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A new high-resolution Eulerian numerical method is proposed for modelling quasigeostrophic ocean
dynamics in eddying regimes. The method is based on a novel, second-order non-dissipative and low-dis-
persive conservative advection scheme called CABARET. The properties of the new method are compared
with those of several high-resolution Eulerian methods for linear advection and gas dynamics. Then, the
CABARET method is applied to the classical model of the double-gyre ocean circulation and its perfor-
mance is contrasted against that of the common vorticity-preserving Arakawa method. In turbulent
regimes, the new method permits credible numerical simulations on much coarser computational grids.
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1. Introduction

In many aspects mesoscale oceanic eddies, operating on the
lengthscales of O(1–100) km are analogous to the cyclones and
anticyclones that constitute the atmospheric weather phenome-
non. The problem of resolving these eddies in a dynamically con-
sistent way is very important for ocean modelling and, therefore,
for global climate predictions. For achieving high Reynolds number
(Re) simulations, which are required for accurate modelling of the
ocean, the models have to account for all important scales of
motion.

Modern ocean models enter a new phase in which eddies will
be, at least, permitted in the numerical simulation. For such mod-
els advection scheme is a very important component. A crucial ele-
ment of numerical advection scheme is its ability to propagate
finite-amplitude and -phase disturbances on a discrete grid either
without generating spurious short-wave oscillations, because of
not preserving the correct dispersion relation i.e., dispersion error,
or any considerable damping of the amplitude i.e., dissipation error
(e.g., Kravchenko and Moin, 1997; Pope, 2000). Note, that the gen-
eration of short-wave oscillations is particularly detrimental in
case an inverse energy cascade takes place, and the small scales af-
fect large scales (e.g., Tabeling, 2002; Vallis, 2006). In this paper,
the effect of spurious small-scale dispersion and dissipation on
important large-scale properties of the solution are captured by
ll rights reserved.
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sov).
comparing numerical predictions obtained with two different
advection methods implemented within the same quasigeostroph-
ic ocean modelling code (Berloff et al., 2007), which solves for the
classical double-gyre problem (Holland, 1978). The original model
implements standard eddy viscosity for parameterising effects of
the unresolved scales of turbulent diffusion and conservative sec-
ond-order Arakawa scheme for advection (Arakawa, 1966). In this
paper, we consider a few versions of the original code based on
different advection methods. Comparisons with the converged
fine-grid solutions are made to investigate effects of numerical
advection schemes on the coarse-grid solutions.

Solving ‘convection-dominated’ problems is a longstanding
challenge for computational fluid dynamics (e.g., Rozhdestvensky
and Yanenko, 1978; Roache, 1982; Hirsch, 2007). One of the diffi-
culties is that the conventional second-order finite-difference
schemes have large dispersion errors, which generate spurious rip-
ples in the solutions. To counterbalance this effect, a numerical dis-
sipation, such as the classical von Neumann and Richtmyer (1950)
artificial viscosity for compression-type pressure waves or such as
the eddy viscosity in ocean circulation models, is added to the gov-
erning equations. However, a common negative side of this ap-
proach is the associated spurious dissipation that smears the
large eddies along with the spurious ripples.

There are three general approaches for solving ‘convection-
dominated’ problems: Eulerian, Lagrangian, and mixed Eulerian–
Lagrangian. For the Eulerian methods, significant presence of both
numerical dissipation and dispersion is common drawback. It is
partially overcome in the Lagrangian and Eulerian–Lagrangian
methods, which describe flow advection by following fluid particle
coordinates, rather than by considering fixed coordinates on the
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Eulerian grid (e.g., Dritschel et al., 1999; Mohebalhojeh and Drit-
schel, 2004). A remarkable property of the Lagrangian methods is
that they are exact for the linear-advection problem with a uni-
form velocity field, and in this case their accuracy is limited only
by the accuracy of solving the corresponding Ordinary Differential
Equations (ODEs), rather than by the accuracy of solving the full
Partial Differential Equations (PDEs), as in the Eulerian case. The
Lagrangian methods can be very efficient for simulations with mul-
tiple contact discontinuities and shocks, e.g., as those of multi-
phase flows (e.g., Margolin and Shashkov, 2004). However, for
the problems dominated by chaotic folding and stretching of the
material lines, the Lagrangian methods have to be complemented
with ad hoc ‘repair’ (or ‘contour surgery’) procedures. They allow
to remove redundant Lagrangian particles that aggregate in some
locations and to add new particles to where they are needed. The
‘repair’ procedure can be viewed as a special kind of numerical dis-
sipation that drains energy from the underresolved scales. The
numerical effect of the ‘repair’ procedure on the numerical dissipa-
tion and dispersion error always limits Re for the resolved scales.
Also, specifying standard physical boundary conditions (e.g.,
no-slip, free-slip, etc.) is problematic for the Lagrangian methods.

The implementation of Eulerian–Lagrangian methods, including
semi-Lagrangian and vortex-in-a-cell methods is less intricate,
since they employ an Eulerian interpolation/projection step after
a Lagrangian step. However, they are no longer exact for the linear
advection, and they are prone to the same dissipation and disper-
sion error problems as the Eulerian methods. For example, the
mixed Eulerian–Lagrangian methods use artificial numerical
dissipation for avoiding the ‘repair’ procedure and for ensuring a
‘non-oscillatory’ solution (e.g., Margolin, 1997). Finally, the
Lagrangian-to-Eulerian grid interpolation is also a source of the
numerical dissipation and dispersion errors.

Many Eulerian methods for ‘convection-dominated’ flows are
based on emphasizing a particular property of the governing equa-
tions. Using such property as the basis for a ‘‘low-order” (first- or
second-order) scheme, typically, further upgrades (e.g., high-order,
non-oscillatory sequels, etc.) of the original scheme are developed.
One such example is the family of optimised low-dispersion and
low-dissipation finite-difference schemes, including implicit com-
pact finite-difference schemes based on Pade-type approximations
(Lele, 1992) and explicit schemes (Tam and Webb, 1993; Bogey
and Bailly, 2004) that are popular in turbulence modelling. In par-
ticular, the family of explicit schemes was developed to overcome
typical problems of the spectral and pseudo-spectral methods,
such as handling non-periodic boundary conditions and suitability
for parallel computations. The optimised explicit finite-difference
schemes, typically, employ non-conservative forms of the govern-
ing equations, and use large computational stencils for more accu-
rate approximation of the linear-wave dispersion relation in the
physical domain. In order to cope with the large unresolved gradi-
ents emerging in nonlinear flows (e.g., shock waves) the high-order
low-dissipative low-dispersive schemes use special filtering proce-
dures (e.g., Robert, 1966; Asselin, 1972; Zhou and Wei, 2003). Such
filtering is analogous to some form of artificial viscosity added to
the scheme and is required, essentially, to reduce the order of
the scheme in the vicinity of the unresolved solution gradients,
in accordance with the Godunov Theorem (Godunov, 1959), that
states that any monotone finite-difference scheme is first-order
accurate.

Another example consists of the so-called ‘‘high-resolution
schemes” (after A. Harten) that are based on Flux Corrected Trans-
port (FCT), Total Variation Diminishing (TVD) solution ideas for
quasi-linear hyperbolic conservation laws (e.g., Boris et al., 1975;
Harten et al., 1987; LeVeque, 2002). In this approach a conservative
approximation of the governing equations is used, that has several
useful properties such as compact computational stencil, low CPU
cost, and, often, the solution boundness, but have large dissipation
and/or dispersion errors. Then such schemes are upgraded to a
higher order, e.g., within the framework of ‘variable-extrapolation’
and ‘flux-extrapolation’ techniques (e.g., van Leer, 1979; Wood-
ward and Colella, 1984; Drikakis, 2003), by extending the spatial
stencil. The upgrade is needed to enhance linear wave propagation
properties of the solution away from the flow discontinuities. In
the vicinity of high-gradients of the solution, either nonlinear flux
limiter (FCT/TVD) functions are used (Boris et al., 1975; Harten
et al., 1987; Pietrzak, 1998), or solution-adaptive stencils are used,
as in WENO-type schemes (Shu and Osher, 1988). A significant
improvement of the linear wave propagation properties can also
be obtained by introducing additional degrees of freedom inside
each computational cell, in the framework of Discontinuous Galer-
kin methods (Cockburn and Shu, 2001), which are less sensitive to
spatial grid non-uniformity, relative to the high-resolution finite-
difference schemes.

Standard second- and third-order non-oscillatory schemes are
typically too dissipative for the problems in which the solution-
front-sharpening mechanism is either absent or too weak to coun-
terbalance the effect of the numerical dissipation. The higher cost
of implementation and the extra CPU cost of a high-order scheme
is accepted by the computational community for some situations,
when the conventional methods require prohibitively fine grids.
One may argue that high-order discretisation in space is the only
way to improve the solution, but we take a complimentary view.
We argue that in a number of situations it is more efficient to im-
prove the properties of the underlying discretisation by addressing
additional properties of the governing (hyperbolic) equations,
within the class of second-order schemes. We argue that a hierar-
chy of high-order schemes is better to be developed from a ‘‘low-
order” method that is as accurate and efficient as possible. Then
the order of the method can be systematically increased, consis-
tently in space and time, and the low-dispersive and low-dissipative
properties of the original scheme can be improved. Finally, because
of their robustness, the second-order methods are still widely used
as a ‘‘working horse” in many hydrodynamics codes (e.g., for non-
uniform grids, treatment of the shocks, ease with boundary condi-
tions, etc.), and their improvement is important.

2. CABARET method

2.1. Linear advection scheme

To illustrate our ideas on a simple example, a scalar conserva-
tion law

otuþ oxf ðuÞ ¼ 0 ð1Þ

is considered on a finite-difference grid which is non-uniform in
space xi+1 � xi = hi+1/2 and time tn+1 � tn = sn+1/2.

Fig. 1 shows the associated data structure on the non-uniform
grid in space and time: the solid circles (labelled with letters) show
the location of conserved variable u with fractional i-indices and
the open circles (labelled with numbers) show the locations of
the flux variable f with whole i-indices. Our scheme assumes that
all variables are known at the nth time level, and, then, it takes a
half time step using forward-time central approximation,

uC � uE
1
2 snþ1=2

þ f4 � f5

hiþ1=2
¼ 0: ð2Þ

It is continued with another half time step by using the back-
ward-time central-space approximation,

uA � uC
1
2 snþ1=2

þ f1 � f2

hiþ1=2
¼ 0; ð3Þ



Fig. 1. Assumed data structure for the CABARET scheme for one dimension in space
plus time. Solid circles denote conservation variables, open circles denote flux
variables.
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where the fluxes f1, f2 are still to be determined. Note, that by add-
ing these two equations, one obtains a conventional flux integral
around the cell 1254, with a trapezoidal rule evaluation of the
fluxes. By symmetry, the scheme will be second-order accurate
for a sufficiently accurate evaluation of f1 and f2. We choose to eval-
uate these by a simple upwind extrapolation carried out in an up-
wind manner. Let’s assume for the moment that the sign of the
wave speed, ouf(u), is positive everywhere. Then, we determine
f1 = f(u1) by assuming that

u1 ¼ 2uC � u5: ð4Þ

With this choice, the entire scheme (2)–(4) are time-reversible. It is
also second order accurate, regardless of the gird non-uniformity in
space and time, and it is non-dissipative.

The CABARET scheme (2)–(4) is an explicit single-temporal-
stage method (note that the upwind extrapolation step for updat-
ing the fluxes is applied once per time step). The scheme is conser-
vative and stable under the Courant (CFL) condition: 0 6 jcjs/h 6 1.
Due to its compact computational stencil, it remains second order
accurate even on non-uniform spatial and temporal grids.

2.2. Treatment of unresolved short-wave scales in the solution

Regardless of how good the numerical scheme is, it is unlikely
to correctly resolve all flow scales which can emerge in high-Re
flow regimes. A feasible approach is to modify the original non-dis-
sipative numerical method so that the small scales are harmlessly
removed from the solution, without spurious backscatter from
small to large scales (e.g., Pope, 2000; Grinstein et al., 2007). The
discrete grid resolution limit is consistent with the Godunov The-
orem (Godunov, 1959) which states that any monotone scheme
is first order accurate. This implies for a numerical smoothing pro-
cedure to be used in the vicinity of unresolved solution gradients.
Note that the resolution problem of Eulerian schemes can be
directly related to their dispersion errors at high wavenumbers.
The better numerical advection scheme is, the closer to the compu-
tational grid size is the properly resolved wave, and the better
tailored is the use of the numerical smoothing.

For making the CABARET solution non-oscillatory, a simple tun-
able-parameter-free flux limiter is introduced through a non-linear
correction procedure for the flux variables:

u1 ¼ 2uC � u5;

if ðu1 > maxðu4; uE; u5ÞÞ u1 ¼maxðu4;uE;u5Þ;
if ðu1 < minðu4;uE;u5ÞÞ u1 ¼minðu4;uE;u5Þ:

ð4aÞ

The above nonlinear correction procedure is based on the maximum
principle (e.g., Boris et al., 1975; Harten et al., 1987) for character-
istic wave that arrives at point 1 from the solution domain depen-
dency 4-E-5, and that is approximated using the 3-point stencil
(u4,uE,u5) within one cell in space. In comparison to the standard
FCT/TVD schemes, the nonlinear correction algorithm is directly
based on enforcing the maximum principle on flux variables, rather
than limiting the slopes of conservation variables.

Despite the fact that the correction method (4a) does not explic-
itly enforce monotonicity on the conservation variables, the non-
linear flux correction allows the CABARET scheme to suppress
non-physical oscillations in the solution. Numerical tests and the-
oretical investigations (e.g., Ostapenko, 2009) have confirmed that
the solution of the CABARET method with flux correction (4a) re-
mains strictly free both from spurious oscillations and ‘‘stair-cas-
ing” artifacts of the standard TVD schemes (e.g., Shchepetkin and
McWilliams, 1998) for all Courant numbers CFL 6 0.5. Fig. 2 shows
the comparison of the CABARET solution for the linear advection of
discontinuous and continuous initial data with the second-order
van Leer TVD scheme based on MinMod and Superbee limiters
(e.g., Hirsch, 2007).

It should be mentioned that there are more sophisticated ways
of introducing conservative correction in the CABARET scheme,
than the simple limiter (4a). For example, there are algorithms that
enforce monotonicity simultaneously to the flux and conservation
variables (e.g., Goloviznin et al., 2003). For simple cases, e.g., for
linear advection with constant velocity, they produce more accu-
rate results than the simple algorithm (2), (3) and (4a). A particular
example is the so-called Digital Transport Algorithm (e.g., Karaba-
sov and Goloviznin, 2004), which leads to the exact solution of 1-D
and 2-D advection problems for any piece-wise constant initial
data at 0 < CFL < 1 (0 < CFL < 0.5 for 2-D problems) on Eulerian
grids. Despite our interest in such generalizations of the CABARET
method (2), (3) and (4a) they will not be discussed any further in
the current publication, since their extension to the ocean model-
ling is in progress.
2.3. Comparison with other Leapfrog schemes

Schemes similar to (2)–(4) exist in the literature; they are the
Upwind Leapfrog (UL) schemes first discussed by Iserles (1986)
for linear advection, and later developed by Roe (1998), Tran and
Scheurer (2002) and Kim (2004) for multidimensional wave prop-
agation. However, these schemes were neither conservative, nor
based on a compact one-space-cell one-time-step computational
stencil. Also, they were not equipped with the limiters enabling
them to overcome non-physical oscillations in the solution; hence,
they were not robust enough for practical applications. In parallel
to these efforts, Goloviznin and Samarskii (1998a,b) proposed an
extension of the UL scheme to conservative methods. Later, Golo-
viznin and co-workers developed CABARET versions with the lim-
iters (Goloviznin and Karabasov, 1998) and extended the method
to multidimensional wave dispersion in fracturated porous med-
ium (Goloviznin et al., 2007) and gas dynamics (Goloviznin,
2005; Karabasov and Goloviznin, 2007).

To see that the present method is reduced to the UL for the lin-
ear advection (f = c � u, c = const.) on a uniform grid in space and
time, note that

uC � uE ¼ mðu5 � u4Þ and uE � uG ¼ mðu5 � u4Þ; ð5Þ

where m = cs/h is the CFL number. Hence,

uC � uE ¼ mðu5 � u4Þ ¼
1
2

u1 þ u5 � u4 � u8ð Þ

¼ 1
2

u1 � u4ð Þ þ u5 � u8ð Þð Þ; ð6Þ

which is the three-time-level UL method.
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Fig. 2. 1-D linear advection test: (a) with a rectangular initial profile, (b) with a half-sine-wave initial profile after 250 time steps on a uniform grid with h = 1 under
CFL = 0.45; squares denote the solution of CABARET scheme, circles denote the solution of the second-order Van Leer scheme with TVD MinMod limiter, triangles denote the
solution of the same scheme with TVD Superbee limiter.
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Note, that in comparison to the CABARET stencil (1-A-2-C-4-E-
5) the UL method (1-4-5-8) uses a double-interval computational
stencil in time, whereas the conventional Central Leapfrog (CL)
method

mðu6 � u4Þ ¼ ðu2 � u8Þ ð7Þ

uses computational stencil which is twice as wide as that of the UL
scheme.

In addition to removing the defects of the UL, the CABARET
scheme retains all of the UL good properties, such as ease of imple-
mentation near boundaries, zero numerical dissipation and very
small dispersion error.

An important distinction between the implementations of the
CABARET and UL schemes is that the UL scheme is three-time-level
and needs to be properly initialized, otherwise a spurious mode
can be excited. CABARET provides unambiguous prediction at level
(n + 1) from data at level (n). However, the same spurious mode
can be excited if at the initial time step the flux data are not con-
sistent with the conservation variables.

An important feature of the CABARET/UL scheme is that it
approximates the entire material derivative on the Eulerian grid:

L ¼ ot þ ouf ðuÞoxh i; ð8Þ

rather than splits it into independent, space and time components

Lx ¼ ouf ðuÞ � oxh i; L ¼ oth i þ Lx: ð9Þ

Note that separate space and time treatment (9) is used in many
high-resolution schemes based on high-order spatial-flux recon-
struction techniques, combined with time-integration methods
based on low-dissipative multi-step Runge–Kutta techniques
(e.g., Bogey and Bailly, 2004) or on single-step predictor–corrector
methods of Adams-type (e.g., Shchepetkin and McWilliams, 1998).
In particular, we argue that in comparison to the methods based on
the Adams-type schemes, the CABARET scheme (2)–(4) is non-dis-
sipative, which makes it more suitable for turbulent flow regimes.
A comparison of the dispersion properties of the CABARET/UL
scheme with those of the central finite differences, including opti-
mised high-order schemes typically used with low-dissipative
Runge–Kutta time-integration schemes, is in the next section.
Fig. 3. Phase errors of several spatial finite-difference schemes and of the CABARET
scheme at different CFL numbers vs grid resolution (number of grid points per
wavelength, Nk = p/(k � h)). E2, E4, E6 denote standard central differences of the
second, fourth and sixth-order, respectively, DRP denotes the fourth order
Dispersion Relation Preserving scheme (Tam and Webb, 1993); and LUI stands for
a sixth order pentadiagonal compact scheme of Pade-type (Colonius and Lele,
2004). Results for all central schemes correspond to infinitesimally small Courant
number, which corresponds to the highest accuracy for most of the central schemes,
and CABARETx stands for the CABARET scheme at Courant number CFL = x.
2.4. Results of linear dispersion analysis

The non-staggered form of finite-difference schemes (without
nonlinear flux correction) is well suited for analysis of the linear-
wave dissipation and dispersion properties. In this analysis a trav-
elling wave solution, un

m � exp½ix � s � n� ik � h �m�, is substituted
into the scheme. The resulting algebraic equation is solved for
the frequency, x = x(k � h), or x�s

c�k�h ¼ f k � h;CFLð Þ, where f is a func-
tion of the dimensionless wavenumber, k � h, and of the Courant
number, CFL = jcjs/h. The outcome is used to determine the dissipa-
tion error, Im½xðk � hÞ � s�– 0, and the dispersion error, f � 1 – 0, as
functions of the wavenumber and the Courant number. In Fig. 3 we
compare the dispersion error of the CABARET scheme at different
Courant numbers against the errors of semi-discrete finite differ-
ences including two state-of-the art high-order low-dispersion
schemes used in turbulence modelling (e.g., Lele, 1992). Note, that
the dispersion properties of semi-discrete schemes correspond to
exact integration in time, that neglects possible increase of the dis-
persion error due to inaccuracies in time marching, and that is
equivalent to using a multi-stage Runge–Kutta method with a very
small step for time integration. We find that for most Courant
numbers and for a wide range of grid resolution (7–20 points per
wavelength) the dispersion error of the CABARET scheme remains



Fig. 5. Assumed data structure for the CABARET scheme for two dimensions in
space plus time. Notations are the same as in Fig. 1.
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below that of the conventional and optimised fourth-order central
finite differences and close to that of the six-order central schemes.
Away from the optimal Courant number range (CFL = 0.1), the CAB-
ARET dispersion error is similar to that of the fourth-order scheme.
Within this range of grid resolution the error decay rate (error
slope) of the CABARET solution is in between the forth- and the
second-order schemes.

Another important property pertaining to the numerical disper-
sion error is the numerical group speed (normalized by the advec-
tion speed), cg ¼ s

c
o xðk�hÞð Þ

o k�hð Þ . Any deviation of cg from 1 corresponds to
an error in physical wave propagation. In particular, negative val-
ues of cg lead to spurious wave reflection. In this case, all waves
starting from a certain frequency are ‘‘grid locked” and their energy
is back-scattered (Colonius and Lele, 2004). Fig. 4 shows the
numerical group speeds of the same finite-difference schemes as
in Fig. 3. It can be seen that all central schemes, including the
high-order compact Pade-type scheme, have cg < 0 for short en-
ough wavelengths. In contrast, the CABARET group speed remains
always positive, and the waves propagate at all frequencies. The
magnitude of the CABARET cg error is small: even for CFL = 0.1, it
is similar to that of the fourth-order central differences in a wide
range of wavenumbers (0.2 < k � h/p < 0.8).

2.5. CABARET extension for linear advection in multiple dimensions

Let us consider a linear advection equation in multiple
dimensions:

o

ot
uþ

X
k

o

oxk
fk ¼ 0; f k ¼ cku; ck ¼ const: > 0: ð10Þ

For solving this equation with the CABARET scheme on a quad-
rilateral/hexagonal, possibly multiple-block, Cartesian grid, first,
we introduce the conservation variables, u, referred to the cell cen-
tres, and the flux variables, fk, referred to the cell face centres in
each coordinate direction, 1 6 k 6 d, where d ¼ 1:3 is the dimen-
sion of the problem.

Fig. 5 shows the assumed data structure for case d = 2, within
one cell in space. Solid circles labelled with letters show loca-
tions of the conserved variable, and open circles labelled with
numbers show locations of the flux variable, same as for the
1-D CABARET scheme shown in Fig. 1. Then, the CABARET algo-
rithm becomes:
-4
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Fig. 4. Numerical group speeds of several central finite-difference schemes and of
the CABARET scheme at different Courant numbers as functions of the grid
resolution. The notations are the same as in Fig. 3.
Predictor step,

uC � uE
1
2 snþ1=2

þ
X

k

o

oxk
f n
k ¼ 0: ð11Þ

Extrapolation step,

u1;k ¼ 2uC � u5;k; 1 6 k 6 d: ð12Þ

Corrector step,

uA � uC
1
2 snþ1=2

þ
X

k

o

oxk
f nþ1
k ¼ 0: ð13Þ

Here, the divergence terms are approximated using the flux
CABARET variables defined within the same cell, with the sec-
ond-order accuracy in space. The multidimensional CABARET
scheme (11)–(13) is second order accurate in time and space, sim-
ilar to the 1-D CABARET scheme (7)–(9). The multidimensional
CABARET scheme is stable for 0 < CFL < 1/d. For large-gradient
flows, the nonlinear flux correction is applied at the extrapolation
step (compare with (15)):

u1;k ¼ 2uC � u5;k;

M ¼maxðu4;k;uE;u5;kÞ þ
Z t¼tnþ1

t¼tn
QðtÞdt;

m ¼minðu4;k;uE;u5;kÞ þ
Z t¼tnþ1

t¼tn
QðtÞdt;

QðtÞ ¼ �
X
i–k

o

oxi
fi;

If u1;k > M; u1;k ¼ M;

If u1;k < m; u1;k ¼ m:

ð14Þ

Thus, the multidimensional CABARET scheme updates each flux
variable by performing 1-D extrapolation separately for each coor-
dinate direction, but uses the same conservation variable for all
directions. Thus, it combines the simplicity of the dimension-by-
dimension splitting approach with genuinely multidimensional
advection treatment.

For demonstration, the classical solid body rotation test (Crow-
ley, 1968) is considered, in which the initial cone distribution is
specified on a uniform Cartesian grid in the centre of 1/4 of square
computational domain. The advection velocity field corresponds to
a steady rotation around the computational domain centre. The



Fig. 6. Solid body rotation test: cone profile after one full revolution on Cartesian
grid with resolution of 20 grid cells per cone diameter.

Table 1
Errors for the shock/density wave interaction problem.

N PLIMDE WENO CABARET

NT e1 ec NT e1 ec NT e1 ec

200 250 0.0185 0.429 334 0.0214 0.902 229 0.0219 0.1211
400 468 0.0183 0.188 634 0.0195 0.667 462 0.0100 0.1467
800 903 0.0166 0.290 1235 0.0162 0.369 927 0.0058 0.2400

WENO is the third-order Weighted Essentially Non-Oscillatory Scheme and PLIMDE
is the second-order Parabolic Interpolation Method.
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Fig. 7. Density solution profile for the Shu–Osher test for t = 1.872.
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vertex of the cone is a singularity, and preserving it numerically is
rather challenging. Fig. 6 shows that after one revolution on a
coarse grid (20 points per the cone diameter), the cone symmetry
is still well preserved. This solution corresponds to the relative
cone vertex clipping of 16% which is twice smaller than 34% vertex
reduction reported by Hundsdorfer et al. (1995) for the third-order
MUSCL TVD scheme.

2.6. Example of CABARET scheme for the system of hyperbolic
equations

The CABARET method has been extended to the compressible
Euler equations with the use of characteristic decomposition. Stan-
dard characteristic Eulerian methods are based on flow field
decomposition into simple characteristic waves of constant ampli-
tudes obtained from the solution of 1-D Riemann problem at each
cell face (e.g., LeVeque, 2002; Hirsch, 2007). In contrast to those,
the CABARET extension to the equations in primitive variables is
based on the extrapolation of groups of characteristic variables,
i.e., local Riemann invariants. In particular, the solution algorithm
for the 1-D gas dynamics is outlined below.

The components of the conservative variables are updated at
the predictor and corrector step (Fig. 1):

UC � UE
1
2 snþ1=2

þ FðU4Þ � FðU5Þ
hiþ1=2

¼ 0;

UA � UC
1
2 snþ1=2

þ FðU1Þ � FðU2Þ
hiþ1=2

¼ 0;

U ¼ ðq;qu; EÞT; F ¼ qu;qu2 þ p;uðEþ pÞ
� �T

;

ð15Þ

where q, qu, E are density, momentum and energy, respectively.
At the extrapolation step the flux variables are computed at cell

faces. In order to update the flux variable on the new time level at
cell face (i), we use local Riemann invariants that are referred to
each cell centre, left, (i � 1/2), and right, (i + 1/2), from the compu-
tational node (i). For example, for ideal gas flows the following
form of the local Riemann invariants referred to the space–time
cell (i + 1/2,n + 1/2) can be used:

R q;u; p SCjð Þ ¼ uþ Apl
;u� Apl

; lnðp � q�cÞ
� �T

;

A ¼ 2
ffiffifficp

c� 1
SCð Þ

1
2c; l ¼ c� 1

2c
; ð16Þ

where SC = pC � (qC)�c is the cell-based entropy variable. The three
components of the characteristic vector correspond to eigenvalues
fkqgC ¼ fuþ a;u� a;ugC ; q ¼ 1:3, where a is sound speed and c is
specific heat ratio. For locally isentropic flows, this choice of charac-
teristic invariants allows increasing the solution accuracy during
the extrapolation stage. For each computational cell face (i), we
compute its neighbouring local Riemann invariants (16) defined in
cells (i � 1/2) and (i + 1/2), according to the CABARET data structure
shown in Fig. 1. For example, for point 2 this involves computation
of the local Riemann invariants in points 4,5,6 and C,D,E,F. The
extrapolation of local Riemann invariants from cells (1-2-4-5) and
(2-3-5-6) to point 2 results in two sets of local Riemann invariants.
Once the local Riemann invariants are obtained, their values are
subject to the conservative flux correction (4a). From the two vec-
tors of characteristic variables a single conservative flux vector is
reconstructed by using only those components of each vector that
correspond to incoming characteristics to the cell face. Note that
the use of a double set of local Riemann invariants is analogous to
that based on using a double characteristic Jacobian matrix that is
known to increase the robustness of characteristic decomposition
techniques (Donat and Marquina, 1996).

As a demonstration of the CABARET approach capabilities, we
consider the so-called Shu–Osher problem (Shu and Osher, 1988),
in which a shock wave of Mach 3 interacts with a stationary entro-
py wave:

ðq;u;pÞ ¼
ð3:857143;2:629369;10:333333Þ for x < 2;

ð1þ 0:2 sinð5xÞ;0;1Þ for x P 2;

�
x 2 ½0;10�:

ð17Þ

The test is challenging for it requires from the numerical meth-
od not only to be shock-capturing but also to preserve the rich
solution structure behind the shock front. Table 1 shows the com-
parison of the CABARET solution with other high-resolution meth-
ods considered by Woodward and Colella (1984). Fig. 7 shows the
instantaneous density field for the CABARET solution at a longer
time t = 1.872 that corresponds to the grid resolution of 400 cells.

The numerical errors and total number of time iterations are
summarized in Table 1. The total number of iterations corresponds
to the number of time steps (NT) required to reach the control time
moment, t = 1.8. The numerical error is defined as a relative error
based on the following norms:

e1 ¼
1

N þ 1

X q� qexactj j
qexactj j ; ec ¼max

q� qexactj j
qexactj j

� �
: ð18Þ
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As follows from the table, the maximum error in the ec-norm re-
mains smallest for the CABARET scheme, among all three schemes.
In contrast to the other schemes, in the e1-norm, the CABARET solu-
tion error leads to the convergence rate which is higher than 1 for
all grids, including the coarsest one.

3. Application to the double-gyre circulation

In this section we apply the CABARET approach to a classical
ocean circulation problem.

3.1. Ocean model

We keep in mind ultimately applying the CABARET approach to
a fully comprehensive, primitive-equation, eddy-resolving general
circulation model of the ocean, but, for the purpose of this paper,
we focus on the more simple QG ocean dynamics. The QG model
of the wind-driven double-gyre circulation is considered in a mid-
latitude closed basin, which is in the shape of a square with north–
south and east–west rigid walls ([L � L] = 3840 � 3840 km). This
model simulates not only the subpolar and subtropical ocean gyres
but also the nonlinear western boundary currents, such as the
Gulfstream or Kurosio, and their eastward jet extensions (e.g., Hol-
land, 1978). The model stratification is represented by three
stacked isopycnal layers that are dynamically coupled through
pressure fluctuations. The governing equations constitute the sys-
tem of material conservation laws for potential vorticity (PV)
anomaly, fq; q ¼ 1:3, with a source term due to the meridional gra-
dient of the Coriolis parameter and with the additional source
terms due to the lateral viscosity, bottom friction, and the wind
forcing. The system of the quasilinear hyperbolic-type (e.g., Rozh-
destvensky and Yanenko, 1978) equations for PV anomaly and
the associated elliptic equations for velocity streamfunctions are:

o

ot
fq þ

o

ox
uqfq

� �
þ o

oy
vqfq

� �
¼ Fq; q ¼ 1:3;

Fq ¼ d1q � fwind � b � vq þ d3q � lbotr2wq þ leddyr2Dq;

uq ¼
owq

oy
; vq ¼ �

owq

ox
;

f1 ¼ r2w1 � s1 w1 � w2ð Þ; D1 ¼ f1 þ s1 w1 � w2ð Þ;

f2 ¼ r2w2 � s21 w2 � w1ð Þ � s22 w2 � w3ð Þ;

D2 ¼ f2 þ s21 w2 � w1ð Þ þ s22 w2 � w3ð Þ;

f3 ¼ r2w3 � s3 w3 � w2ð Þ; D3 ¼ f3 þ s3 w3 � w2ð Þ;

b; lbot; leddy; s1; s21; s22; s3 ¼ const: > 0;

ð19Þ

where q = 1, 2, and 3 denote the top, intermediate, and the bottom
isopycnal layers, respectively; dkq is the Kronecker symbol; b is the
meridional gradient of the Coriolis parameter; fwind = fwind(x,y) is the
idealised steady forcing proportional to the wind stress curl:

fwindðx; yÞ ¼
A sin p�y=L

y0=L

� 	
for 0 6 y < y0;

�A sin p� y�y0ð Þ=L
1�y0=L

� 	
for y0 6 y 6 L;

8><
>:

y0=L ¼ 0:5þ 0:2 � ðx=L� 0:5Þ; A ¼ �2ps0=ð0:9 � L � q1Þ;
0 6 x=L 6 1; 0 6 y=L 6 1;

ð20Þ

where the wind stress amplitude is s0 = 0.8 N m�2, and the upper-
ocean density is q1 = 103 kg/m3 (e.g., Berloff et al., 2007). The wind
forcing is chosen to be asymmetric and tilted with respect to the
middle latitude of the basin, in order to avoid the artificial symmet-
risation of the gyres. The layer depths, from top to bottom, are
H1 = 0.25, H2 = 0.75, and H3 = 3 km, respectively. The stratification
parameters, s1, s21, s22, s3, are chosen so that the first and the second
internal deformation radii are 32.2 and 18.9 km, respectively. Here,
lbot and leddy are coefficients of the bottom friction and the lateral
eddy viscosity, respectively. For the benchmark solutions we use
leddy = 12 and 50 m2 s�1, and lbot = 4 � 10�8 s�1.

The larger value of leddy corresponds to a Reynolds number,
Re ¼ U � L � l�1

eddy � 3200, where U = s0(q1 � H1 � L � b)�1 = 0.0417 m/s
is the linear-dynamics velocity scale given by the balance between
the b-term and the wind forcing.

It is commonly assumed that the eddy viscosity (or eddy diffu-
sion) crudely parameterises unresolved effects of the nonlinear ed-
dies. However, due to the ‘‘negative viscosity” phenomena (Starr,
1968), the effects of the mesoscale eddies are not always described
by the diffusion, therefore, it is highly desirable to run ocean mod-
els in eddy-resolving regimes. Such regimes can be achieved by a
systematic reduction of the eddy viscosity, hence, by a systematic
increase of Re, until the nonlinear eddies are dynamically permit-
ted. Solving for high-Re regimes needs to be backed up by using
finer grid resolution and more accurate numerical algorithms.

For the flow regions where the flow characteristics do not inter-
sect (e.g., away from the shocks), the conservative form of the gov-
erning equations can be rewritten in the following 1-D
characteristic-wave form:

o

ot
þ uq

o

ox

� �
fq ¼ Q ðuÞq ;

o

ot
þ vq

o

oy

� �
fq ¼ Q ðvÞq ; q ¼ 1:3;

Q ðuÞq ¼ Fq � vq
o

oy
fq; Q ðvÞq ¼ Fq � uq

o

ox
fq;

ð19aÞ

where the notations are the same as in (19). This form emphasises
the characteristic behaviour of the PV anomaly, as if it is a scalar-
transported tracer in a non-uniform divergence-free velocity field.

At the closed-basin boundary, C, the partial-slip condition is
imposed:

uqnxþvqny
� �



C
¼0;

o

on
uqnxþvqny
� �

�a�1 � uqnxþvqny
� �� �





C

¼0;

a¼ const:>0; q¼1:3; ð21Þ

where (nx,ny) are the Cartesian components of the normal unit vec-
tor. This boundary condition implies that the tangential velocity
component at the wall corresponds to a prescribed exponential-de-
cay (i.e., ‘wall-function’) law based on the characteristic boundary
layer thickness, a. This condition corresponds to the mixed Dirich-
let–Neumann boundary condition (e.g., Hirsch, 2007). In the ocean
modelling practice, it is a conventional, though not fully justified,
parameterisation for dynamically unresolved processes near the
ocean coasts. In our numerical algorithm, we apply (21) in the
velocity-streamfunction form (normal-to-wall derivatives are
taken):

wq

� �00 � wq

� �0
a

 !
C

¼ 0; q ¼ 1:3; ð22Þ

and we use a = 120 km.
Together with the integral mass conservation constraints

(McWilliams, 1977),
o

ot

Z Z
w1 � w2ð Þdxdy ¼ 0 and

o

ot

Z Z
w2 � w3ð Þdxdy ¼ 0;

ð23Þ
the boundary condition (22) is a part of the elliptic-problem inver-
sion of PV anomaly, fq, into the velocity streamfunctions.

3.2. Numerical method based on the CABARET scheme

In this section we introduce CABARET method to the ocean
model described in Section 3.1.



1 Note that without the flux corrections (35) and (36) the CABARET solution of the
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Let us consider a uniform Cartesian grid, xi+1,j � xi,j = h,
yi,j+1 � yi,j = h, 1 6 i, j 6 N, which covers the entire computational
domain. In addition to this grid, we consider the nodes staggered
from it by h/2:

xiþ1=2;jþ1=2 ¼ xi;j þ h=2; yiþ1=2;jþ1=2 ¼ yi;j þ h=2; ð24Þ

xi;jþ1=2 ¼ xi;j; yi;jþ1=2 ¼ yi;j þ h=2; ð25Þ

xiþ1=2;j ¼ xi;j þ h=2; yiþ1=2;j ¼ yi;j: ð26Þ

The conservation variables of the CABARET scheme are referred to
the cell centre points (fractional i and j indices); the flux variables
in the x-direction are referred to the cell face centres (whole i-indi-
ces); and the flux variables in the y-direction are referred to the cell
face centres (whole j-indices).

The extension of the 1-D CABARET algorithms (7)–(9) for the
conservation law (19) is the following. At the predictor step, the
PV anomaly value is computed at the mid-time level:

fq

� �nþ1=2
iþ1=2;jþ1=2� fq

� �n
iþ1=2;jþ1=2

snþ1=2=2

þ
uq
� �n

iþ1;jþ1=2 fq

� �n
iþ1;jþ1=2� uq

� �n
i;jþ1=2 fq

� �n
i;jþ1=2

h

þ
vq
� �n

iþ1=2;jþ1 fq

� �n
iþ1=2;jþ1� vq

� �n
iþ1=2;j fq

� �n
iþ1=2;j

h
¼ Fq
� �nþ1=2

iþ1=2;jþ1=2; q¼1:3; ð27Þ

where ðFqÞnþ1=2
iþ1=2;jþ1=2 denotes the second-order accurate approxima-

tion (discussed later in this section) of the source function at the
mid-time level; and the minimal local step, according to the stabil-
ity constraint, is

snþ1=2 ¼ min
16i;j6N

CFL � h=max uq
� �n

i;jþ1=2




 


; vq
� �n

iþ1=2;j




 


� 	h i
; ð28Þ

where 0 < CFL < 0.5. The updated values of PV anomaly are used to
compute the mid-time-level velocity streamfunction and its Lapla-
cian, by solving the system of the elliptic equations,

f1ð Þnþ1=2
iþ1=2;jþ1=2 ¼ r

2w1

� 	nþ1=2

iþ1=2;jþ1=2
� s1 w1ð Þ

nþ1=2
iþ1=2;jþ1=2� w2ð Þ

nþ1=2
iþ1=2;jþ1=2

� 	
;

f2ð Þnþ1=2
iþ1=2;jþ1=2 ¼ r

2w2

� 	nþ1=2

iþ1=2;jþ1=2
� s21 w2ð Þ

nþ1=2
iþ1=2;jþ1=2� w1ð Þ

nþ1=2
iþ1=2;jþ1=2

� 	
� s22 w2ð Þ

nþ1=2
iþ1=2;jþ1=2� w3ð Þ

nþ1=2
iþ1=2;jþ1=2

� 	
;

f3ð Þnþ1=2
iþ1=2;jþ1=2 ¼ r

2w3

� 	nþ1=2

iþ1=2;jþ1=2
� s3 w3ð Þ

nþ1=2
iþ1=2;jþ1=2� w2ð Þ

nþ1=2
iþ1=2;jþ1=2

� 	
;

ð29Þ

complemented by the partial-slip boundary condition (22) approx-
imated with the second-order one-sided finite-differences and by
the imposed mass conservation constraint (23).

Once ðwqÞ
nþ1=2
iþ1=2;jþ1=2 is calculated, it is used for updating the veloc-

ity components at the cell faces:

wq

� �nþ1=2

i;j
¼1

4
wq

� �nþ1=2

iþ1=2;jþ1=2
þ wq

� �nþ1=2

iþ1=2;j�1=2
þ wq

� �nþ1=2

i�1=2;jþ1=2

�
þ wq

� �nþ1=2

i�1=2;j�1=2

	
;

uq
� �nþ1=2

i;jþ1=2 ¼
wq

� �nþ1=2

i;jþ1
� wq

� �nþ1=2

i;j

h
;

vq
� �nþ1=2

iþ1=2;j ¼ �
wq

� �nþ1=2

iþ1;j
� wq

� �nþ1=2

i;j

h
: ð30Þ
Then, each velocity component is extrapolated to the new time
level, n + 1, with the second-order accuracy:

uq
� �nþ1

i;jþ1=2 ¼ ð1þ dÞ uq
� �nþ1=2

i;jþ1=2 � d uq
� �n�1=2

i;jþ1=2;

vq
� �nþ1

i;jþ1=2 ¼ ð1þ dÞ vq
� �nþ1=2

i;jþ1=2 � d vq
� �n�1=2

i;jþ1=2;

d ¼ snþ1=2

snþ1=2 þ sn�1=2 :

ð31Þ

Once the velocity field is updated, the extrapolation step yields the
new values of the flux variables:

fq

� �nþ1
iþ1;jþ1=2¼2 fq

� �nþ1=2
iþ1=2;jþ1=2� fq

� �n
i;jþ1=2 if uq

� �nþ1
iþ1;jþ1=2 P0;

fq

� �nþ1
i;jþ1=2¼2 fq

� �nþ1=2
iþ1=2;jþ1=2� fq

� �n
iþ1;jþ1=2 if uq

� �nþ1
i;jþ1=2<0;

ð32Þ

and

fq

� �nþ1
iþ1=2;jþ1 ¼ 2 fq

� �nþ1=2
iþ1=2;jþ1=2 � fq

� �n
iþ1=2;j if vq

� �nþ1
iþ1=2;jþ1 P 0;

fq

� �nþ1
iþ1=2;j ¼ 2 fq

� �nþ1=2
iþ1=2;jþ1=2 � fq

� �n
iþ1=2;jþ1 if vq

� �nþ1
iþ1=2;j < 0:

ð33Þ

At the lateral boundary cells, the upstream cell-face values are not
available, because the partial-slip boundary condition is imposed on
the corresponding centre-cell variables. Therefore, we use the first-
order upwind approximation, e.g.:

fq

� �nþ1
1;jþ1=2 ¼ fq

� �nþ1=2
1=2;jþ1=2 if uq

� �nþ1
1;jþ1=2 P 0: ð34Þ

The computed cell-face values of the PV anomaly are corrected,1 if
they are outside the limits given by the maximum principle:

If fq

� �nþ1
i;jþ1=2 > Mq

� �nþ1
i;jþ1=2; fq

� �nþ1
i;jþ1=2 ¼ Mq

� �nþ1
i;jþ1=2;

If fq

� �nþ1
i;jþ1=2 < mq

� �nþ1
i;jþ1=2; fq

� �nþ1
i;jþ1=2 ¼ mq

� �nþ1
i;jþ1=2;

ð35Þ

and

If fq

� �nþ1
iþ1=2;j > Mq

� �nþ1
iþ1=2;j; fq

� �nþ1
iþ1=2;j ¼ Mq

� �nþ1
iþ1=2;j;

If fq

� �nþ1
iþ1=2;j < mq

� �nþ1
iþ1=2;j; fq

� �nþ1
iþ1=2;j ¼ mq

� �nþ1
iþ1=2;j:

ð36Þ

Here, the minimum and maximum limit values account not only for
the solution at the previous time step, as in (15), but also for the
non-zero right-hand side in (19a). Thus, for a cell facing in the
x-direction, we have:

If uq
� �nþ1

iþ1;jþ1=2 P 0

Mq
� �nþ1

iþ1;jþ1=2 ¼max fq

� �n
i;jþ1=2; fq

� �n
iþ1=2;jþ1=2; fq

� �n
iþ1;jþ1=2

� 	
þ Q ðuÞq

� 	n

iþ1=2;jþ1=2
�snþ1=2;

mq
� �nþ1

iþ1;jþ1=2 ¼min fq

� �n
i;jþ1=2; fq

� �n
iþ1=2;jþ1=2; fq

� �n
iþ1;jþ1=2

� 	
þ Q ðuÞq

� 	n

iþ1=2;jþ1=2
�snþ1=2;

8>>>>>>>>><
>>>>>>>>>:

ð37Þ

and

If uq
� �nþ1

i;jþ1=2 < 0

Mq
� �nþ1

i;jþ1=2¼max fq

� �n
i;jþ1=2; fq

� �n
iþ1=2;jþ1=2; fq

� �n
iþ1;jþ1=2

� 	
þ Q ðuÞq

� 	n

iþ1=2;jþ1=2
�snþ1=2;

mq
� �nþ1

i;jþ1=2 ¼min fq

� �n
i;jþ1=2; fq

� �n
iþ1=2;jþ1=2; fq

� �n
iþ1;jþ1=2

� 	
þ Q ðuÞq

� 	n

iþ1=2;jþ1=2
�snþ1=2;

8>>>>>>>>><
>>>>>>>>>:

ð38Þ
double-gyre problem diverges, same as the Arakawa method without the Robert–
Asselin filtering in time.
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where the source term is evaluated by approximating (19a) with
the first-order accuracy in time and with the second-order accuracy
in space:

Q q

� �nþ1=2
iþ1=2;jþ1=2 ¼

fq

� �nþ1=2
iþ1=2;jþ1=2 � fq

� �n
iþ1=2;jþ1=2

snþ1=2=2

þ uq
� �

iþ1=2;jþ1=2

fq

� �n
iþ1;jþ1=2 � fq

� �n
i;jþ1=2

h
: ð39Þ

Here, uq
� �

iþ1=2;jþ1=2 ¼
1
2 uq
� �nþ1

iþ1;jþ1=2 þ uq
� �nþ1

i;jþ1=2

� 	
in the domain inte-

rior, and (uq)i+1/2,j+1/2 = 0 on the boundary. In (39), the first-order
accuracy in time cannot affect the overall order of accuracy of the
algorithm, because approximation (39) is used only in the non-dif-
ferential constraint (36).

Once the flux variables are updated at the new time step, the
new values of the centre-cell conservation variables are computed
at the corrector step:

fq

� �nþ1
iþ1=2;jþ1=2� fq

� �nþ1=2
iþ1=2;jþ1=2

snþ1=2=2

þ
uq
� �nþ1

iþ1;jþ1=2 fq

� �nþ1
iþ1;jþ1=2� uq

� �nþ1
i;jþ1=2 fq

� �nþ1
i;jþ1=2

h

þ
vq
� �nþ1

iþ1=2;jþ1 fq

� �nþ1
iþ1=2;jþ1� vq

� �nþ1
iþ1=2;j fq

� �nþ1
iþ1=2;j

h
¼ Fq
� �nþ1=2

iþ1=2;jþ1=2; q¼1:3:

ð40Þ

For well-resolved solution regions, where the corrections (34) and
(35) remain inactive, the CABARET scheme (27)–(40) approximates
the conservation laws (19) to the second order of accuracy in both
space and time, provided that the approximation of the full source

term, ðFqÞnþ1=2
iþ1=2;jþ1=2, is second-order accurate.

In our algorithm, the full source term is separated into the com-
bined wind and viscous component and into the b-term
component:

Fq
� �nþ1=2

iþ1=2;jþ1=2 ¼ Fviscþwind
q

� 	nþ1=2

iþ1=2;jþ1=2
þ FCoriolis

q

� 	nþ1=2

iþ1=2;jþ1=2
: ð41Þ

We find that in the ocean simulations the b-term component is
numerically stiff, and, therefore, it can excite spurious basin-scale
barotropic modes. In order to avoid this problem, a separate second
order accurate predictor–corrector Adams-type scheme is used in
order to increase the stability of the approximation in time:

FCoriolis
q

� 	nþ1=2

iþ1=2;jþ1=2
¼ ð1þ dÞ Rq

� �n
iþ1=2;jþ1=2 � d Rq

� �n�1
iþ1=2;jþ1=2;

d ¼ snþ1=2

2sn�1=2 ; ð42Þ

where the residual is

Rq
� �n

iþ1=2;jþ1=2 ¼ �
1
2

b vq
� �n

iþ1=2;jþ1 þ vq
� �n

iþ1=2;j

� 	
: ð43Þ

In our numerical algorithm, the b-term component (42) is added to
the equations at the predictor time step (27).

Since, unlike in the Arakawa method, in the absence of viscous
forces our method is equivalent to the conservation law of PV
anomaly plus the b-term, rather than to the conservation law of
PV itself,

R R
ðfq þ b � yÞdxdy ¼ const:; q ¼ 1:3, we need to make

sure that our scheme is compatible with the discrete PV conserva-
tion law. This is indeed the case, since (43) is equivalent to the fol-
lowing conservative approximation of the b-term component:

Rq
� �n

iþ1=2;jþ1=2 ¼ Fluxjþ1 � Fluxj þ Fluxiþ1 � Fluxi þ OðdivÞ;

Fluxj ¼ �byj vq
� �n

iþ1=2;j

.
h; Fluxi ¼ �byjþ1=2 uq

� �n
i;jþ1=2

.
h;

yjþ1=2 ¼
1
2

yjþ1 þ yj

� �
;

ð43aÞ
and OðdivÞ ¼ byjþ1=2
ðuqÞniþ1;jþ1=2�ðuqÞni;jþ1=2

h þ ðvqÞniþ1=2;jþ1�ðvqÞniþ1=2;j

h

h i
¼ 0, because

the velocity field obtained from (29) and (30) is divergence-free. We
have checked that the velocity divergence term is indeed of the or-
der of round off error in all our calculations.

In contrast to the b-term component, the other component of
the source term is numerically benign, and, therefore, it is approx-
imated at the mid-time level by the second-order differences of
both the velocity streamfunction and its Laplacian. The corre-
sponding term is added to the equations after the elliptic problem
(29) is solved, and after the velocity streamfunction at the mid-
time level is updated:

Fviscþwind
q

� 	nþ1=2

iþ1=2;jþ1=2
¼ d1q � fwind þ d3q � lbot r2wq

� 	nþ1=2

iþ1=2;jþ1=2

þ lvol r2Dq

� 	nþ1=2

iþ1=2;jþ1=2
: ð44Þ

Here, the Laplacians are evaluated directly from the solution of
elliptic problems at the mid-time level:
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ð45Þ

In order to untangle the variables in the elliptical problem (45),
the vertical normal-mode variables are employed. They allow to
diagonalise the elliptic problem into the three independent Helm-
holtz problems (for the individual vertical modes), that are solved
with the combined Fast Fourier Transform (FFT) and cyclic reduc-
tion methods.

4. Ocean modelling results

In this section, we discuss the ocean circulation solutions ob-
tained with the CABARET algorithm and compare the results with
those obtained by using the conventional second-order Arakawa
method. The Arakawa method is based on the CL advection scheme
and Robert–Asselin filtering in time (with the relaxation constant
equal to 0.1). We have actually checked that the results reported
in this section for the Arakawa method are virtually insensitive
to the relaxation constant in the range 0.01–0.3. Both methods
are implemented in the same quasigeostrophic ocean modelling
code that (with the Arakawa method) was previously used in dou-
ble-gyre simulations (e.g., Berloff et al., 2007). We also checked
that, in comparison with the conventional Arakawa method, the
CABARET method (24)–(42) is about 1.2–2 times slower. However,
this is a small drawback relative to the advantage of the greatly in-
creased accuracy of the model.

4.1. Moderate Reynolds numbers

First, we compare the CABARET method with the conventional
second-order method and with a low-dispersion first-order up-
wind method. We use leddy = 50 m2 s�1 that corresponds to a mod-
erate-Re flow regime, Re = 3200. We use four uniform Cartesian
grids with 129 � 129, 257 � 257, 513 � 513, and 1025 � 1025
nodes. For the moderate-Re case the solution convergence is con-
firmed against the finest grid, 2059 � 2059 simulation, which is al-
most indistinguishable from the fine 1025-grid solution (e.g., the
difference of maximum r.m.s. fluctuations of the eastward jet is
less than 0.1%). Each simulation starts from the state of rest, and
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each physical run time is 104 days, which corresponds to about
0.5–1 million time steps on the fine, 10252 grid. The spin-up time,
during which all solutions reach statistically stationary states, is
8000 days. The data for further processing are stored for the
remaining physical time of 2000 days, which is long relative to
most of the characteristic time scales of the mesoscale eddies.
For the purpose of the grid convergence study, we consider the
time averages of the solutions and their r.m.s. fluctuations. At the
moderate Re = 3200, the Arakawa scheme begins to converge start-
ing from the 513-grid (Figs. 8 and 9). On the 257-grid, the western
boundary current eastward jet (EJ) separates below the correct lat-
itude (as given by the converged finest-grid solution). We suggest
that this spurious behaviour of the EJ is an artifact of the numerical
dissipation and dispersion errors that can be significantly corrected
with the CABARET algorithm. Overall, correct modelling of the EJ is
one of the key targets that we seek to achieve on relatively coarse
grids.

The convergence of the CABARET and Arakawa methods have
been checked in three error norms and by the location of the sep-
aration point of the jet on the EJ (Table 2). The first two errors cor-
respond to the standard maximum norm of the time-averaged
upper-ocean streamfunction solution and to that of the r.m.s. fluc-
tuations of the upper-ocean streamfunction solution, respectively.
The third error corresponds to the absolute value of the relative er-
ror in predicting the maximum of the r.m.s. fluctuations of the
upper-ocean streamfunction solution that characterises the
strength of the EJ. As seen from the table, the CABARET scheme
shows significantly smaller errors and faster convergence rate for
all error norms in comparison to the Arakawa scheme, which for
max ew1

�� �� norm even fails to converge. The CABARET convergence
Fig. 8. Convergence of the Arakawa and CABARET methods for the moderate-Re case. Tim
513 � 513 grid, and (c) 1025 � 1025 grid.
rate is approximately linear in the maximum norms. For both
methods, the relative error of the maximum r.m.s. jet fluctuations
decays faster than the quadratic rate, with the CABARET
method being still superior. The convergence of the EJ separation
point is in Table 3, and it also shows a superiority of the CABARET
solution.

4.2. High Reynolds numbers

The advantages of the CABARET method over the conventional
second-order methods are more pronounced at high Re. To demon-
strate this, we computed the double-gyre problem for a large
Re � 13,300 (leddy = 12 m2 s�1).

With our grid resolutions, and, unlike in the moderate-Re case
(Section 4.1), there is no evidence of the solution convergence for
either of the schemes except for the jet separation point location
on the western boundary (Table 4).

Figs. 10 and 11 compare time averaged and r.m.s. fluctuations of
the upper-ocean velocity streamfunction for the coarse 257-grid
Arakawa and CABARET solutions with that of the fine 1025-grid
Arakawa solution. We find that in contrast to the coarse-grid Arak-
awa solution the other two solutions are very similar. This similar-
ity is further examined by plotting typical instantaneous snapshots
of the upper-ocean streamfunction and PV anomaly for the same
solutions (Figs. 12 and 13). In all figures the same contour levels
of the streamfunction and PV anomaly are plotted. While the
257-grid Arakawa solution is strongly contaminated by spurious
short-wave oscillations which completely obliterate the EJ struc-
ture, the 257-grid CABARET solution is remarkably close to the ref-
erence fine 1025-grid solution.
e-averaged, upper-ocean velocity streamfunction solutions: (a) 257 � 257 grid, (b)



Fig. 9. Convergence of the Arakawa and CABARET methods for the moderate-Re case. The r.m.s. fluctuation of upper-ocean velocity streamfunction solutions: (a) 257 � 257
grid, (b) 513 � 513 grid, and (c) 1025 � 1025 grid.

Table 2
Error convergence for the moderate-Re case.

Grid CABARET Arakawa CABARET Arakawa CABARET Arakawa

max ew1

�� �� max ew1

�� �� max er:m:s:ðw1Þ
�� �� max er:m:s:ðw1Þ

�� �� ekmax(r.m.s.(w1))k ekmax(r.m.s.(w1))k

129 142.22 138.48 99.39 104.25 0.47 0.315
257 132.66 189.07 56.58 86.87 0.071 0.098
513 50.98 199.44 34.42 71.29 0.003 0.012

Table 3
Convergence of the location of the separation point, y/L.

Grid 257 513 1025

Arakawa 0.4 0.5 0.55
CABARET 0.5 0.55 0.55

The confidence interval for the error in separation point location, which was esti-
mated by graphical data post-processing in Tecplot, is about ±0.01.

Table 4
Location of the separation point, y/L.

Grid 257 513 1025

Arakawa N/A 0.3 0.5
CABARET 0.5 0.55 0.5

See the footnotes of Table 3.

S.A. Karabasov et al. / Ocean Modelling 30 (2009) 155–168 165
To further validate this qualitative picture, we have checked
that the underprediction of the maximum r.m.s. fluctuations of
the EJ of the 257-grid Arakawa solution, in comparison to the ref-
erence 1025 solution, is 65%, thus indicating a total failure of the
solution. In contrast to this, the CABARET solution on the 257 grid
results in only 19% error in the maximum r.m.s. fluctuations of the
EJ. We find this qualitative agreement with the 1025-grid solution
remarkable, given that computation with the coarse 257-grid CAB-
ARET is more than 30 times faster than that with the fine 1025-grid
Arakawa scheme.

5. Conclusions and discussion

The novel Compact Accurately Boundary Adjusting high-REso-
lution Technique (CABARET) works remarkably well for the eddy-
resolving quasigeostrophic double-gyre ocean circulation problem.
In comparison with the conventional second-order method, it al-
lows to increase Reynolds number (Re) of the simulations by an or-
der of magnitude - this opens exciting perspectives for exploring
more realistic flow regimes.

The CABARET approach is based on several important ideas,
which have been circulating in the computational physics
community:



Fig. 10. Comparative behaviour of solutions for the high-Re case. Time-averaged, upper-ocean velocity streamfunction solutions: (a) Arakawa method on 257 � 257 grid, (b)
CABARET method on 257 � 257 grid, and (c) Arakawa method on 1025 � 1025 grid.

Fig. 11. Comparative behaviour of solutions for the high-Re case. The r.m.s. fluctuation of upper-ocean velocity streamfunction solutions: (a) Arakawa method on 257 � 257
grid, (b) CABARET method on 257 � 257 grid, and (c) Arakawa method on 1025 � 1025 grid.

Fig. 12. Comparative behaviour of solutions for the high-Re case. Typical instantaneous upper-ocean velocity streamfunction: (a) Arakawa method on 257 � 257 grid, (b)
CABARET method on 257 � 257 grid, and (c) Arakawa method on 1025 � 1025 grid.
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(i) Fully discrete/Lagrangian property: optimal approximation of
the entire material derivative rather than optimisation of the
time and space discretisations separately, as in the standard
Eulerian schemes.

(ii) Low dispersion and no-dissipation error of the underlining
finite-difference scheme.

(iii) Non-oscillatory property: enforcing the maximum principle
on the solution as the means for efficient treatment of the
underresolved scales.
(iv) Ease of implementation for complicated boundary condi-
tions and non-uniform grids due to the compactnessof stencil
in space and time.

(v) Reduced CPU cost due to the small computational stencil.

The novelty of our approach is in achieving good dispersion
and dissipation properties of the underlying advection scheme
that are crucial in large-Re eddy-resolving simulations. We deal
with these properties in the situation when the regularising



Fig. 13. Comparative behaviour of solutions for the high-Re case. Typical instantaneous upper-ocean PV anomaly: (a) Arakawa method on 257 � 257 grid, (b) CABARET
method on 257 � 257 grid, and (c) Arakawa method on 1025 � 1025 grid.
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effect of the explicit eddy viscosity is small relative to the dissi-
pation and dispersion errors of the scheme. In order to prove this
point, we presented a systematic comparison of the new CABA-
RET method with popular high-resolution methods such as MUS-
CL, PPM and WENO, for several linear-advection and gas
dynamics problems. Finally, we contrasted the performance of
the CABARET scheme with that of the standard second-order
Arakawa method for the classical ocean circulation problem. In
particular we show that the numerical dispersion and dissipation
error of the latter can be responsible for largely incorrect east-
ward jet structure.

For the double-gyre circulation, the CABARET method allows
one to obtain high-quality solutions on the grid that has half a
point over the Munk lengthscale, (leddy/b)1/3, which characterises
the viscous western boundary layer. This is a very significant up-
grade relative to the conventional scheme that requires 2–3 grid
points over this lengthscale (e.g., Berloff et al., 2007).

In the current publication we have not attempted to implement
other high-resolution schemes, such as those quoted in Section 2,
for the double-gyre problem and to compare them with the CABA-
RET method. This is because of the complexity of implementation
of the former near the boundaries (e.g., the western boundary
treatment is a crucial part of the double-gyre solution), since many
such methods have a larger computational stencil in comparison to
the CABARET or Arakawa scheme.

Potential future directions include adaptation of the CABARET
method for non-uniform grids, which can be achieved by
capitalising on the remarkable compactness of its computational
stencil, and extension of the method to the primitive equations
for use in the comprehensive ocean general circulation models.
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