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A B S T R A C T

Buoyant material has a tendency to form dense clusters at the ocean surface. This has been observed in
distributions of marine life and floating plastic contaminants. The main mechanism behind this is that particles
with positive/neutral buoyancy do not behave as passive tracers in stratified flows. It could be expected that
coextensive clustering between plankton and toxic ocean contaminants could lead to enhanced ecological risk.
However, such interactions cannot be sufficiently modelled in a standard passive tracer approximation. Given
the large uncertainty in the form of converging currents and how to model interactions of buoyant tracers,
we opt for an idealised modelling approach. The simplicity of our model allows easy interpretation of the
novel physical considerations. We demonstrate that the global dynamics of our biogeochemical model are
significantly altered by clustering forces. Most notably, a new balance in the ecosystem exists in which reactions
are dominated entirely by those within the dense clusters. This greatly enhances the impact of destructive
pollutants through efficient mixing. There is evidence that this equilibrium will be robust moving to more
complex and realistic models.
1. Introduction

The tendency of buoyant material at the ocean surface to form
clusters is well documented in both observations (Gower et al., 2006)
and from a theoretical perspective (Klyatskin, 2003; Koshel et al., 2019;
Stepanov et al., 2020a,b). Interest in this phenomenon has increased
primarily due to the observation of dense aggregations of floating
plastic pollution, forming the so called ‘Garbage patches’. It could be
expected that the high concentration of harmful pollutants in these
patches leads to increased ecological risk to ocean-borne populations.
However, uncertainty exists as to the extent of this risk, due to a lack of
modelling of the issue and uncertainty in measurements of the global
plastic distribution (van Sebille et al., 2015).

Biogeochemical tracers, such as plankton populations, are treated
as purely passive in most standard methodologies. Passive tracers are
advected by the fully three-dimensional, incompressible velocity field
of the ocean currents. Such methods have been immensely successful in
the past, showing significant predictive skill (Flynn and McGillicuddy,
2018). However, these particles can never form clusters through the
action of the currents alone, due to the conservation of density along
Lagrangian paths.

In reality, plankton populations are not passive. They demonstrate
a range of buoyancies in water that can depend on the time of year
and the general environment, as well as the individual species. Some
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plankton species are known to have methods to regulate their buoy-
ancy, in part to retain their depth and also to maximise exposure to
sunlight and nutrient sources. The dense streaks of plankton observed
in satellite chlorophyll measurements are also qualitatively reminiscent
of clusters observed in numerical experiments.

Heterogeneity in the spatial distribution of plankton populations,
often referred to as ‘‘patchiness’’, is generated through a number of
mechanisms (Matthews and Brindley, 1997). Diffusivity instability is a
primary mechanism that is generally considered, and is a consequence
of the differing transport properties of marine species. However, this
process is known to act at small scales, typically the kilometre scale
and below (Della Rossa et al., 2013). Meanwhile, observations of
chlorophyll distributions show heterogeneity at all scales, particularly
at the submesoscale/mesoscale boundary (∼10–50 km), which is the
focus of our study. At this scale, coupling of the plankton distribution
to flow structures is self-evident (Martin, 2003). Examples include the
high concentrations often found at the core or boundary of geostrophic
vortices. Chaotic stirring by the geostrophic flow alone could cause this
coupling, but only through the reorganisation of existing concentration
gradients. Diffusivity instability is even less likely to be a source
of these larger scale gradients, since the horizontal ocean currents
typically cascade enstrophy of a tracer distribution towards smaller
scales as opposed to larger scales. Mixing by ocean currents is also
vailable online 1 December 2023
924-7963/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.jmarsys.2023.103952
Received 14 March 2023; Received in revised form 17 November 2023; Accepted 3
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

0 November 2023

https://www.elsevier.com/locate/jmarsys
http://www.elsevier.com/locate/jmarsys
mailto:jom20@ic.ac.uk
https://doi.org/10.1016/j.jmarsys.2023.103952
https://doi.org/10.1016/j.jmarsys.2023.103952
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmarsys.2023.103952&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Marine Systems 243 (2024) 103952J. Meacham and P. Berloff
incapable of producing concentration gradients of passive tracer, due
to incompressibility. By considering how positive buoyancy of plankton
leads to deviations from passive flow, we arrive at a purely geophysical
mechanism that can produce sufficient heterogeneity at larger scales.

Even neutrally buoyant particles behave in a fundamentally differ-
ent way to passive tracers, as has been shown by modelling fully inertial
particles in three-dimensional stratified flows (Reartes and Mininni,
2023). Most notably, they have a tendency to form a layer around the
vertical level of their neutral buoyancy. This provides a mechanism
for cluster formation, since if the vertical flow of particles is inhibited
by buoyancy forces, then floating material will predominantly follow
the horizontal flow. Even in an incompressible flow, the horizontal
component can be convergent, leading to clusterising and an increase
of concentration along Lagrangian paths.

Motivated by the observations from three-dimensional studies, a
simple model of floating tracers has been developed. If we consider
an idealised, incompressible ocean bounded by a rigid lid, we can
model buoyant tracers as being trapped in a very thin layer just below
the surface. The problem then reduces to a quasi two-dimensional
model, where particles are advected by the surface currents alone. This
model has been used previously to investigate cluster formation of inert
floating tracers (Koshel et al., 2019; Stepanov et al., 2020a,b; Meacham
and Berloff, 2023) and to determine the location of accumulation zones
of floating microplastic (Onink et al., 2019). For the first time, we
extend the model to reacting tracers. Most importantly, we allow for
interactions between buoyant and passive tracers, and find that there
are implications for the form of reaction coefficients. This allows us
to construct a simplified model of the interactions between passive
nutrients, neutrally buoyant plankton and floating contaminants (such
as microplastics).

Many classical NPZ (nutrient, phytoplankton, zooplankton) models
contain complex interaction terms, which allow for chaotic dynamics.
These lead to novel behaviours, mimicking the rich dynamics of the
marine ecosystem, such as seasonal blooms (Franks, 2002). Even more
complex operational/predictive models will contain a large number of
species and represent a myriad of reactions between them. This realism
enhances the reproduction of observed distributions, but comes at the
cost of interpretability.

For clustering problems, the large uncertainty in the form of con-
vergent surface currents, as well as the lack of previous modelling
motivates a ‘ground up’ approach, beginning with idealised simula-
tions. We found that considering floating tracers introduces a host of
new physical considerations. Determining the correct form of these
reacting models was not trivial, and utilising a simple model helps in
this endeavour. The insights gained in our framework are not unique to
idealised models and can be readily extended to more complex systems,
which promises a fruitful line of future research.

We show two important factors: clustering has a minimal impact on
passive/floating tracer interactions but completely alters the dynamical
character of the system for interactions between species of buoyant
tracers. Coextensive clustering amplifies the strength of reactions, with
severe implications for the destructive effect of contaminants on marine
populations.

The model allows for an asymptotic equilibrium solution, which can
be verified through numerical experiments. Surprisingly, this equilib-
rium is totally independent of the velocity field, which bodes well for
the parameterisation of clustering in realistic ocean models.

Inclusion of a physical effect that is most familiar to Lagrangian
modellers, buoyant clustering, leads to a strong and novel coupling be-
tween oceanographic fluid dynamics and biological population dynam-
ics. This leads to a situation where accurate modelling will necessitate
interdisciplinary communication. We hope our idealised investigation
motivates this.
2

2. Methods

2.1. Idealised biogeochemical modelling

To model biogeochemical reactions, we begin with the most basic
representation (Franks, 2002), that has been used previously in appli-
cations where simplicity is desired (Prend et al., 2021). This consists
of a set of coupled ODEs, deliberately constructed to tend towards an
analytic equilibrium. We can characterise the impact of clustering on
this model by observing the change in the equilibrium state. At first,
only nutrients and phytoplankton masses are involved. Subsequently, a
third species is introduced to represent destructive contaminants such
as toxic POPs (Persistent Organic Pollutants).

2.1.1. NP model
The first model is

𝑑𝑁
𝑑𝑡

= −𝜇𝑁𝑃 − 𝜆(𝑁 −𝑁𝐷) , (1)

𝑑𝑃
𝑑𝑡

= 𝜇𝑁𝑃 − 𝜆𝑃 , (2)

where 𝑁 is the total mass of nutrients and 𝑃 is the total mass of
plankton. It contains terms to model the consumption of nutrients by
plankton, and also the natural decay of both species. To accommodate a
steady state, we require a source of nutrients into the system to balance
the decay, the rate of which is set by 𝜆𝑁𝐷. In a more realistic model,
this might be represented by the delayed reconstitution of dead plank-
ton as nutrients, leading to a conservation of biomass. The idealised
model approximates this behaviour. Integrating these equations will
show that 𝑃 evolves similarly to a logistic growth curve. The system
tends to a final equilibrium with values 𝑁∞ = 𝜆

𝜇 , and 𝑃∞ = 𝑁𝐷 −𝑁∞.
Importantly, this system permits a quantity 𝑄 = 𝑁 − 𝑁𝐷 + 𝑃 which
satisfies:
𝑑𝑄
𝑑𝑡

= −𝜆𝑄 . (3)

This ‘conservation of biomass’ is an essential component of the
model, and justifies the form of the coefficients 𝜇, 𝜆, which allow for
this conservation.

2.1.2. NPC model
To model the impact of pollutants, we need a system that can

represent the interactions between pollutants and plankton. Motivated
by the simple idealised form of Eqs. (1)–(2), we propose the inclusion
of a contaminant mass 𝐶 that obeys:
𝑑𝐶
𝑑𝑡

= −𝜇𝑃𝐶 − 𝜆(𝐶 − 𝐶𝐷) , (4)

with Eq. (2) also modified as follows:
𝑑𝑃
𝑑𝑡

= 𝜇𝑁𝑃 − 𝜇𝑃𝐶 − 𝜆𝑃 (5)

This captures the continual input of contaminants to the ocean,
similar to the feeding of nutrients into the system in Eq. (1). It also
models the ecological effect of contaminant as mutual destruction of
both species. Plankton consumes toxic contaminant and is eliminated
in the process.

If we define 𝑁̃ = 𝑁 − 𝐶, we can see that this system is identical to
Eqs. (1)–(2). The result is that the plankton mass will evolve in a similar
fashion, but with reduced carrying capacity. This will no longer be the
case once we introduce the clustering process. This is because there
is a distinction between species which are purely passive (follow the
full three dimensional ocean currents) and the floating material (which
only follows the surface flow) that modifies the form of interactions
between them.

This model also admits a ‘conserved’ quantity 𝑄 = 𝑁 −𝑁𝐷+𝑃 −𝐶+
𝐶𝐷, satisfying Eq. (3). This still represents a conservation of biomass.
However, destruction of plankton by the contaminant removes biomass

from the system, leading to the reduced carrying capacity.
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Fig. 1. Both passive and buoyant tracers can be modelled at the surface. Converging surface currents will cause the top area, 𝐴, of a material element to contract (see horizontal
view). For the passive tracer, this will be matched by the corresponding downwelling just beneath the surface, which increases the depth of the column (see vertical view). The
depth of the column, ℎ(𝑡) can be directly solved for using Eq. (15) and will satisfy ℎ𝐴 = constant. This ensures the mass of passive tracer within the element is conserved. Buoyant
tracers are trapped in a thin layer below the surface with no vertical velocity, so the convergence leads to an increase in concentration. This also explains the form of the reaction
coefficients in Eqs. (22)–(25).
The equilibrium state is found to be modified by the inclusion of
contaminant as follows:

𝑁 = 𝑁∞
𝑁𝐷

𝑁𝐷 − 𝐶𝐷
, (6)

𝑃 = 𝑃∞ − 𝐶𝐷, (7)

𝐶 = 𝑁∞

(

𝑁𝐷
𝑁𝐷 − 𝐶𝐷

− 1
)

, (8)

where 𝑁∞ and 𝑃∞ are the equilibrium values of the NP model as
defined in the previous section.

2.2. Tracer models

Our idealised ocean is bounded by a rigid lid at the surface. Both
passive and buoyant particles at this surface will follow Lagrangian
paths restricted to the horizontal plane. This is because there is no
vertical velocity at the rigid lid by definition. The equation we must
solve for the surface Lagrangian paths is:
𝑑
𝑑𝑡

𝐱(𝑡; 𝐱0) = 𝐮(𝐱(𝑡; 𝐱0), 𝑡) , (9)

𝐱(0; 𝐱0) = 𝐱0 (10)

where 𝐮 is the two-dimensional surface flow, 𝐱 = (𝑥, 𝑦) are the hori-
zontal surface coordinates 𝐱0 is the initial location of the Lagrangian
path.

Consider a small patch of Lagrangian particles at the surface. It can
be shown that the area, 𝐴, of that patch satisfies:
𝑑𝐴
𝑑𝑡

= 𝐴∇ ⋅ 𝐮 (11)

where 𝑑
𝑑𝑡 is the material derivative, following the Lagrangian paths (See

Appendix A for details).
We can construct the dynamics for the concentration of buoyant

tracers and the density of passive tracers at the surface. We do this
by considering material volumes that are bounded above by the rigid
lid and reach just below the ocean surface.

For buoyant tracers trapped in a thin layer of thickness 𝐻 , the vol-
ume of a material element will be proportional to 𝐴𝐻 . The mass inside
such an element should be conserved. This implies the concentration,
𝐶, of buoyant tracer will be related to the area by 𝐶 ∼ 1∕𝐴, since 𝐻 is
constant.
3

For passive tracers, the density of tracer should be conserved along
the Lagrangian paths. If the mass of a material element is also con-
served, it follows that the volume should be invariant. We can account
for this by considering the vertical velocity of passive tracer just below
the surface. In an incompressible ocean:

∇ ⋅ 𝐮3𝐷 = 𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

+ 𝜕𝑤
𝜕𝑧

= 0 (12)

where 𝐮3𝐷 is the fully three-dimensional flow in the ocean interior. By a
Taylor expansion, we can find the vertical velocity just below the ocean
surface:

𝑤(𝑥, 𝑦, 𝑧) ≈ 𝑤(𝑥, 𝑦, 0) + 𝑧 𝜕𝑤
𝜕𝑧

|𝑧=0 (13)

Using Eq. (12), and the rigid lid boundary condition (𝑤(𝑥, 𝑦, 𝑧 = 0) = 0),
we can rearrange this:

𝑤(𝑥, 𝑦, 𝑧) ≈ −𝑧∇ ⋅ 𝐮 (14)

with the two dimensional surface divergence on the right hand side,
identically to Eq. (11). Therefore, the depth of a material volume, ℎ, of
passive tracer at the surface satisfies:
𝑑ℎ
𝑑𝑡

= −ℎ∇ ⋅ 𝐮 (15)

This is consistent with the conservation of volume of passive tracer,
since combining Eqs. (11) and (15) implies that 𝐴ℎ ∼ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

See Fig. 1 for an illustration of a material volume of both passive and
buoyant tracers. Both volumes are attached to the surface. However, for
the passive element, any contraction of the top surface area is matched
by a stretching of the column depth to preserve volume. The fixed layer
depth of the buoyant tracers means that surface convergences leads to
an increase in concentration, as the volume of the element decreases
proportionally to the area.

Combining these observations, the density of passive tracer, 𝜌,
following a surface Lagrangian path is constant.
𝑑𝜌
𝑑𝑡

= 0 , (16)

while the local depth of the column satisfies:
𝑑ℎ
𝑑𝑡

= −ℎ∇ ⋅ 𝐮 , (17)

but the concentration of buoyant tracer satisfies:
𝑑𝐶 = −𝐶∇ ⋅ 𝐮 , (18)

𝑑𝑡
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while the local depth is constant. See Fig. 1 for an illustration of both
material volumes and how they differ. We can combine this model of
surface tracers with the biogeochemical model by introducing sources
and sinks on the right hand sides.

2.2.1. Surface masses
Our Lagrangian models will produce local information through solv-

ing equations for concentration and density along Lagrangian paths.
However, the real quantities we are interested in are global. For in-
stance, what is the overall impact of clustering on the total plankton
population?

In order to assess this, we need to integrate our density distributions
to evaluate global masses.

For buoyant tracers, this is straightforwardly:

𝑀𝐶 = ∫
𝑑2𝐱𝐶(𝐱, 𝑡) , (19)

where  is the horizontal ocean surface.
For passive tracers we must consider the varying depth of the

column, so the total mass is:

𝑀𝜌 = ∫
𝑑2𝐱 ℎ(𝐱, 𝑡)𝜌(𝐱, 𝑡) , (20)

𝜕ℎ
𝜕𝑡

+ 𝐮 ⋅ ∇ℎ = −ℎ∇ ⋅ 𝐮,

ℎ(𝐱, 0) = 1.

We can show that these two quantities are constant in time for
particles satisfying Eqs. (16) and (18), respectively. See Appendix A for
details.

2.2.2. NP tracer model
We start by investigating a nutrient-plankton (NP) model, with

two components. Defining the nutrient density 𝑛 and the plankton
concentration 𝑝, we integrate the positions of the Lagrangian paths at
the horizontal surface:
𝑑𝐱
𝑑𝑡

(𝑡; 𝐱0) = 𝐮(𝐱, 𝑡) , (21)

then, along each Lagrangian path, we integrate the nutrient density,
plankton concentration and the factor by which the passive tracer
column has stretched:
𝑑𝑛
𝑑𝑡

= −
𝜇
ℎ
𝑛𝑝 − 𝜆(𝑛 − 𝑛𝐷) , (22)

𝑑𝑝
𝑑𝑡

= −𝑝∇ ⋅ 𝐮 + 𝜇𝑛𝑝 − 𝜆𝑝 , (23)

𝑑ℎ
𝑑𝑡

= −ℎ∇ ⋅ 𝐮 , (24)

(0) = 1 . (25)

To understand the factor of 1∕ℎ in the mutual reaction of nutrients
nd plankton in Eq. (22), consider Fig. 1. At an area of downwelling,
he passive column gets deeper, whilst the buoyant tracer remains at a
onstant depth, this means that the mass of nutrients available to react
ith plankton is reduced, as the cross section between the two material
olumes decreases. The proportion of the column of passive nutrients
hat overlaps with the buoyant plankton is exactly 1∕ℎ, leading to a
roportionate reduction in the reactivity.

As in the previous section, surface masses are:

= ∫
𝑑2𝐱 𝑝(𝐱, 𝑡) (26)

= ∫
𝑑2𝐱 ℎ(𝐱, 𝑡) 𝑛(𝐱, 𝑡) (27)

These surface masses obey Eq. (3) for 𝑄 = 𝑁 + 𝑃 − 𝑁𝐷. It can
lso be shown that the surface masses exactly satisfy Eqs. (1)–(2) and
4

c

etails of this are contained in Appendix A. Both factors depend on the
orm of the coefficients. For instance, we must have the same 𝜇 and
𝜆 in Eqs. (22) and (23) to conserve biomass (Franks, 2002). This is a
desirable quality of our system, since it enhances the physical realism
and allows for easier interpretability.

Once we make this imposition, it can be shown that the global
masses exactly satisfy Eqs. (1)–(2). Hence, there is no impact of cluster-
ing in this model. This is to be expected, since there is no coextensive
clustering of species, which will be required to increase reaction rates.
Adding in a buoyant contaminant completely changes this.

2.2.3. NPC tracer model
The NP model above can be extended to include a buoyant con-

taminant, meant to represent a destructive toxic pollutant such as
microplastic waste.

Again, we solve for the Lagrangian paths. We now also integrate the
contaminant concentration, 𝑐, along each path:
𝑑𝑛
𝑑𝑡

= −
𝜇
ℎ
𝑛𝑝 − 𝜆(𝑛 − 𝑛𝐷) , (28)

𝑑𝑝
𝑑𝑡

= −𝑝∇ ⋅ 𝐮 + 𝜇𝑛𝑝 − 𝜇𝑝𝑐 − 𝜆𝑝 , (29)

𝑑𝑐
𝑑𝑡

= −𝑐∇ ⋅ 𝐮 − 𝜇𝑝𝑐 − 𝜆
(

𝑐 −
𝑐𝐷
𝐴

)

, (30)

𝑑ℎ
𝑑𝑡

= −ℎ∇ ⋅ 𝐮 , (31)

= 1∕𝐴 , (32)

(0) = 1 . (33)

Here, the impact of contaminants is modelled as mutual destruction
f both species. Plankton ingests pollutants and is destroyed in the pro-
ess. Contaminants are continously input uniformly across the domain,
epresented by the term −𝜆𝑐𝐷∕𝐴. The variable 𝐴 is the scaling factor
f the area of the top surface of the material volume. By scaling the
ontaminant source by 1∕𝐴, we account for the fact that the volume
f the material volume of a buoyant tracer can change over time (see
ig. 1). If this area decreases, the volume decreases, so the mass of
ontaminant being input should also decrease proportionally.

It can be shown that the surface masses in this system also satisfy
q. (3) for 𝑄 = 𝑁 − 𝑁𝐷 + 𝑃 − 𝐶 + 𝐶𝐷, the biomass analogue.

However, the introduction of two clustering species means that the
surface masses do not satisfy Eqs. (4)–(5). The coextensive clustering of
𝑐 and 𝑝 completely changes the dynamics of the system, by increasing
the efficiency of the mixing process between them.

It can be shown that a new equilibrium exists in the long time limit
of clustering, which can be given implicitly in terms of the equilibrium
contaminant concentration (see Appendix C):

𝐶𝐷(𝑃 ) = 𝑁𝐷 − 𝑃 −
𝑁𝐷𝑁∞
𝑁∞ + 𝑃

. (34)

This formula does not define a 𝑃 for all values of 𝐶𝐷. Specifically,
there is no non-zero equilibrium for:

𝐶𝐷 > (
√

𝑁𝐷 −
√

𝑁∞)2 , (35)

which means that the plankton population undergoes total extinction
at a much lower value of 𝐶𝐷. Also, the onset of extinction is now an
brupt discontinuous change, in contrast to the no clustering case.

This equilibrium represents a situation in which the majority of
ass of floating tracer is attracted into the densest clusters, which

ccurs exponentially (Koshel et al., 2019). This leads to the global
alance of the biogeochemical system being dominated by the reactions
ithin clusters. Inside the clusters, concentration of both plankton and
icroplastics are elevated, this leads to an increase in the global rate

f interaction increases and a much greater negative impact of the

ontaminant.
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Fig. 2. An example of surface mass integrals for 𝐶𝐷 = 0.1, 𝛾 = 0.1, we can see how the original equilibrium is made unstable by the clustering process. In this case, the global
integrals converge on the only remaining stable equilibrium, 𝑁 = 𝑁𝐷 , 𝐶 = 𝐶𝐷 , 𝑃 = 0. The black lines show the equilibrium of the ODE model (Eqs. (6)–(8)), at which the clustering
simulation was initialised. The time axis is scaled by 1000𝑡0 where 𝑡0 is the memory timescale of the kinematic flow (see Appendix C).
The quantity 𝜆𝐶𝐷 represents the rate of introduction of contaminant
into the system, but through re-scaling of dimensions, is also related to
the strength of interaction between 𝑃 and 𝐶. For more realistic weak
interactions, we can see that the impact of clustering is still significant.
A Taylor expansion at 𝐶𝐷 = 0 gives:

𝑃 ≈ 𝑃∞ +
𝑑𝐶𝑃
𝑑𝑃

|

|

|

|𝑃∞
(𝑃 − 𝑃∞) , (36)

where 𝑃∞ = 𝑁𝐷 − 𝑁∞ is the equilibrium plankton mass in the NP
equations (1)–(2). Using Eq. (34):

𝑃 ≈ 𝑁𝐷 −𝑁∞ −
𝑁𝐷

𝑁𝐷 −𝑁∞
𝐶𝐷 . (37)

In comparison with Eq. (7), we see that the impact of the contaminant
is amplified by:

𝑁𝐷
𝑁𝐷 −𝑁∞

> 1 (38)

For the choice of parameters used in our clustering simulations, this
ratio is equal to two, implying that increasing the rate of contaminant
introduction in our simulations leads to a reduction in the plankton
population that is twice as large as in the no-clustering case (in the
small 𝐶𝐷 limit). The impact of clustering is even more significant for
larger values of 𝐶𝐷.

Notably, the clustering equilibrium state is independent of any
specifics of the velocity field. It only requires the presence of a non-zero
potential component to the surface flow. The only factor dependent
on the strength of clustering is the speed of convergence towards the
equilibrium.

3. Clustering simulations

Our numerical experiments contain two components: a velocity
model and a particle model. For the velocity model, we generate
stochastic Gaussian random fields to model isotropic, homogeneous
turbulence. The form of these is based on those used in Koshel et al.
(2019) and identical to those in Meacham and Berloff (2023). Velocity
fields are decomposed into potential and solenoidal components:

𝐮 = 𝛾𝐮𝑝 + (1 − 𝛾)𝐮𝑠 , (39)

𝐮 = (𝜕 𝜙, 𝜕 𝜙) (40)
5

𝑝 𝑥 𝑦
𝐮𝑠 = (−𝜕𝑦𝜓, 𝜕𝑥𝜓) (41)

where 𝛾 ∈ [0, 1] and 𝜙, 𝜓 are the potential and streamfunction re-
spectively. The 𝛾 parameter allows us to exactly control the strength
of our convergences, which are the force driving cluster formation.
We typically choose values in the range 𝛾 ≈ 0.01 − 0.1. The value
of 𝛾 is analogous to the Rossby number, since this is the ratio of the
magnitudes of diverging ageostrophic and non-divergent geostrophic
currents. The chosen values are typical of the real ocean. Further details
of velocity field construction are contained in Appendix D.

For the tracer model, we choose to solve all equations in a La-
grangian sense, by tracking a large number of particles transported by
the modelled surface current. In theory, Eulerian and Lagrangian de-
scriptions should be equivalent. In practice, discretising the equations
on a finite grid necessitates introduction of unphysical diffusivities in
the Eulerian case. These act to regularise solutions that would otherwise
be numerically unstable by moving tracer concentration down-gradient.
It has been shown that these diffusions have an unduly large impact
on the clustering process (Meacham and Berloff, 2023). By adopting
a Lagrangian methodology, we forgo any diffusion and focus purely
on the advective mixing processes. Lagrangian particles also naturally
settle in areas of intense clustering, meaning our data will resolve these
regions well even for a small number of particles.

To calculate the total mass of various tracers using only discrete
Lagrangian data, we first apply a change of variables to integrals (19)
and (20). We integrate over initial conditions of the Lagrangian paths
instead of the spatial coordinates, and then use Gaussian quadrature to
estimate the integrals (See Appendix A for details). Calculating integrals
in this way has high accuracy, allowing fewer particles to achieve better
simulation of the global masses of tracer. Using this method requires us
to initialise our particles at the two-dimensional Gaussian quadrature
points. We used 104 Lagrangian particles for calculating these masses
(100 quadrature points in each coordinate direction).

Simulations are doubly periodic such that particles that leave the
domain re-enter at the opposite boundary. The velocity field is similarly
doubly periodic by construction. Each model run is initialised at the
equilibrium for the no-clustering case (Eqs. (6)–(8)) and is run until a
new equilibrium is reached. Fig. 2 shows the three global masses for a
simulation with 𝑐𝐷 = 0.1, with a clear relaxation to a different steady
state.
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Fig. 3. An example of the contaminant concentration from a clustering simulation of an initially regular grid of 500 × 500 particles. The formation of dense clusters and sparse
voids is evident here.
Fig. 4. Equilibrium plankton mass for several clustering simulations as a function of the equilibrium contaminant concentration 𝐶𝐷 (each model is denoted by a cross). The solid
black line is the analytic form of the equilibrium, the dotted line shows the theoretical equilibrium mass for the ODE model (without clustering).
For the NPC model, we use 𝜇 = 0.08, 𝜆 = 0.04 and 𝑛𝐷 = 1.0, so that
𝑁∞ = 0.5. We run simulations for many values of 𝑐𝐷, in an attempt to
reproduce the theoretical equilibrium (34).

To investigate the spatial distribution of the tracer concentrations,
we also initialise 500 × 500 particles in a regular grid. An example of
the contaminant concentration 𝑐 is contained in Fig. 3. This shows the
qualitative features of the clusters formed in these kinematic velocity
fields. The effect of filamentation by the solenoidal part of the velocity
can clearly be seen, as well as the extreme inhomogeneity of the
concentration distribution.
6

4. Results

Our results confirm the structure of the equilibrium plankton mass
agrees with Eq. (34). We choose two values of 𝛾, the parameter control-
ling the strength of the divergence, to demonstrate the independence of
this equilibrium on the particular structure of the velocity field. Both
of these points are illustrated in Fig. 4.

The effect on the dynamics is evident for all contaminant concen-
trations 𝑐𝐷, but the most severe impact is the reduction in the rate of
contaminant introduction required to reduce the plankton mass to zero.
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With the parameters used here, the rate of contaminant introduction
required is approximately 1

5 lower in the presence of the clustering
process, but can be even lower depending on the values of 𝑁𝐷 and

∞ = 𝜆
𝜇 . Additionally, the dependence of the plankton mass loss on

he rate of addition of contaminant was shown to be larger in the
resence of clustering, even for infinitesimally small 𝑐𝐷 (see Fig. 4

and Appendix B). By dimensional scaling, the strength of contaminant
introduction can also be understood as the strength of interaction
between plankton and contaminant. In this way, we can see that the
ecological risk is significantly enhanced even for weak interaction, due
to the larger gradient ||

|

𝑑𝑃
𝑑𝐶𝐷

|

|

|

near 𝐶𝐷 = 0. This gradient is doubled for
ur choice of parameters.

Although the end state of our system is independent of our velocity
ield, the time taken to reach this end state will vary greatly based on
he strength of the potential component of the flow. Our derivation in
ppendix C shows that the relaxation to this equilibrium depends on a

imescale proportional to the inverse of the variance of the divergence.
t was shown in Klyatskin (2003) and Koshel et al. (2019) that for our
inematic fields, this relevant timescale is 𝜏 = 𝑙2∕𝛾2𝑡0𝜎2𝐮. Here, 𝑡0 is the
ecorrelation timescale, 𝛾 is the Rossby number and 𝜎𝐮 is the velocity
ariance. If the source of clustering is the submesoscale ocean currents,
e can take reasonable values to show that this timescale could range

rom 1 − 2 weeks to ∼100 days.

. Summary and discussion

Aggregations of marine plastic pollution have been observed in
ultiple ‘accumulation zones’. Additionally, filaments evident in the
istribution of plankton in the ocean suggest that the spatial form of the
cean currents imprint heavily on both distributions. One mechanism
or this is clustering due to non-zero buoyancy forces. Floating plastic
ontaminants are known to be a hazard to marine life, especially
ince they accumulate hydrophobic toxins including POPs (Persistent
rganic Pollutants) (Andrady, 2011). However, it is an open question if

he formation of these dense clusters of marine contaminants represents
n enhanced risk to the oceanic food web. To answer this question
equires modelling of the mixing processes in the upper ocean.

We find that the inclusion of the leading order inertial effects
f particle buoyancy leads to a host of new physical considerations
hen constructing interacting tracer models. For example, the form
f interaction terms depending on the differing tracer velocities is
ltered. Using insights from our idealised model, the road to more
omplex and realistic models is clear. The severe effect of clustering
f ocean contaminants, even in our simple model, provides motivation
or further study of this phenomenon.

When there is more than one buoyant species in the biogeochemical
ystem, both are arranged into clusters and voids by the convergent
urface currents. Due to the very high density inside the clusters, the
eaction rates are increased there. Given enough time has passed, this
llows for a novel equilibrium state in which the global state of the
ystem is dominated by reactions within the clusters as the plankton
nd contaminant masses are continually drawn into the densest regions.
his is an example of the potential for significantly enhanced mixing as
result of buoyancy forces and surface clustering, and it depends very

ittle on the specifics of the model.
It is possible that this new equilibrium could be degraded by dif-

usive processes, or in more realistic ocean models where clustering
ay have a very different character. However, the independence of

he equilibrium in our model on the particulars of the velocity field
mplies that such effects could be surprisingly robust. Verifying that
ur results are still valid in a dynamically constrained flow is an
mportant incremental next step in this research direction. In the long
erm, parameterising the effect of buoyant clustering on oceanic mixing
nd biogeochemical reactions for inclusion in climate type models will
elp constrain the global distribution of plastic pollutants, and the
7

agnitude of the risk they entail to marine life. This can only be t
chieved once the small scale dynamics of clustering are understood.
urthermore, the coupling of biological reactions to the details of the
cean flow leads to a scenario where accurate modelling can only be
chieved through an interdisciplinary approach. Advancing away from
dealised models to a realistic description will require insights from
iological, oceanographic and transport theories.
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ppendix A. Clustering area and surface masses

A material area at the ocean surface is an area that moves with the
orizontal surface flow. i.e. we can find the area at a later time by
dvecting all points inside the area and on the boundary. In the limit
f vanishing area, the change in scale of an area over time becomes the
low map Jacobian of the transformation 𝐱0 → 𝐱(𝑡; 𝐱0). i.e.
𝐴(𝑡)
𝐴(0)

≡ |𝐉(𝑡)| , (A.1)

here the flow map Jacobian is defined as:

𝐉| = det
⎡

⎢

⎢

⎣

𝜕𝑥
𝜕𝑥0

𝜕𝑦
𝜕𝑥0

𝜕𝑥
𝜕𝑦0

𝜕𝑦
𝜕𝑦0

⎤

⎥

⎥

⎦

. (A.2)

Differentiating this determinant with respect to time along La-
grangian paths and using the fact that 𝑑𝐱

𝑑𝑡 = 𝐮 leads to:

𝑑
𝑑𝑡

|𝐉| = |𝐉|∇ ⋅ 𝐮 , (A.3)

hich is the derivation of Eq. (11). By the conservation of volume of
assive tracer, we also have that |𝐉| = 1∕ℎ.

For a passive tracer with density 𝜌 that is conserved along La-
rangian paths, it can be shown that:


𝑑2𝐱 𝜌(𝐱, 𝑡) , (A.4)

s not conserved. This is because the above integral does not represent
he total mass of passive tracer at the surface, due to the fact that the
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vertical velocity below the surface is non-zero. Introducing an arbitrary
kernel to this integral:

𝐼 = ∫
𝑑2𝐱𝐾(𝐱, 𝑡)𝜌(𝐱, 𝑡) (A.5)

We can use a change of variables 𝐱 → 𝐱0, which introduces a factor of
the Jacobian |𝐉|, since 𝑑2𝐱 = |𝐉|𝑑2𝐱0.

𝐼 = ∫
𝑑2𝐱0 |𝐉|𝐾(𝐱(𝑡; 𝐱0), 𝑡)𝜌(𝐱(𝑡; 𝐱0), 𝑡) (A.6)

taking a time derivative here and applying Eqs. (16) and (A.3), we find
that the appropriate kernel to conserve this integral is 𝐾 = 1∕|𝐉| = ℎ.
This is an intuitive result, since ℎ 𝑑2𝐱 is proportional to the volume of an
infinitesimal material element of passive tracer just below the surface.
This quantity is therefore the surface mass of passive tracer.

A similar change of variables is used to calculate surface masses
from Lagrangian data.

For buoyant tracers:

𝑀𝐶 (𝑡) = ∫
𝐶(𝐱(𝑡; 𝐱0), 𝑡)|𝐉|(𝑡, 𝐱0)𝑑2𝐱0 (A.7)

If we initialise a square number 𝑁 = 𝑛2 particles at the 2D Gaussian
quadrature points 𝐚𝑖𝑗 , we can approximate the surface mass using the
Gaussian quadrature formula:

𝑀𝐶 (𝑡) ≈
𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝑤𝑖𝑗𝐶(𝐱(𝑡; 𝐚𝑖𝑗 ), 𝑡)|𝐉|(𝑡, 𝐱𝑖𝑗 ) , (A.8)

where 𝑤𝑖𝑗 are the Gaussian quadrature weights. Estimating integrals
in this way has desirable convergence properties, allowing use of
fewer particles in the simulation to achieve greater accuracy in the
global masses of tracer. For a passive tracer with density 𝜌, similar
considerations lead to:

𝑀𝜌(𝑡) ≈
𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝑤𝑖𝑗𝜌(𝐱(𝑡; 𝐚𝑖𝑗 ), 𝑡) . (A.9)

Appendix B. NP tracer model solution

It can be shown that global masses for buoyant plankton and passive
nutrients in the system of Eqs. (22)–(25) exactly satisfy Eqs. (1)–(2). If
we take the following ansatz for the solution:

𝑝 = 𝑃 (𝑡)ℎ(𝐱, 𝑡) , (B.1)

𝑛 = 𝑁(𝑡) . (B.2)

By integrating over the domain, it can be shown that 𝑃 (𝑡) and 𝑁(𝑡) are
the surface masses of plankton (26) and nutrients (27) respectively.
If we substitute this ansatz into the Eqs. (22)–(23), we recover the
Eqs. (1)–(2). Since the solution is unique, it shows that clustering
leads to no new dynamics in this model, and this has been verified
through numerical experiments. This could be seen as an expected
result, since there is no coextensive clustering between species. The
plankton population forms clusters, but the passivity of the nutrients
means that they stay uniformly distributed.

Appendix C. Clustering equilibrium

We can recast the NPC tracer equations in terms of the mass of each
species inside a surface element 𝜌 = 𝑝|𝐉|, 𝛤 = 𝑐|𝐉| (recalling that |𝐉| is
proportional to the surface area of a material element). This leads to:

𝑑𝑛
𝑑𝑡

= −𝜇𝑛𝜌 − 𝜆(𝑛 − 𝑛𝐷) , (C.1)

𝑑𝜌
𝑑𝑡

= 𝜇𝑛𝜌 −
𝜇
|𝐉|
𝜌𝛤 − 𝜆𝜌 , (C.2)

𝑑𝛤 = −
𝜇
𝜌𝛤 − 𝜆(𝛤 − 𝑐𝐷) . (C.3)
8

𝑑𝑡 |𝐉|
Motivated by the ‘conserved’ quantity of our equations, we can show
that in the limit 𝑡→ ∞ :

𝑛 − 𝑛𝐷 + 𝜌 − 𝛤 + 𝑐𝐷 = 0 (C.4)

hich substitutes directly back into Eq. (C.2), to give:
𝑑𝜌
𝑑𝑡

= 𝜇𝑛𝜌 − 𝜆𝜌 −
𝜇
|𝐉|
𝜌[𝑛 − 𝑛𝐷 + 𝜌 + 𝑐𝐷] . (C.5)

If our velocity field divergence were delta-correlated in both time
nd space, with zero mean, it can be shown (through solving the ap-
ropriate Fokker–Planck equation) that ln |𝐉(𝑡)| is normally distributed
ith p.d.f.:

(𝑥) = 1
√

4𝜋𝐷(𝑡 − 𝑡0)
exp

(

− 𝑥2

4𝐷(𝑡 − 𝑡0)

)

, (C.6)

here 𝐷(> 0) is proportional to the variance of the divergence. This
urther implies that:

1
|𝐉(𝑡)|

⟩

= 𝑒𝐷(𝑡−𝑡0) (C.7)

Hence, looking at Eq. (C.5), it becomes clear that 𝜇
|𝐉|𝜌[𝑛−𝑛𝐷+𝜌+𝑐𝐷]

s the dominant term on average. Hence, in order to achieve non-trivial
quilibrium at late times it must be zero. This can be used to eliminate
in the nutrients equation. Integrating over initial conditions with
𝑁∕𝑑𝑡 = 0 and using 𝑃 +𝑁 = 𝐶𝐷 +𝑁𝐷, we can express the resulting
lankton mass implicitly in terms of 𝐶𝐷, 𝑁𝐷, 𝑁∞:

𝐷 = 𝑁𝐷 − 𝑃 −
𝑁∞𝑁𝐷
𝑁∞ + 𝑃

(C.8)

Furthermore, by finding the point (𝑃 , 𝐶𝐷) at which 𝑑𝐶𝐷
𝑑𝑃 = 0, we can

find the maximum 𝐶𝐷 where a non-zero steady plankton population
can exist:

𝑃 =
√

𝑁∞(
√

𝑁𝐷 −
√

𝑁∞) , (C.9)

𝐷 = (
√

𝑁𝐷 −
√

𝑁∞)2 . (C.10)

At small 𝐶𝐷 values, we can take a Taylor expansion about the
𝐶𝐷 = 0 solution, 𝑃 = 𝑁𝐷 − 𝑁∞, to see the impact of clustering in
this limit. To leading order, Eq. (C.8) becomes:

𝑃 ≈ 𝑁𝐷 −𝑁∞ −
𝑁𝐷

𝑁𝐷 −𝑁∞
𝐶𝐷 . (C.11)

This contrasts with Eq. (7), since there is a steeper gradient with
respect to the contaminant 𝐶𝐷. Hence, pollutants are significantly more
potent in the presence of clustering, even in this limit.

Appendix D. Velocity model

The velocity fields utilised in this study are identical to the time-
correlated kinematic fields used in Meacham and Berloff (2023). The
velocity is decomposed into potential (divergent) and solenoidal (non-
divergent) components. The strength of the potential component, which
causes clustering, is controlled through a parameter 𝛾.

𝐮 = 𝛾𝐮𝑝 + (1 − 𝛾)𝐮𝑠 . (D.1)

The components of the velocity field (𝐮𝑝,𝐮𝑠) are decomposed in terms
of scalar spectral coefficients 𝑎𝑝, 𝑏𝑝, 𝑎𝑠, 𝑏𝑠. For example, the potential
omponent is expressed as:

𝑝 = ∫ 𝑑2𝐤
(

𝑎𝑠(𝐤, 𝑡) + 𝑖𝑏𝑠(𝐤, 𝑡)
)𝐤
𝑘
exp(𝑖𝐤 ⋅ 𝐱) . (D.2)

Each coefficient is independent of every other, and satisfies a Langevin
equation at every wavenumber:
𝑑 𝑎 (𝐤, 𝑡) = −𝜆𝑎 (𝐤, 𝑡) + 𝜂(𝐤, 𝑡) . (D.3)

𝑑𝑡 𝑝 𝑝



Journal of Marine Systems 243 (2024) 103952J. Meacham and P. Berloff
⟨

𝜂(𝐤′, 𝑡′)𝜂(𝐤, 𝑡)
⟩

= 2𝜆𝜎2𝐮𝐸(𝑘)𝛿(𝐤
′ − 𝐤)𝛿(𝑡 − 𝑡′) , (D.4)

this leads to exponentially decaying flow memory, with decorrelation
timescale 𝑡0 = 1

𝜆 . The function 𝐸(𝑘) imposes the power spectrum
for the kinetic energy of the flow. To mimic homogeneous, isotropic
turbulence, we follow Koshel and use the spectrum:

𝐸(𝑘) = 1
2𝜋

𝑘2𝑙4

4
exp

(

−𝑘
2𝑙2

2

)

. (D.5)

This simple form of this spectrum has qualitative similarity to the
narrow band structure of traditional Kolmogorov turbulence. Its an-
alytic simplicity also allows for the explicit calculation of statistical
quantities.
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