, the advection patterns for both deploy-
ment sites (see figure 11 for the cyclone and figure 12 for the anticyclone) feature typical
spiral-like patterns characteristic of mesoscale-induced advection often observed by satel-
lites and drifters. In this case (EXP1), the density remains largely unchanged and varying
in the range 0 ≤ ρ < 3.5 (upper panels in figs. 11–12 correspond to ∼ 20 days, bottom
ones correspond to ∼ 40 days). Activating the submesoscale (random) component entails
dynamical patterns similar to the case of the stationary mesoscale field. Purely rotational
submesoscales (EXP2) in figs. 11–12) induce fuzziness of the tracer boundaries, similar to
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Figure 10. Accumulated clusteringmass andarea exceeding the threshold ρ̄ = 2 for EXP3 (solid curves)
and EXP4 (dashed curves) velocity cases. The blue curves correspond to the initial deployment region
encompassing the cyclonic eddy C, the red ones correspond to the anticyclone/cyclone pair AC; τ is
the time scaled by diffusion time (18). (a) Accumulated clustering mass (top curves) and area (bot-
tom curves). The thick black curves show the theoretical limit for the purely divergent velocity field
without deterministic component, for Dp = 1/τp = γ 2D0. The dashed black line corresponds to Dp =
1/τp = 0.75γ 2D0. Exponential clustering rates are deduced from the shapes of the curves. (b) Accu-
mulated clustering area in the logarithmic scale for the same time scaling as in (a). (c) Accumulated
clusteringmass ((m0 − m(τ ))/m0) normalised bym0. The time scaling is as in a). The thick black curves
show the theoretical limit for the purely divergent velocity field without a deterministic component for
Dp = 1/τp = γ 2D0. The dashed black line corresponds to the Dp = 1/τp = 0.75γ 2D0, the dash-dot
line corresponds the Dp = 1/τp = 0.15γ 2D0. d) Accumulated clustering area in the logarithmic scale
depending on the physical time t (in days). The thick black curves show the theoretical limit (16) for the
purely divergent velocity field without a deterministic component forDp = γ 2D0. The dashed black line
corresponds to the Dp = 0.75γ 2D0. (Colour online).

the effect of diffusion, whilst the density values remain mostly unchanged (ρ ≤ 4.4). As
expected, no exponential clustering occurs without the divergent flow component.

Purely divergent submesoscales (EXP3) induce partial tracer clustering with relatively
large density values for both deployment sites. At t = 20 days the values are ρ � 1.5 ×
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Figure 11. Tracer density evolution (density is colour-coded) for the C (cyclonic eddy) region from
figure 2 for the nonstationary deterministic velocity case, otherwise, as in EXP1–EXP4. Upper panel: ∼ 20
days (τ = 1.978930 at γ = 0.5 and τ = 7.915718 at γ = 1.0); bottompanel: ∼ 40 days (τ = 3.957860
at γ = 0.5 and τ = 15.831436 at γ = 1.0). Top row corresponds to∼ 20 days, bottom row corresponds
to∼ 40 days. (Colour online).

Figure 12. The same as in figure 11, but for the A1 (anticyclonic eddy) region. (Colour online).

103 in the cyclonic eddy and ρ � 0.5 × 103 in the anticyclonic one. At ∼ 40 days almost
all the tracer is aggregated in patches of density larger than ρ = 10; the maximum values
attain ρ � 2 × 103 and 1.5 × 103 for the cyclonic and anticyclonic eddies, respectively.
These values are clearly many orders of magnitude smaller than the ones obtained for the
steady deterministic velocity case, implying that the flow unsteadiness inhibits clustering.
The mixed submesoscale velocity (EXP4) induces similar patterns with partially clustered
tracer. The maximum density values (ρ ∼ 200 for the cyclonic eddy and ρ ∼ 100 for the
anticyclonic one, at both reference times) are againmany orders ofmagnitude smaller than
their counterparts in the steady deterministic case, thus, confirming the conclusion.

Now, we again resort to the statistical topography characteristics. Only purely divergent
mesoscale component (EXP3) is considered. The statistical topography curves (figure 13)
correspond to the deployment sites with the mean patterns shown in figure 2: the cyclonic
eddy C, the anticyclone/anticyclone/cyclone tripole AAC, and 2 isolated anticyclones A1
and A2.
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Figure 13. Clustering mass and area for EXP3 when the threshold ρ̄ = 2. Different colours cor-
respond to the tracer deployment sites: isolated anticyclones A1, A2; cyclone C, and the anticy-
clone/anticyclone/cyclone tripole AAC; τ = t/τp, and τp = 2.526days. (a) Mass (top curves) and area
(bottom curves). The thick black curve shows the theoretical limit for the purely divergent velocity field
without deterministic component (16), (17). The rates of clustering are inhibited by stirring due to the
unsteadiness of the deterministic mesoscale component. The AAC dynamical pattern, which favours
extremely fast stirring, almost completely inhibits clustering, until the particles are advected out of
the domain. (b) Only clustering area in the logarithmic scale. The dashed lines show the theoretical
limit for the purely divergent velocity field without deterministic component (17) for Dp = 1/τP : A1 –
0.35D0; AAC – 0.4D0; C- 0.45D0; A2–0.8D0. (c) Only normalised clustering mass (m0 − m(τ ))/m0 in the
logarithmic scale. The dashed lines show the theoretical limit for the purely divergent velocity fieldwith-
out deterministic component (16) for Dp = 1/τP ≈: A1,A2–0.35D0; AAC – 0.06D0; C- 0.57D0 and 0.1D0.
(Colour online).

Logarithmic-scale clustering area rates can be sorted into 4 distinct regimes (i)–(iv), for
all the initial deployment sites. (i) The first one corresponds to weak influence of the deter-
ministic component at earlier times (∼ 2τp − 4τp). The clustering mass and area change
almost exponentially, similar to the theoretical curves (17), i.e. forDp = 1/τp ≈ D0. (ii) At
later times (∼ 5 − 10τp), the clustering rates drastically decrease, so that the tracer density
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stops increasing.Wehypothesise that this behaviour is caused by the fast advection induced
by the nonstationary deterministic component. The exact timing, when this regime starts
depends on the details of the deterministic field structure. (iii) At intermediate times (from
∼ 6 − 12τp to ∼ 14 − 22τp), there is again exponential clustering but at reduced rates,
compared to regime (i), where the clustering rates are determined by the diffusion coeffi-
cient of the divergent flow component. Compared with the effective diffusion coefficients
(figure 13(b)), the exponential clustering occurs at reduced rates in the range∼ 0.35Dp for
A1, and ∼ 0.8Dp for A2. The clustering rates are, similar to the previous regime and sen-
sitive to the deployment sites. (iv) Further in time, the clustering rates increase again, due
to the fact that there is less tracer left in the area of interest (figure 13(a,d)), and the tracer
is now largely localised in stagnation zones, where it is less perturbed by the underlying
nonstationarity.

The clustering mass behaves differently: at any time its rates are slower than the area
shrinkage rates; its initial fast-clustering interval is noticeably shorter (up to τ ∼ 4 − 5τp).
Further in time, mass accumulation stops, except for case C. Another exponential regime
takes place over times from τ ∼ 6τp to τ ∼ 10τp, andwith significantly reduced rates. After
τ ∼ 10τp, the clustering mass starts decreasing, nevertheless, large portion of the tracer
(∼ 0.7 − 0.9 from the initial mass) is already clustered and remains so for long time.

6. Discussion and conclusions

In this paper, we quantified floating-tracer clustering phenomena constrained by a non-
stationary mesoscale field featuring distinct eddies. This research is motivated by the
increasing interest in the transport of floating tracers at the ocean surface.

The flow velocity field governing the tracer evolution is considered to be a combination
of a mesoscale (deterministic) component and a submesoscale (random) one. The deter-
ministic component, which is an output of a realistic eddy-resolving circulation model
for the Japan/East Sea, features regions of intense mesoscale variability. Then, a kinematic
random divergent velocity field is added to account for submesoscale motions. Statistical
topography characteristics are used to quantify the ensuing clustering in the combined
velocity field.

Comparison of the clustering processes in the steady and unsteady mesoscale veloc-
ity fields reveals that at earlier times (∼ 2τp, where τp is the specific diffusion time of the
random velocity, there is ongoing clustering. However, on longer times (∼ 4 − 7τp) the
steady deterministic velocity still yields the exponential clustering, whereas the unsteady
mesoscale velocity significantly inhibits the clustering and eventually caps it. Moreover, at
the later times the unsteady mesoscale velocity reverses the clustering, resulting in neg-
ative clustering rates (we see this in the regions of energetic fluctuations after ∼ 20τp).
The statistical topography curves, being integral proxies for clustering, are inconclusive in
determining the underlying dynamics that engenders this salient behaviour. The reason
for that may be that the mesoscale dynamics is too intense in the regions of interest, and,
thus, the tracer is noticeably stirred by chaotic advection. In other words, the characteristic
times of clustering aremuch longer than those of themesoscale eddies. The intricacy of the
interplay between clustering and chaotic advection induced by the underlying mesoscale
flow is an interesting issue that can be addressed in more detail by employing simplified
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vortex models with nonstationary dynamics (e.g. distributed elliptic or ellipsoid vortices
(Zhmur et al. 2011, Koshel et al. 2013, 2015, Koshel and Ryzhov 2016, 2017, Ryzhov 2017).

It is worth mentioning that the full deterministic velocity field governs also processes
at faster time scales ( 7 days), particularly the inertial oscillations, along with meso- and
large scale processes. These faster oscillations were filtered out before clustering analyses.
However, a few experiments were carried out (not presented) for the full deterministic
velocity field and showed very little difference. This is caused by the dominant influence
of the mesoscale processes on the clustering dynamics as compared to the inertial oscilla-
tions. However, this may be attributed to our specific choice of parameters for the random
velocity field, while the clustering theory may also be pertinent to inertial oscillations in
the ocean and will be addressed elsewhere.

A detailed study of the clustering sensitivities to parameters γ , σU and l (in the vein
of Berloff andMcWilliams 2003) is needed for extending the approach. This in turn relates
to a more pressing problem of establishing relative contributions of mesoscale and sub-
mesoscale flows as the main factors for tracer transport in the ocean (McWilliams 2016).
Our approach may prove useful in addressing this problem with kinematically modelled
submesoscales, as a cheaper alternative to expensive submesoscale-resolving simulations,
which are unfeasible for many practical purposes.
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