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ABSTRACT

Transport models are required for simulating the subgrid-scale transport by mesoscale eddies, which are
typically not resolved in coarse-grid representations of the ocean circulation. Here, a new transport model from
the class of stochastic models is formulated and its performance is tested against an eddy-resolving solution of
the ocean circulation. The new approach overcomes drawbacks of the standard Markov models by broadening
the range of simulated motions and by allowing transitions from one type of motion to another. The stochastic
transport models yield random motion of individual passive particles, and the probability density function of
the particle population may be interpreted as the concentration of a passive tracer. The models are developed
for simulating observed transports of material by turbulent flows in the presence of coherent fluid structures,
and they use only few internal parameters characterizing particular type of turbulence. The idea of stochastic
randomization is introduced in the hierarchy of inhomogeneous and nonstationary stochastic models, and it is
illustrated with the first kinematic-time parameter in the second-order Markov model. The principal property of
the randomized stochastic hierarchy is its capability to simulate a broad range of intermediate-time, nondiffusive,
single-particle dispersion behaviors involving a variety of timescales and length scales. This property is missing
in the standard, nonrandomized hierarchy of Markov models which, as shown in a previous study, introduces
errors in Lagrangian velocity correlation function and the corresponding material spreading process. The ran-
domization implies that the parameter is represented by a probability distribution rather than a fixed average
value. The probability distribution represents different populations of mesoscale fluctuations coexisting within
a geographical region. The randomization effects are first studied in a homogeneous situation. Then, the per-
formance of the inhomogeneous stochastic model is tested against passive tracer transport simulated by the fluid-
dynamic, eddy-resolving ocean model. It is shown that the randomized model performs systematically better
than the nonrandomized one, although only modestly so in some transport measures. Also, systematic differences
are found between the direct solution of the stochastic model and the corresponding diffusion process with the
eddy diffusivity estimated from the stochastic model. A local algorithm is proposed for estimating all the model
parameters.

1. Introduction

Material transport in the ocean is strongly influenced
by the internal oceanic factors: boundaries, large-scale
time-mean currents, broad range of coherent mesoscale
and large-scale transient patterns, and geographical in-
homogeneity of the underlying dynamic processes. The
common strategy for understanding the oceanic trans-
port consists of measuring Lagrangian transport prop-
erties (by tracking surface drifters and neutrally buoyant
floats and by measuring concentrations of various chem-
ical tracers) and formulating more simple than the fluid-
dynamic equations transport models that simulate these
properties. The transport models are characterized by
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mathematical formalism and internal parameters; there-
fore, they are parameterizations of the physical trans-
port. Each transport model implies algorithms for es-
timating its parameters from the statistical properties of
the ocean observations. Further progress is achieved by
inferring the parameters from rough characteristics of
large-scale currents (i.e., without more detailed statistics
of the flow). First, the transport models advance fun-
damental knowledge, and, second, they are applied in
fluid-dynamic, coarse-grid, numerical ocean general cir-
culation models (OGCMs) as parameterizations of the
fluxes induced by unresolved mesoscale eddies.

Here, the focus is on the transport models that sim-
ulate ensembles of the Lagrangian trajectories. This pa-
per deals with the standard hierarchy of stochastic trans-
port models and further advances it by incorporating
statistical distributions and random, rather than fixed,
values of the internal parameters. The randomized trans-
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port models gain the capability to simulate observed
broad variety of float trajectories, rather than sets of
trajectories with properties narrowly grouped around the
average behavior. The generalization idea is illustrated
by the second-order model from the hierarchy, that is,
the Markov-2 model, and the first kinematic-time pa-
rameter. The new transport model is tested against both
the corresponding fluid-dynamic and the nonrandomi-
zed solutions.

In the introduction, the motivations are explained, the
problem is posed, and the background is briefly de-
scribed. In section 2 the hierarchy of stochastic transport
models is presented. Some properties of the fluid-dy-
namic reference solution are described in section 3. Sec-
tion 4 studies basic properties of the homogeneous, sta-
tionary, and unbounded, randomized transport model.
The inhomogeneous and laterally bounded randomized
model is tested against the fluid-dynamic solution, and
a closure that relates the transport model parameters and
the time-mean flow characteristics is examined in sec-
tion 5. Conclusions and discussion follow in section 6.

a. Motivations of the randomization

The main motivation is to improve performance of
the standard Markov models. These models simulate
intermediate-time subdiffusive material spreading pro-
cess only together with exaggerating oscillations of the
single-particle dispersion function (Berloff and Mc-
Williams 2002, hereinafter BM). The physical interpre-
tation of that is simple: the real turbulence is populated
by very different dynamical species (e.g., different types
of coherent vortices, planetary waves, and transient jets)
with distinct kinematic properties, but a high-order Mar-
kov model represents all the dynamical species in terms
of just a single, average statistical population described
by single-valued parameters. In general, material trans-
port by the average population is not equal to the av-
erage transport by the ensemble of distinct dynamical
populations,1 and the standard Markov-model approach
narrows the range of properties of simulated particle
trajectories for a given intermediate-time material
spreading rate. Our preliminary results find another
drawback of the standard approach: the two- and mul-
tiparticle extensions of the Markov models, which sim-
ulate not only the spreading but also the mixing process
defined in terms of the relative dispersion (Piterbarg
2001), strongly underestimate the mixing rates because
of the exaggerated single-particle dispersion oscilla-
tions. The approach taken in this paper offers a solution

1 This idea, in a more simple form, has been already introduced in
the form of a pair of distinct populations in a one-dimensional in-
homogeneous (e.g., Luhar et al. 1996) and a two-dimensional ho-
mogeneous Markov-1 models (Pasquero et al. 2001); and in the form
of time-dependent spin statistics for the homogeneous Markov-1 mod-
el (Reynolds 2002). However, none of these results account for par-
ticle transitions between the populations.

to all these problems by introducing several Lagrangian
particle populations with distinct properties and by al-
lowing transition from one population to another. Phys-
ically, the approach accounts for particles migrating
from one type of mesoscale fluctuation to another; and,
mathematically, this is expressed in terms of the param-
eter randomization.

b. Statement of the problem

Results of this paper are a part of a long-term strategy
aimed at solving the problem of transport by ocean me-
soscale eddies. The strategy consists of several aspects:

1) creation of skillful transport models, with rigorous
testing against ocean observations and fluid-dynamic
eddy-resolving simulations of the ocean circulation;

2) implementation of transport models as subgrid-scale
parameterizations in OGCMs;

3) closures that simply relate the transport model pa-
rameters to the coarse-grid dynamic fields, which are
explicitly resolved in OGCMs.

This paper advances aspect 1 in the framework of sto-
chastic transport models and explores aspects 2 and 3
for an idealized quasigeostrophic (QG) ocean model.
The challenge is to incorporate in the stochastic trans-
port models more complete statistical information about
the turbulence, without falling into excessive complex-
ity.

A common transport model that represents and pa-
rameterizes the passive-tracer, mesoscale, eddy-induced
transport in coarse-grid OGCMs is diffusion (also called
turbulent eddy diffusion: Taylor 1921). The diffusion
process represents the large-time asymptotic behavior
of the single-particle dispersion in homogeneous and
stationary turbulence in an unbounded domain. The cor-
responding evolution of the tracer concentration, c(t, x),
is governed by the classical advection–diffusion equa-
tion,

]c
1 u · =c 5 = · (K · =c), (1)

]t

where is the large-scale, explicitly resolved advectiveu
velocity vector, and K is the diffusivity tensor coeffi-
cient. In the ocean and atmosphere, on the most ener-
getic length scales, the values of K are larger by many
orders of magnitude than the molecular diffusivity of
water. The widespread use of (1) is due to its simplicity,
elegance, and capability of simulating transport char-
acterized by single-particle dispersion that is a linear
function of time. On the other hand, (1) is based on the
assumption of rapid Lagrangian velocity decorrelation
(i.e., a rapid memory loss following Lagrangian parti-
cles), which is not accurate in the presence of long-
living coherent structures, such as oceanic mesoscale
eddies.

A class of transport models that, to some degree,
accounts for the presence of coherent structures in the
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flow is the stochastic model hierarchy based on random
Markov processes (BM). In this approach the locally
averaged concentration of particles, that is, the proba-
bility density function (PDF) of particle positions, is
proportional to the tracer concentration, c(t, x). How-
ever, the stochastic models simulate not only c(t, x), but
also Lagrangian particle trajectories and material fluxes
between any locations. In this paper the stochastic hi-
erarchy formalism is advanced toward the new class of
randomized Markov (RM) models. In order to test the
transport models, the focus is on the midlatitude oceanic
gyres, such as in the North Pacific, and North and South
Atlantic.2 The standard solution of the transport in oce-
anic gyres is computed with an idealized fluid-dynamic
circulation model; and the simple transport model has
to simulate it with (ultimately, just a few) parameters
estimated from the fluid-dynamic solution.

The main assumptions in this study are the following.

1) The fluid motion is two-dimensional within each iso-
pycnal fluid layer.

2) The transport induced by fluid-dynamically unre-
solved submesoscale eddies is negligible.

3) The tracer is dynamically passive.
4) The tracer evolution is simulated by randomly mov-

ing particles that are not correlated with each other.
5) The random forcing has a Gaussian (i.e., normal)

distribution at each location. Discussion on how to
extend the theory and overcome the assumptions is
in the end of section 6.

The primary goal of this paper is to find a transport
model formalism accounting for the broad variety of
different Lagrangian motions that are simultaneously
present in oceanic mesoscale turbulence. This goal is
achieved by incorporating realistic distributions of the
first kinematic-time parameter in the second-order sto-
chastic transport model. Physically, different values of
the parameter characterize kinematic properties of dis-
tinct dynamical populations of coherent fluctuations in-
side the turbulence. This idea can be straightforwardly
extended to all parameters of any transport model from
the standard stochastic model hierarchy, and the cor-
responding models from the new family are called the
randomized Markov models. Here, the effect of the ran-
domization is analyzed both in a homogeneous situation
and in the inhomogeneous oceanic gyres.

With respect to Lagrangian float data for estimating
transport model parameters, in addition to the standard
statistical issues (Griffa et al. 1995), the following con-
cerns arise.

Increased data efficiency. It is important to ensure
that the observation float data requirements for the
RM models are not larger than for the standard

2 The theory can be used for other aspects of the ocean circulation
and, in general, for various turbulent flows in the presence of or-
ganized coherent patterns.

nonrandomized Markov models. As shown, im-
proved performance of the RM models is achieved
by better utilization of the information contained
in the data, rather than by expanding the datasets.

Any type of measurements. In the RM models, both
Lagrangian and Eulerian ocean measurements may
be used for estimating the parameters, but in prac-
tice Lagrangian measurements are often more ef-
ficient because of relatively low costs of floats. On
the other hand, one has to remember that Lagrang-
ian measurements introduce nonlocality and the as-
sociated uncertainty in parameter estimates.

Locality of the parameter estimates. The parameter
estimate algorithms should be able to determine
the parameters as locally in space and time as pos-
sible, and this is particularly acute requirement in
locations where inhomogeneities of the transport
properties are strong [e.g., in such places as western
boundary currents (WBCs) with associated east-
ward jet extensions, other narrow and swift cur-
rents, coastal regions, flows over complex topog-
raphy, regions of localized instabilities, and regions
with enhanced local diabatic forcing]. For com-
parison, the traditional approach of estimating eddy
diffusivity coefficients (section 1c) is nonlocal, be-
cause the estimates use nonlocal large-time as-
ymptotic information contained in the Lagrangian
integral time. When applying the RM models, a
parameter estimation algorithm is proposed that
satisfies the locality requirement.

There are two types of applications of the RM models
presented here. The direct approach completely replaces
the traditional advection–diffusion equation with an RM
model—arguably, this is the most direct and accurate
way to account for the presence of the coherent struc-
tures. The interim approach is simpler but it accounts
for the presence of the coherent structures to a lesser
degree. Here, the idea is to analyze the ocean data within
the RM formalism, to estimate the eddy diffusivity pa-
rameter with the RM model, and to simulate the trans-
port with the diffusion model characterized by this pa-
rameter. In this paper, both approaches are compared
and their systematic differences are identified.

The RM approach allows one to locally estimate the
Lagrangian integral time TL, which is a fundamental
transport property. The TL is also estimated with alter-
native approaches: one of them is based on the flow
fluctuation energy and enstrophy densities (Babiano et
al. 1987), and the other relates TL to the local baroclinic
instability process (Visbeck et al. 1997; Stammer 1998).
Finally, relationships, that is, closures, between the
transport model parameters and the time-mean flow are
looked for. However, the very existence of the universal
closures is questionable because, as shown here, the
transport parameters strongly depend on the structure
and internal correlations of the turbulent eddies and, in
turn, these properties are related to the time-mean cur-
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rents in a very complex way. A closure would allow
one to determine transport model parameters from
coarse-grid OGCM flow characteristics that evolve in
time, rather than to prescribe them beforehand.

c. Background

Material transport can be separated in two processes:
spreading and mixing. The former is the propagation of
material from its initial location (e.g., described by sin-
gle-particle dispersion), and the latter is the disappear-
ance of internal structure in an evolving patch of ma-
terial (e.g., described by two-particle dispersion). On
the fundamental level, nontrivialities of the spreading
and mixing processes are related to long-time memory
and long-range correlations associated with character-
istic time- and length scales of fluctuations. More spe-
cifically, the spreading rate is related to velocity auto-
correlations following Lagrangian trajectories; the mix-
ing rate is related to spatial velocity correlations be-
tween neighboring particles. Most previous works are
concerned with developing transport models that sim-
ulate spreading rather than mixing rates. A unified for-
malism for modeling both transport processes in the
presence of coherent fluid structures is a matter for the
future.

Modeling oceanic transport started with the idea (Tay-
lor 1921) that mesoscale eddies disperse material (or,
equivalently, passive tracer) as in the classical diffusion
process. In this approach the eddy diffusivity, K, is es-
timated either as the linear slope of the single-particle
dispersion function or as K 5 sTL, where s is the ve-
locity variance and TL is the integral timescale of the
Lagrangian velocity autocorrelation function, R(t) (sec-
tion 2b). The fundamental assumption made in the dif-
fusion process is that Lagrangian velocities decorrelate
instantaneously (as a consequence, the eddies are as-
sumed to have infinitesimal correlation time- and
lengthscales). This assumption is violated in the pres-
ence of coherent structures such as mesoscale eddies.
Relaxing it requires alternative transport models. Also,
the correctness of the diffusion model is undermined by
the need to look for large-time asymptotic Lagrangian
behavior in the presence of widespread ocean flow in-
homogeneities.3 The combination of the inhomogenei-
ties and float trajectories covering a large area typically
yields spatially nonlocal and, therefore, incorrect eddy
diffusivity estimates. This is a result of averaging data
contributed by geographical regions with different trans-
port properties. Commonly, the corresponding errors in
large-scale transport simulations by the diffusion model
are not known. Even the inhomogeneities themselves of

3 Observations show that the eddy timescales and length scales, as
well as fluctuation energy density, vary greatly over the ocean (Lump-
kin et al. 2002).

oceanic transport properties are poorly known.4 Another
source of errors and biases in estimates of K is due to
statistical uncertainty of separating contributions by the
time-mean flow and fluctuations. This error also can be
substantially reduced if K is estimated locally.

Substantial deviations from diffusive behavior and a
large variety of intermediate-time dispersion behaviors
are found in ocean measurements with Lagrangian floats
(Freeland et al. 1975; Krauss and Böning 1987; Rupolo
et al. 1996; LaCasce and Bower 2000). General ocean
circulation (Figueroa and Olson 1994; Figueroa 1994;
Bower and Lozier 1994) and 2D turbulence models (Ba-
biano et al. 1987) also generate nondiffusive spreading
behaviors due to persistent velocity correlations in or-
ganized flow patterns. BMB show that in most of the
midlatitude ocean (and more so in its deep part) inter-
mediate-time, subdiffusive (slow), single-particle dis-
persion behavior occurs due to long-time trapping of
material by coherent structures such as vortices near the
strong currents and planetary waves in the eastern part
of the gyres. Intermediate-time, superdiffusive (fast),
single-particle dispersion behavior is found in the cen-
tral part of the subtropical gyre and near the lateral
boundaries. The regions of sub- and superdiffusive be-
haviors correspond to the transport barriers and path-
ways, respectively. The works referenced here and many
others suggest that the transport induced by mesoscale
oceanic eddies requires a better model than eddy dif-
fusion.

Other transport modeling approaches include sto-
chastic models for the velocity gradient tensor, models
in which concentration changes discontinuously at dis-
crete times, and models with stochasticity in both ve-
locity vector and dissipation rates (Pope 1994; Borgas
and Sawford 1994). Another idea is to use a generalized
advection–diffusion model that relates the transport to
the time-lagged concentration gradient (Davis 1987),
but it is relatively difficult to estimate the model pa-
rameters from the observations.

A powerful class of transport models is based on
stochastic differential equations (SDEs) (e.g., Gardiner
1983; Sawford 1991; Pope 1994; Rodean 1996; for the
oceanographic context, see Griffa 1996). The central
idea of this approach is to represent some aspects of the
turbulence variability as a simple random process and
to simulate explicitly some important properties of the
rest. As a matter of fact, the diffusion model is derived
from the random-walk model that is the simplest sto-
chastic process, which is based on random increments
of the Lagrangian particle position. Beyond the random
walk, there are more sophisticated stochastic transport
models, united in a hierarchy, that introduce random

4 Eddy-resolving simulations of the ocean general circulation sug-
gest that the inhomogeneities are of two kinds: eddy energy densities
and single-particle dispersion rates (Berloff et al. 2002; hereinafter
BMB). Both aspects vary strongly in some parts of the ocean; hence
the eddy diffusivity is particularly ill-estimated there.
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increments in SDEs governing high-order time deriv-
atives of the particle position (BM). By restricting the
random noise to higher derivatives and by explicitly
solving for more aspects of the motion, these models
account, to some degree, for the presence of coherent
structures in turbulence and for the long-time Lagrang-
ian velocity correlations associated with the coherence.
The stochastic transport models satisfy the well-mixed
condition (Thomson 1987) that ensures the correctness
of the small-time behavior of the velocity distribution
of particles spreading from a localized source, the com-
patibility of the stochastic model with Eulerian equa-
tions of motion, and the compatibility of forward and
backward in time formulations of the models. If the
constraint is satisfied, an important physical property is
satisfied: a uniform distribution of tracer concentration
remains uniform during adiabatic evolution.

Despite recent progress in stochastic transport mod-
els, this approach has many unsolved fundamental is-
sues. The models have to be advanced so that they better
simulate observed broad variety of Lagrangian time-
scales and, therefore, the spreading process (this is the
main focus of this paper). In particular, a drawback in
the Markov model hierarchy is that, for a given average
intermediate-time spreading rate, the models tend to ex-
aggerate oscillations of the single-particle dispersion
function because they do not account for the true range
of different Lagrangian behaviors associated with dif-
ferent types of coherent mesoscale fluctuations. Another
progress is required in testing the transport models
against fluid-dynamic solutions in the realistic three-
dimensional and nonstationary regimes. Intermittency
(i.e., presence of nonnormal statistical distributions) of
turbulence is common in the ocean (Bracco et al. 2000),
and its transporting effect has to be represented in the
models (Luhar et al. 1996; Maurizi and Lorenzani 2001;
Pasquero et al. 2001). The most physical lateral bound-
ary condition has to be found. Finally, flow fluctuations
can cause a mean Lagrangian transport that is intrin-
sically nondiffusive (e.g., as in the Stokes drift of sur-
face gravity waves), and to date no one has investigated
how this behavior is modeled by the stochastic hierar-
chy.

Local internal parameters of a transport model rep-
resent local physics of the turbulence, and in general
they are found from real ocean measurements. On the
other hand, local physics of the turbulence can be a
function of large-scale, time-mean flow characteristics.
In this case, internal transport parameters can be related
to the flow, and the relationship is referred to as a ‘‘clo-
sure.’’ The idea of parameterization is that of combining
a transport model and its closure and adapting the com-
bination for practical purposes. In the OGCM context,
a closure is required between a theoretical model pa-
rameters and the coarse-grid flow characteristics (e.g.,
in the diffusion model: local eddy diffusivity as a func-
tion of local coarse-grid velocities). Eddy-resolving
primitive equation models of oceanic gyres show weak

(but nonzero) correlation between the eddy fluxes and
mean gradients of isopycnic thickness, potential vortic-
ity, and temperature (Roberts and Marshall 2000), and
there is evidence of a relationship between the eddy
diffusivity and the local density stratification (Visbeck
et al. 1997).

2. Hierarchy of Markov models

a. Formulation

In this section the general formulation is presented
of the stochastic transport model hierarchy (see BM for
details). The central idea of the theory is the following.
Transport of a turbulent flow regime is simulated with
a set of SDEs that govern motions of individual parti-
cles. The particle velocities contain both the time-mean
and random components that correspond to the time-
mean5 and fluctuating currents of the flow. A set of
SDEs, together with internal parameters, boundary and
initial conditions, and a time integration rule, constitute
a stochastic transport model. No such model can sim-
ulate all aspects of the fluid dynamics, and here the goal
is to simulate only some important statistical Lagrangian
properties of the flow regime (e.g., single-particle dis-
persion). The transport model parameters are statisti-
cally estimated from Eulerian (i.e., at a given location)
and/or Lagrangian (i.e., from Lagrangian float trajec-
tories) observations, and one is required to make the
estimates as local, both in space and time, as possible.
The probability that the system of particles is in a certain
state is given by the corresponding conditional (i.e., in
Lagrangian phase space) PDF, PL(0, x | t, x), and each
model has a Fokker–Planck equation for the phase-space
evolution of its PL (Risken 1989). The tracer concen-
tration is the phase-space projection of PL obtained by
integrating over all the state variables except x—this
indicates that transport represented by sets of Lagrang-
ian trajectories contains, in general, much more infor-
mation than the corresponding physical-space transport
represented by tracer concentration.

The general form of a model from the hierarchy is

df 5 D (t, f , f )dt,1 1 1 2

df 5 D (t, f , f , f )dt,2 2 1 2 3

_

df 5 D (t, f , f , . . . , f )dt 1 b (t, f )dW (t), (2)N N 1 2 N i j 1 j

where (f1, f2, . . . , fn, . . . , fN) is the state vector of the
system, and each element of it, fn, is a 2D physical-
space vector (i 5 1, 2 and j 5 1, 2 are spatial coordinate
indices), and summation is implied over a repeated in-
dex across a product of tensors.6 The variables fn cor-

5 Here, the time-mean flow represents the explicitly resolved large-
scale circulation. In an OGCM it is to be replaced with the explicit
coarse-grid fluid-dynamic solution.

6 Otherwise, Fii denotes the ith diagonal component of F.
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respond to x, u, u̇, . . . , for n 5 1, 2, 3, . . . . The Dn

are deterministic functions; dW(t) is a random incre-
ment vector; and bij is the tensor amplitude multiplying
the random increment vector. Random forcing enters
only the last equation in (2), and it is an incremental
Wiener process in each coordinate direction:

t

W (t) 5 j(s) ds. (3)j E
0

The Wiener process is a continuous but nondifferenti-
able integral of a zero-mean, discontinuous, stationary,
Gaussian, white-noise process, j(t), with variance equal
to the time step, dt. The relationship (3) is interpreted
as dW(t) 5 j(t) dt in (2). The boundary condition of
choice for (2) is perfect reflection of particles from solid
walls. Initial conditions for (2) are chosen randomly
from the corresponding statistical distributions of the
variables. The models are integrated in time with Ito
calculus, except the time-mean advection term for which
a fourth-order Runge–Kutta scheme is used. In a ho-
mogeneous, stationary situation and in an unbounded
domain, each model from the hierarchy corresponds to
a linear, stationary autoregressive process for the ve-
locity fluctuation, and that allows for analytical solu-
tions; otherwise the models are solved numerically.

The stochastic models use the following turbulence
properties as the parameters. There are the variance ten-
sors for the fluctuations of the velocity, u9:

s (x) 5 u9u9; (4)i j i j

acceleration, g 5 u̇9:

j (x) 5 g g ; (5)i j i j

and hyperacceleration, p:

z (x) 5 p p , (6)i j i j

where components of the hyperacceleration vector (BM)
are defined as

21p 5 ü9 1 j (s ) u9,i i im mj j (7)

and the overline operator, , may be either an infinite-f fi j

or a finite-time average; in the former situation it is
assumed that the regime is stationary, and in the latter
the stochastic model parameters are slowly varying
functions of time. The physical meaning of pi appears
simple in the Markov-3 model: it is the linear combi-
nation of the rate of change of the acceleration and the
average velocity fluctuation in its direction. In homo-
geneous and isotropic turbulence, each of (4), (5), and
(6) corresponds to a single value of the variance.

Each stochastic model incorporates all properties of
the models below it in the hierarchy. The simplest mem-
ber of the hierarchy is referred to as the Markov-0 (or
random-walk) model. It is equivalent (only in terms of
tracer concentration evolution) to the advection–diffu-
sion process (1), and it yields random displacements of

particle positions (appendix C). In the homogeneous and
stationary case its governing equation is

1/2dx 5 u dt 1 (K ) dW (t),i i ij j (8)

where K 5 Kij is the diffusivity tensor coefficient. The
Markov-1 governing equations for the particle coordi-
nate and velocity fluctuation are

dx 5 [u (x) 1 u9]dt,i i i

21du9 5 [2u (x) u9 1 ã (x, u9)]dt 1 b (x)dW (t),i i j j i i j j

(9)

where the first rhs term in the second equation represents
a fading memory for velocity fluctuations; uij(x) is the
(Markov-1) fading-memory time tensor; and the drift
correction term (for well-mixed condition) is

21](s )1 ]s s jmik imã 5 2 (u 1 u9) u9i k k j2 ]x 2 ]xk k

21](s )s mjim2 u9u9. (10)j k2 ]xk

The Markov-1 random forcing amplitude is defined by
21b b 5 2s (u ) .ij jk ij jk (11)

In addition to the continuous velocity, the Markov-2
model yields a continuous acceleration, u̇. Variable g is
called pseudoacceleration, and it is equal to u̇9 only in
homogeneous and stationary situations (i.e., when ã 5
0). The Markov-2 governing equations are

dx 5 [u (x) 1 u9]dt,i i i

du9 5 g dt 1 ã (x, u9)dt,i i i

21dg 5 [2u (x) g 1 c̃ (x, u9, g)]dti i j j i

1 b (x)dW (t), (12)i j j

where uij(x) is the (Markov-2) fading-memory tensor;
and the second drift-correction term is

21](j )j jmim21c̃ 5 2j (s ) u9 2 (u 2 u9) g . (13)i im mj j k k j2 ]xk

The Markov-2 random forcing amplitude is defined by
21b b 5 2j (u ) .ij jk ij jk (14)

b. Lagrangian properties

There are several Lagrangian properties that char-
acterize some aspects of both turbulent flows and so-
lutions of the models from the hierarchy, and only evolv-
ing PDF of particle ensembles contains the complete
information on spreading process. In the oceanic gyres,
a simple important property is the time-average, La-
grangian meridional flux of material. Another properties
described below are more general.

The single-particle dispersion tensor (i.e., the mean-
square particle displacement) is
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D [t, x(0)] 5 [x (t) 2 x (0)][x (t) 2 x (0)], (15)i j i i j j

where the overbar indicates an ensemble average over
many particle trajectory realizations with the same ini-
tial position, x(0). Here, for simplicity, off-diagonal
terms are neglected in all tensors (e.g., Dij, Rij) and the
common geographical coordinates are used. This sim-
plification does not change the fundamental issues but
allows one to avoid many technical details.7 The main
practical requirement to the transport models is to sim-
ulate observed D(t). In the absence of boundaries and
in the large-time limit, all the homogeneous and sta-
tionary Markov models asymptote to linearly growing
D(t) with a growth rate that depends on the parameters.
In the ocean, intermediate-time evolution of D(t) is very
complex due to the presence of mesoscale eddies and
geographical inhomogeneities. The homogeneous Mar-
kov models simulate relatively simple shapes of D(t),
but their skills increase with the order of the model
(BM).

Another important transport properties are the La-
grangian velocity autocorrelation function,

2 2 1/2R (t) 5 u9(t)u9(t 1 t)/(u9 u9 ) , (16)i j i j i j

and its corresponding frequency power spectrum. Com-
ponents of the Lagrangian time (tensor) are defined as

`

T 5 R(t) dt . (17)L E
0

This quantity is nonlocal8 (except for homogeneous and
stationary situation). In an inhomogeneous situation, the
local value of TL cannot be measured directly, but it can
be found from a transport model with locally estimated
parameters.

The D(t) and R(t) are connected by the relationships
td

D(t) 5 2s R(t) dt and (18)Edt 0

t

D(t) 5 2s (t 2 t)R(t) dt . (19)E
0

From (18) it follows that in an unbounded domain9 D(t)
reaches a linear, that is, diffusive, regime after R(t) de-
cays to zero. In this limit, the diffusivity coefficient is
defined as

td
K 5 lim D(t) 5 2s R(t) dt 5 2sT . (20)E Ldtt→` 0

Since D(t) is easily found from (19), we characterize
the stochastic models in terms of R(t). The Markov-0

7 Where it is obvious, the subscripts are dropped for convenience
[e.g., D(t), R(t)].

8 The corresponding errors are recognized in the ocean float data
analysis, but their quantification is problematic.

9 In a bounded domain D(t) reaches a finite global maximum at t
5 `.

R(t) is a d function, and therefore D(t) is always in the
linear regime uniquely characterized by the K. The ze-
roth degree of freedom, associated with the Markov-0
model, is the intensity of the velocity fluctuations that
is expressed by s, and hence by K. The homogeneous
and stationary Markov-1 model in an unbounded do-
main is characterized by the exponential decay of the
velocity correlations:

R(t) 5 exp(2t/u), (21)

where u is the fading-memory timescale. Here, the first
degree of freedom is associated with monotonic decay
of the velocity correlations. The Markov-2 R(t) has the
second degree of freedom associated with oscillations
(e.g., when the particles circulate inside coherent eddies)
on the timescale T (1):

t 2p
21R(t) 5 exp 2 sin t 1 F (sinF ) , (22)

(1)1 2 1 2u T

where the phase shift, F, is found from the equation:

1 1 exp(22/u) 2p
tanF 5 tan (23)

(1)1 21 2 exp(22/u) T

(Box et al. 1994). In the Markov-3 model, there is the
third degree of freedom associated with asymmetry of
the R(t) (e.g., when the particles circulate inside drifting
coherent eddies). In the two-dimensional Markov mod-
els with mutually correlated velocity components, it is
shown that for N . 0: the Nth-order model can exhibit
dispersive properties of the (N 1 1)th-order model, and
that implies complex eigenvalues of the linear trans-
formation matrix in the rhs of the corresponding sto-
chastic equation (Borgas et al. 1997; Reynolds 2002).
Such models are more physical but also more complex.
The formalism presented in this paper can be and has
to be generalized in this direction.

3. Fluid-dynamic solution

a. General properties

The setup of the fluid-dynamic model used to test the
stochastic theory is the same as in BMB, but the Reyn-
olds number is 5 times larger, the numerical grid res-
olution is finer, and the fluctuations are more developed
and energetic (appendix A). In the fluid-dynamic model,
the passive tracer transport is represented by ensembles
of Lagrangian particles advected by the velocity solution
field. The particle trajectory is obtained by solving the
nonautonomous equation,

dx(t)
5 u(t, x), x(t ) 5 X, t $ t , (24)0 0dt

where x(t, X) is the position of the particle initialized
at time t0 in location X; and u 5 (u, y) is the nondiver-
gent, geostrophic, horizontal velocity, which can be de-
composed into the time-mean and fluctuation compo-
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FIG. 1. Distributions of the (a), (c) zonal and (b), (d) meridional components of aii(x, y) from (27) in the (a), (b) upper and
(c), (d) deep ocean. The time-mean velocity streamfunction is shown with (a), (b) contour interval (CI) 5 104 m2 s21, and
(c), (d) CI 5 0.25 3 104 m2 s21.

nents. To quantify the contribution from the fluctuation
velocities, the single-particle dispersion is calculated as

D9 [t, x(0)] 5 [x9(t) 2 x (0)][x9(t) 2 x (0)], (25)i j i i j j

where x9(t) evolves by the local velocity fluctuation ac-
cording to

dx9(t)
5 u(t, x) 2 u(x). (26)

dt

In the absence of the time-mean flow, (25) reduces to
(15). Over an intermediate-time interval, the single-par-
ticle dispersion is fitted to a power-law form,

a (x ,y z)ij bin bin,D9(t, x , y ) ; t ,ij bin bin (27)

and then aii(x, y, z) is used to describe the Lagrangian
transport rates under the assumption of local homoge-

neity (BMB). The a strongly varies over the basin, and
a location is refered to as subdiffusive if a , 0.8 (slow
spreading), superdiffusive if a . 1.2 (fast spreading),
and approximately diffusive if 0.8 , a , 1.2 (exactly
diffusive regime has a 5 1). The eastern part of the
flow, that is away from the swift currents, is mostly
subdiffusive; fast zonal spreading is found in the central
part of the subtropical gyre, and fast meridional spread-
ing is found in some parts of the WBCs (Fig. 1). In
general, the spreading rates decrease with depth; they
are enhanced along the lateral boundaries; and they have
a pronounced local minimum near the WBC confluence
zone. Overall, the a pattern is qualitatively similar to
the one with 5 times smaller Re (BMB), but the transport
rates are faster, and the time-mean flow contribution to
the transport is different. We use the power laws as the
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TABLE 1. The upper-ocean, mean intergyre fluxes (Sv; Sv [ 106

m3 s21) by time t (days). Abbreviations are FD: fluid-dynamic, RM2:
randomized Markov-2, M2: Markov-2, and M0: Markov-0 (with
KRM2) solutions.

t FD RM-2 M-2 M-0

100
200
300
400
500

6.8
4.5
3.6
3.2
3.0

6.1
3.9
3.3
3.0
2.8

5.2
3.3
2.8
2.5
2.3

7.0
5.1
4.2
3.8
3.5

TABLE 2. As in Table 1 but for the deep ocean.

t FD RM-2 M-2 M-0

100
200
300
400
500

29.3
18.6
14.4
11.8
10.0

22.9
14.3
11.4

9.5
8.3

22.7
12.1
10.3

8.4
7.5

23.3
16.1
12.8
11.0

9.9

most straightforward and simple way to describe the
fluid-dynamic transports in the oceanic gyres, but also
they can be used for estimating parameters of the sto-
chastic transport models. The main problem with the
power laws is that they are nonlocal. This paper intro-
duces the idea of the random parameters with the ob-
served statistical distributions that, combined with in-
formation from the Eulerian velocity autocorrelations,
allows one to avoid using the power laws in the param-
eter estimates.

In the oceanographic context, an important transport
property, which we use to test the performance of the
models, is the meridional intergyre flux of material.
Across the intergyre boundary, by its definition as the
time-mean streamline running from the western to the
eastern boundary, there is no time-average Eulerian flux
of material, but there is time-average Lagrangian flux.
In the ith layer, the total, time-average, Lagrangian in-
tergyre flux is

LVi(n,s) (n,s)F (t) 5 N (t, x) dx, (28)i E it 0

where Vi 5 L2Hi/N is the fluid volume corresponding
to each of N particles; (t, x) is the probability density(n,s)N i

of the first-time, intergyre boundary crossing; and the
superscripts indicate whether the crossing is in the
northward or southward direction. The intergyre fluxes
are about twice larger than at 5 times smaller Re [F1(t)
and F2(t) are shown in Tables 1 and 2, respectively].
Because of the integral mass conservation, F (n)(t) 5
F (s)(t); but the crossing probability densities, N (n)(t, x)
and N (s)(t, x), are generally not the same, thus indicating
that there are locally nonzero net Lagrangian fluxes be-
tween the gyres (fluid-dynamic (t, x) are normalized(n,s)N i

by 1 and shown in Fig. 12).

b. First kinematic time

Ratios among the variance tensors (4)–(6) define two
fundamental parameters that enter the Markov-2 and
-3 models: the first and second kinematic-time tensors.
By definition, the first kinematic time, T (1), is found from
the relationship:

(1) (1) 21T T 5 s (j ) .ik kj ik kj (29)

For simplicity pro tem, we neglect the nondiagonal el-

ements of , hence the important nondimensional pa-(1)T ij

rameter is

u
(1)b 5 , (30)

(1)T

for each coordinate direction. The second kinematic
time, T (2), is found from

(2) (2) 21T T 5 j (z ) .ik kj ik kj (31)

The first kinematic time describes the average rotary10

motion of the Lagrangian particles that occurs when the
acceleration and velocity vectors are not aligned with
each other (e.g., motion induced by typical vortices).
The second kinematic time describes the average rate
of the deviations from the average rotary motion (e.g.,
when particles circulate inside a drifting vortex). In this
paper, for simplicity, the idea of parametric randomi-
zation is illustrated with the Markov-2 model and the
T (1), and extensions to other model parameters and to
higher-order models are relatively straightforward.

The central idea of this paper is to consider T (1) as
random parameter with prescribed statistical distribu-
tion—this step introduces a level of the randomization
in the Markov model hierarchy. Instantaneous values of
T (1) in the stochastic model correspond to the short-time
averages in (4) and (5), used in (29). Each value of T (1)

and the time-averaging interval, dt, imply a particular
local kinematic event of the turbulence. In the random-
ized stochastic model, the distribution of T (1), P (1)[T (1);
x] (further, the superscript is often dropped for conve-
nience), is implemented for a finite set of discrete values
of T (1). For simplicity, and this assumption can be re-
laxed in the future, we consider only one population of
particles in terms of their velocity variance, hence the
N-value P(T) implies that there are N distinct particle
populations in terms of their acceleration variance. A
random change of T implies that the particle experiences
a transition from one population to another.11 Physically,
the transitions simulate migration of the particles be-
tween different types of the mesoscale currents.

The proper choice of dt is related to the physics of
the problem. Obviously, in the limit dt → ` a T dis-

10 In the absence of the stochastic forcing and in 2D, components
of the first kinematic-time tensor are associated with motion of par-
ticles along the corresponding ellipses.

11 The Markov-1 models with two populations of particles have
been considered in the past (e.g., Luhar et al. 1996; Pasquero et al.
2001) but without transitions between the populations.
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FIG. 2. Fluid-dynamic values of the average first kinematic time: ^M1& 5 [M1(Px) 1 M1(Py)]/2 in the (a) upper and (b) deep
ocean (CI 5 0.5 days).

tribution collapses to a d function, and the equations
reduce to the corresponding standard Markov model. In
the numerical solutions of the oceanic gyres, the par-
ticles tend to move in a circular way or oscillate (al-
though, with a big scatter in periods of oscillations),
therefore an average period of oscillations is the natural
physically justified choice of dt. Hence, we define the
kinematic-event time interval locally as

(1)dt 5 pT ,` (32)

where is the first kinematic time obtained with the(1)T`

infinite-time averaging interval, as in BM. The dt is one
half of the period associated with oscillatory Lagrangian
motion induced by the coherent structures. It is easy to
see that, if the Lagrangian particle motion is purely
harmonic, that is u ; sin(t/T 1 f), then (29) in com-
bination with (32) yields the correct time scale:

pT

2sin (t/T 1 f) dtE
2 0u

2 25 T 5 T . (33)
pT2u̇

2cos (t/T 1 f) dtE
0

Equation (32) could be improved by introducing the
variable dt proportional to an instantaneous value of T (1),
but this is not done here for the sake of simplicity. In
the fluid-dynamic solution, dt is about 1–2 weeks and
it is longer in the eastern and shorter in the western parts
of the basin (according to Fig. 2).

In practice, the P(T) is provided by either Eulerian
or short-time Lagrangian (float) measurements of the
turbulence; hence its estimate is, respectively, either ex-
actly or approximately local in space. The normalization
condition requires that

1`

P(T ) dT 5 1, (34)E
2`

and the distribution can be generally described by its
statistical moments:

1`

M (P) 5 TP(T ) dT,1 E
2`

1`

2M (P) 5 [T 2 M (P)] P(T ) dT,2 E 1

2`

_
1`

nM (P) 5 [T 2 M (P)] P(T ) dT. (35)n E 1

2`

For simplicity, we focus on the first four moments of
P(T) and their nondimensional characteristics: skew-
ness.

M (P)3Sk(P) 5 , (36)
3/2[M (P)]2

and kurtosis,

M (P)4Ku(P) 5 . (37)
2[M (P)]2

In the gyres, the zonal, Px(T), and meridional, Py(T),
components of P(T) are found on a uniform 40 3 40
grid, in each layer, and for 100 uniformly distributed
values of T. Each value of T is associated with distinct
kinematic population of particles. In this paper we use
the excessive resolution in T and, thus, avoid the cor-
responding sensitivity study; in practice, it is likely that
a discretization level involving three to four distinct
values of T would yield reasonably good solutions. The
average values of T (1), M1(P), are rather isotropic and
they are 4–5 days away from and 1–3 days inside the
swift currents (Fig. 2). The M1(P) is typically larger in
the zonal direction and in the upper ocean, and it is
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FIG. 3. Fluid-dynamic, upper-ocean (a) M2(Px), (b) M2(Py), (c) Sk(Px), and (d) Sk(Py) for the first kinematic time [(a),
(b) CI 5 1 day2; the upper-ocean velocity streamfunction is shown in (c), (d) with CI 5 0.25 3 104 m2 s21].

smaller near and along the boundaries. The differences
in the upper- and deep-ocean maps of M1(P) are no-
ticeable but moderate (Fig. 2), and they roughly illus-
trate the level of differences in the other statistical mo-
ments (not shown for the deep ocean). The distribution
of M2(P) is strongly anisotropic away from the WBCs
(Figs. 3a,b), and Py(T) is more peaked than Px(T) (Figs.
4b,d); hence M2(Py) is generally smaller. The regions
of the fast (slow) spreading rates (i.e., the super- and
subdiffusive behaviors) are characterized by the large
(small) values of M2(P). That is shown with space av-
erages of P(T) over the central part of the basin char-
acterized by M2[Px(T)] . 10 day2 (Fig. 4b), and over
the eastern basin characterized by M2[Py(T)] , 2 day2

(Fig. 4d). In the WBCs M2(P) is almost isotropic—Fig.

4c shows P(T) averaged over the area where each com-
ponent of M2(P) is less than 2 day2. The basin-average
P(T) is dominated by contributions from the eastern
basin, except for the small-T contribution from the
WBCs (Fig. 4a). Thus, the broad (narrow) distributions
are associated with fast (slow) spreading rates.

c. Eulerian velocity autocorrelation

The full Markov-2 model (12) simulates velocity sta-
tistics that can be treated only as the Lagrangian one.
If the corresponding solution is obtained in the homo-
geneous mode with the local parameter values, that is,
with parameters corresponding to the deployment lo-
cation of particles, then we refer to it as the local Mar-
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FIG. 4. The upper-ocean P(T ) averaged over the (a) basin area, (b) central region with large M2[Px(T )], (c) WBCs, and
(d) eastern region with small M2[Py(T )]. Solid and dashed lines correspond to the zonal and meridional components of
the P(T ), respectively.

kov-2 solution. On the other hand, the reduced Markov-
2 model without the first equation simulates exactly the
same velocity statistics as the local model, but now the
statistics can be treated as the Eulerian one. Hence, the
fading-memory time parameter, u, describes monotonic
decay of the velocity autocorrelation function, which
may be interpreted both as the Lagrangian and Eulerian
quantity. This freedom of interpretation arises from the
fact that the Markov models, so far, do not account for
spatial correlations of the velocity field—if they would,
then the reduced model solution could not be treated as
the Eulerian one. The next important development along
the research line followed in BMB, BM, and here, is to
improve the models so that they locally account for both
the temporal and spatial correlations (e.g., Kaneda et al.
1999), but this is beyond the scope of this paper.

The u is the most difficult parameter to estimate be-
cause the monotonic decay is strongly overlapped by
nonmonotonic, oscillating contributions to R(t), in-
duced by the coherent eddies. In BMB u is estimated
from the intermediate-time power laws fitted to D9(t),
but this algorithm is rather delicate and nonlocal. We
propose to estimate u locally, from monotonic decay of
the envelope of the Eulerian velocity autocorrelation
function, RE(t), defined as in (16) with a velocity time
series given at a fixed location rather than following a
Lagrangian trajectory. Given often complicated and os-
cillating, fluid-dynamic RE(t) (Fig. 5), this algorithm is

not the final choice, but it is a first step toward under-
standing relations between RE(t) and the Lagrangian
transport in turbulent fluids. This algorithm allows one
to simulate the transport rather well (section 5).

Here RE(t) is calculated in each layer and in 40 3
40 uniformly distributed locations and with the whole
time length of the fluid-dynamic solution. The inter-
mediate-time qualitative features of RE(t) and R(t)
(BMB) are similar: strong oscillations and slow decay.
(The latter quantity cannot be calculated for long-time
intervals because it is nonlocal.) In the vicinity of the
WBCs and their eastward jet extension, RE(t) is weakly
oscillating with a shape close to exponential (Fig. 5a).
There, the negative lobes of RE(t) are small in amplitude
but robust in their occurrence. In the central part of the
subtropical gyre, where the zonal spreading rates are
enhanced and the values of M2(Px) are large, the zonal
component of RE(t) has enhanced positive lobes (Fig.
5b). Away from the swift currents, and more so in the
eastern part of the basin, RE(t) exhibits strong oscilla-
tions and weak decay (Figs. 5c,d). The empirical en-
velope-decay laws are obtained by drawing the limiting
curve, starting from the largest t, that includes all max-
ima of RE(t). After some smoothing, the limiting curve
represents the monotonically decaying envelope of
RE(t). In principle, u could be estimated from a func-
tional fit (e.g., an exponential) to the envelope of RE;
however, given the complexity of RE(t), u is chosen
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FIG. 5. Upper-ocean, Eulerian velocity autocorrelation functions, RE(t), in locations marked in Fig. 7. In locations (a) 1 and (b) 2, solid
and dashed curves correspond to the zonal and meridional components of RE(t), respectively; the (c) zonal and (d) meridional components
of RE(t) from location 3 are shown together with their smooth envelopes. The location number is specified on each panel.

more simply as the value of t at which RE equals some
threshold, R0. We use R0 5 0.25 because it is found
empirically that this value yields the best results. The
corresponding fading-memory time is shown in Fig. 6.
Variations of R0 by 630% yield no qualitative changes
of the transport, but the intergyre fluxes and local
spreading rates vary by 615%, respectively. In the deep
ocean, the values of u are typically larger by 30% than

in the upper ocean, that is due to the slower decay rates
of RE.

4. Randomized Markov-2 model

This section studies the properties of a family of T (1)

distributions with shapes qualitatively similar to those
found in the gyres (section 3, Fig. 4) for

(T 2 a) (T 2 a) (T 2 a)
T . a: P(T ) 5 exp 2 1 c exp 2 , d 5 mc,

2 2 5 6[ ] [ ](b 1 cd ) b d

T , a: P(T ) 5 0. (38)

It is assumed that parameters a, b, and m are positive
and c is nonnegative, and the normalization constant is
given by (34). The (38) is a sum of two standard gamma
distributions shifted by a (Karlin and Taylor 1975). The
choice of (38) is convenient because the shape of P is
qualitatively similar to the P shapes diagnosed from the
gyre solutions and the low-order statistical moments of
P are found analytically (appendix B). The parameters
in the P distribution have only an academic interest—
here they are introduced just to investigate the properties

of the new model. In practical applications, there is no
need to fit these parameters because P(T) has to be
diagnosed from the turbulence without any parametric
assumptions, as it is. Each distribution (38) has bell-
like shape, with single maximum and slowly decaying
tail at large T (Fig. 8c). For 0 , c , 0.1 and 1 , m
, 5: Sk and Ku vary from 1.5 to 5, and from 3 to 50,
respectively (Figs. 7a,b). These ranges and the relation-
ship between Sk and Ku (Fig. 8d) are qualitatively sim-
ilar to the fluid-dynamic properties (Fig. 8).
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FIG. 6. The upper-ocean, fading-memory time, log10ui, in the (a) latitudinal and (b) meridional directions (u is in days; CI
5 0.2). The digits 1, 2, and 3 mark locations used in Fig. 5.

FIG. 7. (a) Skewness Sk and (b) kurtosis Ku of the analytical T (1)-distributions as the functions of c and m [see (38)]
[(a) CI 5 0.25, (b) CI 5 2.5]. In (c) several different P(T ) are shown for 1) c 5 0, m 5 1, 2) c 5 0.1, m 5 3, and
3) c 5 0.015, m 5 5 (the curves are indicated by the corresponding numbers). (d) Scatterplot of the kurtosis shown
in (b) vs the skewness shown in (a).
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FIG. 8. Scatterplots of the fluid-dynamic, upper-ocean kurtosis vs skewness of P(T ) in the (a) zonal and (b) meridional
directions. The samples are taken at uniformly distributed spatial locations.

Each value of T (1) from the distribution P(T (1)) cor-
responds to certain population of particles, that is, to
certain probability distribution of the Eulerian u9 and
g: Pu(u9) and Pg(g), respectively. The second moments
of these distributions are connected by (29). For sim-
plicity, it is assumed12 that there is the single local value
of sij, and, therefore, the single local Pu for all values
of T (1):

1
21 21/2 21P (u, s) 5 (2p) |s | exp 2 u (s ) u . (39)u i i j j[ ]2

In other words, the probability distribution of s, Ps(s),
is the d function. At each moment of time, the random
forcing amplitude and T (1) of a stochastic particle, hence
its acceleration, are characterized by an instantaneous
value of j ij. Here j ij is statistically distributed according
to its own distribution: Pj(j). Given the probabilities of
T (1) and s, that is, P[T (1)] and Ps, the probability to find
each j ij is uniquely determined by (29). For each value
of j ij, that is, for each population of particles, the prob-
ability to find a particular g is

1
21 21/2 21P (g, j) 5 (2p) |j | exp 2 g (j ) g . (40)g i i j j[ ]2

Particle transition from one value, jM, to another val-
ue, jN, that is, transition from one population to another,
is described by the transition probability function:

P (g, j )P (j )g N j MP(g, j → j ) 5 C(j ) , (41)M N M P (g, j )P (j )g M j N

where the normalization factor,

12 Relaxation of this assumption is straightforward, but adds some
complexity.

21` P (g, j)P (j)g jC(j) 5 ds, (42)E [ ]P (g, s)P (s)g j0

is such that the probability of all the possible transitions
[including no transition, that is, P(g, jM → jN)] is equal
to unity. For example, if there are only two equally
populated [i.e., Pj(j1) 5 Pj(j2)] populations: one char-
acterized by smaller j1 and the other by larger j2, then
for large values of gi: Pg(gi, j2) k Pg(gi, j1) (40).
Therefore, from (41) it follows that P(g, j1 → j2) k
P(g, j2 → j1); hence the particles with large gi have
enhanced probability to migrate from the small-j to the
large-j population. The model is formulated so that tran-
sition from jM to a nearby value, jM 1 dj, can be less
probable than transition to a distant value, jN, however
one can think of a physically grounded stochastic equa-
tion for j that would yield its continuous evolution—
development of this idea is far beyond the scope of this
paper.

Each population of particles has its own drift correc-
tion terms (10) and (13) characterized by its s and j.
Hence, the well-mixed condition is trivially satisfied for
each population. The particle transitions between the
populations preserve the well-mixed condition because
they do not change (39), (40), and, therefore, given (41),
they do not change the phase-space densities of the par-
ticle populations. In the inhomogeneous oceanic gyres,
we verified the validity of the well-mixed condition by
solving for the evolution of a large well-mixed popu-
lation of particles.

The general properties of the randomization are found
by calculating solutions of the isotropic, homogeneous,
and stationary RM2 model, in an unbounded domain
and for a sufficiently large number of particles. Here,
M1(P) is chosen as the timescale [the corresponding b (1)

is given by (30)], therefore its specific value is not im-
portant. The question is to what extent TL and D(t) de-
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FIG. 9. Ratio TL /M1 (P) for (a) b (1) 5 10 and (b) b (1) 5 100, and for M 2 (P) 5 2 (P) (CI 5 2 3 10 22 ). (c)2Ï3M 1

TL /M1 (P) as a function of M 2 (P) for c 5 0 and m 5 1; dashed and solid curves correspond to b (1) 5 10 and 100,
respectively.

pend on the P-distribution shapes. In the first experi-
ment, c and m (hence, Sk and Ku) are varied as in Figs.
8a,b, and the second moment is kept fixed: M2(P) 5
2 (P). It is found that large values of Sk and Ku2Ï3M1

correspond to smaller TL and, therefore, to slower
spreading rates in the large-time limit (Figs. 9a,b).
Hence, when the distribution is more peaked, that is,
Ku is large, the increased probability of small T (1), as-
sociated with slower spreading rates, dominates over
unfrequent but large values of T (1) from the large-T tail
of the distribution. If b (1) → 0, that is, R(t) approaches
an exponential, then TL increases but the corresponding
range of its variations decreases. In the second exper-
iment, M2(P) is varied; Sk and Ku are kept fixed. It is
found that the larger is b (1), the larger is variation of
TL(M2) (Fig. 9c). The difference due to the randomi-
zation is shown by comparing the RM-2 solution char-
acterized by PRM2(T) at c 5 0 and m 5 1 (Fig. 7c) with
the corresponding nonrandomized solution, that is, the
one with PM2(T) 5 d[M1(PRM2)]. In the latter case, the

oscillations of D(t) and R(t) are larger in amplitude, and
the spreading is generally slower (Fig. 10). Thus, the
randomization damps oscillations of R(t) (hence, broad-
ens Lagrangian velocity spectrum) because it broadens
the range of the simulated temporal behaviors. It has
been shown previously (BM) that one of the main de-
ficiencies of the nonrandomized Markov models is the
excessively narrow range of simulated timescales—this
paper offers a solution of this problem.

5. Application to oceanic gyres

a. Direct use of the RM-2 model

Two types of applications of the RM models are ex-
plored in this paper. The direct approach is to replace
the traditional diffusion equation with an optimal RM
model—in the given framework this is the most direct
and accurate way to account for the presence of different
populations of the coherent structures. The interim (in-
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FIG. 10. (a) Single-particle dispersion, D(t), and Lagrangian velocity autocorrelation function, R(t), for b (1) 5 100,
c 5 0, and m 5 1. The Markov-2 model is indicated by ‘‘M2,’’ and the RM-2 model with M2(P) 5 2 (P) is2Ï3M1

indicated by ‘‘RM.’’

direct) approach which is simpler but accounts for the
effects of the coherent structures to a lesser degree, al-
lows one analyze the ocean data with the RM formalism,
to estimate the corresponding eddy diffusivity param-
eter, and then to simulate the transport with the corre-
sponding diffusion model. In this section, both ap-
proaches are compared, and their systematic differences
are identified.

In terms of the cross-gyre transport, the inhomoge-
neous RM-2 model performs quite well against the fluid-
dynamic solution, both in the upper and deep ocean.
However, there are discernible differences (Fig. 11) in
the regions with enhanced spreading rates: in the central
part of the subtropical gyre and along the lateral bound-
aries. It is expected that the RM-3 model, which sim-
ulates the intermediate-time superdiffusive spreading
(BM), will compensate for the differences.13 The fluid-
dynamic and RM-2 intergyre fluxes are qualitatively
similar, except near the western boundary where the
latter is much smaller (Fig. 12); therefore the total RM-2
fluxes are also slightly smaller than they should be (Ta-
bles 1 and 2). At first glance, this discrepancy is hard
to explain because the approximate intermediate-time
dispersion power law, a(x, y) shows no enhanced me-
ridional spreading in this location (Fig. 1b). The expla-
nation is that a is a fundamentally nonlocal property;
therefore it can provide a distorted view on the spreading
process in the presence of strong inhomogeneities.14 A
detailed local analysis reveals that near the time-mean
WBC separation point the meridional component of
RE(t) has a very pronounced second positive lobe,

13 Theoretically, a special P(T ) can exist that yields large and pos-
itive second lobe of R(t), but this is not what we find in the gyres.

14 This statement is also true about the eddy diffusivity, which
corresponds to a 5 1.

which is an indication of the superdiffusive spreading.15

It is expected that this behavior can be well simulated
by an RM-3 model.

In contrast to the traditional estimates of TL based on
early truncation of R(t) and nonlocal Lagrangian float
information, the new randomized model is used to find
TL with locally estimated parameters, and the full, non-
truncated R(t). The zonal and meridional components
of TL (Fig. 13) are calculated by integrating locally es-
timated, that is, given by local homogeneous model,
R(t) in each layer and at 40 3 40 uniformly distributed
grid points. The RM-2 parameters, P(T), u, s, and j,
are given by the fluid-dynamic solution, and the cor-
responding eddy diffusivity coefficient is found below.
The largest values of TL (about 8 days) are located in
the zonally superdiffusive central part of the subtropical
gyre, and the smallest values (less than 2 days) are in
the subdiffusive eastern basin and some parts of the
WBCs. The TL(x, y, z) pattern is somewhat similar to
a(x, y, z) (Fig. 1), except along the boundaries. This is
because the superdiffusive spreading is not represented
in the second-order model, and for it one has to go one
order higher in the hierarchy.

The eddy diffusivity, KRM2, is found from (20) with
the RM-2 TL. It is strongly inhomogeneous and aniso-
tropic, with the maximum values of about 30 3 103 m2

s21 in the WBCs (Fig. 14). The diffusivity decreases
with depth, and it is about 0.1 to 20.5 (3103 m2 s21)
in the eastern basin where the spreading rates are sub-
diffusive. Overall, the eddy diffusivity values are similar
to the observed ones (e.g., Krauss and Böning 1987),
except in the eastern basin where they are smaller.

15 The Markov-3 model in BM does not pick up the enhanced near-
boundary transport because it operates with nonlocally estimated pa-
rameters, and, therefore, it is not able to account for the relatively
localized transport pathway.
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FIG. 11. Distributions of (a), (c) fluid-dynamic and (b), (d) RM-2 model, upper-ocean particles participating in (a), (b) northward and (c),
(d) southward intergyre fluxes. Initial and final (t 5 500 days) positions are shown on the same panels (slightly pulled apart, to indicate the
gyres). The labels indicate which gyre (southern: S, or northern: N) the particles are leaving from (arrow to the right of the letter) or coming
to (arrow to the left).

b. Comparison of the RM-2 and Markov-2 models

In general, the parametric randomization of a sto-
chastic model significantly changes its transport prop-
erties (section 4). Here, the randomization consequences
for simulating gyre-scale transport are addressed by
comparing the intermediate-time evolution of particle
distributions for both the RM-2 and the Markov-2 mod-
els as well as the fluid-dynamic model (Figs. 15 and
16). In the fluid-dynamic model, all the particle solu-
tions are obtained by averaging over 5000 initial phases
of the flow, which is substantially larger number than
in BMB; hence the solution is found more accurately.
We illustrate the randomization effect with a deployment
location that is chosen away from the strong inhomo-
geneities. This is done in order to reduce their effect on
the transport and in the subdiffusive part of the flow,
where the second-order model is expected to perform

rather well; apart from this, the location and the cor-
responding transport properties are typical. The spread-
ing process is quantified by calculating the rms length-
scales of the particle distributions:

2D (t) 5 Ï^[x (t) 2 ^x (t)&] &, (43)i i i

where the angular brackets indicate a particle ensemble
average, and the index corresponds to the coordinate
direction. It is found everywhere in the basin that the
randomization decreases the excessive oscillations of
the Markov-2 D(t) and R(t), and it makes them more
like the fluid-dynamic solution. This tendency is par-
ticularly pronounced in the subdiffusive parts of the
basin where the oscillations are the largest, and the
change of the transport properties due to the randomi-
zation is similar to the one shown in Fig. 10. In the
particular example, this is expressed by improvements
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FIG. 12. The normalized, intergyre crossing distributions, N (n,s)(x), for t 5 500 days and in
the (a) upper and (b) deep ocean: the fluid-dynamic (dotted), RM-2 (solid), and M-0 (dashed
curve) solutions. The positive and negative curves correspond to the northward and southward
intergyre fluxes, respectively.

of D(t) shown in (Fig. 16). The excessive oscillations
(as shown in BM) are the least attractive property of
the standard stochastic model hierarchy. The spreading
rate improvements due to the randomization go beyond
damping the oscillations. Both the RM-2 and Markov-2
solutions underestimate the zonal component, D1(t), by
a factor of 2, although the RM-2 model performs sys-
tematically better (Fig. 16a). This is because the models
are formulated as a second-order autoregressive pro-
cesses for the velocities; therefore they are not capable
of simulating the superdiffusive behavior (BM). The
superdiffusive component of the zonal spreading is rath-
er weak in this region (Fig. 1a); nevertheless its effect
is seen by the enhanced migration of particles to the
west (Fig. 15a). This behavior is consistent with the
transport phenomenology reported in BMB and with the
transport simulation improvement (see BM) obtained by
going from the Markov-2 to -3 model, which captures
the enhanced spreading rates. The meridional compo-
nent, D2(t), is much better simulated by the RM-2 than
Markov-2 model; and the RM-2 solution is rather close
to the fluid-dynamic one (Fig. 16b). This suggests that
in the predominantly subdiffusive directions the com-

bination of the second order and randomization capture
the essential physics of the transport by coherent eddies.
Further transport improvements can be anticipated by
fixing the shortcuts taken in this paper (see discussion
in section 6).

The RM-2 and Markov-2 oceanic-gyre spreading
rates are compared not only locally but also in the large-
time diffusive limit. We find that the RM-2 eddy dif-
fusivity, KRM2, is generally larger than the Markov-2
one, KM2, and the maximum difference is 2–4 times (Fig.
17). Consistently with the idealized studies (section 4),
the largest difference between the two models is in the
subdiffusive regions. The strong effect of the random-
ization is consistent with the idealized solutions in sec-
tion 4.

c. Interim use of the RM-2 model

Here, the systematic differences are found between
the transports simulated directly by the RM-2 model
and indirectly by the advection–diffusion (Markov-0)
model with Kij estimated locally from the RM-2 model.
The advection–diffusion (1) and M-0 models yield
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FIG. 13. (a), (c) Zonal and (b), (d) meridional TL calculated in the (a), (b) upper and (c), (d) deep ocean with the RM-2
model and parameters locally estimated from the fluid-dynamic solution (CI 5 0.5 days).

equivalent descriptions of the evolving tracer concen-
tration, c(t, x). However, the M-0 model is more general
because it simulates not only c(t, x), but also Lagrangian
particle trajectories and material fluxes between any
points of the domain. The inhomogeneous M-0 model
is formulated in appendix C. It is found that the M-0
model, and, therefore, the whole indirect approach, sub-
stantially overestimates the average spreading rates and,
therefore, the intergyre fluxes (Fig. 12, Tables 1 and 2).
The overestimate is 20%–25% at later times, and it is
somewhat larger in the upper ocean.

The systematic overestimate of the spreading rates
can be explained as follows. The correction in D(t) to
the diffusive regime is represented by the second rhs
term in (19). For the following, (22) is used and the
two generic situations are considered:

2p 1
(1)b k 1: k , (44)

(1)T u

which is common in the eastern, subdiffusive part of
the basin and in the deep ocean; and

2p 1
(1)b # 1: # , (45)

(1)T u

which is common in the swift currents and in the upper
ocean. For the following, we introduce

21 22 2 (1) 22 21/2cosf 5 u {u 1 (2p) [T ] } . (46)

In the case of (44) F → p/2; hence the large-time cor-
rection to the asymptotic diffusive regime is

`

D 5 22s tR(t) dtCORR E
0

sin(F 1 2f)
5 22s

22 2 (1) 22sin(F ){u 1 (2p) [T ] }
2 (1) 21 2 2 cos f 2s[T ]

ø 2s ø . 0.
22 2 (1) 22 2{u 1 (2p) [T ] } (2p)

(47)

This correction is positive, which implies that the Mar-
kov-0 model underestimates the corresponding Markov-
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FIG. 14. The (a), (b) upper- and (c), (d) deep-ocean eddy diffusivity coefficients estimated with the RM-2 model: (a), (c)
zonal and (b), (d) meridional directions (CI 5 2 3 103 m2 s21).

2 D(t) (Fig. 18a). In the case of (45) F ; 2pu/T (1), and,
by using sin(F) ; F, cos(F) ; 1, and the second rhs
expression from (47), one finds that

22 (1) 22{3u 2 (2p)[T ] }
D ø 22sCORR 22 2 (1) 22 2{u 1 (2p) [T ] } (48)

2ø 26su , 0.

This correction is negative; hence D(t) is overestimated
by the Markov-0 approximation to the Markov-2 model
(Fig. 18b). In the fluid-dynamic solution, most of the
upper-ocean intergyre flux occurs in the western basin,
where b (1) is relatively small (as in Fig. 18a), and in
the eastern basin, where b (1) is large (as in Fig. 18b),
the flux is small. This explains the systematic overes-
timates by the Markov-0 approximation.

d. Alternative approaches to estimating TL

The key component of the eddy diffusivity coefficient
(20) is TL. Traditionally, TL is estimated directly from

the observed float R(t) and the truncated approximation
of (17):

t*

T* 5 R(t) dt , (49)L E
0

and the key assumption is that R(t) decay to zero fairly
rapidly (e.g., Freeland et al. 1975; Colin de Verdiere
1983; Krauss and Böning 1987). This approach is fun-
damentally nonlocal; therefore, at least for partial lo-
cality one is tempted to use shorter float trajectories. At
the same time, → TL when t* → `, and this suggestsT*L
using longer trajectories. For statistically reliable cal-
culation of R(t), the time interval of trajectories has to
be substantially longer than t*. This apparent contra-
diction has not been solved on the fundamental level,
but in practice its consequences are minimized by choos-
ing some compromise, intermediate value of t*.

In this paper, the estimates of TL are local and exact
in the formal sense. The estimates involve 1) extracting
the local kinematic information from the observed float



JULY 2003 1437B E R L O F F A N D M C W I L L I A M S

FIG. 15. Upper-ocean distributions of particles as given by the (a) fluid-dynamic, (b) RM-2, and (c) Markov-2 models, 250 days after the
deployment. The particle distribution in (c) corresponds to the locally average value of D2 over the oscillation period (cf. Fig. 16b); the
corresponding D1 is close to its local maximum (cf. Fig. 16a). Initial location of the particles is indicated by the filled circle. The time-mean
velocity streamfunction is shown with CI 5 104 m2 s21.

trajectories (or, equivalently, from the Eulerian obser-
vations), 2) using this information to obtain the sto-
chastic model parameters, 3) calculating R(t) from the
local homogeneous stochastic model, and 4) using this
information and (17) to find TL. Here, TL found locally
with the RM2 model is compared with calculatedT*L
directly from the Lagrangian particle trajectories, and
for commonly used values of t*.

Small values of t* (ø10 days) yield ø TL in theT*L
WBCs, where R(t) is relatively close to the exponential
with fast-decay scale (BMB), but they yield very large
errors in the eastern part of the basin where R(t) os-
cillates stronger. With more practical t* 5 50 days,

(x, y) varies from 2 to 10 days (Figs. 19a,b), and itT*L
qualitatively16 captures the distribution of the sub- and
superdiffusive regions. However, quantitatively (x, y)T*L
is very different from TL in the eastern part of the basin
where oscillations of R(t) decay slowly (Figs. 19c,d).
This suggests that one has to be very cautious in inter-
preting as TL. In particular, the difference betweenT*L
these quantities can explain poor predictions of the ob-
served large-time spreading rates (e.g., Fig. 10 in Krauss

16 Although (x, y) may look reasonable, a stochastic model basedT*L
on it strongly overestimates the spreading rates, as shown in BM.
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FIG. 16. The (a) D1(t) and (b) D2(t) corresponding to the particle
distributions in Fig. 15. The labels FD, RM2, and M2 indicate the
fluid-dynamic, RM-2, and Markov-2 solutions, respectively.

and Böning 1987; zonal spreading in Lumpkin and Fla-
ment 2001).

The assumption that TL is determined by the curvature
of R(t) at t → 0 leads to the conclusion (Babiano et al.
1987) that TL is simply related to the local enstrophy
density, Z:

1/2 21/2 2T 5 (2p/3) Z , Z 5 |= 3 u9| /2. (50)L

The direct test of (50) is straightforward: the value of
Z 1/2 is plotted against the corresponding value of TL at
each grid point (Fig. 20a). As a result of that, the re-
lationship (50) is not confirmed, and no simple func-
tional dependence of TL on the small-t curvature of R(t)
is found. The eastern part of the basin yields very small
values of Z 1/2 with the full range of TL values, and (50)
is not even close to approximating their relationship.
This is because the intermediate- and large-t properties
of R(t) (hence, TL) strongly vary across the flow, but
its small-t behavior does not. In the western basin, larger
values of Z 1/2 generally correspond to smaller values of
TL, that is, the same tendency as in (50); however, most
of the corresponding points in Fig. 20a are located below
the line defined by (50).

Stammer (1998) proposed that TL can be simply re-
lated to the time-mean vertical shear and stratification.17

17 A similar theory that accounts also for the horizontal stratification
is in Visbeck et al. (1997).

2ÏRi N
T ; , Ri 5 ,L f W

2 2
]u ]y

W 5 1 , (51)1 2 1 2]z ]z

where Ri is called the mean Richardson number, f is
the Coriolis parameter, and N 2 is the mean buoyancy
frequency. The main physical assumption behind this
scaling is that the major eddy source in the ocean is
local baroclinic instability. Although this assumption
can be generally correct, this paper demonstrates that a
lot of information that has direct and large influence on
TL, in particular, and on the spreading process, in gen-
eral, is hidden in kinematic details of the turbulence, as
they are given by different populations of the coherent
structures. This information is not present in simple scal-
ing laws. In the fluid-dynamic model, and in the upper
ocean (51) can be tested by using du/dz ; u1 2 u2 and
by plotting W 1/2 versus . In the western basin, where21T L

the eddies are generated mostly by the baroclinic insta-
bility (e.g., Berloff and McWilliams 1999a,b), there is
an approximate linear relationship between W 1/2 and

(the upper group of points in Fig. 20b, with W 1/221T L

. 10 cm s21), as implied by (51). In the eastern basin
dominated by the planetary waves, the dynamics is dif-
ferent; hence (51) does not hold even approximately
(the lower group of points). Although (51) can, possibly,
capture the essential basic physics, it cannot provide the
corresponding nonuniversal proportionality coefficient,
unlike the stochastic model formalism.

e. Search for a parameter closure

Full parameterization of the oceanic transport by me-
soscale eddies requires a closure that relates parameters
of a transport model to properties of the time-mean flow.
The search for such closure and understanding of the
physics behind it requires intensive studies far beyond
the modest goals of this paper; however, an immediate
and simple question is: to what extent the RM-2 model
parameters, that is, the turbulence properties, are related
to the time-mean velocities and their gradients? One
idea, used in atmospheric and oceanographic modeling
(Smagorinsky 1993), is similar to the mixing length
theory of turbulence, and it yields the following rela-
tionship for the eddy diffusivity:

2 2 2 2K ; S [ Ïs 1 s 1 s 1 s ,11 12 21 22

]u1 ]u jis 5 1 . (52)i j 1 22 ]x ]xj i

T h e h y p o t h e s i s ( 5 2 ) i s t e s t e d b y p l o t t i n g
, obtained in section 5a, versus S(x, y) forÏ | K (x, y) |ij

an array of sample points, which uniformly cover the
whole basin (Fig. 21). The scatterplot shows that (52)
is largely irrelevant for the upper-ocean oceanic gyre
turbulence, and this is also true in the deep ocean (not
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FIG. 17. The (a), (b) upper- and (c), (d) deep-ocean RM-2 correction, E 5 (KRM2 2 KM2)/KM2, to the Markov-2 eddy
diffusivity coefficient in the (a), (c) zonal and (b), (d) meridional directions (CI 5 50%).

FIG. 18. The Markov-2 D(t) in the regimes with (a) b (1) 5 50, and (b) b (1) 5 1. The straight lines indicate the large-time
asymptotic diffusive behaviors.
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FIG. 19. The upper-ocean (a) zonal and (b) meridional components of (CI 5 0.5 days), and the corresponding errors,T*L
E 5 ( 2 TL)/TL, in the (c) zonal and (d) meridional directions (CI 5 0.2 for E # 1, contour E 5 3 is shown separately,T*L
and CI 5 5 otherwise).

FIG. 20. Scatterplots of the upper-ocean (a) Z 1/2 and (b) W 1/2 vs . The straight line in (a) indicates (50).21T L
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FIG. 21. Scatterplots of the upper-ocean vs S.Ï | K |ij

shown). Other simple closure hypotheses for such well-
defined transport parameters as s and T (1) also have been
tested. The hypotheses are based on the dimensional
arguments and they imply the following relationships:
s ; 2 (eddy kinetic energy is proportional to the time-u
mean flow energy); 1/T (1) ; d /dz;1/T (1) ; d /dx. Foru u
brevity, the corresponding scatterplots are not shown
here, but in terms of the large scatter they are all qual-
itatively similar to (Fig. 21). Overall, the scatterplots
yield little support to these simple closure hypotheses.
Several reasons can be suggested for this. First, unlike
the stochastic transport model, the time-mean velocity
contains virtually no information on the structure and
correlations of the eddy field, which are crucial for the
transport. Second, the dynamical mechanisms support-
ing the eddies are substantially inhomogeneous and non-
local—for example, the rings generated by the WBC
eastward jet extension travel far away from the jet; the
planetary wave population in the eastern part of the
basin (Jiang et al. 1995; Berloff and McWilliams 1999a)
is driven by instabilities in the western part of the ba-
sin)—therefore, at a given location the transport param-
eters are poorly related to the time-mean velocity and
its derivatives.

6. Conclusions and discussion

Our general goal is to look for turbulent transport
models that account for the broadest variety of different
Lagrangian motions in oceanic mesoscale turbulence.
The main hope is that such models can be implemented
in coarse-grid general circulation models as skillful pa-
rameterizations of the transport induced by unresolved
eddies; they are potential replacements for the less skill-
ful but commonly used diffusion model. The more spe-
cific goal of this paper is to advance the standard hi-
erarchy of stochastic transport models, high-order mem-

bers of which are capable of simulating turbulent trans-
port in the presence of nontrivial temporal correlations
induced by coherent fluid structures. In these models,
the passive tracer transport is represented by random
motion of Lagrangian particles, and the tracer concen-
tration is obtained by simple coarse-graining procedure
applied to the particle population. The standard hier-
archy is able to simulate only a narrow range of time-
and lengthscales of motion, and this yields errors. The
theory presented in this paper broadens the range by
replacing fixed internal parameters of the models with
randomized parameters specified by their statistical dis-
tributions. The parameter distributions are to be found
from the standard oceanic observations, or, as in this
paper, from fluid-dynamic, eddy-resolving ocean solu-
tions. The practical idea behind the theory is to utilize
the kinematic information contained in the observations
on a much better level than the common use of the
average parameter values.

Here is the summary of the results of this paper (fur-
ther discussed below):

1) The phenomenology of the fluid-dynamic Lagrang-
ian transport is analyzed at very large Re18;

2) the idea of randomized stochastic models is for-
mulated and the new transport properties are illus-
trated with the first kinematic-time parameter and
the Markov-2 model;

3) the randomized Markov-2 (RM-2) model is adapted
for the inhomogeneous oceanic gyre situation and
its solutions are tested against the fluid-dynamic
transport;

4) the systematic differences between the RM-2 and
Markov-2 solutions are analyzed;

5) Comparisons are made between the direct RM-2 so-
lutions and the Markov-0, that is, random-walk, so-
lutions with the eddy diffusivity coefficient esti-
mated with the RM-2 model;

6) it is shown that all stochastic-model parameters can
be estimated locally in space;

7) the Lagrangian integral times estimated with the
RM-2 model are compared with prior theoretical es-
timates, and the systematic differences are analyzed;

8) a preliminary (and essentially negative) test is made
of an empirical closure that relates stochastic-model
parameters and large-scale flow properties.

The transport complexity poses the main challenge
to simple transport models: the flow is full of transient
mesoscale coherent structures, such as swift mean-
dering currents, intense vortices, eddies, and plane-
tary waves, all of which transport the material in a
very nondiffusive way; that is, the spreading process
described by the single-particle dispersion, D(t), is

18 The turbulent solution used in this paper is characterized by an
Re 5 times as large as in the previous studies of BMB and BM. The
flow contains more eddies, and the resulting eddy variability is more
realistic.
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strongly nonlinear and nonmonotonic. The D(t) is bal-
listic on short times and predominantly sub- or su-
perdiffusive on intermediate times (up to a few
months). The standard stochastic model hierarchy
simulates only a narrow range of Lagrangian behav-
iors as defined by the specific parameter values. This
constraint is overcome by introducing randomized,
but physically grounded, parameters that represent
different contributions from different types of the ed-
dies, as expressed in terms of several Lagrangian par-
ticles populations with distinct properties. This idea
requires an extensive study of various aspects of the
models, and this paper reports only a modest advance
in this direction. Here, the focus is on the Markov-2
model from the hierarchy, although the theoretical
extension to the other members of the hierarchy is
straightforward. The Markov-2 model is capable of
simulating intermediate-time, subdiffusive spreading
processes associated with oscillatory Lagrangian ve-
locity autocorrelation function, R(t), that is, with ro-
tary or oscillatory motion of Lagrangian particles in
coherent structures. The first kinematic time, T (1) , one
of the model parameters, contains important infor-
mation about the spreading process including the sub-
diffusive behavior: it describes the average rotary mo-
tion of Lagrangian particles that occurs when the ac-
celeration and velocity vectors are not aligned with
each other. The Markov-2 model with randomized T (1)

is referred to as the randomized Markov-2 model. Pa-
rameters of the RM-2 model are estimated from the
simple statistical properties of the flow, and its per-
formance is tested against the fluid-dynamic solution
of the turbulent, passive-tracer transport in oceanic
gyres. It is shown that the randomization yields sub-
stantially more realistic Lagrangian velocity corre-
lations and dispersion, and it gives relatively good
simulations of the gyre transport properties.

The stochastic models can be applied either directly
or indirectly; the particular choice depends on the prob-
lem itself and the desired accuracy. In the indirect ap-
plication, the stochastic-model solution is obtained with
the locally estimated parameters, and the solution’s
large-time asymptotic behavior yields the corresponding
eddy diffusivity, K. Then, the transport is simulated by
the Markov-0 (or, equivalently, advection–diffusion)
model with this K. Obviously, the direct approach better
accounts for the coherent structures, but also it brings
in additional complexity. It is found that the Markov-0
model overestimates (underestimates) the spreading
rates when b (1), that is, ratio of T (1) and the fading-
memory timescale, is small (large). In the fluid-dynamic
model, most of the upper-ocean intergyre flux occurs in
the western part of the basin, where b (1) is relatively
small; in the western basin, where b (1) is large, the flux
is small. Because of this, the Markov-0 model overes-
timates the mean intergyre fluxes.

A parameter estimation algorithm is proposed that is
local in space, unlike the traditional approach based on

the large-time asymptotic spreading of the Lagrangian
floats. The new stochastic formalism allows for more
efficient extraction of the transport information from
ocean observations, both Eulerian and from floats. Also,
the relatively complex and nonlocal estimating proce-
dure proposed in BM for the fading-memory time pa-
rameter is replaced: the fading-memory time is found
as the Eulerian envelope-decay time scale of the velocity
correlation function. Finally, this study finds no simple
closure relationship between the transport parameters
and the time-mean currents.

One of the approaches to estimate K is to relate it to
a single spreading timescale that is a simple function of
basic fluid-dynamic processes, such as baroclinic insta-
bility (Visbeck et al. 1997; Stammer 1998). Although
this approach is tempting, this paper yields little support
of it. It is shown that a lot of information that has direct
influence on TL is hidden in kinematic details of the
turbulence and is related to the coherent fluid structures.
The high-order stochastic models and their randomized
extensions account, to some degree, for the coherent
structures and, therefore, provide a more powerful the-
ory than simple scaling laws.

There are many issues that need further investigation
before implementing the transport models in coarse-grid
GCMs. The physical assumptions (section 1b) of two-
dimensional (geostrophic) flow and of tracer adiabat-
icity can be relaxed by extending the stochastic for-
malism to the vertical dimension and by including sinks
and sources of the tracer. The assumption of the dy-
namical passiveness is more difficult to relax. Further
progress, based on a more detailed analysis of the Eu-
lerian velocity autocorrelation functions, is needed for
more precise estimates of the fading-memory time, u.
Perhaps a randomization of u can improve the model
performance. Also, the stochastic transport theory has
to be extended to incorporate different distributions of
Pu for different values of T (1). Another improvement is
to introduce variable-time intervals for the kinematic
events. Some other issues arising from the several short-
cuts taken here are the following: including nondiagonal
terms in the parameter tensors; including large-scale,
low-frequency variability (i.e., nonstationarity) in the
transport models; examining the nonuniqueness of the
drift correction terms; finding more realistic boundary
condition for motion of the Lagrangian particles; ex-
tending the formalism to account for mixing processes
(e.g., as described by the two-particle dispersion); and
designing ocean measurement strategies for the param-
eter estimates.
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APPENDIX A

Fluid-Dynamic Model
The midlatitude fluid-dynamic ocean circulation is

driven by the asymmetric zonal wind stress:

2p(y 2 L /2)
xt (y) 5 t cos05 [ ]L

p(y 2 L /2)
1 e sin , (A1)6[ ]L

where t0 5 0.04 N m22, L 5 3840 km is the size of
the square basin (with 0 # y # L), and the forcing
asymmetry parameter is e 5 2. The basin bottom is flat,
and there is no-slip lateral boundary condition for the
velocity. The ocean is discretized vertically in three iso-
pycnal layers with depths H1 5 200 m, H2 5 1200 m,
and H3 5 2600 m starting from the top. The ratio of
the density jumps across the layer interfaces is g 5 (r2

2 r1)/(r3 2 r2) 5 2, and the first internal Rossby de-
formation radius is 52 km. The ocean dynamics is QG,
and it operates at large Reynolds number,

UL t 0Re 5 5 , (A2)
n r H bn1 1

where U 5 t0(r1H1Lb)21 is the upper-ocean velocity
scale derived from the Sverdrup balance; b 5 2 3 10211

m21 s21 is the planetary vorticity gradient; and the lat-
eral viscosity is n 5 20 m2 s21. The Re is about 500.
The horizontal grid resolution is uniform with 1025 3
1025 grid points and 3.75-km intervals between them.
In this paper, the presentation is focused on only the
upper and middle isopycnal layers because the Lagrang-
ian properties in the bottom and middle layers are qual-
itatively similar. After the initial spinup process from a
state of rest, the solution equilibrates, and then it is
computed for 5000 days and stored for the analysis. As
the primary evaluation criteria for the transport models
the following properties are analyzed: the fluid-dynam-
ic, Lagrangian, meridional, time-average intergyre
fluxesA1, and the associated large-scale PDFs of the par-
ticle populations.

A1 In general, global and single-basin GCMs are intended to sim-
ulate the large-scale spreading process and meridional fluxes more
than the mesoscale transport properties; therefore, here the former
aspects are emphasized, but the ultimate goal is to create skillful
transport models that operate equally well on all scales.

The flow has the following dynamical properties. In-
stantaneous, upper-ocean circulation has an asymmetric,
double-gyre structure with two WBCs and their asso-
ciated eastward jet extensions and recirculation zones.
The robust asymmetry of the gyres is due to the wind
forcing asymmetry. The eastward jets strongly meander
and occasionally merge (Siegel et al. 2001), therefore
the time-mean, upper-ocean velocity streamfunction ex-
hibits broad eastward flow with a moderately strong,
single eastward jet separating the gyres (Fig. A1a). The
time-mean flow in the deep ocean is relatively weak
except near the subtropical WBC and its eastward jet
extension where it is predominantly anticyclonic (Fig.
A1c). These gross features of the time-mean circulation
are preserved at even higher Re (Siegel et al. 2001). In
the WBCs intensity of the velocity fluctuations (Figs.
A1b,d) is similar to BMB, but in the eastern part of the
basin it is larger by factor of 2; hence it is close to the
observations (Krauss and Böning 1987). The isotropy
of the velocity fluctuations in the interior of the basin
decreases with Re from about 2 (BMB) to more realistic
values of about 1.4 (here), with enhanced meridional
component. All of this suggests that in the larger-Re
regime the eddy variability is more realistic.

The fluid-dynamic fluctuations are intense at all
depths near the main currents, and typical fluctuation
velocities are about 0.5 in the upper and 0.2 m s21 in
the deep ocean (Figs. A1b,d). The fluctuations are sub-
stantially anisotropic away from the main currents. In
the interior of the basin: s22/s11 ø 2; and near the lateral
boundaries (except the western one) the anisotropy is
even larger. The fluctuation properties are qualitatively
similar to those in the regime at lower Re (BMB), but
here the population of coherent eddies is larger and there
are more relatively small-scale features (Siegel et al.
2001).

APPENDIX B

Low-Order Statistical Moments of the
Analytical P(T (1))

The distribution function (38) contains four param-
eters that can be found from its first four statistical mo-
ments (35). Analytical expressions for the moments are
the following:

31 1 cm
M (P) 5 2b , (B1)1 21 1 cm

2 6 2 21 1 c m 1 cm (3 2 4m 1 3m )
2M (P) 5 2b , (B2)2 2 2(1 1 cm )

3 9 2 4 2 3 2 2 31 1 c m 1 3c m (2 2 3m 1 m 1 m ) 1 3cm (1 1 m 2 3m 1 2m )
3M (P) 5 4b , (B3)3 2 3(1 1 cm )
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FIG. A1. (a), (c) The time-mean velocity streamfunction and (b), (d) in the (a), (b) upper and (c), (d) deepÏs 1 s11 22

ocean. Contour intervals: (a) 104 m2 s21, (b) 6.0 cm s21, (c) 0.25 3 104 m2 s21, and (d) 3.0 cm s21.

424b
4 12 2 2 3 4 3 6 2 3 4M (P) 5 [1 1 c m 1 cm (5 2 4m 1 6m 2 8m 1 5m ) 1 c m (5 2 8m 1 6m 2 4m 1 5m )4 2 4(1 1 cm )

2 4 3 41 c m (7 2 4m 2 4m 1 7m )]. (B4)

APPENDIX C

Markov-0 Model

The governing equation of the Markov-0 model is

(0) (0)dx 5 u (x)dt 1 ã (x)dt 1 b (x)dW (t),i i i ij j (C1)

where the random forcing amplitude is related to the
diffusivity coefficient according to

(0) (0)b b 5 Kij jk ik (C2)

and the second rhs term in (C1) is the zeroth drift cor-
rection, which appears due to inhomogeneities of Kik(x)
[superscript (0) is used to indicate the order of the mod-
el]. The ‘‘well-mixed state’’ of the tracer is the situation

when the conditional PDF of the Lagrangian tracer, PL[t,
x | x(0)], is proportional to the Eulerian PDF, PE(t, x).
The Fokker–Planck equation corresponding to the ze-
roth-order Markov model is

2]P ](u P) ](a P) ] 1i i (0) (0)1 1 5 1 b b P . (C3)i j jk1 2]t ]x ]x ]x ]x 2i i i k

In the stationary situation (]P/]t 5 0), when the tracer
is well mixed: PE ; PL ; const. Hence, from (C3) it
follows that

] 1
(0) (0) (0)a 5 b b (C4)i i j jk[ ]]x 2k

(the constant of integration is zero because there is no
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average drift of particles in the homogeneous situation),
and finally with (C2) we obtain

1 ]Kik(0)a 5 . (C5)i 2 ]xk

By substituting (C5) in (C3), one gets the final form of
the Fokker–Planck equation:

]P ]P 1 ] ]P
1 u 5 K . (C6)i ik1 2]t ]x 2 ]x ]xi i k
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