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Clustering of floating tracers in weakly divergent velocity fields
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This work deals with buoyant tracers floating at the ocean surface, where the geostrophic velocity component
is two dimensional and rotational (nondivergent) and the ageostrophic component can contain rotational and
potential (divergent) contributions that are comparable in size. We consider a random kinematic flow model
and study the process of clustering, that is, aggregation of the floating tracer in localized spatial patches. In the
long-time limit and in the cases of strongly and weakly divergent flows, the existing analytical theory predicts
the process of exponential clustering, which is the emergence of spatial singularities containing all the available
tracer. Here we confirm this analytical prediction, in numerical model solutions spanning different combinations
of rotational and potential surface velocity components, and report that exponential clustering persists even
in weakly divergent flows, however at significantly slower rates. For a wide range of parameters, we analyze
not only the exponential clustering but also the other type of tracer aggregation, referred to as fragmentation
clustering, as well as the coarse-graining effects on clustering. For the presented analysis we consider ensembles
of Lagrangian particles and introduce and apply the statistical topography methodology.
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I. INTRODUCTION

In turbulent oceanic and atmospheric flows, the phe-
nomenon of clustering, i.e., spatial aggregation of various
tracers and objects, manifests itself in different physical sit-
uations and on different spatial scales [1–3]. More generally,
clustering processes are studied in marine ecosystems [1], the
formation of clouds [4], porous media [5], palaeontology [6],
cosmology [7], etc. Most relevant to our study are clusterings
of floating debris and plastic litter, e.g., in garbage islands
[8,9], and of oil spills and sargassum [3]. These actively
researched problems are practically important, because of the
environmental concerns due to the ocean pollution, in general,
and due to the adverse effect of positive correlations between
aggregations of pollution and marine life.

Our focus is on clustering of floating tracers at the ocean
surface [10–19]. Since this process is largely driven by the
multiscale and transient surface velocity, we are motivated by
the systematic theoretical study of the clustering in random,
progressively more complicated and realistic kinematic veloc-
ity fields and further in dynamically constrained flows.

At the ocean surface within the mesoscale range, the
dominant, i.e., leading-order, geostrophic velocity can be
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treated as nondivergent (hence purely rotational). The small
ageostrophic first-order corrections are three-dimensional
(3D) motions; hence they are 2D divergent at the surface
[20–25] and can be treated as a combination of divergent (po-
tential) and rotational (nondivergent) components. The latter
is largely responsible for the clustering process [11,26–37].

Some asymptotic theories of clustering, including for the
weakly divergent velocities, have been developed for random
and turbulent kinematic flows [10,11,31,35,36,38–43], but the
actual transitions towards the predicted asymptotic behaviors
remain poorly understood [18], despite their obvious rele-
vance for real geophysical phenomena. The main goal of
this paper is to establish statistical properties of clustering
in random kinematic flows, before the asymptotic states are
clearly reached, and in the Monte Carlo sense for ensembles
of Lagrangian particles.

The paper is organized in the following way. Section II
formulates the problem and outlines the mathematical foun-
dations of the statistical topography to be used. Section III
considers both the kinematic flow model and the numerical
implementation of the clustering analysis. The main results
are given in Sec. IV. A summary and discussion are in Sec. V.

II. PROBLEM FORMULATION

The tracer evolution dynamics at the ocean surface can
be formulated for both passive and floating tracers and the
corresponding dynamical descriptions fundamentally differ,
thus reflecting profoundly different clustering properties. Un-
derstanding these differences is an essential part of the general
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FIG. 1. Density distributions for the purely divergent velocity regime (γ = 1) for t = τ and (a) l = 0.04 and σU = 0.33, (b) l = 0.08
and σU = 0.33, and (c) l = 0.16 and σU = 0.67. The gray square indicates the initial density distribution. The color scale indicates
(nondimensional) values of the tracer density.

fundamental understanding of the clustering process. First,
let us introduce the passive-tracer concentration C(r, t ) and
floating-tracer density ρ(r, t ), which are the main fields of
interest, both varying in space and evolving in time (here r is
the 3D position vector and t is time), subject to a 3D velocity
field u(r, t ). Second, let us discuss differences between C
and ρ and explain the terminology. The passive tracer is
just a marker of fluid (and fluid particles) and its dynamics
is subject to the standard continuity equation for material
tracers; in turn, this equation can be restricted to describe the
evolution of C on the ocean surface. Since our study deals
only with incompressible fluids, i.e., with 3D nondivergent
velocity fields, the concentration C is also incompressible
and conserved on material particles. On the other hand, the
floating tracer is not passive, in the sense that it experiences
the buoyancy force that keeps it floating at the surface;
therefore, it is not a marker of fluid (and material particles),
its dynamics is subject to the continuity equation for the
floating tracer, and its density changes along fluid particle
trajectories due to the surface velocity divergence. The latter
effect can be viewed as compressibility of the floating-tracer
density ρ, which justifies our choice of terminology: “density”

for floating (compressible) tracers versus “concentration” for
passive (incompressible) tracers.

At the ocean surface, the flow velocity can be written as
u(R, 0, t ) = (U(R, t ),w(R, 0, t )), where U and w are the
horizontal and vertical velocity components, respectively, and
R = (x, y) is the 2D coordinate at the surface. The dynamical
equations governing concentration C and density ρ at the
ocean surface (derived in the Appendix) are(

∂

∂t
+ U(R, t )

∂

∂R

)
C(R, t ) = κ�RC(R, t ),

C(R, 0) = C0(R), (1)(
∂

∂t
+ ∂

∂R
U(R, t )

)
ρ(R, t ) = κ�Rρ(R, t ),

ρ(R, 0) = ρ0(R), (2)

where C0(R) and ρ0(R) are the initial concentration and
density distributions, respectively, �R is the 2D Laplacian,
and κ is the diffusivity. For the sake of initial simplicity,
in what follows we will consider the tracer dynamics in an
unbounded domain and for the adiabatic case κ = 0 while
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FIG. 2. Normalized number of particles for the purely divergent velocity regime (γ = 1) for t = τ and (a) l = 0.04 and σU = 0.33,
(b) l = 0.08 and σU = 0.33, and (c) l = 0.16 and σU = 0.67. The gray square indicates the initial density distribution. The color scale indicates
(normalized) number of particles.

recognizing that both of these factors can be important and
should be studied separately.

In what follows the governing equations are nondimen-
sionalized by the specified length scale L∗, timescale t∗, and
density scale ρ∗. The time discretization step for the numerical
random velocity field is taken to be the timescale t∗ = t0, since
the random velocity is taken to be δ correlated in time. The
length scale L∗ is chosen so that the initial area occupied
by the tracer is 4. The spatial discretization step is h0 and
the discretization steps are interdependent h0/t0 = const; we
use h0/t0 = 1. The initial density of the tracer is unity; the
velocity scale is U ∗ = L∗/t∗ and the turbulent diffusion scale
is κ∗ = (L∗)2/t∗.

A. Types of clustering and terminology

For the problem in hand, we discuss (though with widely
different emphases) three types of surface clustering, referred
to as C, D, and L clustering, with their specifics described
further below.

The C-clustering process refers to the passive-tracer con-
centration clustering. Since in the absence of diffusion C is
materially conserved, its Lagrangian values cannot change,

e.g., even when Lagrangian particles aggregate or their den-
sities tend to infinity. Therefore, C clusters can form only
as part of the fragmentation process due to nonuniform flow
advection of the initially inhomogeneous distribution C0(x, y);
in general, this is just an aspect of chaotic stirring [44–47].
Clearly, the adiabatic values of C(x, y, t ) are always bounded
by the minimum and maximum values of C0(x, y). A C
clustering can be described and quantified both locally and
in a coarse-grained sense, i.e., by averaging over spatial bins.
Considering coarse-graining effects is important, because they
are often observed in geophysical applications [43]. Since we
consider only floating particles here, the C clustering is not in
our model, but it might be considered as the fragmentation of
the tracer patch boundary.

The D-clustering process refers to the floating-tracer
density clustering and is so much in the focus of our study
that we also refer to it as simply the clustering process.
Although D clustering is also affected by the fragmentation,
more importantly, it can experience the exponential clustering
process, which is the main subject of our study. Clearly, the
adiabatic values of ρ(x, y, t ) are not bounded by the minimum
and maximum values of ρ0(x, y) and can grow to infinity
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over the area that shrinks to zero; this is the essence of the
exponential clustering. A D clustering can be described and
quantified both locally and in a coarse-grained sense, but
the latter description has subtleties, which we will discuss in
due course. Note that D clustering can happen even in the
absence of C clustering, and the difference between them is
fully due to the profound physical and dynamical differences
between the passive and floating tracers, as reflected in (1)
and (2).

The L-clustering process refers to the clustering of surface
Lagrangian-particle ensembles, without any concern to their
concentration or density values. Clearly, L clustering can
happen even when there is no C clustering, e.g., when the
initial concentration is homogeneous, but the surface velocity
is divergent. Note that L clustering can be fundamentally
described only in a coarse-grained way, as it involves av-
eraging over many Lagrangian particles, i.e., by calculating
their normalized number, and cannot be applied to a single
particle. Since L clustering can be both fragmental, e.g.,
when the initial distribution of particles is inhomogeneous,
and exponential, e.g., when all particles converge to a point,
its coarse graining can be also subtle. Finally, L clustering
and D clustering occur together, but their characteristics are
significantly different. This distinction has profound impli-
cations: The description of a floating-tracer clustering by
simply following Lagrangian particles and detecting their
aggregations is a valid one, but it does not describe the
corresponding floating-tracer density field and has limited
information content.

B. Random velocity fields: Statistical properties

First, we decompose the random surface velocity as

U(R, t ) = γ Up(R, t ) + (1 − γ )Us(R, t ), (3)

where superscripts p and s indicate the divergent, i.e., po-
tential and compressible, and rotational, i.e., solenoidal and
nondivergent, velocity field components, respectively, and
0 � γ � 1 is the nondimensional parameter setting their rel-
ative contributions. Second, we define statistical properties
of the random velocity following [28,35,48]: Both Up(R, t )
and Us(R, t ) are δ-correlated-in-time random fields with
Gaussian, spatially homogeneous, isotropic, and stationary
statistics. For such random fields the spatiotemporal velocity
correlation tensors are

B j
αβ (R′, η) = 〈

U j
α (R, t )U j

β (R + R′, t + η)
〉

=
∫

dk E j
αβ (k, η)eik·R′

, (4)

where k = (kx, ky) is the 2D wave vector such that k = |k|; α

and β stand for x and y, respectively; j stands for either p or
s; R′ is a 2D spatial shift; η is a time lag; and 〈· · · 〉 denotes
ensemble averaging over many velocity field realizations. The
spectral densities are

E p
αβ (k, η) = E p(k, η)

kαkβ

k2
,

Es
αβ (k, η) = Es(k, η)

(
δαβ − kαkβ

k2

)
,

(5)

FIG. 3. Time evolution of the clustering area (decreasing curves)
and mass (increasing curves) corresponding to the threshold value
ρ̄ = 1 and a single velocity realization. The parameters correspond
to those in Fig. 1: (a) red, (b) green, and (c) blue lines. The black
lines represent the asymptotics (22). The dashed lines illustrate the
corresponding solution for γ = 0 (Fig. 4).

where δαβ is the Kronecker delta. The space-time local veloc-
ity correlation tensor is

B j
αβ (0, 0) = 〈

U j
α (R, t )U j

β (R, t )
〉 = 1

2σ 2
U δαβ, (6)

where σ 2
U = Bαα (0, 0) = ∫

dk E (k, 0). Let us introduce the
effective diffusivities [28,35,36]

Dp =
∫ ∞

0
dη

∫
dk k2E p(k, η)

=
∫ ∞

0
dη〈[∇R · U(R, t + η)][∇R · U(R, t )]〉, (7)

Ds =
∫ ∞

0
dη

∫
dk k2Es(k, η)

= 1

2

∫ ∞

0
dη〈[∇ × U(R, t + η)] · [∇ × U(R, t )]〉, (8)

where ∇R · U(R, t ) is the velocity divergence and ∇ ×
U(R, t ) is the velocity curl. The diffusivities arise from the
time-lag-integrated correlation tensor

Beff
kl (r) =

∫ ∞

0
dτBkl (r, τ ), Beff

kl (0) = D0δkl ,

∂

∂ri
Beff

kl (0) = 0 (9)

and its second derivatives

−8
∂2

∂ri∂r j
Beff

kl (0) = Ds(2δklδi j − δkiδl j − δk jδli )

+ Dp(2δklδi j + δkiδl j + δk jδli ). (10)
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FIG. 4. Density distributions for the purely rotational velocity regime (γ = 0) for t = τ and (a) l = 0.04 and σU = 0.33, (b) l = 0.08
and σU = 0.33, and (c) l = 0.16 and σU = 0.67. The gray square indicates the initial density distribution. The color scale indicates
(nondimensional) values of the tracer density.

In combination with the statistical topography methodology,
the diffusivities will be used in the clustering analyses of
Sec. IV.

C. Statistical topography of random fields

A brief description of the statistical topography methodol-
ogy, applied here for a quantitative description of the cluster-
ing process, follows [30,35]. Let the density field ρ(R, t ) be a
random in time process at a fixed point R with a single-point
probability density function (PDF), which is homogeneous in
space but evolving in time. We assume that, from the initial
density distribution, the dynamics generates a population of
clusters, which are localized regions with large density. A
solution corresponding to the log-normal process, which de-
scribes the clustering for a purely divergent velocity field, i.e.,
γ = 1, has the PDF (see, e.g., [30,35])

P(t ; ρ) = 1

2ρ
√

πt/τ
exp

{
− ln2(ρet/τ /ρ0)

4t/τ

}
, (11)

where τ = 1/Dp is the effective diffusion timescale. The
corresponding integral distribution function is

�(t ; ρ) ≡
∫ ρ

0
dρ ′P(t ; ρ ′) = Pr

(
ln2(ρet/τ /ρ0)

2
√

t/τ

)
, (12)

where Pr(z) is the probability integral

Pr(z) = 1√
2π

∫ z

−∞
dx exp

{
−x2

2

}
. (13)

Let us also consider the indicator function

ϕ(R, t ; ρ) = δ(ρ(R, t ) − ρ), (14)

which sifts ρ(R, t ) at given ρ via the Dirac δ function. The
total area of the regions, where ρ exceeds some threshold ρ̄,
is referred to as the cluster area, obtained as

S(t ; ρ̄ ) =
∫

dR θ (ρ(R, t ) − ρ̄) =
∫

dR
∫ ∞

ρ̄

dρ ′ϕ(R, t ; ρ ′),

(15)

063108-5



KONSTANTIN V. KOSHEL et al. PHYSICAL REVIEW E 100, 063108 (2019)

where θ (·) is the Heaviside (step) function. The total mass of
the floating tracer within the cluster area is referred to as the
cluster mass, obtained as

M(t ; ρ̄ ) =
∫

dR ρ(R, t )θ (ρ(R, t ) − ρ̄)

=
∫

dR
∫ ∞

ρ̄

dρ ′ρ ′ϕ(R, t ; ρ ′). (16)

Ensemble averaging (15) and (16) yields

〈S(t ; ρ̄ )〉 =
∫

dR
∫ ∞

ρ̄

dρ ′P(R, t ; ρ ′), (17)

〈M(t ; ρ̄ )〉 =
∫

dR
∫ ∞

ρ̄

dρ ′ρ ′P(R, t ; ρ ′), (18)

because the single-point PDF (11) is completely local, i.e.,
involves no lags in time and shifts in space. The ensemble
averaging of the indicator function (14) yields

P(R, t ; ρ) = 〈δ(ρ(R, t ) − ρ)〉 (19)

and the expressions (17) and (18) become

〈shom(t ; ρ̄ )〉 = 〈θ (ρ(R, t ) − ρ̄ )〉 = P{ρ(R, t ) > ρ̄}

=
∫ ∞

ρ̄

dρ ′P(t ; ρ ′),

〈mhom(t ; ρ̄ )〉 = 1

ρ0

∫ ∞

ρ̄

dρ ′ρ ′P(t ; ρ ′), (20)

where shom(t ; ρ̄ ) and mhom(t ; ρ̄) are, respectively, the specific
cluster area and specific cluster mass, defined by the threshold
ρ̄ [36,48]. Since ρ(R, t ) is a positive-definite field, the clus-
tering happens with probability one, and the corresponding
limits

lim
t→∞〈shom(t ; ρ̄ )〉 → 0, lim

t→∞〈mhom(t ; ρ̄ )〉 → 1

ρ0
〈ρ(t )〉 (21)

assert that the cluster area shrinks to zero, while the cluster
mass incorporates all the available tracer. From (11) and (20)
one can derive the specific functions for the purely divergent
velocity field

〈shom(t, ρ̄ )〉 = Pr

(
ln(ρ0e−Dpt/ρ̄ )√

2Dpt

)
,

〈mhom(t, ρ̄ )〉 = Pr

(
ln(ρ0eDpt/ρ̄ )√

2Dpt

)
,

(22)

where ρ0 is the initial density in the initial subdomain. At
times much larger than the diffusion timescale τ , the follow-
ing approximate estimates can be obtained from (22) and (13),
by using the large-argument asymptotics of the probability
integral [49]:

〈shom(t, ρ̄ )〉 = P{ρ(R, t ) > ρ̄} ≈
√

ρ0

πρ̄Dpt
e−Dpt/4,

〈mhom(t, ρ̄ )〉/ρ0 ≈ 1 −
√

ρ̄

πρ0Dpt
e−Dpt/4. (23)

These relations describe the exponential clustering process,
which happens with probability one. The single-point PDF,
cluster area, and cluster mass conveniently describe this pro-
cess, and together with their two-point extensions [36] they

FIG. 5. Clustering area and mass for the purely nondivergent
velocity regime (γ = 0) and for a single flow realization. The
parameters are as in Fig. 4(c) and the curves correspond to ρ̄ = 1
(black), ρ̄ = 2 (blue), ρ̄ = 4 (green), and ρ̄ = 8 (red). The thin black
curve corresponds to the asymptotic theory (22) and shows clearly
the diffusion timescale.

are used further below for analysis of clustering in weakly
divergent velocity fields.

We also employ the concept of a typical realization curve.
Given a random process z(t ), this curve is defined as the
median of the integral distribution function (12) and found as
the solution z∗(t ) of the equation

�(t ; z∗(t )) =
∫ z∗(t )

0
dz′P(t ; z′) = 1

2
, (24)

which implies that for any time t , P[z(t ) > z∗(t )] = P[z(t ) <

z∗(t )] = 1
2 . The typical realization curve of the distance be-

tween two particles [35] is

l∗(t ) = exp
{

1
4 (Ds − Dp)t

}
. (25)

When Ds < Dp, the average distance between the particles, as
given by l∗(t ), attenuates exponentially, in accord with the ex-
ponential clustering process. When Ds > Dp, there is no expo-
nential clustering, at least for the times such that the constraint

1

4
Dst � ln

lcorr

l0
(26)

holds [30], where l0 is the average initial distance between
the particles and lcorr is the spatial correlation radius of the
velocity field (see Sec. III).

The statistical topography methodology offers a variety of
useful characteristics such as the average contour length of the
isoline corresponding to ρ(R, t ) = ρ̄, which is estimated as

〈L(t, ρ)〉 = L0eDst , (27)

where L0 is its initial contour length [38,40]. In the
purely nondivergent velocity field L(t, ρ) grows exponentially
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FIG. 6. Density distribution for γ = 0.5, t = 4τ , and (a) l = 0.04 and σU = 0.33, (b) l = 0.08 and σU = 0.67, and (c) l = 0.16 and
σU = 0.67. The rest is as in Fig. 1.

because the tracer patch is continuously stretched and fila-
mented. We refer to this process as tracer fragmentation. In
a weakly divergent velocity field, the tracer fragmentation
affects and modulates the exponential clustering process; we
address this issue later on.

III. KINEMATIC VELOCITY MODEL

In this section we introduce a kinematic model of random
velocity field with prescribed correlation tensor and then study
clustering in the model solutions.

A. Model formulation

Following [48,50–52], we use a spectral representation of
the velocity field

U p
β (R, t ) = σU

∫
dk[a(k, t ) + ib(k, t )]

kβ

k
exp(ik · R),

U s
x (R, t ) = σU

∫
dk[a(k, t ) + ib(k, t )]

ky

k
exp(ik · R),

U s
y (R, t ) = −σU

∫
dk[a(k, t ) + ib(k, t )]

kx

k
exp(ik · R),

(28)

whereσU is the standard deviation of the velocity, index β

stands for either x or y, and a(k, t ) and b(k, t ) are random,
Gaussian, δ-correlated-in-time spectral coefficients such that

〈a(k, t )〉 = 〈b(k, t )〉 = 〈a(k, t )b(k′, t ′)〉 = 0,

〈a(k, t )a(k′, t ′)〉 = 〈b(k, t )b(k′, t ′)〉
= E (k)δ(k − k′)δ(t − t ′). (29)

The velocity field (28) corresponds to the correlation tensor
(4); in the physical space it is obtained by the inverse Fourier
transform with random phase. The spectral density is

E (k, l ) = 1

2π

l4

4
k2 exp

{
−1

2
k2l2

}
(30)

and the velocity is characterized by the isotropic spatial corre-
lation radius lcorr. The effective diffusivities (7) and (8) ensue
from (30) and (3) by integration (7) and (8):

Ds = (1 − γ )2D0, Dp = γ 2D0, D0 = σ 2
U

l2
t0. (31)
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FIG. 7. Evolution of the clustering area and mass (ρ̄ = 1) for a single realization, γ = 0.5, and (a) l = 0.04 and σU = 0.33 (red curve),
l = 0.08 and σU = 0.67 (green curve), and l = 0.16 and σU = 0.67 (blue curve). The black lines represent the asymptotics; the dashed lines
correspond to the threshold value ρ̄ = 4. (b) Density distribution for l = 0.04, σU = 0.33, and time t = 18τ . The other parameters are as in
Fig. 6.

B. Numerical implementation

Given uniformly gridded velocity fields, Eqs. (1) and (2)
are solved numerically along with a numerical simulation
of the ensemble of advected Lagrangian particles [28,46,52–
55]. Recall that we set κ = 0, so the governing equations are
first-order linear PDEs that can be solved by the method of
characteristics [28,46]. Evolution of each Lagrangian particle
and its density and concentration are governed by

dR
dt

= U(R, t ), R(0) = ξ,

dρ(t ; ξ)

dt
= −∂U(R, t )

∂R
ρ(t ; ξ), ρ(0; ξ) = ρ0(ξ),

dC(t ; ξ)

dt
= 0, C(0; ξ) = C0(ξ),

(32)

where ξ is the initial position of the trajectory. These equations
are integrated in time using the standard Euler-Itô scheme
[56], and the Eulerian density and concentration fields are
found on the trajectories

ρ(R, t ) = ρ(t ) = ρ(t ; ξ(R; t )),

C(R, t ) = C(t ) = C(t ; ξ(R; t )). (33)

In each grid cell within the initial tracer patch, we uni-
formly seed 900 Lagrangian particles and solve for them the
governing equations. Since the framework is Lagrangian, the
obtained fields are better resolved in the high-particle-density
areas. Eventually, in the purely rotational velocity field, the
number of particles becomes too small to resolve properly
the fine structure of the tracer patch boundary (similar issues
are discussed in [27,41,53,54]); in fact, since the boundary is
known to become fractal, the number of particles for resolving

it tends to infinity. However, our main goal is to study the
feasibility of clustering, not the associated fractal dimension.

We found that, in the immediate vicinity of clusters, in
divergent velocity fields, a large number of particles with large
density values aggregate; hence we argue that the exponential
clustering is robustly captured and does not qualitatively
depend on the threshold value ρ̄. In the emerging areas with
a low concentration of particles, the errors of the coarse-
grained density estimates are high, but we focus not on the
Lagrangian-particle density values but rather on the fact that
in these areas these densities are clearly small. Moreover,
we quantify the exponential clustering with the Monte Carlo
approach and the integral cluster area and mass character-
istics, which are independent of the structure and number
of individual clusters: From 200 × 200 × 900 = 3.6 × 107

particles, more than 99% aggregate in clusters, which ensures
the statistical confidence. Finally, we consider a finite tracer
patch in an open domain. Also, we assume that the scales
at which the exponential clustering occurs are much smaller
than the scales at which the domain boundaries start playing
an important role; therefore, the observed phenomenology is
not affected by the boundary conditions.

IV. NUMERICAL RESULTS

In this section we focus on modeling the nondiffusive
clustering in the implemented double-periodic domain (|x| �
10, |y| � 10) with the uniform numerical grid 20482. The ini-
tial uniform distribution of Lagrangian particles is in the sub-
domain (|x| � 1, |y| � 1), and there are 900 particles placed
initially in each grid cell. Results for the strongly and weakly
divergent velocity regimes are discussed and compared.

The random velocity field within each grid cell is treated as
piecewise constant, which ensures that it has discontinuities
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FIG. 8. Density distributions for γ = 0.2, t = 25τ , and (a) l = 0.04 and σU = 0.33, (b) l = 0.08 and σU = 0.67, and (c) l = 0.16 and
σU = 1.33. The other parameters are as in Fig. 6.

responsible for the white-noise stochastic process [48,52].
The coarse-grained tracer density and the normalized number,
i.e., number in the bin divided by the bin area, of particles are
found by averaging the corresponding Lagrangian statistics
over finite-bin coarse-graining areas, and for the bin size we
mostly use the numerical grid interval. Because each tracer
conserves its mass, the corresponding cluster area experiences
velocity divergence and scales as ρ0/ρ(t ).

A. Purely divergent and nondivergent flow regimes

First, let us consider the limiting case of purely divergent
velocity (γ = 1). The evolution of the particles is computed
over the diffusion timescale τ = 1/Dp and for different values

of the spatial correlation radius lcorr (Figs. 1 and 2). Clustering
is evident in the field of the normalized number of particles
(Fig. 2), but it is much more pronounced in the density field
(Fig. 1). Figure 3 shows that the clustering area and mass
are very close to the asymptotic exponential prediction, even
in individual realizations. We also find that the clustering
depends weakly on the spatial correlation radius, provided the
time is scaled diffusively, i.e., by τ .

Let us now compare clustering in the purely divergent
(γ = 1) and nondivergent (γ = 0) velocity regimes (Figs. 4
and 5). In the latter regime there is almost no difference
between clustering in the density field and in the field of
the normalized number of particles, because the density is
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FIG. 9. Evolution of the clustering area and mass (ρ̄ = 1) for a single realization, γ = 0.2, and (a) l = 0.04 and σU = 0.33 (red curve),
l = 0.08 and σU = 0.67 (green curve), and l = 0.16 and σU = 0.67 (blue curve). The black lines represent the asymptotics; the dashed lines
correspond to the threshold value ρ̄ = 4. (b) Density distribution for l = 0.04 and σU = 0.33, and time t = 18τ . The other parameters are as
in Fig. 6.

materially conserved and particles do not aggregate. Further-
more, in this regime the asymptotic theory (25) predicts no
exponential clustering at all. Instead, both fields are affected
by stirring; as a result, they develop clusters due to the
fragmentation process, which is fundamentally different from
the exponential clustering. These clusters are transient and
never statistically significantly aggregate density and parti-
cles, because this is just the chaotic stirring process.1 As a
result, the density excess over the threshold value is moderate:
The number of grid cells with ρ(R, τ ) > 2 is relatively small.
Moreover, the maximum density value (about 5 after t =
3τ ) is significantly smaller than in the purely divergent case
(where it is more than 100 at t = τ ). Strictly speaking, these
high-density values do not signify exponential clustering in
the sense of estimates (25) and (27), but reflect the fragmen-
tation clustering. Figures 3 and 5 show the clustering area and
mass based on ρ̄ = 1: The cluster mass decreases, but less
so for large correlation radius (lcorr = 0.16), because of the
slowed down fragmentation process. The clusters are typically
small and uniformly distributed and there are no clusters on
the scale of lcorr. We hypothesize that fragmentation clustering
can dominate over exponential clustering in the presence of

1We admit that the presence of dynamical constraints on the
velocity field can significantly alter this type of clustering and lead
to anomalously large values, provided the velocity field contains
coherent structures, such as vortices and jets; investigating such
scenarios is beyond the scope of the present paper.

diffusion (κ 
= 0), but this analysis is beyond the scope of the
paper.

B. Weakly divergent regime

Let us now consider a more realistic flow regime with equal
contributions of the rotational and divergent components, γ =
0.5 (Fig. 6). The asymptotic estimate (25) still predicts no
clustering; however, we found that the clustering not only
occurs but is also very efficient. Overall, the clusters develop
at a much slower rate (Fig. 7), relative to the purely divergent
flow regime, but exponential clustering eventually dominates.
The clustering slowdown takes place for all lcorr considered.

Let us now consider weakly divergent flow regimes with
γ = 0.2 (Fig. 8) and also γ = 0.1, to illustrate the trends.
Because of the strong rotational component, the particles
are more quickly dispersed away from their initial positions,
and hence we have to increase the model domain. Although
the asymptotic theory predicts no exponential clustering, we
find that it still takes place, but with a significantly slower
rate. Figure 9(a) shows that initial clustering is faster due
to the fragmentation process, but then it slows down, so
the exponential clustering behavior is reached at about t =
25τ . Stirring induced by the rotational velocity component
is significant, and in accord with this we have Ds ≈ 16Dp;
concurrently, the clustering process evolves over the rotational
diffusion timescale Ds, which is much longer (Fig. 9). Clusters
on the scale lcorr do not emerge due to the shearing effect
of the rotational component, which accelerates fragmentation
of the clusters. Exponential clustering still occurs, even for
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FIG. 10. Density distributions for γ = 0.1, t = 25τ , and (a) l = 0.04 and σU = 0.33, (b) l = 0.08 and σU = 0.67, and (c) l = 0.16 and
σU = 1.33. The other parameters are as in Fig. 6.

γ = 0.1 (Figs. 10 and 11), but with progressively slower rates.
The dependence on lcorr is similar to the γ = 0.2 regime, as
manifested by the cluster area and mass curves.

Let us now discuss the effects of coarse graining on the
fields of interest. If it is too coarse, it may appear that
all particles within the averaging-bin region are clustered
while the corresponding cluster mass is underpredicted (see
Fig. 9, where the clusters are red). To explain this, let us
consider in detail the regime γ = 0.2 and refine its spatial
averaging by 100 times in each spatial direction (Fig. 12):
The fine structure of clusters, otherwise smeared out by
the coarse graining, becomes apparent. Hence, within each

coarse-grained cluster there are in fact many finer-scale clus-
ters revealed, even for a relatively long time. To summarize,
some caution is required to interpret coarse-grained fields, and
in this regard statistical topography diagnostics are robust and
useful.

V. CONCLUSION

This study has dealt with clustering, i.e., localized aggrega-
tion, of floating tracers and material objects, such as plastic,
microplastic, oil spills, and sargassum, at the ocean surface.
The main motivation was to address at the fundamental level
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FIG. 11. Evolution of the clustering area and mass (ρ̄ = 1) for a single realization, γ = 0.1, and (a) l = 0.04 and σU = 0.33 (red curve),
l = 0.08 and σU = 0.67 (green curve), and l = 0.16 and σU = 0.67 (blue curve). The black lines represent the asymptotics; the dashed lines
correspond to the threshold value ρ̄ = 4. (b) Density distribution for l = 0.04 and σU = 0.33, and time t = 18τ . The other parameters are as
in Fig. 6.

FIG. 12. Effect of coarse graining on the fields of the normalized number of particles, shown here for γ = 0.2, l = 0.04, σU = 0.33, and
(a) and (b) t = 0.422τ and (c) and (d) t = 2.322τ : (a) and (c) close-up of the subdomain from Fig. 8 and (b) and (d) same as (a) and (c) but
with 100 times finer coarse-graining resolution.

063108-12



CLUSTERING OF FLOATING TRACERS IN WEAKLY … PHYSICAL REVIEW E 100, 063108 (2019)

growing environmental concerns on the adverse effects of
floating pollution on marine life.

As a starting point, we noted that passive and floating, i.e.,
buoyant, tracers evolve in fundamentally different ways, be-
cause the passive-tracer concentration is materially conserved,
i.e., remains constant on the Lagrangian particles, whereas the
floating-tracer density (we use this term to distinguish it from
the passive-tracer concentration) changes on the Lagrangian
particles due to the compressibility effect induced by the
surface flow divergence; we referred to these processes as
C and D clustering, respectively. Another characteristic is
the normalized number of particles per unit area, which can
also experience different types of clustering; we refer to
this process as L clustering. Our main focus was on the D
clustering, but some comparisons with L clustering were made
for clarity, to show that these processes have profoundly
different characteristics. The C clustering can form only as
part of the fragmentation clustering process, which is due
to nonuniform flow advection of the initially inhomogeneous
distribution of concentration; in general, this is just an aspect
of chaotic stirring. For the D and L clustering, in addition to
the fragmentation process, there is also exponential clustering,
which is the main subject of this paper. The process is char-
acterized by emergence of a set of localized (and eventually
singular) clusters with ever-shrinking area that eventually
collects all the available tracer.

We represented the tracer by ensembles of Lagrangian
particles and considered their evolution in random kine-
matic velocity fields. The goal was to establish and interpret
the clustering properties, as induced by 2D velocity fields
consisting of divergent (potential) and rotational (nondiver-
gent) flow components, which represent the geostrophic and
ageostrophic parts of mesoscale eddy field. For divergent
velocity fields, the existing asymptotic theories [29,35,41–
43] predict exponential-in-time clustering, which depends
on the velocity correlation length scale. Estimates of the
fractal dimension associated with the asymptotic clustering
were obtained in Refs. [31,41–43]. All these theories predict
asymptotic states and do not describe the transition to these
states at finite times. In this paper we studied the clustering
process at finite times, in weakly divergent velocity fields, and
by means of the statistical topography methodology.

We demonstrated that, despite the asymptotic predictions
that exponential clustering occurs only for velocity fields with
the divergent component larger than the rotational one, the
exponential clustering is still feasible for weakly divergent
velocity fields. However, the rate of clustering is significantly
slowed down, because it becomes controlled by the rotational
flow component and its associated diffusion timescale. We
also found that in weakly divergent flow regimes, there is
also fragmentation clustering, which is due to chaotic stir-
ring of inhomogeneous tracer distributions by inhomogeneous
advection that depends on the velocity correlation length
scale.

Future research extensions based on the presented results
may consider additional effects of large-scale flows, explicit
eddy diffusion, the finite lifetime of a tracer, and inertial
effects due to the buoyancy and finite size of floating objects.
Including finite time correlations in the kinematic flow model

and considering dynamically constrained and progressively
more realistic flows are also obvious avenues for new ad-
vances on the clustering problem.
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APPENDIX

Given the acting 3D velocity field u = (u, v,w), the
continuity equation for the passive-tracer concentration
C3D(x, y, z, t ) is

∂C3D

∂t
+ ∂ (uC3D)

∂x
+ ∂ (vC3D)

∂y
+ ∂ (wC3D)

∂z
= 0.

Let us restrict our dynamical description to the 2D sur-
face of the ocean and assume the rigid-lid approximation
w(x, y, 0, t ) = 0, with the surface velocity expressed as U =
(U,V ). In this case, the 2D governing equation for the surface
concentration C(x, y, t ) = C3D(x, y, 0, t ) can be written as

∂C

∂t
+ U · ∇C + C∇ · U + C

∂w

∂z

∣∣∣∣
z=0

= 0.

Now let us invoke the incompressible fluid density continuity
equation ∇ · u = 0 and express

∂w

∂z

∣∣∣∣
z=0

= −∇ · U.

By taking this into account, the governing equation for the
evolution of the passive-tracer concentration on the ocean
surface becomes

∂C

∂t
+ U · ∇C = 0.

Now let us derive a similar equation for the floating-tracer
density ρ by writing the standard continuity equation(

∂

∂t
+ ∂

∂r

)
u(r, t )ρ(r, t ) = 0.

Let the floating tracer density be in the form ρ(r, t ) =
ρ(R, t )δ(z), where δ(z) is the Dirac delta. The equation means
that all the density is constrained at the surface z = 0. In

063108-13



KONSTANTIN V. KOSHEL et al. PHYSICAL REVIEW E 100, 063108 (2019)

addition, u(r) = (U(r),w(r)) and r = (R, z), and thus

(
∂

∂t
+ ∂

∂r

)
u(r, t )ρ(R, t )δ(z) = 0.

Scalar multiplying yields

δ(z)

(
∂

∂t
+ ∂

∂R

)
U(r, t )ρ(R, t )

+δ(z)

(
∂

∂t

)
w(r, t )ρ(R, t )

+δ(z)
∂

∂z
w(r, t )ρ(R, t )

+w(r, t )ρ(R, t )
∂

∂z
δ(z) = 0. (A1)

Integrating over z and taking into account the δ-function
property, one obtains(

∂

∂t
+ ∂

∂R

)
U(r, t )ρ(R, t )

+
(

∂

∂t

)
w(R, 0, t )ρ(R, t )

+ρ(R, t )
∂

∂z
w(R, 0, t )

−ρ(R, t )
∂

∂z
w(R, 0, t ) = 0. (A2)

With w(R, 0, t ) = 0, one arrives at
∂ρ(R, t )

∂t
+ U(r, t ) · ∇ρ(R, t ) + ρ(R, t )∇ · U(r, t ) = 0.

Note that the last term, which represents density compression
by converging velocity, does not have its counterpart in the
governing equation for C.
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