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This work aims at developing a framework for dynamically consistent parameterization of mesoscale
eddy effects for use in non-eddy-resolving ocean circulation models. The proposed eddy parameteriza-
tion framework is successfully tested on the classical, wind-driven double-gyre model, which is solved
both with explicitly resolved vigorous eddy field and in the non-eddy-resolving configuration with the
eddy parameterization replacing the eddy effects. The parameterization locally approximates transient
eddy flux divergence by spatially localized and temporally periodic forcing, referred to as the plunger,
and focuses on the linear-dynamics flow solution induced by it. The nonlinear self-interaction of this
solution, referred to as the footprint, characterizes and quantifies the induced cumulative eddy forcing
exerted on the large-scale flow. We find that spatial pattern and amplitude of the footprint strongly
depend on the underlying large-scale and the corresponding relationships provide the basis for the eddy
parameterization and its closure on the large-scale flow properties. Dependencies of the footprints on
other important parameters of the problem are also systematically analyzed. The parameterization uti-
lizes the local large-scale flow information, constructs and scales the corresponding footprints, and then
sums them up over the gyres to produce the resulting eddy forcing field, which is interactively added to
the model as an extra forcing. The parameterization framework is implemented in the simplest way, but

Keywords:
Geophysical fluid dynamics
Parameterization of mesoscale eddies

it provides a systematic strategy for improving the implementation algorithm.
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1. Introduction

Mesoscale oceanic eddies populate nearly all parts of the global
ocean and play important roles in maintaining the oceanic general
circulation (e.g., McWilliams (2008)). The most straightforward,
but also the most computationally intensive and, thus, unfeasible,
way of accounting for the eddy effects on the large-scale circula-
tion is resolving them dynamically with eddy-resolving ocean gen-
eral circulation models (GCMs). This brute-force approach requires
the computational grid resolution of about 1 km, which makes it
feasible only for relatively short-time simulations, whereas the
Earth system and climate change modeling routinely require much
longer simulations over centuries and millenia. The only way to
afford these time scales, while simulating the ocean in qualita-
tively correct way, is to parameterize the important eddy effects
with simple and affordable but still accurate models embedded
in the GCMs. In this context an eddy parameterization is a para-
metric mathematical model to be used in some coarse-grained,
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reduced-dynamics ocean circulation model. Ideally, the parame-
ters involved are to be related to the explicitly resolved, large-scale
circulation properties, thus, resulting in a turbulence closure for
the eddies. Over the last few decades, the search for suitable eddy
parameterizations remains a challenging theoretical topic with
clear practical dimension.

In this paper, we propose, investigate and test a novel eddy
parameterization framework that can stimulate both theoretical
and practical advances. The main essence of the new parameteriza-
tion is its focus on the transient fluctuations of the geostrophic eddy
fluxes affecting the large-scale flow. The other essence is the
dynamical consistency of the proposed framework. We aim more
at the conceptual and dynamical foundation for the parameteriza-
tion, rather than at the development of its final and polished algo-
rithm. Overall, our results are fundamental, encouraging in terms
of successful tests of the simplest initial implementation, and pro-
viding the framework for further systematic research and
improvements.

Plan of the presentation is the following. In Section 1.1 we dis-
cuss the underlying philosophy and the background literature, as
well as the implemented research strategy. The dynamical ocean
model in which the parameterization is implemented and tested
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is described in Section 1.2. The nonlinear eddy dynamics explicitly
simulated by the eddy-resolving ocean model configuration is ana-
lyzed in Section 2. In Sections 3 and 4 we study linear-dynamics
flow responses to localized transient forcings, which imitate the
actual eddy flux divergences acting on the large-scale flow, and
find their dependencies on the large-scale flow. These analyses
provide the theoretical underpinnings and principles of the eddy
parameterization, which is eventually implemented and tested in
Section 5. In Section 6 we summarize the parameterization frame-
work, discuss the results and outline further research avenues.

1.1. Background and statement of the problem

The most common approach for parameterizing mesoscale eddy
effects is (turbulent) eddy diffusion, which assumes that the eddies
transport the corresponding flow property down its large-scale
gradient. The eddy viscosity' is implemented in any GCM, and the
eddy buoyancy diffusion, which parameterizes ubiquitous baroclinic
instability processes (Gent and McWilliams, 1990), is used in most of
the GCMs. The latter parameterization leads to substantial model
improvements in many parts of the global ocean, especially in the
Southern Ocean. Most of the diffusive parameterization theories
focus on estimating various eddy diffusivity coefficients and relating
them to the large-scale flow properties; for example, by invoking
local linear-stability analysis (e.g., Eden (2011)) or by enforcing con-
sistency with the physical conservation laws (e.g., Marshall et al.
(2012), Ivchenko et al. (2013)). Very few studies attempt to chal-
lenge the very nature of the diffusive approach.

The main drawbacks of the diffusive approach are the following.
First, the down-gradient assumption is often valid, especially for
passive tracers, but it completely breaks down in the “negative
eddy viscosity” and “negative eddy diffusivity” situations (Starr,
1968) occurring with active tracers, such as momentum, buoyancy
and potential vorticity (PV). For example, in the eastward jet exten-
sion of the western boundary currents, the eddies flux PV up the
large-scale PV gradient (Berloff et al., 2005b). Second, it is often
assumed that the eddy diffusivity (and viscosity) coefficient is iso-
pycnally isotropic and spatially homogeneous, although there is
massive evidence against this assumption (e.g., Rypina et al.
(2012)). Third, it is not usually understood how to relate an eddy
diffusivity to the large-scale flow, hence, the diffusive parameteri-
zation remains unclosed and, thus, incomplete.

Despite intrinsic limitations of the eddy diffusion parameteriza-
tions, it is popular not only due to its mathematical simplicity, but
also due to the lack of alternative theoretical ideas. An emerging
theoretical alternative to the diffusion is to rely on random rather
than deterministic representation of the diverging eddy fluxes.
The main potential advantage of this approach is its capability to
account for the negative-diffusivity eddy effects, which can not
be modeled as diffusion due to the mathematical ill-posedness.
In this case the randomness is justified by the observed, highly
transient and structurally complicated pattern of the eddy fluxes.
Although detailed observations of the oceanic eddy fluxes are
problematic and scarce, the eddy-resolving GCMs robustly simu-
late the eddy flux divergence characterized by complex spatio-
temporal patterns and by large transient fluctuations around small
time-mean values (e.g., Li and von Storch (2013)). Can fluctuations
of the eddy flux divergence be modeled as a random-forcing pro-
cess, and can this approach eventually parameterize the important
eddy effects? The foregoing, classical homogeneous-turbulence
approach suggests to replace small-scale spectral nonlinear inter-
actions by a statistically similar random forcing (e.g., Herring

! Here, the term “viscosity” applies to the momentum, and the term “diffusivity”
applies to all other scalar properties.

(1996)). The oceanic mesoscale turbulence is spatially inhomoge-
neous, therefore, the spectral approach should be reformulated in
the physical space. However, this will not mitigate the main prob-
lems of the whole approach: (1) constraining random forcing with
some physical principles and (2) relating parameters of the random
forcing to the large-scale flow fields. Presumably, random forcing
could be calibrated from the eddy-resolving simulations (e.g.,
Berloff et al. (2005a,b)) or estimated from the observations (assum-
ing that we know what and where to observe). The other problem
is (3) finding a proper large-scale circulation model compatible
with the random forcing. Suggestions for such a model range from
linear (e.g., see review by Penland (2007)) to nonlinear (Berloff
et al.,, 2005a; Porta Mana and Zanna, 2014; Jansen and Held,
2014), depending on the objectives. In general the underlying
model has to be fluid-dynamical and non-eddy-resolving, but
severely truncated dynamics can be also used for specific purposes,
such as modeling the large-scale low-frequency variability (e.g.,
Kravtsov et al. (2005)).

There are several precursors to the present work that involve
both oceanic gyres and random-forcing approach. The first precur-
sor is a sequence of papers (Berloff et al., 2005a,b; Berloff et al.,
2007), in which the eddy-resolving solutions are used for con-
structing and constraining a family of random-forcing parameter-
izations incorporated in the non-eddy-resolving models and
successfully tested. Nevertheless, the proposed framework has
two shortcomings. First, relations between the random forcing
and the large-scale flow properties remain poorly understood,
thus, hampering the complete closure. Second, the randomly
forced flow dynamics remains poorly understood, thus, hampering
the physical understanding. The second precursor to our work is
recent study by Porta Mana and Zanna (2014), in which the ran-
dom forcing is shaped by the probability density function cali-
brated on the eddy-resolving simulations and conditioned on the
explicitly resolved large-scale flow properties. Our present work
compliments and extends the above-described studies. It is novel
in the sense that, not only it illuminates the dynamical connections
between transient eddies and their large-scale effects, but also it
develops and implements the corresponding eddy
parameterization.

The central building block of our approach is analysis of the lin-
ear-dynamics responses to spatially localized and temporally peri-
odic forcing function referred to as plunger as representing an
elementary transient action by the eddies. Flow response to a plun-
ger can be treated as the convolution of the Green’s functions of the
problem. The temporal periodicity of the plunger is an interim sim-
plification that can be later upgraded to more general, random but
time-correlated process (e.g., Berloff and McWilliams (2003)). The
proposed approach is radically different from the classical spectral
random forcing, because spatially localized forcing is spectrally
broad-band, with phase-correlated harmonics.

The simplest conceptual model of the nonlinear rectification of
plunger-induced flows is sometimes referred to as the “beta-plane
plunger”, and its main aspect is emergence of (1) a rectified east-
ward jet at the directly forced latitudes and (2) westward return
currents outside of them (Whitehead, 1975; Haidvogel and
Rhines, 1983; Waterman and Jayne, 2011; Waterman and Jayne,
2012). The eastward/westward flows are driven by the diverging
upgradient/downgradient eddy PV fluxes, and in this process both
the nonlinearity and the background PV gradient are fundamen-
tally important. In the simplest set-up, the background PV gradient
is uniform and set by the beta-plane approximation. In this paper
we systematically explore the plunger dynamics before incorporat-
ing it into the parameterization.

Our approach is the following. We resorted to the quasigeos-
trophic (QG) dynamics of the classical double-gyre model, which
is solved both in the eddy-resolving and non-eddy-resolving con-
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figurations, with relatively large and small Reynolds numbers,
respectively. First, we diagnosed the eddy PV flux divergence of
the reference eddy-resolving solution and treated its history as
the nonlinear eddy forcing acting on the large-scale circulation.
Subsequent statistical analysis of the eddy forcing provided us
with the characteristic length and time scales for use in the forth-
coming parameterization. The time-mean component of the refer-
ence solution provided us with the benchmark for assessing
quality of the parameterization: a non-eddy-resolving model with
properly parameterized eddy effects must be able to reproduce the
benchmark. Second, we systematically studied the linear-dynam-
ics plunger solutions and their dependencies on the underlying
large-scale flow and other physical parameters. For each solution
we analyzed its nonlinear self-interaction, referred to as the foot-
print and describing the feedback on the large-scale flow. The foot-
print dependencies on the large-scale flow provided us with the
parameterization closure. Finally, we implemented the parameter-
ization in the non-eddy-resolving model, successfully tested the
outcome against the benchmark, and discussed further avenues
for the parameterization improvement.

1.2. Dynamical ocean model

A dynamical model required by our study must operate at rela-
tively large Reynolds number and resolve many eddy scales. The QG
dynamics is our obvious choice, because it is not only by 2-3 orders
of magnitude computationally faster than the analogous primitive
equations, but also more transparent to mathematical analyses. In
the classical double-gyre configuration, the model represents ideal-
ized, wind-driven midlatitude ocean circulation. It describes a flat-
bottom square basin with the north-south and east-west bound-
aries,and with prescribed density stratification. The dynamics is gov-
erned by the QG PV equations for 3 stacked isopycnal layers:

T @) + Bt = S W vV, 1)
M 1 )+ B2 = vy, )
6M3+ﬂwm&ﬂ+ﬁ ¢3 Vs YT, 3

where the layer index starts from the top; J(,) is the Jacobian oper-
ator; p,=10°kgm> is the wupper layer density;
B=2x10"m's ' is the planetary vorticity gradient;
v =20m?s!is the eddy viscosity coefficient in the eddy-resolving
model configuration; and y =4 x 10°®s~! is the bottom friction
parameter (corresponding to the spin-down time of about
290 days). The basin size is 2L = 3840 km, so that —L < x < L, and
—L <y < L. The isopycnal layer depths are H;=250, H,=750, and
H3=3000 m. The PV anomalies g; and the velocity streamfunctions,
¥;, are related as

G = V2 +S1 (Y2 — Y1),
0> = Vs + S (Y1 — V) + S22 (Y3 — ),
G5 = Vs + S3(Y2 — ¥3),
where the stratification parameters are
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g} and g, are the reduced gravities, associated with the density
jumps across the upper and lower, respectively, internal interfaces
between the isopycnal layers, and f, = 0.83 x 10~ s~! is the Coriolis
parameter. The stratification parameters are chosen so that the first
and second Rossby deformation radii are Rd; =40km and
Rd, = 20.6 km, respectively.

The double-gyre Ekman pumping W(x,y) is asymmetric in
order to avoid artificial symmetrization of the gyres:

TToA . [m(L+
wixy) =~ sin RNy < b ®)
W(x,y) = +£ sin Ey:BiX)}’ y > Bx, 9)

where the asymmetry parameter is A= 0.9, the non-zonal tilt
parameter is B=0.2, and the wind stress amplitude is
To = 0.8 Nm2. The eddy-resolving model operates at a large
Reynolds number defined as

U2L To
v p]H1ﬁv
where U= 1o(p,Hi2L )" =0.0417 ms™! is the upper-ocean

Sverdrup velocity scale. The partial-slip condition, which involves
derivatives in the normal direction to the boundary,

82(/’1' 81/4 _ O, (11)

Re =

~ 800, (10)

omz on
is applied on the lateral walls, and the parameter o = 120 km can be
interpreted as the boundary sublayer length scale. The mass conser-
vation constraints are also imposed:

ar// ) dxdy=0, o //

The model is solved by the high-resolution numerical algorithm
described in Karabasov et al. (2009), on the uniform 5132 grid with
7.5 km nominal resolution.

More simple, doubly periodic two- and three-layer configura-
tions of the model (Berloff et al., 2011) are also used for the plun-
ger-driven solutions with the period equal to the basin size. The
computational domains are of the same size as the closed basin.
The three-layer stratification is the same as in the double-gyre
model. In the two-layer case, the upper and deep layer thicknesses
are H;y =1km and H, =3 km, respectively, and the reduced-
gravity coefficient g} is such that the first baroclinic Rossby
deformation radius,

gV
'fovHT +Hy'’

is 40 km, as in the three-layer model, and the two-layer stratifica-
tion parameters are

—y3)dxdy=0. (12)

Rd; (13)

fo fo
Si= , Sy = . 14
'THg' 77 Hg 1

The two-layer governing equations,

By Jo, )+ 2= vy, (15)

Wﬂmm»m%fwm s, (16)

are combined with the relations between the PV anomalies and
velocity streamfunctions,

= V2 + S0y — ), (17)
=V, + S0y — ) (18)

and the imposed mass constraint. Forcing in the governing equa-
tions is provided by the background, vertically sheared zonal flow
with velocity Uj, so that:

vi— Uy + i, (19)

The doubly periodic models are on 512? uniform grid by the
Fourier transforms (Section 4).
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2. Statistical analysis of the eddying gyres

In this section we discuss the benchmark eddy-resolving solu-
tion of the gyres and its transient eddy forcing. The flow solution
is characterized by vigorous eddy field evolving on the underlying
large-scale gyres separated by the intense and meandering east-
ward jet extension of the western boundary currents (Fig. 1). In
the upper ocean the eastward jet is characterized by the sharp
cross-jet PV gradient and the strongest eddy activity; and in the
deep ocean the jet is characterized by nearly homogenized pool
of PV maintained by the eddy stirring. The eastward jet with its
adjacent recirculation zones is an important flow feature that con-
trols the oceanic meridional transport. The jet is notoriously diffi-
cult to get parameterized by diffusion, because it is maintained by
anti-diffusive cross-jet eddy PV fluxes associated with the eddy
backscatter (Berloff et al., 2005a,b; Waterman and Jayne, 2011;
Waterman and Jayne, 2012), rather than by diffusive eddy stirring
on the jet flanks, as it typically happens in zonally symmetric jets
(e.g., Dritschel and McIntyre (2008)).

In the quasigeostrophic framework, the eddy effects on the
large-scale flow can be quantified by convergence of the eddy PV
flux, which consists of the fluxes of relative vorticity,

Ri =V, (20)

and isopycnal stretching (i.e., buoyancy anomaly), which in the
three-layer case is given by

By =S51(y =), Bo=Su(¥y —¥2) + S5 — ¥3),
By = S3(¢h; — ¥3). 21)

STREAMFUNCTION

-L X +L

Each eddy flux is found by decomposing the flow solution into
the time-mean (indicated by overbar) and transient components.
The resulting eddy forcing,

Fi(t,xy) = -[V-wg; - V- uqj] (22)

is interpreted as the internally generated eddy PV forcing. It can be
further decomposed into the Reynolds stress and form stress com-
ponents, consistent with (20) and (21). Next, F; can be decomposed
into the time-mean F;(x,y) and the transient F;(t,x,y) components,
and we find that the standard deviation of the transient component
is larger than F; by two orders of magnitude (Fig. 2). The dominance
of the transient component is rarely noted in the literature (e.g.,
Berloff et al. (2005b), Li and von Storch (2013)), but it actually pro-
vides the main motivation for parameterizing the eddies in terms of
random processes (e.g., Porta Mana and Zanna (2014)). The spatio-
temporal structure of F' is complex, and this complexity becomes
more evident, when F' is normalized by its standard deviation
(Fig. 3).

We simplified the statistical analysis of the transient eddy forc-
ing by focusing on its upper-ocean component F,(t,x,y), because
its standard deviation dominates over the deep-ocean one, and it
plays the key role in maintaining the eastward jet (Berloff et al.,
2005a). We sampled history of F; and applied 60 by 60 km run-
ning-average spatial filtering, as well as the 20-day running-aver-
age temporal filtering, in order to coarse-grain the field. The
choice of filtering is subjective, but we checked that the outcome
is not very sensitive to it. For the purposes of this study, we need
only qualitative estimates of the eddy forcing properties, but note
that the coarse-graining can be optimized and even dynamically

PV ANOMALY

-L X +L

Fig. 1. Snapshot of the eddy-resolving double-gyre circulation. Upper/lower panels correspond to the upper/middle isopycnal layer; left and right panels show transport
streamfunction and PV anomalies, respectively. The most energetic eddies are concentrated around the eastward jet and maintain it through the nonlinear rectification (i.e.,
eddy backscatter). Color scale range is indicated in each panel: the streamfunction units are Sverdrups (Sv), and the PV anomaly units are f,.
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Fig. 2. Instantaneous and time-mean patterns of the double-gyre eddy forcing. Upper/lower panels correspond to the upper/middle isopycnal layer; left panels show
instantaneous (transient) fluctuations of the eddy forcing corresponding to the flow snapshot in Fig. 1; right panels show the time-mean component of the eddy forcing. The
fluctuations completely dominate over the time-mean component, and even more so in the eastward-jet region and in the upper ocean. Color scale range is indicated in each

panel (units are f2).

Fig. 3. Instantaneous pattern of the transient eddy forcing normalized by the standard deviation. (a) Upper-ocean and (b) deep-ocean patterns correspond to those in Figs. 2a
and 2c, respectively. The patterns are characterized by larger length scales seen in the deep ocean and in the eastern part of the upper-ocean subtropical gyre; and around the

upper-ocean eastward jet the length scales are more uniform.

constrained (Berloff et al., 2005b). The simplest starting point for
analyzing F' is estimating its spatial and temporal correlations
(e.g., Berloff et al. (2005a)). From the correlation functions, esti-
mates of the correlation length and time scales can be made at
every location, but we chose a simpler approach by sampling the
correlations at 25 reference sites that cover the main area of the
eddy activity. These sites not only cover the eastward jet and its
adjacent recirculations zones but also extend into the gyre interi-
ors and western boundary currents (Fig. 4).

For each sampling site (x;,y;), j=1,...,25, the correlation
length scale was found by considering correlations between
Fi(t,x;,y;) and F{(t,x,y), both normalized by their standard devia-
tions. In the neighborhood of (x;,y;) with radius of 100 km, we
counted the number of grid points with the correlation values lar-
ger than 0.1 and obtained the area corresponding to large and posi-
tive correlations. The correlation radius rer(x;,;) is found as the
radius of the circle with the same area, and to large degree the val-
ues of 1., are spatially uniform and about 50-60 km (Table 1). In
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Y/L
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Fig. 4. Reference sites for obtaining the detailed diagnostics of the eddy forcing. (a) Time-mean upper-ocean velocity streamfunction of the eddy-resolving solution (CI = 4 Sv)

and the numbered reference sites; (b) standard deviation of the upper-ocean eddy forcing (CI =

the following analyses we consider circular plungers with radius
o = I'orr = 60 km, but variations of ry are also explored. We also
analyzed the time series of F (t, Xo,Y,), estimated their median fre-
quencies and found that they mostly remain within the range cor-
responding to periods of 60-70 days (Table 1). For simplicity, in the
following analyses we focus on plunger time period T = 65 days,
but variations of T are also explored.

The parameterization further below locally relates eddy forcing
to the underlying large-scale flow, and for initial simplicity, only
zonal component of the large-scale flow is accounted for. Addi-
tional interim simplification to be used in the parameterization is
simple empirical relationship between large-scale zonal isopycnal
velocities. Mutual scatterplots between the time-mean velocities
t;(x,y), i=1,3, (Fig. 5) show that there is no simple global rela-
tionship between them, but there is a local approximate relation-
ship around the eastward jet extension and its adjacent
recirculation zones (in cm s™'):

i, =—-2.1+0.5u;, us

=-2.8+0.20. (23)

In the following sections we use (23) to simplify the analyses
and the parameterization closure.

3. Solutions for simple plungers

In this section we explain how to solve for the linear flow
responses to spatially localized and time-dependent forcing func-
tions, referred to as plungers, and in Section 4 we discuss properties
of these solutions.

The elementary plunger is represented by a s-function in space
and harmonic oscillation in time; and the corresponding flow solu-
tion is the Green’s function of the problem. More realistic plunger
is spatially distributed and broad-band in the frequency domain,
and the corresponding flow solution can be obtained as the convo-
lution of the involved Green’s functions.

Table 1
Eddy forcing correlation length and time scales estimated at the reference locations.

04005f§) and the reference sites.

As the starting point, let us consider the conservative
equivalent-barotropic dynamics linearized around the state of rest
and driven by the elementary é-plunger with frequency wg, so
that:

(v%p Sl/)Jrﬂaw d(x)en",

1/2

(24)

where S™ /7 is the Rossby deformation radius. Solution of this equa-
tion is the Green’s function G(t,x,y), that can be written as

G= CeiAxe—iwot’ (25)

so that the second exponent accounts for the time dependence, and
the first exponent allows to get rid of the 9/9x term in (24) (see
Haidvogel and Rhines (1983)). Since

aG (oG o PG (G G 2=\ i

8x_<6 +1AG> D e 8X2+21A8 —A°G |e (26)

these equations and (25) are used to rewrite (24) as

V2G4 {21A+ lﬁ} +{ PA o _ } G- 27)
19)4 (O Wo

Let us choose A = —f/(2m,) and obtain:

G:Cexp{—i<2ﬁ—a)§o (2—gm>2—s}f;—wio§(x).
(28)

Solution for G can be formulated in terms of the Hankel function
of the second kind HY, therefore:

[ Px
HY (yr) exp {71 (%

o)) ()

+ w0t> }, V3G +

Gt x,y) ~

1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23 24 25

Period (days) 61 66 66 68 65 68 62 66 61 69 65
Radius (km) 61 56 54 55 56 54 52 60 45 54 56

58 62 64 57 61 65 63 63 73 70 66 85 65 63
55 57 56 50 53 54 52 53 63 63 57 58 67 52
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Fig. 5. Empirical relations between the time-mean zonal velocities of the eddy-resolving solution at different depths. Shown are the velocity scatterplots between the upper
and middle layers (upper panels), and between the upper and bottom layers (lower panels). On the left panels the velocity values are taken uniformly, at every coarse-grid
point; and on the right panels they are taken nonuniformly, only around the eastward jet region, in the locations where the absolute time-mean PV flux is large (more than
4 % 10°® m s~2). On the right panels the linear least-squares fits are indicated by the straight lines and the corresponding relationships, that allow to express if; and i3 as the

linear functions of ;.

The Green’s function (29) ceases to exist when y? < 0, and this
sets the maximum , for which a radiating solution exists. In other
words, waves can radiate when the forcing frequency is in the band
of linear Rossby wave frequencies, and this sets the cutoff. For our
values of  and Rd; = S~'/? (40 km), this corresponds to the short-
est forcing period of about 180 days. Note, that this is much longer
than the median time scale of the double-gyre eddy forcing (Sec-
tion 2 and Table 1), suggesting that purely baroclinic response to
a plunger cannot radiate and must be trapped. On the contrary,
purely barotropic response (S = 0) always radiates, because ) is
real. In Section 4 we show, that in the presence of a vertical back-
ground shear, the dynamical coupling between the baroclinic and
barotropic motions allows baroclinic radiation.

In the two-layer linear QG model without background flow, the
plunger dynamics is decoupled into separate equations for the
barotropic and baroclinic vertical modes. The corresponding
Green'’s functions are given by (29) with S being zero and finite,
respectively. In the presence of a vertically sheared background
flow, the vertical modes are dynamically coupled. Analytic expres-
sion for the corresponding two-layer Green’s function is unknown,
but its numerical solution can be efficiently and accurately
obtained by the Fourier transforms. Let us consider the two-layer

linear dynamics with horizontally uniform zonal background flow
given by U; and U,, and with the plunger restricted to the upper
layer. The governing equations analogous to (24) are:
7]
at (vzl//l =S1(y1 — Wz)) + B % +Ui— (V Wy = S1(¥y — Wz))

= §(x)e ™t (30)

0 0
O (V2= S22 00) + B 2 Uy D (V20— S ) =
31)

where g, = 8+ S1(U; — Uz) and B, = B+ S2(U, — Uy) are the isopyc-

nal background PV gradients. By substituting

Gi = Gie !, Gy = Gye ™", (32)

the following system of equations is obtained:

, ~ . 9G
— lCL)o(VZG] —S] (G] - GZ)) +ﬁla_xl

FULD (P26 = 5161~ Go)) = 50900, (33)
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—lwo(V G, —$5(Gy— Gl))+/32 = +U2 (VZGZ—SZ(GZ—Gl)) 0.

(34)

Let us assume that the Fourier transform of the solution exists:

1k, 1) = / G (x,y)e kW dx dy,

(k) = / Gy (x,y)e kW dx dy. (35)
Then, the Fourier transform of (33), (34) yields
—i(kU; + o) [f(k2 + I +51)&1 +51g2] —ipk g =1, (36)
—i(kU> + 00) [~( + P +$2)8> + Saffr | — 1Bk g2 = 0 (37)

and this can be rewritten as the system of two linear equations with
nonzero rhs:

ik — (KU + o) (K + P + 51)] g1(k, 1) + [S1(KU; + wo)]&a(k, 1) =
(38)

[S2(kUs + o)1 (k, 1) + [ﬁzk — (kU + o) (K + P +52)} g(k,1) =
(39)

If the external forcing has spatially distributed amplitude
F1(x,y), then its Fourier transform f,(k,l) should multiply the rhs
of (38). The final equations can be written in the matrix form:

0)= (e ()~ (o)
Al )= 40
<g2> (c d/\& 0 (40)
and for each (k,I) the solution is given by Cramer’s rule:

i cfy
det( )

1 (k1) = i-00

= lmy &(k,1) =

(41)

The inverse Fourier transform and (32) provide the solution in
the physical space. The three-layer extension of the above deriva-
tion, augmented by adding spatially distributed forcing function is
presented in Appendix. This extension is also analyzed in Section 4,
to be used in Section 5 for the ultimate parameterization of the
double-gyre eddies.

The solutions obtained in this section in their general forms are
considered in the next section in detail. Extension of the solutions
to more general time dependencies is a straightforward convolu-
tion of the corresponding Green’s functions, and, therefore, it is
not discussed here. Extension of the solutions to more general
background flows and boundary conditions is not straightforward,
and, therefore, it is left out for a separate study.

4. Analysis of simple plungers

A plunger located at (xo,Y,) is formulated as

F(t,X,; X0, Vo) = 2.16A(t) cos (g r1> r < fo; (42)
0

F(t,x,y;%0,Y0) =0, 1 =10, (43)

wherer = \/(x —x0)> + (¥ — ¥,)? is the distance from the center, and
the forcing is concentrated within radius ry. Our motivation for the
radial dependence in (42) is to have a smooth and monotonic decay
over the radius representing the correlation length scale. Our simple
initial choice can be straightforwardly upgraded to a more realistic
approximation of the transient eddy forcing. We also assumed that
the area integral of the cosine forcing within the circle is equal to
the unity, and this yielded the geometric factor of 2.16 in (42).

The amplitude is chosen A(t) ~ cos(2nt/T), and its magnitude is
the same for all linear solutions considered. Both ry and T are even-
tually fixed as the length and time scales of the eddy forcing from
the eddy-resolving reference solution (Section 2), but in this section
we study solution dependencies on them. Note, that the instanta-
neous basin-averaged PV injected by a plunger given by (42), (43)
is nonzero. We checked whether this matters by introducing small,
spatially uniform correction that brings the basin-averaged instan-
taneous PV to zero. This correction results in negligible changes of
the solution, therefore, it is further neglected.

We considered two-layer linear dynamics in the doubly peri-
odic domain (Section 3) and obtained the solutions for a set of
background flows with —20 < U; < 60 cm s~ ! (with 1 cm s~ ! inter-
val) and U, = 0. Some typical solutions are shown in Fig. 6. In the
absence of the background flow (Fig. 6¢), the solution is completely
decoupled (as discussed in Section 3) into the barotropic- and
baroclinic-mode patterns defined here as

H, H,

¢]:H1+H2%+H1+HZI//27 by =1 — . (44)

In this case, in accord with (29) the barotropic mode radiates
away, whereas the baroclinic mode remains trapped in the forced
region r < ry. Since the solutions are found in the doubly periodic
domain, there is significant interference of the waves radiated by
the periodic copies of the main plunger. This interference is mani-
fested by complicated real and imaginary spatial patterns of the
solutions, as well as by the corresponding complex amplitudes
(Fig. 6). To understand this interference, we studied spin-up
adjustments of the solutions by integrating the time-dependent
governing equations (by the same numerical algorithm as in the
double-gyre model) and observing how the interference patterns
emerge from the individual waves that emerge, radiate and inter-
act (not shown). In the presence of the background shear, the baro-
tropic and baroclinic modes are dynamically coupled, therefore,
the baroclinic part of the solution escapes from the trap and
radiates away. We refer to this phenomenon as the baroclinic
delocalization and argue, that this is the main mechanism for over-
coming the baroclinic trapping set by (29).

The other significant background-flow effects are positive cor-
relation between the amplitudes of the background shear and
the baroclinic mode, and dependence of the spatial solution pat-
terns on the background flow. Some solutions are characterized
by the distinct trains of eddies propagating along certain latitudes
(Fig. 64, e and f). This behavior is likely to be connected to the ubig-
uitous eddy-driven generation of multiple alternating jets on PV
gradients (e.g., Berloff et al. (2011)), if the eddy trains can rectify
into the jets. Some other solutions develop pronounced beams of
eddies radiating from the plunger at some angle (Fig. 6d), and
many solutions combine several patterns. Pattern variations are
large, because of the large variations of the underlying linear-mode
dispersion properties: each flow solution consists of the Fourier
normal modes, that have the same frequency wy, and of the set
of broadly distributed wavenumbers, that are selected by the shape
of the forcing and by the dispersion relation. All these constraints
result in the solution populated with specific sets of wavenumbers.
The resulting phase relationships couple the involved Fourier har-
monics with the imposed forcing and each other.

For the plunger-induced solutions we introduced the concept of
footprint, which is the central aspect of the proposed parameteriza-
tion. The footprint P;(x,y) is defined as the layer-wise time-mean
nonlinear self-interaction of the linear plunger-induced solution,
that is, as the divergence of the corresponding PV fluxes. Footprints
quantify eddy feedback on the large-scale flow. Footprint can be
projected on the barotropic and baroclinic modes, and its compo-
nents are P®Y and P respectively. Footprints do not have mean-
ingful amplitude, because of the problem linearity, but their



P. Berloff/ Ocean Modelling 87 (2015) 1-19

=T

Ul=-16 PHI1

sihodibid
it
U BN

:

T

PHI | PHI2 '_ 3 AMp1 T AMP2
. 5 - =
. : . ’ — -
Y I : o4 y . . » - - » % | —
gt = }]p —
) 1) . | - 5 S ——
: 8 . e
’ > . ‘ ‘\. -
’ ) I =)
paz || ™ v “ﬁ 1 AMP2
90," .
| Py -
'e_=-
‘ ‘ . ' ' ‘ (C)
N PHIZ Rl o [ AMP2
. N IR o
o) 3 _ W e,
N ST > Lo
) ";’//;,/ ) ) Yy, " ,,' 2
o ) e
‘ ' o & e
' ' 'y (d)
L oo S w 1 1

Fig. 6. Two-layer linear flow responses to the localized oscillating forcing (plunger). Individual solutions are shown in rows, and for U; equal to (a) —16, (b) —8,(c) 0, (d) 8, (e)
16, (f) 30, and (g) 45 cm s~ (with U, = 0). The plunger period is T = 65 days. The center of the plunger is located at (Xo,y,) = (0.25L,0),and —L < x < L, —L <y < L, and the
solutions are doubly periodic. The first and second columns of panels show snapshots of the solution represented in terms of the barotropic and baroclinic velocity
streamfunctions, respectively; the third and fourth columns of panels show the complex amplitudes of the barotropic and baroclinic components of the solution. All solutions

are energy-normalized, and the arbitrarily chosen units are the same for all panels.

patterns are well defined. We normalized different P;(x,y) by the
plunger amplitude and compared them with each other (Fig. 7).
In general footprints have complicated patterns that reflect com-
plexities of the plunger-induced solutions, and this complexity
tends to increase with amplitude of the background shear. The
shear has strong effect on the footprints not only in terms of their
structural properties, due to the discussed baroclinic delocaliza-
tion, but also in terms of their amplitude and integral properties,
as shown further below.

Now, by providing relevant context let us justify usefulness of
some bulk properties of the footprints. The main nonlinear flow
response to a beta-plane barotropic plunger is the rectified east-
ward jet at the forced latitudes and weaker return flows adjacent
to it (Haidvogel and Rhines, 1983; Berloff et al., 2005; Waterman
and Jayne, 2012). By time-stepping the nonlinear model, we found
that the tendency to generate this pattern persists in the baroclinic
situation with the background shear. This tendency can be also
viewed as the double-gyre eddy backscatter mechanism that main-
tains the eastward jet extension and its adjacent recirculation
zones (Berloff et al., 2005b). Since our main interest is about plun-
ger-induced nearly zonal currents, we focused on zonally averaged
footprints, denoted to as (P;)(y). Typical (P;) is dominated by either

2 or 4 lobes with alternating sign grouped around y, (Fig. 7). The
larger lobes are located around (xo,y,), and the smaller lobes are
located further away. Since footprints are antisymmetric around
the central latitude y,, (P;) is also antisymmetric. We character-
ized (P;), as well as the corresponding (P} and (P®?), by their
integral values over the northern half of the domain. These values
are referred to as elementary footprints and denoted as E;, E®® and
E®?D_ We found that for positive and weakly negative U; both E®™
and E®? are positive, implying that the footprint must induce a
large-scale jet with both barotropic and baroclinic components
being eastward. However, when U; is strongly negative, both
E®® and E®? are negative, implying the footprint westward baro-
tropic and baroclinic jet components.

To demonstrate how the simple parameterization works, we
focused on the upper-layer elementary footprint E; and on its
dependencies on the background flow and other parameters of
the problem, and considered wide range of background flows:
—-20 < U; <60cms~'. We found that when |U;| is small, E; is
small and the plunger period T has modest effect on the elemen-
tary footprint. On the contrary, for relatively large |U;|, E; reaches
maximum and is positively correlated with T (Fig. 8). This implies
that, in terms of the feedback on the large-scale flow, the transient
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eddy forcing must be the most efficient for moderate vertical
shears and longer time scales.

If U; < =5 cm s}, then E,; is negative, otherwise E; is positive;
and for large |U,| the elementary footprint again becomes small.
This implies that the plunger (or the actual transient eddy forc-
ing) must induce an eastward jet, but when this jet becomes
strong, the plunger effect must be weakened. This weakening
can be interpreted as a bounding mechanism on the eddy-
induced zonal jet. Long plunger periods result in larger E; and,
therefore, must favor jet rectification, but the actual eddy forcing
periods are constrained by the dynamics and limited to relatively
narrow range of values (Section 2). In the double gyres, this range
is probably constrained by the Rossby deformation radius Rd;,
which sets the eddy length scales and, thus, through the linear
dispersion relation fixes the corresponding time scales. We can
not easily vary Rd; in the double-gyres, because of the massive
computational costs, but we varied Rd; in the plunger problem.
We found that shorter Rd; noticeably reduces the elementary
footprint, and more so for U; < 0. This suggests that the strongest
effect of the eddy forcing must correspond to the first baroclinic
mode, which has the longest baroclinic deformation radius, and
the eddy forcing components acting on the higher baroclinic
modes must play progressively weaker roles in the rectification.
This conjecture is in the sharp contrast with the proposition that
the higher baroclinic modes play a catalytic role for enhancing
the eastward jet (Barnier et al., 1991), but more systematic stud-
ies beyond the scope of this paper are needed to resolve the dis-
agreement. Also, larger Rd; makes the value of U; at which E;
changes sign even more negative (Fig. 9), suggesting that the
plunger is less efficient for inducing a westward jet, and even
more so for higher baroclinic modes.

The only significant effect associated with plunger radius ry is
its positive correlation with strength of the elementary footprints

(Fig. 10). The infinitesimal ro corresponding to the J-function
plunger, results in the infinitesimal footprint (see also
Waterman and Jayne (2012)). We studied the dependence on
the eddy viscosity v by varying it from 10 to 200 m?s™!
(Fig. 11) and found that v is negatively correlated with the foot-
print strength, and this effect is more pronounced in the west-
ward background shear. In general, the enhanced sensitivity of
the westward shears to transient forcing is consistent with inten-
sive generation of coherent vortices in the corresponding nonlin-
ear large-Re flow regimes (Berloff et al, 2011), but more
systematic research, beyond the scope of this paper, is needed
to unravel the underlying physics.

We extended the above-described parameter dependencies to
the three-layer dynamics, because it directly links the plunger
studies to the double-gyre model and eddy parameterization.
In the three-layer model, the vertical large-scale shear is con-
strained by (23), and the main dynamical difference from the
two-layer case is due to the second baroclinic mode. We found
that most aspects of the three-layer and two-layer plunger solu-
tions are qualitatively similar, therefore, we discuss only the
main differences. First, contrast between the footprints in the
eastward and westward background shears is much weaker in
the three-layer formulation (Figs. 12 and 13), mostly due to
weaker footprints in the westward shear. Second, in the three-
layer case the range of negative elementary footprints is nar-
rower. All of this suggests that severe truncation of the vertical
degrees of freedom may exaggerate the sensitivity of the west-
ward shears to transient forcing.

To summarize, discussed in this section study of the plunger-
induced solutions and their footprints provides us not only with
the fundamental understanding of the transiently forced dynamics,
but also with the essential relationships between the induced foot-
print and the background flow.
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Fig. 7. Eddy forcing patterns (footprints) corresponding to the plunger-induced solutions from Fig. 6. Individual footprints are demonstrated in rows, and the rows

correspond to U; equal to (a) —16, (b) -8, (c) 0, (d) 8, (e) 16, (f) 30, and (g) 45 cm s

1. The first and second columns of panels show the barotropic and baroclinic footprint

components, respectively. The footprmts are obtained for the energy-normalized solutions, and the displayed units are arbitrary but the same over all panels. The third and
fourth columns of panels show the profiles of the zonally averaged barotropic and baroclinic components of the corresponding footprint, respectively. The profile pairs are
normalized so that their maximum absolute value is unity. The integral value of each profile is found over the northern half of the domain and indicated on each panel (with

1072 units) — this is the elementary (barotropic or baroclinic) footprint.

5. Implementation and tests of the eddy parameterization

In the previous section, we established relation between the
three-layer footprint and the background shear and stored this
relation in terms of the functional dependence E; = E; (U,), calcu-
lated for the integer values (in cm s~!) of U; U, and Us; are related
to U, via (23) and linearly interpolated in between. Thus, in a non-
eddy-resolving model E; (t,x,y) can be straightforwardly obtained
from the explicitly resolved large-scale zonal velocity u;(t,x,y).
Next, we introduce the concept of elementary footprint dipole,

which is a dipole at (xo,y,) consisting of the PV anomaly E; north
from (xo,y,), and PV anomaly —E;, south from it. The distance
between the dipole anomalies is taken as the distance between
the maximum and minimum values of the corresponding zonally
averaged footprint (P;) (Fig. 7). From the footprint analyses we
found that for the relevant parameters this distance is slightly less
than 60 km, which is the radius of the imposed forcing function.
Therefore, given that our non-eddy-resolving model (discussed
below) has the nominal grid resolution of 30 km, we set the dipole
length to 60 km (2 grid intervals).
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Fig. 7 (continued)

The structure and strength of the elementary footprint dipole
are defined by the linear dynamics, but its amplitude D must be
additionally defined by proper scaling and closed on the large-scale
flow. Dimensional scaling of a footprint is that of the divergence of
eddy PV fluxes, that is, eddy forcing. Hence, we assume that ampli-
tude of the plunger forcing, which imitates the actual transient
eddy forcing, is proportional to the magnitude of large-scale PV
flux divided by some characteristic length scale. The latter is taken
proportional to the spatial correlation length scale ry, diagnosed
from the double-gyres, so that:

DZC'ulql‘, (45)

To
where U7 and g, are the upper-layer large-scale velocity and PV
anomaly, respectively, and, thus, the denominator is explicitly
resolved by the non-eddy-resolving model. In the following analy-
ses we assume that the nondimensional proportionality coefficient
C is unity. This leaves potential for further refinements, which are
beyond the scope of this paper. The flux in (45) must eventually
come from the non-eddy-resolving model, but its amplitude and
pattern must be similar to those from the benchmark reference
solution. The corresponding reference time-mean PV fluxes are
shown in Fig. 14 illustrating that the upper-ocean flux, which is

concentrated in the western boundary currents and their eastward
jet extension, dominates over the deep-ocean flux by the order of
magnitude. Another relevant observation is that the maximum flux
values are shifted to the northern flank of the eastward jet.

We implemented the parameterization only in the eastward jet
region denoted by rectangle in Fig. 14a, because this is the region
with the most important eddy effects and flow rectification
(Berloff et al., 2005a,b), and the simple parameterization is so far
based only on the zonal component of the background flow that
clearly dominates the region. The parameterized cumulative eddy
forcing is given by adding up elementary footprint dipoles calcu-
lated at every grid point around the eastward jet and scaled by
(45). The corresponding field calculated for the reference time-
mean solution is shown in Fig. 15. It consists of the narrow positive
and negative strips surrounding the eastward jet in a such way,
that they have to maintain it.

Now, let us focus on formulating a coarse, non-eddy-resolving
model of the double gyres. This model is exactly the same as the
reference eddy-resolving model, except that it is solved on much
coarser grid, with 30 km nominal resolution, and it has large eddy
viscosity v = 600 m? s—1, so that the flow solutions are numerically
converged and spatially smooth. The straightforward non-eddy-
resolving solution (Fig. 16) differs dramatically from the eddy-
resolving one, because it has no eastward jet. The kinetic energy
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Fig. 8. Dependence of the two-layer footprint (eddy forcing) properties on the plunger period, T. The horizontal axis corresponds to the background velocity, U;, and the
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Fig. 9. Dependence of the two-layer footprint (eddy forcing) properties on the Rossby deformation radius, Rd. The outline is the same as in Fig. 8. The dependencies are shown

for Rd = 30, 40 and 50 km (different colors). Note that for larger Rd the transition from positive to negative elementary footprints shifts to more negative U;.
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Fig. 11. Dependence of the two-layer footprint (eddy forcing) properties on the eddy viscosity, v. The outline is the same as in Fig. 8. The dependencies are shown for v = 200,
50, 20 and 10 m? s~ 1. Note the amplification of the eddy forcing for negative U;.
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Fig. 14. Potential vorticity flux of the time-mean eddy-resolving reference solution. Shown are the absolute values of the flux in the (a) upper and (b) middle isopycnal layers
(color; units are 10~°> m s~2), superimposed on the corresponding time-mean zonal velocity component (contours; Cl =102 m s~!). Rectangle on the left panel indicates the
region of predominantly zonal time-mean flow and the most intensive eddy backscatter — this is the region where the eddy parameterization is implemented.
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Fig. 15. Parameterized upper-ocean eddy forcing (color) estimated from the plunger dynamics on the basis of the reference time-mean circulation. The eddy forcing field is
superimposed on the reference time-mean (a) zonal velocity component (CI=10"2m s~ ') and (b) transport streamfunction (CI =2 Sv).
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Fig. 16. Failure of the non-eddy-resolving model to simulate the eastward jet and its adjacent recirculation zones without a parameterization representing the eddy
backscatter. Shown are the upper-ocean transport streamfunctions: (a) instantaneous and (b) the time-mean (CI = 2 Sv).

of the upper-ocean time-mean flow in the quarter of the basin that
should contain the jet (0 <y < L/2) is only 19% of its reference
value. Varying v does not help to resolve the eastward-jet problem,
because the eddy dynamics is profoundly misrepresented in the
coarse model. A good eddy parameterization added to the coarse
model must be able to fix the jet problem by accounting for the
missing eddy forcing.

First, we tested the eddy parameterization in the unclosed form.
For this purpose we imposed the cumulative eddy forcing pattern

parameterized on the basis of the benchmark time-mean circula-
tion and shown in Fig. 15. Implementation of the unclosed param-
eterization results in dramatic improvement of the coarse model in
terms of the recovered eastward jet and its adjacent recirculation
zones (Fig. 17). Not only the jet is robustly present in the coarse
solution, but also the main resolved eddy activity is shifted from
the western boundary currents to the region surrounding the jet,
as in the reference solution. The kinetic energy of the upper-ocean
time-mean flow in the quarter of the basin that should contain the



P. Berloff/ Ocean Modelling 87 (2015) 1-19 17

Y/L

0

Fig. 17. Outcome of the unclosed parameterization added to the non-eddy-resolving model. The outline is the same as in Fig. 16. Note that this solution has well-developed
eastward jet and its adjacent recirculation zones. The parameterization consists of the eddy forcing calculated from the time-mean standard flow and shown in Fig. 15; the
involved parameters do not evolve with the large-scale flow, thus, keeping the parameterization unclosed.

0 X/L 1

Y/L

0 X/L 1

Fig. 18. Outcome of the fully closed parameterization added to the non-eddy-resolving model. (a) Time-mean upper-ocean transport streamfunction (CI =2 Sv) for the
reference case discussed in the text. Note that the eastward jet is close to the standard one shown in Fig. 4a, and there is massive improvement of the non-eddy-resolving and
nonparameterized solution shown in Fig. 16. (b) Sensitivity study: the same as (a) but with the parameterized eddy forcing amplitude reduced by 10%.

jet (0 <y < L/2) is now 82% of its reference value. The unclosed
parameterization exercise proved that our parameterization is
remarkably accurate, given the basic simplifications and interim
short cuts of the algorithm.

Finally, we tested the eddy parameterization in its closed form
by relating its parameters to the dynamically evolving large-scale
flow. The unclosed parameterization results (Fig. 17a) told us that
even in the coarse model the resolved eddy activity is significant,
therefore, relating the parameterization to the instantaneous flow
is fraught with double counting the eddy effects. In practice this
results in locally large transient westward shear that induces
overly strong footprints; the resulting PV anomalies become accu-
mulated into exaggerated recirculation zones around the eastward
jet. To overcome this problem, we smoothed the coarse-model
solution by the interactive running-average filter spanning the last
5 years of the solution. We varied the filter width and found that
the outcome is not sensitive to it, as long as this width is interan-
nual or longer, so that the resolved eddies are smoothed out. The
fully parameterized model was spun up for 20 years and, then,
solved for another 50 years. The solution is similar to the unclosed
parameterized one, but the eastward jet is stronger in the western
quarter of the basin and weaker in the middle of the basin
(Fig. 18a). The kinetic energy of the upper-ocean time-mean flow
in the quarter of the basin that should contain the jet
(0 <y < L/2) is remains at 82% of its reference value, as in the
unclosed case. Overall, implementation of the closed parameteriza-

tion results in dramatic improvement of the coarse model. To
check robustness of the outcome, we studied its sensitivity to the
proportionality coefficient C in (45) and found that varying C by
10% yields some quantitative changes but does not destroy the
eastward jet (Fig. 18b).

To summarize, despite some interim simplifications, the pro-
posed eddy parameterization significantly improves the non-
eddy-resolving model. We developed the parameterization algo-
rithm, understood its dynamical underpinnings, and demonstrated
that it works in practice. Some further improvements are discussed
in the next section.

6. Summary and discussions

This paper aims at developing a framework for dynamically
consistent parameterization of the oceanic, mesoscale (geo-
strophic) eddy effects for use in non-eddy-resolving ocean circula-
tion models. Here, the parameterization is a simple, parametric
mathematical model that accounts for the unresolved but impor-
tant eddy fluxes which affect the large-scale circulation. A failure
to account for the eddy effects typically results in gross errors in
the simulated ocean circulation that have many negative conse-
quences. The dynamical consistency means that the parameteriza-
tion invokes explicit solutions of a simplified dynamical problem,
rather than ad hoc assumptions. The framework means that we
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provide the guiding idea and principles for developing the param-
eterization algorithm, rather than the refined final result.

The brute-force alternative to eddy parameterization is to
resolve the eddies dynamically, but, due to the required enormous
computational costs, this will remain practically unfeasible for
long time, providing high demand for accurate and efficient eddy
parameterizations. The most common parameterization of the
eddies is the isopycnal or horizontal eddy diffusion of buoyancy
and momentum, that is routinely implemented in non-
eddy-resolving oceanic components of global climate models. The
main problem of the eddy diffusion is that it is fundamentally
wrong in the common (but not prevailing) “negative diffusivity”
situations characterized by anti-diffusive (i.e., up-gradient) eddy
fluxes. The other common problem is that, eventually, any parame-
terization must be closed in the sense that its parameters (e.g., eddy
diffusivity) are to be obtained from the properties of the explicitly
resolved large-scale circulation. Closing a parameterization is usu-
ally more difficult than formulating its mathematical algorithm.

In order to put forward and test the proposed parameterization
framework, we focused on the classical, wind-driven double-gyre
model, and studied its reference solution, as well as the corre-
sponding divergence of the eddy potential vorticity (PV) fluxes.
This divergence can be interpreted as the eddy forcing exerted
on the large-scale flow. We focused on the transient rather than
time-mean component of the eddy forcing, because in the gyres
it is responsible for the dominant eddy effect (Berloff et al.,
2005b). This effect, also known as eddy backscatter, is the eddy-
induced generation of the eastward jet extension of the western
boundary currents. Since this eddy effect is associated with up-gra-
dient eddy fluxes, it is notoriously difficult to parameterize diffu-
sively. Therefore, some recent efforts made towards its
parameterization discard the diffusion and try to represent the
eddy effects in terms of transient (random) forcing. Precursors of
the present work are Berloff et al. (2005a,b) and Porta Mana and
Zanna (2014), where the transient eddy forcing is modeled as a
random, space-time correlated forcing added to the non-eddy-
resolving dynamics. The capability to represent the eddy backscat-
ter is the main advantage of this approach, and we took it several
steps further. The novelty is the use of flow responses to the ele-
mentary transient forcings as the building blocks of the parameter-
ization, and relation of these responses to the large-scale flow
properties.

First, we analyzed the reference eddy-resolving solution, esti-
mated the characteristic length and time scales of the transient
eddy forcing and used them to construct the transient forcings,
referred to as the plungers. We also obtained the reference time-
mean circulation and used it later as the benchmark for assessing
the parameterization skills. Second, we systematically studied
the linear-dynamics plunger solutions and their dependencies on
the underlying large-scale flow and other physical parameters.
These solutions can be viewed as the convolutions of the Green'’s
functions of the problem. For each solution we found its nonlinear
self-interaction, referred to as the footprint of the plunger. We
found that each footprint strongly depends on the underlying
large-scale flow, and, thus, provides us with the closure relation-
ship. Since footprints come from the linear dynamics, their ampli-
tude has to be scaled properly, and we scaled it with the large-scale
PV fluxes and correlation length scale. Third, we implemented the
parameterization in the non-eddy-resolving double-gyre model
and verified that it works, in the sense that it facilitates develop-
ment of the eastward jet and its adjacent recirculation zones and,
thus, results in the massive improvement of the model.

The parameterization algorithm consists of the following steps.
The first step is collection of the relevant large-scale flow fields
from the non-eddy-resolving model. These fields are so far repre-
sented by the upper-ocean distributions of the zonal velocity and

magnitude of the PV flux. The second step is converting the
large-scale flow information into the ensemble of local footprints,
that are added up to provide the cumulative eddy forcing correc-
tion to be imposed on the model. This step explicitly involves solv-
ing the linearized dynamics that transforms localized transient
forcing into the corresponding footprint. The linearized-dynamics
problem is solved only once and for all times, and the parameter-
ization only refers to the precomputed information. Because of the
explicit use of the dynamics, the parameterization is referred to as
dynamically consistent. The third step is the time stepping of the
non-eddy-resolving model; then, the first step is repeated.

Let us now discuss some connections between our study and
some recent works. First, our extended Green’s function approach
to the problem is complimentary to the approach that estimates
eddy diffusivities from the local linear-stability analysis (e.g.,
Eden (2011)). Both approaches utilize the linear dynamics, but here
we do not rely on the most unstable linear normal modes. Second,
an interesting parallel can be drawn with Srinivasan and Young
(2014), where the Reynolds stress is found for randomly forced,
B-plane barotropic dynamics linearized around uniform horizontal
shear. Depending on the degree of anisotropy of the spatially
homogeneous and correlated, white-noise forcing, and on the
background shear, the Reynolds stress can induce either positive
or negative eddy viscosity effect. Similar, or study relies on the
transformation of external forcing by the linear dynamics and on
the use of the outcome to find the nonlinear stress (i.e., eddy forc-
ing), but several other aspects make it quite different: first, we con-
sidered spatially inhomogeneous and temporally periodic external
forcing; second, we studied multilayer baroclinic model with
richer dynamics; third, we extended the results toward fully closed
and successfully tested parameterization of the eddy effects in
non-eddy-resolving ocean circulation model.

The proposed parameterization framework raises a number of
interesting questions beyond the scope of this paper. Let us discuss
briefly some conspicuous research avenues that are likely to yield
significant improvements and refinements of the present parame-
terization. First, in the analysis of the footprints, we studied simple
background flow effects due to horizontally uniform zonal cur-
rents. This simplification can be systematically upgraded toward
realistic, inhomogeneous background flows; for example, by start-
ing with meridionally localized zonal jets and moving, eventually,
to realistic ocean gyres. Also, we used simple empirical relation
between the background zonal velocities at different depths, but
this relation can be straightforwardly relaxed, at the expense of
some technical complexity. Second, we worked with relatively
simple quasigeostrophic dynamics that combines the eddy
momentum and buoyancy fluxes into the eddy PV flux, but this
dynamical core can be upgraded, first, to the shallow-water model
with stacked isopycnal layers, and, eventually, to the continuous
primitive equations. Third, we considered temporally periodic
plungers, but this assumption can be overhauled by considering
more realistic and complicated models of the time evolution
(e.g., random processes with built-in temporal correlations or
short-time pulses). Fourth, we considered simple horizontal and
vertical structure of the plungers, but these assumptions can be
systematically overhauled by considering more realistic and less
confined forcing functions, as well as their dependencies on the
large-scale PV gradients. Fifth, a more detailed mathematical anal-
ysis of the plunger-driven linear solutions is left for the future.
Such solutions were rarely studied in the past (e.g., Haidvogel
and Rhines (1983), Waterman and Jayne (2012)), because of the
dominance of the normal-mode and linear-stability approaches.
Sixth, it is tempting to extend our study kinematically and to ana-
lyze plunger-induced eddy diffusivities, as well as other transport
and mixing properties. Seventh, conceptual similarities and differ-
ences between our approach and the recent parameterization
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framework suggested by Grooms et al. (2015) ask for thorough
evaluation. Finally, we obtained only linear plunger-driven solu-
tions and, then, analyzed their nonlinear self-interactions, but
future systematic analyses of the fully nonlinear plungers are
anticipated.
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Appendix A. Three-layer plunger dynamics

The three-layer extension of the plunger-driven dynamics is
explicitly compatible with the three-layer double-gyre model.
Assuming that the forcing function is distributed over all layers,
the system of equations is obtained similar to (36), (37):

. - - Lo~ 2.
—i(kUs +@0) (~(F + P+ 581+ 5182 ) i ikg1 — v +F) g1 =,
(A1)

—i(kU; + @0) (~(K + P + 31 + $22)82 + S + Sxaf3 )
. ~ 2.
— kg — V(K +F) 82 =f>, (A2)

~i(KkUs + o) (~ (€ + P+ 53)85 + 5382 ) —ifskgs — v +P) ' =f3,
(A3)

where

pr=P+51(U1 = Ua), By=PB+S51(Us—Ui)+5n(U;-Us),

B3 = p+53(Us — U) (A4)

are the isopycnal background PV gradients, and the eddy viscosity
term is added to the dynamics, as in the double-gyre model (the
bottom friction term is absent, because we found its effect to be
weak). Egs. (A1)-(A3) can be written as

& a b c & ifi
Alg|=|d e f oHl=1|ik], (A5)
g3 g hj g3 ifs

where the elements of matrix A are:

a=prk— (kU; + o) + P +S) — iv(ik® + P, (A6)
b = S, (kU; + o), (A7)
d = Sy1 (kU + @p), (A8)
e = fok — (KUs + o) (K + P + Sy + Sx) — iv(k* + P, (A9)
[ =Sn(kU; + wy), (A10)
h = $5(kUs + o), (A11)
j= Pk — (kU3 + o) (& + P+ S3) — iv(k® + P’ (A12)

and ¢ = g = 0. For each pair of wavenumbers (k,I) the solution is
given by Cramer’s rule:

(ef — fA)f; + (ch — bj)f, + (bf — ec)f5

B =1 det(A) ' (A13)
gz — —l(d] _fg)fl + (C%;tgj\){z + (af — Cd)f3 , (A14)
g3 :l(dh_eg)fl —~_(bi(::_t(aAh))fZ—"_(ae_bd)fé7 (A15)

where det(A) = a(ej — fh) — b(dj — fg) + c(dh — eg).
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