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ABSTRACT

We introduce new features of data-adaptive harmonic decomposition (DAHD) that are showcased to characterize spatiotemporal variability
in high-dimensional datasets of complex and mutsicale oceanic flows, offering new perspectives and novel insights. First, we present a didactic
example with synthetic data for identification of coherent oceanic waves embedded in high amplitude noise. Then, DAHD is applied to
analyze turbulent oceanic flows simulated by the Regional Oceanic Modeling System and an eddy-resolving three-layer quasigeostrophic
ocean model, where resulting spectra exhibit a thin line capturing nearly all the energy at a given temporal frequency and showing well-
defined scaling behavior across frequencies. DAHD thus permits sparse representation of complex, multiscale, and chaotic dynamics by a
relatively few data-inferred spatial patterns evolving with simple temporal dynamics, namely, oscillating harmonically in time at a given
single frequency. The detection of this low-rank behavior is facilitated by an eigendecomposition of the Hermitian cross-spectral matrix
and resulting eigenvectors that represent an orthonormal set of global spatiotemporal modes associated with a specific temporal frequency,
which in turn allows to rank these modes by their captured energy and across frequencies, and allow accurate space-time reconstruction.
Furthermore, by using a correlogram estimator of the Hermitian cross-spectral density matrix, DAHD is both closely related and distinctly
different from the spectral proper orthogonal decomposition that relies on Welch’s periodogram as its estimator method.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0012077

The turbulent oceanic flows consist of ubiquitous complex
motions—jets, vortices, and waves—that co-exist on very differ-
ent spatiotemporal scales but also without a clear scale separation,
and it brings natural challenge to characterize the whole complex-
ity across the scales. In particular, the study of temporal scales
has got less attention than of spatial scales. To that effect, we
offer fresh perspectives and novel insights by introducing new
features of data-adaptive harmonic decomposition (DAHD) that
are applied to analyze complex high-dimensional spatiotempo-
ral datasets of oceanic flows, including a synthetic example of
identifying coherent oceanic waves embedded in high-amplitude
noise and turbulent flows simulated by a hierarchy of oceanic
models. DAHD results reveal striking low-rank behavior and a
sparse representation of complex, multiscale, and chaotic flows by
a relatively few data-inferred spatial patterns evolving with sim-
ple temporal dynamics, as well as well-defined scaling behavior

across temporal frequencies, such as exponential-like shape and
power law.

I. INTRODUCTION

Over the past decade, approaches based on Dynamical Mode
Decomposition (DMD) and Koopman analysis have quickly gained
popularity to analyze datasets in the engineering fluids community
(Schmid, 2010; Budišić et al., 2012; and Williams et al., 2015). DMD
computes from the data of the eigenvalues and eigenvectors of a
linear model that approximates the underlying nonlinear dynam-
ics. Tu et al. (2014) have established a close connection of DMD
with independently developed in climate science principal orthogo-
nal patterns (Penland, 1989) and linear inverse modeling (Penland,
1996), which have been since generalized to include memory and
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nonlinear effects (Kondrashov et al., 2015; Mukhin et al., 2015; and
Gavrilov et al., 2016), as well as state-dependent noise (Kravtsov
et al., 2016; Martinez-Villalobos et al., 2018).

Spectral proper orthogonal decomposition (SPOD) (Towne
et al., 2018) and spectral empirical orthogonal function analysis
(SEOF) (Schmidt et al., 2019), are based on an eigenvalue decom-
position of the estimated cross-spectral density matrix, yielding
at each frequency a set of time-harmonic and orthogonal modes;
these SPOD/SEOF modes can be interpreted, in turn, as ensem-
ble DMD modes. Data-adaptive harmonic decomposition (DAHD)
(Chekroun and Kondrashov, 2017; Kondrashov et al., 2018a) is
based on spectral analysis of an integral shift operator with a two-
point statistic kernel built from time-lagged cross correlations, and
it is realized numerically by an eigendecomposition that is briefly
reviewed in Sec. II A. Similar to SPOD/SEOF methods, DAHD
is yielding orthogonal set of eigenvectors—data-adaptive harmonic
modes (DAHMs) oscillating harmonically in time.

Furthermore, DAHD enables effective inverse modeling of the
original dataset by a system of frequency-ranked nonlinear stochas-
tic oscillators with memory effects, which has been successfully
applied to challenging datasets across sciences, including oceanic
turbulence (Kondrashov et al., 2018a), Arctic sea ice (Kondrashov
et al., 2018b; 2018c), and space physics (Kondrashov and Chekroun,
2018).

This study introduces important DAHD modifications and
new features, namely, an eigendecomposition of the Hermitian
cross-spectral density matrix in the frequency-domain (Sec. II B)
and the auxiliary energy spectrum (Sec. II C) obtained by using
judicious projection of the data onto DAHMs. DAHD connection
and difference with SPOD/SEOF is established (Sec. II B).

The Hermitian form of DAHD is applied first for identifica-
tion of coherent oceanic waves in noisy synthetic data (Sec. III)
and then to analyze several high-dimensional datasets of complex
turbulent geophysical flows, namely, Regional Oceanic Modeling
System (ROMS) simulation of the equatorial region (Sec. IV) and
a wind-driven gyres circulation by a eddy-resolving three-layer
quasigeostrophic ocean model (Sec. V). Discussion and conclusions
follow in Sec. VI.

II. DATA-ADAPTIVE HARMONIC DECOMPOSITION

A. Time-domain formulation

We consider a multivariate time series X(n) = (X1(n), . . . ,
Xd(n)) formed with d spatial channels and n = 1, . . . , N time points
(sampled evenly). Double-sided (unbiased) cross-correlation coeffi-
cients ρ(p,q)(m) are estimated for all pairs of channels p and q and
the time lag m up to a maximum M − 1,

ρ(p,q)(m) =

{
1

N−m

∑N−m
n=1 Xp(n + m)Xq(n), 0 ≤ m ≤ M − 1,

ρ(q,p)(−m), m < 0.
(1)

Here, M is the embedding window and its size should be larger than
typical decorrelation times in the data; it is the slowest temporal
scale captured by DAHD. To reduce the biases of cross-correlation
estimates, common lag windowing can be applied.

Combining all the lagged cross-correlation coefficients between
a given pair of channels, p and q lead to a cross-correlation Han-
kel matrix H(p,q), which is symmetric and obtained by a left shift of

the row vector (ρ
(p,q)
−M+1, . . . , ρ

(p,q)
0 , . . . , ρ

(p,q)
M−1); therefore, every anti-

diagonal consists of the same elements. The block-matrix C of
size d(2M − 1) · d(2M − 1) is made symmetric by construction and
obtained by arranging all the Hankel matrices H(p,q) for each pair of
channels (p, q),

C
(p,q) = H(p,q), p ≤ q,

C
(p,q) = H(q,p), elsewhere.

(2)

An important property of C is that its eigenvalues λ come in pairs

of opposite values, while the eigenvectors Wj = (E
j
1, . . . , E

j

d) repre-
sent a collection of global space-time patterns, namely, data-adaptive
harmonic modes (DAHMs) oscillating at a single temporal fre-

quency. In particular, E
j

k is M′-long time series that corresponds to a
harmonic oscillation with a frequency f,

E
j

k(s) = B
j

k cos(2π fs + θ
j

k), 1 ≤ s ≤ M′, 1 ≤ k ≤ d, (3)

where the amplitudes B
j

k and phases θ
j

k are data-adaptive, while the
frequency f is equally spaced in the Nyquist interval [0 0.5] with M
values,

f =
(` − 1)

M′ − 1
, ` = 1, . . . ,

M′ + 1

2
. (4)

In total, j = 1, . . . , d(2M − 1) spectral DAHD eigenelements
(|λj|, Wj) are computed, and the DAHD spectrum is obtained by
plotting eigenvalues |λ| according to their frequency f.

Several DAHD studies (Chekroun and Kondrashov, 2017;
Kondrashov et al., 2018a) have relied on eigendecomposition of
C [Eq. (2)] to perform the analysis on relatively low-dimensional
datasets, i.e., d not exceeding 40. High-dimensional datasets can be
compressed first by PCA, aiming to retain nearly all of the variance
(98%–99%) in leading PCs, which are then analyzed. In practice,
DAHD results are invariant to the orthogonal rotation of the data
and to Principal Component Analysis (PCA). in particular. Still,
even after PCA compression, the matrix C can be very large and its
direct eigendecomposition is computationally prohibitive. For such
cases, Ryzhov et al. (2019; 2020) have utilized frequency-domain
DAHD formulation, described next.

B. Frequency-domain formulation

Theorem V.1 of Chekroun and Kondrashov (2017) has estab-
lished that DAHD eigenvalues are related to singular values of a sym-
metrized complex d × d cross-spectral matrix S(f) whose elements
are given by

Sp,q(f) =

{
ρ̂p,q(f) if q ≥ p,

ρ̂q,p(f) if q < p,
(5)

where ρ̂p,q(f) is the Fourier transform at the frequency f of the cross-
correlation sequence ρp,q(m),

ρ̂p,q(f) =

M−1∑

m=−M+1

ρp,q(m)e−2π if. (6)
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FIG. 1. Temporal snapshots of 2D reference waves and their sum contaminated by noise. Multimedia view: https://doi.org/10.1063/5.0012077.1

FIG. 2. Time series of the wavy signal and full data with imposed red noise at the
selected (x,y) point.

In particular, for each singular value σk(f) of S(f), there exists, when
f 6= 0, a pair of negative-positive DAHD eigenvalues (λ+

k (f), λ−
k (f))

of C such that

λ+
k (f) = −λ−

k (f) = σk(f), 1 ≤ k ≤ d; (7)

i.e., 2d eigenvalues are associated with each Fourier frequency f 6= 0,
while respective DAHMs are shifted by the quarter of the period;
i.e., θ+

k = θ−
k + π/2. There are only d (not paired) eigenvalues for

the frequency f = 0.
As a point of departure from the DAHD formulation presented

above, it is important to note that the matrix S(f) in Eq. (5) is sym-
metrized by the intent for practical numerical reasons because ρ̂p,q(f)
and ρ̂q,p(f) are generally different when p 6= q. However, ρ̂p,q(f)
and ρ̂q,p(f) are necessarily related to each other due to the rever-
sal property of estimated time-lagged cross-correlation sequences,
namely,

ρp,q(m) = ρq,p(−m), (8)

where −M + 1 ≤ m ≤ M − 1. This is due to the fact that for
ρp,q(m), channel p is leading channel q by m lags, and for ρq,p(m),
it is the opposite; see Eq. (1). Equivalently, Eq. (8) can be written
also as

ρp,q(2M − m) = ρq,p(m), (9)
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FIG. 3. DAHD spectra of eigenvalues λ (left panel) and energy α2 (right panel) for the 2D synthetic dataset: red circles—pairs of modes associated with the largest values
at reference wave frequencies.

where 1 ≤ m ≤ 2M − 1. It is easy to show that Fourier transforms
of ρq,p(m) and ρp,q(m) sequences are then related by the frequency-
dependent phase shift,

ρ̂p,q(f) = eiφ ρ̂q,p(f), (10)

where ρ̂q,p is a complex conjugate, f = 0.5 (l−1)
M−1

, φ = 2π(l−1)
2M−1

, 1 ≤ l ≤

M. Furthermore, since Eqs. (8)–(10) hold when p = q, we obtain for
the diagonal elements of S(f),

Sp,p(f) = eiφ/2|ρ̂p,p(f)|. (11)

FIG. 4. Temporal snapshot for DAHD reconstruction of waves by using DAHMs associated with spectral peaks in Fig. 3 and a comparison with respective reference patterns
(see Fig. 1, Multimedia view). Multimedia view: https://doi.org/10.1063/5.0012077.2
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We can thus define the cross-spectral density matrix S( f),

S( f) = e−iφ/2
S( f), (12)

where S(f) is non-symmetrized; i.e., Sp,q(f) = ρ̂p,q(f) for 1 ≤ p, q ≤

d. The matrix S is Hermitian, and S = S∗ = ST by the way of
Eqs. (10) and (11), and it is interpreted as a correlogram estimate of

a multidimensional Hermitian cross-spectral density E{X̂(f)X̂(f)
∗
},

where an expectation operator E is an ensemble average over dif-
ferent realizations of a multidimensional random process X. The
phase-shift factor e−iφ/2 in Eq. (11) accounts for discrete case esti-
mation. For the univariate case in particular (i.e., p = q = 1), S(f)

= |ρ̂(f)| represents a well established correlogram method based on
the Wiener–Khinchin theorem, which states that the power spec-
tral density is equal to the Fourier transform of its autocorrelation
function (Percival and Walden, 1993). Furthermore, since S(f) is a
Hermitian matrix, its eigendecomposition,

S(f) = U3U∗, (13)

yields a set of d real eigenvalues 3 = diag(λ1, . . . , λd) (their absolute
values are used for the analysis and results presented), while associ-
ated d eigenvectors U form an orthonormal set at each frequency
f in the Nyquist interval [see Eq. (10)].

The Hermitian DAHD formulation [Eqs. (11)–(13)] thus
closely resembles a SPOD/SEOF approach (Towne et al., 2018;
Schmidt et al., 2019), with the key difference being that the lat-
ter considers Welch’s overlapped averaging periodogram estimate
of the cross-spectral density matrix, while the former is based on
a correlogram estimate [Eq. (11)]. However, the same as in SPOD,
Hermitian DAHD eigenvectors Uk are associated with the Fourier
transform of a spatial wave, which is harmonic in time at a single

frequency f; i.e., the time-domain DAHMs Wk [see Eq. (3)] have the
following representation:

Ŵk(f) = Uk(f). (14)

For the purpose of reconstruction in the time-domain and the com-

puting energy spectrum (see Sec. II C), for each λk, pairs (Ŵ+
k (f)

= Uk(f), Ŵ
−
k (f) = eiπ/2Uk(f)) are formed. In turn, W+

k (f) and W−
k (f)

are obtained by an inverse Fourier transform to yield space-time pat-
terns at a single temporal frequency f and shifted by a quarter of a
period (aka sin and cos) and thus provide an orthonormal basis set of
modes W in the time-domain across all frequencies; i.e., WTW = I.
By analogy with SPOD/SEOF modes, DAHD modes can be inter-
preted then as optimal response modes of the forced linear system if
the forcing is white in space and time (Schmidt et al., 2019; Towne
et al., 2018).

The frequency-domain approach is fully parallelizable and thus
is very computationally efficient since the eigendecomposition of
each frequency can be performed in parallel.

C. Energy spectrum and space-time reconstruction

The maximum resolution in the frequency [see Eq. (4)] is
achieved when M = (N + 1)/2, and in this case, DAHMs attain the
size Nxd; i.e., they have exactly the same dimensions as the original
data X in time and space. Since the set of DAHMs is an orthonor-
mal basis, i.e., WTW = I, it can be used to perform the following
expansion of X:

X =

dN∑

j=1

µjWj. (15)

FIG. 5. DAHD spectra of eigenvalues λ(f) [panels (a) and (b)] and energy α2(f) [panels (c) and (d)] of the surface vorticity field in ROMS simulation: blue—modes with the
largest λ at each frequency; green—power law fit ≈ f−0.4; magenta—exponential law fit e−2τ f with the characteristic time scale τ ≈ 10 h; black dots—modes at selected
frequencies shown in Fig. 6.
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FIG. 6. Magnitude |B| of DAHM [see Eq. (3)] associated with the largest α2(f) and λ(f) at selected frequencies (black dots in Fig. 5).

Here, µj’s are scalar weights—Data-Adaptive Harmonic coefficients
(DAHCs) that are uniquely defined by projecting X onto DAHMs,
namely,

µj = WT
j X =

N∑

n=1

d∑

k=1

E
j

k(n)Xk(n). (16)

The original data can then be partially (or fully) reconstructed by
selecting a subset (whole set) of µ’s and associated DAHMs in
Eq. (15). The physical meaning of DAHCs readily follows; namely,

when squared, they establish relative contributions of respective
DAHMs to L2 energy of X, i.e., with the above definitions,

N∑

n=1

d∑

k=1

X2
k(n) =

Nd∑

j=1

µ2
j . (17)

Because of pairing in DAHD eigenvectors and their association with
a single temporal frequency f [see Sec. II B and Eq. (14)], it is useful
to isolate in the sum on the right hand side of Eq. (17) the energy
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FIG. 7. An instantaneous snapshot of surface vorticity in the original data ROMS (left) vs reconstruction (right) obtained by using DAHCs and DAHMs associated with
the top spectral energy line, i.e., the largest α2(f) at a given frequency; see the text for details, units (s−1). Multimedia view: https://doi.org/10.1063/5.0012077.3

contribution for any given pair,

α2
k(f) = (µ+

k (f))
2
+ (µ−

k (f))
2
, 1 ≤ k ≤ d. (18)

The DAHD energy spectrum is then obtained by plotting a collec-
tion of α2(f) as a function of their frequency, similar to the plot of
λ(f)’s.

FIG. 8. Correlation of instantaneous spatial patterns of reconstruction and
reference ROMS vorticity fields (see Fig. 7, Multimedia view).

III. IDENTIFICATION OF ROSSBY WAVES

We consider here a synthetic example of several propagating
2D waves,

un(x, y, t) = An cos(knx/Lx + lny/Ly + ωnt), (19)

where An are the weights, while frequency ωn and wave numbers
(kn, ln) obey the Rossby dispersion relation,

ωn = −
βkn

k2
n + l2n + R−2

. (20)

The full dataset v(x, y, t) consists of a coherent component

s(x, y, t) =
∑K

n=1 un(x, y, t) embedded in a temporally correlated and
a spatially uncorrelated noise r(x, y, t) represented locally by inde-
pendent AR(1) processes and a randomly chosen AR(1) coefficient,

v(x, y, t) = (1 − ν)1/2 s(x, y, t) + ν1/2 r(x, y, t). (21)

For this example, we choose Lx = Ly = 64 and uniform spacing in
x and y with Nx = Ny = 64 of grid points; R = 5, β = −2 · 10−7,
and K = 5 waves with the spatial wave numbers k1 = −10, k2 = 20,
k3 = −5, k4 = 4, k5 = −2, l1 = 10, l2 = 20, l3 = −5, l4 = 3, l5 = 1;
and the wave weights A1 = 1, A2 = 0.5, A3 = 0.75, A4 = 0.6, and
A5 = 0.9. With an appropriately chosen time step, the wave period-
icities |2π/ωn| in sampling units are T1 ≈ 63, T2 ≈ 126, T3 ≈ 32,
T4 ≈ 20, and T5 ≈ 8, and we generate the dataset with N = 999
points in time. By using the coefficient ν = 0.9 in Eq. (21), we
consider a case of a low signal-to-noise ratio; i.e., the wavy sig-
nal accounts only for 14% of the variance in the full data v(x, y, t);
see the comparison of “clean” 2D wave snapshots with their noisy
sum (Fig. 1, Multimedia view) and the time series at the (x,y) point
(Fig. 2).
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FIG. 9. Snapshot of an upper-layer potential vorticity (PV) field in the three-layer
quasigeostrophic oceanic model simulation of wind-driven gyres (Ryzhov et al.,
2019). Nondimensional color scale units, the same for Fig. 12 (Multimedia view).

Then, we apply the frequency-domain DAHD Hermitian
algorithm (Sec. II B) to the noisy data v(x, y, t) with the goal to diag-
nose and reconstruct reference waves un(x, y, t) in space and time.
We use the embedding window M = (N + 1)/2 = 500 in sampling
units to obtain a maximum spectral resolution.

Figure 3 shows DAHD eigenvalues [λ(f), see Eq. (13)] and the
energy spectrum α2(f) [see Eq. (18)], which is evenly spaced with
M = 500 bins in the Nyquist range [0 0.5]. Both λ(f) and α2(f) spec-
tra are characterized by sharp peaks at the frequencies of reference
waves, located high above noise background and associated with a
pair of DAHMs [W’s, Eq. (3)]. Furthermore, the energy spectra α2(f)
has an additional advantage by providing cleaner identification of
coherent waves from noise, i.e., without multiple background lines
present in λ(f) spectra.

Figure 4 (Multimedia view) shows fairly accurate reconstruc-
tion [see Eq. (15)] of reference wave patterns by using a pair of
DAHMs [W’s, Eq. (3)] and DAHCs [µ’s, Eq. (16)] associated with
the spectral peaks in Fig. 3.

IV. REGIONAL OCEANIC MODELING SYSTEM

The dataset consists of N = 1803 hourly snapshots of the sur-
face vorticity field in the square domain (with a 1002 × 1002 spa-
tial resolution) of the equatorial region simulated by the Regional
Oceanic Modeling System (Srinivasan et al., 2017)—a primitive
equation ocean model. To enable efficient DAHD analysis for such
a high-dimensional dataset, it was first compressed by PCA. The
leading d = 1000 empirical orthogonal function (EOF) modes and
principal components (PCs) (from a total of 1803 modes) capture
≈99% of variance. Next, we apply the Hermitian DAHD algorithm
(Sec. II B) to the dataset composed by the time series of d = 1000
PCs and with a window M = (N + 1)/2 = 902 (in sampling units)
to obtain maximum spectral resolution.

Figure 5 shows DAHD eigenvalues [λ(f), see Eq. (13)] and
the energy spectrum α2(f) [see Eq. (18)] that is evenly spaced with
M = 902 bins in the Nyquist range [0 0.5] h−1. At each frequency,

FIG. 10. DAHD spectra of eigenvalues λ(f) [panels (a) and (b)] and energy α2(f) [panels (c) and (d)] of the PV field (Fig. 9); blue—modes with the largest λ at
each frequency; green—the power-law fit ≈f−5/3; magenta—the exponential law fit e−2ts f with the characteristic time scale τs ≈ 25 days; black dots—DAHD modes
shown in Fig. 11.
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100 largest values of α2 are shown from the maximum possible
d = 1000. The α2(f) spectrum is characterized by a thin spectral line
formed by a pair of DAHMs capturing the largest energy per fre-
quency and located high above diffuse background. In comparison,
the eigenspectrum λ(f) is more compact and with a smaller gap from
the background, similar to the results of Sec. III.

Comparison of the top spectral α2 line in log–log and log-linear
plots in Fig. 5 reveals power-like dependence at very low frequencies
f < 0.02 h−1 (green line) and exponential decay for f ∈ [0.02 0.3] h−1

(magenta line). Several spectral structures with a much smaller mag-
nitude and varying scaling laws are also revealed in the diffuse
background for f ∈ [0.15 0.35] h−1.

It should be noted that power spectra with exponential law have
not been widely reported or discussed in the context of turbulent or
chaotic data. Maggs and Morales (2012) have observed exponential
spectra in UCLA plasma physics experiments and have interpreted
it as nonlinear signatures of chaotic dynamics in Lorentzian pulses,

given by g(t) = τ2

(t−t0)2+τ2 with power spectra ≈e
−2f
fs , where fs = 1

τ

is the scaling frequency. By fitting values in the top spectral line, we

obtain τ ≈ 10 h for exponential spectra and ≈f−0.4 for the power-law
spectra at very low frequencies.

Figure 6 shows the magnitude |B| of the DAHM after trans-
formation into a physical space from the EOF space and associated
with the largest value of α2(f) at selected frequencies—black circles
in Fig. 5. While each of the DAHMs oscillates harmonically in time
[see Eq. (3)], it is inherently multiscale with large and small spatial
features. Their dynamical interpretation as optimal response modes
of the linear system (Sec. II B) hinges on the validity of approximat-
ing effective forcing of the vorticity field, by the white noise in space
and time, and it is clearly beyond the scope of this study.

Figure 7 (Multimedia view) demonstrates that the instanta-
neous full vorticity flow field can be reconstructed with high accu-
racy [see Eq. (15)] by using a small subset of DAHD eigenelements
in the top spectral energy line across frequencies, i.e., a pair of
DAHMs [Ws, Eq. (3)] and associated DAHCs [µ’s, Eq. (16)], which
yield the largest energy contribution (α2(f)) at each frequency f ∈

[0.00.35] h−1 and in total accounting for ≈97% of the variance in the
vorticity field. The correlation between reconstruction and reference
patterns is very high over whole time; see Fig. 8.

FIG. 11. Magnitude |B| of DAHM [see Eq. (3)] associated with the largest α2(f) at selected frequencies f (cycle/year); see black dots in the top spectral line in Fig. 10.
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FIG. 12. An instantaneous snapshot of a PV anomaly in the original QG data (left) vs reconstruction (right) obtained by using DAHD elements in the top spectral line
(blue dots in Fig. 10). Multimedia view: https://doi.org/10.1063/5.0012077.4

Such high-degree of information compression in the recon-
struction is achieved by ≈2 · 900 = 1800 DAHD-inferred spatial
patterns (i.e., DAHMs and taking into account the phase-quadrature
property of the latter), which evolve with trivial temporal dynam-
ics, namely, harmonic oscillations. In contrast, PCA compression
yields 1000 spatial EOFs but with very complex temporal dynamics
in associated PCs.

V. EDDY-RESOLVING OCEANIC MODEL OF

WIND-DRIVEN GYRES

The dataset is obtained by the eddy-resolving oceanic
quasigeostrophic (QG) model (Shevchenko and Berloff, 2015;
Kondrashov and Berloff, 2015; and Ryzhov et al., 2019; 2020)
that produces a double-gyre flow pattern, characterized by a well-
developed and turbulent eastward jet extension of the western
boundary currents with its adjacent recirculation zones. Dataset
consists of N = 5999 5-day snapshots of potential vorticity in the
upper layer (Fig. 9) solution with a 513 × 513 spatial resolution.
The leading d = 2000 EOFs and PCs from PCA capture ≈99% of
the total variance. Next, we apply the Hermitian DAHD algorithm
(Sec. II B) to the dataset composed by the time series of d = 2000
PCs and with a window M = (N + 1)/2 = 3000 (in sampling units).

Figure 10 shows DAHD eigenvalues [λ(f), see Eq. (13)] and
the energy spectrum α2(f) [see Eq. (18)]. For energy spectra, only
the largest 30 α2(f) values are shown from the total number of
d = 2000 at each frequency. The shape of the spectra is character-
ized by a narrow spectral line of one α2(f) value per frequency with a
wide gap above diffuse background of lower values. Furthermore,
the top spectral line exhibits a sharp spectral peak at ≈20 years,
followed by an exponential law e−2τ f with the characteristic time

scale τ ≈ 25 days, while Kolmogorov’s (− 5
3
) power law is diagnosed

in the high-frequency range (green).
Figure 11 shows the magnitude |B| of the DAHM associated

with the largest value of α2(f) at selected frequencies (see black cir-
cles in Fig. 10). Notably, the DAHM associated with the decadal
spectral peak represents a coherent spatial pattern along the jet,

FIG. 13. Correlation of instantaneous spatial patterns of reconstruction and
reference PV anomaly fields (see Fig. 12, Multimedia view).
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while the spatial patterns in exponential and Kolmogorov ranges are
patchy and inherently multiscale.

Figure 12 (Multimedia view) shows that the instantaneous PV
anomaly field can be reconstructed very accurately [see Eq. (15)]
by using DAHD eigenelements in the top spectral line (i.e., blue
dots in Fig. 10), accounting for ≈96% of variance in the reference
field, while the correlation between reconstruction and reference PV
patterns is high over the whole time interval; see Fig. 13.

VI. DISCUSSION AND CONCLUSIONS

The energy spectra and scaling laws of turbulent atmo-
spheric and oceanic flows (Delsole, 2004; Callies and Ferrari, 2013;
McWilliams, 2016; and Chapman, 2017) are commonly analyzed in
terms of spatial scales (wavenumber), implicitly implying ergodic
assumption, i.e., larger/smaller spatial scales corresponding to their
slower/faster evolution. In comparison, DAHD explicitly focuses on
the temporal scales but without any built-in assumptions on their
spatial content and thus can provide new insights, such as an expo-
nential shape of energy spectra not widely reported before. Further-
more, DAHD yields a sparse representation of complex, multiscale,
and chaotic dynamics by relatively few data-inferred spatial patterns
oscillating harmonically in time. The observed low-rank behavior
can be interpreted as dominance of a given physical mechanism
of the energy distribution and transfer across temporal frequencies
and revealed by scaling laws of DAHD spectra. By utilizing the cor-
relogram estimator of the Hermitian cross-spectral density matrix,
DAHD is closely related but distinctly different from SPOD that
relies on Welch’s periodogram.

The results of this study pave the way to several promising
DAHD applications, such as (i) obtaining a highly accurate spectral
fingerprint of scaling laws in geophysical and astrophysical tur-
bulent fluid flows, (ii) global spectral diagnostics for comparison
and characterization of model simulations and observations, (iii)
parsimonious extraction and reconstruction of mutiscale features
of interest enabled by DAHD compression of energetic content,
(iv) uncovering invariant laws across different spatial and temporal
scales and phenomena, (v) predictive capability enabled by simple
temporal dynamics contained in DAHMs, and (vi) identification of
coherent structures in noisy data.
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