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A B S T R A C T   

This study provides estimates of the mean eddy-induced diffusivities of passive tracers in a three-layer, double- 
gyre quasigeostrophic (QG) simulation. A key aspect of this study is the use of a spatial filter to separate the flow 
and tracer fields into small-scale and large-scale components, and we compare results with those obtained using 
Reynolds temporal averaging. The eddy tracer flux is related to a rank-2 diffusivity tensor via the flux-gradient 
relation, which is solved for a pair of tracers with misaligned large-scale gradients. We concentrate on the 
symmetric part of the resulting diffusivity tensor which represents irreversible mixing processes. The eigenvalues 
of the symmetric tensor exhibit complicated behaviour, but a particularly dominant and robust feature is the 
positive/negative eigenvalue pairs, which physically represent filamentation of the tracer concentration. The 
large off-diagonal diffusivity tensor component is the primary contributor to the eigenvalue polarity, and since 
this is such a prevalent feature we argue that the (horizontal) eddy-induced diffusivity should always be treated 
as a full 2� 2 tensor. Diffusivity magnitudes are largest in the upper layer and in the eastward jet region, where 
the eddying flow is strongest. After removing the rotational part of the eddy tracer flux, typical mean diffusivities 
(eigenvalues) in the upper-layer are on the order of 103 m2 s� 1 in the jet region and 102 m2 s� 1 elsewhere. We 
also confirm that the time-mean of the diffusivity calculated from instantaneous fluxes is not the same as the 
diffusivity associated with the time-mean fluxes.   

1. Introduction 

Mesoscale oceanic eddies play an important role in distributing 
tracers about the ocean, but resolving such transport in ocean circula-
tion models is often unfeasible, especially in simulations that require 
long time integrations. This issue is likely to persist for the foreseeable 
future, and therefore alternative methods for representing eddy-induced 
tracer transport in ocean models are required. Due to its simplicity, a 
parameterisation of eddy tracer fluxes is often based upon the flux- 
gradient relation, 

f¼ � KrC (1) 

In this case the eddy tracer flux f is related to the gradients of the 
large-scale tracer field C via a diffusivity K. This study focuses on the 
quantification of bulk diffusivities diagnosed using (1), in a three-layer 
double-gyre quasigeostrophic simulation. 

In ocean circulation models, the diffusivity is often assumed to be 
constant in both space and time, representing isotropic and homoge-
neous diffusion. However, there is strong evidence to suggest that 
neither assumption is valid [Berloff et al., 2002; Kamenkovich et al., 

2015; Rypina et al., 2012]. In particular, there is growing awareness that 
mixing in the presence of zonal mean flows is highly anisotropic with 
zonal diffusivities potentially an order of magnitude larger than 
meridional ones [Kamenkovich et al., 2009]. In the case of eastward jets, 
theories and experiments predict suppression of across-stream mixing on 
the jet core and enhanced mixing on the jet flanks [Abernathey et al., 
2010; Ferrari and Nikurashin, 2010; Klocker and Abernathey, 2014]. 
The former is due to wave propagation against the mean flow, whereas 
the latter is associated with the presence of critical layers. Overall, it is 
clear that diffusion of tracers is both anisotropic and inhomogeneous, 
and by seeking a diffusivity tensor K the present study is able to provide 
further evidence and quantifications of this. 

There is much debate surrounding the treatment of the eddy tracer 
flux f in the context of the flux-gradient relation (1). Since the eddy 
tracer flux sits inside the divergence operator in the tracer evolution 
equation, some studies [Eden et al., 2007; Eden and Greatbatch, 2009; 
Eden, 2010] argue that the rotational part should be removed before 
relating it to the large-scale tracer gradient. Moreover, the rotational 
part of the flux often dominates the divergent part [Marshall and Shutts, 
1981] and therefore leads to diffusivities whose dynamically active part 
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is obscured by a dominant inactive part. Other studies have noted that 
removal of the rotational flux may limit negative diffusivities [Bachman 
et al., 2015], but there are issues with regards to the non-uniqueness of 
the Helmholtz decomposition [Fox-Kemper et al., 2003]. We will pre-
sent bulk diffusivities calculated using both divergent and full eddy 
tracer fluxes. 

A key aspect of this study is the use of a spatial filter to separate the 
small- and large-scale flow and tracer fields [Lu et al., 2016]. The main 
benefit of this approach is that it allows us to relate the local eddy tracer 
flux to the local large-scale tracer gradient. Other studies [Bachman and 
Fox-Kemper, 2013; Bachman et al., 2015, 2017; Eden et al., 2007; Eden 
and Greatbatch, 2009; Eden, 2010; Medvedev and Greatbatch, 2004] 
use a Reynolds time-mean or zonal-mean to separate the scales, thus 
losing this locality benefit in either a spatial or a temporal coordinate. 
Moreover, Reynolds averaging leads to a reduced-dimension diffusivity, 
but we argue that a realistic diffusivity for an isopycnal model should 
have full two-dimensional spatial dependence and temporal 
dependence. 

This paper is organised as follows. In section 2 we describe the three- 
layer quasigeostrophic model, the tracer model, and the method for 
obtaining eddy-induced tracer diffusivities. In section 3 we discuss 
typical spatial patterns of the diffusivities and we present bulk diffu-
sivity values for a range of experiments. Lastly, we discuss and compare 
our results with the findings of other studies in section 4. 

2. Methodology 

2.1. Quasigeostrophic ocean model 

We use a three-layer quasigeostrophic (QG) model to simulate mid- 
latitude, double-gyre dynamics. In each layer the quasigeostrophic po-
tential vorticity (QGPV) equation is 

∂qk

∂t
þ Jðψk; qkÞþ β

∂ψk

∂x
¼ νr4ψk � δ3kγr2ψk þ

δ1k

ρ1H1
W; (2)  

where k ¼ 1; 2; 3 denotes the layer index. Here δij denotes the Kronecker 
delta, such that the wind forcing W is only active in the top layer and 
bottom friction, governed by γ ¼ 4� 10� 8 s� 1, is only active in the 
bottom layer. Also, Jð ⋅; ⋅Þ is the Jacobian operator; β ¼ 2� 10� 11 m� 1 s� 1 

is the planetary vorticity gradient; ν ¼ 20 m2 s� 1 is the eddy viscosity; 
ρ1 ¼ 103 kg m� 3 is the upper layer density. The potential vorticity 
anomalies qk are related to the streamfunctions ψk via 

q1¼r
2ψ1 þ s1ðψ2 � ψ1Þ; (3)  

q2¼r
2ψ2þ s21ðψ1 � ψ2Þ þ s22ðψ3 � ψ2Þ; (4)  

q3¼r
2ψ3 þ s3ðψ2 � ψ3Þ; (5)  

where s1, s21, s22 and s3 are the stratification parameters. These are 
selected such that the first and second deformation radii are 40 km and 
20.6 km, respectively. The square basin has side length L ¼ 3840 km 
such that 0 < x;y < L, and the layer depths are H1 ¼ 250 m, H2 ¼ 750 m 
and H3 ¼ 3 km. The asymmetric tilted wind forcing is defined by 

Wðx; yÞ¼A

8
>>><

>>>:

�
πτA
2L

sin
�

πy
y0

�

for 0 � y < y0;

πτ
2LA

sin
�

πðy � y0Þ

1=L � y0

�

for y0 � y < L;
(6)  

where 

y0¼
L
2
þ B

�

x �
L
2

�

: (7)  

The wind stress amplitude is τ ¼ 0:8 N m� 1, the asymmetry parameter is 

A ¼ 0:9 and the wind tilt parameter is B ¼ 0:2. 
The QGPV equations are simulated using the CABARET scheme 

[Karabasov et al., 2009] on a uniform 10252 grid, corresponding to a 
grid resolution of 3.75 km. On the lateral boundaries we use partial-slip 
conditions given by 

α ∂2ψk

∂n2 �
∂ψk

∂n
¼ 0; (8)  

where α ¼ 120 km is a boundary sub-layer lengthscale and n represents 
the coordinate normal to the boundary. The model is span up from rest 
for 20 years before tracers are initialised. 

2.2. Method for estimating diffusivities 

After spin up of the QG model, tracers are initialised whose dynamics 
are governed by the advection-diffusion equation, 

∂C
∂t
þr ⋅ ðuCÞ¼ νr2C þ F: (9)  

Here C represents the tracer concentration and 
u ¼ ðu; vÞ ¼ ð� ∂ψ =∂y; ∂ψ =∂xÞ is the horizontal flow vector. The forcing F 
represents relaxation of the large-scale tracer field back towards its 
initial profile, with a relaxation timescale of 5 days, the motivation for 
which will become clear shortly. In this case the large-scale field is 
defined using a square spatial filter, as will be outlined in section 2.4. 

Since we are interested in eddy-induced tracer transport, we split the 
flow and tracer fields into large-scale (denoted by ⋅) and small-scale 
(denoted by ’) components, such that, for example, Cðx;y;tÞ ¼ Cðx;y;tÞþ
C’ðx;y;tÞ. As discussed above, this scale separation will be defined using 
a spatial filter. Use of a spatial filter represents a significant novelty of 
this study - results using this filter will be compared with results ob-
tained using standard Reynolds temporal averaging. After separating the 
scales, we can rewrite the tracer equation as 

∂C
∂t
þr ⋅ ðuCÞþr ⋅ f¼ νr2C þ F; (10)  

where f ¼ uC’þ u’Cþ u’C’ is the eddy tracer flux. This represents fluxes 
that would not be resolved in a coarse-resolution or reduced-dimension 
model, and is often parameterised by invoking the flux-gradient relation 
which relates the eddy tracer flux to the large-scale tracer gradient: 

f¼ � KrC: (11) 

For a 2� 2 tensor diffusivity tensor K, the flux-gradient relation (11) 
is under-determined. We solve this issue by using a pair of tracers C1 and 
C2 with corresponding eddy fluxes f1 ¼ ðf ðuÞ1 ; f ðvÞ1 Þ and f2 ¼ ðf ðuÞ2 ; f ðvÞ2 Þ. It 
can then be shown that the diffusivity is given by 

K�
�

K11 K12
K21 K22

�

¼
1
d

 
f ðuÞ1 f ðuÞ2

f ðvÞ1 f ðvÞ2

!�
� C2;y C2;x
C1;y � C1;x

�

; (12)  

where d ¼ C1;xC2;y � C1;yC2;x is the determinant of the matrix of large- 
scale tracer gradients, and where subscripts x; y denote zonal and 
meridional derivatives, respectively. Our method for computing the 
diffusivity motivates the relaxation of the large-scale tracer field back to 
its initial profile, thus avoiding the singularity at d ¼ 0 associated with 
alignment of the large-scale tracer gradients. We opted for a relaxation 
timescale of 5 days as it is sufficient to avoid the matrix singularity and 
simultaneously have only a weak effect on the tracer dynamics. In sec-
tion 3 we discuss the dependence that the results have on the relaxation 
timescale. We stress that the eddying tracer field is not relaxed. As an 
alternative to the solution (12), Bachman et al., [2015] suggests over-
determining (11) by including more tracers and solving using the 
least-squares method, but we argue that consideration of tracer pairs is 
sufficient since our results are not notably sensitive to the specific pair 
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used. 

2.3. Diffusivity tensor properties 

We split the diffusivity into its symmetric1 and antisymmetric parts: 

Sij¼
1
2
�
KijþKji

�
and Aij¼

1
2
�
Kij � Kji

�
; (13)  

where i; j ¼ 1 or 2. The antisymmetric matrix A represents advection of 
the large-scale tracer field by a non-divergent velocity u� ¼
ð� ∂A12 =∂y; ∂A12 =∂xÞ [Griffies, 1998; Plumb and Mahlman, 1987]. Our 
focus is the symmetric matrix S, which represents irreversible diffusion. 
This can be diagonalised through rotation by the angle 

α¼ 1
2
tan� 1

�
2S12

S11 � S22

�

: (14)  

The diagonalised matrix is then 

S0 ¼RT SR¼
�

λ1 0
0 λ2

�

where R¼
�

cos α � sin α
sin α cos α

�

(15)  

is the rotation matrix. The components of S’ are the eigenvalues of S and 
are defined as 

λ1¼ S11cos2αþ S22sin2αþ 2S12cosαsinα; (16)  

λ2¼ S11sin2αþ S22cos2α � 2S12cosαsinα: (17)  

We can impose that λ1 > λ2 by selecting the appropriate quadrant when 
calculating α. It can be shown that this works by considering the stan-
dard eigenvalue definition for the matrix S. 

The eigenvalues λ1 and λ2 represent diffusivities in the direction of 
their respective eigenvectors, which are orthogonal. If we define the 
major axis of diffusion to be the first eigenvector, e1 ¼ � ðcosα; sinαÞ, 
then λ1 quantifies diffusion in the direction of e1 and λ2 quantifies 
diffusion normal to e1. It is the aim of this study to provide bulk esti-
mates of λ1 and λ2, as well as highlight their broad spatial patterns. Deep 
physical analysis of the diffusivities and their orientation is left for a 
later study. 

2.4. Description of experiments 

A key aspect of this study is the use of a square spatial filter used for 
decomposing the flow and tracer fields. With this method we are able to 
relate the local eddy tracer flux to the local large-scale tracer gradient. 
Standard Reynolds averaging is unable to maintain this locality. Using 
the filtering method for a discrete field φij and odd filter width w, the 
large-scale field is defined as 

φij ¼
1

w2

Xiþl

m¼i� l

Xiþl

n¼i� l
φmn; where l ¼

w � 1
2

: (18)  

Near the boundaries, the width w is reduced to the appropriate size, and 
the average is evaluated over a smaller square range. The small-scale 
field is defined as φ’ij ¼ φij � φij. This method could be built upon by 
additionally filtering the data in time, by using alternative filter shapes 
(e.g., a circle) or by including a weighting function in equation (18). 
However, we opted to use the square spatial filter due to its simplicity 
and because only one parameter is required. Results using this filter will 
be compared with results obtained using the standard Reynolds time- 
mean. 

We will present diffusivities from four experiments. Three experi-

ments, namely F15, F31 and F61, use the spatial filter defined in (18) to 
separate the scales; here 15, 31 and 61 refer to the filter widths in grid 
point dimensions and correspond to physical filter widths of 52.5 km, 
112.5 km and 225 km, respectively. In each of these three experiments 
we treat the eddy tracer flux in four distinct ways: (1) the flux f is un-
treated; (2) only the divergent part of f is retained; (3) only the eddy- 
eddy flux, u’c’, is retained; (4) only the divergent part of the eddy- 
eddy flux is retained. For short, we refer to these sub-experiments as f, 
fdiv, u’c’ and ðu’c’Þdiv, respectively. In the fourth experiment, referred to 
as REYNOLDS, large-scale fields are defined using Reynolds temporal 
averaging, and small-scale fields defined as the deviation. In REY-
NOLDS, the time-mean flux-gradient relation is solved rather than the 
instantaneous one, in which case we need only consider fluxes f and fdiv 
since these are equivalent to u’c’ and ðu’c’Þdiv, respectively. We consider 
the divergent part of the eddy tracer flux since the rotational part does 
not influence the tracer dynamics. Furthermore, the rotational part of 
the eddy flux typically dominates the divergent part [Marshall and 
Shutts, 1981], and can consequently dominate diagnosed diffusivities 
[Eden et al., 2007]. We use the Helmholtz decomposition, with zero 
normal flow and zero tangential flow boundary conditions, to calculate 
divergent fluxes. 

Each tracer is initialised with a linear profile, 

C0¼
axþ byþ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p ; (19)  

and its large-scale component is relaxed back towards its initial profile 
with a relaxation timescale of 5 days. Note that in each experiment, the 
same smaller filter width (52.5 km) is used when relaxing the large-scale 
tracer field. We do this for two reasons. First, the filtering process is 
time-consuming and the demands grow with the filter size. Second, this 
allows us to run all experiments on data attained from a single simula-
tion, rather than from four different ones which may diverge from one 
another. All results presented in this study use the same pair of tracers; 
for the first tracer field we use ða; b; cÞ ¼ ð1; � 4; 4Þ and for the second we 
use ða; b; cÞ ¼ ð � 2;3; 2Þ. To test the robustness of our results, we 
additionally simulated two more tracers (leading to 6 pairs of tracers in 
total), and find that diffusivities are not notably sensitive to the specific 
pair used. Furthermore, for divergent fluxes, the diffusivity tensors K 
calculated using different tracer pairs are indistinguishable from one 
another. This tracer-independence is due to the linearity of the large- 
scale tracer profiles. A thorough analysis of the uniqueness of K will 
be presented in a later study. 

3. Results 

After initialisation of the tracer field, a further � 25 days are 
required before the eddy tracer field becomes statistically steady. The 
QG dynamics and tracer equations are then simulated for a further year. 
In this section we start by discussing the essential qualitative behaviour 
of the diffusivity eigenvalues obtained from these simulations. We then 
move onto presenting time-mean and spatial-mean diffusivities. 

3.1. Qualitative behaviour 

In Fig. 1 we present instantaneous λ1 and λ2 from experiment F31 for 
the flux fdiv. Note the dashed rectangle which outlines the jet region, 
inside which we calculate separate statistics which will be presented 
shortly. Across almost the entire domain the first/second eigenvalue is 
positive/negative such that they represent filamentation of the tracer 
concentration [Ledwell et al., 1998]. Such polarity of the diffusivity 
eigenvalues would have an important and yet unknown effect on tracer 
clustering at the surface [Klyatskin and Koshel, 2017]. In each layer the 
diffusivities are largest in the jet region where the eddying flow is 
strongest. Diffusivities calculated using the full eddy tracer flux f are 
typically two orders of magnitude larger than those for the divergent 

1 We use S to denote the symmetric part, and A for the antisymmetric part. 
Their components are denoted Sij and Aij. 
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flux, but the broad qualitative behaviour of λ1 and λ2 (but not α) is 
unchanged. In experiments F15 and F61 we observe qualitative behav-
iour similar to Fig. 1, and we conclude that the positive/negative 
diffusivity pair is a robust feature of our results. This highlights possible 
limitations of scalar, homogeneous or isotropic diffusivity closures, 
which are unable to encapsulate the nontrivial behaviour that we 
observe. 

The polarity of diffusivity eigenvalues is rarely observed in previous 
studies [Bachman et al., 2020; Eden and Greatbatch, 2009], but there 
are simple reasons that can explain why this is the case. First, Lagrangian 
methods (e.g., Rypina et al., [2012]; Ying et al., [2019]; Zhurbas and Oh 
[2004]; Zhurbas et al., [2014]; Rypina et al., [2012]; Ying et al., [2019]; 
Zhurbas and Oh [2004]; Zhurbas et al., [2014]) lead to a symmetric 
diffusivity tensor which, by construction, has non-negative eigenvalues. 
Second, in studies which use Eulerian methods (e.g., Abernathey and 
Marshall [2013]; Eden et al., [2007]; Marshall et al., [2006]; Aberna-
they and Marshall [2013]; Eden et al., [2007]; Marshall et al., [2006]), 
the diffusivity is rarely treated as a full 2� 2 (in the case of 2 

dimensions) tensor, but rather as a diagonal tensor or a scalar. In these 
cases, the off-diagonal diffusivity component S12 is neglected, which 
consequently reduces the likelihood of observing polar eigenvalues. This 
is because the term 2S12cosαsinα is always positive, and therefore S12 
always makes a positive/negative contribution to the first/second 
eigenvalue (see equations 16 and 17). More precisely, the diffusivity 
eigenvalues are of opposite sign if S2

12 > S11S22. Thus, polar eigenvalues 
are obtained if S12 is sufficiently large, or if S11 and S22 are of opposite 
sign. As an example, for the eigenvalue snapshots shown in Fig. 1, we 
calculated the frequency with which these conditions are satisfied (in 
the upper layer). At (approximately) 60% of grid points S2

12 > jS11S22j, at 
20% of grid points S11S22 < 0, and at 72% of grid points S2

12 > S11S22. 
This suggests that the eigenvalue polarity is predominantly due to the 
large off-diagonal tensor component S12. 

Fig. 1 also depicts the local major axis of diffusion, i.e., the unit 
eigenvector of λ1, in order to motivate the idea that the behaviour of the 
diffusivity orientation is nontrivial. The major axis is plotted every 30 
grid points, which is not sufficient to precisely observe the local 

Fig. 1. Instantaneous diffusivities, λ1 (left) and λ2 (right), from experiment F31 for the divergent tracer flux fdiv. The upper, middle and bottom rows represent the 
upper, middle and bottom layers, respectively. From top to bottom, the units are 2� 104 m2 s� 1, 8� 103 m2 s� 1 and 2� 103 m2 s� 1. Vectors represent the major axis 
of diffusion, and are plotted every 30 grid points. The dashed rectangle outlines the jet region. 
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diffusion orientation, but observations indicate that in the jet region the 
major axis of diffusion is not necessarily aligned with the mean flow. 
This perhaps contradicts results from previous studies (e.g., Abernathey 
et al., [2013]; Kamenkovich et al., [2015]; Rypina et al., [2012]; 
Abernathey et al., [2013]; Kamenkovich et al., [2015]; Rypina et al., 
[2012]), so it is therefore unclear to what extent our results agree with 
other studies of cross-jet mixing [Abernathey et al., 2010; Klocker and 
Abernathey, 2014; Ferrari and Nikurashin, 2010]. However, previous 
studies of the diffusion orientation make use of averaged tracer fluxes or 
ensemble-averaged particle trajectories, and these approaches can 
eliminate variability in the major axis of diffusivity. Thus, our results 
may not disagree with those of previous studies, but further analysis is 
required and this will be presented in a later study. 

Before considering mean diffusivities, we briefly relate our results to 
classic eddy diffusivity theory [Prandtl, 1925; Taylor, 1921; Vallis, 
2017], in which we have K � σ2τ where σ2 is the eddy velocity variance 
(the time-mean eddy kinetic energy) and τ is the Eulerian decorrelation 
timescale. We may use this to estimate the extent to which spatial 
variability in the eigenvalues λ1 and λ2 is due to variations in the eddy 
intensity. In Fig. 2 we plot the normalised eigenvalues, i.e., 

bλ1¼
λ1

σ2 and bλ2 ¼
λ2

σ2; (20)  

in the upper layer. Firstly, the normalised diffusivities are largest away 
from the jet, suggesting that the decorrelation timescale τ is short inside 
the jet region relative to other regions in the domain.2 The effect of 
normalising the diffusivities in the lower layers is much the same as in 
the upper layer. Also, in the lower layers bλ1 and bλ2 are of the same order 
as in the upper layer, so although normalisation by σ2 eliminates the 
variability between layers, some layer-wise variability persists. 

3.2. Quantitative behaviour 

The remainder of this study focusses on the bulk diffusivities. To 
quantify the bulk diffusivity we use two measures: the mean diffusivity, 

〈λ〉¼
〈λ1 þ λ2〉

2
; (21)  

and the mean absolute diffusivity, 

〈jλj〉¼
〈jλ1j þ jλ2j〉

2
; (22)  

where the angular brackets denote a year-long time-mean and a spatial 
mean, which is either a domain mean or a jet-region mean (see Fig. 1). 
The polarity of the eigenvalues means that we expect distinct estimates 
for 〈λ〉 and 〈jλj〉, and their disparity could be a measure of such polarity. 
Before calculating the bulk diffusivities, any values that lie more than 
three standard deviations away from the mean are capped. This prevents 
spurious values - which are due to alignment of large-scale tracer gra-
dients - from dominating the mean. 

Table 1 presents bulk diffusivities from experiment F31. Bulk diffu-
sivities are strongest in the upper layer, weakest in the lower layer, and 
span many orders of magnitude (1 - 106 m2 s� 1). The mean absolute 
diffusivity 〈jλj〉 is consistently larger - typically by one or two orders of 
magnitude - than the mean diffusivity 〈λ〉. This disparity is due to the 
polarity of the eigenvalues, and therefore extreme 〈jλj〉 values ought to 
be interpreted with this in mind. Diffusivities are consistently largest in 
the jet region, especially in the upper layer where the flow is fastest. 
Negative domain-mean diffusivities are obtained for the full flux f in the 
lower layers, which is due to large negative trace values (λ1þ λ2) 
outside of the jet region. Although such locally negative trace values 

exist in upper layer - and in the lower layers for other fluxes - these are 
less negative, and so we obtain positive domain means. We remind the 
reader that the bulk values, although not in general tracer-independent, 
vary very little when using alternative tracer pairs (we tested 6 tracer 
pairs in total). Furthermore, for divergent eddy fluxes the bulk diffu-
sivities are the same for different tracer pairs, which is due to the line-
arity of the large-scale tracer gradients. 

The qualitative behaviour of each diffusivity as shown in Fig. 1 for 
experiment F31 is preserved in experiments F15, F61. In Tables 2 and 3 
we present mean diffusivities for experiments F15 and F61, respectively. 
For experiment F15, mean diffusivities are typically half those in 
experiment F31. This reduction may be expected since for the smaller 
filter less of the eddying tracer and flow fields are captured by c’ and u’, 
and instead are captured by C and u. However, the larger filter width in 
experiment F61 does not lead to diffusivities that are consistently larger 
than those in experiment F31. In experiments F15 and F61, the negative 
〈λ〉 values persist for the full flux f, and again we note that the equivalent 
bulk diffusivities are positive for the divergent flux fdiv. Thus, our results 
agree with the suggestion by Bachman and Fox-Kemper [2013] that 
negative diffusivities could be due to contamination by the dominant 
rotational component of the tracer flux (provided that we use the full 
divergent eddy tracer flux rather than just the eddy-eddy component). 

For experiment REYNOLDS the flux-gradient relation (11) is solved 
only once per sub-experiment, for the time-mean eddy tracer flux. As 
shown in Table 4, mean diffusivities are most commonly between 102 

and 104 m2 s� 1 with weakest values at depth. In layers 2 and 3 for the 
full flux f, both λ1 and λ2 are almost globally positive, leading to near- 
identical 〈λ〉 and 〈jλj〉 estimates. For the divergent flux fdiv, mean dif-
fusivities are most drastically reduced outside of the jet region, as 
negative λ2 values become more abundant, leading to small domain- 
mean diffusivities which are negative in the lower layers. Therefore, 
the effect of removing the rotational part from the eddy tracer flux is not 
the same as in experiments F15, F31 and F61. We also note that in 
experiment REYNOLDS, the weakening of the diffusivities with depth is 
not as pronounced as in the other experiments. Overall, an important - 
and perhaps expected - conclusion to be made from experiment REY-
NOLDS is that the time-mean diffusivity (e.g., from experiments F15, 
F31, F61) is not the same as the diffusivity associated with the time- 
mean fluxes. 

Recall that in order to avoid the singularity in solving for the diffu-
sivity tensor K, the large-scale tracer concentrations are relaxed back 
towards their initial profiles with a relaxation timescale of 5 days. The 
results we present are dependent on the relaxation rate with stronger/ 
weaker relaxations leading to smaller/larger diffusivity estimates, but 
we stress that this sensitivity is not spurious. For vanishingly weak re-
laxations, we hypothesise that the diffusivity amplitudes would 
asymptote, provided the simulation time is short enough such that the 
tracer gradients remain misaligned. 

4. Conclusions and discussion 

In this study we have provided estimates of diffusivities of passive 
tracers in a mid-latitude, double-gyre ocean model. Tracers were 
advected in a high-resolution, three-layer quasigeostrophic simulation, 
after which the eddy tracer flux was related to its large-scale gradient via 
a diffusivity tensor. To separate the flow and tracer field scales, a spatial 
filter was used and results were compared to the output obtained using 
temporal Reynolds averaging. Importantly, via this comparison we 
showed that the time-mean diffusivity, which is calculated from 
instantaneous fluxes, is not the same as the diffusivity associated with 
the time-mean fluxes. 

We concentrated on the two eigenvalues of the symmetric part of the 
diffusivity tensor, which represent irreversible diffusion along their 
orthogonal eigenvector directions. First of all, the diffusivity eigen-
values exhibit complicated spatial patterns and can span many orders of 2 Note in particular the very large negative λ2 in the south-eastern corner of 

the domain, where eddy activity is consistently weak. 
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magnitude. A robust feature, common to every layer, is the positive/ 
negative eigenvalue pairs, which quantify filamentation of the tracer 
concentration [Ledwell et al., 1998]. There is strong evidence to suggest 
that this eigenvalue polarity is predominantly due to the large 
off-diagonal tensor component S12. In other studies which use Eulerian 
methods (e.g., Abernathey and Marshall [2013]; Eden et al., [2007]; 
Marshall et al., [2006]), the diffusivity is rarely treated as a 2� 2 tensor, 
but rather as a diagonal tensor or a scalar. As a result, such studies 
neglect the off-diagonal mixing terms and inevitably suppress eigen-
value polarity in their results. Moreover, although Lagrangian estimates 
(e.g., Kamenkovich et al., [2015], Klocker et al., [2012a, b], LaCasce 
et al., [2014], Rypina et al., [2012], Ying et al., [2019], Zhurbas and Oh 
[2004], Zhurbas et al., [2014]) may reliably predict diffusivity ampli-
tudes, they do not capture the spatial complexity and eigenvalue po-
larity that we observe. Overall, we argue that studies of eddy-induced 
transport ought to consider the full 2� 2 diffusivity tensor and conse-
quently not restrict the possibility of positive/negative eigenvalue pairs. 

Bulk diffusivities were defined to be the mean of the eigenvalues (or 
the mean of their absolute values), additionally averaged in space and 

Fig. 2. Instantaneous normalised diffusivities bλ1 (left) and bλ2 (right) in the upper-layer from experiment F31. Units are 2� 103 s. Colour is strongly saturated in the 
south-eastern corner of the right-hand panel. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Table 1 
Experiment F31. Bulk diffusivities (units m2 s� 1) in each of the three layers. We 
give the mean eigenvalue, 〈λ〉, and the mean absolute eigenvalue, 〈jλj〉, for 
domain averages and jet-region averages, and for four tracer fluxes.  

Layer 1 f  fdiv  u’c’  ðu’c’Þdiv  

〈λ〉, domain  6528 202 791 � 1.0 
〈λ〉, jet  46550 1642 3678 � 56 
〈jλj〉, domain  145929 3488 4342 1451 
〈jλj〉, jet  633719 17721 25098 7091 

Layer 2 f  fdiv  u’c’  ðu’c’Þdiv  

〈λ〉, domain  � 317 17 116 5.0 
〈λ〉, jet  717 323 248 39 
〈jλj〉, domain  23968 431 155 94 
〈jλj〉, jet  32628 1066 347 192 

Layer 3 f  fdiv  u’c’  ðu’c’Þdiv  

〈λ〉, domain  � 394 2.0 34 0.7 
〈λ〉, jet  135 87 57 11 
〈jλj〉, domain  12264 227 41 27 
〈jλj〉, jet  16095 356 67 39  

Table 2 
The same as Table 1 but for experiment F15.  

Layer 1 f  fdiv  u’c’  ðu’c’Þdiv  

〈λ〉, domain  5657 132 408 21 
〈λ〉, jet  31838 764 2077 111 
〈jλj〉, domain  101639 2814 1859 639 
〈jλj〉, jet  429123 13522 10319 3034 

Layer 2 f  fdiv  u’c’  ðu’c’Þdiv  

〈λ〉, domain  � 215 6.0 22 1.1 
〈λ〉, jet  180 79 29 3.1 
〈jλj〉, domain  9028 193 37 19 
〈jλj〉, jet  11322 543 61 35 

Layer 3 f  fdiv  u’c’  ðu’c’Þdiv  

〈λ〉, domain  � 114 0.9 5.3 0.2 
〈λ〉, jet  � 6.0 23 8.3 1.3 
〈jλj〉, domain  3715 70 7.6 4.3 
〈jλj〉, jet  4998 116 11 5.7  

Table 3 
The same as Table 1 but for experiment F61.  

Layer 1 f  fdiv  u’c’  ðu’c’Þdiv  

〈λ〉, domain  662 156 2236 82 
〈λ〉, jet  15709 2632 10843 1025 
〈jλj〉, domain  124565 2954 4033 1961 
〈jλj〉, jet  337018 9364 20031 6375 

Layer 2 f  fdiv  u’c’  ðu’c’Þdiv  

〈λ〉, domain  � 523 24 414 11 
〈λ〉, jet  1922 797 1213 263 
〈jλj〉, domain  49513 987 510 356 
〈jλj〉, jet  79686 2339 1528 902 

Layer 3 f  fdiv  u’c’  ðu’c’Þdiv  

〈λ〉, domain  � 753 2.6 159 1.4 
〈λ〉, jet  986 235 307 76 
〈jλj〉, domain  30935 645 180 133 
〈jλj〉, jet  40567 1023 345 226  
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time. The spatial mean was either a layer-wise domain-mean or a jet- 
region mean. We have also considered the effects of removing the 
rotational part from the eddy tracer flux, and the effects of removing the 
eddy-mean interaction terms from the tracer flux. Bulk diffusivities are 
systematically largest in the upper layer and in the jet region of each 
layer. For example, for the full eddy tracer flux f and a filter width of 
112.5 km, the mean diffusivity is e6000 m2 s� 1 in the upper-layer 
domain mean and is e45000 m2 s� 1 in the jet-region mean. Removal 
of the dominant rotational part of the eddy tracer flux leads to diffu-
sivities that are one to two orders of magnitude smaller. Since the dif-
fusivities are of opposite sign in most of the domain, mean absolute 
diffusivities are commonly two orders of magnitude larger than the raw 
values, leading to extreme (e106 m2 s� 1) mean absolute diffusivities for 
the full eddy tracer flux. 

Our bulk diffusivity estimates span many orders of magnitude, but 
they are in broad agreement with estimates from other studies. Rypina 
et al. (2012) used drifters and synthetic particles to estimate anisotropic 
diffusivities in the North Atlantic and found that the strongest mixing 
occurs in the Gulf Stream. The domain-mean diffusivity - averaging the 
contribution from both directions - was estimated to be approximately 
5000 m2 s� 1, very close to our estimates from experiments F15 and F31 
for the full eddy tracer flux. Such values are also similar to those attained 
by Zhurbas and Oh [2004], who considered both the Atlantic and Pacific 
Oceans, and similar to [Zhurbas et al., 2014] who considered the entire 
global ocean. Eden and Greatbatch [2009] used the flux-gradient rela-
tion to diagnose diagonal diffusivity tensors of various tracers in the 
Atlantic Ocean. They found positive/negative diffusivity pairs in parts of 
the domain with diffusivity magnitudes generally between 0 and 5000 
m2 s� 1. Our results suggest that if Eden and Greatbatch [2009] included 
the off-diagonal diffusivity tensor components in their method, then 
polar eigenvalue pairs would be a more common feature. 

Many other studies have focussed on the Southern Ocean and the 
Antarctic Circumpolar Current (ACC), where the diffusivity tends to be 
weaker in comparison to a mid-latitude basin, due to the relatively small 
deformation radius. Similar to our approach, Lu et al., [2016] used a 
spatial filter to separate the flow scales in a Southern Ocean model. They 
found both positive and negative buoyancy diffusivities to be as large as 
3000 m2 s� 1, but did not consider the most general case of a 2� 2 tensor 
diffusivity. Using the effective diffusivity of Nakamura [1996], Klocker 
et al., [2012b] found typical cross-ACC surface diffusivities between 500 
and 1000 m2 s� 1 for a tracer advected by altimetry-derived geostrophic 
flow. Using the same method, Marshall et al., [2006] and Abernathey 
et al., [2010] calculated diffusivities of e2000 m2 s� 1 on the equator-
ward flank of the ACC, and reduced values of e500 m2 s� 1 in the ACC 
core. Such reduced diffusivities in the ACC core are predicted by the 
theory of Ferrari and Nikurashin [2010], by which eddies propagating 
against the mean-flow act to suppress mixing. This theory was corrob-
orated by Klocker and Abernathey [2014] who explored the effects of 
systematically varying a zonal background flow. However, it is unclear 
to what extent such behaviour is exhibited in our experiments; in-depth 
analyses of the diffusivities and their orientation will follow in a later 
study. 

The use of divergent over full eddy tracer fluxes is an actively dis-
cussed topic, but we can present arguments for removing the rotational 
part of the flux, in spite of non-uniqueness issues associated with the 

Helmholtz decomposition [Fox-Kemper et al., 2003]3. First, use of the 
divergent component of the eddy tracer flux limits the influence of the 
dynamically inert rotational component, which dominates the full flux 
[Marshall and Shutts, 1981] and the resulting diffusivity. Second, our 
results imply that negative mean diffusivities are less likely to be ob-
tained after removal of the rotational part of the eddy tracer flux, 
agreeing with the suggestion of Bachman and Fox-Kemper [2013]. 
Third, for divergent fluxes and linear large-scale tracer gradients, the 
resulting diffusivity is tracer-independent. In general, however, our 
approach yields tracer-dependent K which Bachman et al., [2015] 
argued is best treated by overdetermining the flux-gradient relation 
(include more tracers) and solving using the least-squares approach. 
Overall, non-uniqueness of the diffusivity is a critical topic, and will 
therefore be comprehensively addressed in a later study. Furthermore, 
our work can be considered as foundational for systematic modelling of 
the eddy diffusivity tensor coefficients as random processes, following 
on from earlier studies [Berloff and McWilliams, 2003; Grooms, 2016]. 
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