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a b s t r a c t

The multi-layer quasi-geostrophic model of the wind-driven ocean gyres is numerically investigated using a

combination of long-time runs (200 years) needed for accurate statistics, spatial resolutions (grid interval of

less than one kilometer) needed for accurate representation of mesoscale eddies, and large Reynolds number

(Re > 104) needed for more realistic flow regimes. We gradually increased the Reynolds number by lowering

the eddy viscosity and analysed the corresponding changes of the large-scale circulation, energetics and eddy

fluxes, with the goal to understand how the nonlinear eddy dynamics affects the large-scale ocean circulation,

as more and more degrees of freedom become dynamically available. Three- and six-layer configurations of

the model are considered in order to understand effects of higher baroclinic modes. A parameter sensitivity

study is also carried out to show that the explored flow regime is robust.

As Re increases, most properties of the flow show no signs of approaching an asymptote, and the following

tendencies are found. The time-mean flow properties tend to an asymptote in the three-layer model but not

in the six-layer one, suggesting that higher baroclinic modes are dynamically more active at larger Re. The

eddy kinetic and potential energies grow faster in the six-layer case. The intensity of the eddy forcing (eddy

flux divergence) increases with Re. The inter-gyre eddy potential vorticity flux is predominantly northward

and up-gradient for all Re studied. A comparison of the three- and six-layer model solutions revealed an

inhibitory influence of high baroclinic modes on the penetration length of the eastward jet extension of the

western boundary currents and on the strength of the adjacent recirculation zones. In large-Re regimes, the

population of eddies is mostly sustained by the eddy generation at the eastern end of the eastward jet rather

than in its central section. Finally, by studying the numerical convergence of the solutions, we found the

empirical dependency between the eddy viscosity and the required grid resolution: halving the viscosity

requires halving the grid spacing.

© 2015 Elsevier Ltd. All rights reserved.
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. Introduction

The ocean is one of the largest and least understood components

f the global climate system. Being a player of fundamental im-

ortance in climate variability, the ocean still anchors the accuracy

f climate models. One of the limiting factors is our inability to

esolve oceanic submesoscale eddies characterised by the length

cale O(1) km. For the time being, there are neither experimental

acilities nor mathematical models of the ocean that could provide

eoscientists with high-resolution and long-time data coverage

ermitting to study how different multiscale flow components

nteract. Whereas detailed global ocean measurements on all scales

re out of the question for a long time to come, the leading-edge

esults in numerical modelling instill confidence that high-resolution

ddy simulations may become feasible in the near future. Recently,

cean general circulation models (OGCMs) based on nested grids and
∗ Corresponding author. Tel.: +447935872407.
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perating at high resolutions started to appear (Gula et al., 2015).

owever, such a possibility is not yet within the reach of the modern

GCMs operating on the planetary scale due to their incapability to

perate in fully Eddy-resolving regimes, that is, with resolved scales

own to 1 km. Even with the cutting-edge model resolution of 1/12°,
he eddies are still only marginally resolved and the simulation

imes are only tens of years (Marsh et al., 2009; Treguier et al.,

014). Although recent milestone simulations, used the MIT general

irculation model, demonstrate the ability of the model to work at

ery high spatial resolutions (1/146° to 1/50° horizontal grid spacing

nd 90 vertical levels) and to resolve the eddies (Armstrong et al.,

014), the simulation times are short and systematic exploration

f the solution convergence and parameter sensitivity studies are

nfeasible (Armstrong et al., 2014). However, yet the lack of immense

omputational power corners OGCMs into unavoidable eddy param-

terisation which, being so far largely inaccurate, remain an Achilles

eel of the ocean modelling. This sets a favourable situation for

ighter oceanic models to guide the research of ocean eddy dynamics

ntil OGCMs can resolve all important length scales for long-time

uns.

http://dx.doi.org/10.1016/j.ocemod.2015.07.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ocemod
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ocemod.2015.07.018&domain=pdf
mailto:i.shevchenko@imperial.ac.uk
http://dx.doi.org/10.1016/j.ocemod.2015.07.018
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In this work we take this opportunity and consider dynamically

viable and featurely enriched quasi-geostrophic (QG) model, which

simulates the mesoscale motions well beyond its formal limits of ap-

plicability (Mundt et al., 1997; Zurita-Gotor and Vallis, 2009). Our

goal and the novelty of this work is to explore the eddy effects for

a broad range of Reynolds numbers Re so that the flow is increasingly

controlled by the explicit nonlinear eddy dynamics rather than by

diffusive eddy parameterisation. The other goal is to establish a set of

benchmark double-gyre solutions and put forward a methodology for

systematic analyses of eddy effects in more advanced, but also much

more computationally expensive, primitive-equation ocean models.

There are three precursors to this work. The first one is the work

by Holland (1978), who pioneered a two-layer eddy-permitting QG

model with the horizontal grid resolution of dx = 20 km and showed

that dynamically resolved fluctuations feed back on the ocean gyres.

The second work is by Barnier et al. (1991) who studied the three- and

six-layer double-gyre QG model with the horizontal grid resolution of

dx = 10 km. The main conclusion of the authors is that the high baro-

clinic modes play a catalytic role in eddy/mean interactions and, thus,

elongate the eastward-jet extensions of the western boundary cur-

rents such as the Gulf stream and Kuroshio. The third study is the one

by Siegel et al. (2001), in which a benchmark six-layer QG solution of

ocean gyres with relatively large Re was spun up for six years and run

for another three years with the horizontal resolution of dx = 1.6 km.

The authors concluded that at large Re the time-mean kinetic energy

is relatively independent of Re, but meridional eddy fluxes keep in-

creasing with it. There are also some works studying QG surface dy-

namics requiring high horizontal and vertical resolutions (e.g. Roullet

et al. (2012)), but this dynamics is beyond the scope of our study,

where we centre on vertical scales of motion related to the pycno-

cline and captured by the low baroclinic modes, since these motions

are the most important ones for the Gulf stream mesoscale eddy dy-

namics, which is the main focus of our work.

In our work we continue and extend the past studies by (i) con-

sidering much more realistic flow regimes, (ii) reaching much larger

Re, (iii) refining the horizontal grid resolution down to dx = 937 m

for more accurate representation of mesoscale eddies, and (iv) by

significantly extending the simulation times for much more reliable

statistics. Our use of the advanced numerics yields another gaining

factor of 4 in terms of the finer spatial resolution (Karabasov et al.,

2009), though this factor may be smaller at extremely high resolu-

tions. To summarize, in terms of the dynamically resolved degrees of

freedom and achieved simulation years, our benchmark solution is at

least 1.5 × 106, 8500, and 500 times more expensive, in terms of the

degrees of freedom and simulation time, than the ones in (Holland,

1978), (Barnier et al., 1991), and (Siegel et al., 2001), respectively. We

also looked more thoroughly into the time-mean flow and eddy prop-

erties and their dependencies on Re and studied the dynamic effects

of high baroclinic modes.

2. Double-gyre Model

We consider the classical double-gyre QG model, describing ide-

alised midlatitude ocean circulation, in three- and six-layer con-

figurations (denoted as 3L and 6L). The multi-layer QG equations

(Pedlosky, 1987; Vallis, 2006) for the potential vorticity (PV) anomaly

q in a domain � are

∂t qi + J(ψi, qi + βy) = δ1iFw − δiN μ�ψi + ν�2ψi,

i = 1, 2, . . . , N , (1)

where J( f, g) ≡ fxgy − fygx, and δij is the Kronecker symbol; N =
{3, 6} is the number of stacked isopycnal fluid layers for the 3L

and 6L setups with depths (from top to bottom): H1 = 0.25 km,

H2 = 0.75 km, H3 = 3.0 km; and H1 = H2 = H3 = H4 = 0.25 km, H5 =
1.0 km, H6 = 2.0 km, respectively. The computational domain � is a

square, closed, flat-bottom basin of dimensions L × L × 4 km, with
= 3840 km. The asymmetric wind curl forcing (Ekman pumping)

rives the double-gyre ocean circulation, and it is given by

w =
{−1.80 π τ0 sin (πy/y0), y ∈ [0, y0),

2.22 π τ0 sin (π(y − y0)/(L − y0)), y ∈ [y0, L],

ith a wind stress τ0 = 0.3 N m−2 and the tilted zero forcing line y0 =
.4L + 0.2x, x ∈ [0, L]. Notice that τ is chosen so that to avoid unreal-

stically strong eastward jet in low-viscosity (high Reynolds number)

egimes. The planetary vorticity gradient is β = 2 × 10−11 m−1 s−1,

he bottom friction parameter is μ = 4 × 10−8 s−1, and the lateral

ddy viscosity ν is a variable parameter specified further below.

The layerwise PV anomaly qi and the velocity streamfunction ψ i

re dynamically coupled through the system of elliptic equations:

i = �ψi − (1 − δi1)Si1(ψi − ψi−1) − (1 − δiN)Si2(ψi − ψi+1),

i = 1, 2, . . . , N , (2)

ith the stratification parameters Si1, Si2 chosen so that the first and

he second Rossby deformation radii for the 3L and 6L configura-

ions are Rd1 = 40 km, Rd2 = 23 km; and Rd1 = 40 km, Rd2 = 16 km,

d3 = 11.6 km, Rd4 = 9.8 km, Rd5 = 7.8 km, respectively. Note that

d1 is the same in both configurations as well as H1. Systems (1 and

) are augmented with the integral mass conservation constraints

McWilliams, 1977):

t

∫∫
�

(ψi − ψi+1) dydx = 0, i = 1, 2, . . . , N − 1 , (3)

ith the zero initial condition, and with the partial-slip lateral

oundary condition:

nnψi − α−1∂nψi = 0, i = 1, 2, . . . , N , (4)

here α = 120 km and n is the normal-to-wall unit vector.

The QG model (1–4) is solved with the high-resolution CABARET

ethod based on a second-order, non-dissipative and low-dispersive,

onservative advection scheme (Karabasov et al., 2009). The distinc-

ive feature of this method is its ability to simulate large-Re flow

egimes at much lower, compared to conventional methods, compu-

ational costs. An efficient parallelisation of the QG model allowed us

o carry out high-performance computations on uniform horizontal

rids of size G = {1292, 2572, 5132, 10252, 20492, 40972}, where the

rid of size X × X is abbreviated as X2.

Our horizontal grid resolution is consistent with the vertical one

o that the shortest deformation radius is at least marginally resolved

ith 5–10 grid points. Further simultaneous refinement of the hori-

ontal and vertical resolutions is, of course, desirable, but remains

eyond the scape of this paper due to the limit of our computational

esources.

Finally, we would like to remind that QG approximation relies on

everal assumptions, and some of them (smallness of the vertical ve-

ocity and density anomalies) including the key one - smallness of the

ossby number - break down for submesoscale motions operating on

he scales shorter than the relevant Rossby deformation radius. Given

ur finest nominal grid resolution of about one km and the fact that

umerical schemes typically require 5–10 grid points to represent a

ength scale with reasonable accuracy (Karabasov et al., 2009), we

odel the length scales down to 5–10 km, which may be near the

dge of formal QG applicability.

. Analyses of the double-gyre solutions

In this section we describe various properties of the ocean model

olutions, study main dependencies of the large-scale flow and

esoscale eddies on the Reynolds number Re and define some di-

gnostics for the next sections. The total basin-average time-mean
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otential P and kinetic Ki energies of the flow are given by

P = 1

2

N−1∑
i=1

HiSi2

A

∫∫
�

(ψi − ψi−1)2 dydx , i = 2, 3, . . . , N ,

i = 1

2

Hi

A

∫∫
�

(∇ψi)2 dydx , i = 1, 2, . . . , N,

here A = LxLyH, and H = ∑N
i=1 Hi. By decomposing ψi = ψ i + ψ ′

i
nto the time-mean (overbared) and fluctuating (primed) compo-

ents, we define the eddy potential energy EPE and the eddy kinetic

nergy EKEi as

EPE = 1

2

N−1∑
i=1

HiSi2

A

∫∫
�

(ψ ′
qi

− ψ ′
i−1

)2 dydx , i = 2, 3, . . . , N,

KEi = 1

2

Hi

A

∫∫
�

(∇ψ ′
i
)2 dydx , i = 1, 2, . . . , N,

nd the energies of the mean flow, denoted by angular brackets, are

ound as

P〉 = P − EPE, 〈K〉i = Ki − EKEi , i = 1, 2, . . . , N.

e also introduce the eddy PV flux divergence J′
i
= −( J(ψ, q) −

(ψ, q)), referred to as the eddy forcing, its time mean J′
i

and stan-

ard deviation σ
(
−J′

i

)
, as well as the corresponding time-mean eddy

V flux F ′
i

= v′
i
q′

i
, where vi = (∂yψi,−∂xψi). To compute the upper-

ayer time-mean eddy PV flux F ′
1

between the gyres, we calculated the

ntegral

′
S

=
∫
S

F ′
1

· n dS

ver the separatrix S - the line with min�′ (F ′
1
), where �′ is a do-

ain that includes the eastward jet and contains the most intensive

ddy forcing; n is the unit normal vector pointing northward. The

-average integral of a function f(x, y) is denoted by I�(f), and f
(N),k

j

tands for the time-mean value of f computed on a k2 grid for the

-layer model on the jth layer.

We define the maximum Reynolds number as

e = URd1/ν,

here U is the maximum speed in the time-mean eastward jet,

nd Rd1 is the first baroclinic Rossby deformation radius, which is

onstant. Note that Re can be defined differently, by using other

elocity and length scales (e.g. (Siegel et al., 2001)); our definition

mphasizes the eastward jet and mesoscale eddies. In the next

ections, we study how different properties of the flow depend on Re

[96, 10368], which is inversely proportional to the eddy viscosity

∈ [6.25, 200] m2 s−1.

.1. Numerical convergence study

This section focuses on the numerical convergence analysis and

n the restrictions imposed by the eddy viscosity on the grid resolu-

ion for accurate approximation of the solution. The properly resolved

ow is full of small-scale eddies concentrated around the western

oundary currents and the eastward jet (Fig. 1). These eddies are re-

ponsible for the backscatter that maintains the eastward jet (Berloff,

005), therefore, resolving them is crucial.

We identified two factors that substantially influence the quality

f the solution. The first factor is statistical, and it deals with the solu-

ion spin-up and simulation times. We found that the six-year spin-

p intervals (Siegel et al., 2001) do not allow the solutions to reach

heir statistical equilibria. Moreover, due to the interdecadal variabil-

ty of the solutions (Berloff et al., 2007a; 2007b), the three-year-long
ecords used for the analysis in (Siegel et al., 2001) can not be statisti-

ally viable. Therefore, in all our numerical experiments, the model is

nitially spun up from the state of rest over the required time interval

spin = {50, 100} years, which depends on the eddy viscosity ν and

he number of isopycnal layers N, until the model solution becomes

tatistically equilibrated. Then, the solution is computed for another

sim = 100 years and saved for analyses. As an indicator of the spin-

p stages and the achieved statistical equilibria, we used the energy

ime series (Fig. 2). We found that less viscous flows have longer Tspin,

nd T
(3)

spin
> T

(6)
spin

for all the solutions studied. We attribute this to the

onger and stronger eastward jet extension in the 3L case and discuss

his further below.

The second factor is the grid resolution needed to ensure that sta-

istically the numerical solution is sufficiently converged to the true

olution. In order to test the convergence, we computed the solu-

ion for each ν , studied in the paper, on progressively refined grids

nd compared the results. The grid size is assumed to be sufficient, if

ts halving produces only small change in the relative l2-norm error

( f, g) = ‖ f − g‖2/‖g‖2 (Table 1), where f and g are solutions com-

uted on the coarse and the fine grids, respectively. To study the er-

or behaviour in the neighbourhood of the eastward jet, which is the

ost Re-dependent part of the solution, we introduced a similar l2-

orm error δ̃ computed in the restricted domain around the jet (∼20%

f the basin). Note that the precursors works by Barnier et al. (1991)

nd Siegel et al. (2001) did not estimate the convergence of their

olutions.

The largest δ were found for the most viscous solutions with

= 200 m2 s−1 and on the 2572 grid: δ(ψ
(3),129

1 ,ψ
(3),257

1 ) = 20% and

(ψ
(6),129

1 ,ψ
(6),257

1 ) = 15%. We hypothesize that these large num-

ers indicate the enhanced importance of marginally resolving Rd1.

n large-Re solutions, which are in the main focus of this study, δ is

− 3% and δ̃ is 3 − 4% (Table 1). Relative error is not computed for

he 40972 solutions, since the 81932 solution is not available, but the

ependency between the required grid resolution and the eddy vis-

osity suggests that the 40972 resolution is adequate. Note that the

orizontal and vertical resolutions in the largest solutions are consis-

ent as discussed in Section 2.

To guarantee numerical convergence of the solutions, we found

hat the horizontal grid spacing has to be halved in each direction

n response to halving ν . Note that this grid refinement halves the

ime step needed to maintain stable time integration. Overall, since U

ends to increase with Re, on the next refined grid the computation is

0 times more expensive. It may seem that the proposed convergence

riterion is too tight and leads to unnecessarily highly-accurate solu-

ions, which do not reveal new small-scale features of the flow (espe-

ially in less viscous regimes), but in terms of the restricted error δ̃,

hich is significantly larger than δ, the convergence criterion is not

hat strict.

The cumulative effect of properly resolved mesoscale eddies on

he large-scale flow is illustrated by Figs. 3(a–c), where the underre-

olved solutions (i.e., when the large-scale flow on the coarser grid

s significantly affected by the small-scale errors) on 2572 grid are

ompared with the properly resolved (i.e., converged) solutions com-

uted on 10252 grid. Each underresolved solution differs substan-

ially from the converged one (Table 2): its eastward-jet penetration

ength Lp (i.e., the distance from the western boundary to the most

astern point at the tip of the time-mean jet, where the time-mean

ow speed is less than 0.1 m s−1) and volume transport Q (i.e., the

ifference between the maximum and minimum of the time-mean

arotropic transport streamfunction) are considerably smaller and

he flow is less energetic. We also investigated how the grid reso-

ution affects the eddy forcing, including its time mean J′ and stan-

ard deviation σ( − J′). Comparison of 2572 and 10252 solutions for

= 25 m2 s−1 illustrates to what extent the eddy forcing is underesti-

ated on the coarser grid (Fig. 4). The integrals of the underresolved
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Fig. 1. A sequence of 3L and 6L solutions for increasing Re. Shown are an instantaneous upper-layer PV anomaly q(3)
1

(first column) and q′(3)
1

(second column), as well as q(6)
1

(third

column) and q′(6)
1

(forth column), all given in units of [s−1 f −1
0

], for different ν [m2 s−1] and the eddy-resolving grids G; f0 = 0.83 × 10−4 is the Coriolis parameter. Note that at lower

ν the eddies and coherent vortices are more abundant and pronounced, and the eastward jet is always longer for the 3L solutions than for the 6L ones.
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Table 1

Numerical convergence tests. The relative errors δ, δ̃ and the Reynolds number Re for different eddy viscosity ν [m2 s−1] and grids G1, G2

on the 3L and 6L solutions; G2 is a two times denser grid than G1; dx [km] is the horizontal resolution. The last row is empty, because the

81932 solutions are not available.

G1 dx ν Re(3) Re(6) δ(ψ
(3),G1

1 ,ψ
(3),G2

1 ) δ̃(ψ
(3),G1

1 ,ψ
(3),G2

1 ) δ(ψ
(6),G1

1 ,ψ
(6),G2

1 ) δ̃(ψ
(6),G1

1 ,ψ
(6),G2

1 )

1292 29.77 200 120 96 0.20 0.55 0.15 0.46

2572 14.94 100 444 332 0.13 0.28 0.08 0.23

5132 7.49 50 1088 848 0.10 0.19 0.03 0.07

10252 3.75 25 2368 1984 0.04 0.07 0.04 0.09

20492 1.87 12.5 4928 4384 0.03 0.04 0.01 0.03

40972 0.94 6.25 10368 9472 − − − −

Fig. 2. Time series of the non-dimensional total potential energy P for (a) 3L and (b)

6L solutions for different values of viscosity ν . Note that low-frequency variability in-

creases with decreasing ν . Some time series are longer than others, since the spin-up

time is larger for the low-ν solutions while the simulation time is always kept equal to

100 years.

Table 2

The effect due to the inadequate resolution for the east-

ward jet penetration length Lp , volume transport Q, the

time-mean potential 〈P〉 and the eddy potential EPE en-

ergies, the time-mean upper-layer kinetic 〈K〉1 and the

eddy kinetic EKE1 energies in the 3L and 6L models for

G1 = 2572, G2 = 10252 grids, and ν = 25 m2 s−1.

3L 6L

LG1
p /LG2

p 0.80 0.40

QG1 /QG2 0.84 0.66

〈P〉G1 /〈P〉G2 0.83 0.70

EPE
G1

/EPE
G2

0.83 0.70

〈K〉G1

1
/〈K〉G2

1
0.72 0.56

EKE
G1

1 /EKE
G2

1 0.41 0.34

Fig. 3. Effect of the resolution error. The time-mean transport velocity streamfunction

ψ1 on 2572 and 10252 grids for ν = 25 m2 s−1. The upper and lower panels correspond

to 3L and 6L solutions, respectively; contour interval is 0.5 Sv.

Table 3

Resolution effects and the non-dimensional time-mean eddy forcing versus its

transient part. The integral of the upper-ocean time mean eddy forcing J′ and

its standard deviation σ( − J′) for ν = 25 m2 s−1 on 2572, 10252 grids for 3L and

6L solutions.

G I�( | J′(3) | ) I�( | J′(6) | ) I�(σ
(
−J′(3)

)
) I�(σ ( − J′(6)))

2572 0.04 × 10−3 0.03 × 10−3 1.09 × 10−3 0.75 × 10−3

10252 0.06 × 10−3 0.05 × 10−3 1.90 × 10−3 1.70 × 10−3

e

n

c

3

a

a

p

R

a

ddy forcing I�(|J′|) and its standard deviation I�(σ( − J′)) are sig-

ificantly smaller (Table 3). We hypothesize that this results in the

orresponding difference between the time-mean flows (Fig. 3).

.2. Parameter study

Sensitivity of the solutions to changes in problem parameters is

n important issue that we addressed systematically. We carried out

parameter study by widely varying the main parameters of the

roblem: the bottom friction μ, the partial-slip parameter α and the

ossby deformation radii. Note that the radii were varied proportion-

lly so that the ratios between them remain unchanged. Only one
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Fig. 4. Effects of the resolution error on the eddy forcing properties. The non-dimensional time mean of the fluctuating component of the upper-ocean eddy forcing −J′ and its

standard deviation σ( − J′) for the 3L (upper row) and 6L (lower row) solutions on 2572 and 10252 grids and for ν = 25 m2 s−1. Note that except near the wester boundary, transient

part of the eddy forcing completely dominates over the time-mean part.

Table 4

The effect of varying the problem parameters on the time-mean eastward jet penetration length Lp and

volume transport Q in the 3L and 6L models for ν = 50 m2 s−1. The tilded function denotes the perturbed

quantity as the parameter varies.

L̃(3)
p /L(3)

p Q̃(3)
p /Q(3)

p δ(ψ̃
(3)

1 ,ψ
(3)

1 ) L̃(6)
p /L(6)

p Q̃(6)
p /Q(6)

p δ(ψ̃
(6)

1 ,ψ
(6)

1 )

μ̃/μ = 0.25 1.05 1.12 0.09 1.12 1.13 0.10

μ̃/μ = 2.50 0.90 0.85 0.16 0.97 0.86 0.07

α̃/α = 0.20 0.91 0.82 0.12 0.75 0.73 0.16

α̃/α = 5.0 1.05 1.02 0.05 1.11 1.09 0.08

R̃d/Rd = 0.75 0.56 0.77 0.79 1.01 1.14 0.19

R̃d/Rd = 0.875 0.91 1.01 0.28 1.07 1.13 0.16
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parameter was varied at a time, while all the others were fixed at

their main values (Section 2), and focused on main flow characteris-

tics such as the eastward jet penetration length Lp, the volume trans-

port Q and the relative difference δ (Table 4, Fig. 5).

In the 3L and 6L configurations, the variation of the bottom fric-

tion μ does not significantly influence the solution: δ(ψ̃
(3)

1 ,ψ
(3)

1 ) =
15% (Fig. 5a) and δ(ψ̃

(6)

1 ,ψ
(6)

1 ) = 10% (Fig. 5b), where ψ̃ is a

perturbed quantity as the parameter varies. We found that the

smaller/larger is μ, the larger/smaller is the difference in the 3L/6L

case, and δ(ψ̃
(3)

1 ,ψ
(3)

1 ) ≈ δ(ψ̃
(6)

1 ,ψ
(6)

1 ) for the larger μ, whereas

δ(ψ̃
(3)

1 ,ψ
(3)

1 ) > δ(ψ̃
(6)

1 ,ψ
(6)

1 ) for the smaller μ. The eastward pen-

etration length and the volume transport are larger and smaller in

the low- and high-μ regime, respectively.

The situation is the opposite when the parameter α is varied: the

smaller is α, the smaller is δ in both the 3L and 6L solutions, and

δ(ψ̃
(3)

1 ,ψ
(3)

1 ) < δ(ψ̃
(6)

1 ,ψ
(6)

1 ) for all α considered. Note that small

and large α make the partial-slip boundary condition closer to the

no-slip and free-slip boundary condition, respectively.

Overall, the small α greatly reduces Lp and Q in the 3L solutions

and even more so in the 6L ones (Fig. 5c), but the large α exerts a
uch smaller influence upon Lp and Q (Fig. 5d). For a systematic study

n how α influences the western boundary current, see (Berloff and

cWilliams, 1999).

The variation of the Rossby deformation radii induces more no-

iceable changes relative to the other parameters. In 3L solutions,

(ψ̃
(3)

1 ,ψ
(3)

1 ) = 79%, and Lp and Q are considerably smaller (Fig. 5e).

owever, in 6L solutions δ(ψ̃
(6)

1 ,ψ
(6)

1 ) = 19%, and changes in Lp and

do not exceed 15% (Figs. 5(e and f)). This therefore suggests that 6L

olutions are less sensitive to changes in stratification, hence, more

obust.

On the basis of the parameter sensitivity study, we concluded

hat the flow regime explored in this paper is extremely robust and

haracterised by the well-developed eastward jet and vigorous eddy

eld.

.3. Time-mean and instantaneous flows

In this section we study how properties of the large-scale flow

hange with increasing Re. In particular, we look at the penetration

ength of the eastward jet Lp, volume transport Q, and the qual-

tative eddy patterns. Figs. 1 and 6 show the instantaneous and
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Fig. 5. The effect of varying the problem parameters (bottom friction μ, the partial-

slip parameter α, and Rossby deformation radii Rd) on the time-mean transport veloc-

ity streamfunction ψ
(3)

1 (left column) and ψ
(6)

1 (right column) for ν = 50 m2 s−1. The

tilded function denotes the perturbed quantity as the parameter varies; contour inter-

val is 0.5 Sv.
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ime-mean flows for the 3L and 6L cases. All these flows have a pro-

ounced double-gyre pattern, with the well-defined eastward jet ex-

ension generating numerous transient eddies and coherent vortices.

he larger is Re, the stronger is the jet extension, and the richer and

ore intensive is the eddy field.

Our analysis is focused on the eastward jet and its adjacent recir-

ulation zones, because this is the main eddy-driven part of the flow.

he length and the volume transport of the jet echo each other: both

uantities grow with Re and go to an asymptote in the 3L case, how-

ver, in the 6L case they tend to grow with no sign of approaching

n asymptote (Fig. 7). The jet elongates at larger Re, and this is ac-

ompanied by the amplification of its adjacent recirculation zones.

oreover, the inequality L
(3)
p > L

(6)
p holds for all Re studied, while

(3) > Q(6) is valid only for low-Re flows, and in large-Re solutions
(6) > Q(3) (Fig. 7). Our experiments with different basin sizes showed

hat L
(3)
p and Q(3) approach an asymptote because of the size of the

asin. On the other hand, no sign of tending to an asymptote for L
(6)
p

nd Q(6) can be due to the large-Re activation of the smaller scales

ssociated with the high baroclinic modes.

There is a remarkable difference between the 3L and 6L solutions:
(3)
p is significantly longer than L

(6)
p for the whole range of Re (Fig. 7).

his result is completely opposite to the findings of Barnier et al.

1991). This disagreement can partially be due to sufficient grid reso-

ution in our case, but mostly it can be due to the profound difference

etween the explored flow regimes: Barnier et al. (1991) considered

ymmetric wind forcing that at large Re induces unrealistically strong

nd symmetric eastward jet. We found that high baroclinic modes

n the 6L case weaken the gyres, slow down the development of the

astward jet, and L
(6)
p and Q(6) do not approach an asymptote, as con-

rasted by comparison with 3L solutions.

The flow dependence on ν (hence, on Re) is shown in Fig. 1. As Re

rows, instantaneous PV anomaly snapshots illustrate how the blurry

ow-Re flow sharpens up and becomes full of eddies and coherent

ortices. We found that the characteristic vortex size is in the range

f 30–140 km, and the vortex lifespan varies from about 20 days to

ore than three years. Being generated by the jet meanders, some

ortices drift westward in the recirculation zone, where they merge

ith each other and ultimately become reclaimed by the jet or anni-

ilated by the strong shear near the western boundary. These vortices

re short-living. Another active vortex-formation region is located at

he eastern tip of the jet. The latter vortices are more copious and

lso long-living, since they propagate westward along the flanks of

he recirculation zones, relatively far from the jet.

In the 3L configuration, some isolated coherent vortices penetrate

ar into the southern gyre, as the one seen near the southern bound-

ry (Fig. 1f). Such vortices emerge in the neighbourhood of the west-

rn boundary current separation point, propagate far upstream, and

inger for years. We regard them as a 3L QG approximation artifact

merging at large Re due to some idealisations of the boundary-layer

ynamics (e.g. flat bottom, partial-slip boundary conditions, fixed

tratification). No such long-living vortices are found in the more re-

listic 6L solutions.

To summarize, our work studies a different from (Siegel et al.,

001) flow regime in which the eastward jet is robust and well-

eveloped. This explains many differences between the solutions,

oth in the time-mean and instantaneous fields.

.4. Flow energy

This section deals with Re-dependencies of the potential and ki-

etic energies, defined in Section 3. We found that the energies do not

pproach an asymptote at large Re. The only exception is the upper-

ayer mean-flow kinetic energy 〈K〉(3)
1

which tends to an asymptote

n the 3L case, however, the upper-layer eddy kinetic energy EKE
(3)
1
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Fig. 6. A sequence of time-mean solutions for increasing Re. The time-mean transport velocity streamfunction ψ1: ψ
(3)

1 (left column), ψ
(6)

1 (middle column), and ψ
(3)

1 − ψ
(6)

1 (right

column) for different grids G and viscosities ν [m2 s−1]; contour interval is 0.5 Sv. Note that high baroclinic modes in the 6L solutions inhibit the development of the eastward jet

and reduce the strength of the gyres as opposed to the 3L solutions.
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(a) (b)

Re Re

Fig. 7. The time-mean eastward jet penetration length Lp (a) and volume transport Q (b) as a function of the Reynolds number Re for 3L and 6L solutions. Note, that L(3)
p and Q(3)

tend to an asymptote, whereas L(6)
p and Q(6) do not.

(a) (b)

Re Re

(c) (d)

Re Re

Fig. 8. Dependencies of (a) the non-dimensional mean-flow potential energy 〈P〉 and the eddy potential energy EPE; (b) the upper-layer mean-flow kinetic energy 〈K〉1 and the

eddy kinetic energy EKE1; (c) the integral of the upper-ocean eddy forcing I�(|J ′|) and (d) its standard deviation I�(σ ( − J ′)) on the Reynolds number Re for the 3L and 6L

solutions.
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rows rapidly with Re (Fig. 8b). In the 6L case, 〈K〉(6)
1

moderately

ncreases with Re without approaching an asymptote, while EKE
(6)
1

ises fast akin to the 3L case. Overall, 〈K〉(3)
1

and 〈K〉(6)
1

increase 3.8

nd 4.6 times, respectively, over the studied range of Re, while EKE
(3)
1

nd EKE
(6)
1 rise 10.6 and 13.0 times, respectively. Note that save for

he lowest-Re solution, the upper-layer eddy-kinetic energy EKE1

ominates over the mean-flow kinetic energy 〈K〉1 and more so in

he 3L configuration.

The situation with the potential energy is different. In both 3L and

L solutions, the mean-flow potential energy 〈P〉 is three orders of

agnitude smaller than the eddy potential energy EPE (Fig. 8a). The

ncrease of 〈P〉(3) and 〈P〉(6) is much weaker, compared to 〈K〉(3)
1

and

K〉(6)
1

, namely 2.2 and 2.5 times, respectively. Not much larger grow

PE
(3)

and EPE
(6)

: 2.4 and 2.6 times, respectively. For the whole range
f Re explored, EPE
(3)

is larger than EPE
(6)

, 〈P〉(3) > 〈P〉(6), 〈K〉(6)
1

and

KE
(6)
1 increase with Re, but remain substantially smaller than EPE

(6)
,

hich is dominated by the larger scales. These results do not corrob-

rate the conclusion of (Siegel et al., 2001) that K
(6)
1 is relatively inde-

endent on Re. Instead, we found that K
(6)
1 is very dependable on Re

Fig. 8b). We attribute this to the above-discussed difference between

he flow regimes and to the more reliable statistics in our case.

.5. Eddy forcing and eddy PV flux

The focus of this section is on studying Re-dependencies of the

ddy forcing and eddy PV flux, which are dynamically even more

nteresting quantities than the eddy energies, because they quan-

ify mean flow/eddy interactions. These Re-dependencies are studied

ere for the first time.
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Fig. 9. Non-dimensional time-mean eddy PV flux F ′
1

for increasing Re and grids G in the 3L solutions; the separatrix is marked in blue. The Helmholtz decomposition of F ′
1

into (d)

divergent F ′
1,d and (e) rotational F ′

1,r components at Re = 2368.
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w
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p

As shown in the previous section, both the eddy kinetic and po-

tential energies increase with Re, and this is reflected by the basin-

averaged eddy forcing I�(|J′|) and its standard deviation I�(σ( − J′))
(Figs. 8(c and d)). Both measures also do not approach an asymptote

with Re.

We found that I�(|J′|) is by one order of magnitude smaller than

I�(σ( − J′)) and the difference increases with Re. Thus, the transient

part of the eddy forcing not only dominates over the time-mean part
Berloff, 2005; Li and von Storch, 2013), but its dominance even in-

reases with Re (Figs. 8(c, d), and11(gh)).

We also studied how the upper-layer time-mean eddy PV flux F ′
1

epends on Re (Figs. 9(a,b, and c)). The flux is relatively large near the

estern boundary and along the eastward jet. However, its ampli-

ude gradually attenuates as the flux transports PV from the western

oundary into the interior of the basin. Using the Helmholtz decom-

osition we split the flux F ′ into a divergent F ′
1,d and a rotational
1
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[m
s−

2
]

Re

Fig. 10. Dependence of the time-mean eddy PV flux thorough the separatrix F ′
S

[m s−2]

on the Reynolds number Re in 3L and 6L solutions.

Table 5

Power-law dependencies of the eastward jet (EJ) characteristics on the Reynolds

number Re for the 3L and 6L models.

EJ characteristic Three layers Six layers

Lp [km] −4 × 104Re−0.5 + 4 × 103 −2 × 104Re−0.04 + 2 × 104

Q [Sv] −5 × 102Re−0.4 + 102 −103Re−0.02 + 103

〈K〉1 20Re0.03 − 20 0.1Re0.3

〈P〉 0.2Re0.02 − 0.2 0.01Re0.1

EKE1 4Re0.2 − 10 0.5Re0.3 − 2

EPE 7 × 102Re0.03 − 7 × 102 50Re0.1 − 50

I�(|J′|) 10−6Re0.4 10−5Re0.3

I�(σ ( − J′)) 10−6Re0.9 10−6Re0.8

F

a

a

g

fi

i

g

o

m

j

r

a

d

v

f

fl

3

v

m

d

w

o

m

R

l

a

(

i

a

w

a

v

e

f

a

a

i

a

S

fl

i

t

a

s

i

l

R

4

t

p

R

d

m

s

d

a

f

t

i

n

i

s

1

a

g

l

p

d

t

c

g

o

f

a

f

y

d

e

t

g

h

s

o

c

p

′
1,r flow component as F ′

1
= F ′

1,d + F ′
1,r . As can be seen in Figs. 9(d

nd e), the divergent part of the eddy PV flux acts along rather than

cross the eastward jet and has no clear relation to the large-scale PV

radient.

We computed the total eddy PV flux through the separatrix F ′
S

(de-

ned in Section 3) and found that this flux is always positive (Fig. 10),

.e., on average PV is transported from the southern to the northern

yre in the up-gradient sense. It is clear from Fig. 9 that divergence

f the time-mean eddy flux, that is, the time-mean eddy forcing, is

aintained by the diverging eddy fluxes oriented along the eastward

et and located to the north and south from its core. These fluxes cor-

espond to the PV anomalies generated by the upstream instabilities

nd advected downstream along the jet. Thus, the idea of using the

own-gradient PV closure

′q′ = −κ∇q, κ > 0

or the eddy parameterisation may lead to physically inconsistent

ows in the vicinity of the jet.

.6. Extrapolation of flow characteristics for larger Re

In order to study how different flow characteristics depend on

ery large Reynolds numbers Re, for which we cannot compute nu-

erically converged solutions, we found approximate power law

ependencies. To track the evolution of the flow characteristics

ith Re, we first found a power law describing the Re-dependence

n ν (Re(3) ≈ Re(6) ≈ 7 × 104ν−1.0 − 150) and then, given Re, esti-

ated the other characteristics. Note that due to Re(3) ≈ Re(6), the

eynolds numbers for the 3L and 6L solutions have similar power

aws (Table 5).

We found that in the 3L model Lp and Q approach an asymptote

t large Re and their values go to L
(3)
p = 3520 km and Q(3) = 95 Sv

Figs. 11(a and b)). This is due to the finite size of the basin limit-

ng the jet. However, in the 6L case these quantities do not tend to an

symptote. This can be due to activation of smaller scales associated
ith the high baroclinic modes or due to the jet length being shorter

nd less affected by the basin size.

The mean-flow potential energies 〈P〉(3) and 〈P〉(6) demonstrate a

ery moderate increase with Re (Fig. 11c), whereas the eddy potential

nergies EPE
(3)

and EPE
(6)

grow rapidly (Fig. 11d). Due to the intensi-

ying energy transfer from the large to small scales, 〈K〉(3)
1

and 〈K〉(6)
1

,

s well as EKE
(3)
1 and EKE

(6)
1 , robustly increase with Re (Figs. 11(e

nd f), but remain smaller than EPE
(3)

and EPE
(6)

, which are dom-

nated by the large-scale flow. The potential and kinetic 6L energies

re smaller than the 3L ones, but their increase rates are higher (see

ection 3.4). The eddy kinetic energy increases faster than the mean-

ow energy, and as we found, this increase is associated with increas-

ng eddy forcing (Fig. 11g).

We found that high baroclinic modes in 6L solutions slow down

he development of the eastward jet, weaken the gyres, and preclude

n asymptote for L
(6)
p and Q(6), as contrasted by comparison with 3L

olutions. Besides, L
(3)
p > L

(6)
p for all Re studied, whereas Q(3) > Q

(6)
p

n low-Re regimes and Q(3) < Q
(6)
p for high-Re solutions (Fig. 7). The

atter is due to the more intense deep-ocean circulation in the large-

e 6L solution.

. Conclusions and discussion

The purpose of this research is to analyse how different aspects of

urbulent geostrophic flows, such as time-mean linear and quadratic

roperties, as well as instantaneous flow features depend on the

eynolds number Re. The motivation of the study is twofold: to un-

erstand the evolution of eddy/mean flow interactions as more and

ore degrees of freedom become dynamically available at progres-

ively larger Reynolds numbers, and to establish a set of benchmark

ouble-gyre solutions and put forward a methodology for systematic

nalyses of Re-dependencies. We propose to adopt this methodology

or analyses of comprehensive general circulation models (GCMs).

We studied the classical quasi-geostrophic double-gyre model in

he idealised closed-basin configuration, with both three and six

sopycnal layers (3L and 6L models), for a broad range of Reynolds

umbers Re ∈ [96, 10368] achieved by varying the eddy viscosity ν
n the range from 200 m2s−1 to 6.25 m2s−1, and for long 100 year

imulations, all carried out on the computational grids ranging from

292 to 40972 points. Despite the use of powerful supercomputers

nd efficient numerical methods, we could not exercise horizontal

rid resolutions larger than 40972 and penetrate the curtain of even

arger Re. Moreover, increasing the number of vertical layers is also

roblematic, since using more than six layers will inevitably require

enser horizontal grids to keep the vertical and horizontal resolu-

ions consistent with solution convergence, as smaller length scales

orresponding to the new deformation radii become available.

The primary criterion we were guided by in choosing the quasi-

eostrophic model for study was the following: first, this is a classical

ceanic model which simulates the mesoscale motions far beyond its

ormal limits of applicability, e.g. (Mundt et al., 1997; Zurita-Gotor

nd Vallis, 2009); second, the relative simplicity of the model allows

or its systematic exploration in eddy-resolving regimes, which is be-

ond reach of OGCMs; and third, this model offers a wide palette of

ynamically viable and featurely enriched oceanic flows available for

xploration. For the sake of fairness, it is worth noting that although

he QG model allows us to study various flow regimes it filters out

ravity waves and other unbalanced motions, which, however, can be

andled with OGCMs but in relatively small domains and on short

imulation times.

The configuration of the model was chosen so that it enables

ne to work in eddy-resolving regimes and, most importantly, with

onverged solutions. We also adapted our parameters, as close as

ossible, to those used by our precursors (Barnier et al. (1991) and
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Fig. 11. Dependencies of different extrapolated flow characteristics in the 3L and 6L configurations on the Reynolds number Re; the tilded functions indicate extrapolated quantities.

Shown are (a) the penetration length Lp [km], (b) the volume transport Q [Sv], (c) the non-dimensional mean-flow potential energy 〈P〉, (d) the non-dimensional eddy potential

energy EPE, (e) the non-dimensional mean-flow upper-ocean kinetic energy 〈K〉1, (f) the non-dimensional upper-ocean eddy kinetic energy EKE1, (g) the integral of the eddy

forcing I�(|J′|) and (h) its standard deviation I�(σ (−J′)).
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Siegel et al. (2001)), but also in a such way that our solutions operate

in the robust flow regime characterised by the well-developed and

coherent eastward jet extension of the western boundary currents,

such as the Gulf stream and Kuroshio. The parameter study showed

that both the 3L and 6L solutions are quite insensitive to changes in

the governing parameters. Moreover, the 6L solutions demonstrate
ven less receptivity to the parameters alterations. The difference

etween our model and the ones used by Barnier et al. (1991) and

iegel et al. (2001) lies in the wind stress amplitude (which is about

wo times smaller in our case), the boundary conditions (we use the

artial-slip condition instead of the no-slip in (Siegel et al., 2001) and

ree-slip in (Barnier et al., 1991), the horizontal resolution (360 × 320
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n (Barnier et al., 1991) and 20482 in Siegel et al. (2001) against 40972

n our model), and both the spin up and simulation times (Tspin = 6

ears and Tsim = 7 years in (Barnier et al., 1991); Tspin = 3 years and

sim = 6 years in Siegel et al. (2001) compared with Tspin = 100 years

nd Tsim = 100 years used in our simulations). All these factors make

he jet underdeveloped in Siegel et al. (2001) and overdeveloped in

arnier et al. (1991).

Our study continues and extends the earlier works by Barnier

t al. (1991) and Siegel et al. (2001), and some of our findings and

onclusions are different from the earlier ones. Let us review the

ovel aspects of our work. First, we conducted a thorough numer-

cal convergence study and found the solutions converged on the

roper grids. Second, we considerably increased the spatial resolu-

ion of the model, spin-up and simulation times to obtain more physi-

ally reliable flows and more accurate statistics. All this increased our

omputational costs by a factor of about 8500 and 550, in terms of

he degrees of freedom and simulation time, compared to the works

Barnier et al., 1991) and (Siegel et al., 2001), respectively. Third, we

tudied the model solutions for both a much broader range and much

arger values of Re, and thus reached dynamically more realistic flow

egimes characterised by the robust eastward jet extension of the

estern boundary currents. Forth, we not only analysed the kinetic

nergy, as in (Siegel et al., 2001), but also the potential energy, the

ime mean and standard deviation of the eddy forcing as well as the

enetration length and volume transport of the eastward jet. Instead

f studying a longitudinal average of the eddy PV flux, as in (Siegel

t al., 2001), we investigated the full eddy PV flux and computed its

alue through the separatrix between the gyres. Fifth, we studied the

ffect of the high baroclinic modes and came to the opposite to ear-

ier work (Barnier et al., 1991) conclusions. Sixth, we obtained empir-

cal power laws for the potential and kinetic energies, the jet pene-

ration length and volume transport to study the behaviour of these

ow properties for larger Re.

Our main findings about the flow dependencies on Re are the fol-

owing. First, the main feature of the Re-dependence is a progres-

ive amplification of the eastward jet and its adjacent recirculation

ones, all maintained by the eddy backscatter mechanism (e.g. Berloff

2005)). Second, from the solution convergence study, we found that

alving the eddy viscosity ν requires approximately halving the grid

pacing, in order to keep the large-scale effects of the small-scale nu-

erical errors relatively small. By these standards a GCM with a reso-

ution of 1/12° permits ν not less than 50 m2 s−1. Third, the parameter

tudy suggests that the 6L-solutions are less influenced by changes

n the governing parameters (the bottom friction μ, the partial-slip

arameter α in the boundary condition (4) and the Rossby deforma-

ion radii) than the 3L ones. Fourth, from the empirical power laws

e concluded that at large Re the time-mean flow properties, such as

he jet penetration length and volume transport tend to an asymptote

nd grow in the 3L and 6L models, respectively. However, the time-

ean flow energy and eddy energy as well as the time-mean kinetic

nergy do not approach an asymptote at large Re as opposed to (Siegel

t al., 2001). The basin-averaged time-mean eddy forcing I�
(|J′|) and

ts standard deviation I�
(
σ
(
−J′

))
also increase with Re and exhibit

o tendency to approach an asymptote. Moreover, I�
(
σ
(
−J′

))
is by

ne order of magnitude larger than I�
(|J′|), and this difference grows

ith Re. Amplification of the eddy forcing fluctuations is consistent

ith stronger eddy backscatter that maintains the eastward jet and

ts adjacent recirculation zones (Berloff, 2005). Fifth, our findings

uggest that the down-gradient PV closure can result in physically

nconsistent flows, since PV is transported from the southern gyre to

he northern one in the up-gradient sense. Sixth, the vortex genera-

ion is mostly performed by meanders of the eastward jet and around

ts eastern extremity. The former process was noted in (Siegel et al.,

001), but here we found that the latter process dominates, because

t spawns coherent vortices living longer and travelling over larger
istances. Seventh, the effect of the high baroclinic modes signifi-

antly reduces the length of the eastward jet and the strength of the

yres, thus making an inhibitory rather than a catalytic impact on the

ow, unlike previously thought (Barnier et al., 1991). This contradic-

ion with the previous work is explained by the combination of its

nsufficient grid resolution with the choice of artificially symmetric

ind stress, that maintains unrealistically strong and long eastward

et, not present in our solutions.

Summarising the main reasons for the differences between our

tudy and the one by Siegel et al. (2001) we contend that they come

rom the following: the six year spin-up intervals in (Siegel et al.,

001) are too short to reach the statistical equilibrium; the three year

olutions used for the analysis in (Siegel et al., 2001) are too short to

verage over the intrinsic interdecadal variability and, therefore, they

ontain statistical biases; the large-Re solutions in (Siegel et al., 2001)

o not have the coherent eastward jet extension due to the no-slip

oundary condition even with the wind stress amplitude two times

igher than ours, and, thus, operate in a less realistic regime.

Our results suggest the following future research avenues. First,

ur approach to understanding Reynolds number effects can be ap-

lied to primitive-equation GCMs in both idealised and realistic con-

gurations, with the goal to understand dependencies of the eddies

nd their large-scale effects on Re. Second, we demonstrated that the

ddy parameterisations should take into account the eddy backscat-

er mechanism and the resulting amplification of the eastward jet

xtension of the western boundary currents and its adjacent recir-

ulation zones; development of such parameterisations may require

ompletely new approaches. Third, our study left completely aside

heoretical and practical questions about the passive-tracer transport

nd stirring induced by the eddies (e.g. estimates of the correspond-

ng inhomogeneous and anisotropic eddy diffusivities).
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