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ABSTRACT

Material spreading and mixing by oceanic mesoscale eddies are analyzed in an idealized, numerical model
of the wind-driven, midlatitude oceanic circulation. The main focus is on the regime with large Reynolds number,
Re, and vigorous mesoscale eddies, although brief comparisons are made with less turbulent solutions at smaller
Re. The analyses are based on ensembles of Lagrangian particle trajectories. The authors find that tracer transport
by mesoscale eddies differs in many ways from the commonly used model of homogeneous, isotropic eddy
diffusion.

The single-particle dispersion, which describes the spreading process, is generally anisotropic and inhomo-
geneous and in most places it is not diffusive (i.e., not linear in time) during intermediate-time intervals after
tracer release. In most of the basin and especially in the deep layers, subdiffusive single-particle dispersion
occurs due to long-time trapping of material by coherent structures such as vortices near the strong currents
and planetary waves in the eastern part of the gyres. Superdiffusive dispersion behavior is found in the western
part of the subtropical gyre and near the boundaries in fluctuating jetlike flows. Sub- and superdiffusion are
associated with a strong first negative and second positive lobe, respectively, in the Lagrangian velocity auto-
correlation function. The two-particle dispersion, which describes the mixing process, is characterized by initial
exponential growth, and its exponent has strong geographical inhomogeneities, with faster rates in the upper
western gyres. The finite-time Lyapunov exponents and recurrence times—other descriptors of the mixing—
indicate a similar geographical partitioning, but are better alternatives to the two-particle dispersion on short
and long time intervals, respectively.

Over large time intervals, due to inhomogeneity of the transport properties, material spreads and mixes much
faster within the subtropical than the subpolar gyre. The eastward jet extension of the weaker subpolar western
boundary current behaves as a strong barrier to the intergyre flux, but the eastward jet of the stronger subtropical
gyre behaves as a weaker transport barrier. It is shown that net Lagrangian fluxes across the eastward jets are
less intensive but more efficient in the deep ocean. The permeability of the barrier and the main pathways across
it are measured with distributions of crossing particles, with finite-time Lyapunov exponents, and, at small Re,
with the geometry of turnstyle lobes.

1. Introduction

The paper considers some aspects of material trans-
port in midlatitude, wind-driven gyres that occur in all
major oceanic basins. In addition to advection by the
mean circulation, material tracers spread and mix by
turbulent eddies, most rapidly by mesoscale eddies with-
in isopycnal layers (beneath the surface turbulent
boundary layer). The spreading (i.e., propagation) of
material from its initial location is described by single-
particle dispersion and the evolution of its distribution
[i.e., the probability distribution function (PDF): P(x,
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t | x0, t0) for a source at x 5 x0 and times t $ t0]. The
mixing is related to the patchiness of individual reali-
zations of tracer distributions, and it is described by
finite-time Lyapunov exponent, two-particle dispersion,
and homogenization rate.

Our approach is diagnostic: we analyze the transport
properties exhibited by ensembles of Lagrangian par-
ticles deployed in the velocity field obtained as a so-
lution of an eddy-resolving, quasigeostrophic (QG)
model. The analyses are based on calculating ensembles
of Lagrangian particle trajectories. We consider three
solutions—at large, intermediate, and small Reynolds
numbers (Re)—with most attention given to the more
realistic, large-Re solution. In the introduction we pro-
vide some background and pose the problem. Most of
the transport analysis deals with the large- and inter-
mediate-Re solutions, and the results are presented in
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section 2. Section 3 focuses on the small-Re solution.
Section 2a discusses general aspects of tracer evolution
from localized releases, sections 2b and 2c focus on
tracer spreading and mixing processes, respectively, and
section 2d analyzes the large-scale meridional trans-
ports. Conclusions and discussion follow in section 4.

a. Statement of the problem

We focus on statistical equilibrium solutions of an
eddy-resolving, double-gyre, wind-driven, QG model of
the midlatitude oceanic circulation. For the last two de-
cades the dynamically simple double-gyre circulation
has been a popular paradigm of the ocean, but it is still
unknown to what extent it simulates real oceanic pro-
cesses. Beyond the present model setup, we envision
similar transport analysis of a hierarchy of idealized
ocean models with growing physical complexity and,
therefore, with related changes of the transport prop-
erties (see also section 4).

This paper analyzes the transport properties of the
midlatitude oceanic circulation model by asking the fol-
lowing questions:

1) What is the geographical partitioning of the basin in
terms of the local single- and two-particle dispersion
behavior at intermediate times and the local value
of finite-time Lyapunov exponent?

2) What are the principal long-time transport barriers
and mixing zones? In particular, what are the most
permeable regions and main pathways across the in-
tergyre boundary and the subtropical eastward jet
extension of the western boundary currents (WBCs)?

3) What are the roles of the time-mean circulation and
coherent structures such as rings, eddies, and plan-
etary waves? How do these behaviors vary depend-
ing upon the Reynolds number?

An important motivation for answering these questions
is to provide a body of evidence for devising better
transport parameterizations for large-scale, oceanic
models. A companion paper (Berloff and McWilliams
2002) tests an hierarchy of stochastic transport models
using the analyses presented here.

The complete model description is in Berloff and
McWilliams (1999a). Here we state the particular pa-
rameters of the solutions analyzed below. The wind
stress is steady and zonal,

2p (y 2 L /2) p (y 2 L /2)
xt (y) 5 t cos 1 e sin ,0 1 2 1 2[ ]L L

(1)

where t0 5 0.04 N m22; L 5 3840 km is the size of
the square basin (with 0 # y # L); and the intergyre
asymmetry parameter1 is e 5 2. The bottom is flat. The

1 Substantial asymmetry of the wind forcing is found crucial for
achieving generic dynamical behavior of the double-gyre circulation
(Berloff and McWilliams 1999a).

vertical stratification is represented by three layers with
mean thicknesses H1 5 200 m, H2 5 1200 m, and H3

5 2600 m. The ratio of the density jumps across the
internal interfaces is g 5 (r2 2 r1)/(r3 2 r2) 5 2, and
the first internal Rossby deformation radius is 52 km.
The only dissipative process is lateral eddy momentum
diffusion with eddy viscosity coefficients n 5 100, 800,
and 1680 m2 s21 in the three solutions analyzed here.
The large-scale Reynolds number is defined by

UL t0Re 5 5 , (2)
n r H bn1 1

where U 5 t0(r1H1Lb)21 is the velocity scale derived
from the Sverdrup balance (with b 5 2 3 10211 m21

s21). Thus, the solutions here are characterized by Re
ø 100 (large), Re ø 12 (intermediate), and Re ø 6
(small). The small Re regime is near the first Hopf bi-
furcation of the flow solution and it is periodic in time.
The dynamical model is solved numerically on uniform
horizontal grid. The resolution requirements are such that
the viscous length scale (Munk scale), dM 5 (n/b)1/3, is
resolved by more than two grid points (Berloff and
McWilliams 1999a). In the large-, intermediate-, and
small-Re regimes, the grid resolutions are 7.5 (513 3
513), 15 (257 3 257), and 30 km (129 3 129 grid
points), respectively.

The transport of tracer is represented by ensembles
of material particles advected by the velocity field of
the dynamical solution. Lagrangian trajectories of the
particles are obtained by solving the nonautonomous
system,

dx(t)
5 u(t, x), x(t ) 5 X, t $ t , (3)0 0dt

where x(t, X) is the position of the particle initialized
at (t0, X), and u 5 (u, y) is the nondivergent, geo-
strophic, horizontal velocity, which can be decomposed
into time-mean and fluctuating components. Equation
(3) may be written for ith layer as

]x ]c (t, x, y) ]y ]c (t, x, y)i i i i5 2 , 5 ,
]t ]y ]t ]x

x (t ) 5 X , (4)i 0 i

where ci is the corresponding geostrophic streamfunc-
tion. The time integration of (3) is performed by a
fourth-order Runge–Kutta method with the right-hand
side evaluated by cubic interpolation of ci(t, x, y) ar-
chived on the uniform 129 3 129 grid every day for
10 000 days. Sensitivity tests2 show that, provided spa-
tiotemporal cubic interpolation the trajectories are cal-
culated accurately but at Re larger than presented here,
the data have to be sampled more densely both in space

2 We advect test particles with frozen instantaneous streamfunction
fields and find that the particles closely follow streamlines, even
where the velocity gradients are large.
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and time. Calculating material transport of the eddy-
resolving solutions, we neglect transporting effects of
unresolved, that is, subgrid-scale, fluctuations. It is ex-
pected that such fluctuations have small influence on
the motion of the Lagrangian particles (Armenio et al.
1999).

In 2D the dynamics of an individual trajectory gov-
erned by (3) is a deterministic and time-reversible pro-
cess that expresses the transport as stretching and fold-
ing of material lines (Ottino 1989). On the other hand,
the evolution of the ensemble-mean PDF for particle
positions at later times after a local initial release is an
irreversible process, whose outcome can be identified
with a spreading ensemble-mean tracer concentration
field. The PDF can be estimated by solving (3) with an
ensemble of release times, but it is commonly modeled
as a stochastic process (Rodean 1996).

b. Background

Hydrographic measurements of oceanic materials
have provided the primary empirical basis for describing
the general circulation through its transport rates (e.g.,
Reid 1997). Direct observations of transport with neu-
trally buoyant, subsurface floats are increasingly used
(e.g., Freeland et al. 1975; Schmitz et al. 1981; Colin
de Verdiere 1983; Rossby et al. 1983; Riser and Rossby
1983; Davis 1991; Owens 1991; Spall et al. 1993; Carr
et al. 1997; Davis 1998; Boebel et al. 1999), though
their sampling requirements are formidable for the glob-
al ocean. Float trajectories are used to estimate local
velocity, u 5 1 u9, which is the sum of time-meanu
and fluctuation components; Lagrangian velocity auto-
correlation function,3

21R (t) 5 u9(t)u9(t 1 t)s , (5)ii i i ii

and its associated frequency spectrum; Lagrangian in-
tegral timescale,

`

T 5 R(t) dt ; (6)L E
0

Lagrangian velocity variance,

s (x) 5 u9u9, (7)ij i j

[where u9(t, x) is velocity fluctuation]; single-particle
dispersion [see (8)], D(t); lateral eddy diffusivity, Kij;
and the time- and length scales of mesoscale eddies
(e.g., Colin de Verdiere 1983; Krauss and Boning 1987;
Sundermeyer and Price 1998; Rupolo et al. 1996).
Ocean measurements show that Rii(t) decays, changes
sign, oscillates, and often has a decay rate so slow that
it is difficult to estimate TL. In the real ocean, accuracy
in estimating Rii(t) and sij(x, y, z) is limited by the

3 The overline applied to localized Lagrangian quantities such as
R(t, x) and D(t, x) involves ensemble averaging over a set of La-
grangian trajectories.

sparseness of available Lagrangian float datasets: the
statistical error bars are large, and it is impossible to
accurately remove the mean-flow contribution.

Single-particle dispersion functions (Taylor 1921)
show a common behavior only in the limit t → 0 when
the ballistic regime, D ; t2, is recovered. For inter-
mediate-time ranges (e.g., from 20 to 100 days), single-
particle dispersion rates are not universal. Power-law
fits, D ; ta, typically yield 0.5 # a # 1.5 [cf. Fig. 10
in Krauss and Boning (1987)], straddling the eddy-dif-
fusion law (i.e., a 5 1). In some cases D(t) tends to
saturate after about 100 days. The widespread occur-
rence of nondiffusive dispersion behavior, effects of
boundaries and inhomogeneities, and long-time velocity
correlations suggest that modeling the eddy-induced
transport as a diffusion process (or, equivalently, as a
random walk), may not be reliable. However, this is the
transport parameterization commonly used in ocean
general circulation models.

Single-particle dispersion describes spreading of a
tracer, whereas two-particle dispersion describes its mix-
ing, that is, disappearance of the patchiness in individual
realizations, distortion, and homogenization (Batchelor
1952). The dispersion of pairs of passive particles has
been addressed empirically by Richardson (1926) and
advanced theoretically by Obukhov (1941) and Batch-
elor (1952). Theory predicts that in the inertial range
of 3D, isotropic, homogeneous, stationary turbulence,
the two-particle dispersion grows as t3, as confirmed in
laboratory experiments (Jullien et al. 1999) and atmo-
spheric balloon measurements (Er-El and Peskin 1981).
A two-particle analysis of oceanic float trajectories is
in the very preliminary stage (LaCasce and Bower 2000)
where it is found that mixing rates are faster in the
western rather than eastern part of the North Atlantic;
and it is confirmed that the observed mixing scenario
is consistent with that of 2D turbulence where energy
cascades toward large scales. Alternatively to the two-
particle dispersion, the mixing process can be analyzed
by the means of finite-time Lyapunov exponents, as it
is shown in kinematic (e.g., Pierrehumbert 1991) and
dynamic (e.g., Pierrehumbert and Yang 1993) models
of atmospheric flows.

In addition to single- and two-particle descriptions of
the ocean, a relatively large number of studies focus on
transport across eastward jet extensions of the WBCs
such as the Gulf Stream. Upper-ocean floats deployed
near the Gulf Stream separation point at Cape Hatteras
show inhibited crossings of the instantaneous Gulf
Stream, but deep in the thermocline, where potential
vorticity gradients are weaker, floats cross the Gulf
Stream more frequently (Bower and Lozier 1994). Most
of the floats that cross the current are not trapped in
Gulf Stream rings, but they are advected by other ve-
locity fluctuations. The hypothesis that jets are barriers
to transport has been confirmed in a laboratory exper-
iment (Sommeria et al. 1989); in simple kinematic mod-
els (i.e., with velocity that is not a solution of dynamical
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equations) where the flow consists of propagating dis-
turbances superimposed on a steady zonal jet (Bower
1991; Samelson 1992; Liu and Yang 1994); and in dy-
namic, local, barotropic models of the zonal jet in linear
(Pratt et al. 1995) and weakly oscillating, nonlinear (Ro-
gerson et al. 1999) regimes. However, transport prop-
erties of eastward jets in more realistic and nonlinear
flows at large Re remain unexplored.

Dynamics of idealized, eddy-resolving models of
wind-driven gyres has been intensively studied (e.g.,
Holland 1978; Haidvogel et al. 1992). On the other
hand, transport phenomenology of such models has been
rarely looked at, and most of such studies focused on
estimating either intergyre and cross-jet fluxes or eddy
diffusivity coefficient. In a symmetrically forced, dou-
ble-gyre, dynamical model with weak eddy variability,
particles deployed near the WBC separation point and
tracked for several weeks rarely cross the eastward jet
extension of the WBC (Bower and Lozier 1994), in
agreement with analogous observations; however, it is
not clear what fraction of the cross-jet transport is di-
agnosed in this way. Figueroa (1994) shows that the
cross-jet flux occurs because of meandering streamlines
near the eastward jet core, rings detaching from the jet,
and other types of fluctuations. The inhomogeneous
eddy-diffusivity tensor estimated from a double-gyre,
eddy-resolving solution is substantially anisotropic with
a dominant zonal component (Rhines and Schopp 1991;
Figueroa and Olson 1994); however, in these experi-
ments R(t) does not always decay to zero on inhomo-
geneity scales, thus precluding a diffusion regime. A
coarse-grid simulation of advective–diffusive tracer
transport using the fitted eddy-diffusivity tensor of Fi-
gueroa and Olson (1994) displays a substantially dif-
ferent evolution from an eddy-resolving solution (Fi-
gueroa 1994). This important result supports the idea
that transport by mesoscale eddies requires a better pa-
rameterization than eddy diffusion. Recently we used a
particular class of double-gyre solutions to investigate
low-frequency intrinsic variability associated with
large-scale changes in strong currents (Berloff and
McWilliams 1999a), instabilities in the WBC (Berloff
and McWilliams 1999b), and the emergence of meso-
scale coherent vortices at very large Re (Siegel et al.
2001). Here we use these solutions to analyze the trans-
port phenomenology.

The transport by well-structured events, such as ring
detachment and merger or by other simple flows, can
be analyzed geometrically using dynamical system tech-
niques based on the calculation of the finite-time in-
variant manifolds of the hyperbolic fixed points of the
flow (Poje and Haller 1999). The mathematical theory
of invariant manifolds and their partitioning of the flow
has been developed over the last decade (e.g., Beigie et
al. 1994). In a weakly fluctuating, double-gyre model,
the manifolds can be used to calculate the intergyre flux
(Coulliette and Wiggins 2001; also see section 4).

2. Transport at large Re

The upper-ocean time-mean circulation (Fig. 1a) is
calculated at each grid point. It consists of two gyres,
filling about two-thirds (southern or subtropical) and
one-third (northern or subpolar gyre) of the basin. The
boundary between the gyres is defined as the time-mean
streamline that originates at the separation point of the
subpolar eastward jet and ends at the eastern boundary;
by this definition the stronger subtropical eastward jet
lies well south of the intergyre boundary. Instantaneous
flows (Figs. 1b,d) contain a rich variety of coherent
mesoscale fluctuations: meandering swift currents, in-
tense vortices, eddies, and planetary waves. The cir-
culation in the deep ocean is characterized by a weak
time-mean flow in the eastern basin, a cyclonic recir-
culation zone under the subtropical WBC, and wide-
spread eddies and waves (Figs. 1c,d). The middle and
bottom layers have similar dynamic and transport prop-
erties, so in the text we will refer mostly to analyses
for the middle layer. At large Re the WBCs become
unstable and the resulting fluctuations contribute sub-
stantially to the local variability (Ierley and Young 1991;
Berloff and McWilliams 1999b; Siegel et al. 2001). Giv-
en the dynamical simplicity of the model, an open ques-
tion remains to what degree such variability represents
real oceanic processes.

The geographical distributions of Eulerian and La-
grangian velocity statistics allow for a phenomenolog-
ical partitioning of the domain into an eastern part dom-
inated by planetary waves at all depths and a western
part dominated in the upper ocean by swift, meandering
currents and intense, sparse mesoscale vortices and at
depth by weaker but more densely packed mesoscale
eddies. In each layer the velocity variance tensor (7)
has nonzero, nondiagonal components, and it is locally
characterized by the pair of eigenvalues, ii, and theŝ
principal angle that shows deviation of the direction of
largest velocity variance eigenvector from the closest
coordinate direction. The fluctuation amplitude,

, (Figs. 2a,b) is largest in the WBCs andÏŝ 1 ŝ11 22

their eastward jet extensions, in the upper ocean, and
in the subtropical gyre. The principal angle (Figs. 2c,d)
is mostly aligned with the rectangular boundaries, ex-
cept in the strong currents where its diagonal orientation
is related to Reynolds stress by eddies (e.g., Pedlosky
1987). The anisotropy ratio, , (Figs. 2e,f) isÏŝ /ŝ11 22

large along the boundaries. The swift currents are nearly
isotropic (i.e., ratio ; 1), and the interior of the basin
is characterized by enhanced meridional fluctuations
(ratio ; 2).

a. Tracer evolution from localized releases

We diagnose the Lagrangian transport by solving (3)
for ensembles of 103 particles in each layer locally re-
leased within 50-km squares at a sequence of 40 de-
ployment times uniformly distributed over the solution
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FIG. 1. (a, c) Time-mean and (b, d) instantaneous, ci(t, x, y) in the (a, b) upper and (c, d) deep ocean, atc (x, y)i

large Re. Contour intervals (CI): (a, b) 104 m2 s21, (c) 0.25 3 104 m2 s21, and (d) 0.5 3 104 m2 s21. Locations of the
six tracer releases (section 2a) are indicated in (a) by the corresponding numbers from 1 to 6. The locations 1 and 4
are outer, and the locations 2 and 5 are inner with respect to the gyres and WBCs.

record. We illustrate different transport behaviors with
particles initially at six (x, y) locations (in km): 1 (35,
1050); 2 (115, 1050); 3 (1250, 1050); 4 (35, 3250); 5
(115, 3250); 6 (1250, 3250). Locations (sites) 1 and 4
are to the west and 2 and 5 are to the east of the WBC
velocity maxima, and 3 and 6 are in the central parts
of the gyres (Fig. 1a). The evolving PDFs of particle
positions (i.e., ensemble-mean tracer concentrations) are
found by binning the basin, counting the number of
particles in each bin, and normalizing the particle den-
sity so that basin integral of the PDF is unity.

In the upper ocean, the particles from sites 1–3 spread
all over the subtropical gyre within about 1000 days
(Fig. 3). This is faster by an order of magnitude than
in the small-Re case (section 3), even though the Sver-
drup gyre circulation is the same for all Re. Over the
same time interval, the subpolar gyre is only weakly
invaded because the subpolar eastward jet acts as a
strong transport barrier (section 2d). There are rather
small differences between sites 1 and 2, although in the
latter case the particles spread over a larger area before
exiting the eastward jet so the concentration front prop-

agating into the eastern basin is less sharp. The simi-
larity between sites 1 and 2 is because near-boundary
vortices and meanders effectively mix fluid within the
WBC (which is not true at small Re; see section 3). The
PDF evolution from site 3 (not shown) is similar to site
2, but it is delayed by the time required for particles to
arrive at the subtropical WBC. In the eastern basin some
particles remain concentrated in the concentration front
for a long time. This is an indication of the slow single-
particle dispersion rates in the eastern basin (cf. sections
2b and 2d), where planetary (Rossby) waves are dom-
inant. Only a small percentage of particles from site 4
escapes to the subtropical gyre (Fig. 4) due to the in-
tergyre barrier [section 2d(1)]. Most of these transiting
particles escape from the near-boundary part of the sub-
polar WBC, in agreement with the patterns of intergyre
fluxes and recurrence times [sections 2d(1) and 2d(3)].
The particles that are advected from sites 5 and 6 by
the time-mean flow to the eastern and northern parts of
the gyre remain grouped in filaments for thousands of
days [sections 2c(2) and 2c(3)] and spread only within
the inner part of the subpolar gyre (Fig. 4).
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FIG. 2. (a, b) Fluctuation velocity variance , (c, d) principal angle of sij (from 2p/4 to p/4), and (e, f )Ïŝ 1 ŝ11 22

anisotropy ratio , in the (a, c, e) upper and (b, d, f ) deep ocean. For convenience, time-mean velocity stream-Ïŝ /ŝ11 22

function in the upper and deep ocean is shown in (e) and (f ), respectively. Contour intervals: (a) 6.0 cm s 21, (b) 3.0
cm s21, (c, d) 0.2, (e) 104 m2 s21, and (f ) 0.25 3 104 m2 s21.

In the deep ocean, the particles from sites 1–3 slowly
fill the western part of the subtropical gyre and only
after that start to penetrate into the subpolar gyre (Fig.
5). Eastward spreading of the particles is inhibited be-
cause of very weak time-mean flow away from the
WBC, and also because of slow single-particle disper-

sion rates (section 2b). Even slower spreading occurs
in the middle of the subpolar gyre from site 6 (Figs.
6e,f). The particles released in the subpolar WBC at
sites 4 and 5 propagate in two primary directions: along
the northern boundary, and across the subpolar eastward
jet and farther into the subtropical gyre (Figs. 6a–d).
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FIG. 3. Large-Re, upper-ocean distributions of particles released in locations (a–d) 1 and (e, f ) 2 within the subtropical
WBC. Time t is in days; N(t) is the percentage of the particles that have penetrated into the subpolar gyre. The line
in (a) shows the upper-ocean, intergyre boundary.

Both routes of spreading are dominated by velocity fluc-
tuations rather than time-mean advection, and they are
associated with fast single-particle dispersion rates (sec-
tion 2b).

There is an overall qualitative similarity between the

evolving PDF patterns in the different solutions at high-
Re and intermediate-Re (not shown), consistent with
both having mesoscale variability with broadband space
and time spectra. However, the spreading and mixing
rates in the latter case are uniformly smaller. This dif-
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FIG. 4. As in Fig. 3 but for locations 4 and 5 in the subpolar gyre: S(t) is the percentage of particles that have
penetrated into the subtropical gyre.

ference is particularly noticeable in a smaller intergyre
flux and a sharper propagating front in the subtropical
eastern basin. In the deep ocean, the relatively fast-filled
western part shrinks to about one-fourth of the basin,
and there is no enhanced spreading along the zonal
boundaries.

b. Tracer spreading

This section is the central part of the paper. Here we
introduce the idea of intermediate-time, single-particle
dispersion power laws and provide geographical parti-
tioning of the basin in terms of the power-law exponents.
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FIG. 5. Large-Re, deep-ocean distributions of particles released in locations (a–d) 1 in the subtropical WBC and
(e) and (f ) 3 in the middle of the subtropical gyre. Time t is in days; N(t) is the percentage of the particles that have
penetrated into the subpolar gyre. The line in (a) shows the upper-ocean, intergyre boundary.

The single-particle (or absolute) dispersion tensor is

D (t, x(0)) 5 [x (t) 2 x (0)][x (t) 2 x (0)], (8)ij i i j j

where the overbar denotes an ensemble average over
particles released at the same initial position, x(0). Both

fluctuating and time-mean components of the flow con-
tribute to Dij. The time-mean contribution is initially
ballistic [i.e., D(t) ; t2], because over small distances
the mean flow is essentially unchanged. At long times,
comparable to gyre circuits, the mean flow structure
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FIG. 6. As in Fig. 5 but for locations 4 and 6 in the subpolar gyre. S(t) is the percentage of particles that have
penetrated into the subtropical gyre.

causes D(t) to oscillate. At very long times D(t) con-
verges to a constant value that corresponds to a uniform
particle distribution between the maximum and mini-
mum streamlines in the initial conditions. The contri-
bution from the fluctuating velocities is also initially

ballistic, but only over Lagrangian velocity correlation
time. To quantify the contribution from the fluctuating
velocities, we calculate

D9(t, x(0)) 5 [x9(t) 2 x (0)][x9(t) 2 x (0)], (9)ij i i j j
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FIG. 7. Mean Lagrangian correlation times ^T & in the (a) upper and (b) deep ocean (CI 5 1 day).

where x9(t) evolves in (3) only by the local velocity
fluctuation, u(t, x) 2 (x). Then we fit to a power-lawu
form,

a (x ,y )ij bin binD9(t, x , y ) ; t ,ij bin bin (10)

dividing each layer in 40 3 40 spatial bins. In each bin
we make 1000 individual realizations (25 particle tra-
jectories for 40 different deployment times). We test the
sensitivity of the estimate for aij by using a larger en-
semble size and find that the geographical map of aij is
robust. We further test the robustness of our estimates
of a by using an alternative definition of the single-
particle dispersion that differently separates the effect
of the fluctuations from the time-mean flow; namely,

D̂ (t, x(0))ij

t t

5 x (t) 2 u (x) dt x (t) 2 u (x) dt , (11)i E i j E j[ ][ ]
0 0

where x(t) evolves by the full velocity field, and isu
calculated along individual trajectories. We find that
D̂(t) and D9(t) yield similar distributions of a every-
where except in the subtropical WBC, where the former
is slightly larger. The discrepancy is due to the fact that
in swift currents the alternative definition is more lim-
ited by the local homogeneity assumption formulated
below. Given the similarity, we base our analyses on
D9(t).

The intermediate-time fitting interval for (10) has to
be well separated from the ballistic timescale. We es-
timate an upper bound for this scale as the Lagrangian
correlation time, Tii, calculated as the time at which
Rii(t) approaches its first zero. For a given range of t,
Rii(t) may not reach zero; hence for the following we
define local Tii(x, y) as the time at which the local en-
semble-averaged Rii(t) reaches R0 5 0.3 for the first

time. Since the flow is anisotropic, elements of the di-
agonalized Tii are found from Rii(t) calculated along
principal directions of the velocity variance tensor (7).
The Cartesian-coordinate form of Tij(x, y) is then ob-
tained by rotation over the principal angle.

Here T11 and T22 vary smoothly from about 3 days
in the upper-ocean subtropical WBC to 11–13 days in
the eastern basin and in the deep ocean. Usually T12 is
small, and we neglect it for simplicity. The power law
(10) is fitted for a time interval starting well after Tii(x,
y), but stopping before the single-particle dispersion dis-
tance, (t) 5 , becomes much larger than the9L ÏD9(t)D iiii

bin size in any direction. In each bin we define ^T& 5
(T11 1 T22)/2 (Fig. 7) and make a least squares fit to
(10) from 3^T& to the smaller of 200 days or 10^T&. The
former upper limit holds in the eastern and northern
regions characterized by relatively weak fluctuations
and slow growth in (t). The latter upper limit is aD9ii
compromise between having a sufficiently long tem-
poral fitting interval and a minimal spatial bin size; in
the worst case it leads to ø 200 km near the sub-9LDii

tropical WBC separation point. We interpolate a ii(xbin,
ybin) (calculated at each bin) to obtain aii(x, y). The
fitting algorithm is based on the assumption of local
homogeneity: during the fitting interval remains9LDii

smaller than the local inhomogeneity scale, , for La-LIi

grangian statistical properties. This assumption is not
fully satisfied near the subtropical WBC in the direction
perpendicular to the boundary, where is relativelyLIt

small and velocity fluctuations are large.
The anisotropy and spatial variations of the aii(x, y)

are large, especially in the upper ocean (Fig. 8). We
define a location as subdiffusive if aii(x, y) , 0.8, as
superdiffusive if aii(x, y) . 1.2, and as diffusive if 0.8
, aii(x, y) , 1.2. Most of the basin is subdiffusive in
at least one direction. There are two main subdiffusive
regions: the eastern and northern parts of the gyres and
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FIG. 8. Intermediate-time single-particle dispersion exponents: (a, c) a11(x, y) and (b, d) a22(x, y) for the (a, b) upper and (c, d) deep ocean
(see color bar). Contours of the corresponding time-mean velocity streamfunctions are shown with (a, b) CI 5 0.5 3 104 m2 s21 and (c, d)
0.25 3 104 m2 s21. The numbers 1–4 indicate the locations for Fig. 9.

the subtropical WBC with its eastward jet extension. In
Fig. 9 we show (t) averaged over four neighboringD9ii
bins for several characteristic upper-ocean locations
marked in Fig. 8. Subdiffusion is always associated with
an oscillatory R(t) with a pronounced first negative lobe,
and superdiffusion is associated with a relatively small
first negative and big second positive lobe of R(t) (Fig.
10). The off-diagonal elements of Rij(t) are not small
in some places [i.e., where the principal angle in Figs.
2c,d is not nearly aligned with the x or y axis, for R(0)],
but they do not exhibit any different timescales beyond
those in Rii(t) in Figs. 10 and 11. The oscillations of
R(t) indicate rotational motion of the particles trapped
in the vortices or oscillatory displacements due to plan-

etary waves. The asymmetry of R(t) in the superdif-
fusive regions indicates that the oscillatory motion is
combined with a sustained drift. A global autocorrela-
tion function, ^R(t)&, is calculated from 400 randomly
initialized trajectories integrated for 10 000 days (Fig.
11). It has the same characteristic feature as the local
R(t) away from the swift currents (Fig. 10): oscillation
on a timescale of about 40 days. Because ^R(t)& is av-
eraged over regions with different autocorrelation prop-
erties, its anisotropy is relatively weak, and its negative
lobe is relatively less pronounced.

In the upper ocean the single-particle dispersion is
subdiffusive in the subtropical WBC and its eastward
jet extension (Fig. 9a) due to material trapping in strong
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FIG. 9. Single-particle dispersion functions, (t) (solid) and (t) (dashed line), for the locations marked in Fig. 8: (a) 1, (b) 2, (c) 3,D9 D911 22

and (d) 4. The straight lines indicate exponent values of 2 (ballistic) and 1 (diffusive regime).

vortices (similar to Gulf Stream rings) [Fig. 1b; also see
section 2c(1) for estimating the transport barrier be-
tween the fluid inside and outside the rings by finite-
time Lyapunov exponents]. Analogous trapping behav-
ior occurs for coherent vortices in 2D turbulence (e.g.,
Provenzale 1999). Superdiffusive regions occur, espe-
cially in the upper ocean, to the east of the subtropical
WBC and south of its eastward jet extension, in the
middle of the subtropical gyre, and between the two
eastward jets near the western boundary (Figs. 8, 9c).
These regions are affected by the low-frequency vari-
ability of the eastward jet, and they include the main
population of strong vortices. In 2D turbulence results
(Elhmaidi et al. 1993), the intermediate-time single-par-
ticle dispersion behavior of Lagrangian particles outside
strong vortices is weakly superdiffusive due to the large

shear strain rate. Large-scale, low-frequency oscillations
(Berloff and McWilliams 1999a) also may contribute to
superdiffusivity near the subtropical eastward jet and its
local recirculation, but we have not quantitatively es-
timated that contribution. The subdiffusive regions in
the eastern and northern parts of the basin (except near
the boundaries in the tangential direction) are due to
coherent oscillations by planetary waves. The zonal sub-
diffusion in the eastern basin (N.B., D11(t) in Fig. 9d)
is partly responsible for particle distributions showing
a sharp front (Fig. 3), but the velocity anisotropy also
contributes to the sharpness of the front (i.e.,

ø 2). The subpolar gyre and its eastward jet21Ïs s22 11

are predominantly subdiffusive in the meridional direc-
tion (Fig. 9b). This property is consistent with the in-
hibited tracer penetration across the intergyre boundary
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FIG. 10. The upper-ocean R11(t) (solid) and R22(t) (dashed line) in the locations marked on Fig. 8: (a) the eastward jet extension of the
subtropical WBC, (b) central part of the subpolar gyre, (c) central part of the subtropical gyre, and (d) near the eastern boundary. Intervals
in t are limited for consistency with the local homogeneity assumption.

FIG. 11. Plot of ^R11(t)& (solid) and ^R22(t)& (dashed line) in the (a) upper and (b) deep ocean.

[sections 2a and 2c(1)]. Approximately diffusive single-
particle dispersion is found in transition zones (green
color in Fig. 8) covering about 15% of the upper ocean.
Even there, however, the single-particle dispersion often

shows an oscillatory component (Fig. 9b) that cannot
be described by a classical diffusion process. Along all
the boundaries except the western one (where the local
homogeneity assumption does not permit resolving near
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FIG. 12. Examples of typical particle trajectories at large Re in the (a) upper and (b) deep ocean. The plotted time interval differs among
the trajectories.

the boundary), we see subdiffusive behavior in the nor-
mal direction (Figs. 8, 9d), and superdiffusive behavior
in the tangential direction indicative of alongshore fluc-
tuating jetlike currents. Typically the tangential com-
ponent of the single-particle dispersion decreases after
about 150 days, marking the end of superdiffusive
growth.

In the deep ocean there is a clear separation between
the zonally subdiffusive eastern part of the basin and
the diffusive and superdiffusive regions in the western
basin and near the northern and southern boundaries
(Fig. 8c). The subdiffusive region acts as a transport
barrier for particles arriving from the west (cf. Fig. 5).
The meridional single-particle dispersion is subdiffusive
almost everywhere (Fig. 8d). The zonally superdiffusive
strip along the northern boundary matches the enhanced
eastward tracer spreading in Figs. 6c,d. The eastern-jet
pathway for tracer penetration from the subpolar to the
subtropical gyre (Figs. 6c,d) matches the meridionally
and zonally superdiffusive strips in the northern and
southern sectors of the subpolar WBC (Figs. 8c,d).

The intermediate-time, single-particle dispersion
properties can be seen in individual trajectories (Fig.
12). In the subdiffusive subtropical WBC and its east-
ward jet extension, trajectories have loops due to particle
recirculations within strong vortices. In the superdif-
fusive regions, trajectories exhibit relatively frequent
and long intervals of ‘‘flight.’’ In the subdiffusive east-
ern basin, trajectories show small-amplitude wiggles
around the time-mean streamlines, particularly where
the fluctuations are weak.

The intermediate-Re solution is characterized by
weaker fluctuations and much longer correlation times:
Tii is 100–150 days in the eastern basin and deep ocean,
5–10 days in the upper-ocean subtropical WBC and its
eastward extension, and 30–50 days near the eastern

boundary. The intermediate-time, single-particle dis-
persion regime lasts longer (e.g., we use 1000 instead
of 200 days as the upper limit for intermediate-time
interval), but the general pattern of aii(x, y) is similar.
Only two substantial differences occur: the primary zon-
ally superdiffusive region is now centered around the
WBC eastward jet extension, and the WBC itself is
weakly superdiffusive in the meridional direction. Both
effects are due to the absence of strong meanders and
rings that enhance negative lobes of R(t). Thus, in the
single-particle dispersion, as in other measures dis-
cussed below, the transport rates do vary with Re but
the qualitative transport behavior does not, as long as
the eddy field is sufficiently active. This is contrasted
in section 3 with the small-Re regime.

c. Tracer mixing

In this section we focus on the process of mixing,
which is related to the decorrelation rate of neighboring
particles. Mixing is analyzed by three measures: finite-
time Lyapunov exponent, which is more suitable for
short-time description because it automatically reduces
the mixing information to a simple exponential fit; two-
particle dispersion, which is robust measure on all time-
scales; and fractal correlation dimension, which is a
more large-scale measure.

1) FINITE-TIME LYAPUNOV EXPONENTS

In general, large and small values of the local, finite-
time Lyapunov exponents indicate regions of enhanced
and weakened mixing rates, respectively. Among sev-
eral techniques for estimating the exponents, we choose
the one which, although it requires calculating spatial
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FIG. 13. Upper-ocean l(T, x, y) at T 5 2 days after deployment:
(a) spatial distribution (units are days21) and (b) histogram for all (x,
y). Upper-ocean, time-mean velocity streamfunction is shown with
CI 5 104 m2 s21.

derivatives of velocity, is very robust (Pierrehumbert
and Yang 1993). We define the deformation tensor,

]uiS (t) 5 , (12)ij ]xj

along a Lagrangian trajectory, X(t). The equation for
small displacements, x̂(t), along this trajectory is

]x̂i 5 S (t)x̂ . (13)ij j]t

The displacement tensor, Mij(t), evolves according to

]Mij
5 S (t)M , M (0) 5 d , (14)O ik kj ij ij]t k

where Sk denotes k summation and dij is the Kroneker
symbol. Because the 2D flow is nondivergent, Mij(t) has
a pair of real eigenvalues with opposite signs. The pos-
itive eigenvalue, , is the rate of stretching in the di-l̃
rection of the corresponding eigenvector, and the neg-
ative one is the rate of contraction in the perpendicular
direction. The finite-time Lyapunov exponent at time t
5 T is defined as

l(T, X(0)) 5 log[l̃(T)]/T, (15)

and it expresses the net Lagrangian straining as an ex-
ponential growth rate for small displacements around
X(t).

To calculate l within each fluid layer, we integrate
(4) for 200 3 200 uniformly distributed particles and
solve (12), (14), and (15). Figure 13a illustrates a typical
structure for l(T, x, y) at T 5 2 days for a deployment
time corresponding to Fig. 1b, and Fig. 13b shows the
corresponding histogram. Large values of l (between
0.005 and 0.06 day21) are found in the subtropical
WBC, in both eastward jets, and around edges of rings
that detach from them. These are regions of efficient
mixing. Small values of the finite-time Lyapunov ex-
ponent (l , 0.01 day21) characterize regions with weak
mixing, such as away from the swift currents where
planetary waves dominate, between the eastward jets,
and in the cores of rings (e.g., Provenzale 1999), which
are also regions with slow two-particle dispersion rates
[sections 2c(2)]. The subpolar eastward jet has relatively
large l, and it is a strong meridional transport barrier
[sections 2a and 2d(1)]. This suggests that most of the
mixing occurs on either side of the jet rather than across
it (e.g., Samelson 1992). The ensemble-mean, finite-
time Lyapunov exponent, ^l(T, x, y)&, is calculated by
averaging over many deployments. It is spatially
smooth, with maxima located along the main currents
and with averaged out information about transient trap-
ping events inside rings (Fig. 14). In the deep ocean
and at smaller Re, l is qualitatively similar, and its
amplitude decreases both with greater depth (at large
Re it is 5 times smaller near the bottom) and with smaller
Re.

2) TWO-PARTICLE DISPERSION

The two-particle (or relative) dispersion,
(R) (1) (2) (1) (2)D (t) 5 (x 2 x )(x 2 x ), (16)ij i i j j

is the ensemble average of the variance of the relative
distance between two particles, and it provides a de-
scription of the mixing process (i.e., distortion and ho-
mogenization) of the fluid. On intermediate times DR(t)
is a more robust and complete measure of mixing than
l because it accounts for deviations from exponential
relative dispersal of particles. In the energy-cascading
inertial range of isotropic, stationary, homogeneous 3D
turbulence a dimensional analysis indicates that dD (R)/
dt ; [D (R)]2/3, or equivalently, D (R) ; t3 (Obukhov
1941); this relationship is referred to as the Richardson
law. In homogeneous 2D turbulence, there is an energy
cascade toward large scales and an enstrophy cascade
toward small scales. In the enstrophy-cascading inertial
range, analogous dimensional arguments show that
dD (R)/dt ; D (R); hence for each principal direction:

(R) 21D ; exp(tu ),ii ii (17)
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FIG. 14. Ensemble-mean, finite-time Lyapunov exponent, shown as log10[l(T, x, y)] at T 5 2 days: (a) upper and (b) deep ocean (CI 5
0.2). The units of l are 1024 days21.

FIG. 15. Two-particle dispersion in the upper ocean: (t) (solid line) and (t) (dashed line) at sites in the (a) west [(x, y) 5 (L/5, L/2)]R RD D11 22

and (b) east [(x, y) 5 (4L/5, L/2)].

where uii is the enstrophy cascade timescale (Lin 1972).
This regime is observed in the atmosphere with uii about
5–6 days (Morel and Larcheveque 1974; Er-El and Pes-
kin 1981).

We calculate (t) for the same dataset described in(R)Dii

section 2b. Here D (R)(t, x, y) distinguishes between the
western and eastern regions in the basin, as found in
ocean observations (LaCasce and Bower 2000); the for-
mer includes the region near the southern boundary, and
the latter includes most of the subpolar gyre (Fig. 15).
In the western region, (t) is nearly isotropic. It in-(R)Dii

creases rapidly and exponentially at short times. The
growth rate gradually decreases at around 30 days as
the particles spread over a substantial area. In the eastern
region, (t) is markedly anisotropic, with larger me-(R)Dii

ridional rather than zonal growth rates, and it shows an
exponential regime that persists for several uii. Here
uii(x, y) is estimated from a fit over 20 days after the
deployment. Its magnitude varies widely, from several
days in the subtropical WBC to several hundred days
near the eastern boundary (Fig. 16). It is nearly isotropic
in the western and anisotropic in the eastern region. The
small (large) values of uii indicate rapid (slow) mixing
process in the western (eastern) regions, and they are
consistent with the degree of filamentation in the particle
distributions from localized releases (section 2a, Fig. 4),
with the distributions of finite-time Lyapunov exponents
[section 2c(1)], and with the homogenization rates [sec-
tion 2c(3)]. Exponential fit (17) requires both longer
time intervals and binning the basin (as in section 2d);
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FIG. 16. Exponential timescale for two-particle dispersion in the upper ocean: (a) log10(u11) and (b) log10(u22). The units for uii are days,
and CI 5 0.2.

therefore the geographical map of uii (Fig. 16) is
smoother than that of ^l& (Fig. 14).

In the western basin, has similar behavior at all(R)Dij

depths, but in the eastern basin u is two to three times
larger in the deep rather than upper ocean. At inter-
mediate Re, uii(x, y) are similarly distributed, but they
are larger by an order of magnitude, and this tendency
continues into the small-Re case.

3) HOMOGENIZATION

For each of the localized releases described in section
2a, we calculate the two-particle correlation function
(Pierrehumbert 1991). Given N particles, there are N(N
2 1)/2 pairs, and the correlation function, H(t, r), is
defined as the number of pairs separated by a distance
less than r at time t. If H(r) ; rd, then d is the fractal
correlation dimension that measures the degree of ho-
mogenization at scale r. In a 2D domain, d may vary
in the interval 0 # d # 2. In an unbounded domain, a
well-mixed (i.e., homogenized) ensemble of particles
has d 5 2, an ensemble organized in filaments has d ø
1, and an infinitesimal ensemble has d 5 0. In the pre-
sent problem the domain is bounded, and at large time
H(t, r) converges to H`(r).

For localized particle releases complete mixing oc-
curs over several thousand days (by an order of mag-
nitude faster than at small Re; section 3). The homog-
enization rate is faster in the subtropical rather than in
the subpolar gyre (Fig. 17), and in the western rather
than in the eastern basin. In the subpolar gyre, the tracer
is substantially concentrated in filaments even after 2000
days (cf. Fig. 4), which is consistent with the slow two-
particle dispersion rates induced by the planetary waves
[section 2c(2)] and with the long residence time allowed
by slow time-mean advection. At all depths, particles
that cross the intergyre boundary from the northern gyre

to the southern [section 2d(1)] are rapidly homogenized
there, as indicated by the steeper slope of H(t, r) at large
r and late time (Fig. 17b). In the eastern basin, the
homogenization rates are substantially slower in the
deep rather than upper ocean, but in the western basin
the change with depth is small.

d. Large-scale transport

Recently, several theoretical works as well as oceanic
float observations focused on the Lagrangian transport
across the meandering eastward jet extension of the
WBC (section 1b). This transport is thought to be one
of the important aspects of global meridional heat flux.
The key questions that have been asked so far are wheth-
er the eastward jets are transport barriers and whether
the cross-jet transport is more inhibited in the upper
rather than deep ocean. Our work differs from the pre-
vious studies by using the circulation regime that is more
realistic in terms of the model, dynamics, and much
larger Re than before. In the double-gyre circulation at
large Re, the WBCs separate in two distinct jets (i.e.,
as in the North Pacific), and only the weakly meandering
subpolar jet, which is the intergyre boundary, is a strong
barrier to the transport. On longer than intermediate
times, local net Lagrangian fluxes are not completely
defined by local aii because they incorporate transport
information from much larger areas and the time-mean
currents. In the following sections we look separately
at mean Lagrangian fluxes across each jet.

1) FLUX ACROSS THE INTERGYRE BOUNDARY

Localized releases of particles (section 2a) show that
transport across the subpolar eastward jet is inhibited,
in agreement with idealized models of a weakly me-
andering zonal jet (section 1b). To quantify the flux
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FIG. 17. The upper-ocean, two-particle correlation function, H(t, r), at t 5 50, 100, 200, 500, 1000, and 2000 days
for localized particle releases in (a) site 1 (cf. Figs. 3a–d) and (b) site 4 (cf. Figs. 4a–d). The thick line corresponds
to a globally homogenized state, H`(r). The dashed lines indicate d 5 1 (filamentary state) and d 5 2 (completely
homogenized state in an unbounded domain).

TABLE 1. The time-average flux of particles that have crossed the
intergyre boundary by time t, expressed as the percentage of initially
deployed particles (the corresponding value in Sverdrups is shown
in brackets), for the large-Re solution. The layers, i, are denoted by
L1, L2, and L3, starting from the top.

t (days) L1 L2 L3

100
200
300
400
500

1.12 (3.8)
1.29 (2.2)
1.47 (1.7)
1.64 (1.4)
1.81 (1.2)

0.77 (16.0)
0.90 (9.2)
0.98 (6.7)
1.08 (5.5)
1.11 (4.5)

0.63 (28.1)
0.66 (15.0)
0.68 (10.1)
0.74 (8.3)
0.75 (6.7)

TABLE 2. As in Table 1 but for the intermediate-Re solution.

t (days) L1 L2 L3

100
200
300
400
500

0.41 (1.4)
0.48 (0.8)
0.50 (0.6)
0.53 (0.5)
0.58 (0.4)

0.17 (3.5)
0.21 (2.1)
0.25 (1.7)
0.28 (1.4)
0.30 (1.2)

0.07 (3.1)
0.06 (1.3)
0.07 (1.1)
0.06 (0.7)
0.07 (0.6)

across the intergyre boundary, we release N 5 104 par-
ticles randomly distributed over the basin at 100 dif-
ferent deployment times and follow them for 500 days.
A record is kept of where each particle first crosses the
intergyre boundary (marked in Figs. 3–6) and the initial
and final positions of particles that originated in one
gyre and are found at time t in the other gyre. The
ensemble-mean intergyre flux in the ith layer, averaged
over the time t since deployment, is

LVi(n,s) (n,s)F (t) 5 F (t) 5 N (t, x) dx, (18)i i E it 0

where Vi 5 L2Hi/N is the fluid volume corresponding
to each of N deployed particles; Ni(t, x) is the probability
density of the first-time, intergyre boundary crossing;
and the superscripts, (n, s), indicate whether the crossing
is from the northern or southern gyre. The n and s com-
ponents of Fi are equal because of time-mean mass con-
servation within each layer and gyre. The intergyre
boundary is an isoline of time-mean c1(x, y), thus there
can be no net Eulerian flux across it. However, (t,(n)N i

x) ± (t, x) because locally a net intergyre Lagrangian(s)N i

flux, as defined above, can occur.

The percentage of particles that have crossed the in-
tergyre boundary over time t and the values of the time-
average flux, Fi(t), are listed in Tables 1 and 2. During
500 days Fi(t) changes smoothly, and (t, x) do not(n,s)N i

change qualitatively, indicating that their definitions are
time dependent but robust. Tables 1 and 2 show that the
intergyre flux strongly increases with Re, especially in
the deep ocean. In the large-Re solution, the percentage
of crossing particles decreases with increasing depth,
but the deep-ocean transport remains large due to large
layer thicknesses.

In the upper layer, the particles that cross from the
south are released either just to the south of the intergyre
boundary in the western region between the eastward
jets or in the vicinity of the subtropical WBC (Figs.
18a,b). Upper-layer particles crossing in the opposite
direction originate in the far northern part of the sub-
polar gyre (Figs. 18c,d). In the lower layers, the particles
that cross come from and stay within a narrow strip near
the intergyre boundary (Figs. 18e,f). At intermediate Re
the crossing particles are more confined to near the west-
ern boundary.

The (t, x) distributions have strong maxima near(n,s)N i

the western boundary and several smaller maxima along
the subpolar jet (Fig. 19). These are the primary inter-
gyre transport pathways. Substantial differences be-
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FIG. 18. Distributions of particles participating in (a, b) upper-ocean northward, (c, d) upper-ocean southward, and
(e, f) deep-ocean southward intergyre fluxes at large Re. Initial and final (t 5 500 days) positions are shown in (a, c, e)
and (b, d, f ), respectively. The panel labels indicate which gyre (S or N) the particles are leaving from or arriving to.

tween (t, x) and (t, x) occur in the western part(n) (s)N Ni i

of the basin (Fig. 19c); they correspond to net Lagrang-
ian fluxes in several narrow currents in opposite direc-
tions. Enhanced, superdiffusive transport rates along lat-

eral boundaries do not show up in Ni(x) because the
velocity variance decreases to zero on the walls, but
they do appear in normalized Ñi as it is defined below.
The smaller Ni values in the interior are associated with
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FIG. 19. Normalized distributions of the number of intergyre crossings, (t, x) in the (a)(n, s)N i

upper and (b) deep ocean for t 5 100, 200, 300, 400, and 500 days at large Re. Positive and
negative curves correspond to northward and southward fluxes, respectively. (c) Net intergyre
crossings, 2 , in the upper (solid) and deep (dashed line) ocean for t 5 300 days.(n) (s)N Ni i

the subdiffusive, single-particle dispersion found there
(section 2b). Crossing particles in the subdiffusive re-
gion tend to come from very near the intergyre boundary
and arrive at very near the intergyre boundary (Fig. 18).

Meridional single-particle dispersion rates along the

intergyre boundary are subdiffusive both in the upper
and deep ocean (Fig. 8), and the corresponding velocity
variances change with depth (Fig. 2)—both factors make
it hard to quantify how the flux efficiency changes with
depth. We nondimensionalize the fluxes in such a way
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FIG. 20. Ñ2(t, x)/Ñ1(t, x) at t 5 100 days and across (a) the western part of the intergyre
boundary, which coincides with the subpolar eastward jet (solid line) and (b) the subtropical jet
(dashed line).

TABLE 3. As in Table 1 but for the flux across the eastward jet
extension of the subtropical WBC.

t (days) L1 L2 L3

20
40
60
80

100

0.72 (12.3)
0.98 (8.4)
1.22 (7.0)
1.44 (6.1)
1.67 (5.7)

0.48 (49.6)
0.66 (33.7)
0.80 (27.5)
0.92 (23.4)
1.03 (21.1)

0.43 (94.3)
0.54 (60.1)
0.64 (47.5)
0.72 (39.8)
0.79 (34.9)

that their efficiencies may be compared. Local depth-
average meridional rms velocity is

H1
Ṽ(x, y) 5 Ïs (x, y, z) dz, (19)E 22H 0

and its integral along a contour C (y 5 y(x), x1 , x ,
x2) is

x21˜ ˜V 5 V(x, y(x)) dx. (20)c E(x 2 x )2 1 x1

The normalized crossing distributions along the contour
are

Ṽc(n,s) (n,s)Ñ (t, x) 5 N (t, x) , (21)i i Ṽ(x, y(x))

and our C is the intergyre boundary. The ratio of the
deep-ocean Ñi(t, x) to the upper-ocean Ñ1(t, x) is larger
than unity along most of the eastward jet extension of
the subpolar WBC (Fig. 20), suggesting that the cross-
jet flux is more efficient in the deep rather than upper
ocean, although the upper-ocean flux is more intensive
(Table 1). That is also true for the transport across the
subtropical eastward jet [section 2d(2)]. Enhanced ef-
ficiency of the deep-ocean flux may be explained by the
ability of fluid particles to preserve their potential vor-
ticity (PV) and by the presence of the sharper PV front
in the upper ocean, but this hypothesis has yet to be

verified by calculating PV balances following Lagrang-
ian particle trajectories.

2) FLUX ACROSS THE SUBTROPICAL EASTWARD JET

The eastward jet extension of the subtropical WBC
is characterized by intense meandering and large-scale
interannual variability associated with changes in the
position and intensity of the jet core and its neighboring
recirculation currents (Berloff and McWilliams 1999a).
This region has the strongest velocity fluctuations (Fig.
1) and the most intensive transport. We calculate the
cross-jet flux by the method presented in the previous
section.

To define the subtropical jet boundary, we choose two
segments of the time-mean, upper-layer streamline in
the core of the jet since no streamline in the jet originates
and ends on the eastern or western boundaries. Both
segments start 60 km away from the western boundary
and terminate in the basin interior at either x 5 1300
or 1900 km. The cross-jet fluxes are listed in Table 3
for t 5 20, 40, 60, 80, and 100 days using the shorter
of the two segments. The flux values across the longer
segment are larger by about 20% since most of the flux
occurs within ;600 km in the western sector where

(t, x) is larger.(n,s)N i

In the upper layer most of the crossing particles are
near the time-mean core of the jet, which also includes
the WBC (Fig. 21). About 40% of the southward flux
is due to particles that arrive from a broad region near
the subtropical WBC (Fig. 21c) and move northward
through the narrow gap between the western boundary
and the beginning of the jet segment; then cross the jet
from the north and return to the south (Fig. 21d). (The
analogous percentage in the deep ocean is much lower,
about 10%.) The compensating flux (Figs. 21a,b) con-
sists of particles that originate in the near-boundary re-
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FIG. 21. Large-Re distributions of particles crossing the subtropical jet in the upper ocean: (a, b) northward and (c, d)
southward fluxes. Initial and final positions (after t 5 60 days) are shown in (a, c) and (b, d), respectively.

gion of the subtropical WBC, are ejected from the WBC
by vigorous meanders and eddies (Berloff and Mc-
Williams 1999b), and then cross the jet in the northward
direction. As a result of stronger fluctuations, the cross-
jet flux (Table 3) is 1.3–1.5 times larger than the whole
intergyre flux (Table 1), although both boundaries are
locally subdiffusive in meridional direction (section 2b).
Away from the western boundary, both eastward jets
are qualitatively similar in terms of enhanced cross-jet
flux efficiency in the deep rather than upper ocean (Fig.
20), however the subtropical jet extends farther east-
ward.

Experiments with particles initialized near the Gulf
Stream separation point suggest that such particles more
efficiently cross the current in the deep rather than upper
ocean (Bower and Lozier 1994). A hypothesis is that
this indicates efficient deep-ocean transport pathway be-
low the upper-ocean transport barrier coinciding with
the jet, however the floats deployed in a small single
location represent only a fraction of the total cross-jet

transport. We deploy floats near the WBC separation
point, in the core of the current (Fig. 22), to examine
how the cross-jet flux is inhibited in the upper ocean
compared to the deeper one (cf. section 1b). There are
synoptic situations when the upper-ocean trajectories
remain within the instantaneous eastward jet core (Fig.
22a), but in other cases some particles continue to follow
the core while many others escape either in rings or by
other fluctuations (Fig. 22b). Velocities generally de-
crease with depth, therefore deep particles close to the
release point lag far behind upper-ocean ones and rap-
idly disperse (cf. Figs. 3 and 5). For a more synchronous
comparison, we release deep particles at the instanta-
neous (x, y) positions of the upper-ocean particles as
they move along the eastward jet (Figs. 22c,d). This
ensemble shows a larger degree of dispersal away from
the instantaneous jet, compared to the upper-ocean en-
semble. Thus, we do see enhanced deep-ocean crossing
of the instantaneous jet by particles deployed near the
jet core but, as it is demonstrated in this section, that



MARCH 2002 787B E R L O F F E T A L .

FIG. 22. Examples of trajectories for clusters of particles released in the core of the subtropical WBC at large Re. In the upper ocean,
either (a) the particles remain in the core of the current, or (b) they disperse from the core by rings and other fluctuations. Trajectories for
deep particles released underneath the upper ones are shown in (c) and (d), respectively.

does not indicate that the total cross-jet flux is more
intensive there.

3) RECURRENCE TIME

The Poincare recurrence time, tr, is the most diverse
transport measure among those used in this paper: it
combines information about the large-scale transport
[alternatively to the methods in sections 2d(1) and
2d(2)], spreading, and mixing aspects. It is defined as
the time between a particle leaving from and returning
to a subdomain, A. The Poincare distribution function
is Pr[tr(x, y)] (Zaslavsky 1999). In a bounded domain
with nondivergent 2D flow, Pr is well defined for any
A, and the mean recurrence time,

`

^t & 5 t P (t ) dt , (22)r E r r r r

0

is finite (Kac 1957). Subdomains with short ^tr& are
associated with flow structures that trap the fluid (i.e.,
if a particle escapes A, it quickly returns), and long ^tr&
indicates dynamical flights.

We calculate Pr[tr(x, y)] following 10 000 randomly
initialized particles. The A are defined by dividing the
basin into 40 3 40 bins. Figures 23a,b show ^Pr& av-
eraged over all bins. At large tr, ^Pr& decays with a
slope steeper than 21, indicating that the integral in
(22) converges. In each layer ^Pr& has a maximum at
30–40 days, the timescale of dominant planetary waves
(cf. section 2b). The relatively small values of ^tr(x, y)&
in the eastern basin and in the deep ocean (Figs. 23c,d)
correspond to this type of motion, and the weak local
minima in the upper WBCs and central subtropical gyre
indicate the presence of fluid-trapping vortices (section
2b). The upper-ocean ^Pr& has a minimum at around 500
days and a broad secondary maximum in the interannual
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FIG. 23. Recurrence time, tr, at large Re: histograms in the (a) upper and (b) deep ocean, and the spatial structure of ^tr& in the (c) upper
(CI 5 200 days) and (d) deep ocean (CI 5 100 days). The straight lines in (a) and (b) indicate the exponent, 21.

range, but in the deep ocean it decays monotonically
with tr. This secondary maximum is associated with
particles that migrate into the opposite gyre and remain
there for a long time. The origins of such particles cor-
respond to large ^tr(x, y)& in the WBCs and near-wall
regions upstream of the WBCs (Figs. 23c,d; see also
section 2d(1) and Figs. 18a–d). In the deep ocean, ^tr(x,
y)& is generally smaller because of the larger contri-
bution by planetary waves. In both layers, there is a
local maximum in ^tr(x, y)& at the end of the subtropical
eastward jet (Figs. 23c,d) that is related to particles in-
jected into the eastern basin and slowly carried away
by the gyre advection. Here ^tr& increases as Re de-
creases, due both to the general weakening of fluctua-
tions and to the increasing timescale of the planetary
waves, but the qualitative shape of Pr[tr(x, y)] is not
Re dependent.

3. Transport at small Re

At a marginally supercritical value of Re, the steady
gyre circulation (Fig. 27a) becomes unstable in a Hopf
bifurcation whose fluctuations have appreciable ampli-

tude only in the upper ocean.4 Here the Eulerian flow
is time periodic (with period T 5 221 days), but La-
grangian trajectories are generally chaotic (e.g., Ottino
1989). In this small-Re solution the transport rates are,
of course, smaller than at large Re because the velocities
are smaller, both the time-mean and the fluctuating com-
ponents. This effect can be factored out, to some degree,
by examining evolving particle distributions from lo-
calized releases over longer time intervals (Fig. 24).

For a relatively long time after localized particle re-
leases (i.e., for times of the order of T; Figs. 24a,c,e),
the particle distributions show a significant amount of
spatial fine structure, indicative of weak mixing relative
to spreading, and in contrast to analogous large-Re dis-
tributions (cf. Figs. 3–6). This fine structure is associ-
ated with the invariant manifolds connected to a few
saddle points of the flow (see below). However, over
longer times the fine structure wanes and the particles

4 Because of the approximate confinement of mean and fluctuating
currents to the upper ocean, a three-layer solution is essentially in-
distinguishable from the analogous, slightly supercritical, 1.5-layer
solution analyzed in Berloff and McWilliams (1999a).
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FIG. 24. Upper-ocean distributions for localized particle releases at (a, b) inner and (c, d) outer sites in the subtropical
WBC and at an (e, f ) outer site in the subpolar WBC at small Re. Time t is in days. Initial locations of particles are
indicated by black squares. The line in (a) shows the upper-ocean intergyre boundary.

become rather well mixed throughout the gyre in which
they are released (Figs. 24b,d,f). As in the large-Re
regime, intergyre fluxes are inhibited at all timescales
and spreading occurs more rapidly in the subtropical
(Figs. 24a–d) rather than subpolar gyre (Figs. 24e–f).

Particles released in the outer parts of the WBCs cross
into the other gyre more often than particles released in
the inner sites (Figs. 24c–f). This distinction is more
pronounced at small rather than large Re because, in the
first case, fluctuations in the WBC are much weaker
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FIG. 25. The small-Re distributions of particles crossing the intergyre boundary, (a, b) northward, and (c, d) southward.
Initial and final (t 5 3T 5 663 days) positions are shown in (a, c) and (b, d), respectively.

than in the offshore jet. Thus, over intermediate time
intervals the evident fine structure for small Re is a
manifestation of transient transport barriers related to
the invariant manifolds, which are not pronounced at
large Re.5 But over long time intervals the large-scale
transport barriers—between the inner and outer parts of
gyres and between the subpolar and subtropical gyres—
are qualitatively similar in the different Re regimes. At
small Re the intermediate-time single-particle disper-
sion, (t) (not shown), is more often subdiffusive thanD9ii
at larger Re (section 2b); a subdiffusive regime is re-
covered everywhere in the basin except for a small su-
perdiffusive region around the WBC separation point

5 In almost every 2D nondivergent flow there are instantaneous
saddle points and connected manifolds that can be related to nearby
particle trajectories over a short-time interval. However, in a tem-
porally complex flow these structures have quite different geometries
at different times and therefore do not imprint their pattern on the
mean particle distributions.

and the first offshore meander of the eastward jet (Fig.
27). The latter region is responsible for a big portion
of the intergyre flux (see below). Homogenization and
two-particle dispersion rates, as measured by H(r) and
uii(x, y), are very small at small Re, but their spatial
patterns are qualitatively similar to those calculated for
the large-Re solution [sections 2c(2)–(3)].

The simplicity of the flow at small Re permits us to
analyze the intergyre flux not only using the statistical
methods described in section 2d(1), but also with the
geometrical method derived from dynamical system the-
ory (see appendix). The initial and final positions of
particles crossing the intergyre boundary (Fig. 25; cf.
Figs. 18a–d) indicate that the northward flux comes from
a narrow strip of fluid from the outer part of the sub-
tropical gyre, and the southward flux brings material
from the outer part of the subpolar gyre and then delivers
about two-thirds of it directly into the central part of
the subtropical gyre and the rest into the outer part near
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FIG. 26. Upper-ocean, normalized crossing distributions for t 5 T, 2T, and 3T at small Re.
Positive and negative curves correspond to northward and southward fluxes, respectively. Dashed
line shows net intergyre crossing distribution, 2 , for t 5 2T.(n) (s)N N1 1

the intergyre boundary. This conclusion is also achieved
with the geometrical analysis. The crossing probability
distribution (Fig. 26) shows that, unlike at large Re (Fig.
19a), the intergyre flux is strongly confined near the
western boundary and in a narrow region around x 5
0.1L in the offshore jet (cf. Fig. 28). The sequence of
net Lagrangian currents with opposite signs at large Re
(Fig. 19c) is replaced with only two currents at small
Re (Fig. 26). The associated time-average fluxes are
F1(T) 5 0.63, F1(2T) 5 0.49, and F1(3T) 5 0.44 Sv
(Sv [ 106m 3 s21). These values are systematically
larger than the 0.39 Sv obtained by the geometrical
method for the chosen primary point on the invariant
manifolds. These estimates differ because of the dif-
ference between the positions of the Eulerian time-mean
and the invariant-manifold inter-gyre boundaries, where
the latter oscillates substantially around the former in
both space and time. We conclude that both methods
yield similar information about the intergyre transport.
The statistical method, however, allows for an easier
calculation of the intergyre transport because of the
complexity in tracking the transient geometry of the
invariant manifolds, even for relatively simple flows.
On the other hand, the statistical method gives a less
detailed characterization of the relevant transient cur-
rents.

4. Conclusions and discussion

We analyze the Lagrangian transport (i.e., spreading
and mixing of advected material or, equivalently, pas-
sive tracer) in an idealized double-gyre, wind-driven,
quasigeostrophic model of the midlatitude ocean in sta-
tistical equilibrium forced by a steady wind. We focus
on the large-Re solution (Re ø 100), although the Re
dependence of the transport properties is explored in
two other cases with Re ø 12 and 6. The spreading

(i.e., propagation) of material from its initial location is
described by the evolving ensemble-mean distribution
function and by the single-particle dispersion, D(t). The
mixing process (i.e., disappearance of the patchiness in
individual realizations) is described by the finite-time
Lyapunov exponent, l, the two-particle dispersion,
D (R)(t), and the homogenization rate. Finally, the large-
scale transport is explored by analyzing the fluxes across
the intergyre boundary, which is the principal transport
barrier, and the subtropical eastward jet, and by cal-
culating the recurrence time distributions.

Using the local homogeneity assumption, we geo-
graphically partition the basin in terms of the inter-
mediate-time exponents of the power-law fit, D9(t) ;
ta. In the short-time limit, the spreading is always bal-
listic (i.e., D9 ; t2), but the diffusive regime (i.e., D9
; t) that occurs in homogeneous and stationary tur-
bulence in an unbounded domain (Taylor 1921) is often
irrelevant because the local homogeneity assumption is
violated long before that regime is reached. The a(x, y,
z) show widespread anisotropy and extensive regions of
both subdiffusion (a , 0.8) and superdiffusion (a .
1.2) due to coherent structures such as mesoscale vor-
tices, meanders of swift currents, and planetary waves.
The nondiffusive behavior is due to the persistence of
intermediate-time Lagrangian velocity correlations de-
scribed by the autocorrelation function, R(t), which
slowly decays and strongly oscillates. The subdiffusive
(superdiffusive) regime is associated with pronounced
first negative (second positive) lobe of R(t). Regions
away from the WBCs with their eastward jet extensions
and from the lateral boundaries are typically subdiffu-
sive because the local dynamics is dominated by plan-
etary waves that induce oscillatory trajectories. Another
subdiffusive region is in the subtropical WBC and its
eastward jet extension where material is trapped inside
strong vortices (rings) generated by the current (e.g.,
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FIG. 27. (a) Instantaneous c1(x, y) for the small-Re solution (CI 5 104 m2 s21). The hyperbolic and elliptic points are marked by filled
circles and crosses, respectively. (b) The unstable invariant manifold of the hyperbolic point near the western boundary (solid) and stable
manifold of the hyperbolic point on the eastern boundary (dotted line) are shown at the same time as in (a). The outlined subdomain is
expanded in Fig. 28.

Provenzale 1999); the vortex cores are also character-
ized by slow mixing rates associated with small values
of l. Superdiffusion occurs in the currents along the
boundaries and in the central part of the subtropical gyre
in the zonal direction. In the deep layers and in the
solutions at intermediate and small Re, the subdiffusive
behavior is more pronounced and only small regions are
characterized by superdiffusivity. A geographical par-
titioning analogous to the one provided by the single-
particle dispersion is obtained from the recurrence time,
tr(x, y, z), which is shorter where the subdiffusion oc-
curs.

Thus, the horizontally isotropic eddy diffusion pro-
cess, which provides the almost universally used in oce-
anic GCMs subgrid-scale parameterization for material
transport by mesoscale eddies, is not confirmed in our
eddy-resolving model and needs reconsideration [sim-
ilar conclusions are made by Figueroa (1994) and Griffa
(1996) among other works]. New transport models and
the subgrid-scale parameterizations based on them have
to account for gradually decaying and oscillating R(t)
and for associated deviations from the diffusion regime.
One approach is to use an hierarchy of stochastic trans-
port models that, on the simplest level, yields the dif-
fusion model but, on more sophisticated levels, takes
into account nondiffusive spreading behaviors associ-
ated with slowly decaying, oscillating, and asymmetric
R(t) due to the presence of coherent fluid structures
(Berloff and McWilliams 2002). Transport models that,
in addition to temporal correlations, account for spatial
correlations between neighboring Lagrangian particles,
and therefore simulate not only the spreading but also
the mixing process, are to be developed as well (e.g.,
Sawford 2001).

Analyzing the mixing process, we find that D (R)(t)

grows exponentially over a time interval of several
weeks in the WBCs and years near the eastern boundary.
The exponential growth is in agreement with a dimen-
sional analysis of 2D turbulence in the enstrophy-cas-
cading inertial range (Lin 1972). In terms of the ex-
ponential growth timescale, u(x, y, z); the finite-time
Lyapunov exponent, l(x, y, z); and the recurrence time,
tr(x, y, z), the gyres can be partitioned into well-distin-
guished western and eastern regions. In the west u is
appreciably shorter, l larger, and tR longer, indicating
faster mixing and more effective dispersing by strong
vortices than by weak planetary waves, consistent with
oceanic mixing (LaCasce and Bower 2000). In general,
the homogenization of tracer proceeds from large to
small scales and it is faster in the upper rather than deep
ocean; a fully mixed tracer field is achieved only after
thousands of days.

The weakly meandering eastward extension of the
subpolar WBC is a long-time barrier to the intergyre
transport because the time-mean flow does not cross it,
the local meridional single-particle dispersion is sub-
diffusive, and the local velocity variance is moderate
compared to the other, subtropical, eastward jet. Most
of the fluid participating in the upper-ocean, intergyre
fluxes arrives to the intergyre boundary through the
WBCs and from remote parts of the basin. This behavior
is also manifested by large values of tr(x, y). The sub-
tropical eastward jet is also a transport barrier because
of its subdiffusive behavior but that is compensated for
by local, energetic flow fluctuations; therefore, the bar-
rier property is not pronounced. Fluxes across both jets
are more intensive in the upper ocean and at larger Re,
as a result of stronger fluctuations, but they are more
efficient (as it is evident after normalizing by the local
velocity variance) in the deep ocean, in agreement with
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FIG. 28. Sequential snapshots of the evolving manifolds in the subdomain outlined in Fig. 27. Time t is in
days. (b) The turnstile lobe that is between the intersections marked by the empty circles, and the principal
intersection point is shown by the filled circle. The lobe consists of parts A, B, C, and D that come from different
parts of the gyres.

the weaker potential vorticity front there (Bower and
Lozier 1994). The cross-jet flux calculations presented
are to be extended by finding the fluxes across instan-
taneous rather than time-mean cores of the jets. That
extension is both conceptually and technically chal-
lenging because the instantaneous core is quite transient
and sometimes incoherent.

At small Re, in addition to smaller overall transport
rates because of weaker fluctuations, the fluid in the
central parts of gyres is relatively isolated from the gyre
peripheries. However, in our solutions with strong gyre
asymmetry, the intergyre transport barrier is periodically
broken by an eddy that penetrates deeply into the sub-
tropical gyre. The simplicity of the flow in this regime
permits analysis of the intergyre transport by a geo-
metrical method of invariant manifolds (e.g., Beigie et
al. 1994). The geometrical approach is more detailed
but comparable to more common statistical approaches.
However, the feasibility of identifying the invariant
manifolds at large Re is problematic.6

6 Ide et al. (2001) propose an extension of the geometrical method
for time-dependent flows.

The greatest limitation of the present theoretical study
is its dynamical simplification and geographical ideal-
ization in relation to nature. Therefore, the following
extensions of the present work are needed. Wind fluc-
tuations on synoptic, seasonal, and climatic scales will
change Lagrangian velocity correlations and, therefore,
will influence the spreading and mixing rates. Distur-
bances induced by the bottom topography and irregular
boundaries will likely modify the transport, especially
at depth and near coasts. Also, it is unknown to what
extent the presence of bottom friction influences abyssal
dynamics and transport. The transport at even larger Re
may be modified by the increased vortex population
(Siegel et al. 2001). Instabilities arising in the WBCs
are likely exaggerated in the double-gyre model, be-
cause commonly used Newtonian friction parameteri-
zation does not well represent unresolved coastal dy-
namics. Also, oceanic gyres have finite Rossby number,
hence dynamical behaviors beyond quasigeostrophy,
and the transport by 2D nondivergent geostrophic ve-
locities is only part of the 3D transport.
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APPENDIX

Geometrical Analysis of Transport at Small Re

The upper-ocean, small-Re flow (Fig. 27a) has several
fixed points (i.e., points where u 5 0), which are either
hyperbolic (saddle points) or elliptic (centers) depend-
ing on whether linearization of the velocity field around
the point yields eigenvalues with nonzero or zero real
part, respectively. The generalized Poincare–Hopf index
formula for a 2D nondivergent flow in a simply con-
nected domain (Ma and Wang 1998) states that

Ce 2 Sa 2 Bo/2 5 1, (A1)

where Ce, Sa, and Bo are the numbers of centers, interior
saddles, and boundary saddles, respectively. In our sit-
uation, the values of Ce and Sa vary with time (with
Ce 5 7 and Sa 5 5 the maxima), but the value of Bo
is fixed (Bo 5 2) with one saddle point continuously
moving on each boundary, western and eastern. The
transport analysis here is based on finding the template
of invariant manifolds for a time-periodic flow (e.g.,
Beigie et al. 1994; Coulliette and Wiggins 2001). The
stable (unstable) invariant manifold of a hyperbolic
point is given by the curve containing the full set of
Lagrangian particles that approach the point as t → 1`
(t → 2`). In steady flow the stable and unstable man-
ifolds of the same or different points coincide and form
the homoclinic and heteroclinic manifolds, respectively,
which separate regions of fluid. In unsteady flow (as in
our case), the manifolds split apart and intersect each
other infinitely many times. A simply connected patch
of fluid bounded by segments of the manifolds is called
a lobe. For a pair of hyperbolic points (here the bound-
ary saddles), the intergyre transport is associated with
the unstable manifold that emanates from the western
point and intersects infinitely many times with the stable
manifold of the eastern point. We designate a particular
intersection point as the primary one and partition the
domain with a line that consists of the unstable manifold
segment from the western to the primary point and the
stable manifold segment from the primary to the eastern
point. This choice of a primary point is, of course, non-
unique, and the associated transport across its partition
line differs with different choices. The two lobes on
each side of the primary intersection point are called
the entrainment and detrainment turnstile lobes and be-
cause the flow is nondivergent, the lobe areas are pro-
portional to the fluid volumes inside them, and therefore
yield the cross-partition transport over an oscillation
period. When the time-dependent perturbations are
small, the area of the lobes may be estimated analytically

(Melnikov 1963), but in general it is done computa-
tionally.

The unstable (stable) manifold of the western (east-
ern) boundary point (Fig. 27b) is calculated by inte-
grating particle trajectories forward (backward) in time.
A first Lagrangian particle is kept on the fixed point, a
second particle is initialized nearby, and new particles
are added as the manifold stretches and folds. When the
distance between particles n and n 1 1 becomes larger
than small distance, dmax, the manifold is interpolated
cubically, and a new particle is added in between. If the
distance between particles n 2 1 and n 1 1 becomes
smaller than dmin , dmax, the nth particle is removed.
The manifolds (Figs. 27b, 28) are always plotted at the
same phase of the time-periodic oscillation, and their
geometrical structure shows that fluid participating in
the intergyre (i.e., cross-partition) transport arrives from
the WBCs and then penetrates either into the center of
the subtropical gyre or into the outer part of the subpolar
gyre near the intergyre boundary (Fig. 27b). A closer
view on the evolution of the turnstyle lobe associated
with a primary point near the western boundary (Fig.
28) reveals the following: the area labeled A is occupied
by fluid entrained in the subtropical from the subpolar
gyre; the fluid in B (two small fragments) and C arrives
from and remains in the subtropical and subpolar gyres,
respectively; and the fluid in D moves in opposite di-
rection to A. About two-thirds of fluid in A is carried
by the strong eddy in the partition line that deeply pen-
etrates inside the subtropical gyre, and about one-third
of it, as well as fluid in D and C, is carried by the outer
part of the subpolar gyre. This process is associated with
substantial stretching and folding of material lines (Fig.
28). The deeply penetrative, intensive transport induced
by the eddy does not occur (hence the intergyre transport
is much smaller) when the circulation is more sym-
metrical because of the wind symmetry (Coulliette and
Wiggins 2001). The lobe areas are calculated by the
Monte Carlo method (Press et al. 1992). We find that
the area A, equal to D, is about 2.475 3 104 km2, which,
multiplied by H1 and divided by the period T, yields the
transport rate of about 0.39 Sv (a small number com-
pared to the mean wind-driven Sverdrup transport).

We find that the lobe analysis, successfully applied
here and in other small-Re situations (e.g., Poje and
Haller 1999; Coulliette and Wiggins 2001), becomes
very complicated and arguably impractical at large Re,
for the following reasons. First, the fixed points are very
mobile, and tracking them requires computationally ex-
pensive root- or extrema-searching algorithms. Second,
the lifetime of a transient saddle can be so short that
the associated manifolds do not have time to accomplish
much transport. Third, in turbulent flows the invariant
manifolds experience strong stretching and folding,
hence calculating them is a very delicate and compu-
tationally expensive task. Fourth, Lagrangian floats lim-
ited to the manifolds yield less accurate and efficient
estimates of other Lagrangian transport properties, such
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as one- and two-particle dispersions. Finally, in tem-
porally complex flows many realizations of individual
events and their associated manifolds must be analyzed
to determine mean Lagrangian fluxes.
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