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A B S T R A C T

Idealized and comprehensive ocean models at low resolutions cannot reproduce nominally-resolved flow
structures similar to those presented in the high-resolution solution. Although there are various underlying
physical reasons for this, from the dynamical system point of view all these reasons manifest themselves as
a low-resolution trajectory avoiding the phase space occupied by the reference solution (the high-resolution
solution projected onto the coarse grid). In order to solve this problem, a set of hyper-parameterization methods
has recently been proposed and successfully tested on idealized ocean models. In this work, for the first time
we apply one of hyper-parameterization methods (Advection of the image point) to a comprehensive, rather
than idealized, general circulation model of the North Atlantic.

The results show that the hyper-parameterization method significantly outperforms the coarse-grid ocean
model by reproducing both the large- and small-scale features of the Gulf Stream flow. The proposed method
is much faster than even a single run of the coarse-grid ocean model, requires no modification of the model,
and is easy to implement. Moreover, the method can take not only the reference solution as input data but
also real measurements from different sources (drifters, weather stations, etc.), or combination of both. All
this offers a great flexibility to ocean modellers working with mathematical models and/or measurements.
1. Introduction

The eddy parameterization problem (how to account for the effect of
unresolved small scales onto the resolved large scales) is one of the most
challenging problems in the ocean modelling, counting decades of ac-
tive research. Despite a number of parameterizations (computationally
affordable and physically justified mathematical models of unresolved
processes) have been proposed to solve the problem (e.g., Gent and
Mcwilliams, 1990; Duan and Nadiga, 2007; Frederiksen et al., 2012;
Mana and Zanna, 2014; Cooper and Zanna, 2015; Grooms et al.,
2015; Berloff, 2015, 2016, 2018; Ryzhov et al., 2019; Cotter et al.,
2019; Ryzhov et al., 2020; Cotter et al., 2020a,b,c), it remains largely
unresolved. The main general point is that most of the parameterization
approaches are physics-based rather than data-driven, and the former
has obvious advantage of being valid in situation when the under-
lying physics changes. However, in the situation when physics-based
parameterizations remain in their infancy, there is a great practicality
in considering data-driven parameterizations, which can reproduce
nominally-resolved flow structures within their obvious limitations. For
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example, for many research questions a computationally-cheap data-
driven solution can replace a computationally-expensive dynamical
ocean simulation in climate-type models and predictions.

Our approach is both novel and orthogonal to all existing pa-
rameterization approaches. We refer to it as ‘‘hyper-parameterization’’
and develop it in the context of oceanic eddies, although its broader
impact will be across most of the turbulence research areas. Hyper-
parameterization is a new strategy, which capitalizes on the use of
quasi time-invariant structures in phase space, and within this approach
the main focus is shifted from representing essential local physics of
cross-scale interactions towards simulating nominally resolved, most
important flow patterns directly, including anti-diffusive jet-sharpening
and upscale feedbacks.

Advancing the hyper-parameterization approach, within broader
context of data-driven parameterizations, provides the main moti-
vation for our study, in which we continue the series of precursor
works (Shevchenko and Berloff, 2021a, 2022b,a). The main novelty is
to adapt the methodology for fully comprehensive and realistic ocean
models, and demonstrate its success with full confidence. In turn this
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paves the way for broad use of hyper-parameterizations across the
ocean modelling community.

2. The method

In this work, we consider the method called ‘‘Advection of the
image point’’. The image point (also called the representative point)
corresponds to the tip of the state vector of the dynamical system in
the phase space. Advection means that the image point is transported
by the vector flow mapped in the phase space (here, in terms of discrete
observations of tendencies). The method falls into the category of data-
driven methods, and has been successfully tested on a multi-layer
quasi-geostrophic model and showed promising results (Shevchenko
and Berloff, 2021a). The method is based on the fact that the first-order
ordinary differential equation

𝐱′(𝑡) = 𝐅(𝐱), 𝐱 ∈ R𝑛 (1)

can be interpreted as a vector field 𝐅(𝐱) in the phase space of Eq. (1),
and the prime denotes a derivative in time. If 𝐅(𝐱) is known, it can be
used to advect the image point 𝐱 in the phase space. Evolution of an
image point can be described by the equation:

𝐲′(𝑡) = 1
𝑁

∑

𝑖∈ (𝐲(𝑡))
𝐅(𝐱(𝑡𝑖)) + 𝜂

(

1
𝑀

∑

𝑖∈ (𝐲(𝑡))
𝐱(𝑡𝑖) − 𝐲(𝑡)

)

, 𝐲(𝑡0) = 𝐱(𝑡0) ,

(2)

here  (𝐲(𝑡)) is a neighbourhood of solution 𝐲(𝑡), and 𝑖 is the timestep
f the reference solution 𝐱(𝑡𝑖); the integration step for (2) equals to the
tep with which the reference solution is sampled (6 h in our case).

In a nutshell, in Eq. (2) we nudge toward the observed reference
tates 𝐱(𝑡𝑖) in the phase space neighbourhood in order to prevent run-
way from the attractor. The actual dynamics is given by reconstruction
f the observed references tendencies — this is the key right hand side
erm.

The neighbourhood is computed as the average over 𝑁 (and 𝑀 for
he nudging term) nearest, in 𝑙2 norm, to the solution 𝐲(𝑡) points, and

is the nudging strength having units of 1∕s; we will return to the
choice of 𝑁 , 𝑀 , and 𝜂 in the next section; we refer to these parameters
as hyper-parameters. Note that in order to calculate the 𝑙2-norm in the
phase space of variables having different units (say, relative vorticity 𝜁
and temperature 𝑇 as in this study), it is necessary that all the variables
are represented in the same units or nondimensional (as in our case).
For doing so, we calculate the Z-score for these variables as follows:

𝑍𝑖 = (𝑋𝑖 −𝑋𝑖)∕𝜎(𝑋𝑖), 𝑖 = {𝜁, 𝑇 },

where 𝑍𝑖 is the new variable, 𝑋𝑖 is the old variable, 𝑋𝑖 is the time-mean
f 𝑋𝑖, and 𝜎(𝑋𝑖) is the standard deviation of 𝑋𝑖; 𝑋𝑖 is a vector of all the
alues of the 𝑖th variable.

The hyper-parameters can be set based on the chosen metric and
vailable data. Getting a bit ahead, we report that in our case the
eighbourhood consists of 𝑁 = 15 and 𝑀 = 5 points, and the nudging
trength is 𝜂 = 0.001. The term 𝐅(𝐱) is computed with the central finite
ifference in time. Originally, the method was supposed to have the
ame size of the neighbourhood for both the vector field 𝐅(𝐱) and the

nudging term (i.e., 𝑁 = 𝑀). However, our experiments showed that
using neighbourhoods of different sizes can prevent the so-called build-
up effect which we discuss later. We refer the reader to Shevchenko
and Berloff (2021a) for a more detailed discussion of the method. It is
worth noting that the length of the sampling interval that is enough
to properly represent the dynamics cannot be defined a priori as it
strongly depends on the reference data. We recommend to use all
available reference data to better approximate the structure of the
reference phase space.

It might seem that a state 𝐱(𝑡) cannot be expressed as a solution
of a certain differential equation with the right hand side depending
only on 𝐱(𝑡), because 𝐱(𝑡) can depend on many other prognostic (and/or
 t

2

diagnostic) variables (as in our case), because all primitive equations
in MITgcm are coupled. However, it is not necessarily true, as one
can reconstruct a dynamical system (and we did it in Shevchenko and
Berloff, 2022b) the solution of which is 𝐱(𝑡), while the right hand side
depends only on 𝐱(𝑡). Moreover, the idea of representing the evolution
f a process as a solution of a certain differential equation with the right
and side depending only on this process is at the core of dynamical
ystem reconstruction theory.

. Model configuration and numerical results

For the purpose of this study, we consider the Massachusetts Insti-
ute of Technology general circulation model (MITgcm) (Marshall et al.,
997) in the North Atlantic configuration (Shevchenko and Berloff,
021b; Jamet et al., 2019). It is a 46-layer oceanic model coupled with
n atmospheric boundary model (Marshall et al., 1997; Deremble et al.,
013). The coupled model is initially spun up for 5 years and then
ntegrated for another 2 years. Although, for this work it is not essential
hat the initial state of the ocean circulation is in the statistically
quilibrated regime. The model is integrated at two different horizontal
esolutions (1∕12◦ and 1∕3◦); the oceanic and atmospheric models are
mplemented with the same horizontal resolution. We refer to the
olution (and/or a set of diagnostic variables) computed on the 1∕12◦-
rid and projected onto the 1∕3◦-grid (Fig. 1a) as the reference solution,
(𝑡) in Eqs. (1)–(2), and to the solution (and/or a set of diagnostic
ariables) computed on the 1∕3◦-grid as the modelled solution, 𝐲(𝑡)
n Eq. (2), see Fig. 1c. The hyper-parameterized solution computed
ith Eq. (2) is presented in Fig. 1b. Note that the reference solution

onsists only of the coarse-grained variables that are modelled with
he hyper-parameterization method, it is surface relative vorticity and
emperature in our case. It provides a great flexibility for modelling
nd significant acceleration of computations. It is also worth reiterating
gain that we only solve Eq. (2) to model the North Atlantic, and the
nderlying primitive equations are not used, as it would defeat the
urpose of our approach. The whole complexity of the flow dynamics
nters Eq. (2) via the right hand side.

As it follows from the results in Fig. 1, the hyper-parameterized
olution computed on the coarse grid (Fig. 1b) reproduces both the
arge scales (the Gulf Stream flow) and small scales (vortices) of the
eference solution (Fig. 1a) in instantaneous and time-averaged fields,
hile the solution computed on the coarse grid without the hyper-
arameterization (Fig. 1c) leads to no Gulf Stream or small-scale flow
eatures. We remark that the hyper-parameterized solution is a part of a
-year simulation from which we use only the first year of the reference
olution; over the second year model (2) runs on its own.

The hyper-parameterized solution with a bad choice of hyper-
arameters 𝑁 , 𝑀 , 𝜂 (Fig. 2) still reproduces both large- and small-scales
low features but only over the period in which the reference solution
s available (it is one year in our case). After that the solution almost
tops evolving and eventually settles to a constant in time field like the
ne in the middle plot of Fig. 2. It can be seen from the time-mean over
he second year (the right subplot in Fig. 2), which is very similar to
he snapshot taken at year 2 (middle subplot in Fig. 2), thus showing
hat the solution evolution is stalled over the second year.
The build-up effect and solution degradation. The lack of ref-

rence data for the hyper-parameterized model and/or bad choice of
yper-parameters can steer the trajectory to leave the reference phase
pace (the phase space occupied by the reference solution; note that
he phase space of the primitive equations consists of all prognostic
ariables and its dimension is equal to the number of degrees of
reedom, while the reference phase space consists of only the vari-
bles that are hyper-parameterized, which are surface relative vorticity
nd temperature in our case). This escape may result in a significant
egradation of the hyper-parameterized solution and even lead to a
umerical blow-up. We refer to this as the build-up effect, meaning
hat after a period of time, say 𝑇 , the neighbourhood of the nearest
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Fig. 1. Shown are snapshots of the surface relative vorticity 𝜁 = 𝑣𝑥 − 𝑢𝑦 [1/s] for (a) the reference solution (computed at horizontal resolution 1∕12◦ and then projected on the
∕3◦-grid), (b) hyper-parameterized solution computed at horizontal resolution 1∕3◦ for 𝑁 = 15, 𝑀 = 5, 𝜂 = 0.001, (c) modelled solution computed at horizontal resolution 1∕3◦,
nd the 2-year time-average (last column). Snapshots are taken after 1 year (left column) and 2 years (middle column) of simulations. Note the modelled solution (c) fails to
eproduce important large-scale (the Gulf Stream eastward jet extension) and small-scale (vortices) structures of the flow dynamics in both instantaneous and time-averaged fields.
Fig. 2. Shown are snapshots of the surface relative vorticity 𝜁 = 𝑣𝑥 − 𝑢𝑦 [1/s] demonstrating the build-up effect for the hyper-parameterized solution computed at horizontal
resolution 1∕3◦ for 𝑁 = 𝑀 = 5, 𝜂 = 0.001. Snapshots are taken after 1 year (left column) and 2 years (middle column) of simulations.
t

p

oints stalls (Fig. 2), i.e. the points in the neighbourhood become the
losest ones to the image point 𝐲(𝑡) for ∀𝑡 > 𝑇 (in the present case
= 1 year); therefore, the same points are used again and again

uring the integration of Eq. (2) thus driving the image point away from
he reference phase space. In principle, building up numerical errors
ay terminate this runaway, and the solution can return back to the

eference phase space region, but this is case dependent and should be
ept in mind. However, if the return time is relatively long (longer than
he characteristic time of the reference solution) then the flow dynamics
an be seriously distorted over the period of the trajectory injection.
 𝑁

3

In order to prevent the build-up effect, one should properly set up
he hyper-parameters 𝑁 , 𝑀 , and 𝜂 by using weak nudging towards a

slightly lager set of neighbours. After some experiments we have found
that 𝑁 = 15, 𝑀 = 5, and 𝜂 = 0.001 lead to no build-up effect (it
is not necessarily the only choice, and other sets of hyper-parameters
providing no build-up may exist). The optimal hyper-parameters for
a reference solution 𝐱(𝑡) can be computed by solving the following
roblem

min  (𝐱(𝑡), 𝐲(𝑡)), 𝑡 ∈ [0, 𝑇 ] (3)

,𝑀,𝜂
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Fig. 3. Shown is (a) 3D projection of the reference phase space (black dots), modelled phase space (blue dots), hyper-parameterized solution (red trajectory); in other words, we
plot 3 random coordinates from the multi-dimensional phase space of surface relative vorticity (i,e, the axes represent the values of surface relative vorticity at these 3 randomly
chosen coordinates), (b) build-up effect for the second year of the hyper-parameterized solution (short green line near the red circle) for 𝑁 = 𝑀 = 5, and 𝜂 = 0.001; the green
circles are those stalled five points in the neighbourhood. The time-means for every solution are denoted by bold circles of corresponding colours.
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where  is a problem-specific function, and 𝑇 is the length of the
reference solution 𝐱(𝑡). For example,  can be defined as a norm of the
difference between the reference and hyper-parameterized solutions.
Our choice of 𝑁 , 𝑀 , and 𝜂 is driven by our measure of goodness.

It is also important to note that the way the neighbourhood  (𝐲(𝑡))
n Eq. (2) is computed affects the hyper-parameterized solution. One
an change the algorithm on how to pickup points from the neighbour-
ood to tailor the method for a given problem. It is also worth noting
hat these experiments are very fast and computationally cheap, even
elative to a single run of the coarse-grid model. The optimal choice of
yper-parameters and the neighbourhood size, and how they affect the
olution is a topic beyond the scope of the present study.
The measure of goodness and evolution in phase space. The

easure of goodness (i.e., the proximity of the modelled or param-
terized solution to the reference one) in a given metric depends on
he specific purpose. Our measure of goodness is how close the hyper-
arameterized solution is to the reference phase space. We use this
easure to allow the hyper-parameterized solution to evolve in the
eighbourhood of the reference phase space, since the failure of the
oarse-grid model (blue dots in Fig. 3) to reproduce large- and small-
cale features of the flow dynamics is because it steers away from
here it should be (black dots in Fig. 3, i.e. the reference phase space).
easuring the proximity of individual trajectories in phase space is of

o value, because small initial perturbations will grow exponentially
ue to the inherently chaotic dynamics.

The build-up effect is demonstrated in Fig. 3b; the short green
ine near the time-mean over the second year (red circle) is the 1-
ear evolution of the hyper-parameterized solution affected by the bad
hoice of hyper-parameters, namely 𝑁 = 𝑀 = 5, and 𝜂 = 0.001.
volution of the Euclidean distance from the reference time mean
the time-mean of the reference solution) to the hyper-parameterized
olution (Fig. 4) shows that the hyper-parameterized solution affected
y the build-up effect (green line) stops to evolve after one year (the
eriod over which the reference solution is available). In this case,
e observe no numerical blow-up as the solution quickly settles to a

onstant in time field. When the build-up effect is prevented, the hyper-
arameterized solution (red line) continues to evolve with the reference
hase space.
Coupled fields. Comprehensive ocean models have several prog-

ostic fields (velocity, temperature, etc.), and a good choice of hyper-
arameters (𝑁 , 𝑀 , and 𝜂) for one field is not necessarily applicable to
nother. For example, 𝑁 = 15, 𝑀 = 5, and 𝜂 = 0.001 choice works well

nly for the relative vorticity. However, it leads to a build up for the t

4

oupled fields (relative vorticity and temperature, not shown). Thus, a
et of hyper-parameters for a coupled case has to be found separately.
amely, for the coupled fields (relative vorticity and temperature) we
ave found that 𝑁 = 18 and 𝑀 = 4 remove the build up effect,
ence, the hyper-parameterized solution is of high quality (Fig. 5).
he nudging strength in this case remains unchanged from the single
elative vorticity case (Fig. 1), 𝜂 = 0.001.

This example of the coupled fields demonstrates that one should
xercise caution when it comes to setting up the hyper-parameters. On
he other hand, it also shows that the hyper-parameterization method
orks for coupled fields (even with huge differences between the

ields, which is 7 orders of magnitude for the relative vorticity and
emperature, see colorbars in Fig. 5). The main difficulty here is that
he significant difference in the magnitude of these fields can lead to
fast accumulation of the computational error (when computing the

2-norm) that eventually contaminates the fields and further results in
ncorrect computations. If the problem comes out it can be fixed by
ormalizing relative vorticity and temperature, but we chose not to do
his because the method performed well for our choice of data.

. Conclusions and discussion

In this work we have applied the hyper-parameterization method
‘Advection of the image point’’ to the Massachusetts Institute of Tech-
ology general circulation model in the North Atlantic configuration
nd, thus, tested the method in a significantly more complicated set-
ing, as compared to the earlier idealized-model tests. Our results show
hat the hyper-parameterization method significantly outperforms the
on-eddy-resolving 1∕3◦-grid ocean model for both single and coupled
ields (even with large difference between the fields, it is 7 orders of
agnitude in our case) by reproducing both the large-scale (the Gulf

tream eastward jet extension) and small-scale (vortices) flow features
f the reference eddy-resolving solution (on a 1∕12◦-grid and then
rojected onto the 1∕3◦-grid). It is important to note that the hyper-
arameterization method reproduces both large- and small-scale flow
eatures not only over the period for which the reference solution is
vailable (1 year in our case), but also over the second year for which
here is no reference data. The ability of the hyper-parameterization
ethod to work well beyond the reference data set is explained by the

act that the reference data set is sufficient to capture the structure
f the reference phase space. In other words, the reference data is a
epresentative sample of the flow dynamics; if it were not the case,

he method would not work. We deliberately chose to demonstrate
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Fig. 4. Shown is evolution of the Euclidean distance (vertical axis) from the reference two-year time-mean to the hyper-parameterized solution (red line) and to the
hyper-parameterized solution affected by the build-up effect (green line). The horizontal axis shows the simulation time in time steps (6 h in our case).
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that the method works decently even with a short reference solution.
As a matter of fact, the whole method is intrinsically stable and
can provide a hyper-parameterized solution over any time interval.
The quality of the hyper-parameterized solution still depends on the
amount of data fed into the data-training, that is, into increasingly more
detailed reconstruction of the phase space. The more data is fed in,
especially in terms of longer time spans, the better will be quality of
the hyper-parameterized solution.

We have also explained the build-up effect and showed that a bad
choice of hyper-parameters leads to the build-up effect, and eventually
to a significant degradation of the hyper-parameterized solution. In
the worst-case scenario, the build-up can lead to a numerical blow
up (which we did not observe in our experiments though). The build-
up can be avoided by a proper setup of hyper-parameters which we
have found through a series of numerical experiments. In addition, the
hyper-parameters have to be found separately for hyper-parameterizing
single and coupled fields, as well as for different single fields (for
instance, the hyper-parameters that work well for relative vorticity may
not be optimal for temperature, and vice versa).

It is important to keep in mind that the proposed method is
data-driven and, therefore, can suffer from lack of data as any data-
driven method. The hyper-parameterization approach has other meth-
ods (Shevchenko and Berloff, 2022b,a) that can be used to reproduce
effects of mesoscale oceanic eddies on the large-scale ocean circulation,
but demonstration of their skills on the level of comprehensive models
is left for the future. In other words, staying complimentary to the
mainstream physics-based parameterization approach, we propose to
work in phase space of the corresponding dynamical system and to
interpret the lack of eddy effects as persistent tendency of phase space
trajectories (representing the modelled solution) to escape the correct
reference phase-space region.

The proposed hyper-parameterization method is purely data-driven,
hence, it cannot accommodate for changing physics. This only implies
that the method should be used for specific problems; for example,
as representation of the ocean circulation in atmosphere-only model
runs or in ocean transport process studies. It will not be superfluous to
also note that the data-driven nature of the method arrests its ability
to operate in phases space regions that are not presented (or sparsely
presented) in reference data. For instance, studying decadal variability
can require tens of years of reference data to ensure that the refer-
ence data set is a representative sample of the studied phenomenon.
However, this weakness is inherent in the data-driven paradigm. On
5

the other note, within the hyper-parameterization approach there are
other methods (Shevchenko and Berloff, 2022a,b), which are hybrids
between pure data-driven and physics-driven dynamics — they can
handle physical feedbacks.

The proposed hyper-parameterization method offers many advan-
tages: (1) it is computationally very cheap (it is much faster than even
a single run of the coarse-grid ocean model) and is easy to implement;
(2) it enables research situations involving only part/component of the
ocean circulation subject to hyper-parameterization: some geographical
part (e.g. ocean surface or sub-basin), some specific field (e.g. temper-
ature or velocity), or even some specific observational data (satellite
images, drifters, etc.); if needed, the reference data can be always fil-
tered to get rid of its fluctuations and only then be used as the reference
phase space; (3) it can be straightforwardly used with comprehensive
ocean models (e.g. MITgcm, NEMO, etc.) without modifying the model
dynamic core; (4) it is well-suited for generating ensembles of solutions
that can be used to sample the multitude of possible nonlinear, chaotic
ocean/climate states, and to separate the response to external forcing
from the internal, unforced nonlinear variability; an ensemble can
be generated by changing initial positions in the phase space; (5) it
can take as input data not only the reference solution but also real
measurements from different sources (drifters, weather stations, etc.),
or combination of both.

In order to use real measurements together with a numerical solu-
tion, one needs to compute the variables of interest and corresponding
directional vectors (from the observational data) in the modelled region
(say, relative vorticity and temperature in the North Atlantic as in this
study) at the same resolution as the numerical solution and then use
both the numerical solution and the variables (and the directional vec-
tors) computed from observations as new reference data. For example,
if the numerical solution and the observational data consists of 𝑁𝑛𝑢𝑚
and 𝑁𝑜𝑏𝑠 records of relative vorticity and temperature, respectively;
then the phase space consists of 𝐱𝑖 points and corresponding directional
vectors 𝐅(𝐱𝑖), 𝑖 = 1,… , 𝑁𝑛𝑢𝑚 +𝑁𝑜𝑏𝑠. We recommend using data assimi-
ation, first, and then using reanalysis for data-driven reconstruction of
he attractor, as observational data might be inconsistent in time and/or
n space, thus requiring extra interpolation (or other) procedures to
nsure its proper representation at a given resolution. However, other
pproaches are likely to exist. All this offers a great flexibility not only
o ocean modellers working with mathematical models but also to those
orking with measurements.
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Fig. 5. Shown are snapshots of the coupled fields (sea surface relative vorticity 𝜁 = 𝑣𝑥 − 𝑢𝑦 [1/s] and surface temperature [◦C]) for (a) the reference solution (computed at
horizontal resolution 1∕12◦ and then projected on the 1∕3◦-grid), (b) hyper-parameterized solution computed at horizontal resolution 1∕3◦ for 𝑁 = 18, 𝑀 = 4, 𝜂 = 0.001, and the
2-year time-average (last column). Snapshots are taken after 1 year (left column) and 2 years (middle column) of simulations. Note that the hyper-parameterized solution (b)
reproduces both large- (the Gulf Stream) and small-scale (vortices) features of the flow dynamics in both fields.
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