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Many recent studies have diagnosed opposite-signed diffusion eigenvalues to be a
prevalent feature of the transfer tensor for diffusive tracer transport by oceanic mesoscale
eddies. This diagnosed tensor, which we refer to as the diffusion tensor, therefore
accounts for tracer filamentation effects. The preferential orientation of this filamentation
is quantified by the principal axis of the diffusion tensor, namely the diffusion axis.
Parameterisations of eddy diffusion commonly invoke a diffusion tensor, typically one
with non-negative eigenvalues to avoid numerical issues. Motivated by the need to
parameterise tracer filamentation, in this study we examine diffusion of a Gaussian tracer
patch with imposed opposite-signed diffusion eigenvalues, and in particular we focus on
the time scale for the onset of instability. For a fixed diffusion axis, numerical instability
is an inevitable consequence of persistent up-gradient fluxes associated with the negative
eigenvalue. For typical oceanic scales and diffusion magnitudes, this time scale is of the
order of 100 days, but is shorter for larger negative eigenvalues or for finer grid resolutions.
We show that imposing a time-dependent diffusion axis can lead to simulations with
no onset of instability after 100 000 days of tracer evolution. Although motivated by
oceanographic fluid dynamics, our results have much broader applications since diffusive
processes are present in a wide range of fluid flows.

Key words: ocean processes, turbulent mixing

1. Introduction

Mesoscale eddies play a key role in the redistribution of tracers about the global ocean
and are also responsible for the formation of ubiquitous submesoscale features such as
fronts and filaments (Abraham & Bowen 2002; Smith & Ferrari 2009). With spatial
scales of the order of 10–100 km, mesoscale eddies are often too small to be dynamically
resolved in ocean general circulation models (GCMs). The tracer release experiment by
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Ledwell, Watson & Law (1998) found that filaments have lengths of the order of 10 km
and widths of the order of 1 km, also too small to be resolved by standard grid resolutions
in GCMs. Fronts and filaments feature strong tracer gradients which, like mesoscale
eddies, can affect the evolution of the large-scale tracer distribution (Nencioli et al. 2013).
Therefore, accounting for these subgrid effects in a GCM is necessary in order to reliably
predict tracer distributions on the larger scales. Although eddy-permitting models are
becoming more viable, to completely resolve mesoscale eddies, mesoscale eddy effects
and submesoscale filaments is out of reach for the foreseeable future. The prevailing
solution to this issue is to parameterise the missing mesoscale eddy/subgrid effects.

Currently, the most commonly implemented closures in GCMs for eddy tracer
transport are isopycnal diffusion (Redi 1982) and advection by the Gent and McWilliams
eddy-induced velocity (Gent & McWilliams 1990; Gent et al. 1995). In this study we
focus on the diffusive part of eddy transport. Mesoscale eddies are known to drive
inhomogeneous and anisotropic eddy diffusion (Berloff, McWilliams & Bracco 2002;
Rypina et al. 2012; Kamenkovich, Rypina & Berloff 2015; Haigh et al. 2020) and there
have been some efforts to implement anisotropic schemes in GCMs (Smith & Gent 2004).
The ubiquity of anisotropic eddy diffusion in the ocean – of which tracer filamentation
is a subcategory – means it is necessary to develop and improve parameterisations that
account for it.

Scalar diffusivities are unable to account for anisotropic eddy diffusion and diagonal
diffusion tensors can only have directions of preferential diffusion aligned with the model
grid. On the other hand, general tensors such as a symmetric 2 × 2 tensor for 2-D flow
are ideal for parameterising anisotropic eddy diffusion. With a 2 × 2 symmetric diffusion
tensor S, the direction of preferential eddy diffusion is equivalent to the principal axis
of S; we refer to this as the diffusion axis. A diagnosed diffusion tensor depends on the
model/fluid flow and method employed, but some properties, such as the magnitude of the
eigenvalues, have been observed to be similar for both Eulerian (Abernathey, Ferreira &
Klocker. 2013; Bachman, Fox-Kemper & Bryan 2020) and Lagrangian approaches (Rypina
et al. 2012; Kamenkovich et al. 2015). In addition, the diffusion axis is found to often align
with the mean velocity vector, which is a consequence of shear dispersion (Young, Rhines
& Garrett 1982), enhancing mixing in the direction of the flow.

Using a quasigeostrophic model, Haigh et al. (2021a) defined eddies and large scales
using a spatial filter and found that the diffusion axis has complicated spatial and temporal
dependence, but that it tends to align with the large-scale flow, agreeing with earlier
studies. Another key finding was that the eigenvalues of the diffusion tensor S are
arranged in opposite-signed pairs, as was also found with comprehensive GCMs (Stanley,
Bachman & Grooms 2020; Kamenkovich et al. 2021). Haigh et al. (2020) confirmed that
opposite-signed eigenvalues were a robust feature for a selection of spatial filter sizes and
for eddy fluxes in a Reynolds eddy decomposition. With opposite-signed eigenvalues,
the associated eddy tracer flux is the sum of a down-gradient flux in the direction of
the diffusion axis and an up-gradient flux in the perpendicular direction, quantifying the
role of mesoscale eddies in producing tracer filaments. Haigh & Berloff (2021) confirmed
that net up-gradient passive tracer fluxes are common – this guarantees the diagnosis of
negative eigenvalues. Since these are studies of passive tracers, it is not true that diagnoses
of up-gradient fluxes and negative diffusivities are a consequence of selecting the ‘wrong’
value to diffuse, but this is a possible scenario with up-gradient momentum fluxes (Starr
1968) which are linked to down-gradient potential vorticity diffusion.

The above studies consider geostrophic turbulence but consideration of opposite-signed
diffusion eigenvalues is not limited to this branch of fluid dynamics. Many large-eddy
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simulation studies (e.g. Meneveau & Katz 2000; Eyink 2001; Balarac et al. 2013) consider
the ‘gradient model’ for which the corresponding diffusion tensor has opposite-signed
eigenvalues provided the flow is weakly divergent or non-divergent.

Implementing any negative diffusivities in a numerical model is likely to cause
instability issues, as is also true for the gradient model (Dubos & Babiano 2002). In
this study we incorporate opposite-signed diffusion eigenvalues into idealised tracer
simulations and consider the resulting instability. We first consider the time scale
for instability for a fixed diffusion axis, after which we determine to what extent a
variable diffusion axis affects this instability. Although motivated by oceanographic fluid
dynamics, this study has broad applications since we consider the diffusion equation which
is relevant to a wide range of fluid dynamics problems.

This study is organised as follows. In § 2 we introduce the parameterised tracer equation
and discuss properties of the diffusion tensor. In § 3 we simplify the tracer equation
to include only eddy diffusion. Then in § 3.1 we simulate the idealised system with
opposite-signed diffusion eigenvalues and a fixed diffusion axis with an aim to determine
typical time scales for the onset of instability. We then explore simulations with a variable
diffusion axis in § 3.2 to examine how this affects the stability of the model. We conclude
and discuss our results in § 4.

2. The parameterised tracer equation and the diffusion tensor

We are interested in the stability of the equation
∂C
∂t

+ (u + u∗) · ∇C = ∇ · (S∇C) + ν∇2C + F (2.1)

for a passive tracer C with F representing any processes other than those discussed below.
The tracer equation (2.1) represents the budget in a non-eddy-resolving or eddy-permitting
configuration. In the 2-D setting that we consider, C(x, y, t) is advected by the resolved
lateral velocity field u and the lateral eddy-induced velocity (EIV) u∗. The transport
effects associated with the EIV can also be represented by an antisymmetric tensor (Haigh
et al. 2021b), which can have numerical advantages (Griffies 1998) over using an EIV.
Other subgrid effects are parameterised by the 2 × 2 symmetric diffusion tensor S and
the homogeneous explicit diffusion with amplitude governed by the diffusivity ν. The
diffusion tensor S and the EIV u∗ are intended to account for the effects of mesoscale
eddies, flows with scales of the order of 10–100 km. The explicit diffusion governed
by ν is intended to parameterise submesoscale effects, but such a closure is commonly
implemented to account for mesoscale eddy effects.

The diffusion tensor and EIV can be incorporated into a single tensor, the transport
tensor, but keeping them separate is useful since they represent distinct effects. A wide
range of approaches can be used to define and compute the transport and diffusion tensors.
Part of the motivation for this study are the results of Haigh et al. (2020) and Haigh et al.
(2021a) in which the 2 × 2 transport tensor K is defined via the flux-gradient relation

f = −K∇C, (2.2)

where f is the eddy tracer flux and C is the resolved/large-scale tracer field. The diffusion
tensor is the symmetric part of K :

S = 1
2

(
K + KT

)
=

(
S11 S12
S12 S22

)
. (2.3)

For a given diffusion tensor S, whether prescribed or diagnosed, it is useful to characterise
it in terms of its eigenvalues, λ1 and λ2, and the orientation of its principal axis, α. We refer
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to these as the diffusion eigenvalues and the diffusion angle. The diffusion eigenvalues are

λ1 = S11 cos2 α + S22 sin2 α + 2S12 cos α sin α, (2.4)

λ2 = S11 sin2 α + S22 cos2 α − 2S12 cos α sin α, (2.5)

and the diffusion angle is

α = 1
2

tan−1
(

2S12

S11 − S22

)
. (2.6)

Selecting the correct quadrant when calculating the inverse tan for 2α guarantees that λ1 ≥
λ2. The principal axis of S, which we refer to as the diffusion axis, is v = (cos α, sin α).

The transport tensor K can be obtained using a number of methods such as by
over-determining the flux-gradient relation and using a least-squares algorithm (Bachman
et al. 2020) or by a direct inversion using the minimum number of tracers required (two
since K has four entries) (Haigh et al. 2020). Haigh et al. (2021a) diagnosed the diffusion
tensor S for an eddy-resolving quasigeostrophic simulation, using a spatial filter to separate
eddy and large scales, and showed that S is characterised by pairs of opposite-signed
diffusion eigenvalues. Haigh et al. (2020) demonstrated that opposite-signed eigenvalues
are a robust feature of S as they are obtained for a range of spatial filter sizes as well
as for eddies defined as the deviation from the time mean. Other studies (Stanley et al.
2020; Kamenkovich et al. 2021) have shown that opposite-signed eigenvalues are also a
prevalent feature of the diffusion tensor for passive tracer transport in GCM simulations.
Although we are motivated by these past oceanographic studies, the results of this study are
applicable to any fluid system which features diffusive processes, in particular those with
any anti-diffusive or filamentation effects. Parameterising any processes with negative
diffusion is likely to cause model instability issues; the remainder of this study is devoted
to quantifying this instability in idealised tracer simulations.

3. Experiments with a simplified model

We consider the stability of numerical simulations of the tracer equation forced only by
mesoscale eddy diffusion. To simplify further, we impose that S is homogeneous in space,
for which the tracer equation (2.1) becomes

∂C
∂t

= S11
∂2C
∂x2 + 2S12

∂2C
∂x∂y

+ S22
∂2C
∂y2 . (3.1)

Customarily, the diffusion eigenvalues λ1, λ2 and angle α are defined in terms of the
entries of S, but in this study we will prescribe rather than diagnose these quantities. In
this case it is useful to express the entries of S in terms of λ1, λ2 and α:

S11 = λ1 cos2 α + λ2 sin2 α, S12 = (λ1 − λ2) cos α sin α, S22 = λ1 sin2 α + λ2 cos2 α.

(3.2a–c)

Throughout this study the first diffusion eigenvalue will be kept fixed at λ1 = 1000 m2 s−1,
a typical value observed and implemented for upper-ocean eddy diffusion (Marshall et al.
2006; Klocker et al. 2012; Haigh et al. 2020).

To simulate (3.1) we use the fourth-order Runge–Kutta (RK4) explicit time-stepping
scheme with a centred-in-space spatial discretisation and a conservative flux-form
implementation. Since λ2 < 0 this scheme is in general unstable. We could consider
an implicit scheme such as backward-in-time, centred-in-space which is unconditionally
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stable for positive eigenvalues, but this is also unstable for λ2 < 0. We use periodic
boundary conditions, but the results of this study are the same for Neumann and Dirichlet
conditions. We have a square domain with x, y ∈ [0, L] where L = 3840 km is the basin
side length. The domain is uniformly discretised onto an N × N grid and we consider
three grid resolutions: N = 129, 257, 513 which have corresponding grid spacings of
dx = dy = 30, 15, 7.5 km. For the RK4 scheme, we use a time step of dt = dx2/(4λ1),
such that the scheme would be well within the stable range if we were to omit the negative
diffusion.

In all our numerical experiments, we initialise C as a Gaussian-shaped patch in the
centre of the domain:

C0(x, y) = B exp

[
−(x − L/2)2

2σ 2
x

− ( y − L/2)2

2σ 2
y

]
. (3.3)

Here σx and σy are the zonal and meridional standard deviations, respectively. We take
default values of these to be σ = σx = σy = 150 km. The constant B is arbitrary.

3.1. Fixed diffusion axis
We begin with the case of a fixed diffusion axis. Setting α = 0 leads to the diffusion
equation

∂C
∂t

= λ1
∂2C
∂x2 + λ2

∂2C
∂y2 . (3.4)

With λ2 < 0, numerical integrations of (3.4) are unstable, with the instability time scale
proportional to −λ2. In addition, with finer grid resolutions, we expect earlier onset of
instability since higher frequency (in space) modes are most unstable.

In figure 1(a) we show the same contour of the tracer field C at four different times,
t = 0, t = 45 days, t = 90 days and t = 100 days, for the case of λ2 = −1000m2 s−1 =
−λ1 and N = 257. The tracer patch evolves as expected: it stretches in the zonal direction
as a result of the down-gradient zonal diffusion, and it contracts in the meridional direction
as a result of the up-gradient meridional diffusion. After roughly 100 days, grid-scale
oscillations appear in the tracer field as a result of the persistent up-gradient fluxes and
these oscillations rapidly diverge to infinity in magnitude.

No matter how large or small the negative diffusion eigenvalue λ2 is, the system (3.4)
is always unstable. However, the time scale for the onset of instability is dependent on the
parameters N and λ2. Knowing this time scale is useful since it is a measure of the severity
of the instability; for longer time scales there is a greater chance that other processes such
as advection, sources/sinks or explicit diffusion can prevent the onset of instability. We
define the instability time scale to be the first instance in the numerical simulations at
which the domain-integrated tracer variance exceeds twice its initial value. Although this
choice is somewhat arbitrary, the instabilities grow so fast that varying the condition has
negligible effects on the diagnosed time scale. For example, for the simulation shown in
figure 1(a), it takes 103 days for the total tracer variance to exceed twice its initial value
and it takes 107 days to reach 10 times its initial value. This variance growth is caused by
grid-scale oscillations associated with the instability.

In figure 1(b) we show the instability time scale for −λ2 ∈ [10, 1000] m2 s−1 for three
different grid resolutions with λ1 = 1000 m2 s−1 fixed. This confirms that the instability
time scale is inversely proportional to −λ2 and that the time scale is shorter for finer
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Figure 1. (a) The same contour of the tracer field at times t = 0 (solid grey), t = 45 days (dashed black), t =
90 days (dotted black) and t = 100 days (dashed-dotted black) in the simulation of (3.4) with Gaussian initial
condition and N = 257. For better visualisation we have zoomed in on the tracer patch. (b) The instability time
scale (y-axis, log scale) for the diffusion equation with α = 0, λ1 = 1000 m2 s−1 and −λ2 ∈ [10, 1000] m2 s−1

on the x-axis. Results are for grid resolutions N = 513 (black), N = 257 (grey) and N = 129 (light grey).

grid resolutions. However, we do not observe a consistent power scaling as the grid
resolution varies: with N = 513 and N = 257, the instability time scale for the latter is four
times longer than for the former, but we do not diagnose the same scaling between the time
scales for the N = 257 and N = 129 cases. For the largest value of λ2 = −1000 m2 s−1, in
the low-resolution case the instability time scale is 130 days, in the mid-resolution case it
is 103 days whereas for the higher resolution case the time scale is 25 days. For the weakest
value of λ2 = −10 m2 s−1, these time scales are expectedly 100 times longer.

Since the first eigenvalue λ1 has no influence on the meridional tracer flux we find
that varying it does not affect the instability time scale. Varying the standard deviation
of the Gaussian initial condition σy does affect the time scale, but we have not observed
behaviour consistent across each grid resolution. For example, doubling σy leads to time
scales roughly twice as long for N = 129 whereas for N = 257 it leads to time scales
approximately 60 % as long.

3.2. Variable diffusion axis
We now consider a time-dependent diffusion axis which, like the eigenvalues, is imposed
to be homogeneous in space. There are many options for prescribing α, but we opt for
the simple case of α varying linearly in time, i.e. α = α̇t where α̇ is a constant. This
corresponds to a diffusion axis that rotates at a constant rate. Aside from its simplicity,
this choice is motivated by the behaviour of the diffusion axis in the diagnostic studies
of Haigh et al. (2020, 2021a). In their diagnoses the diffusion axis spins at a wide range
of average rates, commonly completing between 0.5 and 3 periods of π per year but as
many as 10 periods are also observed. This rotation rate is rarely constant and at many
grid points the diffusion axis oscillates about some time-mean value, but we maintain that
α = α̇t for constant α̇ represents the ideal starting point.
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Figure 2. (a) The same contour of the tracer field at times t = 0 (solid grey), t = 45 days (dashed black),
t = 90 days (dotted black) and t = 600 days (dashed-dotted black) in the simulation of (3.1) with Gaussian
initial condition and N = 257. A variable diffusion axis with rotation rate α̇ = 0.02 per day is imposed. For
better visualisation we have zoomed in on the tracer patch. (b) The instability time scale vs the diffusion axis
rotation rate α̇. Results are for λ2 = −800 m2 s−1 (black), λ2 = −900 m2 s−1 (grey) and λ2 = −1000 m2 s−1

(light grey). In all runs, λ1 = 1000 m2 s−1 and N = 257 are fixed. The vertical dashed lines denote α̇ values
corresponding to diffusion axis π-periodicities of 300, 200 and 150 days.

As an example we consider the numerical simulation of (3.1) with α̇ = 0.02 per day,
corresponding to a π-periodicity, which we denote Tα , of 157 days. Figure 2(a) shows
the same tracer contour at times t = 0, t = 45 days, t = 90 days and t = 600 days. This
illustrates that after 600 days the tracer variance has not diverged to infinity, but throughout
this simulation the tracer variance periodically exceeds twice its initial value. These
instances occur every Tα/2 days between which the variance returns to near its initial
value. This behaviour is caused by the rotation of the diffusion axis: down-gradient
diffusion eventually acts in the direction which was previously subject to up-gradient
diffusion, reversing the onset of instability. As a result, realistic tracer snapshots are
observed thousands of days into the simulation, but for this particular choice of α̇ the
tracer mass does eventually and irreversibly diverge to infinity.

In figure 2(b) we show the instability time scale for a range of diffusion axis rotation
rates and for λ2 ∈ {−800, −900, −1000} m2 s−1 with N = 257 and λ1 = 1000 m2 s−1

fixed. To produce each line we start with α̇ = 0, obtain the instability time scale,
increment α̇ by 3 × 10−4 day−1 and then repeat. Each simulation is run for a maximum of
100 000 days. For each value of λ2 there is a value of α̇ for which for all greater α̇ that we
considered (we test α̇ up to 0.03 day−1) an instability never manifests within 100 000 days.
In figure 2(b) each line terminates at this value of α̇. For reference, rotation rates of 0.01
and 0.02 day−1 correspond to Tα periodicities of 314 and 157 days. Other useful time
scales are plotted as vertical dashed lines in figure 2(b).

For each choice of λ2, there is a diffusion axis rotation rate α̇ after which the
instability time scale rapidly increases upon further increases to α̇. Shortly after this
each line terminates, indicating that, provided the diffusion axis rotates quickly enough,
the simulation remains stable (variance never exceeds twice its initial value). That is,
implementing a time-dependent diffusion axis can cause long-time simulations with
opposite-signed eigenvalues to never manifest an instability, while for a fixed diffusion
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axis this instability would have manifested after approximately 100 days. With weaker
λ2, the diffusion axis need not spin as quickly before a stable simulation is reached.
For example, for λ2 = −800 m2 s−1, the simulation remains stable for (approximately)
α̇ > 0.016, corresponding to π-periodicities Tα shorter than approximately 200 days. For
λ2 = −1000 m2 s−1, Tα shorter than roughly 125 days is required for stability throughout
the 100 000-day simulation.

It is informative to compare the Tα at which the simulations become stable with the
e-folding time scale Te = σ 2/|λ2|. For slow diffusion axis rotation (Tα � Te), averaging
(3.2a–c) over the time scale Te gives

S11 ≈ λ1 > 0, S12 ≈ 0 and S22 ≈ λ2 < 0. (3.5)

With S22 negative this implies the tracer undergoes persistent up-gradient diffusion over
the e-folding time scale, and the numerical simulations are therefore unstable. For fast
rotation (Tα � Te), averaging (3.2a–c) over the time scale Te gives

S11 ≈ S22 ≈ 1
2 (λ1 + λ2) and S12 ≈ 0. (3.6a,b)

In this case, the tracer undergoes down-gradient diffusion on average provided λ1+λ2 >0,
rendering the simulations stable (we also find that simulations with λ1 + λ2 = 0 can
be stable). For λ2 ∈ {−800, −900, −1000} m2 s−1 as in figure 2(b), the corresponding
e-folding time scales are Te ∈ {326, 289, 260} days. Figure 2(b) implies that Tα has to be
approximately 100 days shorter than Te before the rapid improvements in stability occur.
Lastly, we note that (3.6a,b) conversely implies that if λ1 + λ2 < 0, then (3.1) cannot be
stable no matter how fast the diffusion axis spins. Experiments with λ1 + λ2 < 0 confirms
this (not shown), although a quickly rotating diffusion axis can still delay the onset of
instability in this case.

4. Conclusion

This study has been motivated by (1) the prevalence of mesoscale-eddy-produced tracer
filaments in the ocean and (2) the prevalence of opposite-signed eigenvalue diffusivities
in diagnosed diffusion tensors for eddy tracer transport. The tracer release experiment of
Ledwell et al. (1998) uncovered the ubiquity of tracer filaments in the ocean and observed
these to have typical lengths of the order of 10 km and widths of the order of 1 km. Due
to computational limitations most GCMs may only be run on a coarse grid and are unable
to resolve mesoscale eddies (scales of the order of 10–100 km) and the role that they
play in producing and deforming tracer filaments. Furthermore, because mesoscale eddies
affect large-scale tracer distributions and because tracer filaments and fronts can also affect
future tracer distributions (Nencioli et al. 2013), being able to parameterise these missing
effects in GCMs is an important challenge for oceanographers.

Current parameterisations mostly assume that mesoscale eddy diffusion is both
homogeneous and isotropic, but there is much evidence to suggest that it is inhomogeneous
and anisotropic (Berloff et al. 2002; Rypina et al. 2012; Kamenkovich et al. 2015; Bachman
et al. 2020). A diffusion tensor can be employed to account for the anisotropy, while
simplified diagonal tensors can only have directions of preferential eddy diffusion aligned
with the model grid and scalar diffusivities cannot account for anisotropy at all. Recent
studies (Haigh et al. 2020, 2021a; Stanley et al. 2020; Kamenkovich et al. 2021) have
diagnosed the diffusion tensor in both idealised models and realistic GCMs and found it
to be characterised by opposite-signed eigenvalues. These diagnoses of opposite-signed
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eigenvalues suggest that the anisotropy is more pronounced than previously thought.
With opposite-signed eigenvalues, eddy diffusion acts to stretch a tracer patch in one
direction and compress it in the perpendicular direction, i.e. it drives tracer filamentation,
which non-negative eigenvalue pairs are unable to account for.

Numerical instability issues associated with negative diffusivities can demotivate
consideration of them (Fox-Kemper, Lumpkin & Bryan 2013; Bachman et al. 2020).
However, given the prevalence of opposite-signed eigenvalues in recently diagnosed
diffusion tensors and the ubiquity of mesoscale-eddy-generated tracer filaments in the
ocean, it is argued that opposite-signed diffusion eigenvalues need more consideration.
In this study we consider the instability of simple tracer simulations with prescribed
opposite-signed diffusion eigenvalues. We also consider the effects of varying the
diffusion axis, which quantifies the direction of preferential down-gradient diffusion.

We consider the numerical evolution of an initially Gaussian tracer patch diffused using
diffusion eigenvalues λ1 and λ2 where λ1 > 0 > λ2. Motivated by past oceanographic
studies, we use typical oceanic length scales, time scales and diffusivity magnitudes,
but these values can be scaled such that the results apply to motions on any scales. For
time-stepping we use the RK4 scheme and use a centred-in-space spatial discretisation.
To quantify the severity of model instability associated with the negative λ2, we define
the time scale for the onset of instability to be the first instance in the simulation at which
the domain-mean tracer variance exceeds twice its initial value. For a fixed diffusion axis,
the system is always unstable, no matter how small the negative λ2 is. The time scale for
the onset of instability is inversely proportional to −λ2, such that we observe instability
time scales of the order of 100 days for λ2 = −1000 m2 s−1 and time scales of the order of
10 000 days for λ2 = −10 m2 s−1. Shorter/longer time scales are obtained for finer/coarser
grid resolutions, an effect of higher-order modes being more unstable. We also found that
these time scales for the fixed diffusion axis are insensitive to first eigenvalue λ1.

In the diagnoses of Haigh et al. (2020, 2021a), the diffusion axis is variable in time
and in many locations rotates, typically completing between 0.5 and 3 periods of π per
year. Motivated by this we imposed a diffusion axis that rotates at a constant rate, which
represents the simplest extension of the fixed diffusion axis case. For λ2 = −1000 m2 s−1

and a slowly rotating diffusion axis (π-periodicities longer than 150 days), the simulations
continue to be unstable. However, for all parameter configurations that we have tested
there is a rotation rate for which, for all faster rotation rates, there is no manifestation
of instability in the entire 100 000-day simulation. That is, simulations of the diffusion
equation with one negative and one positive eigenvalue do not suffer from instability
issues provided the diffusion axis rotates quickly enough. In these scenarios, the onset
of instability is avoided because the rotating diffusion axis prevents the development of
too-large tracer gradients in any location.

The main result of this study is that negative diffusivities can be part of stable
simulations of the diffusion equation with the RK4 scheme. However, we do not propose
parameterising eddy effects and filamentation using the very simple rotating diffusion
scheme the we consider. We instead deem it necessary that the diffusion magnitude and
diffusion axis rotation rate be linked to the resolved flow and the model grid. Making these
links can be aided by considering the gradient model derived in large-eddy simulation
studies (e.g. Meneveau & Katz 2000; Eyink 2001; Nadiga 2008). In the gradient model, the
transport tensor is set to be proportional to (minus) the velocity gradient matrix, meaning
the corresponding diffusion tensor is proportional to the strain-rate tensor. Therefore,
for non-divergent or weakly divergent flow, this diffusion tensor has opposite-signed
eigenvalues and therefore causes instability issues that the present study addresses.
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When implementing the gradient model, Dubos & Babiano (2002) imposed an additional
biharmonic diffusion to counter these instability issues and in a decaying turbulence
simulation they found that the strain-rate diffusivity plus the biharmonic diffusion led to
improved tracer fields compared with a simulation with isotropic eddy diffusion. Not only
does including the biharmonic diffusion inhibit instability, it also aids the development
of sharper filaments by permitting stronger up-gradient diffusion. Similar results could be
attained by including a flux-limiter scheme. Future research could expand on our general
result by incorporating such methods that permit sharper tracer filamentation and improve
model stability.
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