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Barotropic, wind-driven circulation in a small basin 

by S. P. Meacham 1 and P. S. Berloff 1 

ABSTRACT 
We study the asymptotic behavior (large time) of a simple, wind-driven, barotropic ocean model, 

described by a nonlinear partial differential equation with two spatial dimensions. Considered as a 
dynamical system, this model has an infinite-dimensional phase space. After discretization, the 
equivalent numerical model has a phase space of finite but large dimension. We find that for a 
considerable range of friction, the asymptotic states are low-dimensional attractors. We describe the 
changes in the structure of these asymptotic attractors as a function of the eddy viscosity of the 
model. A variety of different types of attractor are seen, with chaotic attractors predominating at 
higher Reynolds numbers. As the Reynolds number is increased, we observe a slow increase in the 
dimension of the chaotic attractors. Using an energy analysis, we examine the nature of the instability 
responsible for the Hopf bifurcation that initiates the transition from asymptotically steady states to 
time-dependent states. 

1. Introduction 

In this paper, we revisit a central problem in oceanography: the way in which the wind 
drives the flow in an ocean basin as exemplified by a wind-driven barotropic circulation in 
a rectangular basin. The basic theory of this phenomenon is now a subject covered in most 
dynamical oceanography curricula, yet many aspects of the dynamics of the barotropic 
circulation remain to be clarified and these dynamics are currently an active area of 
research (e.g. Ierley, 1987; Cessi et al., 1990; Cessi and Ierley, 1995; Ierley and Sheremet, 
1995; Jiang et al., 1995; Speich et al., 1995; Kamenkovich et al., 1995; Sheremet et al., 
1995). Here we explore some of the possible time-dependent solutions of a barotropic 
circulation problem, exposing, in the process, the existence, for identical values of the 
control parameters, of multiple dynamical regimes, a result that is foreshadowed by the 
existence of multiple steady solutions noted by Ierley and Sheremet (1995), Cessi and 
Ierley (1995) and Speich et al. (1995). 

The wind-driven circulations in “small” and “large” basins have different stability 
properties (Meacham and Berloff, 1997). In basins with a sufficiently large meridional 
extent, the onset of instability, as the Reynolds number is decreased, is associated with a 
western boundary current instabilty (WBCI) of the sort investigated by Ierley and Young 
(1991). When the meridional extent of the basin is too small, the preferred instability is 
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instead one associated with part of the flow lying downstream of the main recirculation 
gyre (an “interior instability” or II). Ierley and Young looked at the linear instability of an 
infinitely long Munk boundary layer flow and found that instability first occurred at a 
critical wavelength, X, of about 18.7&,, where SW is the dimensional Munk boundary layer 
thickness at the onset of instability for a given wind-stress curl. For a SW of 26 km, this 
wavelength is about 490 km. Meacham and Berloff (1997) found that, in basins with 
meridional extents less than about twice this scale, the interior instability was preferred. We 
therefore distinguish between large basins, those with meridional extents appreciably 
greater than 2X,, and small basins, those with meridional extents smaller than 2X,. This is a 
relative measure, since the stability threshold depends on the strength and geometry of the 
wind-stress curl, and the boundary is fuzzy. When the meridional extent is comparable to 
2X,, the onset of instability can be associated with either the WBCI or the II, depending on 
the strength of the forcing. The work described in this paper is motivated by the nature of 
flows in basins like the Black Sea and we therefore use a basin in the “small” regime. 

It is widely accepted that the flow in most ocean basins is turbulent over a broad range of 
spatial scales. At scales larger than a few kilometers, the paradigm for this is geostrophic 
turbulence (Rhines, 1979). The turbulent nature of the wind-driven circulation in small 
basins is vividly demonstrated by satellite (Oguz et al., 1992) and hydrographic (Oguz et 
al., 1993, 1994) data from the Black Sea. Numerical simulations of the same basin show a 
rich field of mesoscale eddies (Fig. 1 and Meacham, 1997). 

At first sight, this turbulent flow looks rather complicated. However, on closer examina- 
tion some suggestion of structure can be detected. For example in both observations and 
numerical simulations of the Black Sea, there seem to be some preferred locations at which 
eddies form more often. Repetitive patterns can be seen in the life cycles of some of the 
eddies and in the larger scale organization of the basin-wide flow. A quasi-permanent, 
small, strong gyre persists in the southwest of the basin, though its position fluctuates. 

A lack of predictability in certain types of deterministic systems was explicitly 
recognized by Lorenz (1963). He further provided an elegant model which served to 
demonstrate that some types of chaotic motion may also contain a geometric simplicity in 
the form of low-dimensional objects-fractal attractors-that the motion asymptotically 
approaches when viewed in a dynamical phase space. 

Ruelle and Takens (1971a,b; 1976) made the suggestion that the transition to turbulence 
in some flows might be explicable in terms of the successive bifurcations of a relatively 
low-dimensional dynamical system. A number of people have speculated that certain types 
of apparently disordered flow might in fact be “organized” by being constrained to lie 
close to a low-dimensional manifold embedded in the much larger phase space of the 
system. Examples of this include turbulent Taylor-Couette flow (e.g. Brandstater and 
Swinney, 1987) and the chaotic regime of the Belousov-Zhaboutinski reaction (Hudson 
and Mankin, 1981; Simoyi et al., 1982; Roux et al., 1983) (an example of “chemical 
turbulence”). In both of these cases, investigators have found evidence of low-dimensional 
dynamics, including chaotic motion on a low-dimensional strange attractor, in laboratory 
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Figure 1. Snapshot of a numerical simulation of flow in the Black Sea showing velocity vectors at 
30 m. The model is based on the GFDL-MOM model with 20 levels in the vertical and is forced by 
seasonally varying wind stress and surface heat fluxes. Note the strong Rim Current, the strong 
southwestern recirculation and the many mesoscale eddies. 

experiments. In several experiments with Rayleigh-Benard convection, Libchaber and his 
colleagues (e.g. Libchaber and Maurer, 1982; Libchaber et al., 1982) have found a variety 
of bifurcations consonant with low-dimensional behavior. 

Rigorous proofs of the existence of low-dimensional asymptotic attractors for physical 
systems described by the Navier-Stokes equations are difficult to obtain and the few that 
exist assume rather restrictive conditions (e.g. Temam, 1995). Progress in this direction is 
reviewed by Robinson (1995). As far as the authors are aware, there is no formal proof that 
the steadily forced, dissipative barotropic flow problem in a rectangular basin approaches a 
finite-dimensional attractor. The work of Lions et al. (1992) goes a considerable way 
toward proving this for steadily forced flows governed by a version of the baroclinic 
primitive equations. Where formal bounds on attractor dimension can be obtained, they 
serve to prove the finite-dimensionality of the flow rather than to estimate the true 
dimension of the attractor. The formal bounds on attractor dimension tend to be very large. 
For example, Doering and Gibbon (1995) demonstrate that, in a periodic box, the upper 
bound on the dimension of the attractor for the two-dimensional Navier-Stokes equations is 
comparable, except for a logarithmic factor, to what one would estimate from taking the 
square of the ratio of the box-dimension to the dissipation scale. If this is applied to the 
circulation model that we discuss below, then, over the parameter range in which we find 
attractors with dimensions less than 3, the predicted upper bound is 0( 104) - 0( 105). 
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The results cited in Robinson (1995), the experimental results of Brandstater et al. 
(1983), Brandstater and Swinney (1987), Simoyi et al. (1982), Roux et al. (1983) and many 
others, together with the work on the steady states of the barotropic circulation by Ierley 
and Sheremet (1995) and Cessi and Ierley (1995), all suggest that it may be possible to find 
finite-dimensional attractors of the barotropic circulation problem using an empirical 
approach. This is what we attempt here. A similar approach has been applied to geophysical 
problems by Ghil and his collaborators, e.g. Jiang et al. (1995), Speich et al. (1995). 

In this study, we examine the behavior of a highly simplified numerical model of flow in 
a small basin. We adopt the paradigm of a complicated, autonomous, dynamical system 
with state X that evolves in time according to 

x = F(X; v), (1) 

and with trajectories X(t) that depend on the choice of initial condition X(0) and a set of 
control parameters Y. In this study, the state vector, X, consists of the vorticity at all of the 
grid-points in a numerical model of the barotropic wind-forced circulation in a small basin 
and has a high dimension. The model contains a number of parameters; however, for much 
of this study, we fix all but one of them and vary only the value of the horizontal eddy 
viscosity u. Our objective will be to try to understand how the structure of the phase space 
of (1) varies as we change the control parameter u. In particular, we focus on how the 
natures of the attractors present in this phase space change as we vary v. Our purpose here 
is not to explore the sensitivity of the model to the strength of friction per se but to gain 
some idea of the range in Reynolds number over which the model manifests low- 
dimensional behavior and the nature of this behavior. An alternative way to modify the 
Reynolds number would be to modify the strength of the forcing, keeping friction fixed. 
This might be expected to produce similar though not identical results. (The strength of the 
wind stress and the strength of mixing do not enter the equations of motion in quite the 
same way so the results will not be the same but a similar increase in the strength and hence 
nonlinearity of the circulation can be achieved either by reducing the resistance to flow, for 
a given level of forcing, or by increasing the strength of the driving, for a fixed value of 
friction.) 

Our expectation is that, for some range of Reynolds number, when the model is driven 
by a steady wind stress, the asymptotic state of the flow in this large-dimensional system 
may be determined by a limited number of low-dimensional attractors in the system’s 
high-dimensional phase space. If these attractors have a fairly simple structure, they will 
correspond to a degree of organization in the observed physical flow and provide a simple 
way of representing the evolution of the flow, even when, physically, that flow looks rather 
complicated. At levels of friction low enough to be oceanographically relevant, we might 
anticipate that some of the asymptotic attractors of the system will be chaotic, nevertheless 
if their dimension is low, then the chaotic motion of the model is much simpler than would 
be the case if the probability density function of the turbulent flow were spread through a 
large-dimensional subspace of the high-dimensional phase space. 
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If a similar paradigm can be applied to the real ocean these ideas might be of use in 
constructing flow models with enhanced predictability (at least in a probabilistic sense). 
However, that is a rather ambitious leap. This paper is limited to statements about the 
behavior of general circulation models; the relation between GCMs and the real ocean is a 
much deeper topic. 

When friction is sufficiently large, the response to steady forcing will be a steady 
circulation. When friction is sufficiently small, we anticipate a flow that exhibits spatio- 
temporal chaos. It is the path from the first to the second that we wish to explore and map 
out. Interesting points en route should be: the transition from steady to time-dependent 
flow, the onset of temporal chaos, and the transition to spatio-temporal chaos. 

With these considerations in mind, the goals of this work can be summarized by the 
questions: when is the behavior of a large-dimensional ocean model dominated by 
low-dimensional dynamics? And, what is the nature of those dynamics? Only limited 
answers will be given here and only in the context of a single model. 

Modeling wind-driven barotropicJlow in a basin 

In large ocean basins, a dominant feature of the upper ocean circulation is a strong, 
narrow current along the western boundary. Steady linear models of the wind-driven 
circulation, developed by Stommel (1948) and Munk (1950), were able to produce such a 
feature in the form of a frictional boundary layer. This layer allows the excess potential 
vorticity picked up by the fluid parcels as they move through the Sverdrup interior to 
diffuse into the boundary so that they can return to the interior of the circulation and repeat 
their progress around the basin. On a P-plane, linear frictional barotropic models of flows 
in rectangular basins with edges parallel to the geographical coordinate axes yield 
streamlines that are symmetric about the midlatitude line of the basin and consist of a 
single dominant cell, the center (i.e. the pressure extremum) of which lies to the west of the 
center of the basin. The flow along the western boundary is stronger than that along the 
eastern boundary, with the boundary layer character of the western boundary current 
increasing as friction is reduced. A second type of model of fundamental importance to 
circulation problems is the inertial circulation model of Fofonoff (1954). In this, forcing 
and dissipation are omitted while nonlinearity is retained. Several free solutions are 
possible, the simplest of which is a single cell that is symmetric about the midlongitude line 
of the basin and which has a center that is displaced toward the northern or southern edge of 
the basin depending on whether the cell is anticyclonic or cyclonic. Perturbing the linear 
viscous models with weak nonlinearity results in a meridional displacement of the center of 
the cell (Munk et al., 1950) while perturbing the nonlinear model with friction moves the 
center of the basin-wide vortex westward. Thus in some sense the linear viscous models 
and the free nonlinear model of barotropic flow in a rectangular basin appear to lie at the 
ends of a continuum. The circulation in a real ocean is, of course, both unsteady and 
unsteadily forced, and is affected by both stratification and topography. However, if one 
were to smooth the forcing and construct a steady, flat-bottomed, barotropic model, that 
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included both frictional and inertial effects, then the parameters of the model would put it 
somewhere in the middle of this continuum. Following further work on the nature of 
nonlinear boundary layers by Chamey (1955) and Morgan (1956), Moore (1963) proposed 
a rather elegant, steady barotropic model that included both frictional and inertial effects. 
In this model the northern and southern boundaries are not rigid but are assumed to 
coincide with latitude lines along which the wind stress curl goes to zero, and free slip 
boundary conditions are applied there. An asymptotic analysis yields a standing, spatially 
decaying Rossby wave in the region where the western boundary current leaves the 
western boundary and the flow returns to the interior of the domain. When the flow is 
strongly nonlinear, not all of the excess vorticity, picked up as fluid parcels move through 
the interior Sverdrup flow, can be removed as the parcels transit the western boundary 
current. Pedlosky (1987) suggests that the dynamical role of this standing Rossby wave is 
to provide the returning fluid parcels greater opportunity to diffuse their excess potential 
vorticity to the boundary of the domain so that they can reenter the interior circulation with 
potential vorticities appropriate to a (statistically) steady circulation. Il’in and Kamenko- 
vitch (1964) showed that while a decaying Rossby wave can exist next to a free zonal 
boundary for a wide range of flow intensities, when the zonal boundary is rigid, the 
decaying Rossby wave can only exist when the flow is sufficiently weak. (For a discussion, 
see Cessi et al., 1990 and Ierley, 1987.) 

In the presence of a rigid zonal boundary, the need to dissipate more potential vorticity 
than a simple inertio-viscous boundary layer can handle leads to the formation of a 
recirculation gyre in the southwest comer of a cyclonic circulation (northwest for an 
anticyclonic circulation). This enhances the transport in the southern (northern) part of the 
western boundary layer and augments the destruction of excess potential vorticity there 
(Ierley, 1987; Cessi et al., 1990). In the work we consider here, in which we treat a small 
basin, of a size roughly comparable to the Black Sea, with rigid boundaries, such a 
recirculation gyre will be a prominent feature. 

Bryan (1963) made a numerical study of a barotropic circulation subject to slightly 
different boundary conditions than those used here. In it, he established the following 
general sequence, since confirmed by numerous other models. 

- At low Reynolds numbers, the flow in the basin is weak, almost linear and steady. 
Streamlines are roughly symmetric about the midlatitude line of the basin. The 
meridional flow is intensified toward the western boundary. 

- As the Reynolds number is increased, the asymptotic solution obtained by integrat- 
ing from a resting ocean remains steady but is increasingly nonlinear in the western 
part of the basin where a prominent western boundary current forms. The interior of 
the basin has a Sverdrup-like flow. The north-south symmetry is lost and a nonlinear 
recirculating gyre begins to appear in the northwest comer of the basin. (Bryan’s 
model is forced with an anticyclonic wind-stress.) 
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- Eventually a critical Reynolds number, R,, is reached at which the asymptotic state 
ceases to be steady. The unsteady solution contains Rossby-wave-like features 
propagating westward from the eastern boundary. 

Our initial goal in this paper is to understand a little more about the primary bifurcation in 
which the asymptotic state changes from a steady state to a time-dependent solution and 
then to explore the secondary bifurcations of the time-dependent asymptotic states. 

2. Dynamical model 

Our basic dynamical system is a finite-difference numerical model of wind-driven, 
barotropic flow in a small rectangular basin of uniform depth. Since we are not interested in 
resolving fast external gravity waves, we use a rigid-lid approximation. We will use no-slip 
boundary conditions. The governing equations describing the evolution of the zonal and 
meridional components of the velocity, (u, v) and the pressure, p are simply 

u, + uux + uug -fi = -px+ uv*u 

v,+uv,+vv,+fu=-p,+uV*v+~/H 

24, + vy = 0. 

(2) 

Here, we have absorbed the uniform fluid density into p and T (the meridional wind stress), 
and assumed both a P-plane approximation, f = f0 + py, and uniformity of the kinematic 
viscosity Y. His the (constant) fluid depth. 

Using a potential vorticity/stream function formulation of the problem (e.g. Roache, 
1982) Eq. (2) reduces to 

~,V~JJ + J(+, V*+) + @/J~ = vV4+ + curl(r/H). (3) 

(Note that we have treated the wind stress as a body force distributed throughout the depth 
of the fluid. The resulting vorticity equation differs slightly from that given by the 
quasi-geostrophic approximation. This difference lies in the form of the forcing term: 
curl(r/H) here instead of the quasi-geostrophic fcurl(r/jH). The results of either model 
correspond to results that would be obtained for the other with a very slightly different 
wind-stress pattern. For the simple wind pattern used below, the qualitative differences in 
results are negligible.) 

Letting ~5~ and Ly be the zonal and meridional dimensions of the basin, we limit our 
attention to a steady wind-stress of the form r = (T~/LJ(x - L,/2), which has a uniform, 
cyclonic curl. We wish to briefly use dimensional analysis to determine how many distinct 
parameters enter the problem. We first introduce the Munk boundary layer width, 1 = 

wP>*‘3, and then scale lengths with 1, time with @Z)-‘, and stream function with pZ3. Eq. 
(3) becomes 

a,v*qJ + J(l), VqJ) + tJJx = v4qJ + E (4) 
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1 70 
‘=L, f3vH’ 

Defining a Reynolds number, Re, a dimensionless basin width, y-i, and an inertial length 
scale, L, by 

we see that E = Rey = l/L. The problem depends on three dimensionless parameters: 

1 
E=-, 

L 
LJ’ 

and 6 = L 
x 

The last two parameters, y and 6, come from a consideration of the locations of the basin 
boundaries. 6 is the aspect ratio of the basin. Together with the no-slip boundary conditions 
adopted here, and, in some cases, the choice of initial conditions, the specification of 6, E 
and y determines the flow field. (In a nondimensionalization of the equations of motion (2), 
a fourth parameter would appear, B =folpLx; however, this only affects the pressure 
distribution, not the flow or vorticity distribution, so it is dynamically irrelevant.) 

For a given choice of basin geometry (i.e. 6), the problem has a two-dimensional 
parameter space (E, y). In Meacham and Berloff (1997), we explore the linear stability 
problem in more detail and map out the marginal curve in this parameter space for a variety 
of choices of aspect ratio. In this paper, we wish to exemplify the richness of the bifurcation 
structure of the barotropic circulation problem as the nonlinearity of the flow is increased. 
We therefore follow a single curve in the (E, -y) plane that runs roughly normal to the 
marginal curve (both are shown in Fig. 2). This is achieved by using a dimensional, 
numerical version of (3), fixing the horizontal and vertical dimensions of the basin, and the 
strength of the wind stress, while varying the strength of the eddy viscosity, v. For details of 
the linear problem, its dependence on both 6 and the position along the marginal curve, and 
the nature of small amplitude nonlinear solutions near the marginal curve, the reader is 
referred to Meacham and Berloff (1997). 

We record here the values of the various parameters that we will hold fixed: 

L = 1024 km, Ly= 512 km, fo = 10-V’, p = 2 x lo-“m-’ s-1 

TO 
-= 2.3283 x lo-‘. 
p2L3H 

The latter quantity corresponds to a southward wind stress of 0.05 NmP2 at the western 
boundary of the basin and a northward wind stress of 0.05 Nmw2 at the eastern boundary. 
The size of the basin is comparable to that of the Black Sea. The main dimensional 
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Figure 2. Parameter plane showing the marginal curve (dashed) and the curve along which the 
bifurcation sequence is developed (shown with diamonds). 

parameter that we will vary is ~.r. We will concentrate on the range 100 m2 s-r < v < 
400 m2 s-l. 

The numerical model of (3) is fairly standard. The equation is discretized on a 129 X 65 
grid. An explicit time-stepping scheme is used for all terms in (3) (a second-order 
Runge-Kutta scheme with a time step of 1800s). The Poisson problem is solved using 
Hackney’s FACR method (Hackney, 1970). 

Considered as a dynamical system, the “variables” of the system consist of a value of 
V2rJr at each of roughly 8000 nodes. This makes it a relatively large dynamical system. 

3. Methodology 
We made a number of calculations that differ by (i) the value of v used and (ii) the initial 

condition. Each calculation furnishes one trajectory of the dynamical system in its natural 
(roughly 8000-dimensional) phase space. Since following the details of this is quite 
impractical, we chose a diagnostic that represents a spatial integral of the instantantaneous 
state of the system and used the method of delay coordinates (Takens 1981; Packard et al., 
1980; Roux et al., 1983) to reconstruct low-dimensional phase space approximations. The 
diagnostic that we used was the basin integral of the kinetic energy of the flow, K(t). 

a. Delay coordinates. An artificial phase space was constructed by defining a phase 
variable x(t; T) = (x0, xl, . . ., x,_ ,) with 

Xj = K(t - jT) 

for a fixed delay T. 
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The justification for this approach is provided by both embedding theorems and the 
empirical fact that it works! Whitney (1936) and Takens (1981) show that in general, an 
r-dimensional object can be embedded without self-intersection in an n-dimensional space 
provided that n 2 2r + 1; however, simple r-dimensional objects can often be recognized 
in embedding spaces with r < n < 2r + 1, though they often exhibit self-intersection and 
so can look a little tangled, e.g. Roux et al. (1983) and Brandstater and Swinney (1987). 

When the dynamics of the ocean circulation system are relatively simple (in particular, 
when they are confined to a low-dimensional subspace of the full phase space), the delay 

coordinates provided a straightforward picture of the behavior of the system. For example, 
steady states and periodic oscillations are readily picked out. In this way one can look for 
transitions (bifurcations) in the behavior of the system. In the event that the behavior of the 
system becomes chaotic, if the dynamics are such that the full system tends asymptotically 
to a strange attractor with a sufficiently simple structure, it may be possible to find 

a manifestation of this in the delay coordinate phase space for an appropriate choice of n. 

It is these kinds of behavior that we search for below. We will use the delay coordinates 
to attempt to construct a bifurcation sequence in the parameter v and identify the changes 
in dynamical behavior that occur. We expect that if a low-dimensional strange attractor 
can be detected for some range of v, then, as v is decreased further, bifurcations in the 
structure of the attractor may eventually lead to a change from a low-dimensional attractor 
to a high dimensional attractor at which point our phase space reconstruction technique 
will fail. 

The bifurcation thresholds are defined in terms of changes in the topology of the 
attractors and such changes are independent of the choice of the delay parameter 7. This 
allows a great deal of latitude in the choice of 7. The main criterion for picking r is that the 
underlying dynamics should not be obscured. For example, if the motion is quasi-periodic 
with two dominant frequencies, o1 and w2, o2 < ol, then choosing T larger than 2n/02 will 
produce a very difficult to decipher phase space plot while choosing 7 equal to one quarter 
of the faster period will generally expose a recognizable torus. A Poincare section through 
this will then confirm the toroidal nature of the attractor. In the unsteady solutions below, 
the dominant fast frequency is always comparable to the frequency of the initial unstable 
mode so that a similar value of 7 can be used throughout. For a more general time series 
that does not have a dominant peak in the high frequency part of its power spectrum, more 

formal choices of 7 are the time to the first zero-crossing of the autocorrelation function or 
the time to the first minimum of the mutual information function (Fraser and Swinney, 
1986). The choice of embedding dimension n is dictated by what can be represented on the 
page and so we use n = 3. This limits the type of attractor that can be recognized to fixed 
points, limit cycles and 2-tori, though, by using Poincare sections, a strange attractor with a 
fractional dimension between two and three and a sufficiently simple structure can also be 
picked out. 
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b. Poincark sections. Poincare sections are a useful diagnostic tool that we will use later. In 
the work reported here, they are constructed as follows. We choose a fixed value of x0, say 
C, and consider the plane with coordinates (xi, x2) given by x0 = C. Choosing C so that the 
plane slices through the attractor of interest, we plot the points of intersection of the 
delay-coordinate phase space trajectory with this plane each time a trajectory passes 
through it, going from x0 < C to x0 > C. 

In the numerical experiments, the system was integrated from an initial condition either 
of rest or taken from a run made with other parameter values. The behavior reported is the 
asymptotic regime approached after some initial transient period (which varied in length 
between 0( 103) and 0( 104) days, in general), except where otherwise noted. 

c. Spectral analysis. A complementary technique for studying the nature of attractors is the 
examination of the power spectrum of a time-series. Periodic solutions and period- 
doubling can readily be recognized by noting the changes in the distribution of isolated 
peaks, e.g. Libchaber and Maurer (1982) and Libchaber et al. (1982). In addition, toroidal 
attractors may be distinguished from chaotic attractors. Spectra of the former show discrete 
peaks with two or three (depending on the dimension of the torus) dominant peaks at 
incommensurate frequencies, together with smaller peaks produced by nonlinearity, and 
only a very low level of background noise. The spectra of chaotic attractors, while often 
still featuring some dominant spectral peaks, show a region of broadband noise. 

4. Results 

We describe a series of calculations in which each is distinguished by the value of u 
used. To provide an overview, Figure 3 plots the values of v used against “mean” energy 
observed. Figure 4 shows the periods of those solutions that were periodic, solutions that 
were either stationary or aperiodic are assigned a period of 0 in this figure. Most of our 
exploration has been confined to the range 100 m* s-i 5 v 5 400 m2 s-i. For the size of 
basin and strength of forcing that we have used, the only aymptotic state, when u = 
400 m* s-i, appears to be a fixed point, corresponding to a steady circulation. At the other 
end of this range, v = 100 m2 SK* is comparable to values of viscosity used in some ocean 
simulation studies but larger than those used in the better eddy resolving studies and larger 
than the estimates obtained from dye release experiments (e.g. from the NATRE experi- 
ment [Ledwell et al., 19941). Our main reason for stopping at u = 100 m* s-l is that 
regions of high dissipation in the flow become very narrow as v is decreased and are poorly 
resolved in a model with 8 km resolution when u < 100 m* s-i. Such structures play an 
important role in determining the flow patterns seen. 

At large values of v, the model quickly converges on a fixed point in the phase space and 
we see a steady circulation. On decreasing V, an interesting sequence of attractors appears 
as one type of attractor successively loses stability to another. For a considerable range of 
u, the dominant attractor is a low-dimensional object other than a fixed point. We have 
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Figure 3. Energies of some of the asymptotic states observed at different values of the viscosity u. 
(A) Various types of states over the range 100 m* SK’ < u < 400 m2 s-r, (B) Energies of steady 
states (FP) and stable limit cycles (LCl, LC2) in the range 300 m2 s-r < Y < 360 m2 s-r. 

observed the following (incomplete) types of behavior (indicated schematically in Figure 5 
and described in more detail below) as v is decreased: a limit cycle bifurcating supercriti- 
tally from a fixed point solution, a limit cycle bifurcating subcritically from a fixed point 
solution, period doubling sequences, subharmonic resonances exemplified by quasi- 
periodic motion on attracting 2-tori and longer period phase-locked orbits, looped 2-tori 
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Figure 4. Periods (in days) of some of the limit cycle solutions found. 
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(subharmonic resonances involving a period-n orbit, where n > l), and more complicated 
aperiodic motion. There appears to be at least two families of time-dependent solutions at 
moderate values of u. Some of the more complicated aperiodic motion seen at lower values 
of v may be the result of a collision between invariant sets from these two families. 

I I I I, I I III I 
I I I I I b 

“IO “9 % v, b “6 V,“, “2 “, 

Figure 5. Sketch of the bifurcation structure found. The abscissa is u, the ordinate is schematic. Only 
the most prominent bifurcations are shown and the values of u indicated on the abscissa 
correspond to references in the text. 
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[55,3 

Figure 6. The pattern of flow in one of the steady state solutions as indicated by equally spaced 
stream function contours. This pattern is for v  = 400 m* s-l. 

Overall, we have identified three families of solutions. These may be seen in Figure 3. 
One family is a family of fixed points, stable at sufficiently high u but losing stability near 
v = 350. Lack of convergence in our steady state solver at low values of v means that we 
are unable to continue following this branch of unstable solutions below u = 190 m2 SK’, 
though there seems no reason to believe that this branch of solutions does not continue. We 
cannot rule out the possibility that, in the vicinity of v = 190 m2 s-l, the branch of steady 
states curves back around to higher values of v but we have not found any indication of 
this. 

In the vicinity of v = 350 m2 s-i, the branch of fixed points undergoes a supercritical 
Hopf bifurcation, giving rise to a family of unsteady attractors that we can follow down to 
v = 300 m2 s-i. For values of u close to 350, these take the form of stable limit cycles with 
periods on the order of 8 1 days. 

A second family of unsteady solutions appears near v = 327.6 m* s-i. This family of 
unsteady attractors can be traced to below u = 100 m2 SK’. The character of these families 
of solutions is described in more detail below. 

a. Steady states. For sufficiently large values of v, (v > q, where V, = 350 m2 SK’), the 
flow tends to a steady circulation. An example can be seen in Figure 6 which was obtained 
using v = 400 m2 s-i. A Sverdrup-like interior flow (predominantly northward in this 
problem) feeds a (southward) western boundary current. In the southwest comer, the 
boundary current turns eastward and feeds a steady meandering eastward jet pattern with a 
meander amplitude that decays to the east. Cyclonic recirculations are visible in the first 
two troughs of this wave. At lower viscosities, a cyclonic recirculation also appears in the 
third trough. The westernmost of these is the most prominent. For the particular values that 
we chose for the dimensional parameters, the maximum velocity of the western boundary 
current is of the order 40 cm s-l. The energy of the steady states is plotted in Figure 7. This 
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Figure 7. A sketch of the variation of the total kinetic energy of the flow in the basin for the steady 
state solutions as a function of u. Both stable (solid curve) and unstable (dashed) states are shown. 
The units of energy are essentially arbitrary. 

corresponds to one of the branches seen in Figure 3. As v decreases below 350 m2 s-t [ur], 
the model, when started from an initial state of rest, becomes attracted to a limit cycle. 
However, by using an iterative scheme it is possible to still converge to a fixed point for a 
range of v below 350 m2 s-r, down to v = 190 m* s-r. From their spatial structures and 
energies, these fixed points appear to be the continuation of the branch of fixed points seen 
for v > 350 [v,]. The techniques that we use for finding steady states do not permit an 
exploration of the extent of the basins of attraction of the fixed points. It is known that, 
under some circumstances at least, wind-driven barotropic circulations in rectangular 
domains may exhibit multiple steady equilibria (Ierley and Sheremet, 1995; Cessi and 
Ierley, 1995), though whether multiple steady states exist depends on the model param- 
eters. In this work, we searched for multiple steady states in v > v1 but found only the 
single branch of steady states described above. 

If we make the assumption that the no-flow initial condition is not a special case, and that 
the approach to the stable fixed point is generic, then, by studying the way in which the 
fixed point is approached, we can estimate the dominant eigenvalue that would be obtained 
if we were to linearize the system about the fixed point. The approach to the fixed point is a 
flat (2-D) spiral so that the eigenvalues with the least negative real part must occur as a 
complex conjugate pair, X = -cr ? 10. The behavior of the dominant pair of eigenvalues as 
a function of v is shown in Figure 8. As v -+ vl. X - 0 + zoo. As v crosses yl, the obvious 
conclusion is that a supercritical Hopf bifurcation occurs (there is support for this in the 
next section). Below vi, the fixed point still exists but is linearly unstable for those values 
of v at which we have checked stability. 
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Figure 8. Real and imaginary parts (decay rate and frequency) of the most slowly decaying normal 
modes of the stable steady circulations for v  near the marginal point, v,. Note the linear behavior of 
the decay rate. 

b. Periodic solutions. An example of a limit cycle may be seen in Figure 13a as a periodic 
trajectory in an artificial phase space constructed using delay coordinates (Takens, 1980; 
Packard et al., 1980). The coordinates [x(t), y(t), z(t)] of a phase point in this space are 
constructed from the time-dependent, basin-integrated kinetic energy of the model, K(t), 
using x(t) = K(t), y(t) = K(t - r), z(t) = K(t - 27), with r = 16.667 days. 

The branch of unsteady, low-dimensional solutions, which starts as limit cycles spawned 
by the Hopf bifurcation at u = vI, can be continued to lower values of viscosity. We will 
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call this set of solutions, branch A. At first, the solutions retain the form of limit cycles, 
down to a value of v = v3 = 3 11 m2 s-i. For this range of v, the period, T(v), amplitude, 
A(v), and average energy, E(v) of the limit cycles, plotted against v, may be seen in 
Figure 9. Here, A and E are defined in terms of the maximum and minimum energies 
encountered during the limit cycle; A is the difference of the maximum and minimum 
energies, while E is their arithmetic mean. For the purposes of comparison, we also include 

on Figure 9 information about some of the stable limit cycles associated with a second 
branch of time-dependent attractors and the period of the dominant (stable) eigenvalue of 

some of the steady states. At vi, the period is approximately 81 days. As v is reduced, the 
period increases slightly so that by v = 312 m2 s-i it is 82.78 days. The amplitude 
increases with decreasing v. Figure 10 shows the circulation in the basin at a sequence of 
stages in the limit cycle for v = 312 m* s-i. 

This branch of unsteady solutions (branch A) can be continued below v = 3 11 m* s-i, 
down to about v = 300 m* s-i. This continuation is described in the next subsection. 
Below v = v2 = 327.6 m* s-i, a second branch (branch El) of unsteady solutions is 
encountered. The average energy of solutions on this branch may be seen in Figure 3. 
Whereas, at each v, the average energy on branch A is lower than that on the branch of fixed 
points, the solutions on branch B have higher energies than those of the fixed points. 

The branch B solution encountered at v = v2 is a limit cycle with a period of 65.6 days 
and an amplitude of approximately 500. We could not find solutions that continued this 
branch to smaller amplitudes for v > v2. In addition, the rate at which the system trajectory 
converges to the branch B limit cycle slows markedly as v approachs v2 from below. We 
conjecture that there is a tangent bifurcation at v = v2 at which the branch of stable limit 
cycles merges with a branch of lower amplitude, unstable limit cycles, branch C, say. This 
branch of unstable limit cycles probably bifurcates from the branch of fixed points at a 
subcritical Hopf bifurcation located at some v4 where v4 < v2. This is indicated in the 
sketch in Figure 5. 

In Meacham and Berloff (1997) we show that the steady barotropic circulation has two 
distinct types of linear instability. One of these can be readily identified with the initial 
supercritical bifurcation. We conjecture that the second instability is responsible for the 
later subcritical Hopf bifurcation. These two types of instability differ in how they tap the 
energy of the basic steady circulation. The primary instability is an instability of the large, 
stationary meander that lies just to the east of the main recirculation gyre. The second 
instability is a shear instability of the western boundary current. For basins with a different 
aspect ratio, the western boundary current instability can be the primary instability. For 
example, in a basin with four times the meridional extent of the one considered in this 
paper, it is usually the western boundary current instability that first gives rise to unsteady 
(limit cycle) solutions. The nature of these instabilities and their dependence on the basin 
aspect ratio are explored more fully in Meacham and Berloff (1997). A brief description of 
the primary instability for the basin considered in the current paper is given in Section 5. 
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Figure 9. (A) Amplitude, (B) period and (C) energy of the limit cycles on branch A (dashed curve) 
and those on branch (B) (dotted curve) for v  > 300 m2 s-l. The energies of the steady states are 
included in (A) as the solid curve. 
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T = O.Odays T = 20.5days 

T = 41 .Odays T = 61.5days 

Figure 10. Snapshots of the stream function in the basin for various stages during one period of a 
limit cycle at u = 312 m2 s-l. The period of this oscillation is 82.78 days. 

c. The continuation of branch A. The average energy of the first family of unsteady 
solutions, branch A, may be seen in Figure 3. At v = vg, which lies somewhere between 
v = 3 12 m2 s-I and v = 310 m2 s-l, there is a bifurcation from a limit cycle to a 
quasi-periodic solution lying on what, in the delay-coordinate phase space, appears to be a 
two-dimensional torus. Since it is impractical to distinguish between quasi-periodic motion 
with two fundamental frequencies and an extremely long-period phase-locked limit cycle 
on a torus, we will refer to both of these as quasi-periodic motion. From the behavior of the 
rate of convergence to the limit cycle in v > v3 (as seen in Poincare sections) as the 
bifurcation point, v3, is approached, this appears to be a supercritical Hopf bifurcation. An 
example of this toroidal attractor can be seen in Figure lla (v = 310 m2 s-l), a PoincarC 
section through the attractor may be seen in Figure llb, while Figure llc shows the 
spectrum of a trajectory on this attractor. Close to the bifurcation point, the winding 
number on the torus is close to 4/3. In the spectrum, one can see two dominant frequency 
components, one at 0.0760 rad/day and one at 0.1016 rad/day which have a ratio close to 
3:4 (about 0.748) (the peak at 0.1520 is presumably a harmonic of the peak at 0.0760). The 
corresponding periods are 82.7 days and 61.8 days, comparable to the periods of the two 
families of limit cycles. At lower values of v, the toroidal attractor gives way to a more 
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Figure Il. (A) Segment of a delay coordinate phase space trajectory on, (B) Poincare section 
through, and (C) power spectrum of, a toroidal attractor at v  = 3 10 m2 s- I. X0, X 1, and X2 are in 
the arbitrary units of energy we have been using. Frequency on the abscissa of the spectrum is in 
radlday. 

complicated attractor (Fig. 12a). This has a Poincark section (Fig. 12b) and power spectrum 
(Fig. 12~) which suggest that the attractor has become chaotic. Given the finite length of 
the time series, this conclusion cannot be regarded as a rigorous result. 

Below u = 300 m2 SC’, the chaotic attractor appears to lose stability. For example at u = 
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Figure 12. (A) Segment of a delay coordinate phase space trajectory on, (B) Poincark section 
through, and (C) power spectrum of, an apparently chaotic attractor at v  = 300 m* s-l. 

298 m* s-l and u = 297 m* s-l, a typical trajectory spends a long time in the vicinity of 
what, from the form of its Poincare section, appears to be a continuation of the chaotic 
attractor; however, eventually the trajectory is captured by a stable limit cycle belonging to 
the second family of unsteady solutions discussed next. It therefore appears likely that near 
v = 300 m* s-i, there has been a transition from a strange attractor to a hyperbolic strange 
invariant set. 

d. The continuation of branch B. Unlike the A branch, the branch B solutions can be 
followed easily to low values of the dissipation since some member of this family is 
attracting at all of the values of v that we have examined between v = 327.6 m* SC* and u = 
100 m* s-l. As noted above, after a tangent bifurcation at v = v2 = 327.6 m* s-t, branch B 



544 Journal of Marine Research m 3 

Figure 13. Delay space trajectories of various limit cycles in the 1:2:4 period doubling sequence. 
(A) v  = 220 m2 s-l, (B) v  = 180 m* s-l, (C) v  = 176 m* s-l, (D) v  = 168 m* s-l. 

exists as a set of stable limit cycles until one reaches v = vg, where 281 m* s-* < v5 < 
282 m* s-r. At v = v5 the solution undergoes a pitchfork bifurcation and we see a stable 
limit cycle with twice the period of its predecessor (114.136 days at v = 281 m* s-’ 
compared to 57.10 days at v = 282 m* s-i). For simplicity we will refer to the longer 
period limit cycle as a period two cycle and its precursor as a period one cycle. Presumably, 
the period one cycle still exists for v < v 5; however, after the bifurcation it will have 
become an unstable period one cycle and we are not able to locate unstable periodic and 
quasi-periodic attractors. At v = vg, where 258 m* s-i < vg < 259 m* s-r, there is a reverse 
pitchfork bifurcation, and the period two limit cycle collapses onto the period one cycle 
which regains its stability (see sketch, Fig. 5). 

The now stable period one cycle remains the dominant attractor until one reaches v = v7, 
210 m* s-i < v7 < m* s-i, where there is another pitchfork bifurcation, the period one 
cycle again loses its stability and another period two orbit appears. This is followed by a 
third pitchfork bifurcation at v = vg, 176 m* s-i < us < 180 m* s-r at which a stable period 
four cycle appears. (The actual period of this limit cycle is 204.286 days at v = 176 m* s-l.) 
Examples of the period 1, period 2 and period 4 cycles are shown in Figure 13. 

The period-doubling sequence does not appear to continue further. Instead, the period 
four cycle undergoes a Hopf bifurcation at v = v9, 167 m* s-i < v9 < 168 m* s-l, and a 
stable toroidal attractor with four loops appears. We encounter a range of v in which the 
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Figure 14. (A) Segment of a delay coordinate phase space trajectory on, (B) Poincark section 
through, and (C) power spectrum of, a toroidal attractor with four loops at v = 167 mz s-l. 

phase trajectory is attracted to this invariant torus and the motion is, in general, quasi- 
periodic or a long-period periodic trajectory on the torus. An example is shown in 
Figure 14 for the case v = 167 m2 s-i. In Figure 14a, part of the trajectory is shown in a 3D 
perspective plot. The trajectory is tracing over the surface of what is topologically a 
2-torus. In Figure 14b, we show a Poincare section corresponding to the plane X0 = 
20178.16 in Figure 14a. The orbit in the Poincare section is a collection of four simple 
closed curves, consistent with a two-frequency quasi-periodic motion. This is further 
suggested by the spectrum of the energy time series (Fig. 14~) which has the form 
characteristic of two nonlinearly coupled oscillators of incommensurate frequency (c.f. 
Arnold, 1965). The transition from periodic to two-frequency quasi-periodic behavior is 
similar to that seen by Brandstater and Swinney (1987) in a study of Taylor-Couette flow. 
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Figure 1.5. Poinca.rk section through an attractor at u = 150 m* s-l. This appears to be a convoluted 
2-torus. 

From the theory of nonlinearly coupled oscillators (Arnold, 1965), one anticipates that 
within the quasi-periodic range there may be intervals in parameter space in which the 
attractor becomes a periodic orbit on the surface of the torus corresponding to phase- 
locking of the underlying oscillators, examples of “Arnold tongues.” The interleaving of 
quasi-periodic attractors and intervals of periodic orbits on a torus is quite complicated. For 
simplicity we will refer to either as motion on a toroidal attractor. 

A torus appears be the general form of the attractor down to at least v = 150 m2 s-i. At 
v = urO. 147 m2 s-i < vlo < 150 m2 s-i, the toroidal attractor appears to lose stability to an 
attractor of fractional dimension. Within the range vlo < v < u9, as v decreases, the 
cross-section of the torus expands and the Poincare section looks a little more convoluted, 
e.g. Figure 15 which shows the Poincare section for v = 150 m* s-i. It is likely that there 
are other bifurcations in this range that we have failed to resolve. For example, at v = 
160 m2 s-r, we observe a period 18 torus! Its Poincare section is shown in Figure 16. Our 
tentative explanation for this is that, starting with the primary period-4 torus shown in 
Figure 16, as v decreased, phase-locking occurred on this torus and a period 18 orbit 
temporarily became the dominant attractor. However, this period 18 orbit undergoes a 
secondary Hopf bifurcation (possibly subcritical) to a period 18 torus. Such a phenomenon 
is unlikely to be structurally stable so we will not dwell on this further. However, for this 
particular model, the period 18 torus is robust in the sense that the Poincare section at v = 
160.1 m2s-llooksjustliketheoneatv = 160m2s-i. 

Between v = 150 m2 s-i and 147 m2 s-i, there is a bifurcation to what appears, from its 
Poincare section, to be a chaotic attractor, an example of which, at v = 147 m2 s-i, may be 
seen in Figure 17a. This Poincare section was obtained by integrating the numerical model 
for about 3000 years. In Figure 17b, we show a magnification of the region indicated by a 
box in Figure 17a. In this, signs of a fractal foliate structure, similar to that of the H&on 
attractor, appears to be visible. Part of the power spectrum of an orbit on this attractor is 
shown in Figure 17~. At low frequencies, one can see the appearance of the broad-band 
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Figure 16. Poincare section through a toroidal attractor with 18 loops at u = 160 m2 s- * . 

signal that one expects of motion on a strange attractor. Using the technique of Badii and 
Politi (1985) as implemented in the numerical package nn written by Eric Kostelich 
(kostelich@asu.edu), we estimated a fractal dimension for the attractor on the Poincare 
section and obtained, 1.3 -+ 0.1. Taking into account the direction normal to the Poincare 
section, it seems that at v = 147 m* s-i, the dominant attractor is a strange attractor with a 
fractal dimension of roughly 2.3. 

The majority of attracting solutions seen at lower values of v are chaotic and, from their 
energy values, appear to be continuations of this family. (A narrow band of periodic 
solutions, first of period 10 and then period 5, was also seen in this range, and there ought to 
be other periodic windows that we have failed to detect.) As v decreases, the chaotic 
attractor expands and its structure becomes less distinct in the delay space projection. 
(Because of the length of time required to integrate the ocean model, the number of points 
that we can generate on a Poincare section is limited.) When a trajectory on the attractor is 
viewed in a three-dimensional delay coordinate space, this expansion is predominantly in 
the direction transverse to the plane of the dominant oscillations-the loops of the 
trajectory that resemble the period 1 limit cycles on branch B. Coincident with this 
expansion in phase space there seems to be an increase in the dimension of the chaotic 
attractor. At v = 142, we estimate the fractal dimension of the chaotic attractor to be 2.7 t 
0.1 while at v = 130 it is 3.8 + 0.2. 

As v decreases, the power in the broad-band signal at low frequencies gradually 
increases (see Fig. 18). It is significant that the “new” frequencies that appear with the 
bifurcation to a chaotic attractor, i.e. those associated with the appearance of broad-band 
noise, are low frequencies with periods from one to several years (see Figs. 17c and 18 and 
note that an annual period corresponds to a frequency of 0.0172). Even a relatively small 
ocean basin with no seasonal cycle has natural intrinsic time scales of interannual, decadal 
and centennial periods. Figure 18 suggests that interannual and longer periods become 
increasingly important as one moves further into the supercritical range. We also note the 
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Figure 17. PoincarC section through, and power spectrum of, a chaotic attractor at v  = 147 m2 SK’. 
(A) shows the complete Poincark section, (B) is a magnification of the area outlined by the box in 
(A), and (C) shows the power spectrum. 
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Figure 18. Power spectra of trajectories on apparently chaotic attractors at (A) u = 120 m2 s-l, (B) 
v = 100 m2 s-i. 

persistence of the spectral peak at a period comparable to that of the initial limit cycle that 
started this family of time-dependent solutions. We conclude that, even far into the 
supercritical range, the physical mechanism responsible for the initial linear instability that 
presumably gave rise to this branch continues to exert a strong influence on the now highly 
time-dependent flow. 

e. Resolution. In view of the thinness of the regions of strong dissipation in Figure 19, and 
the important role dissipation plays in determining the net energy of structures such as 
fixed points and limit cycles, by balancing the energy put in by wind, we anticipate some 
dependence on model resolution. At v = 300 m* s-l, the scale width of a Munk frictional 
boundary layer is (~@)i’~ = 24.7 km. For the 8 km resolution used in this model, this 
corresponds to about three grid intervals. In Figure 19, the strong dissipation seen near the 
western and southern boundaries seems to be concentrated in a region even narrower than 
this. One might worry that some of the results above are a consequence of the width of the 
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Figure 19. Plot of spatial distribution of frictional dissipation for the steady state at v = 400 m* s- I. 
The contour interval is 6.8% of the dissipation maximum and the lowest contour is 3.4% of the 
maximum. The 3.4% contour is the outer contour spanning both major dissipation zones, together 
with the isolated closed contour in the middle of the southwestern recirculation gyre. 

dissipation zone decreasing, as v is decreased, to the point where it becomes poorly 
resolved. One can test this by making runs at higher resolution. The point at which the 
width of the dissipation zones becomes comparable to the grid interval is then postponed to 
lower values of v. A bifurcation that is caused artificially by the dissipation zone width 
approaching that of mesh elements would then be expected to occur at lower values of 
viscosity. We tried to test this for the primary bifurcation by making a number of runs using 
4 km resolution (a model with 257 X 129 grid points). Instead of moving to a lower value 
of v, the primary bifurcation occurred at a slightly higher value of v, somewhere between 
u = 360 m* s-i and v = 370 m2 s-l. For a given value of v in the range where both 
resolutions yield a stable fixed point, the energy of the solution is greater in the higher 
resolution run. For example, at v = 400 m* s-i, the energy of the fixed point for the 129 X 
65 model is 8749.386 while for the 257 X 129 model it is 8910.66, about 2% higher. (With 
a 5 13 X 257 model, at 2 km grid resolution, the energy of this fixed point was 895 1.20, less 
than 0.5% higher than the 4 km case.) Similar small differences may be seen at a value of v 
at which both resolutions yield limit cycles. For example, at v = 250 m2 s-i, the average 
energy of the limit cycle for the 129 X 65 model is 14143.53 and the period is 52.35 days 
while for the 257 X 129 model they are 14861.31 and 51.95 respectively, a difference of 
about 5% in average energy and less than 1% in period. This suggests that by inadequately 
resolving the narrow regions of high dissipation, the lower resolution model overestimates 
the total dissipation, causing the system to equilibrate at a slightly lower energy level. 
However, in the higher resolution runs we still see a pair of supercritical and subcritical 
primary bifurcations similar to those seen in the lower resolution runs. The period of the 
supercritically bifurcating mode near the bifurcation point is slightly longer, being 
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approximately 8 1.42 days for the 257 X 129 model at v = 360 m2 s-i c.f. about 8 1.22 days 
for the 129 X 65 model at v = 350 m* s-l. 

The higher resolution model is too expensive to use for long chaotic runs; however, we 
did make some runs to check that period doubling did occur in the same sequence in the 
4 km resolution model as it did in the 8 km resolution model. The comparison may be seen 
in Figure 20 which shows the periods of periodic solutions found for 160 m2s-i < u < 
360 m* ss’ for the 8 km case (Fig. 20a) and 4 km case (Fig. 20b). (The points assigned 
“zero” frequency near u = 160 m2ss1 in both figures are toroidal attractors.) 

5. The primary instability 

As we have seen, there is an initial Hopf bifurcation near v = 350 m2 s-i. In Meacham 
and Berloff (1997) we show that the steady circulations that result in a barotropic model 
driven by a steady wind stress of uniform curl have at least two modes of instability. One is 
an instability of the western boundary layer and is the same as that examined by Ierley and 
Young (1991). The second has its seat in the flow near the southern zonal boundary where 
fluid from the western boundary current rejoins the interior circulation. This part of the 
flow contains several structural units including a predominantly inertial recirculation gyre 
in the southwestern corner and a strong meander of the southern boundary current just to 
the east of the recirculation gyre. The second instability involves a strong cyclic exchange 
of energy between the perturbation and the basic steady flow in the vicinity of this meander. 

As an example, we look at the fastest growing linear mode of an unstable steady state, 
the case u = 349 m2 s-i. The fastest growing linear mode is found by an iterative 
technique. Details can be found in Meacham and Berloff (1997). The eigenvalue (complex 
frequency) associated with this normal mode is o = a + zb with a = 0.077 rad/day and b = 
0.00033 day-i. Several snapshots of this mode corresponding to different phases of its 
period are shown in Figure 21. The following description is written with the advantage of 
having watched the evolution of the mode (near limit cycle) as an animation loop. One 
aspect of this small amplitude time-dependent perturbation is the westward propagation of 
a wave-like disturbance with a zonal wavelength of about half the basin width. In the 
eastern half of the basin, this appears to have a standing wave structure in the meridional 
direction with a half-wavelength equal to the meridional extent of the basin. However, two 
extrema are present in each zonal crest or trough in the eastern half basin. One lies in the 
northern half and one in the south. In the eastern half of the basin, the ridges and troughs of 
the time-dependent disturbance are tilted slightly toward a northwest/southeast orientation. 
The wave amplitudes are small near the eastern boundary (within about 100 km). As the 
wave propagates westward the southern extremum intensifies and is deflected northward 
and southward as it interacts with the standing Rossby wave extension of the western 
boundary current. The first northward deflection occurs as the southern extremum encoun- 
ters the east side of the standing wave crest that lies just to the east of the main recirculation 
gyre. This is followed by a rapid deflection as the perturbation wave passes over the 
standing wave crest. In the southwest comer, as alternating highs and lows of the 
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Figure 20. Periods of some of the limit cycles found in the (A) 8 km resolution and (B) 4 km 
resolution cases. 

propagating wave come in along the southern boundaty, they are deflected north once more 
and then rotate cyclonically around the southwestern recirculation-they are advected by 
the recirculation in the basic state. As they rotate around the recirculation, they weaken. 
The highs and lows are greatly reduced in strength by the time they have rotated round to 
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Figure 21. Snapshots taken from one period of the slowly growing unstable normal mode of the 
steady-state circulation at u = 349 m2 s-r. The time interval between panels is 10.125 days. 
Negative contours are dashed. The contour interval is roughly 6% of the difference between 
maximum and minimum values over a whole period. 

the southwest side of the recirculation. The timing of the oscillation appears to be such that 
a high or low is going around the northeast side of the recirculation just as the remnant of 
the preceding low or high is diametrically opposite it on the southwest side. 

We look further at the nature of the bifurcating mode by examining its energetics. For 
disturbances close to a steady equilibrium, we decompose the fields: 

u = G, Y) + U’(& y, t>, p=p+p’ 
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where U and p represent the steady, but spatially varying, equilibrium (the basic state) while 
U’ and p’ denote small time-dependent perturbations from this. Substituting this decompo- 
sition into (1) yields equations for the perturbations: 

u; + ii. Vu’ + u’ *vii -p Au’ = -Vp’ + vv2ur 

V*u’ = 0. 

Taking the dot product of the momentum equation with u’, we obtain an energy equation 

d,KiV.M=F 

where 

au, at4:au; 
F= -u:“&-vz,, 

J J J 

M=i+‘12+p’u’-vVK (5) 

and K = kiuri2. 

F represents exchanges of energy between the perturbation and the mean flow (the first 
term) and dissipation of perturbation energy. M summarizes processes that transport energy 
from place to place in the perturbation field. F and M are not unique, for example, an 
alternative form is 

P’U’ - vVK + ~iu:u;. (6) 

We looked at the spatio-temporal structure of (6) but it is similar to that of (5) so we will 
limit our discussion to (5). Figure 22a,b show plots of u:uI Gi/iilaxj and -V . M from one 
cycle of the slowly growing unstable mode close to the bifurcation point. 

In absolute value, the exchange term, 

p = -,...5 , I 
’ "aXj 

dominates the dissipative term, 

aqau: D= -v--, 
aXj aXj 

almost everywhere. In two small regions, the magnitude of the dissipation is of a similar 
order as the maximum of the production term. All of the terms are almost periodic with a 
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Figure 22. Snapshots of the main terms in the perturbation kinetic energy equation &K = P + D - 
V . M taken from one half-period of oscillation of the slowly growing unstable normal mode of the 
steady state circulation at v = 349 m2 s- r. The time interval between panels is 10.125 days. 
Negative contours are dashed. The contour interval is roughly 8% of the difference between 
maximum and minimum values over a whole period. (A) Production by barotropic energy 
conversion P, (B) the convergence of the energy fluxes, -V . M. 

frequency twice that of the bifurcating mode. (M, K, F, P, D are all quadratic in the 
perturbation and the perturbation is almost linear.) Exchanges are concentrated along the 
eastern side of the first (westernmost) crest of the standing Rossby wave in the steady state. 
The direction is from the basic state to the perturbation (positive) near the crest and in the 
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opposite sense near the trough immediately to the east of the first crest. The structure of 
-V . M (Fig. 22b) is very similar but of opposite sign showing that most of this energy 
exchange goes not to or from K’ but is transported by M between the maximum and 
minimum of P. Some can be transported to the boundaries of the domain but the high 
degree of cancellation between F and -V . M suggests that this is small. In addition, the 
term vVK’ is small everywhere compared to P and D. Both the production and flux terms 
are minimal along the western boundary, strongly suggesting that this instability is not an 
instability of the western boundary current. Nor is there much energy conversion in the 
strong southern part of the main recirculation. The strongest values of P occur in neither the 
western boundary current, the southwestern recirculation, nor the eastern part of the basin, 
where the perturbation looks most wave-like. We therefore conjecture that the instability is 
not an instability of the western boundary current or of the recirculation gyre, in the sense 
that it is not an instability of the boundary current or gyre considered as isolated entities. 
Nor do we believe that it is a “destabilized” mode of oscillation of the resting basin. (The 
more wave-like part of the perturbation east of the recirculation zone does not exhibit nodal 
lines and if wavenumbers inferred from the ridges and troughs in the eastern half of the 
basin are substituted in the free Rossby wave dispersion relation, the predicted group 
velocity is eastward.) We are left with the hypothesis that the instability is associated with 
the large southern meander. 

6. Discussion 

The model used in this work is clearly not a realistic representation of any real ocean, 
lacking as it does such things as baroclinicity, topography and a realistic representation of 
friction. Nevertheless, it demonstrates at least two important points. The first is that even a 
rather “large” system, a PDE with two spatial and one temporal dimensions in this case, 
can exhibit behavior that is spatio-temporally complicated, and decidedly nonlinear and yet 
still be controlled by relatively low-dimensional dynamics. The collapse to such a regime is 
“natural” because, though the PDE is formally an infinite-dimensional dynamical system, 
it is dissipative and this strongly damps many of the potential degrees of freedom. For a 
more formal discussion of this sort of effect in the context of the Navier-Stokes equations, 
the reader is referred to Robinson (1995), Temam (1995) and Lions et al. (1992). 

One expects that the dimensions of the attractors in the system will gradually increase as 
the dissipation is reduced and the results here seem to bear this out. Over the range 
examined, the attractors have gone from dimension 1 near v = 350 m* s-l to a dimension 
of approximately 4 at v = 130 m2 s-i. If one extrapolated this trend to infinite Reynolds 
number then one expects that the attractor dimension would also be either huge or infinite. 
However, many of these additional degrees of freedom ought to be associated with the very 
small-scale dynamics that constitute “mixing” from the point of view of large-scale 
motion. There is a limit to the Reynolds number that can be obtained in a numerical model, 
a limit that is many orders of magnitude lower than in the real ocean. Yet many 
oceanographers believe that the results of the best modem high resolution ocean simula- 
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tions bear a reasonable resemblance to the ocean. Since all numerical models are 
finite-dimensional representations of ocean dynamics, such a belief represents a tacit 
acceptance by modelers that the ocean can be approximated by a finite dimensional system. 
This belief is also implicitly held by oceanographers in their observational work which 
rests upon the assumption that a finite set of measurements allows one to approximate the 
large scale and mesoscale flow field. From the present work and similar studies of ocean 
models, we are led to the strong conjecture that at the Reynolds numbers at which they 
operate, numerical models exhibit low-dimensional dynamics in that the dimension of the 
underlying attractors is small compared to the explicit dimension of the numerical models 
(the latter is O(SOO0) for the current model). This is an unproven conjecture because it is 
not presently practical to measure the dimension of an attractor buried in an ocean GCM if 
the dimension of that attractor is 0( 10) or more, and the trend noted above suggests that by 
the time one decreased the eddy viscosity to, say, 10 m* s-i in the present model, the 
attractor dimension ought to be outside the range we can measure. (However, it would also 
be inconsistent to use such a low value of friction in the present model since the physical 
dissipative scales would then be below the resolution of the model.) 

If this conjecture is true, there is still a question of the use to which it may be put. 
Suppose that the dominant attractor in a GCM has a dimension of between 20 and 21, then 
Whitney’s theorems (Whitney, 1936) show that, in principle, it is possible to construct a 
dynamical system with dimension 43 that reproduces the dynamics. Further research may 
eventually provide an answer to how we construct such a system, but the amount of 
information required to constrain the unknown parameters in such a model may be 
impractically large. In addition, it may be an even more difficult task to construct a family 
of low-dimensional models that depend on a physical parameter, for example: the overall 
strength of the wind-stress curl, in such a way that their attractors change in response to that 
parameter in the same way as the attractors of the full GCM. Yet we already know a method 
for constructing a finite-dimensional system that approximates the attractors of the 
physical system, in ways that we find useful, and at the same time requires that we supply 
only a few pieces of information beyond the details of the forcing-we discretize the 
equations of motion and construct a GCM. Perhaps it is possible to trade dimension for the 
information that is needed to constrain the model; by using a looser embedding with 
dimension higher than 43 in the example above we may be able to reduce the amount of 
data needed to constrain the parameters in the model, yet by taking advantage of some of 
the structure of the low-dimensional attractors, we may be able to construct models with a 
lower dimension than that of a full GCM, a more efficient representation of the physics. 

The second important point is that numerical ocean models, which frequently do use 
rather simple parameterizations of subgrid scale motion and which tend to be operated in 
regimes in which the magnitude of the friction is comparable to that used here, can be 
expected to often be in a low-dimensional regime. This is particularly true of ocean models 
used in coupled climate models and the climate model itself which is typically strongly 
damped, ought to have a similar regime. Evidence of low-dimensional behavior can be 
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seen in equivalent barotropic models (Berloff and Meacham, 1997a) and shallow water 
models (Speich et al., 1995). Since similar results have been observed in a two-layer ocean 
model (Berloff and Meacham, 1997b) the conclusion that numerical models are strongly 
influenced by low-dimensional dynamics is not necessarily vitiated by the addition of extra 
physics. However, this tendency to approach a state in which only relatively few degrees of 
freedom are dynamically active might be difficult to see because: (a) it is quite difficult to 
recognize low-dimensional dynamics when the dimension of the attractor is greater than 
roughly 3, (b) starting from an arbitrary initial condition, one must wait a considerable 
period of time for the damped degrees of freedom to damp significantly, (c) a more realistic 
ocean model is often forced by time-dependent inputs such as surface heating and wind 
stress, (d) it is not clear what will be the effect of discrete processes such as the “convective 
adjustment” used in some models. When the model has time-dependent inputs, it is 
interesting to speculate on the resulting effect on the dynamics. We would guess that the 
result is to expand the number of active degrees of freedom, for the following reason. 
Typical monthly or seasonal forcing contains time scales shorter than those required for the 
ocean model to converge to the attractor that would be the asymptotic limit were the 
forcing steady. Some of the damped degrees of freedom must therefore have time scales 
longer than seasonal (and possibly longer than decadal). Presumably these degrees of 
freedom will be continually forced by the time-dependent inputs and remain active, 
increasing the effective dimension of the asymptotic dynamics. At the same time many 
other degrees of freedom ought still to be damped so that it is likely that far fewer degrees 
of freedom than the total number available are important for the dynamics. The question 
then becomes to what extent does nonlinearity enable the presence of these additional 
degrees of freedom to modify the dynamics of those degrees of freedom active during 
motion on the attractors of the steadily forced system. It will be important to try and extend 
investigations such as this to problems that include time dependent forcing, for example, 
by including a seasonal cycle. We are presently embarking upon this. It should be noted 
that a periodically forced model is a simple extension of a steadily forced model. The 
forcing can be dealt with by defining an extra degree of freedom that is not frictionally 
damped and is not modified by nonlinear interactions with the remaining degrees of 
freedom. The generic types of behavior that such a model can possess are then similar to 
those of steadily forced models except that the attractor in the highly dissipative limit is no 
longer a fixed point but a limit cycle. 

A remarkable result of the present work is the presence of very low frequency variability 
in this simple, steadily forced GCM. The plateau that can be seen at the low frequency end 
of the power spectra in Figure 18 extends to extremely long periods-to approximately 180 
years when v = 120 m* s-i. The appearance of power at the low frequency end of the 
spectrum can be traced to the bifurcation to a chaotic attractor. Looking at the spectrum in 
Figure 17, one sees that the broad-band noise that appears with the bifurcation to a chaotic 
attractor occurs predominantly at relatively long time scales-from one to several years. 
As the dissipation is further decreased there is a progressive increase in low frequency 
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variability (Fig. 18). Because the low frequency variability is associated with motion on a 
strange attractor, long time scale fluctuations in this model are inherently unpredictable. 
The appearance of powerful, unpredictable, decadal to centennial time scale fluctuations in 
a relatively simple GCM, if symptomatic of more realistic GCMs and climate models, 
complicates the task of climate prediction. 

Given the importance of understanding the origin of such time scales when trying to 
unravel the dynamics of climate, it would seem a worthwhile, though not necessarily 
simple, endeavor to try and unscramble the mechanism responsible for the appearance of 
such time scales at the bifurcation from a torus to a chaotic attractor. One possible 
explanation might be that the bifurcation involved is a homoclinic bifurcation of some sort. 
Trajectories on the attractor might then linger recurrently in the vicinity of a hyperbolic 
invariant set such as a hyperbolic fixed point or limit cycle. At least one such unstable fixed 
point and two such unstable limit cycles resulted from the various earlier bifurcations. If 
these continued down to lower values of V, one of them may be involved in a homoclinic 
bifurcation from the torus. Constructing an algorithm to track unstable limit cycles is a 
significant research problem for a system this large but such an effort would be useful if it 
helped one understand the origin of low frequency variability. 

The majority of the bifurcations that we have described are local (the nature of the 
transition to the chaotic attractor is unresolved). The structure of the flow field is therefore 
continuous across the bifurcations. Where the bifurcations are subcritical, as in the case of 
the transition to limit cycles on the B branch of solutions, there is a finite change in 
structure going from the steady state to the limit cycle. The limit cycles resemble finite 
amplitude versions of the streamfunction patterns seen in the linear instabilities, c.f. 
Figure 21. At first, as v is reduced, the length scales of the recirculation gyres gradually 
decrease. However, at still lower V, the flow becomes dominated by very strong, highly 
time-dependent large recirculations. Without baroclinic instability, the production of small 
scale features is inefficient. In this single gyre model, in which vorticity input by the wind 
has only a single sign, the inability to effectively produce small scale features that can 
efficiently transfer vorticity to the boundaries means that strong large scale flows are 
required before the vorticity gradients near the boundaries are sufficient to remove the 
vorticity pumped in by the wind stress. This is akin to the inertial runaway seen in some 
steady solutions of wind-driven circulation problems. Several snapshots of the streamfunc- 
tion in the strongly irregular regime seen at low viscosity (u = 100 m* s-i) are shown in 
Figure 23. Despite the irregularity, there is still a significant oscillatory component. 

We make some rather tentative conjectures designed to offer a rationalization of some of 
the results described in Section 4. The way in which some at least of the many degrees of 
freedom present in this system contribute to the dynamics of the system appears to be as 
oscillators coupled together by the nonlinearity of the system (the advection terms). These 
oscillators we identify with the limit cycles seen at the high u end of the A and B families of 
time-dependent solutions. We guess that these can be traced to the two types of instabilities 
identified in the barotropic model by Meacham and Berloff (1997). (We cannot prove this 
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Figure 23. Snapshots of the stream function of the aperiodic flow seen when v  = 100 m2 s-l. The 
interval between images is 10.125 days. Negative contours are dashed. The contour interval is 
roughly 7% of the difference between the maximum and minimum values over the total time 
shown. 

because we have not been able to follow family B around the tangent bifurcation onto the 
unstable branch.) For most of a considerable range of u (350 m2 s-l to 170 m* s-r), only 
either one or two modes of oscillation dominate and the asymptotic behavior of the system 
could be approximated by a two-degree of freedom dynamical model. Given the magnitude 
of the flow speed near the western and southern boundaries (e.g. approx 40 cm s-l for 
v = 170 m* s-l) and the consequent degree of nonlinearity in the system, this seems fairly 
remarkable. We are at present trying to model the dynamics on 2D and 3D Poincare 
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sections through the fractal attractor at v = 147 m* s-r with relatively simple two- and 
three-dimensional maps. 

One of the consequences of the bifurcation picture shown by this model is that, for a 
range of flow parameters, multiple, stable, unsteady equilibria are present. This range 
includes a region where two different stable limit cycles can exist. By using a different 
value of 6 and crossing the marginal curve along a different path through (E, 8) space is 
possible to make the tangent bifurcation on the B family of solutions occur at a higher 
value of v than the supercritical Hopf bifurcation that begins the A family. Under these 
conditions, there is a range of v for which both a stable, steady circulation and a stable limit 
cycle exist. There the steady state is unstable to finite amplitude perturbations; a large 
enough disturbance will kick the system over into the basin of attraction of the limit cycle. 

A useful extension of this work would be to apply a KL analysis to the flow when the 
system is on an asymptotic attractor and discover the structure of the principal orthogonal 
modes. 
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