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Abstract Decadal large-scale low-frequency variability of the ocean circulation due to its nonlinear
dynamics remains a big challenge for theoretical understanding and practical ocean modeling. This paper
presents a novel fully data driven approach that addresses this challenge. Proposed is non-Markovian
low-order methodology with stochastic closure and use of mode decomposition by multichannel Singular
Spectrum Analysis. The multilayer stochastic linear model is obtained from the coarse-grained
eddy-resolving ocean model solution, and with high accuracy it reproduces the main statistical properties
of the decadal variability. The proposed methodology does not depend on the governing fluid dynamics
equations and geometry of the problem, and it can be extended to other ocean models and ultimately to
the real data.

1. Background

Midlatitude atmosphere and ocean possess not only significant interannual variability but also several
large-scale variability modes on decadal and interdecadal timescales: North Atlantic Oscillation, Atlantic
Multidecadal Oscillation, and Pacific Decadal Oscillation. Oceanic evidence of these modes is found in
the sea surface temperature [Hansen and Bezdek, 1996], hydrography [Qiu and Joyce, 1992], and altimetry
[Qiu and Chen, 2005], and it is mostly expressed in structural changes of the eastward jet extensions
and the adjacent recirculation zones of the main western boundary currents, such as the Gulf Stream
and Kuroshio. Physical origins of these large-scale low-frequency variability (LFV) modes remain unclear,
and it is not even known to what extent these origins are intrinsic atmospheric, intrinsic oceanic, or
coupled oceanic-atmospheric. One of the reasons, why coupled ocean-atmosphere comprehensive general
circulation models (GCMs) cannot distinguish between these scenarios, is inability of their oceanic model
components to simulate mesoscale eddies and their impact on the large-scale currents accurately and for a
long time. On the other hand, seasonally forced, eddy-resolving ocean-only GCMs exhibit significant
intrinsic LFV variability of mesoscale activity [Penduff et al., 2011], intergyre heat transport [Hall et al., 2004],
sea level height [Cabanes et al., 2006], western boundary currents [Taguchi et al., 2007], and meridional
overturning circulation [Biastoch et al., 2008]. This suggests that not only significant part of the LFV is
intrinsic to the ocean but also oceanic mesoscale eddies could play significant role in driving it.

Present theoretical understanding of the intrinsic LFV of the ocean starts from the null hypothesis that the
ocean integrates high-frequency atmospheric forcing and responds in terms of the red variability spectrum
[Hasselman, 1976]. However, over the last 20 years it became evident that in the presence of stochastic,
seasonal, or constant atmospheric forcing, the most significant intrinsic LFV of the ocean is not red but
operates on interannual-to-interdecadal time scales. One idea is that this variability can be understood in
terms of early bifurcations of the forced and dissipative dynamical systems governing ocean circulation
(e.g., review by Dijkstra and Ghil [2005]). In this approach, it is argued that the ocean variability is steered
by the underlying, unstable low-dimensional attractors, and bifurcations of the attractors can be inspected
by varying control parameters, such as the eddy diffusivity coefficients that parameterize effects of the
mesoscale eddies. Other theoretical ideas for the LFV are excitation by external forcing of LFV basin modes
linearized around the state of rest [Cessi and Louazel, 2001; Huck and Vallis, 2001], interaction of the deep
western boundary current with the wind-driven gyres [Katsman et al., 2001], instabilities of the thermohaline
circulation [e.g., Weaver et al., 1993], intermittent intrusions of potential vorticity that interrupt growth of
the western boundary current recirculation zones [Qiu and Miao, 2000], eddy-topography coupling in the
Southern Ocean [Hogg and Blundell, 2006], and mesoscale ocean-atmosphere coupling [Hogg et al., 2009].
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The understanding that oceanic eddies can collectively generate significant part of the climate variability
came as a surprise, but it is already beginning to change our understanding of the global climate variability.
Although it is recognized now that action of the oceanic mesoscale eddies is one of the main drivers of
the midlatitude LFV (e.g., review by Kwon et al. [2010]), the involved eddy dynamics is poorly understood.
Therefore, studying the LFV in eddy-resolving rather than eddy-parameterized models is of high priority.
Recent joint analysis of the observations and comprehensive GCM solutions suggests that not only about
half of the LFV in the ocean is intrinsic but also it is generated when significant fraction of mesoscale eddies
is dynamically resolved rather than diffusively parameterized [Penduff et al., 2011].

A very robust LFV mechanism, operating in a model of eddying, wind-driven oceanic gyres, has been
discovered by Berloff and McWilliams [1999] and explained later by Berloff et al. [2007a]. This mechanism—
referred to as the Turbulent Oscillator (TO)—is driven by competition between the eddy-induced flow
rectification and the eddy-induced potential vorticity anomalies, and both of these processes require
explicit dynamical representation of the eddies, because they cannot be approximated as simple diffusive
processes. The TO mechanism involves several important physical ingredients: (a) nonlinear rectification of
the eddies, (b) relation between the rectification and the eastward jet barrier permeability, (c) geometric
wind effect, (d) large-scale effects of the eddy-driven potential vorticity anomalies, and (e) nonlinear
adjustment of the gyres. Furthermore, it is argued that TO can substantially couple with the atmospheric
circulation [Hogg et al., 2006; Berloff et al., 2007b].

Along with dynamical understanding of the intrinsic variability goes the practical need of modeling this
variability statistically, with reduced mathematical models, in which essential effects of mesoscale eddies
are optimally parameterized, and the solution is represented by a few LFV modes. Various methods of the
reduction have been considered to derive low-order LFV models for climate applications, and stochastic-
based closure schemes appear to be most promising [Williams, 2005; Chekroun et al., 2011b]; see also
Franzke et al. [2014] for recent comprehensive review of the subject. Theoretical asymptotic approaches
are based on applying stochastic homogenization techniques to governing equations of geophysical
turbulence [Majda et al., 1999; Gottwald and Melbourne, 2013]. The resulting stochastic differential
equations perform best in the limit of clear scale separation between the explicitly resolved slow (large)
scales and the unresolved fast (small) scales. Theoretical low-order reduction procedure of the stochastic
parameterizing manifolds for partial-differential equations, on the other hand, introduce memory effects
and do not rely on scale separation. The advances in low-order modeling of the midlatitude atmosphere
were made with asymptotic techniques [Franzke and Majda, 2006], dynamically based linear stochastic
models [DelSole, 2004], pure statistical data-driven approaches [Kravtsov et al., 2009; Strounine et al., 2010],
linear inverse modeling [Winkler et al., 2001], and linear models with state-dependent noise [Sardeshmukh
and Sura, 2009]. Whereas in the atmosphere clear scale separation implies nearly instantaneous adjustment
of the small scales to the large ones, in the ocean this assumption is not valid, and it is more appropriate to
account for delayed correlations between the large and small scales, i.e., memory effects. These effects make
low-order modeling of the oceanic LFV more difficult.

Despite steady progress, developing accurate eddy parameterizations, especially for low-order models,
remains a big challenge. Recently, linear stochastic parameterizations of nonlinear small-scales interactions
were proposed [Majda et al., 2010; Grooms et al., 2015], while Kang and Harlim [2012] extended this
parametrization by using autoregressive models. Another approach calibrates stochastic eddy parametriza-
tion by eddy-resolving solutions: Berloff [2005] used spatially correlated autoregressive stochastic process
to represent transient eddy forcing, whereas Porta Mana and Zanna [2014] conditioned probability density
function (pdf) of the stochastic forcing onto the coarse-grained model variables. We note that LFV in these
models was not explored.

This paper deals with low-order modeling of the intrinsic oceanic LFV (see section 3.1) by novel
non-Markovian linear stochastic model. Our approach is data driven and data adaptive, and here the
low-order model is based on the eddy-resolving solution, although the ultimate goal is to base it on the
real observations. Instead of projecting the LFV on the Fourier basis [Kang and Harlim, 2012], we project it
on the principal components [Preisendorfer, 1988] obtained from the Singular Spectrum Analysis [Ghil et al.,
2002]; see section 2.2. Evolution of the corresponding modes is predicted by the linear, coupled system of
stochastic differential equations via Multilayer Stochastic Modeling (MSM) framework [Kondrashov et al.,
2014], which generalizes existing multilevel, regression-based approaches (see sections 2.3 and 3.2). The
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nonlinear feedback of small scales on the large-scale LFV is parameterized by the combination of multilayer
interactions, time-lagged Singular Spectrum Analysis (SSA) basis, and stochastic forcing. The explicit
multilayer structure of the low-order model illuminates dynamical interactions between different modes of
the LFV.

2. Models and Methods
2.1. Midlatitude Ocean Model
In this study the LFV data comes from the classical eddy-resolving double-gyre ocean model [Berloff, 2015].
The flow dynamics is governed by the quasigeostrophic potential vorticity (QG PV) equations for three
stacked isopycnal layers:

𝜕q1

𝜕t
+ J(𝜓1, q1) + 𝛽

𝜕𝜓1

𝜕x
= 1

𝜌1 H1
W + 𝜈∇4𝜓1 , (1)

𝜕q2

𝜕t
t + J(𝜓2, q2) + 𝛽

𝜕𝜓2

𝜕x
= 𝜈∇4𝜓2 , (2)

𝜕q3

𝜕t
+ J(𝜓3, q3) + 𝛽

𝜕𝜓3

𝜕x
= −𝛾 ∇2𝜓3 + 𝜈∇4𝜓3 , (3)

where the layer index starts from the top, J(, ) is the Jacobian operator, 𝜌1 = 103 kg m−3 is the upper layer
density, 𝛽=2×10−11 m−1 s−1 is the planetary vorticity gradient, 𝜈=20 m2 s−1 is the eddy viscosity coefficient,
and 𝛾 =4 × 10−8 s−1 is the bottom friction parameter. The basin size is 2L=3840 km, so that −L ≤ x ≤ L and
−L ≤ y ≤ L. The isopycnal layer depths are H1=250, H2=750, and H3=3000 m. The PV anomalies qi and the
velocity stream functions 𝜓i are related as

q1 = ∇2𝜓1 + S1 (𝜓2 − 𝜓1) , (4)

q2 = ∇2𝜓2 + S21 (𝜓1 − 𝜓2) + S22 (𝜓3 − 𝜓2) , (5)

q3 = ∇2𝜓3 + S3 (𝜓2 − 𝜓3) , (6)

where the stratification parameters S1, S21, S22, andS3 are such that the first and second Rossby deformation
radii are Rd1 = 40 km and Rd2 = 20.6 km, respectively. The flow is forced by the prescribed wind stress curl
W(x, y). The double-gyre Ekman pumping W(x, y) is asymmetric in order to avoid artificial symmetrization of
the gyres:

W(x, y) = −
𝜋 𝜏0 A

L
sin

[
𝜋 (L + y)

L + B x

]
, y ≤ B x , (7)

W(x, y) = +
𝜋 𝜏0

L A
sin

[
𝜋 (y − B x)

L − B x

]
, y > B x , (8)

where the asymmetry parameter is A = 0.9, the nonzonal tilt parameter is B = 0.2, and the wind stress
amplitude is 𝜏0 = 0.8 N m−2.

There are no-flow-through and partial-slip boundary conditions on the lateral walls, augmented by the
integral mass conservation constraints. The model is solved by the high-resolution numerical algorithm
described in Karabasov et al. [2009], on the uniform 5132 grid with 7.5 km nominal resolution. The solution
is saved every 10 days over 2740 years—this time interval is unprecedentedly long for an eddy-resolving
ocean model, but our study requires this length for obtaining highly accurate statistics of the LFV. Each
snapshot of the solution was coarse grained by a local running window averaging with 120 km width to
652 grid with 60 km spacing. We checked that the outcome is not sensitive to moderate variations of the
running window width.

Note that although QG double-gyre dynamics offers classical and rewarding framework for mesoscale eddy
effects on the large-scale circulation, it has inherent limitations in terms of assumed small Rossby number,
beta-plane approximation, and fixed stratification. Therefore, our work should be viewed as a forerunner for
more complete study of the problem, with a comprehensive primitive-equation general circulation model.
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2.2. Singular Spectrum Analysis
SSA [Vautard and Ghil, 1989; Vautard et al., 1992] is a temporal domain extension of the spatial empirical
orthogonal function (S-EOF) decomposition by principal component analysis (PCA) [Preisendorfer, 1988].
A comprehensive review of SSA and its computational details is in Ghil et al. [2002], and in this study we
will utilize multivariate form of SSA, known also as multichannel SSA (M-SSA), but we will refer to it simply
as SSA from herewith for brevity. SSA is based on diagonalization of the time-lagged covariance matrix of
multivariate time series; its eigenvectors, given by the spatiotemporal empirical orthogonal functions
(ST-EOFs), are an optimal set of data-adaptive, narrowband modes for decomposing the LFV. SSA is
particularly efficient for quasiperiodic variability with phase and amplitude modulations. Projection of the
data on each ST-EOF yields the corresponding spatiotemporal principal component (ST-PC). The entire data
or its components corresponding to trends, oscillatory modes, or high-frequency noise can be reconstructed
by using specific linear combinations of ST-PCs and ST-EOFs. Since ST-PCs do not carry phase information
within the SSA time window, they simulate only spectral content and amplitude of the LFV. On the other
hand, LFV phase information is captured by the reconstructed SSA components in the least squares sense,
and the signal is found by convoluting the corresponding ST-PCs and ST-EOFs [Ghil et al., 2002].

SSA utilizes time-lagged information associated with inherent memory effects; therefore, it is particularly
fit for the Earth system modeling. This was demonstrated by Mukhin et al. [2014] for predicting dynamical
transitions in the coupled ocean-atmosphere model and by Chen et al. [2014] who developed nonlinear
generalization of SSA for low-order modeling of the atmosphere. In this study (section 3) we use ST-PCs of
SSA to construct a low-order model of the oceanic LFV.

2.3. Multilayer Data-Driven Closure Models
This paper contributes to the area of inverse modeling that simulates dynamical properties of a system,
given its observed statistical properties [Penland and Sardeshmukh, 1995]. We construct a prognostic model
for evolution of the large-scale (macroscopic) fields, which can be estimated from incomplete observations.
The key steps are estimating interactions between the macroscopic variables, identifying the hidden
variables representing the unobserved small-scale degrees of freedom, and modeling the cross interactions
between the macroscopic and hidden variables.

In Empirical Model Reduction (EMR) approach [Kondrashov et al., 2005; Kravtsov et al., 2005, 2009, 2011;
Kondrashov et al., 2013] macroscopic interactions can be either quadratic or linear, and the hidden variables
are arranged into a “matrioshka” (i.e., stacked system) of layers. Each additional layer includes a new
hidden variable, which is less autocorrelated than the one included on the previous layer, until some small
decorrelation threshold is reached. The unknown coefficients introduced on each layer are estimated
by the multilevel regression techniques (see Kravtsov et al. [2009] for a comprehensive review of the
EMR methodology).

Strounine et al. [2010] showed that EMR is particularly effective when (1) small scales are modulated by,
as well as feedback on the large scales, and (2) there is no significant time scale separation between the
small and large scales. In this paper memory effects, associated with cross interactions between the
macroscopic and hidden variables, appear naturally, as convolution terms obtained by recursive integration
of the matrioshka levels. This setup is reminiscent of the Mori-Zwanzig closure formalism in statistical
mechanics [Zwanzig, 2001; Chekroun et al., 2011a; Franzke et al., 2014].

Recently, Kondrashov et al. [2014] introduced multilayer stochastic model (MSM) framework as both
generalization and continuous time limit of existing multilevel, regression-based approaches, including
EMR and other multilayer models [Majda and Harlim, 2013; Harlim et al., 2014]. The multilayer structure of
MSMs provides a natural Markov approximation to the generalized Langevin equation of the Mori-Zwanzig
formalism [Chorin et al., 2002]. Also, Kondrashov et al. [2014] derived conditions on the structure of the
nonlinear cross interactions between the macroscopic and hidden variables that guarantee the existence of
a global attractor. This existence ensures well posedness of a broad class of MSM applications that include
nonpolynomial predictors and nonlinearities not preserving energy.

In this study we consider simplified linear EMR model given by the following set of p + 1 equations:

xk+1 − xk = −Axk𝛿t + r(0)k 𝛿t,

r(m−1)
k+1 − r(m−1)

k = L(m)
[
(xk)T ,

(
r(0)k

)T
,… ,

(
r(m−1)

k

)T
]T

𝛿t + r(m)
k 𝛿t, 1 ≤ m ≤ p, (9)
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Figure 1. (top) Time series of the total energy from the ocean model reference solution and (bottom) its Fourier
spectrum. The broadband decadal LFV has pronounced peak at ≈ 17 years. Only fluctuating part of the energy is shown
in Figure 1 (top), and it is normalized by the standard deviation. The spectrum in Figure 1 (bottom) is normalized so that
its integral is equal to unity.

where k is the discrete time index and xk = x(tk) is the d-dimensional column vector x(tk) ∶= (x1(tk),… ,

xd(tk))T of the macroscopic variables predicted on the main level of the model. Matrix coefficients A
represent linear dependencies of the macroscopic variables, and r(m−1)

k is the vector of hidden variables
predicted on the additional mth level of the model. Although more complex nonlinear cross interactions
can be included [Kondrashov et al., 2014], we consider only linear coupling of r(m−1)

t ≡ r(m−1)
k with

variables (x, r(0)t ,… , r(m−2)
t ). Thus, the dynamics of hidden variables is given by the sequence of rectangular

matrices L(m) of increasing size. It is convenient to use a unit time step of 𝛿t = 1 in equation (9), see
supporting information.

From the available time series of x and r(m−1)
t , the instantaneous tendencies 𝛿x∕𝛿t and 𝛿r(m−1)

t ∕𝛿t are found
numerically by Euler time differencing, and then they are used to estimate the coefficients A and L(m) by
recursive least squares fits. The estimated residuals r(m)

t are found recursively at the next m+1 level, until the
recursive process stops at the pth level, when the estimated residual 𝜁t ≡ r(p)t has autocorrelation vanishing
at the unit time lag. Then zero-lag covariance matrix of the residual converges to some constant matrix.
The last residual is approximated as spatially correlated and temporally white noise r(p)t ≈𝚺Ẇ, where Ẇ
denotes a d-dimensional Wiener process, and 𝚺 is the Cholesky decomposition of its covariance matrix (see
supporting information for more details of the recursive procedure and stopping criteria). This stochastic
forcing is interpreted as nonlinear interactions of the smallest relevant scales.

3. Results and Discussion
3.1. LFV in Eddy-Resolving Ocean Model
The time mean of reference ocean model solution (see section 2.1) has the classical double-gyre structure
(see Figure 1 of Berloff et al. [2007a]), and the ocean circulation is characterized by a robust large-scale
decadal LFV, qualitatively similar to the turbulent oscillator studied by Berloff et al. [2007a]. The Fourier
analysis of the solution’s total energy time series shows that the LFV is spectrally broadband and dominated
by a peak at ≈17 years (Figure 1). This variability is driven by transient mesoscale eddies [Berloff et al.,
2007a]. There is no clear scale separation between the eddies and large-scale flow, and the LFV accounts for
relatively small fraction of the total variability, as demonstrated below by the detailed analysis.
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Figure 2. (a) Time series segment of a leading S-PC for an upper layer velocity stream function of QG model (black) and
its pronounced decadal LFV component as captured by SSA reconstruction (red), see text for details; vertical dashed
lines correspond to two energetic instances of SSA-LFV in opposite phase, t = tA and t = tB, respectively. Spatial patterns
of stream function at t = tA and t = tB: (b, c) full anomalies, (d, e) PCA-filtered, and (f, g) decadal LFV by subsequent
SSA filtration.

To systematically discern the LFV from the multitude of dynamically active scales, first, we compress the
data by applying PCA to the time series of the upper ocean stream function anomaly, given by the record
of 8 × 105 days sampled 10 days apart and coarse grained on 64 × 64 grid. Leading S-EOFs, selected from
the total of 4096 modes, are retained for the subsequent SSA analysis. The leading D= 6 modes account for
6.1%, 5.6%, 5%, 3.8%, 3.3%, and 2.8% of the total variance, respectively (≈27% altogether, see Figure S1 in
the supporting information). The choice of D = 6 is motivated by the results of SSA discussed below.

The corresponding spatial principal components (S-PCs) are obtained by projecting the data on
S-EOFs. The leading S-PC (Figure 2a) is dominated by highly intermittent decadal variability, but it also
contains the small-amplitude, higher-frequency subannual variability. Next we apply SSA to the combined
data set of retained S-PCs and to isolate oscillatory component of variability efficiently; the size of SSA time
window M has to be longer than value of respective periodicity [Ghil et al., 2002]. Here it suffices to choose
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Figure 3. Autocorrelation functions (ACFs) of the 10 leading ST-PCs captured by SSA in an upper layer velocity stream
function of QG model (see respective time series in Figure S3 in the supporting information): QG model solution = red,
ensemble mean of the EMR-SSA random simulations = blue, standard deviation of the EMR-SSA ensemble = black, and
x axis is in years. The EMR-SSA closure model captures well complex temporal modulations of decadal LFV. The first zero
crossing of ACFs defines decorrelation time scales, shown in Figure S5 in the supporting information.

M=103 samples (104 days ≈ 27 years) to extract LFV modes corresponding to broadband decadal peak (see
Figure 1), and the reported results are robust to modest variation of M.

From the total of DM= 6000 ST-EOFs, we chose d = 10 leading modes (see Figures S1 and S2 in the
supporting information) that capture 22% of the variance of the PCA-filtered field but focused on the
first and sixth S-PC with 77% and 25% of the variance, respectively (this is equivalent to ≈6% of the total
nonfiltered variance). More detailed SSA analysis showed that the higher-ranked S-PCs do not significantly
contribute to the decadal LFV. The chosen time window (M≈ 27 years) and the SSA truncation level
facilitated efficient extraction of the decadal LFV from the surrounding high-frequency subannual
fluctuations (Figure 2a). Unlike Berloff et al. [2007a], we did not use temporal averaging prior to performing
data-adaptive decomposition, and therefore, a relatively smaller fraction of variance is captured by decadal
LFV in our results.
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Figure 4. Statistics for decadal LFV of a leading S-PC: (a) short segment
of time series for QG (same as in Figure 2a but longer); (b) stochastic real-
ization by EMR-SSA; (c) ACF for QG of full-length time series (8 ⋅ 105 days)
= red, ensemble mean of the stochastic EMR-SSA realizations = blue,
standard deviation of the EMR-SSA ensemble = black; and (d) 1-D-pdfs
for QG (red) and EMR-SSA (blue).

Let us now discuss spatial patterns
of different variability components.
Figure 2 shows snapshots of the full
and filtered upper ocean stream func-
tion anomalies at the two selected
instances corresponding to the oppo-
site phase in decadal LFV, t = tA and
t = tB, respectively. These patterns
demonstrate that the LFV is dominated
by coherent meridional shifts of the
eastward jet extension separating
the gyres (Figures 2f and 2g). Note that
SSA filtered out the high-frequency,
small-scale, and intensive meanders
and eddies present in the PCA-filtered
field (see Figures 2d and 2e).

Autocorrelation functions of the ST-PCs
corresponding to the decadal LFV
are characterized by the decaying
oscillations (Figure 3) that result from
the intermittency and sharp amplitude
modulations of ST-PCs that are shown
in Figure S3 in the supporting informa-
tion, also see Figure 2a. Moreover, the
characteristic decorrelation time scales,

defined here as the lag corresponding to the first zero of the autocorrelation function, decrease with the
rank and show no clear scale separation (see Figure S5 in the supporting information). In the next section we
construct a data-driven MSM model that accurately reproduces these statistical features. Dynamical interac-
tions of the decadal LFV with the variability represented by higher-rank ST-PCs account for the eddy effects
associated with the ubiquitous planetary waves and with meanders of the eastward jet (see nonfiltered
anomalies in Figures 2b and 2c). These interactions are effectively parameterized by the memory effects
conveyed by the MSM framework.

3.2. MSM-SSA Model of the Decadal LFV
The low-order modeling and parameterization approaches, such as linear inverse modeling [Penland and
Sardeshmukh, 1995] and EMR, are typically applied to a subset of the leading S-PCs obtained by PCA of the
spatiotemporal field(s) of interest, e.g., x in equation (9). However, the corresponding data projection onto
the leading S-EOFs has significant drawback: the resulting S-PCs capture only instantaneous spatial correla-
tions, and the time-lagged correlations are not taken into account. Such correlations correspond to delayed
feedbacks and external forcing effects that are more efficiently captured by SSA. This motivates the use of
ST-PCs as macroscopic variables x in equation (9).

For understanding our results, it is useful to consider the most simple EMR application, in which the flow
is harmonic in both space and time. SSA decomposes this field into the pair of eigenmodes with equal
eigenvalues. The corresponding ST-PCs are harmonic in time, and they are in phase-quadrature relationship,
i.e., one time series is time derivative of the other (e.g., sine and cosine). Application of the linear formulation
of equation (9) to either ST-PC from this pair results in optimal EMR model with p= 1 and zero regression
residual on the last level. Thus, only one additional level is needed for the optimal system of two equations
describing the harmonic oscillator. This simple example suggests that for more complex dynamics, in which
flow field is described by many spectrally mixed ST-PCs, additional levels of equation (9) are needed to
simulate the observed statistics.

We found that the linear and unforced EMR model with large number of levels p= 20 successfully
reproduces autocorrelation functions of dynamically modeled ST-PCs in QG reference solution (see Figure 3
and also Figure S3 in the supporting information). The decadal LFV corresponding to the leading S-PC of
QG is simulated equally well, and the highly intermittent and sharp temporal modulations of the energetic
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Figure 5. Eigenspectrum of multilevel linear operator EMR-SSA
model for different numbers of levels p in equation (9): blue,
p= 10; red, p= 15; and black, p= 20. The spectrum of the model’s
variability is determined by a few least damped modes with char-
acteristic periods and decay rates in the decadal range that are
excited by the stochastic forcing.

events in the EMR-SSA model are qualitatively
similar to those in the original data (compare
Figures 4a and 4b). Respective autocorre-
lation functions (Figure 4c) agree very well,
ensuring excellent agreement for power spec-
trum due to Wiener-Khinchin theorem (not
shown); probability density estimates based
on a normal kernel function (Figure 4d) also
match. The optimal number of the model
levels is chosen according to the stopping
criterion, see discussion of Figure S4 in the
supporting information for details. Increasing
the number of levels beyond optimal p= 20
does not bring further improvement in sta-
tistical match and only makes the low-order
model computationally more expensive.

The complex dynamics of the EMR-SSA model
results from cross interactions of the macro-
scopic, hidden r variables, and the stochastic
forcing. In addition to linear self-interaction,
the effective dynamics of macroscopic ST-PCs

is also governed by the memory effects contributed by the hidden variables, as well as by red-noise stochas-
tic forcing resulting from the propagation of a last level Wiener process through the successive linear levels
of the model [Kondrashov et al., 2014].

This dynamics can be further understood by the eigenmode analysis of the multilevel linear operator of
the EMR-SSA model. This grand matrix has a block structure with its lower part formed by matrices A and
L(m), and the upper part formed by identity blocks corresponding to the forcings by r(m)

t at the mth level
(see equation (9) and assuming 𝛿t = 1). The eigenspectrum of the grand matrix is shown in Figure 5 for
different numbers of levels p, and each complex eigenvalue represents damped oscillation with the decay
rate and temporal period given by its real and imaginary part, respectively. Almost all eigenmodes are
strongly damped, but about five oscillatory eigenmodes with decay times of 10–15 years and periods
5–20 years always exist. Superposition of these modes determines the LFV in the EMR.

The main benefit of using the SSA basis is that the memory effects inferred by the linear and multilayer
interactions suffice for optimal closure of the low-order model, even though the real, fluid-dynamical
mechanism of the intrinsic oceanic LFV is highly nonlinear [Berloff et al., 2007a].

4. Conclusions

This paper deals with inverse modeling of the intrinsic oceanic LFV in the quasigeostrophic, wind-driven
ocean gyres (see section 2.1) by novel non-Markovian and linear low-order model with stochastic closure
(see section 2.3). The proposed approach is data driven and data adaptive, and the low-order model is
derived from the coarse-grained eddy-resolving ocean model solution (see section 3.1). The resulting
low-order multilayer stochastic model reproduces with high fidelity on the main statistical properties of the
observed LFV, such as the autocorrelations and probability density distributions (see section 3.2).

Given small computational cost of the low-order model, there can be several important practical
applications of our results. First, such models can be incorporated into oceanic components of climate
system models, for analysis of the oceanic LFV feedbacks on the atmosphere. Second, such models can be
used for understanding nonlinear interactions between different modes of the LFV. Third, dynamical analy-
sis of low-order LFV models (cf. its eigenspectrum shown in Figure 5) can facilitate dynamical understanding
of much more complex, high-dimensional oceanic models.

Since our approach does not depend on the governing fluid dynamics equations and geometry of the
problem, it can be extended to other ocean models and ultimately to the real data. Further modifications
in the inverse algorithm to obtain optimal closure are possible by including nonlinear cross interactions
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between macroscopic and hidden variables [Kondrashov et al., 2014], by using alternative data-adaptive
decomposition to extract LFV, as well as extending the closure model to include spatiotemporal modes of
faster and smaller scales.
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