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Tilted drifting jets over a zonally sloped
topography: effects of vanishing eddy viscosity
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Oceanic multiple jets are seen to possess spatio-temporal variability imposed by
varying bottom topography resulting in jets that can drift and merge. The dynamics of
multiple jets over a topographic zonal slope is studied in a two-layer quasi-geostrophic
model. The jets tilt from the zonal direction and drift meridionally. In addition to the
tilted jets, other large-scale spatial patterns are observed, which are extracted using the
principal component analysis. The variances of these patterns are strongly influenced
by the values of eddy viscosity and bottom friction parameters. The contribution of
the tilted jets to the full flow field decreases with decreasing friction and viscosity
parameters, and purely zonal large-scale modes, propagating in the meridional
direction, populate the flow field. Linear stability analysis and two-dimensional
kinetic-energy spectrum analysis suggest that the zonal modes gain energy from
ambient eddies as well as from the tilted jets through nonlinear interactions. However,
viscous dissipation and bottom friction tend to suppress the nonlinear interactions,
which results in the inhibition of the upscale energy transfer from eddies to the zonal
modes. These simulations suggest that, in the presence of topography, alternating jet
patterns may be sustained through interactions among various large-scale modes. This
is different from the classical zonal jet formation arguments, in which direct eddy
forcing maintains the jets.

Key words: quasi-geostrophic flows, jets, topographic effects

1. Introduction
Zonally elongated patterns called ‘jets’ have been seen in the oceans in satellite

and float observations (Maximenko, Bang & Sasaki 2005; Sokolov & Rintoul 2007;
Van Sebille, Kamenkovich & Willis 2011) as well in general circulation models
(Galperin et al. 2004; Nakano & Hasumi 2005; Richards et al. 2006; Kamenkovich,
Berloff & Pedlosky 2009). Oceanic jets are dynamically similar to the zonal jets
seen on planetary atmospheres of Jupiter and Saturn, which are formed due to
interactions between Rossby waves and turbulent mesoscale eddies (Rhines 1975,
1994; Galperin et al. 2006; Dritschel & McIntyre 2008). Mesoscale eddies, which
gain energy through baroclinic instability, are responsible for forcing the zonal jets via
local or non-local upscale energy transfer (Rhines 1975; Thompson & Young 2007;
Berloff, Kamenkovich & Pedlosky 2009b; Berloff & Kamenkovich 2013a,b; Khatri
& Berloff 2018b). However, there are some notable differences between atmospheric

† Email address for correspondence: h.khatri16@imperial.ac.uk

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

57
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 Im

pe
ri

al
 C

ol
le

ge
 L

on
do

n 
Li

br
ar

y,
 o

n 
09

 A
ug

 2
01

9 
at

 1
5:

11
:0

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://orcid.org/0000-0001-6559-9059
mailto:h.khatri16@imperial.ac.uk
https://doi.org/10.1017/jfm.2019.579
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


940 H. Khatri and P. Berloff

and oceanic multiple jets. Unlike the jets on planetary atmospheres, which are
extremely persistent, most of the oceanic jets are transient in nature (Thompson 2010;
Thompson & Richards 2011; Thompson & Sallée 2012); thus, they are sometimes
called ‘striations’. Oceanic jets are not always zonal and can even drift meridionally
(Nakano & Hasumi 2005; Van Sebille et al. 2011; Boland et al. 2012; Khatri &
Berloff 2018a). Also, jets in the oceans can merge and disappear under the influence
of a nonlinear topography (Thompson 2010; Chen, Kamenkovich & Berloff 2015).

Ocean bottom topography plays an important role in ocean dynamics, as it
greatly affects the baroclinic instability (Hart 1975a,b; Benilov 2001) and can even
destabilise an otherwise stable flow (Chen & Kamenkovich 2013; Chen et al. 2015).
Varying topography leads to spatially non-uniform potential vorticity (PV) gradients,
which affect the large-scale flow through spatially non-uniform PV fluxes (Radko &
Kamenkovich 2017). These non-uniform PV gradients result in asymmetric Reynolds
stresses across the jet cores and, consequently, the jets tend to drift (Thompson 2010;
Stern, Nadeau & Holland 2015). Even very small slopes can have large impacts on
the jet dynamics. For example, over gentle zonal topographic slopes, the jets tilt from
the zonal direction and drift meridionally due to PV advection by the jets across PV
isolines (Boland et al. 2012; Khatri & Berloff 2018a). Also, the cross-jet transport is
significantly enhanced in drifting jets (Boland et al. 2012).

This paper is a continuation of the work by Khatri & Berloff (2018a). They studied
the dynamics of drifting jets over a zonally sloped topography and found that the
linear dynamics controls the jets drift, and the drift speeds agree well with the phase
speeds of linear Rossby waves. Khatri & Berloff (2018a) further showed that the
tilted jets can gain energy directly from the imposed background vertical shear due
to a topographic coupling between the jets and background flow. They also observed
that eddy buoyancy fluxes tend to be much stronger than eddy momentum fluxes
and, in the overall balance, the jets lose energy to eddies. This is opposite to the
classical zonal jets, which are primarily eddy driven (Rhines 1975). In the statistical
equilibrium, both the jets and mesoscale eddies gain energy from the background
shear, and this energy is dissipated through bottom friction and eddy viscosity (Khatri
& Berloff 2018a). These results are limited to continuously forced–dissipative systems,
and it is not clear how the system behaves in the case of small dissipative parameters
or freely evolving turbulence over topographic slopes.

In this work, we focus on the dynamics of drifting jets in weak-dissipation flow
regimes. We use the two-layer quasi-geostrophic (QG) model forced with a uniform
background flow in the upper layer in the presence of a zonally sloped topography
(described in § 2). In ocean models, eddy viscosity is used to dissipate enstrophy at
the grid scale; however, viscosity also suppresses the energetic small scales. Thus,
it is important to study the impacts of viscous dissipation on the dynamics. We
systematically reduce the magnitudes of both eddy viscosity and bottom friction
parameters in the numerical simulations and analyse the corresponding jet dynamics.
We observe that, in addition to the tilted jets, other large-scale spatial patterns can
exist in the model solutions. We use empirical orthogonal function (EOF) analysis to
identify the dominant flow patterns (described in § 3). In § 4, linear stability analysis
is performed. The paper is concluded in § 5.

2. Model description
In this study, we use a two-layer QG model on the β-plane in the presence of

bottom topography where the topographic height increases linearly in the zonal
direction (see figure 1 in Khatri & Berloff 2018a). The model is forced with a
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Alternating patterns over topography 941

Parameter Value

Domain size Lx = 3600 km, Ly = 1800 km
Layer thickness H1 = 1 km, H2 = 3 km
Background flow Ub = 6 cm s−1

Coriolis gradient β = 2× 10−11 m−1 s−1

Stratification S1 = 1.2× 10−9 m−2, S2 = 0.4× 10−9 m−2

Zonal topographic slope βT = ( fo/H2)(∂ηT/∂x)= 1.4× 10−12
− 2.8× 10−12 m−1 s−1

Eddy viscosity ν = 50− 200 m2 s−1

Bottom friction γ = 1× 10−8
− 4× 10−8 s−1

TABLE 1. Parameter values used in the numerical simulations.

horizontally uniform, eastward background flow in the upper layer. The governing
equations are (Vallis 2017)

∂Πi

∂t
+ J(ψi − δi1Uby, Πi)= ν∇

4ψi − δi2γ∇
2ψi, (2.1)

where J(a, b) is the Jacobian; ψi and Ub are the layer-wise velocity streamfunction
and background flow, respectively. Index i= 1 (i= 2) is for the top (bottom) layer and
δij is the Kronecker delta; ν and γ are eddy viscosity and bottom friction parameters,
respectively, and Πi represents the total PV in the layer, which is given as

Πi =∇
2ψi + εiSi(ψ2 −ψ1)+ (β + εiSiUb)y+ δi2

fo

H2
ηT . (2.2)

Here, ε1=−ε2= 1 and Si= f 2
o /g

′Hi (g′= g(ρ2−ρ1)/ρ1 is the reduced gravity, where
ρi is the layer density) is the stratification parameter; β represents the meridional
gradient in the Coriolis parameter and fo is the Coriolis parameter at some reference
latitude. The last term on the right-hand side in (2.2) contains the contribution
from topography. Here, Hi is the layer thickness and ηT is the topographic height.
Since we consider a constant topographic slope in this study, we use notation
βT = ( fo/H2)(∂ηT/∂x) in the rest of the paper.

Following Khatri & Berloff (2018a), we concentrate only on the effects of a zonally
sloped topography. The magnitude of the zonal slope is chosen in such a way that
β always dominates over the topographic gradient term βT (see table 1). Thus, the
baroclinic growth rates are not modified significantly in the presence of the sloping
topography (see Chen & Kamenkovich 2013, for details). Also, the change in depth
is small compared to the thickness of the lower layer (for the largest slope magnitude,
the change in depth is approximately 400 m). We could also study the effects of a
meridional slope; however, for very mild meridional slopes, a meridionally varying
topography is equivalent to an additional β-effect in the bottom layer (from (2.1)),
which has a negligible effect on the jet dynamics. In many places in the oceans, e.g.
in the Southern Ocean, jets experience steep topography, where topographic gradients
are much larger than the ones considered in this study. The results of this work
are not directly applicable in those situations. This work would be more helpful in
understanding the jet dynamics in regions away from continental boundaries where the
topographic height changes moderately in space. However, the impacts of topography
are also amplified in the two-layer QG model as the whole lower layer, which is
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FIGURE 1. (Colour online) (a,b) Snapshots of the streamfunction field in the top and
bottom layers; (c) Hovmöller diagram of streamfunction field in the top layer (ψ1 along
cross-section at the centre of the domain is plotted against time); (d) total energy (spatial
mean) time series. βT = 1.4× 10−12 m−1 s−1, ν = 100 m2 s−1 and γ = 2× 10−8 s−1 were
used in the simulation. The rest of the parameters were the same as in table 1.

3 km deep in our case, experiences the effects of topography. We expect that, in
real oceans, steeper slopes would be required to result in similar jet tilt angles and
drift speed magnitudes which we observe in our simulations. The aim of this study
is to analyse the sensitivity and stability of the tilted jets, robustly present in the
equilibrated states of the considered flow regimes, as a function of the magnitudes
of eddy viscosity and bottom friction parameters. So, we ran the simulations for a
range of values of these parameters.

We considered a rectangular domain having 1024 × 512 grid points and a grid
resolution of 3.5 km. In this study, we mainly use doubly periodic simulations;
nevertheless, the results are also compared with a channel simulation, in which
we used partial-slip boundary conditions on the meridional sides. The second-order
finite-difference method was used to discretise the equation (2.1) and the system was
solved with an advanced flux preserving numerical scheme (Karabasov, Berloff &
Goloviznin 2009). The values used in the simulations are given in table 1. Parameter
β and stratification parameters correspond to 30◦ latitude and baroclinic Rossby
radius of 25 km, respectively. The simulations were initialised from a perturbed state
and, for the choice of parameters, the numerical runs converged quite quickly to
statistical equilibrium. The total energy (1/(2A(H1 +H2))

∫
A[H1|∇ψ1|

2
+ H2|∇ψ2|

2
+

H1S1(ψ1−ψ2)
2
] dA, where A is the area of the domain) time series (figure 1d) shows

that the system reached a statistically steady state by 5000 days. Further details of
the simulations and spin-up can be found in Khatri & Berloff (2018a). We ran the
simulations for 20 000 days and used the data of the last 10 000 days for the analysis.

In agreement with previous studies (Boland et al. 2012; Khatri & Berloff 2018a),
the jets tilt from the zonal direction and drift meridionally because of the zonally
sloped topography (see snapshots of the streamfunction field, ψi, in the top panels
in figure 1). The mean barotropic PV isolines are tilted due to the presence of the
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Alternating patterns over topography 943

sloped topography, and the jets tend to align with the mean barotropic PV isolines
(see details in Boland et al. 2012). In fact, PV gradients in the upper and lower layers
have different orientations. The top layer experiences a background PV gradient only
in the meridional direction, whereas, in the bottom layer, the background PV gradients
have both zonal and meridional components (see (2.2)). The jets tilt in response to
the titled mean barotropic PV isolines and drift meridionally to compensate for the
PV advection due to the mean jets across PV isolines (Khatri & Berloff 2018a).

In the statistical equilibrium, the jets gain energy directly from the imposed
background flow and lose energy to eddies. The direct transfer of energy from
the background flow to the jets is possible through coupling between the jets and
background vertical shear in the presence of topography (see Khatri & Berloff (2018a)
for details). However, this result is limited to continuously forced–dissipative systems,
as Khatri & Berloff (2018a) did not investigate the impacts of dissipation strength
on the dynamics or explore the dynamics in the case of freely evolving turbulence
over a sloped topography. In their study, both the tilted jets and eddies receive energy
directly from the imposed vertical shear and, in the equilibrium state, this energy
gain is balanced by viscous dissipation and bottom friction. It is not completely
clear how the system would behave if the dissipation strength were reduced while
maintaining the imposed background shear. In this paper, we explore the dynamics
in weak-dissipation regimes. We study the jet dynamics in a number of simulations
run with different magnitudes of eddy viscosity and bottom friction parameters. We
observe that, in addition to the tilted jets, the system consists of many large-scale
modes. We analyse these large-scale modes using EOF analysis, which is discussed
in the next section.

3. EOF analysis
We employ EOF analysis technique to extract the dominant statistical modes from

the solution field so that the streamfunction anomaly field is decomposed into a
ranked set of mutually orthogonal spatial patterns and their principal components
(see Hannachi, Jolliffe & Stephenson 2007, for a brief review). In order to compute
EOFs, we used the streamfunction field in both layers together and, as a result, we
obtained EOFs having the full three-dimensional structure, i.e. variation in the zonal
and meridional directions as well as in the individual layers. For the purpose of
comparison, we also computed EOFs separately in the upper and lower layers by
applying the EOF analysis to the streamfunction field in the individual layers. The
results were not significantly different. In both approaches, the leading EOFs were
the same, although variances captured by different EOFs varied a little. For example,
in the case of βT = 1.4 × 10−12 m−1 s−1, the first two EOFs together captured a
variance of approximately 66 % when we computed EOFs in both layers together. On
the other hand, when we used EOF analysis separately in the top and bottom layers,
the variances captured by the first two EOFs were approximately 70 % and 60 % in
the top and bottom layers, respectively. The leading EOFs are shown in figure 2, and
it is intriguing that the following two types of large-scale patterns are captured by
them. The first pair of EOFs, which are in quadratures, captures the titled jets (to
be referred as J mode, from here onwards), and the second pair of EOFs captures
a purely zonal mode (to be referred as Z mode, from here onwards). We multiplied
the first and second EOFs to their principal components (PC) and added them to
reconstruct the J mode as a function of time. Similarly, we used the second pair
of EOFs and the corresponding PC to reconstruct the Z mode. We observed that
both the J and Z modes propagate with constant speeds corresponding to distinct
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FIGURE 2. (Colour online) Leading EOFs of the streamfunction field in the simulation
run in a doubly periodic domain (data interval was 10 000 days, i.e. 500 snapshots, for
the EOF analysis) (a,c,e) EOF1-2 (b,d, f ) EOF3-4. (a,b) Show the spatial structure of the
EOFs in the top layer, and (c,d) show the Hovmöller diagram of the J and Z modes
reconstructed using EOFs and their PCs (the modes along a meridional cross-section at
the centre of the domain are plotted against time). Colour bar range is [−1, 1], blue to
red. (e, f ) Represent the spectra of PCs (normalised to unity) corresponding to the EOFs.
The second and fourth EOFs are counterparts of the first and third EOFs, with the same
spatial structure but shifted by 1/4 of the time period. Only one of the EOFs is shown as
both EOFs in a pair capture approximately equal variances. The J and Z modes together
capture approximately 75 % of the variance. βT = 1.4 × 10−12 m−1 s−1, ν = 100 m2 s−1

and γ = 2× 10−8 s−1 were used in the simulation. The rest of the parameters were the
same as in table 1.

peaks in frequency as shown by the power spectra of PCs (see figure 2e, f ). The Z
mode propagates northward, i.e. opposite to the J mode (see figure 2c,d). We also
verified the presence of the J and Z modes in a channel simulation (see appendix A).
However, for simplicity, we only use doubly periodic runs in the rest of the paper.

We further observed that the relative contributions of the J and Z modes are
highly dependent on the magnitude of the slope, e.g. variances of the J and Z modes
are listed in table 2. The contribution of the J mode decreases with increasing the
magnitude of the zonal slope while the contribution of the Z mode increases. In
fact, in the case of βT = 2.8 × 10−12 m−1 s−1, the Z mode dominates the flow field.
Together, the J and Z modes capture a majority of the variance in all simulations.
The propagation (drift) velocities of these modes (table 2) were computed using the
following relation:

cj =
ωj

|kj|
2
kj, (3.1)
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Alternating patterns over topography 945

βT (m−1 s−1) Variance (%) Velocity NS (cm s−1) Velocity DR (cm s−1) ny fBT

J Z J Z J Z J Z

1.4× 10−12 66.8 9.2 −0.05 î −0.46 ĵ 1.56 ĵ −0.07 î −0.53 ĵ 2.15 ĵ 4 2 0.45
2.1× 10−12 26.6 16.4 −0.04 î −0.31 ĵ 12.58 ĵ −0.04 î −0.34 ĵ 12.80 ĵ 4 1 0.56
2.8× 10−12 8.3 66.8 −0.13 î −0.81 ĵ 17.26 ĵ −0.18 î −1.06 ĵ 17.07 ĵ 3 1 0.72

TABLE 2. Variances and propagation velocities of the J and Z modes for different
magnitudes of the zonal slope. Other parameters in the simulations were the same as in
the caption of figure 2. Propagation velocity estimates obtained from numerical simulations
(NS) and the linear dispersion relation (DR) are shown. î and ĵ represent the zonal
and meridional unit vectors, respectively. Here ny represents the number of meridional
waves that is equal to the meridional width of the domain for the modes. In all three
simulations, the zonal wavelength of the J modes is equal to the zonal extent of the
domain; fBT = EBT/(EBT + EBC) represents the fraction of the mean barotropic KE, where
EBT = 1/2

∫
A |uBT |

2 and EBC = 1/2
∫

A |uBC|
2 are the spatially integrated barotropic and

baroclinic KE, respectively.

where cj is the propagation velocity, i.e. fundamental phase velocity, and j stands
for the mode; kj and ωj are the wavevector and peak frequency (in PC spectra),
respectively, corresponding to the modes.

Khatri & Berloff (2018a) found that drift speeds of the titled jets are in agreement
with the phase speeds of linear Rossby waves, as estimated from the linear dispersion
relation. Here, we compare the propagation speeds of both the J and Z modes with
the estimates from the linear dispersion relation (see appendix B for details). The
fundamental phase velocities computed using the dispersion relation are quite close to
the actual propagation velocities of the J and Z modes in the numerical simulations.
Over topographic slopes, jets drift to compensate for PV advection by the mean flow
across PV isolines (Boland et al. 2012; Khatri & Berloff 2018a). The J mode advects
PV across PV isolines in both layers, as the J mode tends to be aligned with the
mean barotropic PV isolines. On the other hand, the purely zonal Z mode advects
PV across PV isolines in the lower layer only. We hypothesise that the propagation
of the J and Z modes in the opposite directions is due to PV advection by these
modes in the opposite directions across PV isolines. For example, if the J mode
transports PV from the high PV to the low PV region, then the Z mode transports
PV from the low PV to the high PV region. As a result, the modes drift in the
opposite directions. It is important to mention here that the J and Z modes only
represent the leading tilted and purely zonal patterns observed in the EOF analysis.
The meridional wavelengths of these modes are different in different simulations (see
table 2), which is one of the reasons for the differences in drift speeds, i.e. modes with
longer meridional wavelengths move faster. We also computed the ratio of the mean
kinetic energy (KE) of the barotropic velocity component, uBT = (H1u1+H2u2)/(H1+

H2), to the sum of the mean KE of the barotropic and baroclinic velocity, uBC =

u1 − u2, components in the full flow field. We found that the flow field tends to be
more barotropic due to the presence of the Z mode as this energy fraction increases
with an increase in the variance of the Z mode. It is possible that the barotropic
component of the flow field becomes stronger to dissipate more energy through bottom
friction and stabilise the system, as the energy of the system increases with increasing
the zonal slope magnitude (Khatri & Berloff 2018a). We discuss this aspect later in
the paper.
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946 H. Khatri and P. Berloff

Apart from the J and Z modes, the higher EOFs capture many large-scale modes
(first twenty EOFs are shown in figure 9), which have different tilt angles and spatial
structures. Many of these EOFs are comparable to the J and Z modes in size and are
also much larger than the size of mesoscale eddies. It is expected that these large-scale
EOFs tend to align with PV fields in one of the layers or a linear combination of
those PV fields; however, the tilt angles of the EOFs are greatly affected due to
the imposed periodic boundary conditions in the simulations. All these EOFs, which
capture different large-scale modes, can be broadly categorised into two families: the
first family contains tilted EOFs (J family) and the second family contains purely
zonal EOFs (Z family). The main purpose of this work is to understand why both
tilted and zonal large-scale modes, irrespective of what their meridional width and
drift speeds are, coexist. There is little use of studying individual EOFs, as they
need not be unique in different scenarios, and relative contributions of EOFs can be
different in different simulations.

The presence of various large-scale modes is in contrast to the case of zonal jets
formed over a flat bottom, where the large-scale flow mainly consists of zonal jets.
However, in the presence of a zonally sloped topography, the flow field tends to be a
lot more complex. Although we mainly focus on the leading EOFs that capture two
different types of modes, i.e. J and Z modes, many significant large-scale patterns
emerge in higher EOFs (see appendix C). This suggests that the upscale transfer of
energy from mesoscale eddies need not lead to the formation of only one type of
alternating jets, rather many alternating patterns can coexist. Although most of the
previous studies have focused on stationary zonal jets (Panetta 1993; Vallis & Maltrud
1993; Lee 1997; Berloff 2005; Thompson & Young 2007; Srinivasan & Young 2012,
and others), a few have studied the spatial and temporal variability in jets (Thompson
2010; Thompson & Richards 2011; Stern et al. 2015; Rudko et al. 2018). However,
little success has been achieved in isolating different large-scale alternating patterns
constituting the flow field, as it tends to be complex in the presence of topography. It
has been proposed that, over a flat bottom, zonal jets consist of several phase-locked
stationary zonal eigenmodes, as multiple stable equilibria with a different number of
jet pairs are feasible (Berloff, Kamenkovich & Pedlosky 2009a; Berloff et al. 2009b).
We believe that, in a similar manner, multiple stable eigenmodes comprising of both
zonal and tilted modes can exist over a sloped topography. It is possible that tilted and
zonal modes interact nonlinearly to exchange energy. This generally does not happen
in the case of stationary zonal jets, where the upscale cascade is halted at the jet-width
scale (Vallis & Maltrud 1993).

3.1. Effects of eddy viscosity and bottom friction
In addition to the slope magnitude, values of the eddy viscosity and bottom friction
parameters impact the relative contributions of the J and Z modes. We ran several
simulations while keeping the other parameters fixed. We computed variances captured
by the J and Z modes and their propagation velocities (tables 3–4). The key finding
is that the relative contribution of the Z mode increases as either eddy viscosity or
bottom friction is decreased (vice versa is true for the J mode) and the Z mode
disappears beyond some critical values of the eddy viscosity and bottom friction
parameters. These critical values are not unique across different scenarios and depend
on the boundary conditions and problem parameters. The J and Z modes move
meridionally in opposite directions, and the Z mode moves approximately three times
faster than the J mode. However, ν = 50 m2 s−1 is a different case, with the Z mode
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ν (m2 s−1) Variance (%) Velocity (cm s−1) fBT

J Z J Z

200 80.6 0 −0.06 î −0.48 ĵ — 0.30
150 81.6 0 −0.06 î −0.48 ĵ — 0.33
100 66.8 9.2 −0.06 î −0.46 ĵ 1.56 ĵ 0.45
75 53.0 15.1 −0.05 î −0.41 ĵ 1.48 ĵ 0.49
50 26.6 12.4 −0.05 î −0.38 ĵ 8.58 ĵ 0.59

TABLE 3. Variances and propagation velocities of the J and Z modes for different values
of eddy viscosity (ν) with βT = 1.4 × 10−12 m−1 s−1 and γ = 2 × 10−8 s−1. Other
parameters in the simulations were the same as in table 1. Here î and ĵ represent the zonal
and meridional unit vectors, respectively; fBT = EBT/(EBT + EBC) represents the fraction of
the mean barotropic KE, where EBT = 1/2

∫
A |uBT |

2 and EBC= 1/2
∫

A |uBC|
2 are the spatially

integrated barotropic and baroclinic KE, respectively.

γ (s−1) Variance (%) Velocity (cm s−1) fBT

J Z J Z

4× 10−8 80.2 0 −0.06 î −0.46 ĵ — 0.38
2× 10−8 66.8 9.2 −0.06 î −0.46 ĵ 1.56 ĵ 0.45

10−8 47.6 25.2 −0.05 ĵ −0.42 ĵ 1.56 ĵ 0.47

TABLE 4. Variances and propagation velocities of the J and Z modes for different
values of bottom friction (γ ) with βT = 1.4× 10−12 m−1 s−1 and ν = 100 m2 s−1. Other
parameters in the simulations were the same as in table 1. Here î and ĵ represent the zonal
and meridional unit vectors, respectively; fBT = EBT/(EBT + EBC) represents the fraction of
the mean barotropic KE, where EBT = 1/2

∫
A |uBT |

2 and EBC= 1/2
∫

A |uBC|
2 are the spatially

integrated barotropic and baroclinic KE, respectively.

almost twenty times faster than the J mode. In this case, the Z mode has only one
pair of jets (figure not shown) as opposed to two pairs in other cases, which is why
it moves faster. It is possible that the wider Z mode is present in this case because
the system tends to stabilise at higher energy levels due to weaker dissipation. As
discussed in the previous section, the EOFs need not be exactly the same in different
flow regimes. Hence, our primary focus is on the two general types of modes. In
addition, drift speeds of the J mode seem to be affected by the presence of the Z
mode as the J mode propagates slower in the solutions that have a higher variance
of the Z mode (see table 3). On the other hand, the linear dispersion relation shows
negligible changes in the propagation speeds for different magnitudes of the eddy
viscosity and bottom friction parameters (not shown). Moreover, the fraction of the
mean barotropic KE increases as the contribution of the Z mode increases (see also
the previous section). The barotropic component of the flow is expected to become
stronger with a reduction in the magnitude of the bottom friction parameter (Arbic &
Flierl 2004). However, it is not clear how the presence of the zonal modes is linked
to the vertical flow structure.

In order to understand the impacts of eddy viscosity, we first look at the
two-dimensional KE spectrum (figure 3). We consider two different solutions with
eddy viscosities 200 and 50 m2 s−1, respectively. Note that the Z mode is only
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FIGURE 3. (Colour online) KE spectrum (units are in cm2 s−2) averaged over 2000
days (100 snapshots between 18 000–20 000 days): (a,b) ν = 200 m2 s−1 and (c,d) ν =
50 m2 s−1. Other parameters in the simulations were the same as in table 1. The zonal
and meridional wavenumbers are denoted by (kx, ky). Green and red dots represent the
wavenumbers corresponding to the J and Z modes, respectively. The Z mode seems to
receive more energy via nonlinear interactions in the lower eddy viscosity case.

observed in the latter case (see table 3). From a visual inspection of figure 3, it is
quite evident that the Z mode possesses a significant amount of energy in the bottom
layer in the lower eddy viscosity case. Another important aspect to note is that many
different scales seem to be active in the lower eddy viscosity case (especially in the
bottom layer in figure 3). The KE spectra show that, in the lower eddy viscosity
case, additional Fourier modes possess significantly more energy than in the higher
eddy viscosity case (compare the top and bottom panels in figure 3). These additional
Fourier modes are present at relatively smaller spatial scales than the J and Z modes.
We hypothesise that these small scales interact with the J mode, which is directly
forced by the imposed background shear (Khatri & Berloff 2018a), and feed energy
to the Z mode. To confirm this, we ran a test numerical simulation in which the
background flow, eddy viscosity and bottom friction parameters were set to zero. We
initialised the model using the reference solution from the ν = 200 m2 s−1 case and
the simulation was run for 10 000 days. Figure 4 shows the two-dimensional KE
spectra at different times and we observed that many different scales become more
energetic. Since the background flow is absent, these additional Fourier modes must
have received energy from the J mode through nonlinear interactions because the J
mode initially contained most of the energy in the system. Most of the energy is
transferred to the Z mode and the J mode almost disappears, as it cannot receive any
more energy from the background flow. Here, mesoscale eddies are able to transfer
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FIGURE 4. (Colour online) Evolution of the KE spectrum (snapshots, units are in cm2 s−2)
after the background flow, eddy viscosity and bottom friction parameters are set to
zero. (a–e) KE spectra at 200, 400, 500, 600 and 800 days, respectively. The zonal
and meridional wavenumbers are denoted by (kx, ky). Green and red dots represent the
wavenumbers corresponding to the J and Z modes, respectively.

energy to meridional scales even larger than the meridional width of the J mode. This
indicates that, in the presence of topography, the meridional width of an alternating
jet pattern need not be bounded by the Rhines scale (Rhines 1975), which is set by
available eddy energy and Rossby waves in the system. Due to interactions between
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various large-scale modes, very low meridional wavenumbers can be excited. It is
intriguing that the system evolves to purely zonal structures in the case of freely
evolving turbulence. It is not yet clear why only zonal patterns emerge and this
needs to be further investigated.

Many studies have shown that eddy viscosity has an important role in ocean
models (Jochum et al. 2008; Arbic et al. 2013). In the geostrophic regime, the
viscous term is required to dissipate enstrophy at the grid scale and this goes along
with the upscale transfer of energy from mesoscale eddies generated by baroclinic
instabilities. However, this is also problematic as a significant amount of energy
is also viscously dissipated at small scales and this is not accounted for by the
geostrophic turbulence theory (Rhines 1979). This effectively damps out the eddy
activity and thus, suppresses the upscale energy transfer by eddies. For eddy viscosity
values less than approximately 100 m2 s−1 in our simulations, we observe that
oceanic jets, which are initially formed by the action of mesoscale eddies, become
unstable and feed energy to even larger flow structures. This eddy viscosity value is
not unique and depends on other model parameters, e.g. Ub, β, vertical stratification.
The investigation into this upscale energy transfer to meridional scales larger than the
Rhines scale (Rhines 1975) has received little attention. We carry out linear stability
analysis to study these effects in the next section.

3.2. Wave solutions for Z modes
We find that the propagation velocities of purely zonal Z modes are well predicted by
the linear dispersion relation. Also, the flow field is dominated by purely zonal modes
in the case of freely evolving turbulence. Here, we derive a simplified expression for
the propagation velocity of the Z modes using the linear dispersion relation. Since the
contribution from purely zonal modes is at maximum in the absence of forcing and
dissipative terms, we set Ub = ν = γ = 0 in the linear dispersion relation and derive
an expression for the meridional phase speed for the Z modes (complete derivation is
in appendix B)

cw ≈
βT(k2

y + S1)

k2
y(k2

y + S1 + S2)
, (3.2)

where cw and ky are the meridional phase speed and meridional wavenumber,
respectively. The meridional velocity of a zonal mode increases linearly with the slope
magnitude and decreases roughly as 1/k2

y (for k2
y � S1 + S2 or k2

y � S1 + S2). This
relationship agrees well with the estimates from the nonlinear numerical simulations
(see table 2), although the observed propagation speeds differ slightly in magnitude,
perhaps, due to the complexity of the flow field.

4. Linear stability analysis in a moving frame of reference
In order to better understand the effects of the eddy viscosity and bottom friction

parameters on the stability of the tilted jets (J mode), we performed a linear stability
analysis around the time-mean propagating state of the tilted jets. The approach is
similar to the rapid distortion theory (Savill 1987). We used a rotated, drifting frame
of reference such that the jets are exactly zonal and stationary in it (new axes (p, q)
are shown in figure 1a). Following Khatri & Berloff (2018a), (2.1) can be rewritten
in the new frame of reference as[

∂

∂t
− c

∂

∂q

]
Πi +

(
∂ψi

∂p
− δi1Ub sin θ

)
∂Πi

∂q
−

(
∂ψi

∂q
− δi1Ub cos θ

)
∂Πi

∂p
= ν∇4ψi − δi2γ∇

2ψi, (4.1)
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where

Π1 = ∇
2ψ1 + S1(ψ2 −ψ1)+ (β + S1Ub)(q cos θ + p sin θ + ct cos θ),

Π2 = ∇
2ψ2 + S2(ψ1 −ψ2)+ (β − S2Ub)(q cos θ + p sin θ + ct cos θ)
+βT(−q sin θ + p cos θ − ct sin θ).

 (4.2)

Here, δij is the Kronecker delta. The tilt angle, θ , and drift speed of the frame
of reference, c, are estimated from the EOF analysis. We linearise the governing
equations around the time-mean tilted jets and represent the streamfunction as a sum
of the mean and perturbation terms ψi(p, q, t) = ψ i(q) + ψ ′i (p, q, t). We substitute
the decomposed ψi in (4.1), and the final equation in terms of ψ ′i is (see the full
derivation in appendix D)

∂

∂t
[∇

2ψ ′i + εiSi(ψ
′

2 −ψ
′

1)] +

[
Ai
∂

∂p
+ Bi

∂

∂q

]
[∇

2ψ ′i + εiSi(ψ
′

2 −ψ
′

1)]

+Ci
∂ψ ′i

∂p
+Di

∂ψ ′i

∂q
= ν∇4ψ ′i − δi2γ∇

2ψ ′i , (4.3)

and

A1 =Ub cos θ + u1,
A2 = u2,
B1 =−c−Ub sin θ,
B2 =−c,
C1 = (β + S1Ub) cos θ − u′′1 + S1(u1 − u2),
C2 = (β − S2Ub) cos θ − βT sin θ − u′′2 + S2(u2 − u1),
D1 =−(β + S1Ub) sin θ,
D2 =−(β − S2Ub) sin θ − βT cos θ.


(4.4)

Here, ui = −(∂ψ i/∂q) and u′′i are the mean (averaged in p direction) flow and its
double derivative in q direction, respectively (shown in figure 5). We computed ψ i(q)
by averaging the streamfunction field over time for the last 10 000 days in the moving
frame of reference and then averaging along the direction p. We used the data from
the simulation corresponding to figure 1.

The system of equations (4.3) can be solved as the coefficients (Ai, Bi, Ci, Di)
are known, and the only unknown parameters are ψ ′1 and ψ ′2. For this purpose,
periodic boundary conditions were imposed on all four sides of the domain, with
Fourier decomposition in p direction, i.e. along with the jets, and finite-difference
discretisation in q direction. We assumed solutions of the kind ψ ′i = ψ̃i(q)ei(lp−ωt) for
the perturbation terms (l is the wavenumber in the direction along with the tilted
jets), which results in an eigenvalue problem. This is similar to the method discussed
in Berloff et al. (2011), Berloff & Kamenkovich (2013a), but in the presence of
topography. The eigenvalue problem was solved for each wavenumber l separately,
and the analysis was repeated for different magnitudes of the eddy viscosity and
bottom friction parameters (details are in appendix D).

In figure 6, frequencies obtained by solving the eigenvalue problem are plotted
against l for different magnitudes of the eddy viscosity and bottom friction
parameters. It is evident that eddy viscosity tends to stabilise the eigenmodes at
all wavenumbers as the growth rates are smaller for higher eddy viscosity values
at the same wavenumbers. In fact, in the lower viscosity cases, many weakly
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FIGURE 5. (Colour online) Profiles of ui and u′′i used in the stability analysis. The
profiles were computed by applying spatial averaging in the direction along with the jets
in the moving frame of reference between 10 000 and 20 000 days for the simulation
corresponding to figure 1 (blue solid line in the top layer and red dotted line in the bottom
layer). The velocity profile in the top layer is shown relative to the imposed background
flow of 0.06 m s−1.

unstable large-scale modes appear, which otherwise had negative growth rates. In
the case of bottom friction, the changes in the growth rates are less visible, but
the growth rates do increase with decreasing γ . A few unstable modes can be seen
appearing in the cases of weaker bottom friction (compare plots for γ = 4× 10−8 and
γ = 2× 10−8 s−1). Also, we did not observe the Z mode in the numerical simulation
run with γ = 4 × 10−8 s−1 (table 4). Looking at the spatial structure of the fastest
growing mode (figure 7), we found that the banana-shaped eddies are very similar
to the eigenfunctions corresponding to the fastest growing mode in a flat-bottom
case (see figure 13 in Berloff et al. (2011)). In fact, the banana-shaped eigenmode
matches very well with the eddy field reconstructed using all EOFs except the EOFs
corresponding to J mode.

Given very small growth rates of modes at relatively large scales, energy must
have been transferred to the Z mode through nonlinear interactions among different
eigenmodes, which can be inferred from KE spectrum in figure 4. The linear stability
analysis shows that the eigenmodes are significantly damped due to eddy viscosity
and there are fewer unstable modes present in the case of strong eddy viscosity.
Consequently, the number of nonlinear interactions can be reduced due to the
presence of fewer energised eigenmodes, and the efficiency of energy exchange
among different eigenmodes can decline. This suggests that nonlinear interactions
may have been suppressed in the simulations having strong dissipation, which can
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FIGURE 6. (Colour online) Real parts of eigenvalues (ωr) obtained from the linear stability
analysis for different values of eddy viscosity ((a,c,e,g), for fixed γ = 2 × 10−8 s−1)
and bottom friction ((b,d, f,h), for fixed ν = 100 m2 s−1) versus wavenumber. Growth
rates (day−1) are shown in the colour bar. Eigenmodes having growth rates in the range
[−0.01, 0] are shown with grey dots. Growth rates increase with decreasing ν and γ .

explain the absence of the Z modes in the EOF analysis in some cases (see table 3
for ν = 150, 200 m2 s−1 cases). There may not have been enough interactions to feed
energy to the Z modes. It is possible that strong viscous dissipation reduces these
nonlinear interactions by damping out the small scales.

It is counterintuitive that, in the presence of topography, mesoscale eddies are
actually able to transfer energy to zonally elongated modes that have meridional
wavelengths longer than the meridional width of the tilted jets. Over a flat bottom,
the β-effect leads to strong anisotropisation resulting in the formation of zonal
jets, where the meridional width of the jets is set by a balance between nonlinear
advection and Rossby waves (Rhines 1975). It would be wrong to expect that Rossby
waves directly inhibit the inverse energy transfer to meridional scales longer than the
Rhines scale (Sukoriansky, Dikovskaya & Galperin 2007). The upscale energy transfer
stops at the Rhines scale because, in order to transfer energy to lower meridional
wavenumbers, triad interactions would involve two almost parallel Fourier modes and
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FIGURE 7. (Colour online) (a,c) The eigenvector corresponding to the fastest growing
mode, (b,d) snapshots of the eddy field constructed using all EOFs except EOF 1-2
((a,b) and (c,d) represent the top and bottom layers, respectively). The snapshot of eddy
field is from the numerical simulation where ν = 150 m2 s−1 was used (other parameters
– refer to caption in figure 2). In this case, there is a remarkable resemblance in the
spatial structure between the eddy field and the fastest growing eigenfunction. In the
lower viscosity simulation (e.g. ν = 100 m2 s−1), these banana-shaped structures appear
less frequently because the eddy field is very complex in the presence of the Z mode.

such triad interactions are quite inefficient (Vallis & Maltrud 1993). On the other
hand, in the presence of topography, both zonal and tilted large-scale Fourier modes
are present, as seen in the two-dimensional KE spectra and linear stability analysis.
Given that various Fourier modes at low wavenumbers are sufficiently energetic
and are not parallel, it is possible for these Fourier modes to have efficient triad
interactions and transfer energy to very low meridional wavenumbers. This could be
the main reason why the Z mode is able to receive a significant amount of energy
in the simulations. It may be possible to test this hypothesis directly. One could try
to identify the triads in which the Z mode gains energy or the J mode loses energy
and compute the energy exchange rates as a function of the magnitudes of the eddy
viscosity and bottom friction parameters. Identifying all such triads is a challenging
task and this is beyond the scope of this paper.

5. Conclusions
Topography plays an important role in large-scale ocean dynamics. Zonally

elongated multiple jets found in the oceans often show spatial and temporal variability
(Sokolov & Rintoul 2007; Thompson & Richards 2011; Van Sebille et al. 2011),
which can be due to variable bottom topography (Thompson 2010; Thompson &
Sallée 2012). In this work, we studied the effects of a zonally sloped topography
on the dynamics of alternating jets in the oceans. We used a two-layer QG model
forced with a uniform background flow in the upper layer. In accord with previous
studies (Boland et al. 2012; Khatri & Berloff 2018a), the jets tilt from the zonal
direction and drift meridionally. Khatri & Berloff (2018a) also show that the tilted
jets are coupled to the imposed background shear via the sloped topography and, in
the overall balance, the jets gain energy directly from the background flow and lose
energy to eddies. This direct energy transfer to the jets from the background vertical
shear is different from the mechanism given to explain the existence of classical zonal
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jets in planetary atmospheres, which are primarily forced by mesoscale eddies (Rhines
1975). However, the energy transfer to tilted jets directly from the background flow
is only possible in continuously forced–dissipative systems (Khatri & Berloff 2018a).
In this work, we explored the jet dynamics in weak-dissipation regimes and also in
freely evolving turbulence regime.

The flow field tends to be complex in the presence of topography as, in addition
to the tilted jets, we observe many large-scale modes, which we extracted using EOF
analysis (see appendix C). These modes are much larger than the size of mesoscale
eddies and some modes are even larger than the jets. These large-scale modes show
spatial and temporal variability and can be broadly categorised into two families:
the first family of tilted modes and the second family of purely zonal modes. We
studied the leading four EOFs, which capture the tilted jets and a purely zonal mode.
The tilted jets and zonal mode propagate in opposite directions. The propagation
velocities of the tilted jets and zonal modes match the velocities of linear Rossby
waves, which were obtained by solving the linear dispersion relation, quite well.
Together, the first four EOFs capture more than 50 % of the variance in the flow
field. However, we observe that the relative contribution of the zonal mode increases
with increasing the magnitude of the zonal slope and decreasing the eddy viscosity
and bottom friction parameters (tables 2–4). We further find that the barotropic flow
component strengthens with an increase in the relative contribution from the zonal
mode. However, it is not understood if the appearance of the zonal modes is linked
to the barotropic flow.

Analysis of two-dimensional KE spectrum hints towards the possibility of strong
nonlinear interactions among these modes and mesoscale eddies. In fact, in the
case where the forcing and dissipative terms were switched off in the middle of a
simulation, the system evolves to a state in which the zonal mode contains most of
the energy in the system while the tilted jets disappear. A simple expression is derived
for the propagation speed of the zonal mode in the special case of no forcing and
dissipation terms. The propagation speed of the zonal mode increases linearly with the
slope magnitude and decreases roughly as the square of the meridional wavenumber.
This is also in agreement with our numerical simulations. Our hypothesis is that the
zonal mode receives energy via nonlinear interactions from eddies as well as from the
tilted jets. In order to confirm this hypothesis, we performed a linear stability analysis
in a tilted, moving frame of reference, such that the jets appear stationary and zonal.
We linearised the governing equations around the time-mean velocity profile of the
tilted jets. It is found that the large-scale modes are generally stable or sometimes
weakly unstable. This means that the zonal mode cannot grow by itself and must
rely on nonlinear interactions to gain energy. The growth rates are also significantly
affected by the magnitude of the eddy viscosity parameter. For weaker eddy viscosity,
many unstable modes appear, which were otherwise stable. This suggests that strong
dissipation tends to suppress mesoscale instabilities; thus, results in weaker nonlinear
interactions. This somewhat explains the absence of the zonal mode in solutions that
had strong dissipation. There may not have been enough nonlinear interactions to
feed energy to the zonal mode. However, it is not yet clear why only zonal structures
tend to dominate in weak dissipation regimes (e.g. see figure 4). The zonal modes
are parallel to the imposed vertical shear, so they cannot gain energy directly from
the background shear via coupling through topography and must receive energy
from eddies (see Khatri & Berloff 2018a). It is not completely understood if this is
just a coincidence or requirement by the dynamics. The matter needs to be further
investigated.

It is intriguing that the zonal mode is broader than the tilted jets, which indicates
an upscale energy transfer to meridional scales larger than the jet-width scale set
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by Rossby waves and eddy energy (Rhines 1975). It is important to note that
Rossby waves cannot arrest the inverse energy transfer (Sukoriansky et al. 2007).
In the case of stationary zonal jets, the upscale energy transfer stops near the
Rhines scale because, in order to transfer energy to lower meridional wavenumbers,
triad interactions would involve two almost parallel Fourier modes and such triad
interactions are inefficient (Vallis & Maltrud 1993). It is quite possible that, in the
presence of topography, nonlinear interactions on large scales are sufficiently strong
to transfer energy to meridional wavelengths longer than the width of the jets. This
suggests that multiple jets seen in the oceans may be more complex than multiple
jets seen in planetary atmospheres, and alternating jets can also be formed via
interactions among different large-scale modes, which are not oriented in the same
direction. However, this work may not be applicable everywhere in the oceans as
multiple jets experience quite steep topography in many places. This study would be
of more use to understand the jet dynamics in regions where topographic gradients
are gentle.
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Appendix A. The J and Z modes in a channel simulation
We also verified the presence of the J and Z modes in a channel simulation, in

which we imposed partial-slip boundary conditions on the meridional sides (figure 8).
The presence of meridional boundaries makes the dynamics more complicated.
Nevertheless, tilted J and purely zonal Z modes can clearly be seen in the northern
and southern halves of the domain. Here too, the J and Z modes propagate in
opposite directions. The southward and northward propagation of the J and Z modes
is quite visible in Hovmöller plots in figure 8, especially in the northern and southern
halves of the domain. We also verified that the results are not sensitive to spatial
resolution and domain size (figures not shown).

Appendix B. Dispersion relation in the two-layer QG model and derivation of
wave solutions for the Z mode

In order to derive the dispersion relation, we linearise (2.1) around a motionless
mean state and substitute ψi = ψ̃iei(kxx+kyy−ωt). Here, ω is the frequency and (kx, ky)
represent the zonal and meridional wavenumbers, respectively. The linearised
equations can be represented in a matrix form as following:

ω(k2
x + k2

y + S1)+ kx(β −Ub(k2
x + k2

y)) −S1ω+ S1Ubkx

+ iν(k4
x + k4

y)

−S2ω ω(k2
x + k2

y + S2)− kyβT + kx(β −UbS2)

+ iν(k4
x + k4

y)+ iγ (k2
x + k2

y)


×

[
ψ̃1

ψ̃2

]
= 0. (B 1)
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FIGURE 8. (Colour online) Leading EOFs of the streamfunction field in the simulation
run in a channel (data interval was 10 000 days, i.e. 500 snapshots, for the EOF analysis)
(a,c,e) EOF1 (b,d, f ) EOF3. (a,b) Show the spatial structure of the EOFs in the top layer.
(c,d) Show the Hovmöller diagram of the J and Z modes reconstructed using EOFs
and their PCs (the modes along a meridional cross-section at the centre of the domain
are plotted against time). Colour bar range is [−1, 1], blue to red. (e, f ) Represent the
power spectra of PCs (normalised to unity) corresponding to the EOFs. The second and
fourth EOFs are counterparts of the first and third EOFs, with the same spatial structure
but shifted by 1/4 of the time period. Only one of the EOFs is shown as both EOFs
in a pair capture approximately equal variances. The J and Z modes together capture
approximately 60 % of the variance. βT = 1.4× 10−12 m−1 s−1, ν = 100 m2 s−1 and γ =
2× 10−8 s−1 were used in the simulation. The domain is zonally periodic and partial-slip
boundary conditions were imposed on the meridional sides i.e. ∂yyψi− (1/α)∂yψi= 0 with
α = 120 km. The rest of the parameters were the same as in table 1.

We obtain two frequency solutions for each wavenumber pair (kx, ky) by equating
the determinant of the matrix to zero. Real parts of the frequencies were then used
to compute the propagation velocities for the J and Z modes (shown in tables 2–4).
We considered the frequency solution giving the same direction of propagation for the
modes as seen in the simulations.

The dispersion relation can be further simplified for the Z mode. The Z mode
is purely zonal, and its contribution is at maximum in the absence of forcing and
dissipation (see figure 4). Hence, we substitute kx = Ub = ν = γ = 0 in the above
matrix

[
ω(k2

y + S1) −S1ω

−S2ω ω(k2
y + S2)− kyβT

] [
ψ̃1

ψ̃2

]
= 0. (B 2)
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FIGURE 9. (Colour online) The first twenty EOFs of the streamfunction field in the
simulation of a doubly periodic domain (data interval was 10 000 days, i.e. 500 snapshots,
for the EOF analysis). The panels show the spatial structure of the EOFs in the top layer.
EOF1-2 and EOF3-4 correspond to the J and Z modes, respectively, considered in this
study. Colour bar range is [−1, 1], blue to red. These twenty EOFs capture about 90 %
of the variance. βT = 1.4 × 10−12 m−1 s−1, ν = 100 m2 s−1 and γ = 2 × 10−8 s−1 were
used in the simulation. The rest of the parameters were the same as in table 1.

We further substitute ω= cwky, where cw is the phase speed of the wave, and solve
the above matrix for non-trivial solutions (we only consider the non-zero solution
for cw),

c2
wk2

y [(k
2
y + S1)(k2

y + S2)− S1S2] − cwk2
yβT(k2

y + S1)= 0, (B 3)

cw =
βT(k2

y + S1)

k2
y(k2

y + S1 + S2)
. (B 4)

Appendix C. EOFs in doubly periodic simulations
The first twenty EOFs obtained from the solution of a doubly periodic model are

shown in figure 9. Apart from the J and Z modes, higher EOFs also have large-scale
structure. Most of the EOFs appear in pairs, which means that they are propagating.

Appendix D. Linearisation of the governing equations
We derive the linearised governing equations in a tilted frame of reference (angle of

rotation is θ ) that is moving with speed c, which is equal to the propagation speed of
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the tilted jets. The governing (4.1) is the same as in Khatri & Berloff (2018a). In this
scenario, the time-mean flow varies in direction q only, i.e. ψi= f (q) and ∂ψi/∂p= 0.
The mean flow itself satisfies (4.1); hence, we have

−(c+ δi1Ub sin θ)
∂

∂q
[∇

2ψ i + εiSi(ψ2 −ψ1)] − [(β + εiSiUb) sin θ + δi2βT cos θ ]
∂ψ i

∂q
= ν∇4ψ i − δi2γ∇

2ψ i, (D 1)

where δij is the Kronecker delta and ε1=−ε2= 1. Then, we substitute ψi=ψ i(q)+ψ ′i
in (4.1) and ignore the nonlinear terms in perturbations to linearise the equation. By
using relation (D 1), the final linearised equation is given as[

∂

∂t
− c

∂

∂q

]
[∇

2ψ ′i + εiSi(ψ
′

2 −ψ
′

1)] +
∂ψ ′i

∂p
∂

∂q
[∇

2ψ i + εiSi(ψ2 −ψ1)]

+ [(β + εiSiUb) cos θ − δi2βT sin θ ]
∂ψ ′i

∂p
−
∂ψ i

∂q
∂

∂p
[∇

2ψ ′i + εiSi(ψ
′

2 −ψ
′

1)]

− [(β + εiSiUb) sin θ + δi2βT cos θ ] sin θ
∂ψ ′i

∂q

+ δi1Ub

(
−sinθ

∂

∂q
+ cos θ

∂

∂p

)
[∇

2ψ ′i + εiSi(ψ
′

2 −ψ
′

1)]

= ν∇4ψ ′i − δi2γ∇
2ψ ′i . (D 2)

Let ∂ψ i/∂q=−ui, which is the mean velocity in direction p. The linearised equation
can be written as

∂

∂t
[∇

2ψ ′i + εiSi(ψ
′

2 −ψ
′

1)] +

[
Ai
∂

∂p
+ Bi

∂

∂q

]
[∇

2ψ ′i + εiSi(ψ
′

2 −ψ
′

1)]

+Ci
∂ψ ′i

∂p
+Di

∂ψ ′i

∂q
= ν∇4ψ ′i − δi2γ∇

2ψ ′i , (D 3)

where

A1 =Ub cos θ + u1,
A2 = u2,

B1 =−c−Ub sin θ,
B2 =−c,
C1 = (β + S1Ub) cos θ − u′′1 + S1(u1 − u2),

C2 = (β − S2Ub) cos θ − βT sin θ − u′′2 + S2(u2 − u1),
D1 =−(β + S1Ub) sin θ,
D2 =−(β − S2Ub) sin θ − βT cos θ.


(D 4)

We further substitute ψ ′i = ψ̃i(q)ei(lp−ωt), where l is the wavenumber along p
direction, and ω is the frequency.

−iω[−l2ψ̃i + ψ̃
′′

i + εiSi(ψ̃2 − ψ̃1)] +

[
Ai
∂

∂p
+ Bi

∂

∂q

]
[−l2ψ̃i + ψ̃

′′

i + εiSi(ψ̃2 − ψ̃1)]

+ ilCiψ̃i +Diψ̃
′

i = ν(l
4ψ̃i + ψ̃

′′′′

i )+ δi2γ (l2ψ̃i + ψ̃
′′

i ). (D 5)
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960 H. Khatri and P. Berloff

In order to solve the above equation, we used finite-difference discretisation in
direction q. This results in a system of equations, which can be represented in a
matrix form as

ωGψ̃ = Hψ̃, (D 6)
|G−1H −ωI| = 0. (D 7)

Here, G and H are the coefficient matrices; ψ̃ is the set of all eigenvectors,
with ω being the spectrum of eigenvalues. We then imposed periodic boundary
conditions at the meridional boundaries and solved the eigenvalue problem for
different wavenumbers l.
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