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A B S T R A C T

This study provides an interpretation of isopycnal eddy transport for mass and passive tracers in double-gyre
eddy-resolving oceanic circulation. This paper focuses on a transport/diffusion tensor representation of the
eddy tracer flux, and a companion paper will focus on advective eddy-induced tracer and mass transports. We
use a spatial filter to separate the large and small scales, which leads to results distinct from those obtained via
a temporal Reynolds eddy decomposition. To work towards a parameterisation, we relate the eddy tracer flux
to the large-scale tracer gradient via the transport tensor 𝑲 . The symmetric part of 𝑲 is the diffusion tensor,
𝑺, which parameterises diffusive fluxes and whose mixing properties are determined by the signs of its eigen-
values. The eigenvalues of 𝑺 are robustly of opposite sign (polar) and thus quantify filamentation of the tracer
via both up- and down-gradient fluxes. Given the prevalence of polar eigenvalues – which are also obtained for
Reynolds eddy fluxes – representing their associated effects should be a target of future eddy tracer transport
closures. Given the inherent inhomogeneity and anisotropy of the eddy-induced transport, we argue that a full
transport tensor is better suited to this task than scalar coefficients or diagonal tensors. The diffusion axis,
which represents the direction of preferential mixing, tends to align with the large-scale velocity vector and
contours of large-scale relative vorticity and layer thickness. Strong shears can inhibit this alignment. We show
that the large-scale velocity gradient matrix may be suitable for parameterising the transport tensor, in particu-
lar at depth. Furthermore, since entries of 𝑲 and 𝑺 exhibit probabilistic distributions when conditioned on cer-
tain large-scale flow features, we suggest that a stochastic closure for the eddy transport would be most suitable.
. Introduction

Mesoscale eddies play a leading role in the transport of tracers in the
cean, but computational limitations mean that such small-scale flows
re often not dynamically resolved in numerical models. As a result
he associated eddy tracer transport is also not resolved, leading to
naccurate estimates of tracer distributions in simulations, especially in
ntegrations over long time scales. The prevailing solution to this issue
s to parameterise eddy tracer fluxes via a transport tensor which acts
pon the large-scale tracer field. When diagnosing the transport tensor
n eddy-resolving simulations a common method is to separate it into its
ymmetric and antisymmetric components — these encompass diffusive
nd advective fluxes, respectively. In this study we present a physical
nterpretation of the transport tensor with a focus on its symmetric
iffusion component. The interpretation of the antisymmetric advection
ensor will follow in a companion study.

An important challenge faced by oceanographers is the reconcili-
tion of transport tensors obtained via different methods. Lagrangian

∗ Corresponding author.
E-mail address: m.haigh15@imperial.ac.uk (M. Haigh).

methods (e.g., Berloff et al., 2002; Rypina et al., 2012; Kamenkovich
et al., 2015; Zhurbas et al., 2014; Zhurbas and Oh, 2004; Ying et al.,
2019) consider the dispersion of synthetic particles or real-world
drifters which, by construction, leads to a symmetric tensor, whereas
Eulerian methods can additionally diagnose the advection tensor. La-
grangian and Eulerian methods generally obtain similar estimates for
the amplitude of transport coefficients (Abernathey et al., 2013), and
they both find that the associated transport is highly anisotropic and
inhomogeneous (Berloff et al., 2002; Rypina et al., 2012; Kamenkovich
et al., 2015; Bachman et al., 2020; Eden et al., 2007). A range of
studies have sought to understand the transport anisotropy in zonal
jets (Ferrari and Nikurashin, 2010; Abernathey et al., 2010; Klocker
and Abernathey, 2014) and have found that the cross-jet eddy transport
is potentially an order of magnitude smaller than the along-jet eddy
transport. This suppression in cross-jet transport is due to fast flows
on the jet core which cause particles/tracers to sample many eddies,
leading to dispersion effects that cancel. Maxima in transport are found
on the jet flanks and beneath the jet, and are associated with critical
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eceived 18 September 2020; Received in revised form 8 May 2021; Accepted 1 Ju
vailable online 7 June 2021
463-5003/© 2021 Elsevier Ltd. All rights reserved.
ne 2021

https://doi.org/10.1016/j.ocemod.2021.101831
http://www.elsevier.com/locate/ocemod
http://www.elsevier.com/locate/ocemod
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ocemod.2021.101831&domain=pdf
mailto:m.haigh15@imperial.ac.uk
https://doi.org/10.1016/j.ocemod.2021.101831


M. Haigh, L. Sun, J.C. McWilliams et al. Ocean Modelling 164 (2021) 101831

l

k

𝑞

T
t
r
𝐿

i
(
a
k
w
u
r

2

p

w

layers where the eddy phase speed equals the mean flow speed. Since in
this study we consider a high-resolution double-gyre system, our results
help to build upon the understanding of eddy transport in jets.

With Eulerian methods the transport tensor is defined by assuming
a relationship between eddy tracer fluxes and the large-scale tracer
gradient. A key step in this approach is the separation of the small-scale
(eddy) and large-scale fields. Motivated by its mathematical simplicity,
most studies use a Reynolds decomposition with which the large-scale
fields are usually a time mean or a zonal mean (e.g., Medvedev and
Greatbatch, 2004; Eden et al., 2007; Eden and Greatbatch, 2009; Eden,
2010; Bachman and Fox-Kemper, 2013; Bachman et al., 2015, 2017b).
In this study we use a spatial filter (Nadiga, 2008; Fox-Kemper and
Menemenlis, 2008; Lu et al., 2016; Bachman et al., 2017a; Stanley
et al., 2020) to separate the scales which allows us to relate the local
large-scale tracer gradient to the local eddy tracer fluxes, in contrast to
Reynolds averaging which leads to a loss in locality in either space or
time.

There is an ongoing debate regarding the treatment of the eddy
tracer flux. Some authors recommend removing the dynamically inert
rotational part of the eddy tracer flux (Eden et al., 2007; Eden and
Greatbatch, 2009; Eden, 2010) whereas others argue that the full flux
should be considered (Bachman and Fox-Kemper, 2013; Bachman et al.,
2020). One argument for using the full flux is to maintain the theo-
retical link to the transport tensor in parcel excursion theory (Taylor,
1921). However, since the dynamically inert rotational eddy tracer flux
dominates the divergent part (Marshall and Shutts, 1981), we argue
that it should be removed to eliminate the obscuring effects it has upon
the dynamically active part of the transport tensor. Since the focus of
the present study is on the physical interpretation of this tensor we will
use the divergent flux, and our motivations will be expanded upon in
the main text.

This study builds upon the quantitative analysis of Haigh et al.
(2020), hereafter HSSB20, who used the same quasigeostrophic model
and spatial filter as are used in the present study. HSSB20 presented
essential statistics pertaining to the eigenvalues of the symmetric dif-
fusion tensor and found that the amplitudes were in broad agreement
with other studies. More significantly, it was found that the eigenvalues
are robustly arranged in opposite-signed (polar) pairs, as also found
recently by Stanley et al. (2020). Polar eigenvalues are interpreted
as quantifying filamentation of the tracer concentration. The present
study extends HSSB20 by providing a deeper physical interpretation
of the eddy transport tensor with a particular focus on its symmetric
component.

This study is organised as follows. In Section 2 we define the quasi-
geostrophic ocean model, the tracer model, and outline our method for
obtaining the eddy-induced tracer transport tensor. Then in Section 3
we present the transport tensor and discuss its essential qualities. The
focus of this study, the symmetric diffusion tensor, will be analysed in
Section 4. In Section 5 we consider results for Reynolds eddies. Lastly,
in Section 6 we summarise our results and discuss some important
implications.

2. The model

2.1. Quasigeostrophic ocean model

Three-layer double-gyre mid-latitude dynamics are simulated using
a quasigeostrophic (QG) ocean model. The QG potential vorticity (PV)
equation for each layer is
𝜕𝑞𝑘
𝜕𝑡

+ 𝐽 (𝜓𝑘, 𝑞𝑘) + 𝛽
𝜕𝜓𝑘
𝜕𝑥

= 𝜈∇4𝜓𝑘 − 𝛿3𝑘𝛾∇2𝜓𝑘 +
𝛿1𝑘
𝜌1𝐻1

𝑊 . (1)

Here 𝑘 = 1, 2, 3 is the layer index and 𝛿𝑖𝑗 denotes the Kronecker delta,
so that the wind forcing 𝑊 (𝑥, 𝑦) is active only in the upper layer and
bottom friction – which is governed by 𝛾 = 4 × 10−8 s−1 – is active
only in the bottom layer. The beta-plane planetary vorticity gradient is
2

𝛽 = 2×10−11 m−1 s−1, the eddy viscosity is 𝜈 = 20 m2 s−1 and the upper-
ayer density is 𝜌1 = 103 kg m−3. The mean thicknesses in the upper,

middle and lower layers are 𝐻1 = 250 m, 𝐻2 = 750 m and 𝐻3 = 3
m, respectively. The Jacobian operator 𝐽 (𝜓𝑘, 𝑞𝑘) represents nonlinear

advection of the QG PV anomalies, 𝑞𝑘, by a non-divergent velocity with
streamfunction, 𝜓𝑘. The streamfunctions and the PV are related via the
elliptic equations

𝑞1 = ∇2𝜓1 + 𝑠1(𝜓2 − 𝜓1), (2)

𝑞2 = ∇2𝜓2 + 𝑠21(𝜓1 − 𝜓2) + 𝑠22(𝜓3 − 𝜓2), (3)

3 = ∇2𝜓3 + 𝑠3(𝜓2 − 𝜓3). (4)

he stratification parameters, 𝑠1, 𝑠21, 𝑠22 and 𝑠3, are selected such that
he first and second Rossby deformation radii are 40 km and 20.6 km,
espectively. The model is set up in a square domain with side length
= 3840 km and the zonal and meridional coordinates are 𝑥, 𝑦 ∈ [0, 𝐿].
Other model details include the asymmetric, tilted wind stress forc-

ng which is defined in HSSB20 and is used in other QG-based studies
e.g., Berloff, 2015). Also defined in HSSB20 are the partial-slip bound-
ry conditions for which we use a boundary sub-layer lengthscale of 120
m (Berloff and McWilliams, 1999). To simulate the QG PV equations
e use the CABARET scheme (Karabasov et al., 2009) with the domain
niformly discretised on a 10252 grid, which corresponds to a grid
esolution of 3.75 km.

.2. Eddy tracer transport

Tracer dynamics are governed by the advection–diffusion equation,

𝜕𝐶
𝜕𝑡

+ ∇ ⋅ (𝒖𝐶) = 𝜈∇2𝐶 + 𝐹 . (5)

We have omitted the layer subscript 𝑘 since the same equation and
following methods will be applied in each layer. In Eq. (5), 𝐶 is the
tracer field and 𝒖 = (𝑢, 𝑣) = (−𝜓𝑦, 𝜓𝑥) is the horizontal velocity vector,
where subscripts 𝑥 and 𝑦 represent zonal and meridional derivatives,
respectively. External forcing is represented by 𝐹 , which we take to
be a relaxation of the large-scale tracer field back to its initial profile.
The motivations for and details of this large-scale restoring force will
be given later in this section.

The aim of this study is to examine the role of eddies in tracer
transport, in which case it is necessary to separate the flow and tracer
fields into large-scale and small-scale (eddy) components. In previous
studies of eddy transport, scales are usually separated using Reynolds
averaging and then the effects of the mean eddy tracer fluxes are
examined. In contrast, we will use a spatial filter (Nadiga, 2008; Fox-
Kemper and Menemenlis, 2008; Lu et al., 2016; Bachman et al., 2017a;
Stanley et al., 2020) to separate the scales, leading to small-scale and
large-scale components with full spatio-temporal dependence. At each
grid point the large-scale component of a given field is obtained by
averaging the field over the area covered by a moving square filter.
That is, given a discrete field snapshot 𝜙𝑖𝑗 , where 𝑖, 𝑗 denote the grid
oint, its large-scale component is defined as

𝜙𝑖𝑗 =
1
𝑤2

𝑖+𝑙
∑

𝑚=𝑖−𝑙

𝑖+𝑙
∑

𝑛=𝑖−𝑙
𝜙𝑚𝑛, where 𝑙 = 𝑤 − 1

2
. (6)

Here 𝑤 is the odd filter width, which is reduced in size near the
boundaries so that the filter remains square. The small-scale field is
𝜙′
𝑖𝑗 = 𝜙𝑖𝑗 −𝜙𝑖𝑗 . Herein we drop the subscript 𝑖, 𝑗 notation. Note because

e do not use a Reynolds decomposition, we in general have that 𝜙 ≠ 𝜙
and 𝜙′ ≠ 0.

With this scale separation we are able to relate the local (in time
and space) large-scale tracer field to the local eddy tracer flux, a
property which is lost with Reynolds averaging. Spatial filtering also
lends itself well to the development of parameterisations that depend
on the grid spacing of coarse-resolution models. In addition, as ocean
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models become eddy-permitting the temporal scale separation between
resolved and unresolved flows – which is required for the temporal
Reynolds decomposition to be valid – diminishes (Nadiga, 2008), in
which case spatial filtering becomes the more appropriate method.
The spatial filtering method can be extended by including a weighting
function, by using a circular filter, or by additionally filtering in time.
These upgrades can be considered in the future, but we use the filter in
(6) since we first want to understand the model for the most primitive
filters before introducing more parameters. We use a filter width of
112.5 km which is roughly three times the first deformation radius,
and corresponds to 𝑤 = 31. As shown in HSSB20, for larger/smaller
filter sizes the amplitude of the transport tensor is greater/smaller, but
its qualitative behaviour is unchanged. Lu et al. (2016) additionally
diagnose the time-mean and deviation parts of the large-scale and
small-scale fields in order to separate the effects of transient and
stationary eddies.

Applying the spatial filter to the tracer equation (5) yields the
evolution equation for the large-scale tracer field:

𝜕𝐶
𝜕𝑡

+ ∇ ⋅ (𝒖𝐶) + ∇ ⋅ 𝒇 = 𝜈∇2𝐶 + 𝐹 , (7)

where

∇ ⋅ 𝒇 = ∇ ⋅ (𝒖𝐶) − ∇ ⋅ (𝒖𝐶). (8)

This is the divergence of the eddy tracer flux 𝒇 , and is the eddy
forcing of the large-scale tracer field that would hypothetically be
unresolved in a non-eddy resolving ocean model. Such a form for the
eddy tracer flux and its divergence is more common in the context of
large-eddy simulation (Lilly, 1967). It is possible to separately consider
the Leonard flux, cross fluxes and eddy–eddy flux that contribute to
𝒇 (Leonard, 1975; Fox-Kemper and Menemenlis, 2008), but in this
study we consider 𝒇 as a whole.

The filter commutes with the divergence operator everywhere in
the domain apart from within half a filter width’s distance of the
boundaries. Because of this non-commutativity near the boundaries, we
do not have an explicit expression for 𝒇 at every grid point. This is
not an issue because we are only interested in the divergent part of 𝒇 ,
which we denote 𝒇div, and may calculate using the known field ∇ ⋅ 𝒇 .
Using 𝒇div permits an analysis of the dynamically active part of the
eddy tracer flux by omitting obscuring effects of the dynamically inert
rotational part. In the next subsection we discuss the method and other
motivations for our decision to focus on 𝒇div.

We work towards parameterising the divergent eddy tracer flux by
invoking the flux-gradient relation,

𝒇div = −𝑲∇𝐶, (9)

which relates the eddy tracer flux to the large-scale tracer gradient
via a 2 × 2 tensor 𝑲 . The tensor 𝑲 is commonly referred to as the
diffusivity, but we shall refer to it as the transport tensor in order to
illuminate the idea that it encompasses both diffusive and advective
transport. For a single tracer equation (9) is underdetermined, so we
introduce a second tracer. Denoting the two tracers as 𝐶1 and 𝐶2, and
enoting their associated divergent eddy fluxes as 𝒇 1 = (𝑓 (𝑢)

1 , 𝑓 (𝑣)
1 ) and

2 = (𝑓 (𝑢)
2 , 𝑓 (𝑣)

2 ), inverting (9) gives

≡
(

𝐾11 𝐾12
𝐾21 𝐾22

)

= 1
𝑑

(

𝑓 (𝑢)
1 𝑓 (𝑢)

2

𝑓 (𝑣)
1 𝑓 (𝑣)

2

)(

−𝐶2,𝑦 𝐶2,𝑥
𝐶1,𝑦 −𝐶1,𝑥

)

, (10)

here

= 𝐶1,𝑥𝐶2,𝑦 − 𝐶1,𝑦𝐶2,𝑥 (11)

is the determinant of the matrix of large-scale tracer gradients.
In the results presented in this study, a single pair of tracers is used

to determine 𝑲 as a function of space and time. The local, instantaneous
values of 𝑲 are non-unique with respect to the choice of the tracer
3

pair (Kamenkovich et al., 2021; Sun et al., 2021). We solve the flux-
gradient relation for a pair of tracers with initially linear profiles of
the form

𝐶0 =
𝑎𝑥 + 𝑏𝑦 + 𝑐
√

𝑎2 + 𝑏2
, (12)

where 𝑎, 𝑏 and 𝑐 are constants. As will be discussed in more detail in the
next subsection, our choice for 𝑎, 𝑏 and 𝑐 is arbitrary, since the transport
tensor is the same for all tracers with linear initial conditions. We
additionally tested tracers with wave-like initial profiles and found that
although the resulting transport tensor is distinct, the same qualitative
patterns persist.

To avoid the singularity in Eq. (10) when inverting the flux-gradient
relation, i.e., to avoid 𝑑 = 0, the tracers must have misaligned large-
scale gradients. To maintain misalignment throughout the simulation,
the term 𝐹 in the tracer evolution equation (5) represents relaxation of
the large-scale tracer field back to its initial profile. That is,

𝐹 = 𝑟(𝐶0 − 𝐶), (13)

where 𝑟 is the relaxation rate. We use a relaxation timescale of 5
days which is large enough to avoid the singularity at 𝑑 = 0 while
not notably affecting the results. Other time scales were tested and
our conclusions remain the same. Bachman et al. (2015) derived a
method for removing the effect of relaxation on the tracer inversion
method, but this does not apply to our model for two reasons. First,
their method applies to Reynolds-averaged eddy–eddy fluxes, whereas
our non-averaged eddy tracer fluxes are more complicated. Second, our
relaxation targets only the large-scale tracer field, whereas the method
of Bachman et al. (2015) is designed for the case of full tracer field
relaxation.

2.3. Divergent fluxes and non-uniqueness

We calculate the transport tensor 𝑲 for the divergent eddy tracer
lux 𝒇div. We obtain 𝒇div by using the Helmholtz decomposition (Lau

and Wallace, 1979) which separates a vector into its divergent, rota-
tional and harmonic parts. Specifically, we use the Fourier analysis
and cyclic reduction method (Swarztrauber, 1974) to invert the Poisson
equation

∇ ⋅ 𝒇div = ∇ ⋅ (𝒖𝐶) − ∇ ⋅ (𝒖𝐶) = ∇2𝜙, (14)

yielding the divergent potential 𝜙. The divergent eddy tracer flux is
then

𝒇div = ∇𝜙. (15)

The Helmholtz decomposition is not unique in a bounded domain (Fox-
Kemper et al., 2003) due to a dependence on the boundary conditions.
Although this may be an argument against use of the divergent flux,
a unique decomposition is reached by imposing physically motivated
zero normal flux boundary conditions (Maddison et al., 2015). Another
potential argument against the use of the divergent flux is the loss of
the theoretical link to the transport tensor obtained via parcel excursion
theory (Taylor, 1921). We also note that it may be unfeasible to remove
rotational fluxes in real observations because they are mostly local.
Despite these issues, we argue it is best to remove the rotational
component of the eddy tracer flux because it is dynamically inert,
i.e., it does not influence the dynamics, and because it can be orders of
magnitude larger than the divergent part (Marshall and Shutts, 1981).
Indeed, HSSB20 found that the rotational part of the flux 𝒖𝐶 ′+𝒖′𝐶+𝒖′𝐶 ′

is typically two orders of magnitude larger than its divergent part.
Thus, inclusion of the rotational flux leads to a transport tensor whose
dynamically active part is obscured by a dominant inactive part which
inhibits proper physical interpretation.

In general, the transport tensor 𝑲 for a pair of independent tracers
is non-unique, meaning that it depends on the tracers used in the
inversion. This issue exists for all studies of transport tensors for
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Fig. 1. (a) The upper-layer PV anomaly 𝑞, (b) its large-scale part 𝑞 and (c) its small-scale part 𝑞′. The PV here is dimensionless. Panels (a) and (b) share a colorbar. In this figure,
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passive tracers, but has rarely been analysed quantitatively (Sun et al.,
2021). Although in general 𝑲 is non-unique, it does not depend on
the constants 𝑎, 𝑏 and 𝑐 in the tracer restoration fields (12). This is
because, first, the constant 𝑐 only contributes to the rotational eddy
tracer flux since the flow is non-divergent. Second, the linearity of the
flux-gradient relation implies that the same 𝑲 would be obtained for
any tracer pairs that are linear combinations of one another (i.e., of the
form 𝐴𝐶1+𝐵𝐶2, for 𝐴,𝐵 ∈ R). These two properties mean that 𝑲 is the
ame for all tracer pairs with linear initial conditions, which has been
onfirmed numerically. We also simulated tracers with spatially non-
inear, large-scale profiles and find that the resulting transport tensor
s different, but retains the same qualitative behaviour. See the further
iscussion of non-uniqueness in Section 6.

.4. The filtered QG solution

The QG solution is spun up from rest until statistical equilibrium.
fter this the tracers and flow evolutions are simulated for one more
ear with data on which our analysis is based saved daily. QG double-
yre flow is a well-studied problem (e.g., Shevchenko and Berloff,
015, 2016) so flow features will only be discussed briefly. The upper-
ayer contains a fast, meandering eastward jet characterised by a sharp
eridional PV gradient. The jet separates broad recirculation gyres

hat feed western boundary currents that in turn feed the jet. In the
iddle layer a weak eastward jet is present, but the PV field is more
omogenised, with its meridional gradient dominated by the plane-
ary vorticity. In the lower layer, there is little notable instantaneous
astward flow, but we do observe alternating latent jets.

To illustrate the effects of the spatial filter, in Fig. 1 we show
napshots of (a) the upper-layer PV anomaly, (b) its large-scale part
nd (c) its small-scale part. As in Berloff (2018), the small-scale PV
ield 𝑞′ exhibits a ribbon of opposite-signed PV anomaly that straddles
he jet and augments the relatively weak cross-jet PV gradient in the
arge-scale field 𝑞. Swirls and filaments are ubiquitous in 𝑞′ and have
ittle to no signal in 𝑞. Vortices, in particular the large ones, can have a

signal in 𝑞, but their amplitude and associated gradients are augmented
y 𝑞′.

. The transport tensor

In Fig. 2 we show snapshots of each element of the transport tensor
in the upper layer. Fig. 3 presents the time means, denoted by ⟨⋅⟩, of

he same elements. The amplitude of 𝑲 is typically on the order of 103
2 s−1, and is similar to estimates from a range of studies (Zhurbas

nd Oh, 2004; Eden and Greatbatch, 2009; Abernathey et al., 2010;
locker et al., 2012b; Zhurbas et al., 2014). The instantaneous and

ime-mean transport tensors are vastly different, but there are certain
patial features that are common between the two. Each element of

is largest in amplitude in the eastward jet region where the flow is
ost energetic, a feature which persists in the other layers but is less
revalent as the jet representation weakens with depth. In and near
4

he eastward jet the diagonal entry 𝐾11 is mostly positive, whereas
arge positive 𝐾22 is most common on the jet flanks. In particular 𝐾22
ends to be large and positive on the equatorward flank. A similar
bservation is made by other studies (Marshall et al., 2006; Eden, 2006;
u et al., 2016). Positive transport coefficients are usually interpreted as
epresenting down-gradient fluxes, but whether the whole tensor truly
uantifies locally down-gradient fluxes is unclear since the off-diagonal
lements are significant.

A particularly notable feature is the dipole 𝐾21 pattern that strad-
dles the downstream section of the jet. Dependent on the sign of
the zonal tracer gradient, 𝐾21 exhibits a tendency for tracer flux di-
vergence/convergence near the jet core and convergence/divergence
further away from the jet. This divergence/convergence pattern is
achieved by zonal advection by the eddy flow, which augments advec-
tion by the large-scale jet. Note that 𝐾21 achieves this via a divergent
meridional flux, rather than a zonal one, which is a consequence of
the Helmholtz decomposition combined with the differential tracer
flux convergence, the latter caused by the meridionally sheared zonal
velocity. Meanders in the jet mean the flow may be meridionally
oriented, in which case the along-jet flux previously parameterised by
𝐾21 is instead parameterised by 𝐾12. This gives rise to the alternating
sign pattern in 𝐾12 and ⟨𝐾12⟩ on the jet.

In the middle layer each element of 𝑲 (not shown) has many
qualities in common (e.g., cross-jet sign change in 𝐾21 and alternating
sign pattern in 𝐾12) with the upper-layer 𝑲 , but these only become
clear after time averaging. Similarly, instantaneous 𝑲 in the lower
layer (not shown) has few notable spatial features, other than large
amplitudes in the jet region and western boundary current. We show
the lower-layer time-mean 𝑲 in Fig. 4. Somewhat similar to in the
layers above, ⟨𝐾21⟩ changes sign near the jet (in the lower layer the
ime-mean signature of the jet is a broadly meandering flow) with
egative/positive values to the north/south. We have that ⟨𝐾22⟩ in the
ower layer (and in the middle layer) is large and positive at the latitude
f the jet core, whereas in the upper layer large ⟨𝐾22⟩ is concentrated in
he equatorward flank of the jet. This suggests that meridional cross-jet
ransport is stronger at depth and weaker near the surface. This will be
xpanded upon in Section 4.2.

Lastly, it is significant that 𝐾12 and 𝐾21 are entirely distinct from
ach other, since Lagrangian single-particle dispersion-based methods
iagnose equal 𝐾12 and 𝐾21 by construction (Rypina et al., 2012).
urthermore, 𝐾12 and 𝐾21 are at times neglected in oceanographic
tudies (e.g., Eden et al., 2007), but our results show that they are
imilar in amplitude to the diagonal components, suggesting that they
ught to not be neglected.

. The diffusion tensor

We separate the transport tensor 𝑲 into its symmetric and antisym-
metric parts since these are associated with distinct physical processes.
These tensors are

𝑺 = 1 (

𝑲 +𝑲𝑇 ) and 𝑨 = 1 (

𝑲 −𝑲𝑇 ) , (16)

2 2
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Fig. 2. Snapshots of the elements of 𝑲 for the upper layer. Plotted are (a) 𝐾11, (b) 𝐾12, (c) 𝐾21 and (d) 𝐾22. Units are m2 s−1. The black solid/dashed lines represent positive/negative
contours of the instantaneous large-scale streamfunction.
Fig. 3. Annual-mean elements of 𝑲 for the upper layer. Plotted are (a) ⟨𝐾11⟩, (b) ⟨𝐾12⟩, (c) ⟨𝐾21⟩ and (d) ⟨𝐾22⟩. Units are m2 s−1. The black solid/dashed lines represent
ositive/negative contours of the time-mean large-scale streamfunction.
here superscript 𝑇 denotes the transpose. We refer to the symmetric
ensor 𝑺 as the diffusion tensor since its associated fluxes drive irre-
ersible mixing processes and transfer variance between the large and
mall scales. We refer to the antisymmetric tensor 𝑨 as the advection
tensor since it encompasses effects equivalent to advection by a 2D
5

non-divergent velocity field (Griffies, 1998). The decomposition of 𝑲
into 𝑺 and 𝑨 separates the eddy tracer flux 𝒇div = −𝑲∇𝐶 into the
diffusive flux 𝒇diff = −𝑺∇𝐶 and the skew flux 𝒇 skew = −𝑨∇𝐶. By design
we have that 𝒇div = −𝑲∇𝐶 is purely divergent, but the diffusive and
skew fluxes will in general have non-zero rotational components that
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ancel with one another. Unlike with the full eddy tracer flux 𝒇 these
otational components do not dominate the divergent components.
or the remainder of the study we focus on the diffusion tensor. An
nterpretation of the advection tensor will follow in a companion paper.

The entries 𝑆11 = 𝐾11 and 𝑆22 = 𝐾22 are shown in previous Figs. 2–
. We show the time-mean 𝑆12, that is the off-diagonal component
f 𝑺, in Fig. 5 for all layers. Also shown is the point-wise standard
eviation of 𝑆12, namely 𝑆𝑠𝑑12 , in each layer. The dominant spatial
atterns of instantaneous and time-mean 𝑆12 = 𝑆21 in the upper two
ayers are similar to, but weaker than, the cross-jet dipole pattern
f 𝐾21. Thus the diffusive flux partly contributes to the tracer flux
onvergence/divergence near the jet, and the skew flux augments
he convergence/divergence. In the lower layer, the instantaneous 𝑆12
not shown) is large near the jet and western boundary current, but
therwise has no particularly clear spatial patterns. The time-mean 𝑆12
s similar to ⟨𝐾21⟩ with its noticeable cross-jet sign change pattern, but
he contribution from ⟨𝐾12⟩ destroys this near the western boundary.
n each layer the standard deviation 𝑆𝑠𝑑12 is similar to the standard
eviations of elements 𝑆11 = 𝐾11 and 𝑆22 = 𝐾22. In the upper two
ayers, 𝑆𝑠𝑑12 is largest in the jet region and the subtropical western
oundary current, whereas in the lower layer 𝑆𝑠𝑑12 is largest in the
estern boundary currents. Thus regions of high standard deviation

oincide with regions of strong eddy activity.

.1. The diffusion eigenvalues

Since the diffusion tensor 𝑺 is real and symmetric, it has real eigen-
alues which represent diffusivities in the direction of their respective
igenvectors. We obtain the eigenvalues of 𝑺 by rotating the coordinate
ystem through an angle 𝛼 where

= 1
2
tan−1

(

2𝑆12
𝑆11 − 𝑆22

)

. (17)

This rotation diagonalises 𝑺:

′ = 𝑹𝑇𝑺𝑹 =
(

𝜆1 0
)

, (18)

0 𝜆2

6

here 𝑹 is the rotation matrix. The eigenvalues of 𝑺 are the diagonal
ntries of 𝑺′ and are given by

1 = 𝑆11 cos2 𝛼 + 𝑆22 sin
2 𝛼 + 2𝑆12 cos 𝛼 sin 𝛼, (19)

2 = 𝑆11 sin
2 𝛼 + 𝑆22 cos2 𝛼 − 2𝑆12 cos 𝛼 sin 𝛼. (20)

f we ensure that the correct quadrant is selected when calculating 𝛼,
hen we have that 𝜆1 ≥ 𝜆2. The angle 𝛼 is referred to as the diffusion
ngle. The vector 𝒗1 = (cos 𝛼, sin 𝛼), referred to as the diffusion axis, is
he eigenvector corresponding to the most positive eigenvalue, 𝜆1. The
econd eigenvector 𝒗2 = (sin 𝛼,−cos 𝛼) is perpendicular to the first.

Fig. 6 shows snapshots of the two diffusion eigenvalues in all three
ayers. The eigenvalues are largest in the upper layer, smallest in
he lower layer, and are generally stronger in the jet region or near
he western boundary of each layer. For either eigenvalue distinctive
patial patterns in and near the jet (other than the increased amplitude)
re not observable. The diffusion eigenvalue amplitudes, e.g., upper-
ayer values on the order of 103 m2 s−1, are broadly in agreement with
iffusivities obtained in other studies (Zhurbas and Oh, 2004; Eden
nd Greatbatch, 2009; Abernathey et al., 2010; Klocker et al., 2012b;
hurbas et al., 2014). A deeper set of statistics covering the quantitative
ehaviour of diffusion eigenvalues was given in HSSB20. In each layer
nd in most areas of the ocean the eigenvalues are of opposite sign – we
efer to these as polar eigenvalues – and these exist when 𝑆2

12 > 𝑆11𝑆22.
olar eigenvalues persist throughout time so these snapshots illustrate
obust behaviour. In addition, we find that the eigenvalues of ⟨𝑺⟩ are
ost often pairs of opposite sign.

The diffusive eddy tracer flux can be expressed as

diff = −𝑺∇𝐶 = −|∇𝐶|
(

𝜆1 cos (𝛼 − 𝜔)𝒗1 + 𝜆2 sin (𝛼 − 𝜔)𝒗2
)

, (21)

where 𝜔 = tan−1 (𝐶𝑦∕𝐶𝑥) is the orientation of the large-scale tracer
gradient. The diffusive flux can be interpreted as the sum of two fluxes,
one in the direction of the diffusion axis 𝒗1 scaled by 𝜆1 cos (𝛼 − 𝜔)|∇𝐶|
and another in the direction of 𝒗2 scaled by 𝜆2 sin (𝛼 − 𝜔)|∇𝐶|. If an
eigenvalue is positive/negative then its flux contribution is oriented
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Fig. 5. The time-mean and standard deviation of the off-diagonal diffusion tensor component 𝑆12 in each layer. Plotted are (a, c, e) the time mean, ⟨𝑆12⟩; (b, d, f) the standard
eviation, 𝑆𝑠𝑑12 . These are for the upper (a, b), middle (c, d) and lower (e, f) layers. Units are m2 s−1 in all panels. Contours represent the time-mean large-scale streamfunction.
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own/up the large-scale tracer gradient. For polar eigenvalues 𝒇diff
s the sum of an up-gradient and a perpendicular down-gradient flux,
uch that the prevailing effect is filamentation in the tracer concentra-
ion (Ledwell et al., 1998). This is the general case, but if the diffusion
xis 𝒗1 aligns with the large-scale tracer gradient ∇𝐶, then 𝒇diff is a

directly down-gradient flux and induces mixing. If 𝒗1 is perpendicular
to ∇𝐶 then 𝒇diff is a directly up-gradient flux, driving frontogenesis.

Polar eigenvalues have rarely been examined in previous stud-
es (Eden and Greatbatch, 2009; Bachman et al., 2020; Stanley et al.,
020), since negative eigenvalues are often considered undesirable for
odelling purposes (Fox-Kemper et al., 2013) due to potential model

nstabilities. Given that 𝒇div = −𝑲∇𝐶 reproduces (ignoring numerical
rrors) the eddy tracer flux diagnosed from a stable QG solution,
egative eigenvalues in 𝑺 need not be problematic. Mathematically, the
igenvalues are of opposite sign if 𝑆2

12 > 𝑆11𝑆22. Thus, we have polar
igenvalues if the diagonal entries of 𝑺 are of opposite sign, or if the off-
iagonal component 𝑆 is large relative to the diagonal ones — these
12

7

onditions are satisfied in approximately equal measure. Similarly, it
an be shown that an increase in |𝑆12| always positively/negatively
ontributes to the first/second eigenvalue, and thus always contributes
o the eigenvalue polarity. This notion has important consequences
ecause many previous studies have often considered either a diagonal
ensor or a scalar diffusivity, which can significantly affect the interpre-
ation of the mixing. We therefore argue that studies of eddy diffusion
or general transport) should consider the most general tensor, and not
e biased against diagnosing negative eigenvalues.

We interpret polar eigenvalues as being due to approximate area
onservation of a Lagrangian volume element, a consequence of the
dvecting flows (𝒖 and 𝒖′) being non-divergent. That is, if there is a

positive spreading in one direction, then there must be a compensating
negative spreading (contraction) perpendicular to this in order to pre-
vent a large change in the volume of a Lagrangian volume element from
one time step to the next. This same notion can be interpreted in the
context of spreading ellipses (Rypina et al., 2012; Kamenkovich et al.,
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Fig. 6. Snapshots of the first diffusion eigenvalue 𝜆1 (a, c, e) and the second diffusion eigenvalue 𝜆2 (b, d, f) in the upper layer (a, b), the middle layer (c, d) and the lower layer
(e, f). Units are m2 s−1 in each panel.
2015). For a diagonal diffusion tensor, the ellipse’s major and minor
axes align with the coordinate axes. Inclusion of 𝑆12 rotates the ellipse,
lengthens the major axis and shortens the minor axis (makes it more
negative). Examination of the eddy tracer flux expression (21) can also
provide insight. Recalling that 𝑲 and 𝑺 are obtained for a tracer pair,
if the eddy flux of one tracer is oriented up-gradient and for the other
tracer it is down-gradient, then polar eigenvalues are guaranteed. This,
though, is not a necessary condition, and we find that polar eigenvalues
exist when both tracer fluxes are up/down-gradient.

4.1.1. Anisotropy
Isopycnal diffusion is most commonly implemented as being

isotropic, i.e., with no preferred direction. However, there is growing
evidence (Kamenkovich et al., 2009; Rypina et al., 2012; Kamenkovich
et al., 2015) that tracer transport/diffusion is highly anisotropic, in
particular in eastward jets (Smith, 2005; Ferrari and Nikurashin, 2010;
Klocker et al., 2012a; Klocker and Abernathey, 2014). Since we observe
eigenvalues which are robustly of opposite sign, our results also suggest
that mixing is not isotropic. To examine this more closely we consider
the mixing anisotropy, defined as the ratio of the eigenvalues, 𝑟 =
𝜆 ∕𝜆 . Similar to the findings of Bachman et al. (2020), the anisotropy
1 2

8

has no significant spatial pattern. In Fig. 7 we present a histogram of the
anisotropy 𝑟 evaluated over one year in the upper layer. The frequency
distribution in the lower layers is very similar, and the anisotropy
distribution for the eigenvalues of the time-mean 𝑺 is also the same.
Due to the eigenvalue polarity the anisotropy is most often negative
and most commonly lies in the integer interval [−1, 0] for which we
must have 𝜆1 > 0, 𝜆2 < 0 and |𝜆1| < |𝜆2|. Such values are most common
in areas where the eigenvalues are small, and we note that the domain-
mean sum of both eigenvalues is positive. The frequency for 𝑟 ≈ 1 is
very small, indicating that mixing due to 𝑺 is explicitly not isotropic.

4.1.2. Inhomogeneity
It is clear that 𝑺 and its eigenvalues are spatially dependent and

therefore the diffusive eddy transport is inhomogeneous. We can quan-
tify the inhomogeneity by calculating lengthscales associated with the
diffusion eigenvalues. For eigenvalue 𝑖 = 1, 2, measures of the local
zonal and meridional lengthscales are

𝑙𝑖𝑥 = 𝜆𝑖

(

𝜕𝜆𝑖
𝜕𝑥

)−1
and 𝑙𝑖𝑦 = 𝜆𝑖

(

𝜕𝜆𝑖
𝜕𝑦

)−1
, (22)

respectively. This metric produces lengthscales near infinity when the
derivative is near zero, but we exclude such points from the histogram
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Fig. 7. Histogram of the diffusion anisotropy, 𝑟, equal to the ratio of the eigenvalues.
The 𝑦-axis represents the normalised frequency. The data are evaluated over one year.
This is for the upper layer, but results in the layers below are similar.

Fig. 8. Histogram of the lengthscales associated with the diffusion eigenvalues, 𝜆1 and
𝜆2, a measure of their inhomogeneity. See the legend for details. The 𝑥-axis represents
the lengthscale in units km and the 𝑦-axis represents the normalised frequency. The
data are collected for a year in the upper layer.

we show in Fig. 8 by limiting the range to [0, 300] km. The results in
ig. 8 are for the upper layer, evaluated over one year. The lengthscales
1𝑥, 𝑙1𝑦, 𝑙2𝑥 and 𝑙2𝑦, which span multiple orders of magnitude, have
istributions similar to one another. The fact that the eigenvalues vary
n such small scales indicates that the mixing due to 𝑺 is highly
nhomogeneous. For 𝜆1 lengthscales in [20, 40] km are most common
hereas for 𝜆2 lengthscales in [0, 20] km are most common. In the two

ayers below, such short lengthscales are still most common, but the
verall frequency distribution (not shown) is closer to being uniform.

.2. The diffusion angle

Recall the definition of the diffusion angle 𝛼 in Eq. (17), such
hat 𝛼 ∈ [−𝜋∕2, 𝜋∕2] and is 𝜋-periodic. The diffusion axis is the first
igenvector of 𝑺, that is 𝒗1 = (cos 𝛼, sin 𝛼), and corresponds to the
ost positive of the two eigenvalues. In Fig. 9 we summarise the basic
ependence of the diffusion axis on the elements of 𝑺. In most studies
hich consider the diffusion angle the corresponding diffusion tensor

s calculated from Reynolds-averaged eddy–eddy fluxes (Abernathey
t al., 2013; Bachman et al., 2020) or ensemble-averaged particle
rajectories (Rypina et al., 2012; Kamenkovich et al., 2015), and it is
enerally found that the diffusion axis is aligned with the mean velocity
ector and is perpendicular to the mean PV gradient. This alignment
an be attributed to sharp PV gradients such as those in eastward jets
hat suppress mixing across the gradient (Ferrari and Nikurashin, 2010)
r shears that enhance mixing in the direction of the flow (Young et al.,
982; Jones and Young, 1994).
 l

9

Fig. 9. Diagram of the diffusion axis 𝒗1 orientation and its dependence on the signs
of 𝑆12 and 𝑆11 − 𝑆22. As an example, if 𝑆12 > 0 and 𝑆11 = 𝑆12, then the diffusion axis
s oriented south-west to north-east, for which 𝛼 = 𝜋∕4.

In our study 𝛼 is derived from highly variable instantaneous eddy
luxes and is therefore highly variable itself. As a result it is simpler to
bserve its overarching behaviour in the time-mean framework. Since
he diffusion angle 𝛼 is angular data standard averaging methods are
ot suitable, so instead we appeal to so-called circular statistical meth-
ds. Given a time series of an angle 𝜑 ∈ [−𝜋, 𝜋], its mean is calculated
y finding the angle of the mean of the unit vectors associated with
ach 𝜑 instance. Thus, denoting each discrete instance of 𝜑 as 𝜑𝑛, the
ean is

𝜑⟩ = Arg
( 𝑁
∑

𝑛=1
exp (𝑖𝜑𝑛)

)

, (23)

where Arg denotes the complex argument. We can also calculate the
circular variance of 𝜑. This is

𝜑var = 1 − 𝑅𝜑 where 𝑅𝜑 = 1
𝑁

√

√

√

√

√

( 𝑁
∑

𝑛=1
cos𝜑𝑛

)2

+

( 𝑁
∑

𝑛=1
sin𝜑𝑛

)2

(24)

is the mean resultant length of the vectors associated with each 𝜑𝑛.
We also have to account for the fact that 𝛼 is 𝜋-periodic rather than
2𝜋-periodic, which we do by calculating the mean and variance of 2𝛼.
In Fig. 10 we present the half the time-mean of 2𝛼 and the circular
variance of 2𝛼, which for short we refer to as just the mean (⟨𝛼⟩) and
ariance (𝛼var) of 𝛼.

In the upper layer the mean of 𝛼 has some clear behaviour, in
articular the cross-jet pattern which indicates that 𝒗1 tends to be
eant into the shear of the jet. This average behaviour is only observed
ufficiently downstream in the jet. The diffusion axis leaning into the
hear of the jet is expected given the strong dipole 𝐾21 profile that
traddles the jet, which leads to large 𝑆12 and consequently 𝛼 near to
𝜋∕4. There is a transition on the jet core as ⟨𝛼⟩ ≈ 0 switches sign, at
hich point the instantaneous 𝒗1 has a tendency to be aligned with the

et core. Similar to the upper layer, 𝒗1 in the lower layers is on average
eant into the shear of the jet. Instead of becoming more aligned with
he upper-layer jet core when near it, however, 𝒗1 is instead more likely
o be perpendicular to the jet, such that ⟨𝛼⟩ is near to ±𝜋∕2 under the
et core. This is due to 𝑆12 ≈ 0 and 𝑆22 > 𝑆11, i.e., meridional mixing
ominating zonal mixing, which is not the case in the upper layer. Our
esults therefore suggest that there is reduced mixing across the jet core
n the upper layer, and enhanced mixing beneath the jet. This agrees
ith findings of other studies (Ferrari and Nikurashin, 2010; Klocker
t al., 2012a; Klocker and Abernathey, 2014) where the mixing maxima
eneath the jet are attributed to the presence of a critical layer. With
ertical structure in our model represented by only three layers, we
annot confidently attribute our results to a critical layer.

In the upper layer the variance of 𝛼 is large in three distinct regions:
he jet, the northern section of the subpolar gyre and the southern
ection of the subtropical gyre. In between these regions the variance is

ow. In the middle layer 𝛼var is large on the jet core and weak towards
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Fig. 10. (a, b, c) Half the time-mean of the angle 2𝛼 and (d, e, f) the circular variance of 2𝛼 in the upper (a, d), middle (b, e) and lower (c, f) layers. The statistics are evaluated
over a year. In the panels (a, b, c) contours represent the time-mean large-scale streamfunction.
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the centres of the gyres. Just as in the upper layer, the high variance
on the jet core is likely due to shifting and meandering of the jet,
which still has a notable signal in the middle layer. In the lower layer
the behaviour of 𝛼var is again different, with a broad low-variance jet
region, indicating that roughly meridional orientation of 𝒗1 persists
throughout time.

4.3. Relation with the large-scale flow

Previous studies of the diffusion axis predicted that it is aligned with
the mean flow and is perpendicular to the mean PV gradient (Rypina
et al., 2012; Bachman et al., 2020). These relationships exist because
PV gradients can suppress mixing across the gradient (Ferrari and
Nikurashin, 2010) and flow shears can enhance mixing in the direction
of the flow (Young et al., 1982; Jones and Young, 1994). Both effects
increase along-flow mixing relative to cross-flow mixing. We quantify
the relation between the diffusion axis orientation 𝛼 and the large-scale
flow by considering the angle between the diffusion axis 𝒗1 and (i) the
large-scale velocity vector 𝒖, (ii) the large-scale relative vorticity (RV)
gradient ∇𝜁 and (iii) the large-scale thickness gradient ∇ℎ. In Fig. 11 we
present histograms for these three angles in all three layers, evaluated
over one year of data. In all layers 𝒗1 is commonly aligned with 𝒖,
with a monotonic decrease in the frequency as the angle increases
through [0, 𝜋∕2] (for our choice of bins). Similarly, in all layers 𝒗1
is commonly perpendicular to ∇𝜁 and is least likely to be oriented
own/up the gradient. We opt to show alignments with the RV gradient
ather than the PV gradient since the latter has a slightly weaker
elationship with the diffusion axis. The diffusion axis 𝒗1 aligns with the
hickness gradient almost as strongly as it does with the RV gradient,
xcept in the lower layer where baroclinicity is weakest. Overall these
esults agree with other studies, but the alignment tendencies that we
bserve are relatively weak, in particular in comparison to Bachman
t al. (2020) who studied Reynolds eddies. We give two reasons for
his difference. First, 𝛼 depends on instantaneous eddy fluxes which
ontribute to cross-flow and along-PV gradient mixing more so than
heir time-mean or zonal-mean values do. Second, we consider the
ivergent eddy tracer flux, whereas Bachman et al. (2020) retain its
ominant rotational component.
10
Above we relate the orientation of preferential mixing to the large-
cale flow, but parameterisation of eddy diffusion also requires knowl-
dge of how the amplitude of the diffusion/transport relates to the
arge scales. For an initial test we link to the studies Meneveau and
atz (2000), Eyink (2001), Nadiga (2008) which proposed closures
f the form (∇𝒖)𝑇∇𝜉 for the eddy fluxes of various active tracers 𝜉,

each derived by Taylor expansion of the eddy flux. This implies using
minus transpose of the large-scale velocity gradient matrix for the
corresponding transport tensors. Because the derivations of Meneveau
and Katz (2000), Eyink (2001) and Nadiga (2008) can be applied to
passive tracers, we first test the relation between 𝑲 and (∇𝒖)𝑇 . For
this we use correlations evaluated over all grid points and all time
instances. We find that (∇𝒖)𝑇 overall has a weak negative correlation
with the transport tensor. In the lower layer the entry-wise correlations
are: −0.15 for (𝐾11, 𝑢𝑥); −0.41 for (𝐾12, 𝑣𝑥); −0.27 for (𝐾21, 𝑢𝑦); and
−0.10 for (𝐾22, 𝑣𝑦). Moving upwards the correlations become weaker,
with largest values ∼ 0.2 in the middle layer and ∼ 0.1 in the upper
layer. Thus, the approximation 𝑲 ∝ −(∇𝒖)𝑇 has reasonable accuracy
in the lower layer only. This implies that minus the strain rate tensor
𝑬 = (∇𝒖 + (∇𝒖)𝑇 )∕2, which has equal and opposite eigenvalues, could
be used for 𝑺 in the lower layer. The correlation between 𝑆12 and 𝑢𝑦
and 𝑣𝑥 illuminates how shear influences the diffusion axis 𝒗1. That
is, the correlation implies that as shears grow stronger, as does 𝑆12
which drives the diffusion angle towards ±𝜋∕4, which will in general
inhibit alignment between 𝒖 and 𝒗1, having an effect opposite to shear
ispersion (Young et al., 1982; Jones and Young, 1994; Smith, 2005).
e also considered point-wise correlations between 𝑲 and (∇𝒖)𝑇 and

found the resulting fields to be an ocean of negative correlations with
localised regions of positive correlation. We observe little consistency
in these correlation patterns for the different tensor entries and the
different layers.

For a broader search of potential closures for the amplitude of the
eddy transport we considered numerous linear and nonlinear combi-
nations (Anstey and Zanna, 2017) of the large-scale shear deformation
𝜃 = 𝑢𝑦 + 𝑣𝑥, stretching deformation 𝜎 = 𝑢𝑥 − 𝑣𝑦 and relative vorticity
𝜁 = 𝑣𝑥 − 𝑢𝑦. We additionally considered the large-scale PV, thickness
and their gradients, but these did not perform better. Motivated by
their rotational invariance we seek to relate the diffusion eigenvalue
amplitudes |𝜆 | and |𝜆 | and the Frobenius norms ‖𝑺‖ and ‖𝑲‖ to the
1 2
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Fig. 11. Histograms of the angle between the diffusion axis and (i) the large-scale velocity vector (blue), (ii) the large-scale RV gradient (orange) and (iii) the large-scale thickness
gradient (green). Data is collected for a year in (a) the upper layer, (b) the middle layer and (c) the lower layer.
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large-scale flow. To be explicit, ‖ ⋅ ‖ denotes the square root of the
um of the squared elements and ‖𝑺‖ = (𝜆21 + 𝜆

2
2)

1∕2. Of the numerous
otationally invariant combinations of 𝜃, 𝜎 and 𝜁 considered, we find
hat the combination 𝛺 = (𝜃

2
+ 𝜎2 + 𝜁

2
)1∕2 =

√

2‖∇𝒖‖ performs best.
We show 2D histograms of 𝛺 versus |𝜆1|, |𝜆2|, ‖𝑺‖ and ‖𝑲‖ for

the lower layer in Fig. 12. The correlations for these pairs (evaluated
over one year and all grid points in the lower layer) are: 0.56 for
(|𝜆1|, 𝛺); 0.34 for (|𝜆2|, 𝛺); 0.57 for (‖𝑺‖, 𝛺); and 0.61 for (‖𝑲‖,
𝛺). The same comparison in the upper layer yields the correlations:
0.37 for (|𝜆1|, 𝛺); 0.34 for (|𝜆2|, 𝛺); 0.41 for (‖𝑺‖, 𝛺); and 0.44 for
(‖𝑲‖, 𝛺). These results indicate a weak positive correlation between
𝛺 and the diffusion and transport magnitudes. Across all large-scale
features considered, the first eigenvalue consistently correlates more
strongly than the second. Previously we considered the relation 𝑲 ∝
−(∇𝒖)𝑇 which suggests that the diffusion tensor magnitude ‖𝑺‖ may
e proportional to the strain magnitude (𝜃

2
+ 𝜎2)1∕2 =

√

2‖𝑬‖. The
strain magnitude was one of the large-scale features considered, but in
comparison to 𝛺 it does not correlate more strongly with |𝜆1|, ‖𝑺‖ or
𝑲‖ and only has marginally stronger correlation with |𝜆2|.

We conclude that the transport and diffusion tensors are related
ith the large-scale flow, but only weakly so. Given the weak relation-

hip, our results suggest that a stochastic closure for 𝑺 or 𝑲 could be
suitable. In particular the entries of 𝑲 exhibit broad and approximately
normal distributions when conditioned on the corresponding entries of
(∇𝒖)𝑇 , suggesting that normal distributions conditioned on the local
∇𝒖)𝑇 in coarse-grid model is a potential approach for parameterising
. We have mostly focused on the lower layer, where the relations are

trongest. The weaker relationship nearer the surface is due two factors.
irst, the correlations between 𝑲 and (∇𝒖)𝑇 are due to the Leonard flux

𝒖𝐶 −𝒖𝐶 (Leonard, 1975) and the cross flux 𝒖′𝐶. Second, at depth these
two contributors to the eddy tracer flux are strongest, while nearer the
surface the other two, 𝒖𝐶 ′ and 𝒖′𝐶 ′, are just as important. Separate
closures for the contributions made by these fluxes may be required
for an accurate parameterisation of 𝑲 near the surface. Finding a
more accurate closure for 𝑲 may require more sophisticated methods,
such as a convolutional neural network (Bolton and Zanna, 2019) or a
relevance vector machine (Zanna and Bolton, 2020).

5. A comparison with Reynolds eddies

Here we consider the transport tensor for eddies defined as the
deviation from the time-mean state, which we refer to as Reynolds
eddies. The temporal Reynolds decomposition for a variable 𝜙 is

𝜙(𝑥, 𝑦, 𝑡) = ⟨𝜙⟩(𝑥, 𝑦) + 𝜙#(𝑥, 𝑦, 𝑡), (25)
11
where ⟨⋅⟩ denotes the time mean and ⋅# denotes the deviation from the
ime mean. The corresponding flux-gradient relation for the time-mean
ddy tracer flux is then

𝒖#𝐶#
⟩div = −𝑲Reyn∇⟨𝐶⟩, (26)

here only the divergent part of the flux is retained. The resulting
ransport tensor 𝑲Reyn is time-independent, which we deem unsuitable
ince any coarse-resolution model in which we want to include a
arameterisation will have an evolving large-scale circulation.

We show the upper-layer 𝑲Reyn in Fig. 13, which appears similar to
𝑲⟩. There are, however, important differences, the first of which being
hat 𝑲Reyn is roughly twice the amplitude of ⟨𝑲⟩. Second, 𝐾Reyn

22 is large
nd positive on the jet core, whereas ⟨𝐾22⟩ is large and positive on
he jet flanks. Third, although 𝐾Reyn

21 exhibits a cross-jet dipole pattern
imilar to ⟨𝐾21⟩, its behaviour on and near the jet core is much more
onvoluted. As with the other entries, 𝐾Reyn

11 and ⟨𝐾11⟩ have notable
ifferences, again most clear near the jet. For example, while ⟨𝐾11⟩ is
onsistently positive on the jet core, 𝐾Reyn

11 exhibits both positive and
egative regions. We show the lower-layer 𝑲Reyn in Fig. 14. In the
ower layers 𝑲Reyn and ⟨𝑲⟩ are more qualitatively similar than they
re in the upper layer. Qualitative differences are most noticeable in
he jet region and near the western boundary. Most notably, however,
he amplitude disparity is significant with 𝑲Reyn at least twice as large
s ⟨𝑲⟩ in most of the layer.

As standard, the diffusion (𝑺Reyn) and advection (𝑨Reyn) tensors for
eynolds eddies are the symmetric and antisymmetric parts of 𝑲Reyn.

n Fig. 15 we show the eigenvalues of 𝑺Reyn in the upper layer, which
e denote 𝜆Reyn

1 and 𝜆Reyn
2 . These can be compared with the upper-

ayer eigenvalues 𝜆1 and 𝜆2 of 𝑺, as shown in Fig. 6(a, b). It is clear
hat eigenvalue polarity persists for Reynolds eddies so this is a robust
roperty not exclusive to space-filtered eddies. Given the amplitude
isparity between 𝑲Reyn and ⟨𝑲⟩ (and 𝑲), it is not surprising that
he amplitudes of 𝜆Reyn

1 and 𝜆Reyn
2 in all layers are larger than the

mplitudes of 𝜆1 and 𝜆2.
For Reynolds eddies the diffusion axis (not shown) exhibits be-

aviour vastly different to the average behaviour shown in Fig. 10
or space-filtered eddies. For example, in the upper layer where 𝐾Reyn

22
s large and positive across the entire jet region, the diffusion axis is
ypically between −𝜋∕2 and −𝜋∕4 (𝜋∕4 and 𝜋∕2) to the north (south)

of the jet core. Because of the convoluted behaviour with 𝐾#
21 on the jet

core, we do not observe alignment between the diffusion axis and the
flow on the jet core. This represents a subtle but important difference
in comparison to results for space-filtered eddies.

Although ⟨𝑲⟩ and 𝑲Reyn can have similar qualitative features, we
conclude that they are fundamentally different. The most clear differ-

ence is in their amplitudes and in spatial features near the eastward
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Fig. 12. 2D histograms of (a) |𝜆1| versus 𝛺 = (𝜃
2
+ 𝜎2 + 𝜁

2
)1∕2, (b) |𝜆2| versus 𝛺, (c) ‖𝑺‖ versus 𝛺, and (d) ‖𝑲‖ versus 𝛺. In (a) the correlation is 0.56; in (b) the correlation is

0.34; in (c) the correlation is 0.57; in (d) the correlation is 0.61. Units for |𝜆1|, |𝜆2|, ‖𝑺‖ and ‖𝑲‖ on the 𝑥-axes are m2 s−1. The large-scale flow feature 𝛺 on the 𝑦-axes has
een rescaled and has arbitrary dimensionless units. The axes are discretised using 200 uniformly spaced bins in each direction. The colorbar represents the number of grid points
n each bin.
Fig. 13. Elements of the transport tensor 𝑲Reyn in the upper layer for Reynolds eddies. Plotted are (a) 𝐾Reyn
11 , (b) 𝐾Reyn

12 , (c) 𝐾Reyn
21 and (d) 𝐾Reyn

22 . Units are m2 s−1. The black
solid/dashed lines represent positive/negative contours of the time-mean streamfunction.
jet and western boundary current. Similar differences in the diffu-
sion eigenvalues were observed by HSSB20, and these simply imply
12
that Reynolds eddies and spatial-filter eddies drive different transport
effects. It is then natural to ask which scale separation leads to a
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Fig. 14. Elements of the transport tensor 𝑲Reyn in the lower layer for Reynolds eddies. Plotted are (a) 𝐾Reyn
11 , (b) 𝐾Reyn

12 , (c) 𝐾Reyn
21 and (d) 𝐾Reyn

22 . Units are m2 s−1. The black
solid/dashed lines represent positive/negative contours of the time-mean streamfunction.
transport tensor most suitable for parameterising missing eddy effects
in a coarse-resolution ocean model. Given that modellers are compu-
tationally limited by spatial resolution, and not temporal resolution,
we argue that using a spatial filter is more suitable, and leads to eddy
fields more representative of those missing in a coarse-resolution sim-
ulation.1 In addition, as eddy-permitting ocean models become more
common, temporal Reynolds averaging will become more unviable as
the separation of timescales between resolved and unresolved flows
diminishes (Nadiga, 2008). Moreover, stationary eddy fields which are
particularly strong in the jet region in our simulations will always be
captured by the large-scales when Reynolds averaging is used, but,
conversely, would not be simulated by coarse-resolution dynamics.
Lastly, we reiterate that use of a spatial filter allows us to derive a
transport tensor that evolves in time with the large-scale flow, thus
retaining maximal information which is otherwise lost with Reynolds
averaging.

6. Conclusion

In this study we considered the isopycnal eddy transport tensor
𝑲 for passive tracers in an eddy-resolving ocean model. We use a
three-layer, double-gyre quasigeostrophic (QG) model such that our
focus is on lateral eddy transport. Our main motivation is to better
understand eddy effects on tracer transport so that we can improve
parameterisations of such effects which are missing in coarse-resolution
ocean models.

A key step in diagnosing 𝑲 is the separation of scales in the tracer
nd flow fields. Previous studies commonly use a Reynolds average and
onsequently obtain a transport tensor that lacks full spatio-temporal
ependence. Our approach involves using a spatial filter to separate
he large and small (eddy) scales, which allows us to relate the local
arge-scale tracer field to the local eddy tracer fluxes via a transport

1 This is also an argument for not additionally filtering in time; temporal
esolution is not the pressing issue when it comes to simulating mesoscale
lows.
13
tensor that has full spatio-temporal dependence. Another key aspect of
our approach regards the treatment of the eddy tracer flux, 𝒇 . Some
authors (Bachman et al., 2015, 2020) argue that the full eddy tracer
flux should be used in order to maintain the theoretical link to parcel
excursion theory (Taylor, 1921). However, since the rotational com-
ponent of 𝒇 is dynamically inert, and since this component dominates
the divergent component by two orders of magnitude (Marshall and
Shutts, 1981), we opt to remove it. In this study we provided a physical
interpretation of 𝑲 with a focus on its symmetric part, i.e., the diffusion
tensor 𝑺. A companion paper Haigh et al. (2021) provides an analysis
of its antisymmetric part.

The diffusion tensor 𝑺 encompasses diffusive fluxes, such that if
both its eigenvalues are positive, then the tracer tendency due to 𝑺
is guaranteed to transfer variance to smaller scales. We found that the
eigenvalues of 𝑺 are robustly organised in opposite-signed (polar) pairs
which physically represent filamentation in the tracer concentration.
Negative eigenvalues in the diffusion tensor are often considered un-
desirable (Fox-Kemper et al., 2013) since the associated up-gradient
fluxes can lead to singularities in the parameterised tracer evolution
equation. However, we argue that polar eigenvalue pairs need not be
a problem for multiple reasons. First, as in HSSB20 we find that on
average the sum of the diffusion eigenvalues is positive, and although
the amplitudes of the diffusive flux components depend on the tracer
gradients, this indicates a tendency for the down-gradient fluxes to be
larger than the up-gradient ones. Second, 𝑺 evolves in time, and so neg-
ative diffusivities in a specific area may not persist indefinitely. Third, a
coarse-resolution tracer transport model may still contain homogeneous
diffusion that will prevent the development of singularities.

Our estimates of the diffusion tensor contribute to growing evidence
that tracer mixing in the ocean is highly anisotropic and therefore must
be parameterised by a tensor rather than a scalar. We have further
shown that the components of this tensor have a non-trivial spatial
structure, in particular in the jet region where the diagonal elements of
𝑺 tend to be positive and where element 𝑆12 exhibits a distinct dipole
pattern. The dipole pattern causes the diffusion axis, which quantifies
the direction of preferential mixing, to be on average leant into the
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Fig. 15. Diffusion eigenvalues (a) 𝜆Reyn
1 and (b) 𝜆Reyn

2 of the symmetric tensor 𝑺Reyn in the upper layer. Units are m2 s−1.
shear of the jet. This behaviour exists in all layers, but in the lower
layers the orientation is closer to being meridional, in particular under
the jet core. This means that at depth there is notable cross-jet mixing
whereas in the upper layer the diffusion axis is more likely to be aligned
with the jet when near the core. This represents an inhibition of cross-
jet mixing (Ferrari and Nikurashin, 2010; Klocker and Abernathey,
2014). In general areas of the ocean, it was shown that the diffusion
axis has a tendency to be aligned with the large-scale velocity vector,
or be perpendicular to the large-scale relative vorticity and thickness
gradients, but these alignments are not extremely strong. Strong shears
inhibit these alignments, but further exploration of this phenomenon is
out of the scope of this study.

For the purposes of parameterisation it is necessary to relate the
transport tensor to properties of the large-scale flow. We observed a
negative correlation between 𝑲 and (∇𝒖)𝑇 , strongest in the lower layer
and very weak in the upper layer. This implies the approximation
𝒇div ∝ (∇𝒖)𝑇∇𝐶 for the eddy tracer flux, similar to the closures pro-
osed for Reynolds stresses (Meneveau and Katz, 2000), eddy vorticity
luxes (Eyink, 2001) and eddy PV fluxes (Nadiga, 2008). It was also
hown that eddy diffusion and transport magnitudes correlate with
he large-scale strain and relative vorticity magnitudes. Because these
elations are quite weak, and because the entries of 𝑲 conditioned

on (∇𝒖)𝑇 are approximately normally distributed, we suggest that a
tochastic closure for 𝑲 would be most suitable.

This study is a report of the properties of 𝑲 for a particular tracer
air. The tensor 𝑲 is known to be non-unique with respect to the pair
hoice (Kamenkovich et al., 2021; Sun et al., 2021). We additionally
iagnosed 𝑲 for a pair of wave-like tracer fields and found that,
lthough the new 𝑲 is not exactly the same, none of our conclusions
hange. Thus, our main results such as polar eigenvalues, diffusion axis
lignment with large-scale flow and correlations between 𝑲 and large-

scale flow all persist when 𝑲 is computed for a different pair of tracers.
Our results also show that 𝑲 has substantial space–time variability. Our
rovisional interpretation is that the non-uniqueness and variability
ay be due to two factors that require further assessment:

1. eddies in the ocean are chaotic (i.e., exhibit sensitive depen-
dence), and even deterministic, time-varying flows can induce
chaotic advection of passive tracers (Pierrehumbert, 1991); thus,
𝑲 is a stochastic object subject to different realisations with
different eddy and tracer fields;

2. the local flux-gradient relation (9) may not be a wholly general
representation of tracer fluxes (e.g., there could be dependencies
in the local tracer curvature field, ∇∇𝐶, or the tracer history);
thus, 𝑲 is an incomplete model of eddy transport, in spite of its
ability to locally fit any pair of independent tracers.

A tensor diffusivity representation of eddy fluxes should be viewed as
sampled from a random distribution expressing the underlying chaos
and/or incompleteness. This would not contradict the view that the
14
eddy-dynamical process that generates the 𝑲 distribution is itself in-
dependent of 𝐶. An interesting question is how similar the resulting
distributions are for different 𝐶 pairs.
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