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ABSTRACT

The authors investigate the spontaneous occurrence of large-scale, low-frequency variability of steadily forced,
two-gyre, wind-driven circulations. The model dynamics is quasigeostrophic, the density stratification is rep-
resented in 1.5- and 2-layer approximations, and the wind stress pattern is either asymmetric or symmetric about
the midbasin. The authors show that more generic variability arises when the forcing is strongly asymmetric,
the Reynolds number is relatively large, and the baroclinic instability mechanism is active. The variability is
explored for a wide range of values for the viscosity coefficient, that is, the Reynolds number. The regimes
include steady circulation, periodic and quasiperiodic fluctuations near the beginning of the bifurcation tree, and
chaotic circulations characterized by a broadband spectrum. Both the primary and secondary bifurcation modes
and the spatiotemporal patterns within certain frequency bands in the chaotic regime are analyzed with an EOF
decomposition combined with the time filtering.

In the symmetric case the 1.5-layer flow develops anomalously low-frequency fluctuations with a very non-
Gaussian distribution. The baroclinic instability that arises in a 2-layer flow tends to weaken and regularize
somewhat the low-frequency variability, but it still has the character of infrequent transitions between distinct
gyre patterns. The variability of the circulation forced by asymmetric wind differs substantially from the sym-
metric forcing case. In 2-layer solutions the power at low frequencies progressively increases with the Reynolds
number. The dominant low-frequency variability is associated with changes in the position and shape of the
eastward jet and its associated western-basin recirculation zone. This variability occurs smoothly in time, albeit
irregularly with a broadband spectrum.

1. Introduction

The wind-driven circulation in an enclosed, midlat-
itude basin is a classical problem in oceanography, and
much previous attention has been given to its western
boundary currents and mesoscale variability. Our focus
is the large-scale, low-frequency intrinsic variability that
develops at intermediate and large Reynolds number
(Re). In the introduction we pose the problem, give a
brief review of the literature, and describe the model
formulation. The results are split in sections 2 and 3,
dealing with the asymmetrically and symmetrically
forced circulations, respectively. The discussion and
conclusions follow in section 4.

a. Statement of the problem

The spatiotemporal variability of the ocean may be
roughly classified into three major categories: 1) the
directly forced variability resulting from the slaved re-
sponse of the ocean to time-dependent fluctuations of
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the atmosphere, 2) the spontaneous variability that ap-
pears to be largely uncorrelated from fluctuations in the
surface forcing (i.e., intrinsic variability), and 3) the
intrinsically coupled variability of the combined ocean–
atmosphere system, the most famous example of which
is ENSO. We focus only on the intrinsic variability of
the ocean by considering the situation where the wind
forcing has no time dependence. We are primarily in-
terested in the large-scale, low-frequency (LF) varia-
tions, which are loosely defined to be within a wide
range of timescales from seasonal to interdecadal and
length scales from the baroclinic deformation radius to
the basin size.

We consider midlatitude, quasigeostrophic (QG)
ocean dynamics with a prescribed density stratification
in rectangular domain. For simplicity, the bottom to-
pography, the coastal line geometry, and the thermo-
haline forcing are excluded from the model. The pri-
mary questions that are posed and partially answered
are the following:

1) What are the robust dynamical regimes of the cir-
culation?

2) What are the important physical processes influenc-
ing these regimes?

3) How similar are the patterns at high Re to those near
the beginning of the bifurcation tree?
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4) What are the generic spatiotemporal patterns cor-
responding to the LF variability of the flow?

To address these questions, we look at the spatiotem-
poral variability in 1.5- and 2-layer QG models. We
consider two types of wind forcing: one symmetric with
respect to the middle latitude and one asymmetric. In
each situation we find solutions corresponding to early
bifurcations of the flow at moderate Re as well as strong-
ly chaotic solutions at significantly larger Re. The LF
variability is analyzed by decomposing fluctuations of
the complete and filtered solution fields into empirical
orthogonal functions, EOFs (appendix A). Also, we ana-
lyze the time-mean circulation, the energy time series,
and the energy conversions of the flow.

b. Background

The theory and modeling of ocean gyres has been
developed for several decades. Idealized basin geome-
tries and wind patterns are often used with both single-
and double-gyre circulations.

Holland (1978) and Haidvogel and Holland (1978)
analyze the free-slip, QG, 2-layer, single- and double-
gyre models with both horizontal and bottom friction.
In their model the western boundary current separates
and becomes an intense eastward jet (the ‘‘Gulf
Stream’’) with adjacent recirculation zones. Mesoscale
eddies appear as a result of internal instabilities and
interact with the time-mean flow transferring momen-
tum from the upper to the lower layer.

The asymmetrically forced barotropic circulation
with bottom friction (Harrison and Stalos 1982) has no
intense eastward jet or recirculation. Instead, the western
boundary current of the subtropical gyre intrudes deeply
into the subpolar gyre, and the eastward jet develops a
standing Rossby wave pattern. Moro (1988, 1990) ex-
tends this result by replacing bottom with lateral friction
and finds that the steady state has a strongly meandering
eastward jet surrounded by a large-scale vortex street.
The vortex street becomes weaker as the forcing pattern
approaches symmetry. The loss of stability by the asym-
metric steady state is associated with vortex shedding
from the entire vortex street. In a time-dependent, 3-lay-
er model (Verron and LeProvost 1991), the street pen-
etrates into the lower layer and becomes essentially bar-
otropic, both in the time-mean and in the time-dependent
fluctuations.

Multiple steady states are found for the barotropic,
symmetrically forced, free-slip, QG problem in Cessi
and Ierley (1995). Some of the steady states are perfectly
symmetric and others appear in pairs due to the parity
symmetry of QG dynamics. One of these pairs corre-
sponds to the inertial runaway of the circulation (i.e.,
an extremely strong, basin-filling double gyre). Multiple
steady states are also found in a barotropic, QG model
with an alternative friction formulation (Primeau 1998)
and in a shallow-water model (Speich et al. 1995) that

is equivalent to our 1.5-layer model in the QG approx-
imation.

The time-dependent, barotropic circulation with bot-
tom and biharmonic horizontal friction contains two ma-
jor types of disturbances (LeProvost and Verron 1987):
meandering of the eastward jet and radiation of Rossby
wavelike features from the westward recirculation flow.
The transient dynamics near the steady states found by
Speich et al. (1995) is explored by Jiang et al. (1995):
there the periodic solution arises from the steady state
by a Hopf bifurcation and is characterized by the ap-
pearance and nonlinear interaction of multipole vortices
with the eastward jet and each other. When the Re is
further increased, the fluctuations become aperiodic.
The circulation in a 1.5-layer, free-slip, QG model with
‘‘bottom’’ (i.e., interfacial) and biharmonic horizontal
friction has multiple persistent flow patterns (i.e., pre-
ferred states) distinguished by their energy level and
gyre shape (McCalpin and Haidvogel 1997). Transitions
between these states are responsible for the LF vari-
ability. The high-energy state is associated with deep
eastward penetration and weak meandering of the east-
ward jet. The low-energy state is associated with de-
struction of the jet and an intense generation of meso-
scale eddies. It corresponds to the weakly unstable
steady state of the system (Primeau 1998).

The lateral boundary condition influence is examined
in Haidvogel et al. (1992). In this case, a 3-layer ocean
is damped by both lateral and bottom friction, and the
wall boundary condition is partial-slip governed by a
parameter a. The limit a → 0 corresponds to free-slip
and a → ` to no-slip condition. The time-mean flow
changes significantly when a is increased. The sepa-
ration points of the western boundary currents retreat
in the subpolar and subtropical gyres (yielding two dis-
tinct eastward jets), the energy decreases significantly,
and bottom dissipation is replaced by lateral friction as
the main kinetic energy dissipator.

The most unstable eigenmodes near the primary bi-
furcation of the symmetric, 1.5-layer, partial-slip (a 5
1), QG double gyre are of two types. One type, with an
intermonthly period, is related to the resting-state basin
modes in inviscid linear theory. The other type, with an
interannual period, is associated with destabilization of
the recirculations. The analogous eigenmode pair from
the 2-layer model has a nearly annual period. The in-
stability type for these modes is essentially baroclinic
(Dijkstra and Katsman 1999, hereafter DK).

The dynamics of a single gyre is qualitatively similar
to a double gyre. The mapping of the steady states, the
stability, and the low-dimensional time-dependent be-
havior are analyzed in Sheremet et al. (1997) and Mea-
cham and Berloff (1997a,b) for the barotropic model
and in Berloff and Meacham (1997, 1998; hereafter
BM1, BM2) for the 1.5- and 2-layer models. For a wide
range of parameters, the large-time asymptotic regimes
of the circulation correspond to low-dimensional at-
tractors in the phase space. The typical low-dimensional
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attractors are fixed points (steady states), limit cycles
(periodic), tori (quasiperiodic), and strange attractors
(chaotic). The generic bifurcation sequences consist of
successive Hopf bifurcations with occasional period
doublings. Multiple attractor branches are also found.
The bifurcations are due to internal instabilities of the
flow and may be of several types, including modes
trapped in the vicinity of boundary currents, recircu-
lations, and meanders. Also, there are modes resonant
with the resting-state basin modes.

The evolution of the chaotic attractor at larger Re is
not yet understood. On the one hand, the attractor di-
mension has a tendency to grow as Re increases, but
reverse bifurcations occasionally reduce the dimension
(BM1, BM2). Also, the number of attractors increases
with Re (BM2). Therefore, it seems that the evolution
of any attractors at high Re is a very complex process
that may be almost intractable in a mathematically rig-
orous way. The key mathematical issue here is to reduce
the initial large-dimensional model to a finite set of
ODEs completely describing the motion on an inertial
manifold (e.g., Constantin et al. 1989), but this seems
to be very difficult. Another problem arises when the
dimension is too large; identifying such an attractor re-
quires very extensive computing (to our knowledge the
largest reliable dimension estimate of 12 is in Guck-
enheimer and Buzyna 1983). For these reasons we will
follow a more descriptive, experimental path in our anal-
yses below.

The horizontal and vertical resolution sensitivity of
the free-slip, QG model is such that the fine resolution
increases the eastward jet penetration, downward eddy
momentum flux, eddy energy, and time-mean eddy flux-
es (i.e., rectification). The intermediate baroclinic modes
(the second and third), despite their low kinetic energy
level, are strongly involved in the eddy energy fluxes.
However, the contribution from higher modes is neg-
ligible so the vertical resolution may be limited to a
small number of modes (Barnier et al. 1991). In our
solutions we increase the horizontal resolution with Re
but hold the vertical resolution fixed at 1.5- and 2-layers.
Also, for each solution we check that it does not change
qualitatively when the number of grid points is doubled
in each direction.

c. Models

The QG potential vorticity equations (Pedlosky 1987)
are solved in a square basin with size L. The equations
for N active layers are

]z ]c di i i,1 41 J(c , z ) 1 b 5 = 3 t 1 n¹ c , (1)i i i]t ]x r H1 1

where di,j 5 1, if i 5 j, and di,j 5 0, if i ± j, and i is
the layer index starting from the top. The friction is only
horizontal with n the eddy viscosity. The wind forcing

di,1 = 3 t
r H1 1

acts only in the upper layer (all other layers are driven
by pressure forces associated with time-dependent per-
turbations). The wind stress is zonal and has a two-gyre
structure with an asymmetric component controlled by
the parameter l:

2py py
t (y) 5 t cos 1 l sin . (2)0 1 2 1 2[ ]L L

The parameter values are the following: the basin size
is L 5 3840 km; the midbasin Coriolis parameter is f 0

5 0.83 3 1024 s21 with meridional gradient b 5 2 3
10211 m21 s21; the layer depths are H1 5 300 m and H2

5 3700 m; and t 0 5 0.05 N m22. We define the Rey-
nolds number

UL
Re 5 ,

n

where U 5 t 0(r1H1Lb)21 is the velocity scale from the
Sverdrup balance. Other important nondimensional pa-
rameters are the viscous (Munk) length scale

1/3
n

d 5M 1 2b

and the inertial length scale

1/2U
d 5 .I 1 2b

We vary n from 400 to 1600 m2 s21, while keeping t 0

constant. This corresponds to dM varying from 27.1 to
43.1 km, and dI fixed at 10.85 km. The Reynolds number
Re varies from 5.2 to 20.8.

Potential vorticity anomalies zi are connected with ci

through coupled elliptic equations

¹2ci 2 (1 2 di,1)Si,1(ci 2 ci21) 2 (1 2 di,N)Si,2(ci 2 ci11)

5 z i, (3)

where

21(r 2 r )i i212S 5 f H g ,i,1 0 i1 2r1

21(r 2 r )i11 i2S 5 f H gi,2 0 i1 2r1

are the stratification parameters and ri is the fluid density
in the ith layer. The stratification is such that the bar-
oclinic deformation radius for the 2-layer approxima-
tion, defined as

(r 2 r ) 1 S H2 1 1,2 1R 5 g ,d ! !r f S 1 S1 0 1,2 2,1

is 52 km in most cases, with modest explorations in the
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TABLE 1. 1.5-layer model runs with asymmetric (l 5 2) forcing.

n Character I (%) Comments (days)

1600
1400
1100

800
600
400

Steady state
Limit cycle
Quasiperiodic
Chaotic
Chaotic
Chaotic

0.0
51.3
36.7
55.9
44.4

PM (221)
PM (200), SM (1400)
BB (ø270); collection of spikes at LF
BB (ø310); power build-up at LF
BB (ø420); power build-up at LF

range of 40 to 65 km. The lateral boundary conditions
are of no normal flow,

ci|C 5 Gi(t), (4)

and no-slip,

]ci 5 0. (5))]n C

The mass conservation constraint for each layer
(McWilliams 1977) is

]
c (x, y) dx dy 5 0. (6)EE i]t A

Here C is the bounding contour of the basin with area
A. The governing equations (1), (2) were solved in di-
mensional form (SI units). The equations (1) are dis-
cretized using second-order finite differences on a un-
iform grid and are solved numerically using the bound-
ary conditions (4)–(5) and the mass constraint (6). The
elliptic problem (3) is solved by a direct method. The
numerical model described here is similar to that used
by Holland (1978). We vary the grid resolution with n
so that the viscous scale dM is adequately resolved, and
the system of the governing equations (1) is well ap-
proximated.

We solve the equations (1) in 1.5- and 2-layer con-
figurations. In the former case, the deep layer is assumed
to be infinitely deep and resting; therefore, the circu-
lation contains only the first-baroclinic vertical mode.
In the latter case, both the barotropic and the first-bar-
oclinic modes are present. The convergence of solutions
with increased vertical resolution is an important issue,
but we do not attempt to resolve it here.

2. Asymmetric forcing

a. The 1.5-layer model

We choose l 5 2, which implies a much greater
degree of asymmetry than in McCalpin and Haidvogel
(1997). Using several values of n, we perform the six
runs listed in Table 1. There the solution behavior is
described using the following abbreviations: PM—pri-
mary mode, SM—secondary mode, and BB—broad
band of a power spectrum. The corresponding time-
scales (in days) are shown in brackets. The frequency
content of the spectrum is partitioned into three bands:
v , 0.58 yr21 (interannual band, I, with periods longer

than 630 days), 0.58 yr21 # v # 1.74 yr21 (quasi-annual
band, Q, with periods between 210 and 630 days), and
1.74 yr21 , v (mesoscale band, M, with periods shorter
than 210 days). The grid resolution is 15 km for n 5
600 and 400 m2 s21. It is 30 km for other values of n.
The model is integrated forward in time until the so-
lution converges to an attractor. Each attractor is iden-
tified from the total energy density time series,

21 H |=c |i iE(t) 5 OEEA H 2i51,2A

S H 1 S H1,2 1 2,1 2 21 (c 2 c ) dx dy, (7)1 24(H 1 H )1 2

as in BM1.
The stable steady state is found for n 5 1600 m2 s21.

For n, between 1400 and 1600 m2 s21, the circulation
loses stability due to the primary Hopf bifurcation (e.g.,
DK). The bifurcation destabilizes the steady state, and
the limit cycle appears.

1) NONCHAOTIC ATTRACTORS

We find a periodic solution at n 5 1400 m2 s21. The
time-mean ^c1& of this solution (Fig. 1a) consists of a
weak subpolar and strong subtropical gyre. The mean
flow contains the inertial recirculation and to the east
of it is the spatially decaying oscillation (Cessi 1991).
The oscillation has a period of 221 days, with strong
disturbances in the northwestern part of the subtropical
gyre and weak westward propagating waves in the in-
terior of the basin. Following BM1, we iteratively educe
the most unstable eigenmode of a slightly supercritical
steady state. The fluctuating circulation pattern associ-
ated with the limit cycle resembles the most unstable
linear eigenmode of the nearby unstable steady state
(Speich et al. 1995; Sheremet et al. 1997). This pattern
occurs because the growing eigenmode’s amplitude sat-
urates by nonlinearity. The energy conversion density,
P(x, y) (see appendix B), is mostly confined to the stand-
ing wave region and the adjacent recirculation zone
(BM1).

The interior wave may be compared with inviscid
linear basin modes of the resting fluid (Pedlosky 1987)
that are governed by the dispersion relationship

2 1/224p L
2 2T 5 m 1 n 1 , m 5 1, 2, 3, · · · ;1 1 2 2bL pRd

n 5 1, 2, 3, · · · . (8)
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FIG. 1. The time-mean 1.5-layer circulation with l 5 2 (CI 5 5 3
103): (a) n 5 1400 m2 s21, (b) n 5 400 m2 s21.

FIG. 2. The EOF pair representation of the periodic solution for
1.5-layers, l 5 2, and n 5 1400 m2 s21. Modes (a) and (b) have
53% and 46% of the variance, respectively (CI 5 0.02).

The basin mode with m 5 8 and n 5 1 (fit to the interior
wave pattern) has the period of 148 days, which is sub-
stantially shorter than that of the limit cycle. On the
other hand, the basin mode with period of the limit cycle
has a rather small spatial scale and, therefore, is sub-
stantially damped by friction. Thus, we conclude that
the interior wave pattern is not a basin mode. In contrast,
a destabilized basin mode does occur in smaller basins
(e.g., Sheremet et al. 1997; Meacham and Berloff
1997b; and DK). On the other hand, unbounded linear
baroclinic Rossby wave governed by the dispersion re-
lationship

2p
2 2 22T 5 (k 1 k 1 Rd ) (9)x ybkx

has the period of 229 days for kx 5 8p/L and ky 5 p/L,
which is only slightly smaller than that of the limit cycle.
Our interpretation of this is that the Rossby wave prop-
agation mechanism is relevant to the dynamics of the

limit cycle, although it is not essential to its occurrence
or its spatial pattern.

We perform an EOF analysis (see appendix A) for
the limit cycle after bandpassing the solution around the
dominant period of T 5 221 days (the bandpassing re-
moves nonlinearly generated superharmonics). This de-
composes the periodic fluctuation into two spatial modes
with periodic temporal coefficients (Fig. 2), with vari-
ances of 53% and 46%, respectively. The temporal co-
efficients are in quadrature, with the first one leading
the second by about 60 days. Thus, this EOF pair is a
compact and convenient representation of the periodic
propagating pattern of the limit cycle.

The circulation converges to quasiperiodic motion on
a torus at n 5 1100 m2 s21. The energy spectrum (Fig.
3a) has two dominant spikes: one at about 200 days (v
5 1.82 yr21), which can be traced to the primary Hopf
bifurcation, and the other at about 1400 days (v 5 0.26
yr21). The rest of the power is in the cross-harmonics
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FIG. 3. Energy spectra for 1.5-layer solutions with l 5 2: (a) n 5 1100 m2 s21, (b) n 5
800 m2 s21, and (c) n 5 400 m2 s21.

and superharmonics of the dominant spikes. The second
spike appears due to the internal instability and con-
sequent Hopf bifurcation of the limit cycle. The sec-
ondary bifurcation mode may be a second unstable lin-
ear eigenmode of the underlying steady or time-average
state (e.g., as in DK).

We also bandpass the solution around the secondary
bifurcation frequency and decompose it in EOFs; the
leading EOF pair is an approximation to the secondary
bifurcation mode (Fig. 4). These EOFs contain 74% and

23% of the variance and are in quadrature with a time
lag of about 700 days. This secondary mode has a fluc-
tuation envelope surrounding the standing Rossby wave,
with westward propagation within the envelope. In con-
trast to the primary mode, there is no Rossby wave
pattern in the basin interior. This is because an un-
bounded linear baroclinic Rossby wave relation (11),
with a 1400-day period, has one solution with the wave-
length larger than L, which is too large a scale to res-
onate with the local instability pattern around the stand-
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FIG. 4. EOF pair representing the secondary bifurcation mode for
1.5-layers, l 5 2, and n 5 1100 m2 s21. Modes (a) and (b) have
73% and 23% of the variance, respectively (CI 5 0.02).

ing wave, and the other solution with very short scale,
which is therefore damped by friction. Furthermore, a
basin mode with an interannual period has too short a
length scale and is strongly damped by friction as well.

2) CIRCULATION AT HIGH RE

At n 5 800, 600, and 400 m2 s21, we see chaotic
fluctuations with presumably large attractor dimension.
The energy spectrum at n 5 800 m2 s21 (Fig. 3b) is
dominated by a set of intermonthly spikes around v ø
1.34 yr21 and by a few spikes at lower frequencies; the
partition among bands is I 5 37%, Q 5 42%, and M
5 21%. The spectrum at n 5 600 m2 s21 is qualitatively
similar, but the power shifts to the interannual band: I
5 56%, Q 5 35%, and M 5 9%. A similar buildup of
LF power occurs in 3-layer double-gyre (Haidvogel et
al. 1992) and 1.5-layer single-gyre (BM1) models.

In the time-average circulation at n 5 400 m2 s21

(Fig. 1b), the main meander is weaker than at n 5 1100
m2 s21 (Fig. 1a) and the currents are wider. The energy
spectrum is characterized by a single, broad, dominant
peak at v ø 0.87 yr21 (a period of 420 days). This
Q-band peak occurs around the same frequency in both
the kinetic energy (KE) and the potential energy (PE)
spectra, (unlike the 2-layer case; see section 2b). The
power in the I band is mainly due to the PE contribution,
with its maximum near v ø 0.06 yr21.

For the energy time series, we calculate the relative
rms,

2Ï^(E 2 ^E&) &
D 5 , (10a)

^E&

skewness,
3^(E 2 ^E&) &

S 5 , (10b)
2 3/2^(E 2 ^E&) &

and flatness,
4^(E 2 ^E&) &

K 5 2 3, (10c)
2 2^(E 2 ^E&) &

and compare the latter two with the corresponding mo-
ments of a normal (Gaussian) distribution (i.e., zero for
each). The values at n 5 400 m2 s21 are D 5 0.052, S
5 0.11, and K 5 20.27, which are not far from normal.
Thus, this LF variability is not intermittent.

At n 5 400 m2 s21, we make an EOF decomposition
for both the I band (v , 0.58 yr21) and the peak in the
Q band (0.70 , v , 1.0 yr21). In both cases EOFs
have a spatial scale larger than that of the early bifur-
cation modes. The leading pair of lowpass EOFs (Fig.
5) has variance fractions of 28% and 20%. These EOFs
have anomalies corresponding to either intensification
or meridional displacement of the eastward current and
its recirculation zones. The time-lag correlation between
the EOF coefficients has a rather weak maximum (about
0.2), and it corresponds to a cyclonic rotation of anom-
alies. The third and fourth EOFs are qualitatively similar
to the leading pair and together contain an additional
22% of the total variance.

The temporal coefficients of the leading pair of
Q-band EOFs (Fig. 6) have a strong quadrature relation
(unlike the I-band EOF pair) and contain more than half
of the total energy. The anomalies are near the eastward
jet, suggesting that the quasi-annual variability may be
associated with local instabilities in this region. Com-
pared to the primary bifurcation mode, this EOF pair
has larger horizontal and temporal scales. This is con-
sistent with the fact that the eastward jet has a larger
scale and presumably supports larger-scale instabilities.
An important question is whether it is possible to follow
a continuous evolution of an early bifurcation mode
from low to high Re. From the preceding evidence, it
seems plausible that the quasi-annual pattern at n 5 400
m2 s21 and the primary bifurcation mode are dynami-
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FIG. 5. EOFs for the low-passed solution with 1.5-layers, l 5 2,
and n 5 400 m2 s21. The leading modes (a) and (b) have 28% and
20% of the variance, respectively (CI 5 0.02).

FIG. 6. As in Fig. 5 except for the bandpassed solution. Modes (a)
and (b) have 29% and 24% of the variance, respectively (CI 5 0.02).

cally related. The third EOF (with 11% of the variance)
is similar to the I-band spatial pattern, and it may be
due to a significant nonlinear interaction between the I
and Q bands.

We explore the dependence of the circulation at n 5
400 m2 s21 on the baroclinic deformation radius using
alternative values Rd 5 65 and 40 km. These solutions
are qualitatively similar to the standard one with the
major differences in the quasi-annual band. When Rd 5
65 km the dominant quasi-annual frequency increases
by 67%, and with Rd 5 40 km it decreases by 47%,
suggesting that the frequency is approximately propor-
tional to . This is in agreement with the fact that the2Rd

characteristic frequency of large-scale Rossby waves is
proportional to .2Rd

b. The 2-layer model
We perform six runs with l 5 2 and several values

of n (Table 2). The grid resolution is 15 km for n 5

600 and 400 m2 s21, and 30 km for the larger values.
Because there is no interfacial friction in the model and
because the wind stress acts only on the upper layer,
the 2-layer steady states have the lower layer at rest.
These steady states are equivalent to the 1.5-layer steady
states. However, the stability thresholds are different for
the 1.5- and 2-layer gyres; there are previous examples
when the 2-layer gyre is less stable (DK, BM2), and it
is also true here. We find a stable steady state at 1500
m2 s21 and a limit cycle at n 5 1400 m2 s21, which
suggests the primary Hopf bifurcation occurs at a ncr

between these values.

1) NONCHAOTIC ATTRACTORS

The time-mean of the periodic solution at 1400 m2

s21 is very similar to Fig. 1a in the upper layer, and in
the lower layer it has a weak cyclonic recirculation un-
der the main standing meander and several weaker an-
ticyclonic recirculations near the western boundary. The
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TABLE 2. 2-layer model runs with asymmetric (l 5 2) forcing.

n Character I (%) Comments (days)

1500
1400
1300
1100

800
600
400

Steady state
Limit cycle
Quasiperiodic
Chaotic
Chaotic
Chaotic
Chaotic

0.0
50.9
18.2
57.4
67.0
77.8

PM (195)
PM (185), SM (630)
BB (ø300); low energy events
BB in KE (ø570); BB in PE (ø1050)
Collection of spikes in KE (,160); PE shows BB at LF
BB (from 200 to 400); interannual peaks; BB at LF

limit cycle period is 195 days, which is smaller than
that in the 1.5-layer case (section 2a). Here P accounts
for about 80% of the energy exchange, suggesting a
primarily but not purely barotropic instability. This is
different from the essentially baroclinic instabilities re-
ported in BM2 and DK. The differences may be due to
smaller basins in both of these cases and to the partial-
slip boundary condition in DK. The spatial distribution
of P and R is concentrated near the main standing me-
ander and the southern part of the recirculation. The
upper-layer periodic pattern resembles that in the 1.5-
layer model. This suggests that both models behave sim-
ilarly in the vicinity of the primary bifurcation. The
lower-layer fluctuations are relatively weak and con-
fined to near the western boundary.

The secondary bifurcation modes have rather differ-
ent periods in the 1.5- and 2-layer models. The total
energy spectrum (Fig. 7a) of quasiperiodic motion at n
5 1300 m2 s21 demonstrates the secondary bifurcation
mode frequency at about 0.58 yr21, or a period of about
630 days. This period is slightly more than two times
shorter than in the 1.5-layer model. A period-doubling
bifurcation at some critical value for the depth ratio gcr

between zero (the 1.5-layer case) and 3/37 (the 2-layer
case) may be responsible for this difference (BM2). The
dominant frequency of the primary bifurcation mode at
n 5 1300 m2 s21 is 1.97 yr21 (period of 185 days),
which is slightly larger than that at n 5 1400 m2 s21.
We filter the quasiperiodic solution around the second-
ary frequency and find that the pair of leading EOFs
contains about 99% of the total variance. The EOF pat-
terns have an upper-layer structure similar to that found
in the 1.5-layer solution (Fig. 4). They also have a lower-
layer structure of weak westward propagating anomalies
in the western part of the basin. The horizontal scale of
the anomalies is similar to the scale of the main meander.
Barotropic basin modes with the dispersion relationship

24p
2 2 1/2T 5 (m 1 n ) ; m 5 1, 2, 3 · · · ;

bL

n 5 1, 2, 3 · · · , (11)

and linear barotropic unbounded Rossby waves gov-
erned by

2p
2 2T 5 (k 1 k ) (12)x ybkx

(Pedlosky 1987) are not related to the secondary mode
because for periods close to 630 days they either have
too short a wavelength and are damped by friction, or
they have a wavelength larger than L.

2) BEHAVIOR AT LARGER RE

At higher Re, the dynamics of the 2-layer flow de-
viates more substantially from the 1.5-layer one. The
total energy time series at n 5 1100 m2 s21 exhibits
aperiodic, low-energy events in addition to a statistically
stationary background variability. These low-energy
events are responsible for some concentration of the
power at interannual frequencies (Fig. 7b). The domi-
nant frequency of the background variability is v 5
1.22 yr21 (period of 300 days). This is 1.5 times smaller
than the primary bifurcation mode frequency of the 1.5-
layer flow at the same value of n, and its spatial pattern
is no longer close to that of primary bifurcation mode,
even though the spectrum still exhibits a sharp peak and
the viscosity is not much smaller.

In the energy spectrum at n 5 800 m2 s21 (Fig. 7c),
most of the KE is in the mesoscale band, and most of
the PE is in the interannual band. This spectral segre-
gation between KE and PE spectra does not occur in
the 1.5-layer model and in the early bifurcations of the
2-layer circulation. The EOF analysis of the solution
filtered around the spectrum peak at v 5 0.38 yr21

shows a spatial pattern concentrated around the main
meander. In the solutions at n 5 600 and 400 m2 s21

(Fig. 7d), most of the KE still belongs to the quasi-
annual and mesoscale bands, although it progressively
leaks to the interannual band with increasing Re. The
PE concentration in the interannual band continues to
increase with Re. The total energy partition at n 5 400
m2 s21 is I 5 80.5%, Q 5 17.2%, and M 5 2.3%. The
low-order moments (10) of the energy time series are
D 5 0.042 (slightly smaller than in the 1.5-layer case),
S 5 20.25 (indicating more distinctive low-energy
events), and K 5 2.90 (indicating substantial intermit-
tency).

Compared with the 1.5-layer model, the time-mean
circulation at n 5 400 m2 s21 (Fig. 8) shows the sep-
aration point of the eastward jet retreating southward to
approximately the middle of the basin, with the eastward
jet becoming more intense and narrow and penetrating
farther to the east. The time-mean lower layer flow
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FIG. 7. Energy spectra for 2-layer solutions with l 5 2: (a) n 5 1300 m2 s21, (b) n 5
1100 m2 s21, (c) n 5 800 m2 s21, and (d) n 5 400 m2 s21. In the legends I, Q, and M denote
the relative power in the interannual, quasi-annual, and mesoscale frequency bands, respec-
tively.

shows a standing vortex street, as in Verron and Le
Provost (1991). The instantaneous patterns of the flow
show strong meandering of the eastward jet and sub-
sequent shedding of rings, as well as generation of bar-
oclinic eddies in the return flow (Holland 1978). The
southward retreat of the separation point suggests that
the generation of potential vorticity by the wind is bal-
anced to a lesser extent by the potential vorticity flux

from the western boundary and to a greater extent by
fluid exchange across the eastward jet. The energy di-
agram of the circulation (Fig. 9) shows that more energy
goes to fluctuations rather than dissipates by the time-
mean field. It also shows that the barotropic P and bar-
oclinic R conversion rates (appendix B) have approxi-
mately equal values integrated over the basin.

We lowpass (i.e., for v , 0.58 yr21) filter the solution
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FIG. 8. The 2-layer, time-mean circulation with l 5 2 and n 5
400 m2 s21: (a) ^c1& (CI 5 10 3 103), (b) ^c2& (CI 5 103).

FIG. 9. Energy diagram for the 2-layer solution with l 5 2 and n
5 400 m2 s21.

with n 5 400 m2 s21 and perform an EOF analysis. The
EOFs show that the most substantial variability occurs
around the eastward jet, with weaker variability near
the western boundary. The leading pair of EOFs (Fig.
10) contains 29% of the variance in the first mode and
19% in the second. Both EOFs have anomalies in the
upper layer aligned parallel to the eastward jet. The first
function corresponds to north–south shifting of the jet
from its mean position. The second function represents
strengthening and weakening of the jet and the asso-
ciated countercurrents to the north and south of it: when
the jet accelerates, the countercurrents become stronger.
From the time series of the first and second EOF am-
plitudes (Fig. 11), we find that the first EOF leads by
about 600 days, with a maximum time-lag correlation
of 0.3.

We highpass (v . 0.58 yr21) filter the same solution
in order to compare the combined quasi-annual and me-
soscale variability with the interannual variability. The

leading EOFs of the highpass fields (Fig. 12) are qual-
itatively similar to the quasi-annual 1.5-layer model
EOFs (Fig. 6), although the associated horizontal scale
is smaller here. The overall variability pattern seems to
be related to local mesoscale instabilities of the eastward
jet, rather than to the global changes associated with
amplifications and shifts of the jet axis. The maximum
time-lag correlations between pairs of the four leading
EOFs range from 0.2 to 0.4, suggesting appreciable dy-
namical coupling among all of them.

How are the dynamics different during different phas-
es of the low-frequency variability? We now examine
four states corresponding to maxima and minima for
each of the first and second lowpass EOFs. The system
is defined to be in a high (low) state when the corre-
sponding EOF amplitude is larger (smaller) than the
mean-squared deviation of its time series. Conditional
averages and corresponding energy balances are cal-
culated for each of these states. When the eastward jet
is shifted northward, the first EOF amplitude is positive.
When the eastward jet is shifted southward, the first
EOF amplitude is negative. The northern (Fig. 13a) and
southern (Fig. 13b) states have qualitatively similar en-
ergy balances, characterized by moderate conversion
rates with a dominant baroclinic conversion. In contrast,
fluctuations associated with the second EOF change the
energy balances quite substantially. When the eastward
jet is short (i.e., the second EOF has large positive val-
ues), the energy conversions (Fig. 13c) are the largest,
and the barotropic conversion BT dominates the baro-
clinic conversion BCL. In this state, the mean circula-
tion is the weakest, and perturbations are the most en-
ergetic. When the eastward jet is long, the energy con-
version magnitude is moderate with a strong dominance
by the baroclinic conversion. In this state, the mean
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FIG. 10. EOF representation of the low-passed 2-layer solution with l 5 2 and n 5 400 m2 s21. The first
and second EOFs have 29% and 19% of the total variance, respectively. (a) and (b) EOF1 in upper and lower
layers [(a) CI 5 0.02; (b) CI 5 0.004]; (c) and (d) EOF2 in upper and lower layers [(c) CI 5 0.02; (d) CI
5 0.004].

circulation is the strongest, and perturbations are the
least energetic.

The total energy conversion density due to the con-
tribution by baroclinic conversion R (not shown) has
negative values along the eastward extension of the east-
ward jet, suggesting that the jet is maintained, both in
the full time-mean and in the low-frequency variability
states, by the isopycnal form stresses associated with
shed eddies with a locally negative eddy-diffusivity be-
havior (i.e., the vector dot product of the horizontal eddy
buoyancy flux with the mean horizontal buoyancy gra-
dient is positive).1 This relation between the eddies and

1 We believe that this is a robust behavior for the offshore extension
of the eastward jet in ocean gyres. An example of similar behavior
can be seen in the left-hand panels of Fig. 12 in McWilliams et al.
(1990), for a different set of gyre solutions, although it is obscured
by a previously unnoticed—hence undeclared—sign error in these
two panels.

the mean flow in the offshore end of the eastward jet
(i.e., negative R) is contrary to the famous example of
negative eddy-viscosity behavior associated with the
horizontal Reynolds stresses in the core of a broad, bar-
oclinically unstable eastward jet, like the atmospheric
jet stream (Holton 1992) and the Antarctic Circumpolar
Current (McWilliams and Chow 1981), where R is pos-
itive and P is negative. However, we checked that the
primary contribution to R , 0 in this region arises from
the rotational component of the eddy buoyancy flux

^[ 1 1 1 )]( 2 )&,2x(c9 c9 ) y(c9 c9 c9 c91y 2y 1x 2x 1 2

rather than from the divergent component (e.g., Mar-
shall and Shutts 1981). Therefore, it is perhaps more
appropriate to interpret R here as the divergence of a
baroclinic eddy transport of mean energy—a spatial re-
arrangement—rather than as a locally negative eddy dif-
fusivity of mean buoyancy—a reverse generation of
eddy energy.
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FIG. 11. EOF time series for the the modes in Fig. 10.

Fixing n 5 400 m2 s21, we explore Rd 5 65 and 40
km. In the former case, the flow behavior shows no
significant qualitative changes in comparison with Rd 5
52 km, except the spectral power shifts toward higher
frequencies (I 5 53.0%, Q 5 35.2%, and M 5 11.8%);
this shift is similar to that in the 1.5-layer model. With
Rd 5 40 we find some qualitative changes in the flow
associated with the local instability in the western
boundary current of the subtropical gyre. The instability
bursts irregularly on the interannual timescale and re-
sults in an intense meandering of the western boundary
current, a subsequent weakening of the eastward jet,
and a substantial decrease of the flow energy. The global
influences of local western boundary current instability
are a subject of another paper (Berloff and McWilliams
1999).

3. Symmetric forcing

a. The 1.5-layer model

The symmetric (l 5 0) 1.5-layer problem has been
more extensively investigated than the others we discuss
in this paper. Here we calculate the seven solutions sum-
marized in Table 3. The grid resolution is 15 km. A
symmetric steady state is found at n 5 1400 m2 s21,
and a pair of nonsymmetric steady states is found at n
5 1200 m2 s21; the latter arise by a pitchfork bifurcation
(Cessi and Ierley 1995; Speich et al. 1995) at some
intermediate ncr .

1) NONCHAOTIC ATTRACTORS

Each nonsymmetric steady state has recirculations
trapped near the western boundary and separated by the
eastward jet, and each state loses stability via Hopf bi-
furcation at another ncr somewhat lower than 1200 m2

s21. We find a periodic solution corresponding to the
northern state (the eastward jet is shifted to the north)
at n 5 1100 m2 s21. It has a period of 236 days and a
small amplitude (0.2% of the total energy). The periodic
solution is similar to the most unstable eigenmode of
the associated steady state that is centered around the
jet and recirculations but also has a propagating Rossby
wave pattern in the basin interior (Jiang et al. 1995).

At n 5 1000 m2 s21 the circulation corresponds to
phase-locked (PL) motion on a torus, due to a secondary
Hopf bifurcation at some ncr between 1000 and 1100
m2 s21 (e.g., BM1). The phase-locking frequency ratio
is 1/8, so the secondary mode has a dominant frequency
of v 5 0.197 yr21 (period of 1850 days). The total
energy spectrum (Fig. 14) has a comblike shape due to
nonlinear interactions involving the primary and sec-
ondary modes (frequency differences between the
neighboring peaks are equal to the secondary mode fre-
quency), and it shows that most of the power (due to
the PE contribution) is concentrated in the secondary
mode. The difference in power between the primary and
secondary modes is not observed in the asymmetric so-
lutions above. We filter the PL solution around the sec-
ondary frequency and decompose it in the pair of EOFs



1938 VOLUME 29J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 12. The upper-layer patterns of the four leading EOFs [in (a)–(d)] for the high-passed, 2-layer solution
with l 5 2 and n 5 400 m2 s21. The fractional variances are 24%, 18%, 13%, and 10%, respectively (CI 5
0.05).

(Fig. 15). The EOFs have anomalies at the recirculation
zone and decay away from it. In comparison with the
asymmetric secondary bifurcation mode (Fig. 4), the
EOFs correspond to a relatively large-scale spatial pat-
tern that is consistent with the dominance of PE in the
secondary bifurcation mode.

2) BEHAVIOR AT LARGER RE

The circulations are qualitatively similar at n 5 800
and 700 m2 s21. The energy time series at n 5 700 m2

s21 (Fig. 16a) has its maximum spectral power at 0.215
yr21 (period of 1700 days). The spectral maximum can
plausibly be traced to the secondary bifurcation mode
at lower Re. The primary mode has some remnants in
the spectra as a weak and broad intermonthly band
around v 5 2.03 yr21. Thus, the temporal behavior is
primarily interannual with small intermonthly fluctua-
tions.

The circulation changes substantially when n is re-

duced to 600 m2 s21. The recirculation zones (or the
recirculating dipole) become very intense and diverge
from the wall-trapped state at lower Re. The energy time
series (Fig. 16b) shows very strong and aperiodic os-
cillations with most of the spectral power contained in
interannual and longer timescales (e.g., McCalpin and
Haidvogel 1997). The time series from Fig. 16b has its
greatest spectral power at about 30 yr. Due to the finite
solution integration length (400 yr), we are uncertain
whether the spectrum has its maximum power at a small
but finite frequency, or whether rare strong events push
the maximum to smaller frequencies over longer inter-
vals.

In spite of the strong aperiodicity the spatial structure
of the flow during one temporal cycle is robust. The
sequence of instantaneous c1 fields during a cycle is
shown in Fig. 17. The high energy state of the flow
(panel 1) contains a very intense recirculation dipole in
one of the two nonsymmetric states identical through
the mirror symmetry transformation: y → 2y, c1 →
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FIG. 13. Energy diagrams for the 2-layer solution with l 5 2 and n 5 400 m2 s21, based on conditional averages when the
eastward jet is shifted to the north (a) or south (b), or when the eastward jet is relatively short (c) or long (d).

TABLE 3. 1.5-layer model runs with asymmetric (l 5 2) forcing.

n Character I (%) Comments (days)

1400
1200
1100
1000

800
700
600

Steady state
Steady state
Limit cycle
Phase locking
Chaotic
Chaotic
Chaotic

0.0
99.4
98.5
98.5
99.9

Symmetric
Nonsymmetric
PM (236), small amplitude
Ratio: ⅛, SM (1850)
BB (ø2100)
BB (ø2100)
Very strong and aperiodic interdecadal oscillations

2c1. This state persists for an uncertain period from a
few years to a decade or so. During this time the degree
of asymmetry in the dipole grows very slowly (panel
2). Then, during a few more years, the system experi-
ences a dramatic change (panels 3–5) associated with

the complete destruction of the dipole and the appear-
ance of several eddies in its place. After that, the cir-
culation reaches its energy minimum, and a new dipole
begins to develop (panel 6). The dipole grows into either
one of the two nonsymmetric states and the cycle re-
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FIG. 14. Energy spectrum for 1.5-layer solution with l 5 0 and n 5 1000 m2 s21.

FIG. 15. EOF representation of the secondary bifurcation mode of
the 1.5-layer solution with l 5 0 and n 5 1000 m2 s21 (CI 5 0.02).

peats. The switching between the states can be illus-
trated by following the flow separation points at the
western boundary (Fig. 18). The separation point is as-
sociated with the vorticity changing sign at the wall
(located by linear interpolation). Transitions between the
nonsymmetric states occur on an interdecadal timescale.

How relevant are the primary and secondary bifur-
cation modes at large Re? It is possible that the sec-
ondary bifurcation mode transforms into the aperiodic
wall-trapped oscillations at n 5 700 m2 s21 and then
further into the stronger and slower oscillations at n 5
600 m2 s21. Aspects of the behavior of the primary
bifurcation are still present at n 5 600 m2 s21 in the
form of weak noise (Fig. 16b), but this is dwarfed by
the dominant cycle of the dipole growth and destruction.

What is the physical mechanism governing the dipole
cycle? One possibility is that the dynamics is controlled
by the underlying unstable steady states of the flow
(Primeau 1998), that is, by the equilibrium (fixed) points
of the associated large-dimensional dynamical system.
In this case, the motion occurs on a chaotic attractor in
the vicinity of an orbit homoclinic2 (e.g., Drazin 1992)
to a fixed saddle point. The system approaches the fixed
point along the stable manifold (this would correspond
to the gradual amplification of the dipole), slows down
in the vicinity of the fixed point, and runs away along
the unstable manifold (e.g., Drazin 1992). We have not
yet calculated the unstable steady states here to test this
hypothesis.

What happens at higher Re? This is probably not
relevant for the following reason. The flow velocity in
the first panel of Fig. 17 reaches very large values of
0.7 m s21 in the western boundary currents and 1.3 m
s21 in the eastward jet. In a model permitting baroclinic
instability, such a flow would become unstable, and the
gyre dynamics would be substantially modified (see sec-
tion 3b). Nevertheless, for uniformity with other con-

2 A homoclinic orbit is an orbit connecting a saddle equilibrium
point with itself, approaching the point as t → 6`. A homoclinic
orbit corresponds to a solution of infinite ‘‘period.’’
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FIG. 16. Energy time series for 1.5-layer solution with l 5 0: (a) n 5 700 m2 s21 and (b)
n 5 600 m2 s21.

figurations, we run the model with n 5 400 m2 s21 (7.5-
km grid resolution) and find that the flow exhibits even
more unrealistically strong oscillations with an energy
fluctuation two times stronger than in Fig. 16b. The low-
order moments (10) of the energy time series yield a
very non-Gaussian distribution with several distinct pre-
ferred states similar to what is shown in McCalpin and
Haidvogel (1997). The relative deviation D 5 0.277 is
the largest found in our study.

Fixing n 5 600 m2 s21, we explore Rd 5 40 and 65
km. For Rd 5 40 km, the timescale of the dominant
cycle increases by about twice, perhaps because the cir-
culation stays closer to the underlying unstable steady
state. In contrast, no substantial changes are found with
Rd 5 65 km. All this suggests that in the symmetric
case the timescale of the dominant cycle has a different
dependence on Rd than that of large-scale Rossby waves
or local instability of the western boundary current.

b. The 2-layer model

1) NONCHAOTIC ATTRACTORS

We calculate the five solutions with l 5 0 listed in
Table 4. The grid resolution is 15 km. We find a non-
symmetric steady state (coinciding with the 1.5-layer

steady state) at n 5 1200 m2 s21. The flow experiences
two successive Hopf bifurcations at some ncr between
1200 and 1000 m2 s21, and there is quasiperiodic motion
at n 5 1000 m2 s21. The dominant frequencies and the
upper-layer spatial patterns of the primary and second-
ary bifurcation modes are similar to those of the 1.5-
layer model, and the lower-layer disturbances are rel-
atively weak.

2) BEHAVIOR AT LARGER RE

The behavior for n 5 800 m2 s21 is chaotic, but oth-
erwise the deviations from the 1.5-layer model are still
modest. However, at n 5 600 m2 s21, the 2-layer energy
time series (Fig. 19a) differs from the corresponding
1.5-layer series (Fig. 16b) in several ways. In the 2-layer
case the amplitudes of different cycles have similar val-
ues, the deviations from the time-mean are much small-
er, and the dominant timescale is much shorter (about
7 yr). Here the cycle comprises three distinct states. In
the first state (Fig. 20a), the flow energy is at minimum,
and there are one or two relatively weak eastward jets
with several eddies around them. The transition between
the first and second states takes about 2–5 yr, and when
the second state is reached (Fig. 20b) the energy is at
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FIG. 17. Instantaneous c1 fields during the dominant cycle in the 1.5-layer solution with l 5 0 and n 5
600 m2 s21 (CI 5 20 3 103).

maximum. In this state the recirculations in the upper
layer are well developed, but the lower-layer flow is
weak. During the transition between the second and
third states (1–2 yr), the northern and southern flanks
of the recirculations become baroclinically unstable and
the large-scale circulation loses energy. This behavior
is consistent with the fact that westward currents on the
b plane are, in general, less stable than the eastward

ones (Pedlosky 1987). The third, metastable state (Fig.
20c) contains mesoscale eddies generated on both flanks
of the recirculation zones. The temporal variability as-
sociated with the vortices appears as the high-frequency
noise (see Fig. 19a) imposed on the dominant oscilla-
tions. During the transition back to the first state (2–3
yr), the dipole collapses into several eddies. We find
that transitions from one mirror image to another are
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FIG. 18. Locations of the meridional separation point on the western boundary for the 1.5-layer solution
with l 5 0 and n 5 600 m2 s21.

TABLE 4. 2-layer model runs with asymmetric (l 5 2) forcing.

n Character I (%) Comments (days)

1200
1000

800
600

400

Steady state
Quasiperiodic
Chaotic
Chaotic

Chaotic

100.0
99.1
98.4

98.5

Nonsymmetric
PM (240), SM (5 years)
Wall-trapped dipole oscillations (ø3100)
Runaway dipole oscillations

(the timescale is twice shorter than with 1.5 layers)
BB (ø6300);

(LF growth is due to rare low-energy events)

very rare in the 2-layer situation (we see only a single
transition in a 300-yr integration).

When n is reduced to 400 m2 s21, the jet penetrates
to the middle of the basin and meanders weakly. There
are about 4–5 westward propagating eddies in each re-
circulation zone. The propagation periods are slightly
different for the streets and both are about 120 days. A
time-average of the state with the jet shifted to the south
(Fig. 21) contains a meridional sequence of four zonally
elongated recirculation cells in the lower layer (Verron
et al. 1987). The sequence is different from the deep
vortex street with l 5 2 (Fig. 8). The total energy time
series (Fig. 19b) shows infrequent events with partic-
ularly low energy. The energy minima correspond to
particularly strong destructions of the eastward jet (Fig.
20a) that may last for several years. During such events
the separated western boundary currents split into two
distinct eastward jets (as in the no-slip solutions in Haid-
vogel et al. 1992).

The energy time series has the low-order moments:
D 5 0.046, a particularly negative S 5 21.17 associated
with the increased probability of the anomalously low
energy events, and a relatively large K 5 2.08. A low-
pass (v , 0.58 yr21) EOF analysis has its first two
modes with 60% and 17% of the total variance. The
first EOF is symmetric with respect to the middle of the
basin (implying a north–south shift of the jet axis) and

the second one is antisymmetric. In this regard they are
qualitatively similar to the leading, low-pass EOF pair
with l 5 2 (Fig. 10); however, the l 5 0 solution has
a behavior with distinctive regime transitions, rather
than more continuous variations. Thus, its first EOF is
relatively more dominant. The largest time-lag corre-
lation between the EOFs here is rather small (about 0.1)
because the regime transitions occur very irregularly.

As in section 2b we calculate conditional energy bal-
ances in situations when the jet is in the northern (am-
plitude of the first EOF has positive values larger than
the mean-squared deviation from zero) or southern (neg-
ative values) states (Fig. 22a). These two states are en-
ergetically equivalent because of the meridional sym-
metry of the wind. The barotropic conversion BT dom-
inates; the ratio of the perturbation to the mean-flow
energy is about half that with l 5 2; and the energy
dissipates mainly through the mean flow. When the jet
is in either ‘‘short’’ (shown as a split-jet pattern in Fig.
22b) or ‘‘long’’ states (Fig. 22c), the baroclinic con-
version is close to zero, the mean circulation is weaker,
and the perturbations are stronger than the states with
meridional shifts in the jet position. Comparing the two
states, the ratio of mean to eddy energies is larger for
the long jet (as with l 5 2); however, we do not see a
strong baroclinic conversion dominance here for the
long jet (unlike with l 5 2). The eastward end of the
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FIG. 19. Energy time series for 2-layer solution with l 5 0: (a) n 5 600 m2 s21 and (b) n
5 400 m2 s21.

eastward jet is again a region of negative energy con-
version (i.e., negative eddy-diffusivity behavior) due to
the contribution from the baroclinic energy conversion
R(x, y).

The flow with n 5 400 m2 s21 is substantially sta-
bilized when Rd equals 65 km due to suppressed bar-
oclinic instability in the recirculation zones. Its energy
fluctuates by less than 3%, the flow is quasiperiodic
(with periods of 104 and 3500 days), the eastward jet
is persistent, and the flow in the lower layer is weaker.
With Rd 5 40 km, the eastward jet fluctuates between
the two preferred states, one of which corresponds to
the low-energy state and a long eastward jet and the
other to the high-energy state and a short jet. The time-
scale of the fluctuations is about 3500 days. The main
difference from Rd 5 52 km is that the jet is never
completely destroyed.

4. Discussion and conclusions

The spatiotemporal variability of midlatitude oceanic
gyres driven by a steady wind is investigated in 1.5-
and 2-layer QG models as a function of Re. We address
and partially answer the fundamental questions posed
in section 1a.

Two types of wind forcing are considered: one sym-

metric with respect to middle latitude and one asym-
metric. In each situation two early bifurcations and their
corresponding flow patterns are identified. Also, several
solutions are analyzed with Re relatively far from Recr

corresponding to the first Hopf bifurcation. The large-
scale, low-frequency variability is analyzed by the en-
ergy time series, the circulation patterns, and EOF de-
compositions of the complete and filtered solution fields.

The hierarchy of idealized wind-driven circulation
models studied shows that the more generic LF vari-
ability arises when the wind forcing is strongly asym-
metric, the Reynolds number Re is relatively large, and
the baroclinic instability mechanism is active in the
flow.

The primary and secondary bifurcation modes are
rather similar in both the 1.5- and 2-layer models. The
primary mode corresponds to intermonthly variability.
It is characterized by the presence of Rossby waves in
the interior and by the mesoscale instability in the west-
ern part of the basin. The secondary mode has an in-
terannual timescale and is more confined to the western
part of the basin. As Re is further increased beyond the
bifurcation values, several general tendencies are seen:
the spectrum bandwidth increases, the fraction of the
power at low frequency increases, and the associated
spatial pattern has a large spatial scale.
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FIG. 20. Instantaneous c1(x, y) in the 2-layer solution with l 5 0
and n 5 600 m2 s21 during (a) low-energy, (b) high-energy, and (c)
metastable states (CI 5 10 3 103).

FIG. 21. Time-mean circulation in the 2-layer solution with l 5 0
and n 5 400 m2 s21: (a) c1(x, y) (CI 5 10 3 103) and (b) c2(x, y)
(CI 5 0.5 3 103).

At high Re the asymmetrically forced 1.5-layer model
has most of its spectral power in two well-separated
frequency bands. One band corresponds to quasi-annual
(0.9 4 1.3 yr) periods that increase with increasing Re.
The spatiotemporal variability patterns within this band
have dominant perturbations around the separated east-
ward current and Rossby wavelike disturbances in the
interior of the basin; thus, they have characteristics qual-
itatively similar to the primary bifurcation mode but
differ in the details of the pattern. The other dominant
frequency band is for periods longer than 3.5 yr. Its
primary patterns have a larger spatial scale than in the
quasi-annual band. They correspond to either intensi-
fication or meridional displacement of the separated
eastward current and its recirculation zones with time-
lag correlations between the patterns that imply a cy-
clonic rotation of anomalies. The 2-layer solution differs
in several ways from the 1.5-layer one at high Re. The
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FIG. 22. Energy diagrams for the 2-layer solution with l 5
0 and n 5 400 m2 s21 in states when (a) the eastward jet is
displaced to the north or south from the middle of the basin,
(b) the eastward jet is short and split, and (c) the eastward jet
is long.

eastward jet is more intense and penetrates farther to
the east; the separation point retreats closer to the middle
of the basin. The jet exhibits strong meandering and
subsequent eddy detachment and shedding. The quasi-
annual band in the spectrum is less prominent, and the
interannual power increases with Re. Again, the LF var-
iability is associated with north–south shifts of the jet
and recirculation zones and changes in their intensity.
The centers of these fluctuation patterns are shifted away
from the western boundary along with the mean jet. The
LF statistical distribution has only a slightly higher
probability of the anomalous high and low energy events
than a normal distribution. For smaller Rd there is a
regime transition when the western boundary current

becomes locally unstable. We explore this in Berloff
and McWilliams (1998).

In the symmetrically forced 1.5- and 2-layer solutions
the primary mode has a very small amplitude. Thus,
contrary to the asymmetric case, the secondary mode
completely dominates the variability at intermediate Re,
and it is associated with large variations of the potential
energy due to its large spatial scale. At high Re the LF
variability has both very long timescales (decade and
longer) and large amplitudes. It is very different from
the asymmetric regime. The dominant pattern is asso-
ciated with relatively slow growth and quick destruction
of the intense recirculation zones surrounding the east-
ward jet. This LF pattern evolves from the secondary
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mode as Re increases. The statistical distributions in the
1.5-layer solution have large deviations from a normal
distribution. This is similar to the behavior shown in
McCalpin and Haidvogel (1997). In the 2-layer model
the LF cycle is stabilized substantially due to baroclinic
instability in the recirculation zones, and the fluctuation
timescale and amplitude are both smaller. The LF var-
iability pattern is associated with changes in the east-
ward jet and recirculation zones, as in the asymmetric
case, but the intervals with a disrupted jet are much
longer and correspond to large drops in energy. During
such intervals the flow contains two well-separated, me-
andering jets. In the opposite intervals with a a single,
well-formed eastward jet, the gyre pattern is asymmetric
in spite of the symmetric forcing with the jet axis dis-
placed either north or south of the middle of the basin.
The transitions from one asymmetric state to its mirror
image are less frequent in the 2-layer solutions than in
1.5-layer solutions, and the time between them is typ-
ically equal to several growth and destruction cycles.

Among the different cases examined here, it seems
likely that the dynamical behavior of the 2-layer, asym-
metrically forced, n 5 400 m2 s21 case may be the most
relevant one to the real ocean. From the solutions pre-
sented here, as well as some precedents in the literature
and additional solutions, we have calculated with better
resolution and larger Re, we conclude that broadband,
large-scale, low-frequency variability is likely to be typ-
ical of ocean models with small viscosity, hence likely
to occur in the real ocean as well. However, since the
models used here are so highly idealized and the LF
variability of the ocean is so poorly known, no quan-
titative prediction about real LF variability is yet war-
ranted until further steps are taken in the model for-
mulation, principally transient forcing, diabatic pro-
cesses, and complex domain geometry. Nevertheless, in
spite of the differences in mean circulation and temporal
statistics, there is common LF behavior across the dif-
ferent models we have examined: at large Re the LF
variability is substantial in amplitude, and its spatial
pattern is one of changes in the strength and meridional
location of the eastward jet and recirculation zones.
Since this occurs in the ocean at sites with intense air–
sea heat and water flux, the intrinsic variability of gyres
may potentially have an important influence on climate.
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APPENDIX A

EOF Analysis

An empirical orthogonal function decomposition is a
technique widely used in analyzing geophysical data
(Preisendorfer 1988). The main purpose of this method

is to reduce a dataset containing a large number of var-
iables and time records to a smaller dataset representing
a large fraction of the spatiotemporal variability con-
tained in the original data. This goal can be achieved
if there is substantial correlation among the data vari-
ables. In this case, we want to find a few EOFs that are
mutually uncorrelated and contain most of the variance
in the original data.

The EOF decomposition is performed on the dataset
with the time-mean subtracted out (data anomalies). The
original data is restored when the time-mean field is
added back to the anomalies expressed as the sum of
the EOFs. Let us consider a data anomalies set with N
variables and M time records (e.g., the streamfunction
values at N different locations, and recorded in time
intervals m): f(x, m), where the set of locations is x 5
(x1, x2, · · · , xN); and there are M data vectors

f (m) 5 ( f (x1, m), f (x2, m), · · · , f (xN, m)).

The new vectors, or EOFs, are obtained as the eigen-
vectors E (k) of the covariance matrix Ci,j performed on
the original anomalies. The elements of Ci,j are

M1
C 5 f (x , m) f (x , m).Oi, j i jM m51

The time-dependent amplitude A (k)(m) for the kth EOF
is obtained as the projection of the data vector f(x, m)
on the particular eigenvector E (k):

N

(k) (k) (m)A (m) 5 E f .O n n
n51

The eigenvectors are ordered so that E (1) has the largest
eigenvalue l1, and the other eigenvectors are numbered
in order of decreasing eigenvalue: li11 # li. The var-
iance of the kth EOF is the kth eigenvalue lk. We trun-
cate the eigenvector sequence so that it contains more
than 97% of the variance.

Starting with some arbitrary initial conditions, we
spin up the model for a time varying from 104 to 5 3
104 days. Then we run the model for about 105 days
and save the data for the EOF analysis. In addition, we
split the data in two equally long records and analyze
each of them separately in order to see that the EOFs,
energetics, and the time-average fields are robust.

The data are sampled in all layers on an equally
spaced 65 3 65 grid. The data vector elements are
c1,2(xi, xj) as the main choice and udc1,2(xi, xj) as the
auxiliary choice. Around certain frequency bands the
data are temporally filtered by a nonrecursive 201-point
filter (Otnes and Enochson 1978). Since EOF decom-
position is not unique with respect to the choice of the
original data elements, the main and auxiliary EOF sets
are compared in order to separate robust patterns and
their characteristics from decomposition-dependent de-
tails.
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APPENDIX B

Energetics

The dynamics of certain regimes of the spatiotem-
poral variability can be partially revealed by the energy
balance in the flow. If the solution in terms of the stream-
function is decomposed into the time-mean C1,2(x, y)
and perturbations , then the energy densityc9 (x, y, t)1,2

of the mean state is
2H |=C |i iE(x, y) 5 O

H 2i51,2

S H 1 S H1,2 1 2,1 2 21 (C 2 C ) dxdy, (B1)1 24(H 1 H )1 2

and the perturbation energy density is
2H |¹c9|i iE9(x, y) 5 O

H 2i51,2

S H 1 S H1,2 1 2,1 2 21 (c9 2 c9) dxdy. (B2)1 24(H 1 H )1 2

Equations governing the energy evolution are

]E H15 0 5 = · M 2 P 2 R 2 C = 3 t1]t H

Hi 2 22 n (¹ C ) (B3a)O iHi51,2

]E9 Hi 2 25 = · m 1 P 1 R 2 n ^(¹ c9) &, (B3b)O i7 8]t Hi51,2

where angle brackets denote full or conditional time-
average, the energy density conversion (exchange) rates
between the time-mean flow and perturbations are

HiP(x, y) 5 2 ^c9 J(c9, C ) 1 c9 J(c9, C )& (B4a)O ix i ix iy i iyHi51,2

S H 1 S H1,2 1 2,1 2R(x, y) 5 2
2H

3 ^(c9 2 c9)J([c9 1 c9], C 2 C )&, (B4b)1 2 1 2 1 2

M and m are the energy fluxes, and H 5 H1 1 H2 is
the total depth. Here P is the energy exchange between
the mean state and perturbations due to the work done
by horizontal Reynolds stress; R is the energy exchange
due to the work done by isopycnal form stress associated
with divergence of the heat flux of the fluctuations. The
so-called barotropic instability (i.e., extracting fluctua-
tion energy from the mean horizontal shear) is associ-
ated with a positive basin integral of P, and baroclinic
instability (i.e., extracting fluctuation energy from the
mean vertical shear or horizontal temperature gradient)
corresponds to a positive basin integral of R (Pedlosky
1987). The spatial distributions of P and R give a rough
idea of the parts of the flow that are most significant in
the energy conversions.

Given P(x, y) and R(x, y), the energy conversion rates
averaged over the basin area are

1
BT 5 P(x, y) dx dy (B5a)EEA A

1
BCL 5 R(x, y) dx dy, (B5b)EEA A

the rate of external forcing of the mean by the wind
curl is

H1F 5 2 C = 3 t dx dy, (B5c)EE 1AH A

the rate of the mean energy dissipation is

n Hi 2 2D 5 2 (¹ C ) dx dy, (B5d)OEE iA Hi51,2A

and the rate of the perturbation energy dissipation is

n Hi 2 2d 5 2 ^(¹ c9) & dx dy. (B5e)OEE iA Hi51,2A

The basin averages of the forcing, conversion, and dis-
sipation rates are used in the energy diagrams in Figs.
9, 13, and 22. The basin averages of the flux divergence
terms are equal to zero due to the boundary conditions
(4) and (5), but the term ^]E9/]t& and its basin average
are not necessarily zero when the time-averaging is tak-
en conditionally over certain intervals of time. In our
case this term gives very small corrections, less than
0.5%, to the basin averaged energy balances, therefore
we do not show it in the energy diagrams.
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