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ABSTRACT

A local model is used to investigate the dynamics of the western boundary current in a midlatitude, wind-
driven gyre. This current isimportant for the gyre asawhole, and its local instability is correlated with structural
changes of the separated eastward jet and the interior gyres. In particular, the eastward jet can be disrupted and
broadened in the regime with a strong, local instability in the western boundary current. Such a regime occurs
with a no-slip lateral boundary condition. Alternatively, in the absence of local instability, the eastward jet is
narrow and penetrates farther in the basin interior. This behavior is typical with free-slip boundary condition.

Both the linear stability and nonlinear time-dependent behavior of the western boundary current are analyzed
for a wide range of parameters. The current loses stability at moderate Reynolds numbers, and the stability
threshold strongly depends upon the vertical stratification profile. The nonlinear time-dependent flow contains
well-defined mesoscal e eddies with adjacent meanders. The finite amplitude dynamics is fundamentally different
in the no-slip and free-slip situations, because the free-slip boundary substantially stabilizes the flow. It is shown
that fluctuations in nonlinear regime are rather different from the linearly unstable modes. Multiple stable
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equilibria are also found.

1. Introduction

In this paper we focus on the fundamental dynamics
of amidlatitude western boundary current (WBC), such
as the Gulf Stream, Kuroshio, Somali, East Australian,
and Brazil currents. We use an idealized local model of
the WBC in a north—south channel. We explore dynam-
ics of the model for a wide range of parameters, in-
cluding relatively large values of the Reynolds number,
Re. In the introduction we outline the background, pose
the problem, and formulate the numerical model. In sec-
tion 2 we analyze solutions of the wind-driven, basin-
scale, double-gyre circulation with and without insta-
bilities of the WBCs. In section 3 we solve for linear
stability of the WBC. Section 4 focuses on nonlinear
dynamics of the WBC. Conclusions follow in section 5.

a. Background

Correct modeling of the oceanic lateral boundary lay-
er isavery difficult problem. Behavior of the boundary
layer at even moderate values of Re is poorly known;
there are strong computational barriers to achieving the
large values of Re typical for the ocean. Also, the com-
mon practice of using a vertical sidewall and an asso-
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ciated stress boundary condition gives considerable
computational convenience, but such a boundary is ar-
tificial in comparison with a shoaling bottom at a coast-
line.

A review of some advances in understanding oceanic
boundary layersisin lerley (1990). Mesoscal e processes
in the WBCs and their influence on the basin-scale cir-
culation are still not well understood. Because of the
lack of observations, not much is known about the dis-
Sipative processes in the ocean. This leaves modern the-
ories largely unconstrained in the particular choice of
subgrid-scale parameterizations of the momentum dif-
fusion (e.g., Newtonian vs biharmonic eddy diffusion),
the boundary condition (e.g., free-slip vs no-slip), and
the control parameters (e.g., the eddy viscosity coeffi-
cient). Also, there is considerable uncertainty about
whether the coastal regions adjacent to WBCs or the
underlying bottom boundary layers provide the domi-
nant dissipative sink in ocean gyres.

At this point numerical experimentation can help to
discriminate among alternatives. For example, Bland-
ford (1971) shows that even weak latera momentum
diffusion drastically changes the barotropic wind-driven
circulation, when it is combined with no-slip boundary
condition and added to bottom friction. Instead of the
steady, basin-scale inertial recirculation for solutions
with only bottom friction (Veronis 1966), the circulation
develops a separated, meandering eastward jet and tran-
sient disturbances near the western boundary, as in the
case with lateral diffusion alone (Bryan 1963).
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In a model of the Somali Current, Cox (1979) finds
that the current contains a sequence of propagating tran-
sient eddies. In an attempt to explain this phenomenon
and the disturbances seen by Bryan (1963), lerley and
Young (1991, hereafter 1Y) consider the viscous insta-
bility of a barotropic WBC. They model the WBC as a
parallel flow in an unbounded, barotropic north—south
channel. lerley and Young show that the flow becomes
unstable at moderate values of Re; the most unstable
eigenmodes are trapped near the western boundary; and
the eigenmodes that are not trapped (the channel modes)
become unstable only at substantially larger values of
Re.

Another example of an active WBC is the East Aus-
tralian Current, which is filled with mesoscale eddies
(e.g., Feron 1995). Cessi and lerley (1993) extended the
results of 1Y and looked at linear stability and weakly
nonlinear dynamics of a barotropic WBC in a channel
tilted at an angle with respect to the north—south direc-
tion. They show that the negative tilt, as for the East
Australian Current, favors instability of the flow.

The wind-driven, time-dependent gyre circulation’s
dependence on the lateral boundary condition is ex-
plored by Haidvogel et a. (1992). It is shown that in
the no-dlip limit the time-mean circulation devel opstwo
distinct eastward jets. In the free-slip limit both time-
mean jets merge in a single jet deeply penetrating into
the interior of the basin. In the latter case, the energy
is much larger, and bottom friction dominates over lat-
eral friction as the energy dissipator. Thus, changes of
the lateral boundary condition lead to significant chang-
es in the WBC dynamics that, in turn, influence the
basin-scale circulation.

The eigenmodes associated with the WBC distur-
bances of the steady single-gyre circulation are explored
in the barotropic (Sheremet et al. 1997) and the 2-layer
baroclinic models (Berloff and Meacham 1998b). It is
shown that the disturbances belong to a particular type
of local instability, and the other types are instabilities
of the recirculation gyre, standing meander, basin
modes, resonant mode, and complex patterns involving
several recirculations.

b. Satement of the problem

We focus on the WBC with a prescribed mean density
stratification and no thermohaline forcing. This allows
us, for simplicity, to use the quasigeostrophic (QG) ap-
proximation. The approximation excludes large excur-
sions of isopycna surfaces. In particular, it excludes
outcropping, that is, intersections of the isopycnal sur-
faces and the bottom or upper surface. For simplicity
we choose the western boundary to be straight and di-
rected from north to south. To make orderly progress,
we defer for now any consideration of sloping bottom
topography near the western boundary. Asthefrictional
operator, we use only lateral Newtonian eddy diffusion.
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We consider both no-slip and free-slip boundary con-
ditions.
Within the model we address the following questions:

1) What are the critical Reynolds numbers, Re,, and
the most unstable patterns associated with linear in-
stability of the steady boundary current?

2) What are the equilibrium dynamical regimes of the
time-dependent, nonlinear WBC at intermediate and
large Re?

3) How does the WBC dynamics depend upon control
parameters of the problem?

4) What are global patterns associated with local in-
stabilities in the WBC?

¢. The model

We model the wind-driven circulation by the quasi-
geostrophic egquations (Holland 1978). For M active lay-

ers (we use M = 3), the equations for i = 1, M are
¢ Y, i1

— + I, &) + B—=—V X1+ V4, (1
o T 8) BT = AV X TV, (1)

where §,; = 1ifi =jand §; = 0if i # j, andiisthe
layer index starting from the top. In (1), V X 7 isthe
wind stress curl acting in the upper layer; v is the eddy
viscosity coefficient; and 8 = 2 X 100 m-t s tisthe
planetary vorticity gradient. The ocean depth isH =
4000 m. For M = 3 the layer depths are usually chosen
asH, = 300 m, H, = 700 m, and H; = 3000 m, except
in section 3h, where H, is varied. The wind stress is
chosen to be symmetric about the middie (y = 0) of the
basin,

7(y) = 7, cos(z%y),

where —L/2 = y = L/2. The streamfunction ¢, is ob-
tained from the elliptic problem,

V2d,i - (1 - ai,l)s,l(d/i - ¢’i—1)

- (1 - 6i,M)S,z(wi - ‘/’i+1) ={, (Za)
where
Si = fs‘(HigM)
P1
S, = fg<HigM)_ (20)
P1

are the stratification factors with Coriolis frequency f,
= 0.83 X 10~* s7*. The lateral boundary conditions are
of no normal flow,

¢’i|c = I'i(1), (3
and either no-dlip,
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Y
—| =0, 4
an|. (43)
or free-slip,
I,
= 4
on?| . 0 (40)

where nis alocal coordinate oriented perpendicular to
the lateral boundary. This is supplemented by the in-
tegral mass conservation constraint for each layer:

- f f (. y) e dy = O ©

Here C is the bounding contour of the domain with
area A.

Our numerical model is similar to that used by Hol-
land (1978). We have two different spatial domains: a
full basin that is a sguare with solid boundaries all
around and a north—south periodic channel with solid
boundaries on its east and west sides. The dimensional
(Sl units) equations (1) are discretized on auniform grid
with second-order finite differences and are solved nu-
merically using the boundary conditions (3) and either
(4a) or (4b) with the mass constraint (5). The elliptic
problem (2) is solved by adirect solver in the full basin
and by a multigrid solver (because of the periodic
boundary conditions) in the periodic channel. The grid
size is chosen to be fine enough to adequately resolve
the viscous western boundary layer scale,

()" 0

We find empirically that for our range of parametersthe
minimum resolution is about two grid intervals per §,,.

2. Wind-driven gyres

Here we focus on two regimes of circulation, which
are either with or without substantial instabilitiesin the
WBCs. The latter regime was explored in the 1.5- and
2-layer approximations (Berloff and McWilliams 1999)
from the large-scale, low-frequency variability point of
view. It was shown that as long as the WBCs are rel-
atively stable the variability grows with the decreasing
v. The variability is associated with structural changes
of the eastward jet and adjacent recirculation zones. The
main difference here is that we use a 3-layer approxi-
mation in order to destabilize the WBC at larger values
of ».

We choose a basin dimension of L = 3840 km and
awind stressamplitude of 7, = 0.03 N m-2. The density
jumps, Ap;, = p;,, — p;, aesuch that the first baroclinic
deformation radius Rd, (appendix B) is 52 km. We ex-
periment with different values of v and both types of
the boundary condition (4).

With » = 1500 m? s, the flow with the no-slip
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boundary condition is stable and confined to the upper
layer in the large-time limit. The circulation has the
pattern of two gyres, subtropical and subpolar, with
strong WBCs that separate at the middle latitude, y =
0, and turn eastward with a narrow width of about 100
km. At » = 1000 m2? s, in the large-time limit, the
solution converges to a limit cycle with a small ampli-
tude of 0.02% of the total energy. The total energy is
defined as the basin integral of the energy density
1 HIVeP
BV =R 2
S_L,ZHl + %,lHZ
4(H, + Hy)A

S2H, + SuHs,
m(lﬂz )2 (7)

The motion on the limit cycle is characterized by the
presence of transient vortices in the WBC. The vortices
propagate along the boundary toward the middle lati-
tude. Thus, the primary Hopf bifurcation of the flow
originates due to local instability of the WBC.

In order to see changes of the flow associated with a
further decrease of v, we examine another no-slip so-
lution at » = 500 m? s~* (with a spatial grid size of 15
km). An instantaneous picture of the solution is shown
in Figs. 1la—c. The circulation contains well-defined me-
soscale eddiesin the WBCs and in the adjacent portions
of the westward flanks of the gyres. The basin-averaged
total energy time series, part of which is shown in Fig.
2a, indicates that the relative amplitude of the fluctua-
tions around the time-mean energy is about 0.8%. The
power spectrum of the time series is shown in Fig. 2b.
To quantify the amount of the low-frequency variability
present in the solution, we split the spectrum into three
frequency bands: the mesoscale band (M) with fre-
guencies larger than 1.74 yr—* (periods less than 210
days); the quasiannual band (Q) with frequencies be-
tween 0.58 and 1.74 yr—* (periods between 210 and 630
days); and the interannual (1) band with frequenciesless
than 0.58 yr—* (periods longer than 630 days). The spec-
trum contains about 70% of the power in the interannual
band, consistent with the results of Berloff and Mc-
Williams (1999). The most interesting feature of the
flow is the absence of a single, intense eastward jet.
Instead, the eastward flow is very broad and intensified
on its southern and northern edges. The distance be-
tween the edges of the eastward flow is about 1000 km.
A similar double-jet structure of the eastward flow was
found by Haidvogel et al. (1992) in the no-slip case.

The eddies, which start to form in the westward flanks
of the gyres, grow in amplitude as they propagate down-
stream. About 600 km away from the middle latitude,
the eddies become strong enough to separate the flow
from the wall. This behavior is illustrated by the sep-
aration diagram shown in Fig. 3. The solution yields the
energy conversion (17a,b) that is predominantly baro-

(‘7[’1 - ‘!fz)z
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Fic. 1. Snapshotsin all three layers for a basin solution with » = 500 m? s-*. The no-slip case:
(@ ¢, (b) ¢, () 5. The free-slip case: (d) ¢y, (€) i, (f) ¥5. Cl = 5 X 10%in (a) and (d); Cl
=2 X 10%in (b) and (e); Cl = 5 X 102 in (c) and (f).

clinic in the WBCs. This is consistent with the linear
and finite amplitude results of the local model (sections
3 and 4).

As an example of the flow without eddy generation
inthe WBCs, in Figs. 1d-f we show snapshots of afree-
dlip circulation with the same parameters as in the no-
dlip counterpart. The flow has the familiar pattern of a
pair of surface intensified recirculation cells (Holland
1978). Berloff and McWilliams (1999) study the low-
frequency variability in this regime and show that the
dipole recirculation pattern is an attribute of the double
gyre with the wind stress close to symmetrical. The

basin-averaged total energy time series of the free-slip
circulation is shown in Fig. 2c. The time series contains
fluctuations with a relative amplitude about 26%. This
is substantially larger than the relative amplitude of the
no-slip circulation. Thetime series power spectrum (Fig.
2d) contains more than 96% of the spectral power within
the interannual band, a substantial amount. Comparison
with the no-glip solution suggeststhat the low-frequency
variability increases when the boundary conditionisfree
dlip. The stabilizing effect of the free-slip boundary on
the WBC dynamics is explored in sections 3g and 4d
in the local channel model. Here, we only illustrate that
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Fic. 2. Time series and spectra of the basin-averaged total energy for a basin solution with »
= 500 m? st and either (g, b) no-dlip or (c, d) free-slip boundary condition; I, Q, and M denote
the relative power in the interannual, quasiannual, and mesoscale frequency bands, respectively.

the WBC instability correlates with global changes of
the circulation such as the absence of a single narrow
eastward jet, the appearance of the recirculation dipole,
and the substantial drop in the low-frequency variability.
Still it is not clear to what extent the WBC instabilities
and transient eddies are responsible for the global
changes of the gyre circulation.

How robust is the no-slip double-gyre dynamics with
respect to variations of the control parameters? We made
a modest survey in aternative values of the viscosity
coefficient (100 < » < 1500 m? s-1), the stratification
profile [1 < (p, — p)/(ps — po) < 2; 40 < Rd, < 52
km], and the pattern of the wind stress (0 < A < 2;
0.03 < 7, < 0.04 N m=2). In al the cases we found
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Fic. 3. A scatter diagram of boundary-current separation points at different times for the no-slip basin
solution with » = 500 m? s,

that the WBCs are unstable and there are eddies and
meanders generated inside them. This suggests, in ac-
cordance with the earlier work of Haidvogel et al.
(1992), that the significant WBC instability is a robust
phenomenon when v has sufficiently small values and
when there is no-dlip lateral condition on the western
boundary. We emphasize that this conclusion is drawn
in the absence of sloping topography near the western
boundary, tilting of the western boundary with respect
to the north—south direction, and outcropping of the iso-
pycnal surfaces. The influences of all these aspects on
the baroclinic wind-driven gyres at even moderate val-
ues of Re have not been fully explored.

3. Linear stability of the WBC
a. Linearized model

We model the steady WBC as a flow parallel to the
western wall in a north—south periodic channel on the
B plane. The steady state is motionless in the second
and third layers and it has the Munk (1950) velocity
profile in the upper layer. For the reason of dynamical
complexity, we defer considering non-parallel steady
states, and the states with non-zero flow in the deep
layers. In the no-slip situation the upper layer velocity

is
X V/3x
- veeo{ 55 (s, )
This velocity profile has its maximum away from the

wall. In the free-slip case the steady flow is

\/§(x>

(82)

The velocity has its maximum at x = 0. The normali-
zation factor \/3/2 makes the total transport W, = H,
fs” v, dx, to be the same for the same V, in both cases.

We are interested in determining the critical values
of the Reynolds number,

VOBM 0
ou_ ©
14 14

when the steady WBC is only marginally stable. Given
Re, the total transport of the steady state is

Re =

3 3
THlvoéM = 7H1VRG.

The governing equations for the perturbation stream-
functions ¢, (i = 1, 3) are obtained by linearizing around
the steady state and they are

W, = (10)

LV~ Sl — ] + T (T + Sath)
— vmaa—‘;l + Bt d’ = Wiy,
VA = Sl = ) — Sl — U5)
S B =
s

&[Vzlps + Ss,l((pz — )] + B_ = V4, (11)

where S,,, S,1, S,,, S;, are defined in (2b).

b. Eigenvalue problem

We look for normal mode solutions of (11) in the
form

Pi(x, Y, 1) = @@ Nfi(x) + el anyE(K),  (12)
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TABLE 1. Critical no-slip eigenmode values for fixed ».

v max Qe Iy W g
(m?s™) (ms™) (5 (km) (Re.5,?) (days) (km day )
2000 0.24 0.58 500 0.043 153 3.7
1000 0.20 0.55 420 0.047 131 3.1
500 0.18 0.49 370 0.050 114 2.5
300 0.15 0.44 350 0.053 108 2.0

where y wavelength of the mode is|, = 27a~* and the
time period is T = 27Re(w)~*. The normal mode de-
composition of (11) yieldsthefollowing system of equa-
tions for i

lplv — <2a2 + igvl> ~§{ - B‘Zji
v
+ (a“ + ia—sﬁl + igUW)&l - igsl,zﬁl'z’2
v v v
= 210+ (@ + S~ Sad]
GV — 202 — By + <a4 + i%sg,171> b,

- |%)[—1Z'2’ +(@+S,+S,)P, — S

- %,2&3]
Py — 20205 — By + @iy

. ~ ~ ~
= Iz[—lﬁg + (o + 1) — Sl (13)

The width of the channel is a parameter of the prob-
lem, but we are interested in the situation where the
eastern wall has no significant influence on the dynam-
ics. lerley and Young show that the eastern wall has no
influence on the linearized barotropic WBC if the chan-
nel width is much larger than the x scale of the trapped
eigenmodes. Therefore, we fix the channel width at L,
= 306,. This is a large scale in comparison with the
trapped marginal eigenmode. The boundary conditions
ax=0,L,ae

$:(0) = (L) = 0, (14)
and, in the case of no-dlip, aso

$i(0) = Ji(L) =0, (152)
or, in the case of free-slip,

J1(0) = (L) = 0. (15b)

The layer depths and densities are given in section
2, except when explicitly varied (section 3h) in order
to explore dependence of the solution upon them. The
eigenvalue problem (13), (14), and (15) is solved nu-
merically, with 100 points in x for the finite difference
discretization, except for appendixes A and B, where

the resolution is up to 500 points when it is necessary
to resolve the boundary layer scales. An increase in
resolution from 100 to 120 points yields changesin Re,,
that are less than 1%. Thisindicates that 100 pointsgive
areliable result.

c. Marginal stability as a function of »

The stahility of the flow at asymptotically largevalues
of v is analyzed in appendix A. The main conclusion
from the analysis in appendix A is that all the eigen-
modes are stable viscous channel modes with the vis-
cous length scale [L] = &, ~ v*3, and the timescale
[T] = 6uB *Rd;2 ~ 12, of the long baroclinic Rossby
wave. The main balance (A6) is between the stretching
term, advection of the planetary vorticity, and friction.
All eigenmodes are stable, and the least stable eigen-
modes correspond to a — O.

At intermediate values of v, the problem is explored
by varying V,, hence by varying Re, while keeping four
values of »: 2000, 1000, 500, and 300 m? s* fixed. The
boundary condition is no-slip, and Rd, = 52 km. The
values of maximum velocity V.., a, |,, R&(w,), T,
and the group velocity c, of the critical eigenmode are
summarized in Table 1.

Both the y wavelength, |, and the time period, T,
decrease with v, and their typical values are several
hundred kilometers and several months.

Themarginal stability curves (W, «) and [W,, Re(w)]
are shown in Figs. 4a,b. The critical transport value,
W,,,, corresponds to the “‘nose”’ of each curve. It grad-
ually decreases with decreasing v. However, the depen-
dence of W,,, on v is not linear as might be expected
from (10) because, as our results show, Re, approxi-
mately depends on v as

Re, ~ v 04, (16)
Why does Re,, increase with decreasing v, in the range
of the variations? To answer this question the barotropic
and baroclinic energy conversions (Pedlosky 1987) be-
tween the steady state and the critical eigenmode are
calculated. In section 4 we use the same approach to
calculate the energy conversions between the time-mean
states and the finite amplitude perturbations.

For the 3-layer stratification and parallel north—south
background flow, the barotropic energy conversion in-
tegrand is
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BT() = 3 GV, (79

i=1,
and the baroclinic energy conversion integrand is
BCL(X)

221 _ 1_ ~

- m<(¢1 ‘/fz)z(l,/ll + ¢/2)y(\lfl \I’z)x>
N )

. %vz + Sil<(w2 ¢3) 2(¢2 * lpg)y(qu \P3)x>;

(17b)

where H is the total fluid depth and { - ) denotes a (y, t)
average. When the x integral of the total conversion is

positive, perturbations gain energy from the basic flow.
In the range of the parameters explored, we find that
BCL strongly dominates for the critical eigenmode;
thus, the primary instability is essentially baroclinic.
From the simple scaling arguments in appendix A, it
follows that the barotropic conversion dominates for
sufficiently small values of ». On the other hand for
sufficiently small » thereisacontinuum of very unstable
eigenmodes. Therefore, it is likely that the finite am-
plitude dynamics of the statistically stationary flow is
turbulent, and the linear approach is of little value.
The predominantly baroclinic instability reported
here is different from the purely barotropic instability
considered by 1Y. It also is different from the instability
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TABLE 2. Asin Table 1 but for fixed Rd,.

Rdl max acr I y Wer T Cg
(km) (ms?) (5) (km) (Re.v5,7) (days) (km day %)
70 0.23 0.41 450 0.057 7 3.3
52 0.18 0.49 370 0.050 114 25
40 0.13 0.55 330 0.046 175 1.9
30 0.09 0.59 310 0.043 270 19

of an east—west baroclinic jet, where the two conversion
amplitudes are usually similar (Haidvogel and Holland
1978). Ikeda (1983) shows a stabilization of barotropic
instability dueto the side boundary in abaroclinic model
of a zonal current. To some extent the same result can
hold for the western wall of the WBC, which further
adds to the baroclinic instability dominance. At higher
Re, as suggested by (A5), the contribution of the baro-
tropic energy conversion grows.

In general, broad currents with width larger than Rd,
are more subject to baroclinic rather than barotropic
instability (Pedlosky 1987). In our situation, larger v
correspond to broader currents, that are more susceptible
to baroclinic instability, and therefore have smaller Re,,.
Apart from this qualitative explanation, we cannot ex-
plain the empirical relationship (16). On the other hand,
this relationship is transitional and would not persist
with an indefinite decrease in v.

Why does a decrease and Re(w) increase with de-
creasing »? In appendix A, we show that in the limit v
- 0 the characteristic length scale of perturbationis[L]
= &y ~ V3, and the timescale is advective: [T] =
%yt ~ v?2. The eigenmodes are well trapped near the
western boundary and are confined to the upper layer.
In the no-dlip situation there is the viscous sublayer that
scalesas[L] = §,,Re v? ~ 1%, Inthelimit v - O, the
most unstable y wavenumber approaches o = 0.335,,%,
and the corresponding eigenfrequency approaches
Re(w) = 0.079Revs,2. This is consistent with the ten-
dencies explored in this paragraph and illustrated in
Figs. 4a and 4b.

d. Marginal stability as a function of Rd,

The stability of the current strongly depends on Rd, .
In Figs. 4c and 4d we show the marginal stability curves
for v = 500 m2 s~* and four values of Rd,: 30, 40, 52,
and 70 km. The values of maximum velocity V, ..., o,
l,, Re(w,), T, and ¢, of the critical eigenmodes are
summarized in Table 2.

In our range of Rd, variation, if Rd, decreases, the

critical transport decreases substantially,
Re., ~ Rd!?, (18)

the critical y wavelength decreases, and the eigenfre-
guency decreases with an approximate dependence:

o ~ RS, (19)

For comparison, the frequency of long baroclinic Ross-
by wave scales as w ~ Rd2.

Qualitatively, we argue that since the instability is
predominantly baroclinic, reducing Rd, facilitates the
baroclinic instability even more and, therefore, moves
the stability threshold to smaller Re,, and smaller trans-
ports. This is consistent with (18), but we have no ex-
planation of why the exponent in (18) is 1.2. A more
simple question is why does |, decrease and the period
T substantially increase (Table 2) with decreasing Rd,?
In appendix B we consider (11) in the limit of small
Rd,. The limit Rd, — < corresponds to the upper-layer
flow governed by the barotropic vorticity equation and
to the motionless deep layers. This situation is consid-
ered in I'Y. When Rd, is small (see appendix B), it fol-
lows that

|, ~ Rdz%Re-%3, T ~ RdZ*Re*2,

Combining this scaling with the empirical relationship
(18), we find that the large increase of the period and
the moderate drop in |, (see Table 2), when Rd, varies
from 70 to 30 km, are both consistent with the pre-
dictions of the asymptotic analysis. At small Rd, the
leading order balance is (B10); the barotropic stream-
function vanishes; and the most unstable eigenmodeis
confined to the first maximum of the steady state.

e. The no-slip critical eigenmode

Consider the marginal eigenmode at » = 500 m?
s !, Rd, = 52 km, and Re, = 21.7. The amplitudes
and phases of the corresponding ;(x) are shown in
Fig. 5. The amplitudes in each layer are trapped in the
western half of the channel with the upper layer max-
imum near x = 2§,,. The phases are mostly linear in
x except for the western 20% of the channel. The phase
shift between the layers is such that the perturbations
aretilted against the vertical shear. Thisistypical (Ped-
losky 1987) for the perturbations which extract energy
from the mean vertical shear and transfer it down the
gradient, that is, to the deep layers. The mode has |,
= 12.85,, (370 km) and the period T = 114 days (see
Table 1).

At Re, and «,, the group velocity ¢, = dRe(w)/da
is 2.47 km day—*. In bounded domains, unless c, van-
ishes, the flow is convectively unstable, otherwise it is
absolutely unstable (e.g., Cessi and lerley 1993). In the
former case, the disturbance will propagate with veloc-
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FiG. 5. The amplitude (a—c) and phase (d—f) of local critical eigenmode [(a, d) ¢, (b, €) ,, and (c, f) ;] for » = 500 m2 s, Rd, =
52 km, and no-slip condition.

ity c, away from the localized region of instability, and
at later time it will exit the domain. In the latter case
the disturbance will stay and grow in the region of in-
stability. We find that c, is not small. Therefore in re-
gimes close to the linear one, the eddies generated by
the instability are likely to be advected out of the west-
ern boundary and farther into the eastward jet before
they gain full strength.

What happens to the most unstable (critical) eigen-
mode at Re > Re, if V, (and therefore Re) increases
and other parameters are fixed at » = 500 m2 s~* and

Rd, = 52 km? For Re > Re,, there is aways a band
of unstable eigenmodes with single positive growth rate
maximum. The eigenmode characteristics for Re, =
21.7 (V, = 0.372 m s*) are shown in Table 1. We want
to compare the critical eigenmode structure for a range
of supercritical Re(V,) with perturbations of the non-
linear solutions in section 4b. We find that « slowly
increases with V, and for V, = 1.7 m s** (Re = 99):
a,, = 0.5676,%, while Re(w) remains 0.05Rev8,2. This
indicates that the timescal e of the eigenmodeisperfectly
advective; that is, [T] = 83y, and the y wavelength
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scales only approximately as 8, and it decreases with
increasing V,.

f. Weakly damped eigenmodes

Other linear eigenmodes successively lose stability as
Reincreases. The second mode becomes unstable at Re,,
= 126. Thisis a substantially larger critical value than
that of the first mode. The second eigenmode is aso
trapped near the western wall, with the upper amplitude
reaching its maximum near x = 56,,. Thisisfarther into
the interior than in the first mode. What are the least
damped modes at Re = 21.7 where the first mode is
marginal (Fig. 5)? We cal culated two such modes. They
have negative growth rates Im(w) = —0.57 and —0.94
(X102 4,652 and periods of 2.35 yr and about 30 yr,
respectively. The modes are also trapped near the west-
ern boundary with their amplitude maxima near x =
66,,. The second mode has «, = 0.536,,!, and the third
has a, = 0.595, . Both values are close to « of the
first mode. This suggests that at slightly supercritical
Re, the weakly damped modes may spatially resonate
with the unstable one. On the other hand, asit is shown
in section 4, the range of supercritical parameters, where
the transient dynamics may be efficiently described in
terms of the linear eigenmodes, is small. Thus, the res-
onance mechanism is not likely to be a general one.

What happens to the channel modes, that is, to the
modes that are not completely trapped near the western
wall? In all cases considered in this paper, we find that
the channel modes are more stable than the trapped
modes. This is consistent with the barotropic results of
lY.

g. The free-dlip critical eigenmode

We now compare the eigenmodes with free-slip and
no-slip boundary conditions at » = 500 m? s~* and Rd,
= 52 km. The critical transport W, is only 4% larger
in the free-dlip case, suggesting that this type of bound-
ary condition only dlightly stabilizes the current. Nev-
ertheless, the marginal eigenmode structure changes
substantially. In the free-dlip case: «, = 0.3156, is
smaller by 36%; Re(w.,) = 0.08Re_,vd,? is larger by
60%; and ;(x) is less trapped in the west, in the lower
layer it penetrates even to the eastern wall.

At Re, and «,, the group velocity ¢, is 6.1 km day?,
which is about 2.5 times larger than that in the no-slip
case. This suggests that in the near-linear situations per-
turbation envelopes will move away even faster thanin
the no-slip case. This is another important stabilizing
effect of the free-slip boundary condition. Although the
linear stability thresholds are similar for both the no-
and free-slip boundary conditions, the no- and free-slip
WBCs in the finite-amplitude gyre solutions are quite
different, asit is shown in section 2. Although this may
be partially due to enhanced propagation of perturbation
envelopes with the free-slip condition, in section 4 we
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demonstrate that the most substantial differences be-
tween the no- and free-slip currents do not arise near
the primary instability threshold but arisein the strongly
nonlinear regimes away from it.

What happens (compare with section 3e) to the most
unstable eigenmode at Re > Re, if V, (and therefore
Re) increases, while v = 500 m? s~* and Rd, = 52 km?
WhenV,isincreasedt0 0.7 ms—* (Re = 41); a decreases
to 0.30468,%; and Re(w) decreases to 0.073Revé,2. For
larger V,, both @ and Re(w) remain constant indicating
that [T] isthe advectivetime scale, and [L] istheviscous
length scale. Comparing this result with the resultsfrom
section 3e, we conclude that the difference between the
no- and free-slip critical eigenmodes remainslarge even
for substantially supercritical steady states.

h. Stratification

How does the linear stability of the WBC depend
upon the stratification profile? In a 3-layer model with
thetotal depth and p, fixed, the stratification is described
completely by the following parameters: R,, = H,/H,,
H,;, Rd,, and y = (p, — p.)/(p; — p,). We are interested
in moderate variations around the main stratification
profile (H, = 300, H, = 700, H; = 3000 m, and y =
1) used in our study. In this case, al the termsin (11)
are important. We fix » = 500 m2 s %, Rd, = 52 km,
and vary 0.1 < R, < 1.0and 1 < y < 3. For each
value of variable parameters we calculate T, (R, ,, ),
aq (R, v), and Re, (R, ,, v) (see Fig. 6). Large values
of y and small values of R, correspond to a sharp
thermocline.

The stability (i.e., Re,) substantially increases with
increasing vy, and for y > 2 it increases with decreasing
R,, (Fig. 6a). The y wavelength of the critical mode
depends mostly on vy [see a.(R,,, y) in Fig. 6b], and
it varies from 340 («, = 0.5356,,') to 480 km («, =
0.3856,,1). Thisis not a big range. The time period of
the critical mode increases with decreasing both R, , and
v (Fig. 6¢). It is about 100 days except for small values
of both R, , and vy. These calculations suggest that slight
sharpening of the thermocline around the main strati-
fication profile stabilizesthe flow; it increasesthey scale
of the instability, and it changes the time period in the
direction depending on whether the sharpening was
achieved by varying R, or vy. The x structure of the
eigenmode does not change substantially with variations
in both R, , and .

The governing equations (11) may be simplified (ap-
pendix C) in the asymptotic limit of sharp thermocline:
v - ©. When R, - 0, the upper layer becomes very
shallow, and it is physically rational toimpose anonzero
steady flow in the middle layer. This situation is beyond
the scope of this paper. For large -y, which is another
way of sharpening the thermocline, the dynamicsin the
deep layers is that of the viscous modes (C4), and the
WBC is stable. The increasing vy leads to a stabilizing
effect even in the range 1 < y < 3 (Fig. 6a). For large
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v, the wavenumber « of the least stable eigenmode de-
creases. This is consistent with Fig. 6b. In the limit y
- oo, the time period scales as [T] ~ y (appendix C).
Thisis not observed in therange 1 < y < 3 (Fig. 6¢),
but for slightly larger values of v, the period begins to
increase. Also, it is shown in appendix C that the upper
layer perturbation i, becomes negligible in the ampli-
tude, relatively to 4, 5.

i. Comparison between the local and basin models

According to (10), the transport W, of the marginally
stable WBC with v = 500 m? s** and Rd, = 52 km is
2.8 X 10° m® s1. We compare this value to the actual
boundary layer transport in the no-slip basin model from
section 2. From the Sverdrup balance in the interior, we
find the Sverdrup velocity Vg, = V X 7(p,H,8)~*. This
yields the maximum transport across the basin: W =
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Fic. 6. The dependence of (a) Re,, (b) a. (in 5y, and (c) the
period T (in days) of the no-slip critical eigenmode upon the
stratification parameters y and H,/H,.

277o(pB)"t = 9.4 X 10° m3 s t. This transport is
approximately equal to the boundary current transport.
Therefore, the actual transport in the basin model is
about three times larger than the marginal transport in
the idealized channel. Thisis consistent with instability
of the steady WBC, hence it is consistent with the oc-
currence of nonlinear, time-dependent behavior.

j. Summary

Our results suggest that the WBC without sloping
topography and bottom friction becomes linearly un-
stable at rather moderate velocity (transport). A smaller
v, shorter Rd,, and broader stratification profilefacilitate
instability of the steady state. The period of the marginal
mode increases with Rd,, decreases with v, and may
change both ways for sharper thermocline. The y wave-
length of the critical eigenmode decreases with Rd,, v,



OcTOBER 1999

and broader stratification profile. The eigenmode is
trapped near the western boundary, and it has an os-
cillatory, decaying tail. Theinstability of the steady state
occurs at similar transports in both the no- and free-slip
situations. The group velocities of the eigenmodes are
consistently larger in the free-slip than in the no-dlip
situation. Therefore the latter is more apt to be disrupted
by disturbances. The instability is predominantly baro-
clinic in the range of explored parameters, and it occurs
over the range 12 < Re, < 35 that includes the value
Re, = 21.57 found by 1Y in the barotropic situation.

4. Nonlinear dynamics of the WBC
a. Setup of the model

We solve for the time-dependent finite amplitude
WBC in a north—south channel with x width equal to
308,,. The equations are the 3-layer QG model (section
2) without wind forcing and with periodicity in the y
direction. The period L, is a parameter of the problem.
For simplicity we focus on the asymptotic limit L,6,*
- oo; therefore, we choose alarge val ue of the parameter
L, = 2405,,. We find empirically that the shorter isL,,
the less chaotic, in general, is the solution. A further
step is to solve for realistic values L, ~ 104,,, but we
defer it for the future.

Of course, we focus on small portions of the domain
that are comparable with typical WBCs. The layer
depths and densities are chosen as in section 2. We
mostly use a slightly perturbed unstable steady state as
an initial condition for time integration, except when
we search for multiple equilibria. The boundary values
of s, that is, the upper layer transport W,, are fixed for
all time at the steady-state values. The boundary values
of ¢,, are zero; therefore W,, = 0. On the one hand,
the transports are frozen, for simplicity. On the other
hand, this setup favors a more coherent response than
might, otherwise, occur. A further step isto include the
low-frequency variations of the transport that are con-
sistent with those of the wind-driven gyre model, but
this is beyond our present goals.

Starting with perturbed steady state, we integrate the
model until it converges to a statistical equilibrium es-
timated from the total energy time series of a portion
of the channel. The grid resolution is comparable to that
of the gyre model (section 2) and it is fixed at 0.475,,.

b. Variation of the WBC strength

A sequence of solutions with » = 500 m? s~* and
with several values of V,, that is, with different values
of Re, is shown in Fig. 7. At V, = 042 m s1, the
difference from the underlying steady state lookssimilar
to the critical eigenmode shown in Fig. 5. Thisis con-
sistent with the fact that the flow is not far from the
initial bifurcation. The energy time series of this solu-
tion is chaotic; that is, it has a broadband power spec-
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trum. The dominant spectral peak isat T = 122 days,
which is only a hit larger than T = 114 days of the
marginal eigenmode (section 3€). The mean distance
between the eddiesis 13.35,,. Thisisonly slightly larger
than |, = 12.85,, of the critical eigenmode (section 3e).
The chaotic behavior may be due to interaction of afew
near-critical, weakly damped eigenmodes (see section
3f). AtV, = 0.50 m s—¢, the flow becomes quasiperiodic,
and its spatial structure has pronounced eddies and me-
anders. The two dominant periods of the quasiperiodic
motion are at about 120 and 2000 days. The secondary
(2000 days) mode has the y scale of the channel’s period
and, therefore, is likely to be distorted or even to dis-
appear in a more realistic, gyre circulation.

At V, = 0.60 (Fig. 7b), 0.70, 0.90 (see Fig. 8), and
1.0 ms %, wefind both temporally and spatially periodic
solutions with the time periods of 118, 130, 133, and
131 days, respectively. The vertical structure of the pe-
riodic solution at V, = 0.90 m s~* is shown in Fig. 8.
The upper-layer velocity maximum is V,, = 0.40 m
s . The flow deviates far from a parallel steady WBC
by developing a sequence of intense eddies and me-
anders qualitatively similar to those observed in the no-
dlip, gyre solution in section 2. The pattern in the local
model has the y period of 15.85,, and it moves along
the channel without structural changes. The perturbation
is rather different from the most unstable linear eigen-
mode for the same value of parameters (see section 3e).
The latter has the shorter y period, 12.15,, (« =
0.526,%), and the shorter time period, T = 48 days
[Re(w) = 0.049Revs,?].

In comparison with the less intense WBC at V, =
0.42 m s %, we have the somewhat counterintuitive sit-
uation: the more intense is the WBC, the better it is
organized, that is, there is a transition in the flow from
chaotic to quasiperiodic and then to periodic. A similar
situation, where an increase of the Reynolds number
resultsin aflow with fewer degrees of freedom, isfound
by Berloff and Meacham (1998a) in a baroclinic, single
gyre. The relative simplicity of these periodic solutions
makes them an attractive target for mathematical anal-
ysis. For example, are there exact solutions of the fully
nonlinear PDEs (1) and (2) in the form of the y-periodic
pulse trains (Berloff and Howard 1997) in the channel ?

AtV, = 1.1 ms*, we again find a chaotic flow that
is structurally similar to the periodic solutions. The dif-
ferences are the irregular distances between the indi-
vidual vortices, and the number of vortices per unit
length of the channel drops approximately by a factor
of 2 due to parallel flow intervals between them. When
we reduce L, to twice the width of the channel, we find
that there are always two vortices per L, and that the
solution is only weakly chaotic. This shows that L, at
moderate values, is an important control parameter. A
further step, outside the scope of this paper, is to con-
sider variations of L &,

The turbulent nature of the WBC becomes more pro-
nounced at V, = 1.3 and 1.7 m s* (see Fig. 7d and
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for the no-slip solution with » = 500 m? s* and Rd, = 52 km. (8) V, = 0.7 m s, (b) V, = 1.7 ms*.

7€). In these cases, the number of vortices per channel
period increases in comparison with the case when V,
= 1.1 ms*. The meridional velocity of the time-mean
flow at V, = 1.7 m st is compared (Fig. 9b) with the
underlying steady state. The time-mean upper-layer ve-
locity decreases between the wall and, approximately,
the first zero of the steady flow, and the velocity max-
imum shifts toward the western boundary. Also, the
main counterflow shifts eastward and becomes weaker,
while the second northward jet shifts in the same di-
rection but becomes stronger. The deep layers develop
the mean flows that are approximately in phase with
those of the upper layer. The velocity maximum in the
second layer is about 4 times smaller than that of the
upper layer, and there is an even weaker flow in the
third layer. Figure 9a shows that the structure of the
time-mean velocities corresponding to V, = 0.7 m st
is intermediate between the stable steady state and the
more turbulent current shown in Fig. 9b. We also find
asolution for V, = 25 m s*. It is qualitatively similar
to the solutions shown in Fig. 7e and Fig. 9b (V, = 1.7
m s1).

From the time-averaged potential vorticity equations,
we estimate that, for all the solutions, the main balance
is between the B term and the friction. (For the steady
states this balance holds exactly.) The eddy flux is most-
ly due to the form stress, it increases with Re, and it is
larger for the no-slip boundary. In the range of V, var-
iations, the deeper the layer is, the larger a portion of
the eddy flux the layer has in the time-mean potential
vorticity balance.

The turbulent solutions contain substantial spectral
power at low frequencies, but the larger isV,, the small-
er is the share of energy contained in the annual and
longer time periods. We partition the spectrum into fre-
guencies lower (LF) and higher (HF) than Re(w) = 1.16
yr=* (period of 314 days). Then, we compare the so-

lutionsat Vo, = 1.1 ms*t (Fig. 7c)and at V, = 1.7 m
st (Fig. 7e). Figure 10 shows that the relative fractions
of the energy in the LF band are 93% and 57%, re-
spectively. Also, the peak near Re(w) = 3.5 yr-*isdue
to propagation of the large eddies, and it becomes more
pronounced with larger V,. The tendency of the WBC
to decrease the low-frequency variability with increas-
ing Re is opposite to the tendency observed by Berloff
and McWilliams (1999) in wind-driven gyres without
substantial local instabilities near the western boundary.
In the latter case, the generic low-frequency variability
is associated with changes in the position and shape of
the eastward jet and its associated western-basin recir-
culation zones. Thus, we expect that moderate bursts of
instability in the WBCs of the wind-driven gyresto shift
the energy spectral power toward higher frequencies.
The severe instahilities, as in the no-slip solution con-
sidered in section 2 or in Haidvogel et al. (1992), are
correlated with the global structural changes of the east-
ward jet and the adjacent recirculations, which are, in
turn, correlated with big changes in the low-frequency
variability. Without going into the details, we observe
that the low-frequency variability of each of the two
eastward jets, at higher Re, is qualitatively similar to
the generic variability found in Berloff and McWilliams
(1999).

The energy conversions (17) are such that BCL is
always much larger than BT, and it increases with V.
FromV, = 0.7ms'toV, = 1.7 mst, BCL increases
by a factor of 7.7. The dominance of BCL conversion
in the current is consistent with its dominance in the
WBCs of the double-gyre solutions from section 2.
From the simple scaling arguments and the linear as-
ymptotic analysis (appendix A), it follows that for small
values of v, BT dominates, and the critical perturbations
are intensified at the surface. This may not be true for
finite-amplitude and turbulent flows. Further exploration
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is needed to understand the local model dynamics at
progressively lower values of v.

¢. Variation of Rd,

How does the dynamics depend upon Rd,? We show
a sequence of ¥, (x, y) for Rd, = 200, 90, 60, and 40
km in Fig. 11. The density jumps across each interface
are equal in all the cases (y = 1), the total transport
(10) correspondsto V, = 1.0 m s7%, and » = 500 m?
s~1. With decreasing Rd,, (i) the current gradually de-
velops stronger meanders downstream from the prop-
agating eddies, (ii) the vertical structure of the eddies
is more intense in the second and third layers, (iii) both
the dominant y scale and the time period increase, and
(iv) the amplitude of the eddies decreases, and the
strength of meanders increases. The energy conversion
is primarily baroclinic for all the solutions. It increases
by a factor 70 going from Rd, = 200 km to 40 km.
This is consistent with both the stronger fluctuations
and the enhanced downward eddy momentum transfer
by the isopycnal form stress. It is interesting that the
tendency of the y scale to increase with decreasing Rd,
is opposite to that of the marginal eigenmode (see sec-

tion 3d and appendix B). This suggests that the linear
analysis fails at this point.

d. Free-slip boundary condition

How does the dynamics depend upon the lateral
boundary condition? Like in section 4b, we calculate a
sequence of solutions with the free-slip boundary and
increasing transport (10). Here V, has values of 0.5, 0.7,
0.9, 1.1, 1.3, 1.5, and 1.7 m s * (see Table 3). In each
solution, except for V, = 0.7 m s~1, the flow eventually
becomes periodic. For V, = 0.7 ms1, theflow isweak-
ly chaotic with two dominant spectral peaks at 97 and
830 days. This behavior is qualitatively similar to that
of the weakly chaotic no-slip solution at V, = 0.42 m
s L

Table 3 showsthat the number of eddiesin thedomain
decreases with the growing intensity of the flow; hence
the spatial period increases, but the time period decreas-
es due to faster advection. Indeed, for V, > 1.1 m s
the time period T scales advectively; that is, [T] =
8,V54 as well as for the critical eigenmode of the un-
derlying steady state (see section 3g), but it is 3.8 times
longer than the eigenmode period. The y wavelength of
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Fic. 11. ¢, for the no-slip solutions with V, = 1.0 m s~* and » = 500 m? s7*; Rd, equal to (a) 200, (b) 90, (c) 60,
and (d) 40 km (CI = 5 X 10%). Only one-half of the channel period is shown.

the nonlinear perturbation is about 2 times longer than
that of the linear eigenmode. All this suggests that, al-
though the time-mean velocity of the free-slip flow is
rather close to the corresponding steady state (see Fig.
13 for V, = I.7 m s1), the perturbation differs sub-
stantially from the most unstable eigenmode of the
steady state.

The free-slip equilibrium flow is much more stable
and regular at large V, than the no-slip one (section 4b).

TABLE 3. Change in time period and number of eddies of free-slip
solution for varying V,.

V, Time period Number of
(ms?) (days) eddies
0.5 121 11
0.7 97 10
0.9 94 7
11 86 7
13 80 5
15 74 5
17 68 5

The deep flow structure at V, = 0.9 m s * is shown in
Fig. 12, and it can be compared with the no-slip deep
flow in Fig. 8. With the free-dlip boundary, the deep
flow is very weak. The energy conversion is still pri-
marily baroclinic, but at V, = 1.7 m st it is 6 times
smaller than that with the same transport but with the
no-slip boundary. All this indicates that as intensity of
the flow increases, the differences between the nonlinear
no- and free-dlip perturbations increase, and the latter
favor a nonturbulent motion.

e. Multiple attractors

Do multiple attractors exist for the kind of time-de-
pendent nonlinear solutions described in section 4? We
carry out a series of integrations with different initial
conditions, v = 500 m? s*, Rd, = 52 km, and V, =
1.0 m s*. In this case a limit cycle solution contains
15 equally spaced eddies over the period of the channel.
Possibly, there are stable attractors with different num-
bers of eddies, but we have not yet found any. However,



2624 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 29

FiG. 12. Free-slip solution for » = 500 m? s, Rd, = 52 km, and V, = 0.9 m s~*: (a)
Y, (Cl = 5 X 103), (b) ¢, (Cl = 2 X 10%), and (c) 5 (Cl = 0.5 X 103). Only one-half

of the channel period is shown.
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Fic. 13. Asin Fig. 9 but for free-slip boundary condition.

we do find the weakly chaotic attractors shown in Fig.
14. They have eddy sequences interspersed with *‘de-
fects,” that is, with intervals of the WBC that are almost
parallel to the wall. There are different combinations of
the defects in each attractor.

The local WBC dynamical system may contain many
stable and unstable attractors with different sequences
of eddies and defects. We have not attempted to map
them comprehensively. From just these few examples,
though, we can draw some important conclusions about
the system. First, all the attractors that we find are qual-
itatively similar since the differences arise only in the
particular ordering of the spatial elements. Second, mo-
tion on the attractors exhibits a large degree of the low-
frequency variability associated with infrequent defects.
In a more general situation, it is likely that the system
will wander around the underlying skeleton of attractors,
therefore it will exhibit different spatiotemporal patterns
in different epochs. The question of whether the gyre-
scale circulation, like the local model, contains regimes
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Fic. 14. No-slip solutions with » = 500 m? s, Rd, = 52 km, and V, = 1.0 m s* (Cl = 5 X 10%). Each solution is
obtained by starting from a different initial condition.

with different eddy patterns inside the WBCs remains
to be explored.

5. Conclusions

We have explored the linear stability and nonlinear
time evolution for thelocal, meridionally homogeneous,
guasigeostrophic dynamics of a western boundary cur-
rent (WBC) with steady transport for a wide range of
parameters. Also, we illustrated that a strongly unstable
WBC of the wind-driven double-gyre circulation is as-
sociated with a very broad eastward jet and absence of
the intense recirculation zones, similar to what was ob-
served by Haidvogel et al. (1992). Our principa con-
clusions are the following:

1) The steady WBC loses stability at moderate Reyn-
olds numbers, Re.

2) The margina stability threshold strongly depends
upon the stratification profile of the WBC and it

3)

4)

5)

6)

7)

8)

has a primarily baroclinic conversion in the regime
that we focus on.

The linear instability mode has a structure that is
rather different from the finite amplitude pertur-
bations at large Re in the range of our exploration.
The flow reaches a periodic state for a wide inter-
mediate range of Re.

The periodic and turbulent flows contain well-de-
fined mesoscal e eddies with adjacent meanders, es-
pecially in the no-slip situation.

The thickness of the time-mean no-slip boundary
layer increases with Re; the near-wall (sublayer)
velocity shear of the linear instability mode also
increases with Re.

There are multiple stable equilibria for the local
dynamics.

The dynamics of the WBC is fundamentally dif-
ferent in the no-slip and free-dlip situations. The
free-slip condition has a stabilizing effect on the
flow in the nonlinear regime.
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9) The group velocities of the least stable WBC ei-
genmodes are consistently larger in the free-slip
than in the no-slip situation. This suggests that the
latter is more apt to be disrupted by disturbances.

10) The dynamical regimes of the basin-scale circula-
tion are different when the WBC is either stable or
unstable.

The marginal stability problem yields critical eigen-
modes that are trapped near the western boundary and
possess decaying oscillatory tails. Thisissimilar to what
was observed by lerley and Young (1991) in the baro-
tropic situation. In comparison with the barotropic
WBC, the 3D stability threshold moves to substantially
lower Re, and the linear instability mechanism becomes
essentially baroclinic in the explored wide range of pa-
rameters. The critical linear eigenmode is surface in-
tensified. Typically, it has a time period of severa
months and a longitudinal wavelength of several hun-
dred kilometers, and its phase speed is about 0.05 m
s, which is much smaller than the maximum velocity
of the mean flow. For smaller v or weaker stratification
(e.g., smaller deformation radius, Rd,, or less sharp ther-
mocline), the marginal instability occurs for a weaker
mean flow.

The nonlinear, time-dependent WBC exhibits a var-
iability pattern that, with increasing total transport, de-
viates rapidly from the linear instability eigenmode of
the underlying steady state. With no-slip lateral bound-
ary condition, in the Re neighborhood of the primary
instability threshold, we see weakly chaotic or quasi-
periodic solutions followed, in a range of larger Re,
by periodic solutions. This transitional behavior re-
mains to be explained, but analogous behavior was
found in the baroclinic wind-driven gyre circulation
for a certain range of supercritical Re (Berloff and
Meacham 1998a). In the gyre circulation, as Reisin-
creased, there are chaotic states that cease to exist at
some point. Beyond this point the circulation becomes
periodic with an orderly generation of eddies in the
boundary current.

The typical, no-slip, periodic or weakly chaotic pat-
tern consists of a sequence of eddies propagating along
the western boundary. There is a propagating meander
in front of each eddy. The longitudinal size of each
element containing the eddy, meander, and the adjacent
portion of the WBC is several hundred kilometers. This
is slightly larger than the y wavelength of the most
unstable eigenmode of the underlying steady state. The
time for the element’s passage is about several months.
This time is substantialy larger than that of the most
unstable eigenmode. When the total transport is in-
creased, the flow, eventually, becomes turbulent. The
dominant energy conversion between the mean state and
perturbations is always baroclinic in the range of ex-
plored parameters. Compared to the underlying steady
state, the time-mean flow has smaller velocity near the
western wall, a substantially weaker counterflow, and a
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much stronger jet eastward from the counterflow. The
effects of reducing the first baroclinic deformation ra-
dius (keeping the interfacial density jumps equal) are
better excitation of the flow in deep layers, a decrease
of the eddy amplitude, and an increase of the meander
amplitude. These changes are due to the enhanced baro-
clinic instability of the flow.

The WBC dynamics is fundamentally different in the
no- and free-dlip situations. The steady free-slip flow is
slightly more stable than the no-slip one. In the former
case the eigenmode decays slower away from the west-
ern boundary. The group velocity of the linear free-slip
eigenmode is substantialy larger than that of the no-
dlip one. Therefore, in the former situation, a pertur-
bation envelope exits a finite domain faster, thus con-
tributing to the relative stability of the WBC. With the
free-dlip boundary condition, the WBCs with signifi-
cantly supercritical transport remain periodic or nearly
periodic for a very wide range of Re. Even with the
largest transport examined, the solution does not reach
aturbulent regime and its time mean never substantially
deviates from the underlying steady state. Since the
model boundary conditions are subgrid-scale parame-
terizations of the true turbulent processes near the
boundary, they may even be considered as the extremes
of apartial-slip parameterization with asingle adjustable
parameter (Haidvogel et al. 1992). Since at least some
oceanic WBCs (along the U.S. East Coast, for example)
seem neither to be stable nor to be extremely disrupted
by eddies, our results suggest that a partial-slip param-
eterization may be the most appropriate one, although
other effects (e.g., sloping topography or a coastline
tilted from the north—south direction) may account for
this.

The WBCs in the local model can have a variety of
stable multiple equilibria that are rather similar among
themselves. Each equilibrium is characterized by a spe-
cific sequence of the eddy and meander elements inter-
spersed with sparse defects. Each equilibrium has a cer-
tain amount of low-frequency variability associated with
the infrequent arrival of the defects. In the presence of
stochastic forcing, another low-frequency variability
may arise as a result of transitions between such equi-
libria. It remains to be explored whether the gyre cir-
culation may experience transitions between metastable
states characterized by different eddy sequences in the
WBC. At even larger Re, where the flow is chaotic and,
so far, we find no evidence of multiple equilibria, fre-
quency spectra show that most of the total energy var-
iability occurs in the interannua band, but the power
gradually shifts to higher frequencies as intensity of the
flow grows.

The dynamical regimes of the wind-driven gyre cir-
culation can be quite different in the situations with and
without instabilities in the WBCs. The situation with
stable WBCs corresponds to the time-mean flow with
the dipole structure of the western recirculation zones
(e.g., Holland 1978) with low-frequency variability of
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the type analyzed by Berloff and McWilliams (1999).
The unstable WBCs correlate with the double-jet cir-
culation regime (Fig. 1), although what is the role of
boundary instabilities and transient eddies in global
changes of the gyre circulation remains to be under-
stood.

Gyre dynamics with a strongly unstable WBC has
not yet been extensively studied because the large
values of Re necessary for the instability to occur
have rarely been achieved. Under the assumption that
the WBC dynamics and the global dynamics of the
gyre are significantly coupled, our results suggest fur-
ther systematic studies of both the local and coupled
dynamics with some new physics brought into con-
sideration. The new physics is to include alternative
forms for the frictional subgrid-scale operators and
their associated boundary conditions, variationsin the
bottom topography and coastline position, and non-
guasi geostrophic effects, such as outcropping, that is,
intersection of the isopycnals with the domain bound-
aries.

Acknowledgments. Funding for this research was pro-
vided by the National Science Foundation Grant OCE-
96-33681 and by the Office of Naval Research Grant
N00014-98-1-0165. We thank the anonymous reviewers
for careful and constructive reviews.

APPENDIX A
Asymptotic Behavior at Large and Small Viscosity
We consider solutions of (11) in the asymptotic limits
(A1)

Vv -
and
(A2)

Because §,, ~ v*® in the limit (A1), the WBC is very
wide, and in the limit (A2) it is very narrow in com-
parison with Rd,. The limit (A1) is unrealistic because
the WBC width becomes of the size of the ocean. In
the limit (A2) the flow is turbulent, and, therefore, the
linear analysis may be useless. Nevertheless, exploring
the extremes helps to analyze solutions with moderate
values of v, that is, WBCs that are both realistic and
moderately turbulent as in modern GCMs. Our goal is
to find proper scales and balances of (11) in both limit
(A1) and limit (A2).

We assume that the interior transport in the gyre is
constant and that it is balanced by the WBC transport
(10). Therefore, the streamfunction scale, [¢] = ¢, =
V,6y, is constant and the Reynolds number is

Yo

Re = — ~ p™4
v

v » 0.

(A3)

Weintroduce thetime, [T], and length, [L], scaleswhich
will be specified below. The velocity scae, [U] =
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Podyt, comes from the steady-state velocity. The chan-
nel width is assumed to be proportional to §,,, as in
section 3; that is, L, = 3038,,. The governing system of
equations (11) yields the following scalings for the up-
per layer:

9 2 -1 -2
@ Va0 glT] L
() —Sus(h — ) O GlT]Re;?
_ 9 2 1 —2[1 1-1
(c) vl@v ¢ O [U]ghody?[L]
= 6_412 0} 2] 1-1
@ 1,852 0 [O1RAL
3 0_1//1 U -3
© Tt O UL
Wy o
() B0 Byl
(9 W 0wl L] (A4)

Similar scaling is done for the other layers. The en-
ergy conversion integrands (17) have the following
scalings:

Bt O g[L]* BCL O ¢3[L]2Rd;% (A5)
therefore we expect that the baroclinic conversion dom-
inates in the limit (A1) because [L] — . Also, we
expect that the barotropic conversion dominates in the
limit (A2) because [L] — 0. Since (A5) ismerely ascale
estimate, it does not say whether there is any instability.
In the following we consider the limits (A1) and (A2)

Separately.

a. Large viscosity

Inthislimit al the eigenmodes are stable. The natural
length scale is [L] = 6,, ~ v¥. The leading terms in
(A4) are (f) and (g). For time-dependence assumed by
the linear stability analysis, the leading terms must be
supplemented and balanced by one of the first two terms
in (A4). The proper balance can be achieved when [T]
~ 3. We find [T] = §,,[U]* = 8,8 *Rd;2 by using
the phase speed of a long baroclinic Rossby wave as
the appropriate velocity scale. The scalefor [T] isshort-
er than the advective scale ;162 ~ v?°. The steady-
state velocity does not enter the leading balance, there-
fore the eigenmodes are uncoupled from the steady state.
The solutions are baroclinic, viscous channel modes sat-
isfying
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d d
81,25[(‘//2 - lpl) + Ba_)(¢1 = VV4l/f1
SZIE(wl — i) — Szzi(‘pz — i) + ,Bilﬂz = VW4,
ot “ot X
Salﬁ((pz = ) + Bil,bg = VW4,
ot aX
(A6)

The modes are different from the norma modes in the
closed basin (Pedlosky 1987) because of two aspects.
First, there are no latitudinal boundaries in the channel,
and this leads to continuum of wave numbersiny. Sec-
ond, the modes are fundamentally viscous; that is, fric-
tion is important throughout the channel.

We solve the eigenproblem (A6) with boundary con-
ditions (14) and (15) numerically, as in section 3. The
eigenfrequencies Re(w) (Fig. Ala) and the growth rates
Im(w) (Fig. Alb), inthelimit (A1) convergeto universal
dependencies on «. The growth rates are the largest,
although always negative, at « — 0, therefore we expect
that small amplitude perturbations with large y-scale are

(a) |

AMPLITUDE
® - N W A U O N DO s

2 4 6 B8 10 12 14 16 18 20 22 24 26 28 30
X (DELTA_M:

the last to decay. The dispersion curve in Fig. Alabe-
comes flat in the limit « — O indicating that the group
velocity ¢, vanishes. As a consequence of this an en-
velope of the slowest decaying perturbations does not
move away as happens at moderate values of v (section
3e) or in the limit (A2). There are only negligible dif-
ferences between w(«) calculated with either (15a) or
(15b) boundary conditions. The viscous channel modes
in the limit (A1) are less confined to the western part
of the channel than the critical modes (e.g., Fig. 5) found
at moderate values of v. The no-slip modes in the limit
(A1) (Fig. A2) are somewhat less confined than the free-
slip modes (not shown), but both look qualitatively sim-
ilar.

It is obvious that in the limit (A1) the energy con-
version between the eigenmodes and the mean flow van-
ishes asymptotically, and it is dominated by BCL.

b. Small viscosity, no-slip boundary

Inthislimititisexpected that some of the eigenmodes
are unstable. If we take

PHASE

-14

2 2 4 6 8 10 12 14 16 18 20 22 24 26 28 3@
X (DELTA_M)

Fic. A2. (a) Amplitude and (b) phase of the least stable no-slip eigenmode for & = 0.018;;* (v — «).
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Fic. A3. (a) Eigenfrequency and (b) growth rate of the most unstable no-slip eigenmode as functions of « (v - 0).

[L] = 6w ~ 5, (A7a)
then the leading terms in (A4) become (c) and (e). The
balance with one of the first two terms in (A4) is
achieved when [T] ~ »?3. We find

[T] = S ~ v, (ATD)
that is an advective time scale. In the limit (A2) thefirst
equation from (11) reduces to

_au

ad ad
aVZ% + ila_yvzdjl T Vi ay =0, (A8)

where each term is proportional to »~#3. The isopycnal
form stresses associated with parameters S ; do not enter
the main balance (A8), therefore the upper layer is de-
coupled from the deep layers and ¢, = ¢y = 0. The
viscous term drops out, and, as a consequence, (A8)
does not satisfy the no-slip boundary condition (15a).
This is especially true near the western boundary, pro-
vided that the eastern boundary is sufficiently far away.
The offset can be corrected if we account for a viscous
sublayer narrower than [L] = §,,.

Let us derive a scaling similar to (A4) using the
sublayer length scale [L], which will be specified be-
low. By matching the inner solution with the interior
solution, we find [T] = 6Zy;*. The steady-state ve-
locity is

(A9)

The additional multiplier [L]5;,* appears because of the
first-order term, v, ~ Xx4;,%, in the Taylor expansion near
the western boundary. Now the sublayer terms scale as
the following:

@ SV O gl ~ U2

() —S.m = d) O s RA; = ~ v

© T VA O URBAL 2~ (L]
d) vlslaa—"; 0 ygs.2Rd2 ~ v2°

© U ORI (L

(") B O Bl ~ [

(9) vV4, O wip[L]* ~ v[L] %  (A10)

The viscous term (g) enters the balance with (@) if [L]
~ v¥6, This implies that the viscous length scale is

[L] = 8,,Re 2. (Al1)
The term (e) is relatively small; it is of an order v—16,
Thus, at large Re, that is, in the limit (A2), the sublayer
is a small fraction of §,, with the dynamics governed
by the equation

W, (A12)

d d

§V2¢/1 + ﬁlglvzdll =
where each term is of order »~72. The solutions of (A12)
must satisfy the boundary conditions (14) and (15a),
and they must asymptotically match the solutions of
(A8) on the interior side of the sublayer.

The equation (A8) is solved numerically using the
boundary condition (14). The growth rate Im(w) hasits
maximum at « = 0.335;,* (Fig. A3b) that corresponds
to the fastest growing eigenmode. The eigenmode (Fig.
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Fic. A4. () Amplitude and (b) phase of the most unstable no-slip eigenmode satisfying (A8) (v — 0).

A4) has Re(w) = 0.079¢,6,2 (Fig. A3b), and the group
velocity ¢, = 0.15¢,6,*. The phase is constant when
sufficiently far away from the western boundary. This
indicates that there is no propagating component in the
far field. The sublayer is accounted for by solving (A8)
with the viscous term on the rhs and with the no-slip
boundary condition (15a). Then, in the limit (A2), the
fastest growing eigenmode approaches the interior so-
lution (Fig. A4) everywhere except for the narrow sub-
layer.

We emphasize that the eigenmodes of the no-slip
WBC, at large Re, require fine resolution with the
grid size Ax ~ v near the western boundary. In the
linear analysis, the underresolving corrupts only the
sublayer structure, and it does not affect the interior
solution. In the nonlinear WBC and, especially in the
wind-driven gyres, when v is small enough, the flow
may be sensitive to the sublayer processes. In partic-
ular, the sublayer is aregion with the largest absolute
values of the relative vorticity. Thisvorticity islikely
to be ripped away from the wall by disturbances and
then to be advected in the basin interior by the east-
ward jet. Its further evolution may be associated with
generation of coherent vortices (e.g., the Gulf Stream
rings). Thisis an important issue that requires exten-
sive numerical experiments and further analysis of the
gyre circulation at much lower values of v than in
this paper.

¢. Small viscosity, free-slip boundary

In the free-slip case, we assume that [T] is advective
scale (A7b), and [L] is the viscous scale from (A7a).
This leads to the same interior balance (A8) as in the
no-slip situation, but the boundary condition changes
from (15a) to (15b). The normal mode solution (12) of
(A8) yields equation

—oi, + U (-0 + ) — av i = 0
(A13)

that satisfies both boundary conditions (14) and (15b).

Thisimplies that there is no western boundary sublayer
with the dynamical balance different from (A8).

APPENDIX B
Asymptotic Behavior at Small Rd,
The first baroclinic deformation radius is defined as
Rd, = Uv2B-v2, (BY)

where U is the phase speed of the fastest, large-scale,
nonbarotropic vertical mode of the inviscid and un-
forced quasigeostrophic equations of motion:

s Y W _
Sy — W) + B =0
9 - _ W _
Sl = ) = Sl — g + B 7 = 0
9w — Ws _
Sap(l — ) + BZ2 =0 (B2
We define the following parameters:
m _ i _P2" P
Ri. H,’ Ris = H,’ Y 0y — Py (B3)
and notice that
S1 = RS, S, = YRS,
Si; = YRS (B4)

The normal mode solution (12) of (B2) yields the dis-
persion relationships for one barotropic and two baro-
clinic modes. The fastest, that is, the first, baroclinic
mode satisfies

w = —PBac?S;3, (B5)

where
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A+ (A2 — 4yA)Y2

c? = , B6a)
20A, (B6a)

A=1+1+ '}’)Rl,z + YR,

A, = R1,2 + R1,3 + R1,2R1,3- (B6b)

The phase speed is U = |wa~?. Using (B1) we obtain
S, = c?Rd;2. (B7)

We consider R, ,, R, ;, and v to be constant; therefore
c is constant. In the limit Rd; - 0: §; ~ Rd;?, and
from (B4) and (B7) it follows that

S S
S, = S, =

Given Rd, - 0, the leading order balances in (11)
are

?Rd:2,
'le,zCZRdIZ:

R, ,Cc?Rd;2,

YR ;c?Rd2.  (B8)

_SLZ (wl W) + Slzvl 0, =0
Y%
D e e oy _
8’[[ S(P ) S,,( )] — Sv, ay 0
J
%,1&(‘#2 — i) = 0. (B9)

The system (B9) satisfies none of the boundary con-
ditions (15). The last equation in (B9) implies ¢, = s,
therefore the first and second equations are identical.
Thisimplies that the system (B9) is degenerate, and we
have to bring in the next important term, »¥V+4ys;, in order
to get rid of the degeneracy. In the limit Rd, — 0, and
after some rearrangements, the expanded governing
equations become

900 _ W s

Bt(djz ) + Uy ay Sl,ZV in
i _ 522 — —1\74
Ht(lpl W) + Suat(% W) = VSZ,lv W,

VASH + St + S,(S:S1) '] = 0. (B10)

When the last equation is combined with the bound-
ary conditions (14) and (15), the expression in brack-
ets, that is, the barotropic streamfunction, is zero ev-
erywhere; hence in terms of the parametersin (B3) we
have

Uy = —Ryshy — RR G, (B11q)

By using (B3), the governing equations for ¢, and i,
become

I,

J
&((ﬂz ) + v, — 3y = yRd2c V4, (Bllb)
J
&[_VRmdfl -1+ 7R1,3Ri%)dfz]
= yRA2c2VA4(y, + Rf,zldfz)- (B1lc)

Solutions of (B11) satisfy the full set of boundary con-
ditions (14) and (15).

The governing system of equations (B11) yields the
following scalings:

ad

@ — (W

ot - l!fl) U ¢’0[T]71

(b) %Dwmm1

(©) vRd2c2V4y), O vRdZy[L]

@ SRt — (L + AR O delT]
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Fic. B2. Plot of the amplitude (a—c) and phase (d—f) of the no-slip fastest growing eigenmode, in the limit Rd — 0, obtained as the
solution of (B11).

(6) vRdfc2V4(yy + Rizy,) O vRdyg[L] ™. (B12)

From (B12) and [U] = 4,84 it follows that the ap-
propriate time and length scales in the limit Rd, - O
are

[L] = Rd%6%Re 3,  [T] = Rd2°54% 'Re 43,

(B13)
In order to test the scaling (B13), we numerically

solve the governing equations (B11) with the no-slip
boundary condition by using the normal mode de-

composition and the numerical method described in
section 3. Weuse R, = 3/7, R, ; = /10, and y = 1
as in sections 2 and 3 (except section 3h). Given «
and Rd,, we find the fastest growing eigenmode.
Thereisasingle band of unstable eigenmodesin each
case. We plot @ and w, scaled according to (B13), as
functions of u = Rd, 6! (Fig. B1). The figure shows
that the curves flatten out at small Rd,. This suggests
that the scaling (B13) is correct. At small Rd,, the
eigenfunctions of (B11) are confined to the first max-
imum of the steady state (see Fig. B2), and they have
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very short y wavelength and the time period, as sug-
gested by (B13).

APPENDIX C
““Sharp Thermocline”” Asymptotic Behavior

We solve (11) in the asymptotic limit y - oo, which
corresponds to a sharp thermocline. We assume that
Re, v, and Rd, have moderate values, such as in sec-
tion 3. From (B6), (B7), and (B8) it follows that for
large v:

cc~1 S,~S:~1 S,~S;,~v (C)
Given the viscous length scale [L] = §,,, the second
and third layer balances in (11) become

a 2 -15-2
(@ &V os U Po[T] 18y
() ~Sush ~ 92 O delT]RRd;?
©  ~Sup(ds — ) O alT] YR R;?

@ Sui(e— 90 O delTI R R

© —sz,lvlaa—‘i’f 0 ygsilL,] tRRd 2
I, 5 -
(f) ,3? O Biudu
(9) VV4¢2.3 O vipoid, (C2)

where parameters R;; are defined in (B3). The proper
timescale is

[T] = SM’le,ZRdJTZB71 =Y (C3)

and it is proportional to the time scale of the first, baro-
clinic long Rosshy wave. The terms (@) and (b) are of
order O(y~1). They drop out of the main balance when
v — oo. At the end of this appendix, it is shown that
y-scale [L,] is large, that is, « — O for the least stable
modes. Thereforeterm (e) drops out of the main balance.
As a result, the equations governing s, become de-
coupled from the upper layer equation. In the nondi-
mensional form, these equations are

W,

9 4
Rl,z&(‘!’s - d’z) + ox =V ‘7[’2
2 _ 31,[13 — V4
R1,3at(‘r/’2 d’s) + ax \Y 3. (C4)

From (C4), given the boundary conditions (14) and (15),
we find the prognostic equation for ¢.:

Wy W,
—(Ry, + Rig)—2 + =2 = Vi,
Rz + RS E+ 22 = Vo,

and the diagnostic relationship for i,:

(C5)
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s = —Ry; 3.

Given i, the upper-layer perturbation s, is governed
by the equation

(Ce)

J J J J J
<V4 - 5( - Ulglvz + lexa/) Py = Rl,Z(& + Ul@) .

(C7)

It appears that the dynamics of the sharp thermocline
(y - =) iscontrolled by the deep layers; that is, w and
« are set by the deep flow and ¢, isfound diagnostically.
The equation (C5) describes the dynamics of the viscous
channel mode (see appendix A) with the relationship
between o and « qualitatively similar to the one shown
in Fig. ALl. All the modes are stable, that is, they have
negative growth rates. The least stable modes corre-
spond to & — O; hence we justify that the term (e) from
(C2) is indeed small, and it does not enter the main
balance. It is easy to see that as y — o: both Re(w) and
« decrease, and the forcing term on the right-hand side
of (C7) decreasesin amplitude. Therefore, theamplitude
of 5, becomes negligible relative to the amplitudes of

i, and ;.
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