
1.  Introduction
1.1.  Background

For our purposes, clustering refers to the tendency of floating tracers to aggregate, forming regions of enhanced 
concentration. Interest in this phenomenon is motivated by real life observations, primarily of pollutants and 
biological populations being advected by currents in the upper ocean (Cózar et al., 2014; Gower et al., 2006; 
Jordi et al., 2009). Additionally, clustering has been observed in ocean drifter data, in global accumulation zones 
(Maximenko et al., 2012), and on a smaller scale through dilation estimates (Rypina et al., 2022). Theoretical 
exploration intends to determine if this effect has meaningful implications for various ocean processes.

For example, buoyant microplastic pollution in the ocean are advected by currents, as are biological populations, 
such as phytoplankton. Since these pollutants represent a significant threat to said populations (Andrady, 2011), 
the potential for coextensive clustering could lead to greater risk by increasing reaction rates between them.

Passive tracers in an incompressible flow will not cluster due to the preservation of material volume. While 
non-divergent velocities can enhance existing tracer concentration gradients through mixing, they cannot increase 
the overall contrast. However, if a tracer is buoyant (such as microplastic pollution), its vertical motions are 
restricted and it will predominantly follow the horizontal flow. This leads to vertical motion in the ocean currents 
being experienced as surface convergence/divergence, which will cause the tracer to form clusters.

In the real ocean, potential sources of the weakly divergent flow include the ageostrophic or submesoscale veloci-
ties (Haza et al., 2016; Stepanov, Ryzhov, Berloff, & Koshel, 2020; Stepanov, Ryzhov, Zagumennov, et al., 2020). 
Observations of strong subduction at submesoscale fronts show the potential for strong surface convergence 
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Plain Language Summary  Floating material, such as microplastic waste and certain marine 
species, have a tendency to form dense patches on the ocean surface. Interest in this phenomenon is 
increasing, largely due to recent observations of the “garbage islands” of plastic pollution. We are attempting 
to develop greater understanding of the way these structures form by using simple models. These models 
give us the opportunity to assess the methodologies generally used in Lagrangian particle studies and how 
they impact numerical simulations of clustering floating material. They also allow us to try new methods 
of inter-comparison between models, which we have done to investigate the impact of common numerical 
approximations on the results of clustering simulations.
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(Archer et al., 2020). Other diverging contributions to the surface currents can be considered, such as Ekman 
currents or Stokes drift (Onink et al., 2019). Alternatively, considering particles with finite inertia allows for 
deviation of particle velocities from the background flow, which can aid in forming clusters (Baker et al., 2017; 
Liu et al., 2020; Monchaux et al., 2012). Whichever effects are considered, the important result is the presence of 
a nonzero potential component in tracer velocities.

Theoretical investigations of the clustering process have previously utilized kinematic velocity fields 
(Klyatskin,  2003; Koshel et  al.,  2019; Stepanov, Ryzhov, Berloff, & Koshel,  2020; Stepanov, Ryzhov, 
Zagumennov, et  al.,  2020; Wilson & Sawford,  1996). Often, Gaussian Random fields are generated with 
imposed spatial correlations, but delta-correlated in time. We adopt and extend this approach; moving away 
from delta-correlated fields by imposing a Langevin model in time. By retaining both models for time correla-
tions, we study how the representation of time memory affects cluster formation. Furthermore, the flexibility 
of the kinematic framework provides the opportunity to explore sensitivity to time and spatial resolution of the 
velocity, as well as to several interpolation methods which are commonly used in more complex Lagrangian 
studies.

1.2.  Statement of the Problem

Often in traditional Lagrangian studies, an offline advection is conducted. For reasons of computational/
storage constraints or lack of available data, velocity fields may be time-averaged and interpolated, to the 
point where mesoscale and submesoscale flow features are no longer well resolved in time or space. Spatial 
resolutions of around 1/4° or lower are typical, as well as time resolutions of several days, with additional 
smoothing through time averaging (Blanke et al., 2002; Martinez et al., 2009; Onink et al., 2019; van Sebille 
et al., 2014). These simplifications are more than sufficient to preserve the structure of the transport path-
ways. However, there is no guarantee that the sensitivities of the exponential clustering process will be 
similar.

Spatial variations of submesoscale ocean currents are well constrained in both modeling and observational 
contexts (McWilliams, 2016; Rocha et al., 2016). Often, interest is focused on these currents as a function of the 
larger scale flow for the purposes of parametrization. As a result, their inherent time variability is often neglected. 
The limited understanding of time correlations has been addressed, and investigated in an observational setting 
by Callies et al. (2020), for a mooring array in the northeast Atlantic. Here, a well defined decorrelation time of 
∼1 day was found at the horizontal scale of ∼10 km. Given that submesoscale currents will be a predominant 
source of surface convergence, sensitivity to time variations will necessitate resolving these decorrelation scales 
well. This is an achievable goal for future clustering simulations, but is also a much more stringent requirement 
than many other Lagrangian applications. In some contexts, choosing a typical decorrelation timescale may 
require a more comprehensive understanding of time variability than currently exists.

Using a kinematic model allows us to refine our methodology in a controlled setting. This is an essential initial 
step in creating a robust framework for further exploration of the clustering problem. In the immediate future, 
this will allow us to investigate, with confidence, the formation of clusters in dynamical velocity fields, reacting 
biological systems and when including inertial effects on particle velocity. Detecting a strong dependence of clus-
tering on the representation of time correlations in this framework will indicate that this must be a consideration 
in more realistic clustering studies and can help motivate methodologies in future work.

Our velocity fields are constructed similarly to those in Koshel et al.  (2019). Gaussian random fields can be 
constructed in Fourier space with imposed energy spectrum. This spectrum can be chosen to mimic the narrow 
band, isotropic structure from the classical picture of turbulence first proposed by Kolmogorov (1941). Kine-
matic fields such as these have often been used as a model for oceanic turbulence (Klyatskin,  2003; Koshel 
et al., 2019; Stepanov, Ryzhov, Berloff, & Koshel, 2020; Stepanov, Ryzhov, Zagumennov, et al., 2020; Wilson 
& Sawford, 1996). Traditionally, an assumption of delta-correlations in time is used to generate a time series of 
the velocity. We include the optional extension to allow for exponentially decaying temporal auto-correlations.

Despite the necessity of a potential component of the tracer velocity to cause clustering, the spatial and temporal 
properties of clusters also depend on the nondivergent component of the carrying flow. Our velocity fields there-
fore contain both solenoidal and weak potential components, which enhances the resemblance of the clustering 
process to that which occurs in the real ocean.
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We consider floating tracers which follow the horizontal surface flow passively, so that the clustering observed is 
completely determined by the properties of the velocity field, and not dependent on any external particle proper-
ties. The equation for the concentration field takes a simple form along Lagrangian paths, allowing for exact inte-
gration. A Lagrangian approach means we resolve the concentration field precisely where there is clustering. The 
areas of enhanced concentration will be attractive sinks for Lagrangian paths, so will be sampled more often than 
the less dense voids. It also allows us to forgo the inclusion of unphysical damping (e.g., hyperviscosity), which 
is necessary in Eulerian models for draining out the forward cascade of enstrophy but may arbitrarily inhibit 
the clustering process (see Appendix A). The inclusion of weak compressibility leads to exponential clustering 
(Koshel et al., 2019), which is particularly unsuited to representation through Eulerian means, due to a persistent 
decrease in the dominant spatial scale of the concentration field.

Our framework also provides us the opportunity to investigate the effectiveness of interpolation methods for 
Lagrangian integration (see Appendix B). Our fields can be evaluated exactly, up to some modal truncation, at 
each particle position. This is a major advantage over dynamical studies, where the impacts of interpolation errors 
are rarely established.

Following Koshel et al. (2019), we can use Lagrangian concentration values, combined with statistical measures, 
to assess the global rate of clustering.

Cluster identification is a desirable tool for examining the local structure of a tracer concentration field. This 
requires a quantitative definition of the qualitative idea of a “cluster.” In Baker et al. (2017) and Liu et al. (2020), 
methodologies to achieve this were developed and applied to the case of heavy inertial particles in dynamical 
turbulence. Voronoi diagrams were used to identify particles within clusters based on a simple statistical test. The 
resulting clusters can then be tracked over time and their statistics can be compiled. We have used these statistics 
for intercomparison between models, demonstrating the sensitivity of the clustering process to alterations in the 
temporal structure of the carrying flow. In particular, this approach provided a strong signal of “spurious cluster-
ing” when temporal correlations were underesolved.

The paper is organized as follows. In Section 2 we describe our kinematic flow model. In Section 3 we explain 
clustering properties in the focus. Section 4 contains the main results followed by summary and discussion in 
Section 5. Appendix A, B, and C can be found at the end of the paper.

2.  Kinematic Flow Model
Here we establish the stochastic flow model used in our numerical experiments, both delta-correlated in time and 
with exponentially decaying auto-correlations. The model of tracer particles is explained, and description of the 
numerical implementation of each component of the model is also provided.

2.1.  Velocity Fields

Our velocity fields are constructed in spectral space, with the imposition of homogeneity, isotropy and a chosen 
energy spectrum. The velocity is formed from a potential and solenoidal component, which are constructed 
separately:

𝐮𝐮(𝐱𝐱, 𝑡𝑡) = 𝛾𝛾𝐮𝐮p(𝐱𝐱, 𝑡𝑡) + (1 − 𝛾𝛾)𝐮𝐮s(𝐱𝐱, 𝑡𝑡),� (1)

𝐮𝐮p = (𝜕𝜕𝑥𝑥𝜙𝜙𝜙 𝜙𝜙𝑦𝑦𝜙𝜙),�

𝐮𝐮s = (−𝜕𝜕𝑦𝑦𝜓𝜓𝜓 𝜓𝜓𝑥𝑥𝜓𝜓),�

where γ ∈ [0, 1] is a parameter controlling the relative strengths of these components. The functions ϕ(x, t) and 
ψ(x, t) are the velocity potential and streamfunction of the potential and solenoidal components, respectively.

Similarly to Koshel et al. (2019), the spectral representation of both components is determined by four spectral 
coefficients: ap, bp, as and bs.

𝐮𝐮s(𝐱𝐱, 𝑡𝑡) = ℜ

{

∫ 𝑑𝑑
2
𝐤𝐤 [𝑎𝑎s(𝐤𝐤, 𝑡𝑡) + i𝑏𝑏s(𝐤𝐤, 𝑡𝑡)]

(𝑘𝑘𝑦𝑦,−𝑘𝑘𝑥𝑥)

𝑘𝑘
exp(i𝐤𝐤 ⋅ 𝐱𝐱)

}

,� (2)
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𝐮𝐮p(𝐱𝐱, 𝑡𝑡) = ℜ

{

∫ 𝑑𝑑
2
𝐤𝐤

[

𝑎𝑎p(𝐤𝐤, 𝑡𝑡) + i𝑏𝑏p(𝐤𝐤, 𝑡𝑡)
] (𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦)

𝑘𝑘
exp(i𝐤𝐤 ⋅ 𝐱𝐱)

}

,� (3)

where k, k = |k| is the 2-dimensional wavevector.

In Koshel et al. (2019), the coefficients a, b are taken to be delta-correlated (in time and spectral space) Gaussian 
random fields, which are independent of one another and all have zero mean:

⟨

𝑎𝑎𝑖𝑖(𝐤𝐤, 𝑡𝑡) 𝑎𝑎𝑗𝑗
(

𝐤𝐤
′
, 𝑡𝑡

′
)⟩

= 𝑡𝑡0 𝜎𝜎
2
𝐮𝐮
𝐸𝐸(𝑘𝑘) 𝛿𝛿𝑖𝑖𝑖𝑖 𝛿𝛿

(

𝐤𝐤 − 𝐤𝐤
′
)

𝛿𝛿
(

𝑡𝑡 − 𝑡𝑡
′
)

, 𝑖𝑖𝑖𝑖𝑖  ∈ {s, p},� (4)

⟨

𝑎𝑎𝑖𝑖(𝐤𝐤, 𝑡𝑡) 𝑏𝑏𝑗𝑗
(

𝐤𝐤
′
, 𝑡𝑡

′
)⟩

= 0,� (5)

where t0 is a sampling rate when computing discrete realizations of the delta-correlated fields; and σu is a parame-
ter controlling the standard deviation of the velocity. The function E(k) is an idealized spectrum which we enforce 
to increase the similarity between our stochastic fields and turbulence in the upper ocean. The angled brackets 𝐴𝐴 ⟨⋅⟩ 
represent the expected value of a quantity ⋅.

In this paper, we also allow for finite-time correlations by setting each wavevector coefficient to be a solution of 
a stochastic ODE forced by a delta-correlated, zero-mean Gaussian random field η(k, t):

𝑑𝑑

𝑑𝑑𝑑𝑑
𝑎𝑎𝑖𝑖(𝐤𝐤, 𝑡𝑡) = −𝜆𝜆 𝜆𝜆𝑖𝑖(𝐤𝐤, 𝑡𝑡) + 𝜂𝜂𝑖𝑖(𝐤𝐤, 𝑡𝑡),� (6)

⟨

𝜂𝜂𝑖𝑖(𝐤𝐤, 𝑡𝑡)𝜂𝜂𝑗𝑗
(

𝐤𝐤
′
, 𝑡𝑡

′
)⟩

= 𝜆𝜆 𝜆𝜆
2
𝐮𝐮
𝐸𝐸(𝑘𝑘) 𝛿𝛿𝑖𝑖𝑖𝑖 𝛿𝛿

(

𝐤𝐤 − 𝐤𝐤
′
)

𝛿𝛿
(

𝑡𝑡 − 𝑡𝑡
′
)

.� (7)

In this case, each coefficient at each point in spectral space is an independent Langevin process, exhibiting expo-
nentially decaying memory. The parameter λ controls the memory timescale of the stochastic fields and is the 
exponential decay rate of temporal autocorrelations in the flow.

Both of these frameworks have been used and will be referred to as uncorrelated and correlated, respectively. 
These two cases allow for an evaluation of the exact impact of the inclusions of temporal correlations on clus-
tering. For all velocity fields, the spectrum E(k) is chosen to mimic the narrow band structure from the classical 
picture of Kolmogorov turbulence (Kolmogorov, 1941; Koshel et al., 2019):

𝐸𝐸(𝑘𝑘𝑘 𝑘𝑘) =
1

2𝜋𝜋

𝑘𝑘2𝑙𝑙4

4
exp

(

−
𝑘𝑘2𝑙𝑙2

2

)

.� (8)

This spectrum yields statistically stationary, spatially isotropic and homogeneous velocity fields, and has a single 
peak at the wavenumber 𝐴𝐴 𝐴𝐴 =

√

2∕𝑙𝑙 , which sets the dominant scale of flow structures. An important benefit 
of using this spectrum is the analytical simplicity, which allows for the explicit calculation of many statistical 
properties.

2.2.  Flow Statistics

All the stochastic fields in this paper are Gaussian, and we provide the point-wise mean and variances of these 
fields, to illustrate how the parameters we have chosen affect the behavior of the carrying velocity. Some 
illustrative plots are also included in Figure 1 for a specific set of parameter values, showing the statistics in 
detail.

Correlations are calculated as two-time auto-correlations, to elucidate the time-dependent memory of our two 
frameworks. If we were to consider two-point correlations, we would find that the length scales of correlations 
are entirely controlled by the parameter l, whereas the one-point statistics are independent of it.

Let us start with uncorrelated fields:

⟨𝐮𝐮(𝐱𝐱, 𝑡𝑡)⟩ = 𝟎𝟎,� (9)

⟨

𝑢𝑢𝑖𝑖(𝐱𝐱, 𝑡𝑡)𝑢𝑢𝑗𝑗
(

𝐱𝐱, 𝑡𝑡
′
)⟩

=
1

2

[

𝛾𝛾
2 + (1 − 𝛾𝛾)

2
]

𝜎𝜎
2
𝐮𝐮
𝑡𝑡0 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿

(

𝑡𝑡 − 𝑡𝑡
′
)

, 𝑖𝑖𝑖𝑖𝑖  ∈ {𝑥𝑥𝑥 𝑥𝑥}.� (10)
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In practice, if we are sampling the uncorrelated field at a rate t0, this means the instantaneous flow field will have 
velocity variance 𝐴𝐴

[

𝛾𝛾2 + (1 − 𝛾𝛾)
2
]

𝜎𝜎2
𝐮𝐮
 . From this we can define an advective timescale for these flows

𝑡𝑡adv =
𝑙𝑙

[

𝛾𝛾2 + (1 − 𝛾𝛾)
2
]1∕2

𝜎𝜎𝐮𝐮

.� (11)

For the correlated fields, if we set t < t′ (without loss of generality), then:

⟨𝐮𝐮(𝐱𝐱, 𝑡𝑡)⟩ = 𝟎𝟎,� (12)

⟨

𝑢𝑢𝑖𝑖(𝐱𝐱, 𝑡𝑡)𝑢𝑢𝑗𝑗
(

𝐱𝐱, 𝑡𝑡
′
)⟩

=
1

2

[

𝛾𝛾
2 + (1 − 𝛾𝛾)

2
]

𝜎𝜎
2
𝐮𝐮
𝛿𝛿𝑖𝑖𝑖𝑖 𝑒𝑒

−𝜆𝜆(𝑡𝑡−𝑡𝑡′)
(

1 − 𝑒𝑒
−2𝜆𝜆𝜆𝜆

)

,� (13)

where the temporally correlated fields are initialized at rest. We release the tracer after the velocity field has 
equilibrated statistically, so that the instantaneous velocity field achieved variance 𝐴𝐴

[

𝛾𝛾2 + (1 − 𝛾𝛾)
2
]

𝜎𝜎2
𝐮𝐮
 , as in the 

uncorrelated case. The advection timescale Equation  11 is therefore also identical to the uncorrelated case. 
Kinetic energy is an important characteristic of a carrying velocity field, and it's density, 𝐴𝐴  , can be defined in 
terms of the velocity u = (u, v) to characterize the instantaneous structure of our flow.

 =
1

2

(

𝑢𝑢
2 + 𝑣𝑣

2
)

,� (14)

In Figure 1, this quantities are shown for a snapshot of a typical realisation of a temporally correlated field. We 
can see clearly here the structure of these fields as a collection of small eddy-like flow features, analogous to a 
typical submesoscale flow from simulation or observation (McWilliams, 2016). For illustrative purposes, we also 
show the distribution of velocity values at a single point in the flow, a time series of those velocity values and the 
power spectra which are verified to match our desired spectrum E(k).

The above fields are restricted to a doubly periodic domain, so they can be calculated in terms of their Fourier 
modes. Considering the first 512 × 512 modes (unless stated otherwise), the velocity is evaluated on a grid of the 
same resolution on (0, 1) × (0, 1). To solve Equation 6, a first-order Euler-Maruyama scheme is implemented.

Figure 1.  Plot (a) shows the similarity in velocity distributions between the time correlated and delta-correlated fields, whilst 
(b) shows two timeseries of the field realizations. (c) shows a typical distribution of energy density for the velocity, whilst (d) 
shows the imposed power spectrum, which is identical in both cases.
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We can further alter these fields by varying the number of modes used in the evaluation, the type of spatial inter-
polation method used, or by sampling the time-correlated velocity field at intervals greater than the decorrelation 
time and time interpolating. In Lagrangian studies, offline velocity fields are commonly utilised hence the inter-
val between samples is generally larger than many fast ocean processes.

2.3.  Tracers

In order to investigate clustering, the simplest form of tracer particles—purely passive—is introduced to the 
statistically stationary velocity fields defined above. For each particle, we solve:

𝑑𝑑

𝑑𝑑𝑑𝑑
𝐱𝐱(𝑡𝑡) = 𝐮𝐮(𝐱𝐱(𝑡𝑡), 𝑡𝑡).� (15)

Additionally, to find the concentration at each particle location, we solve the equation:

𝑑𝑑

𝑑𝑑𝑑𝑑
𝐶𝐶(𝑡𝑡) = −𝐶𝐶(𝑡𝑡)∇ ⋅ 𝐮𝐮(𝐱𝐱(𝑡𝑡), 𝑡𝑡).� (16)

The form of this equation comes from expressing the Eulerian equation of tracer mass conservation in the frame 
of the Lagrangian particle:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ ∇ ⋅ (𝐶𝐶𝐮𝐮) = 0.� (17)

Taking the discrete form of the velocity fields from Section 2.1, a standard fourth-order Runge-Kutta scheme is 
used to integrate the position of each particle forward in time. For each particle, we use linear spatial interpola-
tion to find the velocity and divergence values at their location. This was chosen from a variety of interpolation 
methods (see Appendix B), as a compromise between accuracy and computation time.

Using gridded fields with interpolation allowed for the use of Fast Fourier Transforms and restricting ourselves 
to a limited resolution meant there was a smaller cost to introducing more tracer particles. This was important in 
resolving the detail of clusters, described in Section 3.2. The grid scale for the velocity was deliberately chosen 
so that the single peak of the energy spectrum Equation 8 at scale l was well resolved.

In these model runs, 25 × 10 4 particles were initialized on a square grid. A uniform starting distribution guaran-
tees that all clustering observed is due to the action of our velocity field, since there are no initial concentration 
gradients.

3.  Clustering Properties
The discussion of the dynamics of clustering is split into two sections. First we consider global measures of clus-
tering which demonstrate the overall action of the divergent flow to cause increases in concentration of tracer. 
For these purposes, we make use of Lagrangian concentration values. Largely, we follow Koshel et al. (2019) and 
Klyatskin (2003) in defining and calculating these global measures. Second, we consider individual clusters of 
accumulated particles and how these evolve over time, utilizing a cluster detection algorithm. The methodology 
of which is largely based on Baker et al. (2017) and Liu et al. (2020).

3.1.  Global Clustering Properties

The specific cluster mass and area allow us to keep track of how much of the material has clustered above a 
certain density and what proportion of the domain these clustered particles occupy. Here,

𝑠𝑠
(

𝑡𝑡𝑡 𝜌𝜌
)

=
∫ 𝑑𝑑2

𝐱𝐱0 Θ
(

𝜌𝜌(𝐱𝐱, 𝑡𝑡; 𝐱𝐱0) − 𝜌𝜌
)

∫ 𝑑𝑑2
𝐱𝐱0𝜌𝜌(𝐱𝐱, 𝑡𝑡; 𝐱𝐱0)

� (18)

is the specific cluster area, and
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𝑚𝑚
(

𝑡𝑡𝑡 𝜌𝜌
)

=
∫ 𝑑𝑑2

𝐱𝐱0 𝜌𝜌(𝐱𝐱, 𝑡𝑡; 𝐱𝐱0)Θ
(

𝜌𝜌(𝐱𝐱, 𝑡𝑡; 𝐱𝐱0) − 𝜌𝜌
)

∫ 𝑑𝑑2
𝐱𝐱0𝜌𝜌(𝐱𝐱, 𝑡𝑡; 𝐱𝐱0)

� (19)

is the specific cluster mass, where Θ is the Heaviside step function and 𝐴𝐴 𝜌𝜌 is some density threshold. We denote 
our domain ([0, 1] × [0, 1]) as 𝐴𝐴  .

In the case of purely divergent (γ = 1), delta-correlated in time velocity fields, an asymptotic theory for the 
specific cluster area and mass has been derived (Klyatskin, 2003), namely:

⟨

𝑠𝑠
(

𝑡𝑡𝑡 𝜌𝜌
)⟩

≈

√

𝜌𝜌0

𝜋𝜋𝜌𝜌𝜌𝜌𝑝𝑝𝑡𝑡
𝑒𝑒
−𝐷𝐷𝑝𝑝𝑡𝑡∕4,� (20)

⟨

𝑚𝑚
(

𝑡𝑡𝑡 𝜌𝜌
)⟩

≈ 1 −

√

𝜌𝜌

𝜋𝜋𝜋𝜋0𝐷𝐷𝑝𝑝𝑡𝑡
𝑒𝑒
−𝐷𝐷𝑝𝑝𝑡𝑡∕4,� (21)

where ρ0 is the initial uniform concentration of tracer (ρ0 = 1 in all our simulations), and Dp is a diffusion param-
eter which is defined below. We expect from the form of these equations that 𝐴𝐴

⟨

𝑠𝑠
(

𝑡𝑡𝑡 𝜌𝜌
)⟩

→ 0 and 𝐴𝐴
⟨

𝑚𝑚
(

𝑡𝑡𝑡 𝜌𝜌
)⟩

→ 1 as 
t → ∞, that is, eventually all the material is clustered in an infinitesimally small area. We also gain an expression 
for the diffusion parameter, Dp:

𝐷𝐷𝑝𝑝 = ∫
∞

0

𝑑𝑑𝑑𝑑 ⟨(∇ ⋅ 𝐮𝐮(𝐱𝐱, 𝑡𝑡))(∇ ⋅ 𝐮𝐮(𝐱𝐱, 𝑡𝑡 + 𝜂𝜂))⟩.� (22)

The validity of the above asymptotics for the case where γ ≠ 1 is demonstrated in Koshel et al. (2019) and the 
limiting behavior is found even for relatively small values of γ. By evaluating Equation 22 for both types of 
stochastic velocity field, it is found that:

𝐷𝐷𝑝𝑝 = 𝛾𝛾
2
𝜎𝜎2
𝐮𝐮
𝑡𝑡0

𝑙𝑙2
� (23)

for delta-correlated velocity fields, and

𝐷𝐷𝑝𝑝 = 𝛾𝛾
2
𝜎𝜎2
𝐮𝐮

𝑙𝑙2𝜆𝜆
� (24)

for temporally correlated velocity fields (see Appendix C for the details of the calculation). This motivates the 
understanding that, all other parameters being identical, the choice t0 = 1/λ actually represents the same flow, 
under a different approximate representation. In both frameworks, these timescales are a characteristic timescale 
of decorrelation for the flow and so this is an intuitive result.

From this diffusion parameter, we identify a diffusion timescale which is naturally related to the clustering 
process, τ = 1/Dp.

In our own results, we found that the cluster mass and areas (shown in Figure 4) could both be fit to simple expo-
nential curves with great accuracy.

𝑚𝑚(𝑡𝑡𝑡 1) ≈ 1 − 𝐴𝐴 exp(−𝑅𝑅𝑚𝑚𝑡𝑡)� (25)

𝑠𝑠(𝑡𝑡𝑡 1) ≈ 𝐵𝐵 exp(−𝑅𝑅𝑠𝑠𝑡𝑡)� (26)

From these curves we could then extract clustering rates Rm and Rs. Although the two rates could differ for s and 
m, it was found that the ratio between model runs was preserved. In Table 2, we quote Rm extracted from this fit.

3.2.  Local Clustering Properties

The Voronoi diagram allows for an assessment of clustering of tracer particles (Baker et al., 2017). It is defined 
as a tesselation of the domain in which each cell corresponds to a unique particle in the set and all the interior 
points in the cell are closer to that particle than any other in the set. Generally, the smaller the area of the Voronoi 
cell of a particle is, the closer it is to its neighbors. Hence this is a measure of how much a particle has clustered. 
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To determine what area counts as “small,” we compare the distribution of normalized Voronoi cell areas in the 
advected tracer particle set with that which would be observed if particles were randomly, uniformly and inde-
pendently positioned. Such Voronoi cell areas were found to be approximately gamma distributed by Ferenc and 
Néda (2007). We identify the clustered particles as those to the left of the crossing point between the two distribu-
tions, that is, those with the smallest Voronoi cell areas (see Figure 2b; for an example). The particles in this tail 
have clustered in a way that cannot be explained by some random effect, so we can say they have done so due to 
the action inherent in the model. The cells corresponding to these particles can then be combined, if adjacent,  to 
form larger connected regions of clustered particles.

Following the method of Baker et al. (2017), we filter the set of connected regions to single out significantly large 
clusters. This is an important step because focusing on a subset of clusters makes tracking them over time more 
tractable. This recognizes the fact that clusters formed from a handful of particles are unlikely to be of physical 
interest. They contain a negligible amount of the total mass of tracer. They are also often spontaneous and short 
lived. The filter stipulates that we only retain clusters with a total area larger than a threshold. This threshold is 
determined using the perimeter/area scaling relationship of the ensemble of connected regions. Smaller clusters 
tend to be simple geometric shapes, hence we see L 2 ∼ A, where L and A are the perimeter and area of a cluster 
respectively. For larger clusters, it is instead observed that L 2 ∼ A k, k > 1. This is because they have more complex 
“fractal” boundaries, as a result of the greater degrees of freedom in their boundary, as well as the chaotic fila-
mentation undergone at the peak energy scale of the velocity. Using a broken power law fit to the L/A curve, we 
can determine the cluster size at which this regime change occurs, and that becomes the threshold for our filter 
(see an example in Figure 2c).

The conditions of the algorithm are generally applicable to any ensemble of particles, and also allow for tuning to 
a specific instance. The important point is that the algorithm consistently identifies regions that would naturally 
be considered clusters of material in a qualitative sense, whilst also providing a quantitative definition of what 
such a cluster is.

Our interest is also focused on persistent clusters which survive over time. We track clusters over time using a 
slight modification of the method employed by Liu et al. (2020). We take the instantaneous clusters from two 
adjacent timesteps (found using the algorithm described above) and sort them in descending size order. The 
clustering algorithm is applied every 100 simulation timesteps, so every 10t0. Then, we sequentially match up 
each cluster with the one from the subsequent timestep with the largest overlap in the particles it contains. Once a 

Figure 2.  (a) Contains the boundaries of all the clusters detected at a single time step in a realization from the ensemble model B. To demonstrate the enhanced 
concentration inside these boundaries, an approximate concentration was found by a particle bin method. (b) Shows how we determine which particles are “clustered.” 
In orange, we have the theoretical distribution of Voronoi cell areas for a collection of random and independently placed particles, in blue (with black boundary) is 
the observed distribution of cell areas from our clustering simulation. The first crossing point of these distributions is used as a cutoff tell if a particle belongs to the 
“clustered” tail of the observed distribution. (c) Illustrates how we separate out the “fractal”/“significant” clusters. We find where the relationship changes between 
area A and perimeter L from quadratic to sub-quadratic (A ∼ L k, k < 2) using a broken power-law fit to the ensemble of clusters at a given timestep. Any cluster in the 
sub-quadratic regime is considered a “significant” cluster and these are precisely the ones we track over time. (d) Is a magnified image of the largest cluster from (a). 
We also include the cluster as it was 40 timesteps previously (this is the smaller object), to show a typical evolution (the thin line is the trajectory of the cluster).
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cluster from the later timestep is matched with a, it cannot be matched with another cluster. Clusters at the initial 
timestep which cannot be paired are considered to have “died.” This allows us to define cluster lifetimes based on 
when they are first and last detected. This method ensures:

1.	 �Larger clusters survive with priority. For instance, if two clusters merge, we identify the result with the largest 
of its parent clusters.

2.	 �We never discard a potential match between clusters. In previous research (e.g., Liu et al., 2020), clusters at 
adjacent timesteps were only linked if they shared a large majority of their constituent particles. This means 
we tend to observe clusters for longer times, since our definition of cluster survival is more relaxed. This is 
reasonable for our Lagrangian data because of the short timestep between applications of the algorithm.

4.  Main Results
Use of the global cluster statistics verified that there was a significant deviation between clustering rates in 
comparable correlated and uncorrelated fields. For a variety of λ and two different values of γ, it was always 
found that clustering was faster in correlated fields (see Figure 3). With this established, a pair of models were 
selected for further exploration through use of the cluster detection algorithm. These models also acted as a basis 
for comparison of interpolation error, by computing additional runs with various interpolation schemes imposed 
(See Table 1 for a description of each model referenced in this paper).

Figure 3.  Percentage difference in the clustering rate between correlated and uncorrelated model runs for different values 
of γ and λ. σu = 0.04, l = 0.04. The percentage difference in clustering rate for the pair of models AB is labeled. The x-axis, 
100γ 2/λ, is motivated by the form of the asymptotic diffusion timescale Dp Equation 24. Correlated model runs had a faster 
clustering rate than their uncorrelated analog in every comparison.

Table 1 
A Description of Each Model Referenced in This Paper

Model Description

A Uncorrelated in time. 15 run ensemble. 25 × 10 4 particles. 512 × 512 Fourier modes

B As above but correlated in time.

T1 Correlated in time. Linear interpolation in time with sampling time 1.5t0

T2 As above, with sampling time 3.5t0

T3 As above, with sampling time 7.5t0

L1 Correlated in time. Low resolution for velocity field (64 × 64 Fourier modes).

L2 Same as above, with 32 × 32 Fourier modes (Correlation scale l poorly resolved).
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4.1.  Model Run Parameters

Our parameters are chosen to replicate the conditions where a delta-correlated 
velocity field would traditionally be considered appropriate (i.e., tmem ≪ tadv). 
We also are interested in a velocity field with a weak potential component, 
to mimic the magnitude of surface divergences in the real ocean which are 
generally on the order of the Rossby number.

𝜎𝜎𝐮𝐮 = 0.04, 𝑙𝑙 = 0.04, 𝑡𝑡0 = 0.1, 𝛾𝛾 = 0.1� (27)

With these chosen, we can now construct analogous velocity fields which are 
either correlated or uncorrelated in time. An ensemble of 15 model runs of 
each were completed to achieve good statistics.

Results from our investigation of interpolation methods (Appendix  B) 
suggest that linear spatial interpolation to evaluate gridded velocity values 
at particle positions was sufficient to preserve accuracy in both Lagrangian 
paths and Lagrangian concentration values. This could in part be related to 
the simplicity of our idealized velocity field.

Each model was run for several diffusion timescales (as determined by Equa-
tions 23 and 24), to ensure that the particles achieved a well clustered state. 
This was verified by the cluster mass and area statistics, shown in Figure 4, 

as they tend to 1 and 0 respectively. In every case, we used a timestep of dt = 0.01 so that all timescales were 
resolved. For the time interpolated simulations, the velocity model was updated using this timestep, but was only 
communicated to the particle model once every time sample.

4.2.  Model Results

4.2.1.  A and B

Model runs A (uncorrelated) and B (correlated) are intended to supply a baseline for our clustering models. To 
this end we chose to maximize our grid resolution and number of particles subject to computational constraints. 
An ensemble of runs was collected, until there was confidence that the mean cluster mass and area curves were 
sufficiently smooth, and the distribution of cluster statistics (shown in Figure 5) was dense with observations.

In both global and local measures, clustering had a significantly different character in each field type. In the 
global measures (Figure 4), the rate of clustering was much faster, to the extent that there was no overlap between 
the ensembles. The clusters detected also had longer lifetimes on average in model run B by 13% and were also 
14% larger, in terms of the number of particles contained.

The enhanced clustering in model run B can be explained by an increased number of extremely large, long lived 
and dense clusters. These have skewed the average cluster statistics, despite making up a small proportion of the 
total number of clusters.

If we integrate Equation 16 along Lagrangian paths, we find that the concentration of each particle satisfies:

𝐶𝐶(𝐱𝐱(𝑡𝑡; 𝐱𝐱0), 𝑡𝑡) = exp

(

−∫
𝑡𝑡

0

𝑑𝑑𝑑𝑑 ∇ ⋅ 𝐮𝐮(𝐱𝐱(𝜏𝜏; 𝐱𝐱0), 𝜏𝜏)

)

,� (28)

or:

𝐶𝐶(𝑡𝑡2) = 𝐶𝐶(𝑡𝑡1)exp

(

−∫
𝑡𝑡2

𝑡𝑡1

𝑑𝑑𝑑𝑑 [∇ ⋅ 𝐮𝐮](𝜏𝜏)

)

,� (29)

where everything is being evaluated along Lagrangian paths. This shows that a particle being clustered between 
times t1 and t2 is equivalent to:

∫
𝑡𝑡2

𝑡𝑡1

𝑑𝑑𝑑𝑑 ∇ ⋅ 𝐮𝐮(𝜏𝜏) < 0.� (30)

Figure 4.  Cluster mass (increasing curves) and area (decreasing curves) for 
every model in table. For ensembles A and B, one standard deviation above/
below the mean is shaded, showing the negligible ensemble variance.
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If we look at the timeseries of the Lagrangian divergence taken at a sampling rate t0, we can compute a simple 
autocorrelation at a lag time of k decorrelation timescales along a Lagrangian path:

𝐴𝐴𝑘𝑘 =

∑𝑁𝑁−𝑘𝑘

𝑖𝑖=0

(

𝑓𝑓𝑖𝑖 − 𝑓𝑓
)(

𝑓𝑓𝑖𝑖+𝑘𝑘 − 𝑓𝑓
)

∑𝑁𝑁

𝑖𝑖=0

(

𝑓𝑓𝑖𝑖 − 𝑓𝑓
)(

𝑓𝑓𝑖𝑖 − 𝑓𝑓
)

,� (31)

where fn = ∇ ⋅u(x(tn; x0), tn), tn = nt0. Figure 6 shows the mean autocorrelation averaged over all 25 × 10 4 Lagran-
gian paths at lag times up to 15t0. It can be seen that non-zero autocorrelation persists at much longer range for 
the time-correlated simulation, even over several decorrelation times. It is also observed that divergences skew 
negative at all times along Lagrangian paths, and this is a direct result of the attractivity of convergent zones to the 
passive tracers. Combining these two facts, the enhanced clustering can be explained by the increased persistence 
of negative divergence along Lagrangian paths, which can only exist when there is non-trivial time history. This 
is precisely the effect which is neglected when a delta-correlated velocity field is employed.

4.2.2.  T 1, 2, and 3

Time interpolation is common in Lagrangian studies, particularly when observed currents are used. Also, when 
simulated fields are outputted at regular time intervals, time interpolation is often favored over greater resolution 
due to storage capacity concerns. To investigate the impact of poor time resolution on the clustering process, we 
used linear time interpolation, with increasingly severe time windows. These were: 1.5t0, 3.5t0 and 7.5t0. In each 

Figure 5.  Histograms of clusters found for all model runs. The number of particles, Npart, is the maximum amount of tracer particles contained in a cluster over its 
lifetime. Lifetime is the time elapsed between the first and last detection of a cluster.
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case, the exponential autocorrelations are not being properly resolved, and 
this is reflected in our clustering measures.

In Figure 4, there is a continuous increase in the speed of clustering as the 
time window is increased. Given the evidence from models A and B, that 
stronger time correlations increase the rate of clustering, it could be that 
linear interpolation is amplifying time correlations. A linear decrease in 
autocorrelation will beat an exponential decay and this causes spurious clus-
tering. Furthermore, we see evidence of completely different statistics for 
significant clusters.

This can be demonstrated using cluster densities, defined as the ratio of the 
number of particles in a cluster to the area at largest extent. In the density 
distributions in Figure  7, it is evident that as the time sampling window 
increases, much denser objects are observed, and the ability to resolve the 
sharply peaked distribution is completely lost.

Spurious clustering is a big concern for studies of this type going forward, 
and we argue this is a natural result of looking in the “tail end” of distribu-
tions. By focusing on the smallest, densest regions of our tracer concentra-
tion, we amplify the effect of misrepresenting the structure of our flow field. 
A poorly chosen spatial or time resolution could lead to unphysical cluster-
ing. This is especially relevant to Lagrangian studies in observed currents, 
where both resolutions may be insufficient.

4.2.3.  L 1 and 2

Since our narrow band energy spectrum will peak at the 1/l ∼ 25th wavenumber, we expect that the velocity 
field is well resolved using both 512 × 512 Fourier modes and 64 × 64 modes (model L1). Therefore we expect 
a marginal reduction in accuracy from model B to L1. Model run L2 was chosen specifically to poorly resolve 
the peak of the spectrum.

Somewhat surprisingly, we can argue that model L1 preserves most of the 
details of the clustering process. The cluster mass and area lie just outside the 
ensemble range from model run B, closer than any other model run included 
in this paper.

For model L2, there is a more obvious degradation of our results that is 
most apparent in the cluster mass and area (shown in Figure 4). These show 
evidence of a much slower process with the clustering rate approximately 
halved (see Table 2). However, we still see relatively good agreement in the 
cluster statistics (Figure 5 and Table 2).

A possible explanation of the quality of our low resolution models is the use 
of interpolation. For a simple idealized velocity field with a single peaked 
spectrum, it is possible that linear interpolation is reproducing the smaller 
scales very accurately. Furthermore, this accurate reconstruction is not guar-
anteed in more complex fields, which limits the extent to which we can inter-
pret this result.

5.  Summary and Discussion
We have investigated the effect of time correlations in carrying velocity fields 
on the clustering of passive tracers, employing recently developed cluster 
detection algorithms as well as other measures of the cluster formation rate.

Interest in this process is rapidly increasing due to several outstanding 
problems in ecology and biogeochemistry. Hence, the ability to accurately 
describe cluster formation is desirable. It is important to establish a firm 

Figure 6.  Shows the decay of divergence autocorrelation along Lagrangian 
paths, averaged over all tracer particles, for lag times of several decorrelation 
timescales, t0. Correlated velocities have more persistent autocorrelations.

Figure 7.  P.D.F.s of cluster density for B (correlated) versus correlated 
with time interpolated velocity. These were computed using kernel density 
estimation.
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baseline for clustering simulations, with a thorough understanding of the 
appropriate sensitivities. With this motivation in mind, we have utilized kine-
matic velocity fields where we have fine control over their statistical char-
acteristics. The dynamics of passive particles in these fields provide us with 
a simple, idealized model of clustering material in the upper ocean. This 
model has been investigated to improve confidence in future studies of this 
phenomenon, as well as to provide its own insight to the important factors 
influencing clustering.

The inclusion of time history was found to amplify the clustering process. 
Even though time correlations were short lived and a delta-correlated approx-
imation would be considered appropriate, the model statistics were signifi-
cantly altered. Globally, the rate of increase in concentration was higher. In 
terms of the individual clusters, increased coherency was detected. Larger, 
longer lived clusters were more prominent in the time correlated simulations. 
These can be explained as a result of the additional history of the divergence 
along the Lagrangian paths, which leads to a preference for clustered parti-
cles to further cluster.

Motivated by the standard methodology of Lagrangian studies, we have further investigated the impact of low 
resolution data, temporal and spatial interpolation on the clustering process.

Using the toolkit of methods developed, we have observed the dependence of clustering on the representation of 
time correlations. This can guide us in more complex models. Strong signals of spurious clustering were detected 
when using standard time interpolation techniques. The clusters that formed in error were large, but short lived; a 
potential candidate type to identify poor resolution in dynamical studies. Additionally, the Lagrangian concentra-
tion values are more sensitive to interpolation error than the traditional Lagrangian position variables, likely due 
to the exponential nature of cluster formation. Motivated by this, we propose the adoption of online velocity fields 
for use wherever possible, so that all time scales required to integrate the dynamics are also present in the Lagran-
gian simulation. Observational evidence suggests a dominant decorrelation timescale of approximately 1 day 
in the open ocean for partially divergent submesoscale currents. Given the sensitivity to temporal correlations 
we have detected, a half-day timestep for realistic clustering simulations appears to be a minimum requirement. 
However, in many applications, such as submesoscale resolving models and larger scale observations, the time 
characteristics of divergent surface currents are still largely unconstrained. As a result, robust investigation of this 
aspect of carrying flows will be an integral component of future clustering studies. Clustering rate calculations 
have proved to be an efficient and effective method of detecting spurious clustering. In a general setting, finding 
a time-interpolation window which doesn't cause large changes in clustering rate when altered is a good starting 
point for robust clustering simulations.

Undersampling the velocity field in space led to significantly slower clustering, and a loss of detected clusters 
similar to the delta correlated simulations. While less severe than the time interpolation errors, they still demon-
strate the importance in the dynamics of spatio-temporal structure at the tail end of the concentration distribution.

With these methodologies and observations in mind, we can further explore clustering in various settings. The 
inclusion of time correlations will allow these kinematic fields to be used in the Maxey-Riley equations, which 
require the carrying velocity field to have a well defined time derivative. Furthermore, we can use the method 
of integrating the Lagrangian concentration equation to investigate the dynamics of simple interacting particle 
models, such as population models for plankton and pollutant, by adding source and sink terms to the right hand 
side. Expansion of our methodology to dynamical carrying velocity fields, such as Quasigeostrophic simulations, 
can also be considered to investigate a more physically constrained clustering process.

Appendix A:  Lagrangian Preference Over Eulerian for Clustering Models
Due to clustering, the long-time locations of Lagrangian particles will be biased toward areas of higher concentra-
tion. When analyzing the ensemble of particles, this leads to greater resolution precisely in our areas of interest. 
To achieve similar resolution with an Eulerian method we must also increase resolution in the voids.

Table 2 
Some Results From Applying the Cluster Identification Algorithm and 
Global Clustering Measures to Each Model Run

Model Average lifetime Longest lifetime Average Npart

Clustering 
rate

A 1.39 22.0 268 0.26

B 1.60 24.2 312 0.47

T1 2.20 20.9 464 0.97

T2 2.70 21.0 657 1.04

T3 3.19 23.2 838 1.49

L1 1.57 17.0 301 0.49

L2 1.59 20.0 290 0.28

Note. The number of particles is taken from when each cluster contained the 
largest number of particles.
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When particles are advected with intrinsic concentration, we must integrate 3N ODEs, where N is the number of 
particles. For an equivalent Eulerian simulation we will have as many equations as we have grid points, Ngrid. In 
each case, we can choose the difficulty of the computations by varying these numbers. This is where the inherent 
bias becomes important; if we can choose N < Ngrid/3 while retaining the resolution of the important clustered 
regions, then using Lagrangian methods provides a simple and clear advantage.

The motivations do not stop there. Lagrangian methods also allow for easier generalization to more complex 
forms of floating particle (e.g., particles with inertial effects), and are more suitable when we have lower resolu-
tion velocity data, through the use of spatial interpolation methods (see Appendix B).

On the Eulerian grid, our concentration field satisfies the P.D.E. Equation 17, with one major modification. For 
any basic Eulerian solver, we must introduce a diffusion or hyperdiffusion to regularize our solution. This would 
be true even in a non-divergent flow, but the introduction of the weakly potential flow makes it even more essen-
tial, since the presence of clustering creates an inevitable cascade to smaller and smaller scales (which becomes 
catastrophic below the grid scale). Lagrangian methods allow us to forgo this inclusion in a consistent, stable way.

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ ∇ ⋅ (𝐮𝐮𝐶𝐶) = 𝜈𝜈∇2

𝐶𝐶� (A1)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ ∇ ⋅ (𝐮𝐮𝐶𝐶) = 𝜇𝜇∇4

𝐶𝐶� (A2)

In many applications, the introduction of a diffusion leads to a minor modification of the bulk behavior. This 
makes it an ideal way to regularize a fluid problem. However, we find that at it is precisely the areas of higher 
concentration that are most sensitive to the form and magnitude of the added diffusion, which is undesirable for 
our purposes. In Figure A1, we show the impact of said diffusivity on our assessment of clustering by solving 
Equation A1 for two appropriate values of ν which both stabilize our solution without significantly affecting 
the qualitative behavior. The 75th and 90th percentiles of the concentration field are much lower when we have 
higher diffusivity and there is also a significant effect on the shape and location of the high concentration regions 
(shown by the regions containing the 90th percentile and above concentration values). These extreme values of 
concentration are analogous to the clusters we have been detecting in our Lagrangian analysis. Given that the 
chosen parametrizations are entirely motivated by numerical stability after the imposition of a grid, we find this 
to be a significant weakness of the traditional Eulerian methods in clustering studies.

Figure A1.  Plot (a) shows a typical solution from the Eulerian solver. (b) Shows the 75th and 90th percentile values of the 
concentration field for two values of hyperdiffusivity. (c) and (d) Shows how diffusivity alters the shape and character of 
clusters (the regions of the 90th percentile values).
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Appendix B:  Comparison of Interpolation Methods
When solving particle tracking problems, interpolation methods need to be implemented to evaluate field values 
at each particle position. Quantities are usually known on some subset of points, for example, on a regular grid. 
Hence, in most applications, we cannot investigate the impact of interpolation on our Lagrangian particles, since 
there is no exact expression for the particle velocity.

Our kinematic fields differ in this respect, since using their spectral form, we can evaluate the velocity field and 
its divergence at any point in the domain, up to some modal truncation. As a result, we can compare the behavior 
of our particles with each interpolation method directly to the exact case. This allows us to choose the right inter-
polation method for our purposes, and also demonstrates the quality of each method.

We used a nearest-neighbor, a bi-linear and a bi-cubic interpolation scheme to evaluate both our velocity fields 
and divergences, in order to solve Equations 15 and 16. We solved the equations for 250 particles initialized in 
a grid. We then assess the error in the particle locations and their concentration using the following measures:

Δ𝑥𝑥interp(𝑡𝑡) =
⟨

|

|

𝐱𝐱interp(𝑡𝑡) − 𝐱𝐱exact(𝑡𝑡)|
|

⟩

,� (B1)

%𝐶𝐶interp(𝑡𝑡) =

⟨

|

|

|

|

𝐶𝐶interp(𝑡𝑡) − 𝐶𝐶exact(𝑡𝑡)

𝐶𝐶exact(𝑡𝑡)

|

|

|

|

⟩

,� (B2)

where 𝐴𝐴 ⟨⋅⟩ denotes averaging over all the particles.

Somewhat unsurprisingly, we found cubic performed better than linear, and linear performed better than nearest 
neighbor interpolation. The degree of improvement is incredibly significant (see Figure B1), with two orders of 
magnitude less error with each successively better method. This is most pronounced in the concentration values, 
where nearest neighbor interpolation leads to average errors as large as 20% over just one diffusion timescale, 
when linear and cubic methods produce insignificant error.

This result has implications for future use of the Lagrangian concentration integration method, which has shown 
promise in previous investigations of clustering (Koshel et al., 2019), but is evidently sensitive to our representa-
tion of the velocity field. This is of special concern when using fields from dynamical models, since the spatial 
resolution is often low for clustering applications.

Figure B1.  Tracking the interpolation error through time. All parameters were chosen to be identical to models A and B. Plot 
(a) shows the average error in the Lagrangian paths, and plot (b) shows the proportion 𝐴𝐴

⟨

𝐶𝐶interp−𝐶𝐶exact

𝐶𝐶exact

⟩

 .
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Appendix C:  Derivation of the Diffusion Timescales
As mentioned in Section 3.1, the diffusion parameter of the clustering process can be estimated from an asymp-
totic solution through the integral Equation 22, leading to Equations 23 and 24 for delta-correlated and temporally 
correlated carrying velocity fields, respectively.

Starting with the decomposition of the velocity into potential and solenoidal parts Equation  1, we take the 
divergence:

∇ ⋅ 𝐮𝐮(𝐱𝐱, 𝑡𝑡) = 𝛾𝛾∇ ⋅ 𝐮𝐮p(𝐱𝐱, 𝑡𝑡).� (C1)

Applying the divergence to the spectral representation of the potential component Equation 3 yields:

∇ ⋅ 𝐮𝐮p(𝐱𝐱, 𝑡𝑡) = ℜ

{

∫ 𝑑𝑑
2
𝐤𝐤

(

−𝑏𝑏p(𝐤𝐤, 𝑡𝑡) + i𝑎𝑎p(𝐤𝐤, 𝑡𝑡)
)

𝑘𝑘 exp(i𝐤𝐤 ⋅ 𝐱𝐱)

}

.� (C2)

Expressing the real part of the quantity in the brackets:

∇ ⋅ 𝐮𝐮p(𝐱𝐱, 𝑡𝑡) =
1

2 ∫ 𝑑𝑑
2
𝐤𝐤

[

−
(

𝑏𝑏p(𝐤𝐤, 𝑡𝑡) + 𝑏𝑏p(−𝐤𝐤, 𝑡𝑡)
)

+ i
(

𝑎𝑎p(𝐤𝐤, 𝑡𝑡) − 𝑎𝑎p(−𝐤𝐤, 𝑡𝑡)
)]

𝑘𝑘 exp(i𝐤𝐤 ⋅ 𝐱𝐱).� (C3)

Focusing on uncorrelated fields, we can derive Equation 23 using the statistical properties of the Gaussian random 
fields ap and bp in the uncorrelated case, namely:

⟨

𝑎𝑎(𝐤𝐤, 𝑡𝑡)𝑎𝑎
(

𝐤𝐤
′
, 𝑡𝑡 + 𝜂𝜂

)⟩

= 𝑡𝑡0𝜎𝜎
2
𝐮𝐮
𝐸𝐸(𝑘𝑘)𝛿𝛿

(

𝐤𝐤 − 𝐤𝐤
′
)

𝛿𝛿(𝜂𝜂),� (C4)

⟨

𝑏𝑏(𝐤𝐤, 𝑡𝑡)𝑏𝑏
(

𝐤𝐤
′
, 𝑡𝑡 + 𝜂𝜂

)⟩

= 𝑡𝑡0𝜎𝜎
2
𝐮𝐮
𝐸𝐸(𝑘𝑘)𝛿𝛿

(

𝐤𝐤 − 𝐤𝐤
′
)

𝛿𝛿(𝜂𝜂),� (C5)

⟨

𝑎𝑎p(𝐤𝐤, 𝑡𝑡)𝑏𝑏p
(

𝐤𝐤
′
, 𝑡𝑡

′
)⟩

= 0.� (C6)

Multiplying the two divergences in the integrand of Equation 22 and taking the expected value:

⟨∇ ⋅ 𝐮𝐮(𝐱𝐱, 𝑡𝑡)∇ ⋅ 𝐮𝐮(𝐱𝐱, 𝑡𝑡 + 𝜂𝜂)⟩ = 𝛾𝛾
2
𝜎𝜎
2
𝐮𝐮
𝑡𝑡0𝛿𝛿(𝜂𝜂)∫ 𝑑𝑑

2
𝐤𝐤𝑑𝑑

2
𝐤𝐤
′
𝛿𝛿
(

𝐤𝐤 + 𝐤𝐤
′
)

𝑘𝑘𝑘𝑘
′
𝐸𝐸(𝑘𝑘)exp

[

𝑖𝑖
(

𝐤𝐤 + 𝐤𝐤
′
)

⋅ 𝐱𝐱

]

,� (C7)

which further simplifies to give:

⟨∇ ⋅ 𝐮𝐮(𝐱𝐱, 𝑡𝑡)∇ ⋅ 𝐮𝐮(𝐱𝐱, 𝑡𝑡 + 𝜂𝜂)⟩ = 2𝜋𝜋𝜋𝜋2𝜎𝜎2
𝐮𝐮
𝑡𝑡0𝛿𝛿(𝜂𝜂)∫ 𝑘𝑘

3
𝐸𝐸(𝑘𝑘) 𝑑𝑑𝑑𝑑𝑑� (C8)

Substituting the chosen spectrum Equation 8 and evaluating the integral yields:

⟨∇ ⋅ 𝐮𝐮(𝐱𝐱, 𝑡𝑡)∇ ⋅ 𝐮𝐮(𝐱𝐱, 𝑡𝑡 + 𝜂𝜂)⟩ = 2𝛾𝛾2
𝜎𝜎𝐮𝐮𝑡𝑡0

𝑙𝑙2
𝛿𝛿(𝜂𝜂).� (C9)

Using this as the integrand in Equation 22 produces:

𝐷𝐷𝑝𝑝 = 2𝛾𝛾2
𝜎𝜎2
𝐮𝐮
𝑡𝑡0

𝑙𝑙2 ∫
∞

0

𝑑𝑑𝑑𝑑 𝑑𝑑(𝜂𝜂).� (C10)

Evaluating this integral recovers Equation 23. The typical diffusion timescale is then the inverse of the diffusion 
parameter Dp = 1/τ.

We can perform a similar calculation for the correlated fields by solving the ODE Equation 6 to find the coeffi-
cients ap and bp. We get:

𝑎𝑎𝑝𝑝(𝐤𝐤, 𝑡𝑡) = 𝑒𝑒
−𝜆𝜆𝜆𝜆 ∫

∞

0

𝑑𝑑𝑑𝑑𝑑𝑑
𝜆𝜆𝜆𝜆
𝜂𝜂(𝐤𝐤, 𝜏𝜏),� (C11)
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where the velocity field is initialized from the state of rest. From this we can further derive the statistics of ap, 
making use of Equation 7 and the zero-mean property:

⟨

𝑎𝑎𝑝𝑝(𝐤𝐤, 𝑡𝑡)𝑎𝑎𝑝𝑝
(

𝐤𝐤
′
, 𝑡𝑡

′
)⟩

=
1

2
𝜎𝜎
2
𝐮𝐮
𝑒𝑒
−𝜆𝜆(𝑡𝑡−𝑡𝑡′)𝛿𝛿

(

𝐤𝐤 − 𝐤𝐤
′
)

,� (C12)

where t′ > t, and we are in the asymptotic limit t → ∞ (so the statistics are stationary). The result for bp(k, t) is 
identical. Performing an analogous step to Equation C7 yields:

⟨∇ ⋅ 𝐮𝐮(𝐱𝐱, 𝑡𝑡)∇ ⋅ 𝐮𝐮(𝐱𝐱, 𝑡𝑡 + 𝜂𝜂)⟩ =
1

2
𝛾𝛾
2
𝜎𝜎
2
𝐮𝐮
𝑒𝑒
−𝜆𝜆𝜆𝜆 ∫ 𝑑𝑑

2
𝐤𝐤𝑑𝑑

2
𝐤𝐤
′
𝛿𝛿
(

𝐤𝐤 + 𝐤𝐤
′
)

𝑘𝑘𝑘𝑘
′
𝐸𝐸(𝑘𝑘)exp

[

𝑖𝑖
(

𝐤𝐤 + 𝐤𝐤
′
)

⋅ 𝐱𝐱

]

.� (C13)

This is mostly a repetition of the calculation for the delta-correlated fields. By simplifying the integral term and 
evaluating it in the same way as previously, we get:

⟨∇ ⋅ 𝐮𝐮(𝐱𝐱, 𝑡𝑡)∇ ⋅ 𝐮𝐮(𝐱𝐱, 𝑡𝑡 + 𝜂𝜂)⟩ = 𝛾𝛾
2
𝜎𝜎2
𝐮𝐮

𝑙𝑙2
𝑒𝑒
−𝜆𝜆𝜆𝜆

.� (C14)

Substituting this into Equation 22 results in

𝐷𝐷𝑝𝑝 = 𝛾𝛾
2
𝜎𝜎2
𝐮𝐮

𝑙𝑙2 ∫
∞

0

𝑑𝑑𝑑𝑑 𝑑𝑑
−𝜆𝜆𝜆𝜆

,� (C15)

and evaluating this integral recovers Equation 24.

Data Availability Statement
Files containing all the detected clusters from every model run along with python scripts necessary to inter-
pret them are available at https://zenodo.org/record/7248579 (Meacham,  2022b) and https://zenodo.org/
record/7248624 (Meacham, 2022a). Figures were produced using Matplotlib 3.3.4.
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