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ABSTRACT

We systematically study the evolution of Larichev–Reznik dipoles in an equivalent-barotropic quasi-geostrophic beta-plane model in high-
resolution numerical simulations. Our results shed light on the self-organization and rich dynamics of dipolar vortices, which are ubiquitous
in geophysical flows. By varying both dipole strength and initial angle a0 of dipole tilt to the zonal direction, we discover new breakdown
mechanisms of the dipole evolution. The dipoles are quickly destroyed by Rossby wave radiation, if initial tilt is too large or the dipole is too
weak; otherwise, via damped oscillations, the dipoles tend to adjust themselves to different states drifting eastward. Two competing physical
mechanisms that govern dipole transformations are found: (1) spontaneous dipole instability due to a growing critical linear mode and (2)
meridional separation of dipole partners that accumulates over the adjustment period and prevents the above instability. Which mechanism
prevails depends on the initial tilt and dipole strength, and the details of this are discussed.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0171909

I. INTRODUCTION

The dynamics of isolated and coherent vortices has attracted the
attention of many researchers trying to understand long-lived geo-
physical vortices, which are ubiquitous in the ocean1–3 and atmos-
pheres.4–6 Within this broad class of phenomena, we focus on vortex
dipoles (i.e., pairs of opposite-sign vortices) and their long-term evolu-
tion. Dipolar couples transporting fluid inside their cores across large
distances are widespread at the ocean surface,7,8 stimulating growing
interest in the underlying vortex dynamics.9–11

A classical example exhibiting steady propagation is the
Lamb–Chaplygin dipole (hereafter, LCD),12,13 which is a solution of the
two-dimensional (2D) Euler equations. As indicated in Ref. 14, Sec. 4.3,
an LCD with a circular core tends to slowly evolve toward a state with
smoother vorticity distribution in a slightly elliptical core. While no
instability was detected in the inviscid discretized version of the LCD
with circular separatrix,15 the authors noted that the lowest vorticity lev-
els (not represented in their isovortical discretization) might be rapidly
stripped from the configuration through the neighborhood of the rear
stagnation point. Indeed, linearly unstable modes were found when
explicit viscosity was included in the system.16

Building from this, a 2D stationary solution (so-called modon)
on the b-plane (taking into account planetary rotation and sphericity)
was obtained because Stern17 was found to be unstable.18 Furthermore,
a more general solution of the classical quasigeostrophic (QG)
equivalent-barotropic model (given by rotating top-layer shallow-
water dynamics with deformable lower interface above the motionless
deep layer) for propagating dipoles with a circular separatrix was
obtained by Larichev and Reznik (hereafter, LRD).19

When a finite internal Rossby radius of deformation is assumed,
the LRD solutions are capable of zonal drift in both eastward and west-
ward directions. The eastward propagation speed is unbounded,
whereas the propagation speed to the west must exceed the maximum
Rossby wave phase speed20 to prevent the vortex losing energy to gen-
erated waves.21 In the past, westward propagating LRDs were sug-
gested as a paradigm for atmospheric blocking,22,23 but were later
found unstable,24 hence not suitable for this due to rapid destruction.
On the other hand, eastward propagating LRDs were found to be
remarkably robust in numerical simulations, even in the presence of
weak friction,25 short-wave perturbations,26 and topographic perturba-
tions.27 Proof of their stability, however, remains evasive.24,28,29
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Recently, the phenomenon of spontaneous symmetry breaking
was discovered in eastward weak-intensity LRDs leading to their ulti-
mate destruction.30 The corresponding unstable growing perturbation
has even symmetry about the zonal axis (similar to the unstable modes
obtained for the evolving viscous LCD16) despite the odd flow symme-
try of the LRD. A normal mode representation of this growing pertur-
bation accurately replicates the time evolution, confirming that the
eastward LRD is linearly unstable. This growing mode was initially
referred to as the A-mode,30 in accord with some earlier notation for a
similar mode; however, in this study, we refer to it as the Davies mode
(D-mode), to emphasize its discovery and differentiate it from the A-
mode for the LCD when viscosity is imposed in the system.

The effect of dipole tilt relative to the zonal direction was examined
in Ref. 31, where two regimes were reported. For weak dipoles with a
large tilt, the dipole rapidly disintegrated. However, for most of the cases
studied, the dipole experienced damped oscillations along the zonal axis
before adjusting to new eastward propagating steady states. Here, we
include the effects of dipole tilt using the numerical framework of Ref.
30. We argue that the instabilities were not captured in Ref. 31 due to
computational constraints on the spatial resolution of the simulations.

The structure of this paper is the following: in Sec. II, we formu-
late the nondimensional model, derive the tilted dipole state, and
briefly introduce an asymptotic theory for strong dipoles; in Sec. III,
we detail our findings for both strong and weak dipoles; and in Sec. IV,
we summarize and discuss the results.

II. MODEL DESCRIPTION
A. Equivalent-barotropic framework

To connect to previous studies, we adopt the equivalent-
barotropic quasigeostrophic (QG) model on the beta-plane with flat
bottom relief,32,33

DP̂

Dt̂
¼ 0 ; P̂ ¼ q̂ þ b̂ŷ; (1)

where b̂ represents the meridional gradient of the Coriolis parameter;
P̂ ¼ P̂ðx̂; ŷ; t̂Þ is the absolute potential vorticity (PV)—a materially
conserved quantity on the Lagrangian fluid elements—and the poten-
tial vorticity anomaly (PVA) is defined as

q̂ ¼ r̂2
ŵ � R̂

�2
d ŵ; (2)

with R̂d denoting the internal Rossby radius of deformation and
ŵ ¼ ŵðx̂; ŷ; t̂Þ denoting the velocity streamfunction. For compact-
ness, we make use of the differential operators,

D

Dt̂
:¼ @

@ t̂
� @ŵ

@ŷ
@

@x̂
þ @ŵ

@x̂
@

@ŷ
; r̂2

:¼ @2

@x̂2
þ @2

@ŷ2
; (3)

and hat notation to indicate dimensional physical quantities.
We impose a vortex centered at coordinate ðx̂ c; 0Þ and perform

the change of coordinates x̂ ¼ X̂ þ x̂ cð̂tÞ and ŷ ¼ Ŷ to reposition the
origin of our reference frame to the vortex center. Next, Eq. (1) is non-
dimensionalized by introducing the length and velocity scales, L̂ and
Û , respectively,

@q
@t

� dxc
dt

@q
@X

þJX;Yðw; qÞ þ b
@w
@X

¼ 0; (4)

where the Jacobian operator is defined as

JX;YðA;BÞ :¼
@A
@X

@B
@Y

� @A
@Y

@B
@X

; (5)

for functions A and B, and the absence of hat notation indicates the
following nondimensional quantities:

ðX;Y ; xcÞ ¼ L̂
�1ðX̂ ; Ŷ ; x̂ cÞ ; t ¼ L̂

�1
Û t̂ ;

b ¼ L̂
�2 ^Ub̂ ; w ¼ ðL̂Û Þ�1ŵ ; q ¼ L̂Û

�1
q̂:

(6)

Focusing on steady vortices with purely zonal drift yields the fol-
lowing governing equation:

JX;Yðwþ cY ;r2wþ b0YÞ ¼ 0; (7)

where c ¼ dxc=dt; b
0 ¼ bþ cS and S ¼ ðL̂=R̂dÞ2.

Following Ref. 30, the PVA field can be decomposed into two
uniquely defined fields,

qA ¼ qðX;Y ; tÞ þ qðX;�Y; tÞ
2

; qS ¼ qðX;Y ; tÞ � qðX;�Y; tÞ
2

;

(8)

where qA denotes the A-component, which has even PVA relative to
the zonal axis, and qS denotes the S-component, which has odd PVA
relative to the zonal axis. The benefit of this presentation is that we can
interpret each component as follows: the S-component perturbation
leads to symmetric deformation of the vortices around the zonal axis,
whereas the A-component perturbation leads to the antisymmetric
deformation.

Given that wA;S denotes the A- and S-component of the velocity
streamfunction, respectively, the quadratic invariants of energy and
enstrophy for each component are obtained by integrating over the
doubly periodic domain R,

EA;S ¼ 1
2

ð
R
ðrwA;SÞ2 þ Sw2

A;S

h i
dR ; ZA;S ¼ 1

2

ð
R
q2A;SdR; (9)

where dR ¼ dXdY ; and the summations E ¼ EA þ ES and
Z ¼ ZA þ ZS are conserved for the inviscid case, as described by
Eq. (7).

Explicit Newtonian viscosity can be incorporated into the
equivalent-barotropic model by setting the left-hand side of Eq. (7)
equal to Re�1r4w, where Re ¼ ðL̂Û Þ�1�̂ is the Reynolds number,
and �̂ denotes eddy viscosity. However, since we are interested in solu-
tions to the inviscid problem (7), we make use of very small implicit
numerical viscosity in our simulations, which we discuss later. This
decision is also motivated by the results of the sensitivity analysis car-
ried out in Ref. 30, where consistency is found between simulations
using explicit Newtonian viscosity and implicit numerical viscosity.

B. LRD initialization

A class of exact solutions to Eq. (7) over an infinite domain are
the LRD steady states, which are derived from the relative vorticity
relation,

r2w ¼ �k2w� cðk2 þ p2Þr sin ð#� a0Þ; r � 1 ;
p2w; r > 1;

�
(10)

where ðr; #Þ are standard polar coordinates. Here, r¼ 1 defines a circu-
lar separatrix (L̂ is chosen to be the vortex radius); p2 ¼ b=cþ S > 0;
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a0 ¼ 0�; 180� (eastward and westward propagation, respectively); and
k is a positive constant satisfying the nonlinear equation,

kJ1ðkÞ
J2ðkÞ ¼ � pK1ðpÞ

K2ðpÞ ; (11)

where Jl and Kl are the order-l Bessel and modified Bessel functions
of the first kind, respectively. This equation has an infinite number of
solutions for k, but we considered only dipoles with the lowest k. Based
on the work of Ref. 18 for shielded vortex structures on a QG beta-
plane and Ref. 11 for surface-QG vortex solutions with higher radial
mode numbers, we anticipate that higher order modes will be unstable
and rapidly break down.

We further assume that the dipole is spatially localized, i.e., w ! 0,
as r ! 1 (more specifically, this is exponential decay), and the solution
is continuous and continuously differentiable across the separatrix. The
streamfunction field can be expressed in the following form:

wðr; #Þ ¼ crFðrÞ sin ð#� a0Þ; (12)

where

FðrÞ ¼ ðp=kÞ2ðJ1ðkrÞ=rJ1ðkÞ � 1Þ � 1; r � 1 ;

�K1ðprÞ=rK1ðpÞ; r > 1;

(
(13)

and the corresponding PVA components are as follows:

qAðr; #Þ ¼ �XQðrÞ sin a0 ; qSðr; #Þ ¼ YQðrÞ cos a0; (14)

where

QðrÞ ¼ �cðFðrÞ þ 1ÞðSþ k2Þ � b r � 1 ;

bFðrÞ; r > 1:

(
(15)

In this work, we investigate tilted dipoles for S¼ 1, i.e., L¼Rd,
launched at angles 0 < a0 � 90� to the zonal axis. As a consequence
of this, qA is nonzero and the tilted LRDs do not satisfy (7), i.e., the
dipoles we consider are no longer steady states. Note that in this case,
the A- and S-components are computed about the zonal coordinate
axis, rather than the dipole translation axis, which are equivalent only
for the eastward LRD. Figure 1 contains visualizations of the A- and S-
components and will help the readers to understand the story, as it
evolves. Hereafter, the A-component as depicted in Fig. 1(a) is referred
to as the tilted mode (T-mode).

In the (eastward propagating) case a0 ¼ 0� and for dipoles with
b=c � 2, the component qA (i.e., D-mode) was initially zero but
appeared due to spontaneous symmetry breaking and shown to oscil-
late and grow exponentially over time.30 This growth caused the dipole
to develop asymmetries through elongation and compression of the
vortex pair (Fig. 2). The ultimate result was the destruction of the
dipole, with the vortex partners decelerating and drifting apart, before
propagating in the (opposite) westward direction. At later times, they
continued drifting apart and eventually disintegrated into the back-
ground flow as in Ref. 34. A combination of dynamical evolution asso-
ciated with T-mode depicted in Fig. 1(a) and D-mode (Fig. 2) is
expected to be seen in the case of a0 6¼ 0�.

C. Kinematics of tilted dipoles

For dipoles, let us consider the coordinates of the positive and
negative PVA extrema (X1, Y 1) and (X2, Y 2), respectively. The dipole
tilt is, then, characterized by

DX ¼ X1 � X2 ¼ D sin a; DY ¼ Y2 � Y1 ¼ D cos a; (16)

where D is the distance between extrema,

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDXÞ2 þ ðDYÞ2

q
; (17)

and a is the evolving angle, such that að0Þ ¼ a0. The dipole center is
defined as (Xc, Y c), with

Xc ¼ X1 þ X2

2
; Yc ¼ Y1 þ Y2

2
; (18)

while the zonal and meridional drift components of the dipole center,

uc ¼ dxc
dt

; vc ¼ dyc
dt

; (19)

respectively, give the propagation velocity. These components allow us
to obtain the corresponding dipole speed as

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2c þ v2c

q
: (20)

For very strong dipoles (c � b), a simple kinematic theory
described in Ref. 35 predicts the center trajectory, ðxcðtÞ; ycðtÞÞ, by
neglecting changes in the distance between the dipole extrema (i.e.,
D¼D0) and in the dipole center velocity V¼ c. This theory tells us that
the evolution of the dipole angle, aðtÞ, is given by the following equation:

da
dt

¼ � bV
Md

yc; (21)

where Md ¼
Ð
QðrÞr3dr ’ 3V is the magnitude of the LRD moment,

which is described by Eqs. (13)–(15) with b¼ 0 and normalized by the
area of fluid trapped inside the separatrix. Combining Eq. (21) with

FIG. 1. Physical fields corresponding to the dipole with b ¼ 2c and tilted at
a0 ¼ 5�: (a) A-component of PVA, qA (i.e., the T-mode); (b) S-component of PVA,
qS; (c) PVA; (d) PV.
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dyc
dt

¼ V sin a (22)

allowed the full trajectory to be predicted by the equation for the physi-
cal pendulum. Thus, for the north-eastward LRDs, we expect to see
oscillatory behavior in the displacement of the dipole center around
the equilibrium latitude. The maximum excursion Ym is given in Ref.
35 as

Ym ¼ 2

ffiffiffiffiffiffiffi
Md

b

s
sin

a0
2

� �
: (23)

Both the kinematic theory (21) and (22) and numerical simula-
tions in Ref. 31 showed that initially tilted LRDs evolve by damped
oscillations, and the corresponding mechanism was identified by
Ref. 36, where a PV conservation argument showed that the adjust-
ment is achieved through the dipole losing enstrophy to the sur-
rounding background flow. This mechanism can be incorporated
into Eq. (21) as

da
dt

¼ � bVðyc þ k sin aÞ
Md

: (24)

In this case, the dipole evolution calculated from Eqs. (22)–(24) dis-
plays decaying oscillations, which depend on the damping parameter
k. Neither this theory nor the numerical solutions in Ref. 31 take into
account potential instability of the eastward LRDs,30 which motivates
more in-depth studies. Now that we have reviewed some theoretical
work pertaining to tilted dipoles, and we proceed in the following sec-
tion to extract new information for tilted LRD dynamics using high-
resolution numerical simulations.

III. NUMERICAL EXPERIMENTS
A. Methodology

We solve Eq. (1) on a doubly periodic computational domain of
size ð4LY ; LYÞ ¼ ð60; 15Þ with 4N � N ¼ 8192� 2048 nodes.
Motivated by mesoscale observations, we consider dipoles on the scale
of the internal Rossby radius of deformation, that is, L̂ ¼ R̂d (conse-
quently, S¼ 1). Furthermore, to draw comparisons with Ref. 31, we
nondimensionalize so that c¼ 0.1 (so that Û ¼ 10ĉ, where ĉ is the
dimensional equivalent of c) and explore the following parameter
space:

ða0; bÞ ¼ 5�; 30�; 45�; 60�; 90�½ � � 1; 2; 3:5; 4½ �c; (25)

where a0 � 45� is referred to as small tilt, and a0 > 45� is referred to
as large tilt. We also use the terms weak and strong to correspond with
c < b � 4c and b � c, respectively. Benchmark solution animations
for this parameter space are shown in Fig. 3 (Multimedia view).

To verify our results, we made use of two distinctly different
numerical models. For consistency with Ref. 30, we use finite differ-
ences with the CABARET advection scheme; the algorithm is
described in detail in Ref. 37, and the numerical convergence proper-
ties of the model in relevant flow regimes with rich mesoscale dynam-
ics are discussed in Refs. 38 and 39.

For consistency with Ref. 31 and to validate our results, we also
performed simulations using the Dedalus Python package, which com-
bines a pseudo-spectral approach in space with a fourth-order implici-
t–explicit Runge–Kutta scheme for time integration.40 This approach
necessarily includes explicit dissipation represented through a hyper-
diffusion term, whereas the CABARET approach has implicit numeri-
cal diffusion, which is minimized at each time step through the
advection scheme.

FIG. 2. Upper panels show snapshots of the PVA of the D-mode that develops during the intermediate stage of linear growth for a weak eastward dipole, while the bottom pan-
els show the associated elongations and compressions that the dipole pair experiences, in response to the growing D-mode [e.g., (a) causes deformations so that the dipole
tilts, as seen in (e), whereas, (b) causes zonal elongation and zonal compression in the anticyclone and cyclone, respectively, as seen in (f)].
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We estimated a numerical viscosity value corresponding to dissi-
pation in our CABARET simulations and used it to set equivalent
hyperdiffusion parameter in the pseudo-spectral model. We found
that both methods yield similar solutions (see the supplementary
material); therefore, we primarily present CABARET results, though
supplementary animations in Fig. 3 are obtained with the Dedalus
package.

B. Overview of results

The dipole evolution is analyzed by considering both the trajec-
tory of the dipole center (xc, yc) and changes in the internal dipole
structure, as characterized by the propagation speed, V, and the dis-
tance between extrema, D, defined in Sec. IIC. The coordinates of the
positive and negative dipole extrema (X1, Y 1) and (X2, Y 2) are evalu-
ated using local 2D-parabolic interpolation.

Comparing with the kinematic theory, we found new behavior
in the evolution of dipoles with b=c ¼ 1 (strong dipoles) and with
b=c � 2 (weak dipoles). These modifications to the dipole dynamics
are mostly related to the growing D-mode on top of decaying T-
mode, which become clearly visible when the vortex crosses the
zonal axis.

Strong dipoles adjust themselves along the zonal axis and appear
to continue eastward propagation. Nevertheless, over the course of this
adjustment phase, one can see moderate increase in partner separation
and associated deceleration in the upper panels in Fig. 4 and Table I.
Note that the originally D-mode was described only for weak eastward
LRD solution.30 Here, growing D-mode is revealed also for the strong
dipoles though they are not destroyed during the time of integration
and their structure still resembles the initial LRD.

Weak dipoles for a � 45� decelerate with partners separating by
more than 30% and a reversal in the direction of zonal propagation
(lower panels in Fig. 4), similar to the effects of a growing D-mode in
the eastward LRD.30 For strong and weak dipoles with a range of tilts,
our findings are summarized in Fig. 5, where there are both similarities
with and notable differences from Ref. 31.

Hence, to clarify novelties of the observed phenomena, we make
a detailed comparison of the various regimes over the following sec-
tions where the modification in the spatial structure of the dipoles is
illustrated by snapshots of the PVA A-component, while the relative
intensity function,

qmðtÞ ¼ qAðX1;Y1; tÞ þ jqAðX2;Y2; tÞj
2maxX;Y qAðX;Y ; 0Þ ; (26)

FIG. 3. Dipole evolution animations corresponding to the parameter space
described in Eq. (25) for 0 � t � 200. We present animations for this parameter
space with values of a0 increasing from top to bottom. The strongest LRD with
c=b ¼ 1 is shown in the left column, while other columns show progressively
weaker LRDs, with the right-most column corresponding to c=b ¼ 0:25. Multimedia
available online.

FIG. 4. ðV=c;DÞ-plots. Upper rows with
b ¼ c and: (a) a0 ¼ 5� (blue), a0 ¼ 30�

(red), (b) a0 ¼ 45� (blue), and a0 ¼ 60�

(red); and lower rows with b ¼ 2c and
the same values of a0 in corresponding
subplots. The data are for 0 � t � 400.
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describes the time evolution of the A-component amplitude in the
dipole normalized by its initial intensity.

C. Strong dipole evolution

Figure 6 shows the evolution of the meridional position of the
dipole center, yc, for the case of strong dipoles. Decaying oscillations
can clearly be seen. It should be noted that these oscillations persist for
all cases studied—see the supplementary material for the case of weak
dipoles.

In the case of strong dipoles with a0 ¼ 5�, the modeled dipole
trajectory is compared with the kinematic theory trajectory (Fig. 7),
where we used k ¼ 0:2 and normalized DX 	 D sin a and yc with
D0 sin a and Ym [as defined in Eq. (17)], respectively. The similarity
between numerical and predicted trajectories suggests that the theory
is valid within the strong dipole regime for small initial tilts as the vor-
tex structure remains approximately unchanged throughout the evolu-
tion. However, significant deviations in the numerical trajectory in
Fig. 7 become visible when t � 300, suggesting that a transition
in dynamics results in a discrepancy with the kinematic theory to be
investigated further.

By t¼ 400, the vortex has undergone a small deceleration and
an increased partner separation of V=c� 1 	 �3% and D=D0 � 1
	 1:1%, respectively. These alterations are consistent with the dynam-
ics of symmetric eastward drifting LRDs studied in Ref. 30, which con-
tinued translating as a steady state, with deceleration and small partner
separation resulting from implicit numerical viscosity.

To better understand the spiral deviations in Fig. 7, we consider
times t‘ corresponding to intersections of the dipole trajectory with the
zonal axis [i.e., ycðt‘Þ ¼ 0, with ‘ ¼ 1; 2; 3…]. Eight intersections are
observed in Fig. 6 for a0 ¼ 5�; 30�; 60� over the time of integration
0 � t � 400 and seven intersections for a0 ¼ 90�. The simple tilted
mode (or T-mode) structure of the A-component at initialization [see
Fig. 1(a)] is assumed to remain at each intersection according to the
kinematic theory, while the amplitude of the A-component,
qA 	 sin a, is expected to decay at subsequent crossings together with
the angle aðt‘Þ, similar to jDXðt‘Þj=D sin a0 in Fig. 7. To evaluate the
predictions of the kinematic dipole theory for strong dipoles, we com-
pare the predicted amplitude decay with the values of qmðt‘Þ in our
solutions for different values of a0.

Values of qmðt‘Þ are plotted in Fig. 8 for different initial angles
and correspond well to the theoretical T-mode prediction of aðt‘Þ for
the earlier crossings. However, a significant increase in the value of qm
can be seen in Fig. 8 at ‘ ¼ 7; 8 (t> 300) for a0 ¼ 5� and a0 ¼ 30�.

TABLE I. Percentage change in partner separation and dipole deceleration for
b ¼ c, with first entries corresponding to t¼ 200 and second entries corresponding
to t¼ 400.

a0 DðtÞ=D0 � 1 VðtÞ=c� 1

5� (0.5, 1.1)% �(1.0, 3.0)%
30� (1.0, 6.0)% �(5.2, 20.1)%
45� (0.71, 5.1)% �(7.1, 21.0)%
60� (0.14, 1.5)% �(6.7, 12.2)%
90� (1.7, 3.2)% �(16.7, 25.5)%

FIG. 5. ða0;bÞ-parameter space summarizing possible outcomes for the dipole
evolution for 0 � t � 400: open circles indicate destruction due to early dipole-
Rossby wave interaction when initial tilt is large; diamonds indicate slow D-mode-
induced destruction with ts > 100 (where ts is the time at which the dipole changes
direction); and filled circles indicate slow decay of dipole intensity and increased
meridional partner separation that accumulates over adjustment period and pre-
vents instability.

FIG. 6. Comparative evolution of meridio-
nal position of the dipole center, yc, for an
initially tilted LRD with b ¼ c: blue curve
corresponds to a0 ¼ 5�, red curve—to
a0 ¼ 30�, magenta curve—to a0 ¼ 60�,
and green curve—to a0 ¼ 90�. Solutions
were obtained for 0 � t � 400.
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Such increases indicate the dominance of a growing D-mode (compare
with Fig. 2) that becomes clearly visible at the final two crossings (see
the supplementary material and Fig. 9). This earlier D-mode appear-
ance in comparison with strong non-tilted eastward LRDs in Ref. 30
indicates that the dipole perturbations due to tilt play a catalytic role
and favor the instability, which appears only in weak eastward LRDs
over the time of integration.

Moreover, the growth rate between the final zonal axis crossings
is

r ¼ ðqmðt8Þ � qmðt7ÞÞ=qmðt7Þ
t8 � t7

	 0:006; (27)

for a0 ¼ 5�, which is smaller than D-mode growth for weak eastward
LRDs.30 Note that the increase in qm between the last crossings is weaker,
r 	 0:003, for a0 ¼ 30�, despite there being a greater partner separation
of 6% and dipole deceleration of 20% at t¼ 400 [see Fig. 4(a)]. This
increased distance between dipole partners contributes to slower
D-mode development as seen also for a0 ¼ 45� [Fig. 4(b)].

For an initial launch of a0 ¼ 60�, the growing D-mode is not
seen; instead, we observed a monotonic and approximately linear
decrease in qmðt‘Þ at consecutive values of ‘ (see Fig. 8) and find that
the A-component evolves as a decaying T-mode of alternating sign
(see Fig. 10). However, at later times, one can see meridional splitting
of the T-mode [Fig. 10(d)], reflecting another mechanism to cause the
separation between partners, though the apparent partner separation
appears less than that caused by the growing D-mode for smaller tilt
a0 ¼ 45� [see Fig. 4(b)]. Such adjustment of the dipole to an elliptical
(meridionally elongated) shape is accompanied by a decrease in the
deceleration magnitude for t> 250. Further investigations in substan-
tially longer domains, over much longer times, and with much higher
resolution (to suppress implicit viscosity), go beyond the scope of this
paper.

Similar T-mode persistence with alternating sign value is
observed in the dynamics when a0 ¼ 90� (see the supplementary
material). However, despite approximately linear depreciation in qm
up until ‘ ¼ 5, this decay becomes significantly weaker at ‘ ¼ 6; 7 (see
Fig. 8). Even though this is still a monotonically decreasing pattern, the
change in decay suggests that there might be some transition in
dynamics to be investigated further.

In summary, our analysis for strong dipoles with b ¼ c revealed
two distinct scenarios, which are as follows:

1. The development of a slowly growing D-mode when initial tilt is
small, i.e., 0 < a0 � 45�,

2. The gradual splitting of a decaying T-mode (without the appear-
ance of a D-mode) when the initial tilt is large, i.e.,
45 < a0 � 90.

Further investigations are needed over a much larger interval of
time to clarify the fate of D- and T-modes in strong dipoles.

FIG. 7. ðDX ; ycÞ-spiral for ða0;bÞ ¼ ð5�; cÞ and over the domain 0 � t � 400:
the thick black spiral corresponds to the kinematic theory for strong dipoles, while
the dotted red spiral represents our numerical modeling results.

FIG. 8. Values of qm at zonal axis cross-
ings, ‘, for b ¼ c and a0 ¼ 5� (blue),
a0 ¼ 30� (red), a0 ¼ 60� (magenta), and
a0 ¼ 90� (green). Thick black line corre-
sponds to theoretical decay when
a0 ¼ 5�, as described by DX=D0 sin a0,
where DX 	 D sin a. Note that ‘ ¼ 0
corresponds to initialization.
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D. Slow destruction of weak dipoles

Our numerical simulations indicate that weak dipoles released at
an angle a0 2 ½5�; 90�� initially follow oscillatory paths that decay over
time (see the supplementary material), comparable to the case of
strong dipoles. In Ref. 31, weak dipoles only disintegrate at large a0
(corresponding to a0 ¼ 90� when b ¼ 0:2 and a0 ¼ 60�; 90� when
b ¼ 0:35), otherwise orienting themselves along the zonal axis, dis-
playing approximate steady translation in the eastward direction.
Given the destruction of purely eastward weak dipoles was attributed
to the growth of the D-mode in Ref. 30, we anticipate this anomaly to
develop on an initially tilted dipole after the adjustment phase.

For weak dipoles with ða0; bÞ ¼ ð½5�; 30�; 45��; 2cÞ, we find a
phase transition in qA at intersections with the zonal axis (yc¼ 0). In
particular, when a0 ¼ 5�, the T-mode at zonal axis crossings rapidly
evolves into a growing oscillatory D-mode (see Fig. 11). Consequently,
the eddy partners are driven much further apart than for strong
dipoles, with D=D0 � 1 	 6:3%; 36:6% at t¼ 200, 400, respectively,

[compare Figs. 4(a) and 4(c)]. This is also reflected in their decelera-
tion, where V=c� 1 	 �21:6%;�89:2% when t¼ 200, 400, which is
consistent with the dynamics of eastward LRDs with the growing
D-mode.30

Observed destruction of tilted weak dipoles is consistent with pre-
vious numerical simulations using a barotropic model (L 
 Rd) (Ref.
14, Sec. 4.2.2). The similar weak-intensity dipole (b=c ¼ 2), launched
at a0 ¼ 5�, relaxed along the zonal axis and proceeded to disintegrate.
This disintegration was attributed to the filamentation process and the
emission of Rossby waves, suppressed by the use of a cutting filter in
the far field, which encouraged drastic deceleration and allowed the
separation distance between partners to grow.

In our simulations, similar results are obtained when a0 ¼ 30;
45� (see Fig. 12), though with longer T-mode persistence before D-
mode formation. The dipole partners experience increased separation
and greater dipole deceleration [compare Figs. 4(c) and 4(d)], while
the zonal dipole drift becomes westward at tS 	 400. Therefore, even

FIG. 9. qA snapshots for ða0;bÞ ¼ ð30�;
cÞ at times where yc¼ 0. (a) t5 	 240, (b)
t6 	 290, (c) t7 	 340, and (d) t8 	 390.

FIG. 10. qA snapshots for ða0;bÞ ¼ ð60�;
cÞ at times where yc¼ 0. (a) t5 	 245, (b)
t6 	 285, (c) t7 	 335, and (d) t8 	 380.
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though such opposite-sign couples remain self-advecting eastward
until t¼ 400, the amplifying D-mode will inevitably disintegrate the
dipole in longer simulations.

For even weaker dipoles with b ¼ 0:35, a growing D-mode
emerged for a0 ¼ 5�; 30�, which results in the subsequent disintegra-
tion of the dipole for t< 200 (see the supplementary material and
Fig. 3). Such disintegration is consistent with Ref. 30; however, our
results throughout Sec. IIID differ from those obtained in Ref. 31,
where adjustment to a seemingly steady eastward propagating state
was observed for 0 � t � 400. We believe that these discrepancies are
due to the 16 times coarser numerical resolution adopted in their
30 years old study, which meant they were unable to capture the insta-
bility of weak eastward propagating dipoles.

To summarize our findings in this subsection, we have observed
the following:

1. Weak dipoles developed a D-mode over time when 0 < a0 < 45�

(and for a0 ¼ 45� when b ¼ 2cÞ.

2. A growing D-mode decelerates the weak dipoles and increases
the core distance between the opposite-sign pair, encouraging
the spontaneous symmetry breaking phenomena, as found for
symmetric weak eastward LRDs.30

3. b ¼ 3:5c dipoles completely disintegrate within the time interval
of 0 � t � 400, whereas b ¼ 2c dipoles begin to propagate west-
ward much later and would completely disintegrate if simulated
for longer time.

E. Adjustment or fast destruction of weak dipoles

Weak dipoles with ða0; bÞ ¼ ð60�; 2cÞ have qA evolve as a
decaying T-mode (see Fig. 13) comparable to what we observed
with strong dipoles (see Fig. 10). However, a notable difference is
that D=D0 �1 	 62:2% at t¼ 200, corresponding to a much greater
separation than observed for b ¼ c. This deformation is similar to
the meridional separatrix stretching captured in simulations for
dipoles with initially circular separatrix in Ref. 14. Despite the large

FIG. 11. qA snapshots for ða0; bÞ ¼ ð5�;
2cÞ at times where yc¼ 0. (a) t2 	 60,
(b) t4 	 120, (c) t7 	 180, and (d)
t15 	 240.

FIG. 12. qA snapshots for ða0;bÞ ¼ ð45�;
2cÞ at times where yc¼ 0. (a) t2 	 60, (b)
t4 	 130, (c) t6 	 200, and (d) t8 	 270.
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meridional separation at early times, this elliptical deformation
does not change significantly in the range of 200 � t � 400 (see
Table II), and these small alterations are likely due to implicit
numerical viscosity.41 Furthermore, the much lower deceleration
experienced compared to cases with smaller values of a0 suggests
that the dipole transforms to a non-circular steady state. This
agrees with the steady adjustment discussed in Ref. 31 and the the-
oretical predictions for strong dipoles in Ref. 36, though these stud-
ies did not discuss elliptical deformation.

Weak dipoles with ða0; bÞ ¼ ð90�; 2cÞ disintegrate in the interval
of 0 � t � 280 as observed in Ref. 31. Indeed, a decaying T-mode sim-
ilar to that seen when a0 ¼ 60� elucidates the dipole dynamics for this
parameter regime where the values of D and V rapidly increase over
time (see the supplementary material). This destruction occurs much
earlier than that achieved by a D-mode and is due to significant
Rossby wave radiation. More specifically, the trajectory of the dipole
exposes the vortex to interaction with the trailing Rossby waves, which
enhances the rapid disintegration.

Finally, when a0 � 45� for the weaker b ¼ 3:5c dipole, a D-mode
does not appear over the considered time interval, and instead, we see
components of decaying T-mode decelerate and drift apart, before the
disintegration of the dipole. Since a D-mode appears when a0 ¼ 45�

and b ¼ 2c, this suggests the existence of some bifurcation point in
ða0; bÞ-space, where there is a transition between D-mode and T-mode

dominance. To confirm this, more research is needed. Finally, in the
extreme case when a0 ¼ 90�, weak dipoles with b ¼ 3:5c disintegrate
much faster than for other initial tilts, as in Refs. 31 and 34.

To summarize, we obtained the following results:

1. qA evolves as a decaying T-mode rather than a growing D-mode
for weak dipoles when a0 > 45� (and for a0 ¼ 45� when
b ¼ 3:5c),

2. Weak dipoles with b ¼ 3:5c rapidly disintegrate when a0 � 45�,
with the dipole lifespan shortening as a0 increases,

3. When b ¼ 2c and a0 ¼ 90�, the dipole disintegrates much faster
than with a growing D-mode, as a consequence of Rossby wave
radiation,

4. When b ¼ 2c and 45� < a0 < 90�, elliptic deformation of the
separatrix and large enstrophy loss inhibit D-mode development
and drive the adjustment to approximate steady propagation
along the zonal axis.

IV. CONCLUSIONS AND DISCUSSION

Motivated by the ubiquity of isolated coherent vortices in geo-
physical (i.e., rotating and stratified) fluids, we investigated the dynam-
ics of mesoscale vortex dipoles launched with different north-eastward
tilts to the zonal direction. We considered an idealized equivalent-
barotropic QG model in an oceanic configuration and numerically
simulated the evolution of individual LRDs19 for a physically relevant
range of parameters, focusing both on transient and long-time behav-
iors. While motivated by the important work of our forerunner
(Ref. 31), we were able to extend their analysis using more advanced
numerical schemes and techniques. These tools allowed us to reexam-
ine their results and discover new dynamical behaviors, thus enriching
our understanding of the long-term behavior of coherent vortices. In
particular, we found dynamical sensitivities to both the initial-tilt
angle, a0, and the initial intensity of the dipole, b=c.

Even strong dipoles (i.e., b ¼ c; here, nondimensional planetary
vorticity gradient and dipole speed, respectively) for moderate initial
tilts (i.e., a0 � 45�) eventually developed a critical D-mode instabil-
ity,30 resulting in essential deviations from the predictions of the kine-
matic strong-dipole theory in Ref. 35. This theory allows only for an

FIG. 13. qA snapshots for ða0; bÞ
¼ ð60�; 2cÞ at times where yc¼ 0. (a)
t2 	 60, (b) t5 	 170, (c) t8 	 280, and
(d) t11 	 390.

TABLE II. Percentage change in partner separation and dipole deceleration for
b ¼ 2c, with first entries corresponding to t¼ 200 and second entries corresponding
to t¼ 400. When a0 ¼ 90�, the dipole disintegrates into the background completely
at t 	 280.

a0 DðtÞ=D0 � 1 VðtÞ=c� 1

5� (6.3, 36.6)% �(21.6, 89.2)%
30� (18.1, 37.8)% �(60.5, 100.1)%
45� (14.9, 39.8)% �(52.4, 102.4)%
60� (62.2, 65.3)% �(58.8, 67.0)%
90� (50.1, 300)% �(�99.1, 57.4)%
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alternating sign T-mode with the initial profile of qA, as depicted in
Fig. 1(a), and decaying with time as in Figs. 7 and 8 with damping sug-
gested in Ref. 36. For large tilt (i.e., a0 > 45�), our results are more
aligned with the kinematic theory, while displaying meridional separa-
tion of dipole partners (illustrated by a splitting of the T-mode in
Fig. 10) that accumulates over the adjustment period and prevents the
above instability so that the D-mode did not develop for large tilt.

In the case of moderate initial tilt, weak dipoles experienced either
a combination of significant partner separation with overall decelera-
tion or complete destruction owing to fast developing of the D-mode.
In the case of large initial tilts, more pronounced elliptical deformation
of the dipole core—corresponding to meridional splitting of T-
mode—was found to dominate over the D-mode, as the dipole under-
went oscillations along the zonal axis until adjusting to steady-state
eastward propagation. For extreme large tilts (e.g., a0 ¼ 90�) and/or
very weak dipoles (b ¼ 3:5c), these structures disintegrated rapidly by
radiating Rossby waves and proceeding to interact with them; leaving
no time for the D-mode destruction mechanism.

Our numerical simulations employed very small implicit numeri-
cal viscosity in the background; however, the work presented in Ref. 41
showed that with explicit Newtonian viscosity (and b¼ 0), there exists
an elliptical dipole structure that distinct circular dipole initializations
converge toward as time progresses. These states are found to be
unsteady, as characterized by decaying amplitude and increasing vor-
tex size, which is broadly similar to our findings for large a0 and sug-
gests that this adjustment would be stable in the inviscid limit (if
implicit numerical viscosity was exactly zero).

In summary, we found and analyzed different dipole parameter
regimes and reported evolution scenarios never previously discussed.
All these cases may exist and co-exist in nature, but they are likely to
be influenced by other unaccounted physical processes, such as realis-
tic large-scale circulation, stratification, and topographic effects.
Therefore, our results should act as a catalyst for further research.

SUPPLEMENTARY MATERIAL

See the supplementary material for animations of the dipole
propagation and additional figures that support the results of this
study.
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