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Most of the nearly zonal, multiple, alternating jets observed in the oceans are
latent, that is, their amplitudes are weak relative to the ambient mesoscale
eddies. Yet, relatively strong jets are often observed in dynamical simulations.
To explore mechanisms controlling the degree of latency, we analyse solutions
of an idealized, eddy-resolving and flat-bottom quasigeostrophic model, in which
dynamically generated mesoscale eddies maintain and interact with a set of multiple
zonal jets. We find that the degree of the latency is controlled primarily by the bottom
friction: the larger the friction parameter, the more latent are the jets; and the degree of
the latency is substantial for a realistic range of the oceanic bottom friction coefficient.
This result not only provides a plausible explanation for the latency of the oceanic
jets, but it may also be relevant to the prominent atmospheric multiple jets observed
on giant gas planets, such as Jupiter. We hypothesize that these jets can be so strong
because of the relative absence of the bottom friction. The mechanism controlling the
latency in our solutions is understood in terms of the changes induced in the linear
eigenmodes of the time–mean flow by varying the bottom friction coefficient; these
changes, in turn, affect and modify the jets. Effects of large Reynolds numbers on the
eddies, jets, and the latency are also discussed.
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1. Introduction
1.1. Background

Over the last few years, observations of multiple, alternating, nearly zonal features
in time-averaged properties of the global ocean have come from sea-surface altimetry
measurements, float trajectories, and chemical tracer distributions (Hogg & Owens
1999; Maximenko, Bang & Sasaki 2005; Maximenko et al. 2008; Ollitrault et al.
2006; Sokolov & Rintoul 2007a,b, 2009; Huang et al. 2007; Herbei, McKeague &
Speer 2008; Ivanov, Collins & Margolina 2008; van Sebille, Kamenkovich & Willis
2011), as well as from eddying solutions of primitive-equation general circulation
models (GCMs) (Sinha & Richards 1999; Nakano & Hasumi 2005; Richards et al.
2006; Huang et al. 2007; Kamenkovich, Berloff & Pedlosky 2009a,b; Levy et al.
2010; Melnichenko et al. 2010). These features can be viewed as time–mean zonally
elongated anomalies on large-scale background flows such as, for example, midlatitude
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gyres and the Antarctic Circumpolar Current, and they have been reported to exist in
all oceans, except for the Arctic. Use of the term ‘jets’ to describe these latent oceanic
flows is common but somewhat imprecise, because these flows are poorly visible in
the instantaneous flow.

Typical multi-year time-average zonal velocities of these oceanic jets are a few
centimetres per second (the time-averaging interval of the observations is limited
to less than two decades of the satellite altimetry record, and typical time spans
of the comprehensive eddy-resolving GCM solutions are limited to a few decades).
Multiple zonal jets are not visible in the instantaneous oceanic flow field, which is
instead dominated by long-lived, westward-propagating eddies (e.g. Chelton, Schlax &
Samelson 2011). Thus, the observed jets are ‘latent’, in the sense that they are weaker
than the ambient mesoscale eddies, and they become apparent only after long time
averaging.

Away from the equatorial zone, the oceanic jet features are so weak relative to
the velocities of mesoscale eddies that Schlax & Chelton (2008) argued that the
appearance of zonal jets in a time average of oceanic data over a limited time period
(e.g. a decade) is likely an artifact of inadequate averaging over the more energetic,
westward-moving eddies. Whether the oceanic zonal-jet features are real dynamical
features or simply a result of averaging over energetic, westward-moving eddies is
beside the point of this paper: it suffices to say that the oceanic jets are highly latent.
However, numerical simulations with nonlinear dynamical models having parameter
values nominally appropriate for the ocean readily produce highly non-latent zonal
jets (i.e. ‘manifest’ jets) that are visible in the instantaneous flow field (e.g. Panetta
1993; Galperin et al. 2004; Berloff, Kamenkovich & Pedlosky 2009b; Liu & Schneider
2011), ones qualitatively more similar to the jets observed on Jupiter (e.g. Kondratyev
& Hunt 1982).

This situation raises a fundamental question about these jets: Why are multiple zonal
jets obviously present in some flow regimes and not obviously present in others? The
purpose of this study is to understand what dynamical processes can cause these jets
to be more or less apparent in the presence of the eddy field. With an idealized,
nonlinear numerical model, we will show that, depending on basic parameters of
the flow (Reynolds number and bottom-friction coefficient), the flow can exhibit
different degrees of jet latency, from flows with strong jets that are apparent in
the instantaneous flow field to flows with a vigorous eddy field and no jets at all. This
variation in the degree of latency is the focus of this paper. In the paper we refer
to the weakness or strength of the time–mean jets relative to the transient mesoscale
eddies as the ‘latency’, we provide quantitative measure of it, and focus on the physics
underpinning the latency in several flow regimes.

There are comprehensive reviews of such jets and associated theoretical ideas,
deeply rooted in the theory of geostrophic and anisotropic turbulence (e.g. Rhines
1994; Dritschel & McIntyre 2008). Since the ground-breaking work of Rhines (1975),
theoretical attention has been paid mostly to barotropic (i.e. purely two-dimensional)
models, driven either by decaying turbulence or by spatially homogeneous, small-
scale random forcing meant to represent baroclinic eddy effects, as first done by
Williams (1978). In these models the jets can be generated by an anisotropic inverse
energy cascade (Vallis & Maltrud 1993; Chekhlov et al. 1996; Danilov & Gurarie
2004; Danilov & Gryanik 2004; Galperin et al. 2004; Galperin, Sukoriansky &
Dikovskaya 2010), characterized by non-local spectral nonlinear interactions (Balk,
Nazarenko & Zakharov 1990). Similar equivalent-barotropic models have been also
considered (Smith 2004; Theiss 2004; Dritschel & Scott 2011). Some studies with
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more dynamically consistent forcings have focused on the jets emerging in a zonal
channel from baroclinically unstable zonal flow (Panetta 1993; Treguier & Panetta
1994; Kaspi & Flierl 2007; Thompson & Young 2007; Berloff, Kamenkovich &
Pedlosky 2009a; Berloff et al. 2009b), and Hristova, Pedlosky & Spall (2008)
suggested that multiple zonal jets can be generated by instability of the meridional
flow.

In the barotropic models, the only eddy effect maintaining the jets is associated
with divergence of the eddy momentum fluxes, or, equivalently, the eddy relative
vorticity fluxes. The meridional scale of the barotropic jets is thought to be the
physical scale at which the inverse energy cascade in turbulence is partially ‘arrested’
by propagating Rossby waves (e.g. Rhines 1994). This so-called Rhines scale is
determined by a balance between the nonlinear advection and the linear meridional
advection of the planetary vorticity. Alternative scalings corresponding to the transition
from the turbulence to Rossby waves have been also proposed (Vallis & Maltrud 1993;
Sukoriansky, Dikovskaya & Galperin 2007). Also, it is argued that although eddies at
the Rhines scale possess most of the eddy energy, the jets are dynamically maintained
by smaller eddies (Huang & Robinson 1998).

In addition to the Rhines scale, more realistic baroclinic models (i.e. vertically
stratified ones containing both barotropic and baroclinic dynamics) have other
fundamental horizontal length scales associated with the vertical stratification (i.e.
baroclinic deformation radii), and there are important dynamical interactions between
the vertical barotropic and baroclinic modes. It has been suggested that, in the
presence of bottom friction, baroclinic jets are associated with baroclinic–barotropic
interactions that break down the inverse cascade arguments (Thompson & Young
2007). The baroclinic models further suggest that even the barotropic components
of the zonal jets are maintained by the systematic rectified action of the baroclinic
eddies, through their time–mean nonlinear interactions (Berloff et al. 2009a;
Kamenkovich et al. 2009a). Finally, the baroclinic models suggest that not only
are baroclinic–barotropic interactions at the heart of the eddy–jet interactions, but
also that the baroclinic component of the jets can be maintained either by eddy
momentum fluxes or by eddy buoyancy fluxes, depending on the direction of the
unstable background flow that feeds the eddies. The analysis of the corresponding
eddies suggests that instead of an inverse energy cascade from the small scales
of the external forcing, as happens in the barotropic models, the baroclinic-model
dynamics is dominated by nonlinear interactions of the linear eigenmodes that appear
at mesoscales (Berloff et al. 2009a,b). Thus, the baroclinic dynamics has some
fundamental differences from the barotropic one.

Several studies provide evidence for highly anisotropic and spatially inhomogeneous
mixing in the presence of the jets. The ‘staircase’ idea suggests that some parts of
the jets act as narrow barriers to the material transport induced by the flow, and these
barriers separate relatively broad zonal bands characterized by intense eddy-induced
mixing of material properties and partial homogenization of potential vorticity (PV)
(McIntyre 1982; Baldwin et al. 2007). Supporting evidence for this comes from some
numerical models (e.g. Greenslade and Haynes 2008; Dritschel & McIntyre 2008),
observations (Marshall et al. 2006), and laboratory experiments (Read et al. 2007), and
this evidence is consistent with the observed atmospheric jets on the giant gas planets.
However, many other studies do not find a sharp staircase (Panetta 1993; Thompson &
Young 2007; Berloff et al. 2009a; Kamenkovich et al. 2009a); instead, they find more
gradual meridional variations in meridional transport and other flow properties, more
consistent with oceanic observations. Oceanic observations of zonally banded features
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in chlorophyll concentration (Sokolov & Rintoul 2007b) and sea-surface temperature
(Buckingham, Cornillon & Obenour 2011) suggest the existence of weak mixing
zones separated by weak barriers embedded in the jets. Finally, it is argued that
anisotropic transport and mixing associated with the oceanic jets (Kamenkovich et al.
2009b) can be important for distributions of chemical tracers influencing the global
climate, and therefore developing various diagnostics for this transport and mixing is
an active research area (e.g. Hughes, Thompson & Wilson 2010; Beron-Vera et al.
2010). Overall, the issue of the contrast between the partial barriers and mixing zones,
as well as the corresponding distinctions between the oceanic and atmospheric jets,
will be resolved only with progress toward more physically complete models and with
more complete understanding of the various physical processes that affect the jets. A
goal of this study is investigation of the jets and eddies in a model which is idealized,
but with very nonlinear and detailed eddy dynamics.

In summary, past studies have not yielded a universally accepted view on the origins
and dynamics of multiple zonal jets observed in the oceans and in the atmospheres
of giant gas planets. However, nearly all theories argue that the jets are a nonlinear
phenomenon driven by mesoscale eddies in the presence of the background gradient
of the planetary vorticity. The lack of clear physical understanding of the dynamics
shaping the jets and eddies calls for thorough investigation in progressively more
realistic models.

The essential and novel part of this paper is that it focuses on the jet latency
– an important property of multiple jets that compares their strength to that of the
ambient mesoscale eddies – in the context of a geometrically idealized model that
has very detailed eddy dynamics. Qualitatively, the more latent the jets are, the more
they are obscured by the eddy field, and the less visible they are in the flow. A
simple quantitative measure of the latency is proposed. Solutions of a two-layer,
quasigeostrophic model are explored for a broad range of dissipative parameters, and
the associated complex effects of dissipation on the jets and eddies are discussed in
detail. We argue that the mechanisms underpinning the latency, as well as some other
properties of the solutions, can be understood in terms of the properties of the linear
eigenmodes of the time–mean flow. These properties involve dispersion relationships
and spatial patterns of the eigenmodes, as well as their nonlinear self-interactions
and the efficiency of these interactions in maintaining the jets. In this theoretical
framework, we build our work on the results of Berloff et al. (2009b), who focused
on the formation and meridional scale of the jets. The novelty here is in the focus on
the effects of dissipation and large Reynolds number on the latency. We interpret these
effects in terms of the linear eigenmodes and their interactions. To our knowledge, the
importance of the underlying linear eigenmodes in shaping some of the key properties
of the multiple jets and ambient eddies has been emphasized only in Berloff et al.
(2009b) and Yoo & Lee (2010). Our present advance is facilitated by a new and
very efficient advection scheme (Karabasov, Berloff & Goloviznin 2009). A particular
advantage of this scheme is the ability to carry out accurate simulations of baroclinic
jets and ambient eddies at relatively large Reynolds numbers, and thus on a new
level of dynamical realism. From analysis of the model solutions, we argue that the
main factor controlling the latency is the magnitude of the bottom friction, whereas
the degree of the solution nonlinearity (i.e. the Reynolds number) is a secondary
controlling factor.
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1.2. Dynamical model of the jets
The model of the multiple jets used in this study is similar to the model of Panetta
(1993) that was used for simulating the atmospheric jets. Our model uses different
numerical algorithms and much finer horizontal grid resolution, which allow us to
reach unprecedentedly large Reynolds numbers (for this kind of model), allowing a
high degree of nonlinearity in the dynamics. The model incorporates an idealized
zonal background flow, which is the ultimate source of the flow instabilities and
eddies. Such background flow can crudely represent either a large-scale part of the
Antarctic Circumpolar Current or nearly zonal parts of the wind-driven midlatitude
gyres, away from the meridional boundaries. In all of these large-scale currents,
recent observational studies have found robust but latent multiple jets. Our model
parameters and set-up are more oceanic than atmospheric; however, we checked that,
with the atmospheric parameters of Panetta (1993), the ‘atmospheric’ flow solutions
are qualitatively similar. Therefore, our main conclusions are relevant not only to the
oceanic but also to the atmospheric jets.

The horizontally uniform background flow in the model is zonal (i.e. eastward
or westward), and it has a vertical shear that makes it baroclinically unstable to
small perturbations. In the statistically equilibrated solutions, the background flow
is a dynamically consistent source of energy for the multiple jets and the ambient
mesoscale eddies. The model is configured in a zonally periodic channel with vertical
sidewalls and flat bottom, but, in order to estimate dependence of the results on
the presence of sidewalls, we also explored a doubly periodic configuration of the
model. Both the uniformity of the background flow and the absence of the bottom
topography allowed us to avoid introducing additional length scales in the problem.
The motivation for this idealization is to establish a simple, but physically relevant,
starting point, so that more physical complexity can be systematically added later on.

The model domain has a meridional width of Ly = 3600 km, which typically allows
development of up to 10 pairs of jets, and a zonal period of Lx = 2 Ly (by a
‘pair of jets’, we mean one flowing east relative to the background flow, and one
flowing west relative to the background flow). The mid-channel Coriolis parameter
is f0 = 0.83 × 10−4 s−1 (corresponding to 45◦ N), the background planetary vorticity
gradient is β = 2 × 10−11 m−1 s−1, and the governing equations are formulated on
the β-plane. The vertical stratification is simple but permits the essential baroclinic
instability mechanism: there are two stacked isopycnal (i.e. constant-density) layers
with equilibrium thicknesses H1 = 1 km (upper layer) and H2 = 3 km (deep layer).
The corresponding stratification parameters in the governing equations are

S1 = f 2
0

H1 g′1
, S2 = f 2

0

H2 g′1
, (1.1)

where g′1 is the reduced-gravity coefficient associated with the density jump between
the isopycnal layers. We chose g′1 so that the first baroclinic Rossby deformation
radius, Rd1 =

√
g′1H1H2/(f0

√
H1 + H2), which is the fundamental length scale for

the jets and ambient eddies (Berloff et al. 2009b), is 25 km. A practical advantage
of the two-layer formulation of the model is that it eliminates the second and
higher baroclinic modes, which not only complicate the dynamics but also require
substantially finer spatial resolution of the model, because of their smaller deformation
radii (Barnier, Hua & Le Provost 1991).

The bottom friction coefficient, γ , is one of the key parameters of this study.
Its importance in controlling large-scale circulation is recognized (e.g. Dewar 1998),
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but its effect on the latency of multiple zonal jets has never been studied. In the model,
the bottom friction acts as linear drag on the bottom layer velocity, and, in terms of
the vorticity dynamics, this is equivalent to damping of the deep-layer relative vorticity.
Effects of nonlinear bottom friction are not considered here, but they are expected to
be moderate (Arbic & Scott 2008).

The governing quasigeostrophic PV equations (e.g. Pedlosky 1987) for two
dynamically active isopycnal layers are

∂q1

∂t
+ J(ψ1, q1)+ β ∂ψ1

∂x
= ν∇4ψ1, (1.2)

∂q2

∂t
+ J(ψ2, q2)+ β ∂ψ2

∂x
= ν∇4ψ2 − γ∇2ψ2, (1.3)

where the layer index starts from the top; the x and y coordinates correspond to
the zonal and meridional directions, respectively; J( , ) is the Jacobian operator; and
the terms with ν and γ are the (Newtonian) lateral eddy viscosity and the bottom
friction, respectively. Isopycnal PV anomalies, qi, are related to isopycnal velocity
streamfunctions, ψi, through the elliptic sub-problem for PV inversion:

q1 =∇2ψ1 + S1 (ψ2 − ψ1), (1.4)
q2 =∇2ψ2 + S2 (ψ1 − ψ2). (1.5)

The isopycnal velocity components are found from the corresponding velocity
streamfunctions:

ui =−∂ψi

∂y
, vi = ∂ψi

∂x
. (1.6)

No-slip lateral-boundary conditions are used on the sidewalls, and the mass and
momentum constraints are imposed following McWilliams (1977).

The forcing in the governing equations is introduced through an imposed, vertically
sheared, baroclinically unstable background flow (e.g. Haidvogel & Held 1980; Panetta
1993):

Ψi =−Ui y; ψi −→ Ψi + ψi, (1.7)

where Ui are the background zonal-velocity parameters of the problem. We consider
only two dynamically different regimes (Berloff et al. 2009a,b): eastward-background
(EB) flow with U1 = 6 cm s−1 and westward-background (WB) flow with U1 =
−3 cm s−1, respectively, with U2 = 0 for both cases. Since the EB flow tends to be
more stable (Pedlosky 1987), it requires a larger vertical shear to meet the necessary
condition for instability. The only forcing of the system is the internally generated
eddy forcing associated with transfer of energy from the imposed background flow to
the instabilities and eddies, and from them to other motions, including zonal jets.

Given (1.7), the governing equations are re-written with respect to the fluctuations,
ψi and qi, around the background flow, then discretized and solved numerically.
Although the model shell is borrowed from Berloff et al. (2009a), its numerical core is
completely overhauled to achieve much higher accuracy and convergence of solutions
for the same computational cost. In particular, the new scheme allows simulation of
flow regimes at unprecedentedly large Reynolds number,

Re= U1 Rd1

ν
, (1.8)
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achieved by lowering eddy viscosity, ν, to values deemed more suitable for
representing effects of unresolved small-scale motions. (Eddy viscosity in our model
parametrizes the momentum transfer by such unresolved small-scale motions, and the
corresponding viscosity coefficient in the oceans is estimated to be of the order of
1–10 m2 s−1 (Muller 1976).) The typical price to pay for achieving larger Reynolds
numbers is spatial refinement of the numerical grid, required for an accurate and
numerically converged (i.e. approximating the governing equations) solution, and the
resulting computational overhead. For typical eddy viscosity and diffusivity values
used in ocean modelling, the grid spacing requirements are very demanding (e.g.
Wallcraft et al. 2005). To partially overcome these limitations, we used a high-
resolution numerical scheme (discussed below) that permits use of a substantially
coarser grid for the same degree of numerical accuracy and convergence. The previous
studies of Berloff et al. (2009a,b) used ν = 100 m2 s−1 and the same Rd1 and U1,
giving Re = 15 (for the EB flow, whereas for the WB flow Re is half as large). In
the present study, which also considers four times larger domain for a more realistic
population of jets, we reduced ν to 2 m2 s−1, giving Re = 750 (for the EB flow,
whereas for the WB flow it is Re= 375). In our moderate-Re solutions ν = 50 m2 s−1,
giving Re= 30 (for the EB flow, whereas for the WB flow it is Re= 15).

The governing equations (1.2)–(1.5) with substitution (1.7) are discretized with
a high-resolution, second-order finite difference method, following Karabasov et al.
(2009). The key aspect of the new numerical core is its advanced advection scheme
called CABARET, which stands for compact accurately boundary adjusting high-
resolution technique, and its mathematical underpinning is in Karabasov & Goloviznin
(2009). CABARET is low-dispersive, non-dissipative, and enstrophy-conserving in the
linear-advection limit; its computational stencil is very local, with only one cell in
space and time; and for highly nonlinear flows it employs flux correction based on
the maximum principle. The CABARET compactness and ability to accurately handle
strong gradients without producing spurious oscillations make it not only very different
from the standard pseudo-spectral methods but also computationally cost-effective for
turbulent flows. The CABARET flux correction implies that all unresolved anomalies
that cannot be transported on the given grid, while keeping their concentrations
positive, are removed without affecting the resolved scales. Since this removal is
accomplished implicitly, CABARET falls in the monotonically integrated large-eddy
simulation (MILES) framework (e.g. review by Fureby & Grinstein 2002). In the
MILES approach, the capability of capturing sharp velocity gradients for the smallest
resolved scales is very important for representing these scales, and the low-dispersive
and low-dissipative properties of CABARET allow extension of this capability down to
the Nyquist frequency (Goloviznin et al. 2011).

Within the CABARET method, the prognostic equations are marched in time with
the predictor–corrector scheme and the adjustable time step based on the Courant
condition. The elliptic sub-problem for PV inversion (1.4)–(1.5) is diagonalized and
solved for the corresponding velocity streamfunctions on each time step, by a direct
Swarztrauber (1977) solver. The horizontal grid, with 2048× 1025 points, has uniform
resolution of about 3.7 km, and numerical convergence of the solutions has been
tested by several simulations with 4096× 2049 grid spacing. The latter simulations are
qualitatively similar, although they have small quantitative differences of about 10 %
in some key diagnostics. Although the 3.7 km resolution is much better than typical
resolutions of the modern ‘eddy-resolving’ ocean models, it still amounts to less than
7 grid points over Rd1. This resolution would not result in accurate representation
of advection and a numerically converged solution if traditional advection schemes
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were used, but it does with CABARET. So, for each set of parameters the model is
integrated in time until a statistically equilibrated solution regime is reached (typically
after 20–40 years of integration), and the next 60 years are saved for analysis.

2. Nonlinear solutions
In this section we discuss solutions of the nonlinear dynamical model with different

values of the bottom friction coefficient, and in the large- and small-Re flow regimes
corresponding to ν = 2 and 50 m2 s−1, respectively. Our goal here is to establish
phenomenology and quantify the latency properties of the solutions.

The solutions described below clearly exhibit different degrees of latency, with some
parameter regimes giving jets that are clearly visible and others giving a vigorous
vortex-like eddy field and no jets, so we need a quantitative measure of latency.
Similar to Kamenkovich et al. (2009a), we introduce a simple quantitative measure,
Λi, the latency coefficient, defined as square root of the ratio of the two area-averaged
variances:

Λi =
〈
Σ ′i
Σi

〉1/2

, Σ ′i =
1

LxLy

∫∫
q′i

2 dx dy, Σi = 1
Ly

∫
q̄i

2 dy, (2.1)

where variance of the PV anomaly associated with zonally averaged jets (jet variance)
is in the denominator (bar denotes zonal average), variance of the remainder of the PV
anomaly (eddy variance) is in the numerator, and angular brackets denote (long) time
averaging. Large Λi corresponds to the ‘latent’ jets that are weak relative to the eddies.
The latency coefficient is defined for each isopycnal layer, and for the two-layer flow it
is conveniently represented by a pair of numbers, [Λ1,Λ2]. We calculated the latency
coefficient not only for all reference solutions discussed below but also for several
intermediate values of γ , in order to establish empirical dependence of Λ on the
bottom friction (figure 6).

We focus on several reference solutions, corresponding to small, large, and
intermediate values of γ , for each case of the background flow and Re. The upper-
ocean PV anomalies of the EB and WB large-Re solutions are shown in figures 1
and 2, respectively, and examples of the deep-ocean PV distributions are shown in
figure 3. The effect of large Re on the solutions is discussed later in this section,
and a theoretical explanation of the growth of latency with bottom friction is given
in § 4. The solutions are illustrated with their PV anomalies, which are related
to the velocity streamfunctions through the PV inversion relations (1.4)–(1.5). The
velocity streamfunctions (figure 4) are typically much smoother than the corresponding
PV fields. The PV anomalies, qi, are defined with respect to the background PV
distributions, which are zonally uniform and meridionally linear (figure 5):

Q1(y)= (β + S1U1)y, Q2(y)= (β − S2U1)y. (2.2)

The corresponding PV gradients change sign in the vertical, as required for
background flows that are baroclinically unstable (Pedlosky 1989). Below, we discuss
properties of the reference solutions in detail.

The EB small-, medium-, and large-γ cases correspond to the bottom friction
coefficient γ = 10−8, 10−7, 10−6 s−1, respectively, and the oceanographically most
relevant regime is in the middle of this range of values. The small-γ solution is
characterized by multiple jets that are strong relative to the background flow, with a
marked asymmetry between eastward and westward jets. The cores of the eastward
jets act as partial, meandering transport barriers separating opposite-sign PV anomalies,
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FIGURE 1. Dependence of the multiple jets and eddies on bottom friction: EB flow
case, large Re. Upper-ocean PV anomalies (left panels, in colour) and the corresponding
zonally averaged zonal velocity profiles (right panels) are shown for three different values
of bottom friction, γ : (a) 10−8, (b) 10−7, and (c) 10−6 s−1. Potential vorticity anomaly
values are normalized by the Coriolis parameter. Each run has Re = 750 (eddy viscosity
is ν = 2 m2 s−1).

whereas westward jets correspond to relatively mixed PV zones. This solution is still
substantially different from the ideal ‘PV staircase’ limit proposed by Dritschel &
McIntyre (2008) for the Re→∞ situation: the PV profile of the solution in the upper
layer (figure 5) and, even more so, in the deep layer (not shown) is similar to the ‘PV
washboard’ from Berloff et al. (2009a). However, at larger Re we see a clear tendency
towards the ‘PV staircase’, because the PV contrast across the eastward jet cores
becomes more pronounced. (This is also evident from calculating semi-Lagrangian
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FIGURE 2. Dependence of the multiple jets and eddies on bottom friction: WB flow
case, large Re. Upper-ocean PV anomalies (left panels, in colour) and the corresponding
zonally averaged zonal velocity profiles (right panels) are shown for 3 different values of
bottom friction, γ : (a) 10−8, (b) 4 × 10−8, and (c) 10−7 s−1. Potential vorticity anomaly
values are normalized by the Coriolis parameter. Each run has Re = 375 (eddy viscosity is
ν = 2 m2 s−1).

meridional PV profiles, following Dritschel & McIntyre (2008).) With medium γ , the
amplitude of the jets is significantly reduced, the eastward jet cores are relatively
convoluted and incoherent, and the eddies are stronger and frequently travel across
the jet cores. Overall, the jets become significantly more latent. The large-γ regime is
characterized by an almost complete destruction of the basin-wide jets, as seen both in
the time–mean fields and snapshots, and the resulting flow pattern is characterized by a
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FIGURE 3. Flow in the deep ocean. Deep-ocean PV anomalies of (a) EB and (b) WB flows
at intermediate values of the bottom friction, 10−7 and 4 × 10−8 s−1, respectively. The flow
snapshots correspond to figures 1(b) and 2(b), respectively, but for the deep ocean. Potential
vorticity anomaly values are normalized by the Coriolis parameter, and zonally averaged
zonal velocity profiles are shown in the right panels.

weakly anisotropic field of coherent eddies. In the deep ocean, the EB jets are always
more latent (figure 3).

The WB small-, medium, and large-γ cases correspond to γ = 10−8, 4 ×
10−8, 10−7 s−1, respectively, and this range of values is smaller than in the EB case,
because the WB jets become essentially non-existent for larger γ . For the larger values
of bottom friction, γ , believed appropriate for the ocean, we see a significant degree
of latency, similar to what is observed in the ocean, whereas for small γ we see small
degree of latency and very pronounced jets, similar to what is observed in the Jovian
atmosphere. The deep-ocean jets in the WB flow are as latent as the upper-ocean ones
(figure 6).

An interesting new feature of the large-Re WB solutions is the emergence of very
coherent and long-living vortices, which co-exist with less coherent and more transient
eddies. Initial PV anomalies in these vortices are generated by viscous stresses on
the side boundaries, and as the vortices move away from the boundaries, they mix
with ambient fluid and grow in size. (When we replaced the sidewalls with the
meridionally periodic boundary condition, the population of the vortices decreased but
their intensity increased, and the corresponding PV anomalies got advected across
several domain periods rather than getting generated on the sidewalls.) These emerging
coherent vortices drift not only to the west, as common for the β-plane vortices,
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FIGURE 4. Velocity streamfunction of the upper ocean. Inversion of the PV smooths out its
fine structure, and the multiple jets become more visible. The flow snapshots correspond to
(a) figure 1(b) and (b) figure 2(b). The streamfunction has been multiplied by the upper layer
depth, so units for the colour scale are Sverdrups (106 m3 s−1).

but also meridionally, and the direction of their meridional drift is always down the
background PV gradient, both in the upper and deep layers. Note that McWilliams &
Flierl (1979) reported vortices propagating up the background PV gradient, in seeming
contradiction to our results. This difference may be explained partly by structural
differences in the vortices – they are dynamically consistent in our case but have an
idealized structure in McWilliams & Flierl (1979). The other important difference is
that we focus on a background PV gradient that changes sign in the vertical, whereas
McWilliams & Flierl (1979) considered a vertically uniform one.

An important property of the WB coherent long-living vortices is that they are
substantially compensated at depth, that is, their barotropic and baroclinic components
compensate each other in the deep layer, and thus the deep-ocean expression of these
vortices is weak. Because of this deep compensation, these vortices are relatively
insensitive to the bottom friction. However, they are sensitive to the presence of
multiple jets (figure 2), because the vortices are less likely to remain intact in the
presence of shear dispersion induced by the jets. We leave detailed study of these
remarkable large-Re WB vortices for the future, as this is beyond the limited goals of
the present study.

Solutions at low Re (ν = 50 m2 s−1) differ significantly from the large-Re solutions
(figures 7 and 8). Both jets and eddies are much weaker, but the jets are also less
latent, because the eddies are damped more strongly than the jets by the scale-
selective viscosity. The eddies are also in a more orderly arrangement in both zonal
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FIGURE 5. Time–mean distributions of PV. Upper-ocean (thick lines) and deep-ocean
(thin lines) meridional profiles of the PV and its anomaly are normalized by β, and the
corresponding planetary vorticity, βy, is indicated by dashed lines. EB (a–c) and WB (d–f )
flow solutions at large Reynolds number. Panels (a, d) and (b, e) (PV and PV anomaly profiles,
respectively) correspond to the weak bottom friction (figures 1a and 2a), and panels (c, f )
correspond to the large bottom frictions (figures 1c and 2c).

and meridional directions. Perhaps the biggest difference is that the WB long-living
coherent vortices are completely absent.

As figure 6 indicates, and in accord with visual inspection of the corresponding
solutions, Λ increases with decreasing eddy viscosity, ν (i.e. it increases with Re),
and with increasing bottom friction, γ . While the former tendency is expected, since,
as explained above, the scale-selective viscosity affects eddies to a larger degree than
the large-scale jets, the latter result is somewhat counterintuitive. The increase of the
latency with increasing γ is substantial. In the EB case, in both layers there is a
reasonably good empirical fit: Λi ∼ γ 0.4. In the WB case and at large Re, Λ1 grows
with γ more slowly (∼γ 0.25–0.40), but Λ2 grows faster (∼γ 0.55–0.65). We find that the
small-Re WB regime is special, because Λi decays for moderate values of γ . This
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FIGURE 6. Dependence of the latency coefficient, Λi, on the bottom friction, γ . (a, b)
Large-Reynolds-number solutions, (c, d) moderate-Reynolds-number solutions. (a, c) EB flow
regimes, (b, d) WB flow regimes. Circles/crosses indicate the values of the latency coefficient
in the upper/deep ocean, and the corresponding least-squares fits, Λi ∼ γ k, are shown with
the thick and thin lines, respectively. Exponents of the least-squares fits, k, are shown next
to the corresponding lines. Variations of γ are from small, 0.04 × 10−7 s−1, to moderately
large values of 4 and 0.8 × 10−7 s−1 in the EB and WB flow regimes, respectively. Values of
Λ1 corresponding to figures 1(b), 2(b), 7(b), and 8(b) are indicated with larger circles. The
breakdown of the trend for the moderate-Re WB case is discussed in § 2.

behaviour is due to the emergence of an upper-layer large-scale flow (not shown)
that consists of westward currents near the sidewalls and a broad and weak eastward
current in the interior of the channel. The latter current noticeably reduces the unstable
vertical shear and thus weakens the eddies and jets. Since this flow regime completely
goes away at large Re, it is less interesting. Analysis of Σ (‘jet’ PV variance) and Σ ′

(‘eddy’ PV variance) in (2.1) suggests that Λ increases with γ , because, in general, Σ ′

increases and Σ decreases (not shown). At large Re, both Σ ′ and Σ are decreased for
a given value of bottom friction, γ , indicating that both the eddies and jets are more
efficiently damped by the bottom friction (as confirmed by the flow energetics in § 3).
In the large-Re WB case, characterized by long-living coherent vortices, the deep-layer
Σ ′ does not grow with γ , whereas the corresponding Σ has very steep decay (all
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FIGURE 7. Dependence of the multiple jets and eddies on bottom friction: EB flow case,
moderate Re. Upper-ocean PV anomalies (left panels, in colour) and the corresponding
zonally averaged zonal velocity profiles (right panels) are shown for 3 different values of
bottom friction, γ : (a) 10−8, (b) 10−7, and (c) 10−6 s−1. Potential vorticity anomaly values
are normalized by the Coriolis parameter. The parameters for these runs are the same as
for the runs shown in figure 1, except that each run here has Re = 30 (eddy viscosity is
ν = 50 m2 s−1).

consistent with the flow regime that is nearly depth-compensated), and the ratio of the
two results in relatively steep growth of Λ2 (figure 6b).

Finally, we have checked that our large-Re results do not depend qualitatively
on spatial resolution of the grid, by doubling the resolution to 4096 × 2049 points.
The highest-resolution solutions demonstrated 10 %–20 % increase of Λ in all cases,
except for the small-γ EB case, which showed 10 % decrease of Λ associated
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FIGURE 8. Dependence of the multiple jets and eddies on bottom friction: WB flow case,
moderate Re. Upper-ocean PV anomalies (left panels, in colour) and the corresponding
zonally averaged zonal velocity profiles (right panels) are shown for 3 different values of
bottom friction, γ : (a) 10−8, (b) 4× 10−8, and (c) 10−7 s−1. Potential vorticity anomaly values
are normalized by the Coriolis parameter. The parameters for these runs are the same as
for the runs shown in figure 2, except that each run here has Re = 15 (eddy viscosity is
ν = 50 m2 s−1).

with sharpening of the jets. Also, in order to check that the results do not
depend qualitatively on the presence of the sidewalls, we looked at solutions of
dynamically similar, spatially double-periodic model of the jets and found broadly
similar behaviours; the main differences are related to the absence of PV generation on
the lateral walls and to more limited meridional migrations of the coherent vortices in
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γ (s−1) 10−8 4× 10−8 10−7 10−6

EB, ν = 2 [1.1(0.2),
3.9(3.0)]

[2.0(0.1),
20.2(4.2)]

[2.0(0.0),
40.5(0.1)]

EB, ν = 50 [2.0(0.6),
0.5(0.4)]

[9.1(0.9),
5.6(2.1)]

[13.9(0.1),
35.6(0.6)]

WB, ν = 2 [1.3(0.1),
6.4(3.2)]

[1.2(0.0),
13.5(1.1)]

[1.2(0.0),
17.8(0.1)]

WB, ν = 50 [1.0(0.2),
0.3(0.2)]

[2.2(0.0),
1.4(0.0)]

[2.2(0.0),
2.7(0.0)]

TABLE 1. Energy dissipation in the nonlinear reference solutions. Each pair of numbers
corresponds to the densities of energy dissipation by eddy viscosity and bottom friction,
[Dν,Dγ ], respectively, in units of 103 m2 s−3. All numbers are rounded to the first decimal
digit, and numbers in parentheses show contributions to Dν and Dγ from the time–mean
flow. The numbers in this table correspond to solutions shown in figures 1, 2, 7, and 8.

the large-Re WB case. Thus, the dependences of the latency on the bottom friction and
Re are robust.

3. Analysis of energetics
In this section we analyse energetics of the flow to scrutinize conclusions obtained

in § 2. The energy equation is obtained by multiplying the governing (1.2)–(1.7) by
−(Hi/H)ψi and then summing them to obtain the prognostic equation for the energy
density. The viscous and bottom friction terms, then, are rearranged by substituting the
identities,

−ψ∇2∇2ψ =∇ · (∇ψ∇2ψ − ψ∇∇2ψ)−∇2ψ∇2ψ,

ψ∇2ψ =∇ · (ψ∇ψ)−∇ψ ·∇ψ,

}
(3.1)

into the corresponding flux divergence and sign-definite dissipative terms. The basin-
averaged dissipation due to the eddy viscosity is

Dν = νA
∫∫

A

[
H1

H
(∇2ψ1)

2 + H2

H
(∇2ψ2)

2

]
dA (3.2)

and the basin-averaged dissipation due to the bottom friction is

Dγ = γA
∫∫

A

H2

H
(∇ψ)2 dA, (3.3)

where A is the area of the domain. Furthermore, with the velocity streamfunction
decomposed into the time–mean and (eddy) fluctuation components, the time–mean
Dν and Dγ have separate contributions due to the time–mean flow and eddies.
We calculate these quantities for all reference solutions (table 1) and use them
to characterize the flows. The time–mean total dissipation is always equal to the
time–mean energy forcing, which is supplied by the unstable background flow. This
forcing differs for different solutions, but the general tendency is simple: first, smaller
ν and smaller γ are associated with weaker energy forcing and dissipation; and,
second, with larger γ , the total dissipation is dominated by the eddies (rather than the
time–mean jets) and by the bottom (rather than lateral) friction.
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What is the effect of large Re on the energy dissipation? When we increase Re by
the factor of 25, the nature of the dissipation changes fundamentally: domination of
the eddy viscosity is replaced by domination of the bottom friction, even at moderate
values of the bottom friction coefficient (table 1). One could, for example, imagine
a completely different dynamical response, in which the flow increased its velocity
gradients (e.g. by sharpening the instantaneous jets, as in the ‘PV staircase’ scenario
in Dritschel & McIntyre 2008) and continued to dissipate laterally, but apparently this
scenario is dynamically inconsistent for even moderate values of the bottom friction,
γ . However, for very small values of γ , that are arguably not oceanic, our large-Re
solutions show tendency towards ‘PV staircase’ in the EB regime (figure 1a), as
indicated by very sharp and meandering PV fronts corresponding to the eastward jet
cores. The increase of Re also leads to the increase of dissipation (and forcing): by
a factor of 4–5 in the WB case (due to emergence of strong coherent vortices) and
by a factor of 2 in the small-γ EB case (due to emergence of strong jets). Although
the eddy viscosity dissipation is linearly proportional to ν, the change of ν from 50
to 2 m2 s−1 does not lead to 25-fold decrease of the dissipation. Instead, the viscous
dissipation is generally reduced by a smaller factor of 2–7, and in the small-γ WB
case it is even increased. This implies that in these cases the relative vorticity of the
eddies (in (3.2)) increases by a factor of 2–4. Thus, generation of the eddy vorticity
does not fully compensate for the reduction of the eddy viscosity, and the main
mechanism of the energy dissipation switches to the bottom friction. We also note that
at large Re the rate of increase of the bottom dissipation with γ is slower than at small
Re, because of the deep compensation.

Energetics of the reference solutions are shown in table 2, and their analysis
prompts the following conclusions, which are consistent with analyses of § 2. As
expected, we find that larger Re results in more energetic flows, but more so in
the WB case, because of the contribution from the intense and long-living coherent
vortices. What is unexpected is that the increased bottom friction removes energy
preferentially from the mean flow, that is, from the zonal jets. Moreover, in the EB
case, the eddies become substantially more energetic with increasing bottom friction,
γ , and this is associated with increasing upper-ocean kinetic and potential energies,
and with decreasing deep-ocean kinetic energy. Although this effect may seem similar
to the equivalent-barotropization effect in response to large bottom friction in the
absence of the β-effect (Arbic & Flierl 2004), the solutions are not only far from
being equivalent-barotropic but also bottom dissipation dominates because of the deep
eddies. In the low-Re EB case this effect is similar but weaker. In the WB solutions
we also find a partial equivalent-barotropization effect in the coherent vortices, but
since in this flow regime a large fraction of the energy is in the form of the deep-
ocean kinetic energy not associated with these vortices, the total energy decreases with
larger γ .

4. Linear stability analysis
In this section, we provide an explanation of the main results obtained from the

analysis of nonlinear flow solutions (§ 2). Following the approach of Berloff et al.
(2009b), we study linear stability properties of the time–mean jets, and the novelty of
the analysis here is that we aim to explain the observed dependences of the jet latency
on the bottom friction, γ , and Reynolds number, Re. Although all flow regimes seem
to be highly nonlinear, our analysis supports the main claim of Berloff et al. (2009b),
that these flows are still largely controlled by the footprints of the underlying linear
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FIGURE 9. Average flow states used for linear stability analysis. Velocity profiles in the
upper (thick curve) and deep (thin curve) isopycnal layers corresponding to the (a) EB and (b)
WB flow regimes. Straight thin lines indicate velocities of the background flow.

eigenmodes that contribute not only to the eddy patterns but also to the associated
nonlinear eddy forcing that maintains the jets. Here, we take this interpretation further
by showing that not only these properties but also the latency of the jets is dependent
on the underlying linear eigenmodes. In general, large bottom friction could control
the latency through the following mechanisms: (a) by weakening the eddy amplitude,
(b) by decreasing efficiency of the eddy forcing (i.e. correlation of it with the jets), and
(c) by damping zonally uniform eigenmodes (i.e. those that have no structure along the
channel) that form the template of the jets. Mechanism (a) cannot explain the increase
in latency, because the eddy amplitude actually increases as the eddies become more
energetic with larger bottom friction, γ . The relative contributions of the other two
mechanisms are examined below.

The linearized governing equations of the two-layer dynamics are

∂q1

∂t
+ J(Ψ1, q1)+ J(ψ1,Q1)+ βψ1x = ν∇4ψ1, (4.1)

∂q2

∂t
+ J(Ψ2, q2)+ J(ψ2,Q2)+ βψ2x = ν∇4ψ2 − γ∇2ψ2, (4.2)

where we have linearized about Qi and Ψi, the time–mean and zonally averaged PV
and velocity streamfunction, respectively, taken from the solutions discussed in § 2.
We used two input states corresponding to the EB and WB regimes (figure 9), that
are spatially smoothed approximations of the large-Re medium-γ solutions (figures 1b
and 2b).

We are thus linearizing around a meridionally varying flow that consists of the
uniform background flow (first term below) and the finite-amplitude zonal jets
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(second term):

Ψi =−Uiy−
∫ y

0
ūi(y)dy. (4.3)

The perturbation streamfunction is Fourier-transformed temporally and zonally,

ψi −→ ψi(y) exp[i(kx− ωt)], (4.4)

and the Fourier-transformed linearized equations are found:

ω[ψ ′′1 − (k2 + S1)ψ1 + S1ψ2] = iνψ IV
1 + k(U1 + ū1 − i2kν)ψ ′′1

+ [k(β − k2(U1 + ū1)− ū′′1 − S1(U2 + ū2))

+ iνk4]ψ1 + [kS1(U1 + ū1)]ψ2, (4.5)
ω[ψ ′′2 − (k2 + S2)ψ2 + S2ψ1] = iνψ IV

2 + [k(U2 + ū2 − i2kν)− iγ ]ψ ′′2
+ [k (β − k2(U2 + ū2)− ū′′2 − S2(U1 + ū1))

+ i(νk4 + γ k2)]ψ2 + [kS2(U2 + ū2)]ψ1. (4.6)

The above equations were discretized with second-order finite differences using the
same meridional resolution as in the full nonlinear model, the no-slip boundary
conditions were applied on the sidewalls, and the resulting generalized eigenproblem
was solved numerically. We tested that the outcome is not sensitive to further
refinement of the spatial grid. The solutions were obtained in terms of the eigenmode
patterns for each zonal wavenumber and the eigenvalues that consist of growth rates
and temporal frequencies of the eigenmodes. For each eigenmode we also computed
the meridional profile of its temporally and zonally averaged nonlinear self-interaction,
which is referred to as the corresponding eddy forcing. Spatial correlation between the
eddy forcing and the input state can serve as a measure of the efficiency of the eddy
forcing to maintain or destroy the jets.

An important set of linear eigenmodes is the one that corresponds to k→ 0: these
are zonally uniform eigenmodes which have no structure in the zonal direction but
oscillate in the meridional direction. It can be easily seen from (4.5)–(4.6) that zonally
uniform eigenmodes do not depend on the time–mean zonal velocity, and are thus
the same for the EB and WB cases. Some of these eigenmodes are predominantly
barotropic, while others are predominantly baroclinic. All of the zonally uniform
eigenmodes are damped (i.e. stable), but many of them have very long decay times.
We sort these eigenmodes in terms of a decay rate index: the least damped eigenmode
has index 1, the second least damped has index 2, and so on. Dependences of
the decay time on the mode index for different values of bottom friction, γ , and
eddy viscosity, ν, are shown in figure 10 and discussed further below. Some of the
zonally uniform eigenmodes are very efficiently excited by the eddies, and, eventually,
they constitute the time–mean jets (Berloff et al. 2009b). We find that larger γ
shortens the decay times and thus damps out the eigenmodes and makes the jets
more latent. Predominantly barotropic zonally uniform eigenmodes are more sensitive
to γ (figure 10), and the WB multiple jets are dominated by these eigenmodes. This
partially explains the observed enhanced sensitivity of the jets of the WB flow to
increasing γ (§ 2).

We now turn our attention to propagating eigenmodes with zonal structure (|k| > 0).
Dispersion relationships provide a useful description of the phase propagation and
growth rate properties of these eigenmodes (figures 11 and 12). (For convenience,
we trade negative eigenfrequency for negative zonal wavenumber, and thus dispersion
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FIGURE 10. Damping of the zonal eigenmodes by bottom friction. The values of the bottom
friction are (a) zero, (b) 10−8, and (c) 10−7 s−1. The modes are ordered in accordance with
their decay rates: a higher mode index corresponds to a shorter decay time. Predominantly
baroclinic modes are indicated with dots, and predominantly barotropic modes with crosses.
The modes with the eddy forcing that is significantly correlated with the WB flow jets
are indicated with large circles with crosses inside (all of these modes are predominantly
barotropic): the corresponding decay time substantially shortens with increasing bottom
friction.

curves with negative zonal wavenumbers correspond to the patterns propagating to the
west.) In most of the theories dealing with the multiple jets, dispersion relationships
obtained from linearization around the time–mean state are typically overlooked,
perhaps because of the common belief that the flow is too nonlinear. Here, we take
advantage of the dispersion relationships, because they help to classify and accurately
track the linear eigenmodes, and because they clearly demonstrate the weakening
and ultimate demise of some of the eigenmodes in response to increasing bottom
friction, γ . On the k–ω plots the dispersion relationships are represented by the sets of
curves that correspond to the eigenmodes described by the meridional profiles of their
amplitude and phase. Along each dispersion curve, the corresponding eigen-pattern
changes but nevertheless preserves its main features. The dispersion curves can be
sorted into three dynamically distinct types that correspond to the type-1, type-2, and
type-3 eigenmodes discussed in Berloff et al. (2009b). Below, we explore dependence
of the dispersive properties of the eigenmodes on the dissipative parameters.

Nonlinear extension of the analysis of an eigenmode is based on calculating its
eddy forcing (i.e. its nonlinear self-interaction), that can be used for understanding
eddy feedback on the multiple jets. In the nonlinear solutions with weak and moderate
values of bottom friction, γ , we find that the eddy forcing patterns are qualitatively
similar to those reported in Berloff et al. (2009a,b); therefore we discuss them briefly
and focus our attention on the relations of the eddy forcings to the jet latency. The
eddy forcing is (minus) divergence of the eddy PV flux, which consists of fluxes of
relative vorticity,

Ri =∇2ψi, (4.7)

and isopycnal stretching,

B1 = S1(ψ2 − ψ1), B2 = S2(ψ1 − ψ2). (4.8)
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FIGURE 11. Dispersion properties of the linear eigenmodes in the EB flow case. Dependence
of zonal-wavenumber/frequency dispersion curves on the bottom friction. The corresponding
flow velocity profile is shown in figure 9(a). The values of the bottom friction, γ , are (a)
10−8, (b) 10−7, and (c) 10−6 s−1. Dispersion curves define relationships between real part of
the eigenmode frequency (ordinate) and zonal wavenumber (abscissa). Only segments of the
dispersion curves that correspond to substantially positive growth rates (i.e. those with inverse
imaginary part of the eigenfrequency – growth time scale – that is shorter than 2000 days) are
shown; and the most unstable sections (growth time scale shorter than 250 days) are indicated
by thicker curves. The arrows indicate the family of the eigenmodes that become stabilized by
the bottom friction.

The time–mean (indicated by overbar) and zonally averaged (indicated by angular
brackets) eddy forcing,

Fi(x, y)=−〈∇u′iq′i〉, (4.9)

can be interpreted as internally generated PV forcing that is balanced by dissipation
(Berloff et al. 2009a), and it can be split into divergence of the relative vorticity flux



On latency of multiple zonal jets in the oceans 557

–5 –4 –3 –2 –1 0 1 2 3 4 5
0

0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

–5 –4 –3 –2 –1 0 1 2 3 4 5
0

0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

–5 –4 –3 –2 –1 0 1 2 3 4 5
0

0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

Wave number (2*π period) (10–2 km)

(a)

(b)

(c)

Fr
eq

ue
nc

y 
(2

* π
pe

ri
od

)
(1

da
ys

)
Fr

eq
ue

nc
y 

(2
* π

pe
ri

od
)

(1
da

ys
)

Fr
eq

ue
nc

y 
(2

* π
pe

ri
od

)
(1

da
ys

)

FIGURE 12. Dispersion properties of the linear eigenmodes in the WB flow case. The same
as figure 11, but with the velocity profile shown in figure 9b, and with the values of the
bottom friction, γ : (a) 10−8, (b) 4× 10−8, and (c) 10−7 s−1.

(i.e. Reynolds stress forcing) and divergence of the isopycnal stretching flux (i.e. from
stress forcing).

Examples of the three types of most unstable eigenmodes are shown in figure 13.
All these eigenmodes are vertically mixed (i.e. they are barotropic–baroclinic) and
upper-ocean-intensified. Many of these eigenmodes are non-local in the meridional
direction, in the sense that they straddle several jets. The weaker the jets are, the more
non-local are the eigenmodes, and for weak jets all three types merge meridionally
into the very non-local ‘noodle’ mode of instability (Berloff et al. 2009b). The
type-1 and type-2 eigenmodes, describing meandering and vascillation, respectively,
of the westward jets, propagate to the west and therefore occupy the left halves
of the dispersion diagrams (figures 11 and 12). The type-3 eigenmodes occupy the
right halves of the dispersion diagrams, and in the WB case there are also type-3
eigenmodes that slowly propagate to the west (shown by the negative-k/small-ω branch
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FIGURE 13. For caption see facing page.

in figure 12). The type-3 eigenmodes correspond to banana-shaped eddies straddling
the eastward jets and characterized by strong vertical phase shifts. In the EB and WB
cases, the eigenmodes have significant differences in terms of their growth rates and
relative importance.

We find that eddy forcings of the eigenmodes (figure 13) are very similar to the
eddy forcings diagnosed from the nonlinear solutions, and many eddies are similar to
the eigenmode patterns. This result was initially reported by Berloff et al. (2009b),
where it was suggested that these ‘footprints’ of the linear eigenmodes may have been
due to the relatively low Re in those simulations. Here, we confirm this result for
50 times larger Re, which is encouraging robustness. By correlating the eddy forcings
with barotropic and baroclinic components of the jets, we find that the type-1 and
type-2 eigenmodes induce eddy forcing that projects mostly on the baroclinic
component of the jets and acts mostly in the westward jets. Also, by analysing
the relative vorticity and isopycnal stretching components of the eddy forcing, we
find that the type-2 eigenmodes support the jets mostly through the form stress
(associated with the eddy buoyancy flux convergence), whereas the type-1 eigenmodes
support the jets through the Reynolds stress (associated with the eddy momentum flux
convergence). Both of these eigenmodes project poorly on the barotropic component of
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FIGURE 13. Meridionally localized eigenmodes and the corresponding eddy forcing
components. Rows (a–d), (e–h) and (i–l) illustrate properties of the type-1, type-2, and
type-3 eigenmodes, respectively. Here, the EB flow case is considered, and the eigenmodes
belong to the jets positioned in the middle of the channel. Panels (a), (e) and (i) show
velocity streamfunctions of the normalized eigenmodes (arbitrary units) in the upper and
deep isopycnal layers, illustrated by the upper and lower fractions of the channel (divided by
thin line corresponding to the middle of the central westward jet), respectively. Panels (b),
( f ) and ( j) show the amplitudes of the eigenmodes (thick curves; larger/smaller amplitudes
correspond to the upper/deep layers), normalized by their maximum upper-ocean value. The
corresponding time–mean velocity profiles are scaled by an arbitrary value and shown to the
right with thin curves positioned around unity. Panels (c), (g) and (k) show barotropic eddy
forcings (thick curves) of the corresponding eigenmodes. Panels (d), (h) and (l) show the
corresponding baroclinic eddy forcings (thick curves). Each eddy forcing curve is normalized
by the maximum absolute value of the baroclinic eddy forcing, and the corresponding
time–mean PV anomalies are shown with thin curves (arbitrary amplitudes).

the jets. Instead, the barotropic component of the jets is supported only by the type-3
eigenmodes, through their Reynolds stresses. The baroclinic components of the jets are
always resisted by the type-3 eddy forcing but substantially more so in the WB case.
The barotropic jets are weakly resisted by the type-1 eddy forcing in the WB case and
by the type-1 and type-2 eddy forcings in the EB case.

In addition to damping the zonally uniform eigenmodes that form a template for the
jets, large bottom friction can either preferentially damp some unstable eigenmodes,
thus reducing their contribution to the full eddy forcing, or modify their meridional
structure (i.e. both amplitude and phase) to reduce their eddy forcing efficiencies.
With the help of the linear eigenmode analysis, we will now examine the relative
importance of these mechanisms in the EB and WB flow regimes. We define the
eddy forcing efficiency, E = [EBRT,EBCL], as the weighted sum of the individual eddy
forcing efficiencies associated with all unstable eigenmodes:

[EBRT,EBCL] = 1
M

n=M∑
n=1

gn

gmax
[CBRT,CBCL], (4.10)

where the summation is over M eigenmodes with positive growth rates; gn is the
growth rate; gmax is the maximum growth rate over the whole set; and CBRT/CBCL are
correlation coefficients between the barotropic/baroclinic eddy forcings (defined as the
eddy forcing terms in the governing equations projected on the vertical barotropic and
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γ (s−1) 10−8 4× 10−8 10−7 10−6

EB [0.028, 0.023] [0.015, 0.039] [0.001, 0.047]
WB [0.005, 0.007] [0.007, 0.007] [0.010, 0.006]

EB, UBRT = 0 [***, −0.002]

TABLE 3. Efficiency of the linear-eigenmode eddy forcing, [EBRT ,EBCL], where EBRT and
EBCL are efficiencies of the barotropic and baroclinic eddy forcing components, respectively,
for different values of bottom friction, γ , and for the eddy viscosity value ν = 2 m2 s−1.
The last line in the table shows that EBCL is completely degraded when barotropic
component of the jets is set to zero. Although EBRT slightly increases with bottom friction
in the WB case, the latency still increases, because the zonally uniform eigenmodes
become increasingly damped by the bottom friction.

baroclinic modes) and the corresponding PV anomaly profiles. The above definition of
the efficiency takes into account the full set of unstable eigenmodes, rather than only
the most unstable one, and weights them according to their growth rates. In order to
understand the effects of bottom friction and eddy viscosity on the eigenmodes, we
linearize about the mean flow of the medium-γ solutions (figure 9) for various values
of γ and ν. The outcome is summarized in table 3 and discussed below.

We will first consider the large-Re solutions with ν = 2 m2 s−1. In the WB case, the
linear analysis is relatively simple. The only surprise is that the eddy forcing efficiency
is very weak due to the dominance of relatively inefficient type-2 eigenmodes (table 3).
As a result, the eddy forcing cannot overcome the damping of the zonally uniform
eigenmodes, and the jets become very latent even at moderate values of γ . This is
partly due to the fact that the WB jets are dominated by the barotropic mode, which
is more sensitive to the bottom friction. The growth rates of the WB eigenmodes also
become smaller with larger γ , thus contributing to the latency, but we find that there
is no preferential damping of any particular type of eigenmode (figure 12). Therefore,
the main effect of bottom friction, γ , on the WB jets is through the increased damping
of the zonally uniform eigenmodes rather than altering eddy forcing efficiency. Finally,
the long-living coherent vortices that characterize the WB large-Re regime are very
different from the linear eigenmodes in terms of their structure and propagation
properties, but since these vortices are not correlated with particular jets and propagate
nearly intact across many of them, their eddy forcing is not efficient in maintaining the
jets.

The large-Re EB case is more complex, because bottom friction induces more
complex changes in the eigenmodes and their efficiencies. Unlike in the WB case,
the baroclinic component of the EB jets is as strong as their barotropic component,
and, therefore, the EB jets are less sensitive to the bottom friction. Also, unlike in
the WB case, we find that the EB eddy forcing is rather efficient in maintaining
the jets, and the baroclinic efficiency, EBCL , even increases with bottom friction, γ
(table 3). This is due to the dominance of the type-1 and type-2 eigenmodes that
are found to be the least affected by bottom friction. The above facts explain why
in the EB case the jets become latent at significantly larger values of γ . The jets
eventually become latent not only because of the damping of the zonally uniform
eigenmodes but also because, unlike in the WB case, the bottom friction suppresses all
type-3 eigenmodes. The corresponding dispersion relationship branches are indicated
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by arrows in figure 11. The suppression of the type-3 eigenmodes results in dramatic
weakening of the barotropic eddy forcing efficiency (table 3) and, hence, in the
associated weakening of the barotropic component of the jets. We checked how the
weakening of the barotropic component of the jets feeds back on the eigenmodes by
putting the barotropic component of the input-state jets to zero. The outcome is the
complete loss of the baroclinic eddy forcing efficiency (last line in table 3). Thus,
large bottom friction completely erodes eddy feedbacks maintaining the jets.

What happens with the dispersion properties of the eigenmodes at moderate Re,
that is, for ν = 50 m2 s−1? Several changes happen at all considered values of the
bottom friction. First, growth rates of the eigenmodes become significantly smaller,
and this is consistent with the moderate-Re eddies being weaker and structurally
more simple (figures 7 and 8). Second, positions of the dispersion curves on the
dispersion diagrams do not change significantly. Third, the type-3 eigenmodes become
more damped relative to the other eigenmodes, and this is consistent with noticeable
weakening of the barotropic component of the jets in the moderate-Re solutions.

To summarize, in this section we used a combination of the linear arguments,
consisting of the analysis of the linear eigenmodes and of its nonlinear extension that
considers the nonlinear self-interactions of these eigenmodes and their efficiency in
maintaining the jets. We were able to explain qualitatively the observed dependences
of the latency on the bottom friction, and the difference between the EB and WB
regimes. In the past, sensitivity of a single, eddying baroclinic jet to the bottom
friction was studied by Riviere, Treguier & Klein (2004), and the conclusion was that
the linear analysis does not predict flow changes induced by the bottom friction. This
discrepancy with our results may be explained, partially, by the differences in the
models and parameters. However, a more important reason may be that in our analysis
we focused not only on the growth rates of the most unstable modes, but also on the
decay rates of the (stable) zonally uniform eigenmodes, and on the efficiency of the
nonlinear self-interactions in maintaining the jets.

5. Conclusions and discussion
In this study we made a step forward in understanding a remarkable phenomenon in

oceanic and atmospheric sciences: co-existence of multiple, nearly zonal jets and the
ambient mesoscale eddies. Such jets and eddies are well known from observations of
the atmospheres of giant gas planets, such as Jupiter, and much more latent jets are
thought to exist in the global ocean (§ 1.1). This study focused on the strength of the
multiple jets relative to the strength of the ambient eddies – the ‘latency’ of the jets
– and on the roles of the bottom friction and eddy viscosity in controlling the latency.
We find that the degree of the latency is controlled primarily by the bottom friction.
The mechanism controlling the latency in our solutions is understood in terms of the
changes induced in the linear eigenmodes of the time–mean flow.

The analysis of the effects of dissipation was possible because of the use of
a dynamical model that employs a new, highly efficient numerical algorithm. Our
model set-up uses parameters appropriate to the ocean, but the dynamical mechanisms
discussed may also be active in atmospheric jets.

The nearly zonal, multiple, alternating jets in the oceans are latent, that is, their
amplitudes are weak relative to the ambient mesoscale eddies. In contrast, well-known
jets on the giant gas planets are very non-latent, that is, they are manifest. Most
of the previous studies of the multiple jets focused on their meridional scalings,
kinematics and transport properties, shape, and vertical structure, but the importance of



562 P. Berloff, S. Karabasov, J. T. Farrar and I. Kamenkovich

the latency has been recognized only recently (Kamenkovich et al. 2009a). Factors and
mechanisms controlling the latency of the jets have not been systematically studied
before, and in this paper we made some progress in this direction. We started by
formally defining a latency parameter as the square root of ratio of the jet PV variance
to the eddy PV variance. Small latency implies that the jets are easily seen through
the ambient eddy field, whereas large latency implies that the jets are masked by more
pronounced eddies. Next, we computed a set of solutions for a broad range of the
dissipative parameters – lateral eddy viscosity and bottom friction – and analysed it.
Bottom friction is found to be the key parameter controlling the latency for all values
of the eddy viscosity, despite the fact that flow properties change significantly as a
result of the decrease in the eddy viscosity.

The eddy viscosity is scale-selective, and thus the eddies are generally more
sensitive to its value than the large-scale jets are; it thus seems reasonable to expect
that the latency increases with decreasing eddy viscosity (increasing Re). On the
other hand, an alternative large-Re scenario is that the jets will become sharper and
faster, thus reducing the latency; however, we find that this scenario does not occur
in the model solutions. The bottom friction is not scale-selective, and at all scales
it just damps the most energetic motions in the deep layer; hence it is not obvious
a priori that it should act differently on the time–mean jets and the eddies and
affect latency. Sorting out these scenarios, as well as predicting magnitudes of the
responses to the friction parameters is the focus of this paper. We also considered
two different background flow configurations, eastward and westward (denoted EB
and WB, respectively), and found not only similarities but also profound differences
between these flows and their latency properties. This not only gives us some
confidence that we have identified a general effect of bottom friction and indicates
what to expect in more realistic flows, but also provides a reference point for more
systematic studies of the background flow effects.

Our strategy was to quantify the latency property with the formal latency parameter,
Λ, to vary parameters of the problem, to see which of them have the largest effect
on Λ, and to understand the underlying mechanisms. Our analysis suggests that the
degree of the latency is controlled primarily by the bottom friction: the larger the
friction, the more latent are the jets; and the degree of latency is significant for the
range of the bottom friction coefficient relevant to the real oceans. This result not
only provides a plausible explanation for the high degree of latency of the oceanic
jets, but also suggests that well-known atmospheric multiple jets on the giant gas
planets may be very non-latent because of the absence of a well-defined bottom and
the associated bottom friction. Given this result, more attention should be paid to the
bottom friction in other models of the multiple jets, but other physical processes
(e.g. bottom topography, influence of the lateral boundaries, non-quasigeostrophic
effects, etc.) may eventually turn out to be equally or more important. The second
important factor was large Reynolds number, Re (i.e. small eddy viscosity), which
not only enhances sensitivity of the latency to the increasing bottom friction, but also
increases the latency itself.

We focused on a fairly simple, two-layer, quasigeostrophic (QG) model configured
on the β-plane, in a flat-bottomed zonal channel, and driven by an imposed, uniform
zonal background flow with vertical shear. This is a classical model (e.g. Haidvogel
& Held (1980); Panetta 1993; Berloff et al. 2009a and 2009b) that simulates multiple,
alternating zonal jets, which are believed to be dynamically similar not only to the
oceanic but also to the atmospheric jets. In terms of the achieved large Re, and thus
in terms of the dynamical realism of the eddies and their effects, the flow regimes
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explored here are new. The newly analysed large-Re regime is dynamically more
realistic, as its eddy viscosity is in the range of values corresponding to the open-
ocean unbalanced flows (Muller 1976) rather than unresolved parts of the mesoscales.
The set of the solutions that we computed allows us to explore the latency for a wide
range of Re (i.e. eddy viscosities).

We analysed both EB and WB flows that represent different parts of the midlatitude
gyres, and the former also represents the Antarctic Circumpolar Current. Although
the emerging patterns of the jets are somewhat similar, the dynamical mechanisms
supporting the jets and driven by the eddies differ from those at low values of
the bottom friction (Berloff et al. 2009a). In the present study we find that these
mechanisms remain fundamentally the same at moderate values of the bottom friction,
but cease to exist for strong bottom friction. In terms of the latency, the asymmetry
between the EB and WB solutions is very strong, with the EB jets being much less
sensitive to the magnitude of the bottom friction. In the large-Re regime, in both EB
and WB flows, and at all depths, we find an approximate but robust empirical scaling
law for the latency as a function of bottom friction: Λ∼ γ 0.4.

The nonlinear results – sensitivity of the latency to the bottom friction and its
asymmetry between the EB and WB regimes – are explained via combination of
linear analysis and its nonlinear extension, as in the Berloff et al. (2009b) study that
focused on formation and meridional scaling of the jets rather than their latency. The
linearity enters the problem in terms of the ‘footprints’ of the most unstable linear
eigenmodes that can be clearly seen on the jets. These eigenmodes can nonlinearly
self-interact and feed back on the jets that support them. Some of these eigenmodes,
having a relatively short zonal scale set by baroclinic instability, act as the drivers
supporting the jets. Other eigenmodes that are zonally uniform and weakly damped
are excited by the drivers and form the template of the multiple jets. Within this
general mechanism, bottom friction can have a profound effect on the latency of the
jets by weakening the jets while amplifying the ambient eddies. This can happen for
the following reasons: (a) eddy amplitude can be weakened, (b) efficiency of the eddy
forcing (i.e. its correlation with the jets) can decrease, and (c) the zonally uniform
eigenmodes that form the template of the jets can become more damped. In this paper
we sort out relative contributions of (a)–(c) to the latency of the jets. We found that
(c) acts both in the EB and WB regimes, whereas mechanism (a) cannot explain
the results, because the eddy amplitudes, as well as the associated eddy forcing only
intensify with increasing bottom friction. We also explained that the jets in the EB
regime are more resistant to the bottom friction because of the strong efficiency of the
eddy forcing.

Another outcome of our study is connection between the jet latency and the
‘staircase’ hypothesis (§ 1.1), which predicts emergence of a set of very sharp
barriers separated by mixing zones in large-Re jets. One of our conclusions is that
the ‘staircase’ state, characterized by very low latency, can be achieved only with
very weak bottom friction. Therefore, it is irrelevant for the oceanic jets, and this
is consistent with the previous results (§ 1.1); however, it may be relevant for the
atmospheric jets.

Although we find that some essential properties of the eddies can be understood
in terms of the self-interacting linear waves, scrutinizing the linear-eigenmode (i.e.
linear-wave) interpretations, studying possible wave–triad interactions, and examining
the roles of full nonlinearity must be continued. Also, future advances from our
highly idealized model will have to be toward more realistic background flows
with non-zonal orientation, spatial inhomogeneity and temporal variability, toward
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progressively more realistic bottom topography, toward effects of eastern boundaries,
and toward dynamical connection between the equatorial, midlatitude, and high-
latitude jet dynamics. Finally, in the WB regime with large Re, we encountered intense
long-lived coherent vortices generated both in the interior and on the lateral walls.
These long-lived vortices are substantially depth-compensated, and, therefore, they are
only weakly dissipated by the bottom friction. Systematic study of these vortices, their
interactions and transport properties will be the subject of a separate study.
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