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A B S T R A C T

The problem of augmenting low-resolution ocean circulation models with the information extracted from the
data relevant to the unresolved subgrid processes is addressed. A highly nonlinear model of eddy-resolving
oceanic circulation – quasigeostrophic wind-driven double gyres – is considered. The model solutions are
characterized by a vigorous dynamic coupling between the resolved large-scale and small-scale (eddy) flow
features. This solution provides the data for augmenting the low-resolution model with the same configuration.
The eddy forcing field, which contains the essential information about coupling between the large and eddy
scales, is obtained, modified, coarse-grained and added to augment the low-resolution model. The implemented
modification involves novel data-adaptive harmonic decomposition analysis and dynamical constraining based
on the low-resolution nonlinear advection operator. The resulting augmentation of the low-resolution model
significantly improves the solution, including its time-mean circulation and low-frequency variability. This
result also paves the way for a systematic data-driven emulation of unresolved and under-resolved scales of
motion.

1. Introduction

Ocean modelling is a challenging problem, because model solutions
are usually critically sensitive to the spatial numerical grid resolutions.
If the solution lacks the dynamics produced by unresolved sub-grid pro-
cesses, then the resolved processes are also affected due to the involved
nonlinearity. A notable example is oceanic mesoscale eddies which not
only affect the large-scale circulation (Berloff and McWilliams, 1999;
Kravtsov et al., 2006; Berloff et al., 2007; Shevchenko et al., 2016) but
also facilitate material transport and mixing (Chelton et al., 2007, 2011;
Samelson, 2013; Zhang et al., 2014; Dong et al., 2014; Abernathey
and Haller, 2018; Liu et al., 2018). Therefore, it is important to pa-
rameterize the eddy effects in non-eddy-resolving and eddy-permitting
models.

Different approaches to the eddy parameterization can be sorted
into two main categories: deterministic and stochastic. The former
approach adds to the governing equations some deterministic correc-
tion terms with clear physical meanings (Holloway, 1987; Gent and
McWilliams, 1990; Frederiksen and Davies, 1997; Frederiksen, 1999;
Griffies et al., 2000; Jansen and Held, 2014; O´Kane and Frederiksen,
2008; Frederiksen et al., 2012; Kitsios et al., 2013; Grooms et al., 2015;
Jansen et al., 2015; Zanna et al., 2017; Mak et al., 2017, 2018; Berloff,
2018; Danilov et al., 2019; Juricke et al., 2019). The main problem
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here is that it is difficult to account separately for all the important un-
resolved physical processes, given that dynamical interactions between
these processes are nonlinear and structurally complex. The stochastic
approach introduces randomness to the governing equations (Berloff,
2005b; Crommelin and Vanden-Eijnden, 2008; Zidikheri and Frederik-
sen, 2010a,b; Porta Mana and Zanna, 2014; Samelson et al., 2016;
Zacharuk et al., 2018; Bachman, 2019), and statistical laws defining
this randomness vary across different problems and often include com-
plicated and poorly constrained correlations in time and space. Instead
of looking for the theoretical constraints, one may resort to the data-
driven approach based on a priori analysis of the existing data. This
analysis can provide relevant spatial and temporal correlations, and
help to augment the low-resolution prognostic model with the inferred
statistical information. The a priori given data may come from different
sources; such as high-resolution model solutions or real observations.

The present study builds on the previous parameterization re-
sults (Berloff, 2005a; Porta Mana and Zanna, 2014; Zanna et al., 2017;
Berner et al., 2017; Cotter et al., 2018; Berloff, 2018), and prepares
ground for developing data-driven stochastic eddy parameterization,
for use in low-resolution ocean models. The main differences between
the presented approach and past studies are in the treatment of the
high-resolution data.

Our study proposes a general systematic approach to augment the
low-resolution oceanic model with the forcing representing unresolved
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small-scale dynamics. We consider a double-gyre model (Section 2), in
which solutions obtained with different grid resolutions are character-
ized by profound differences (Section 3) both in point-wise statistics
(Section 3.1) and large-scale low-frequency variability (Section 3.2).
The eddy forcing is inferred from decomposition of the high-resolution
solution into large- and small-scale (eddy) components and by es-
timating the dynamical contribution of the latter (Section 4). Aug-
mentation of the low-resolution model with this eddy forcing sub-
stantially improves the solution towards the reference high-resolution
truth (Section 5). Conclusions and discussion of the results follow in
Section 6.

2. Double-gyre model

The model is the same as in Kondrashov and Berloff (2015), and
here we describe it only briefly. The governing equations describe
evolution of the quasi-geostrophic (QG) potential vorticity (PV) in 3
stacked isopycnal layers (𝑖 = 1..3 from top to bottom) with densities
𝜌𝑖 (𝜌1 = 1000, 𝜌2 = 1001.498, 𝜌3 = 1001.62 kg m−3) and heights 𝐻𝑖
(𝐻1 = 250, 𝐻2 = 750, 𝐻3 = 3000 m):

𝜕𝑞𝑖
𝜕𝑡

+ 𝐽 (𝜓𝑖, 𝑞𝑖) + 𝛽
𝜕𝜓𝑖
𝜕𝑥

=
𝑊 (𝑥, 𝑦)
𝜌𝑖𝐻𝑖

𝛿1𝑖 − 𝛾𝛥𝜓𝑖𝛿3𝑖 + 𝜈𝛥2𝜓𝑖 , (1)

where 𝑞𝑖 is the PV anomaly, 𝜓𝑖 is the velocity streamfunction, 𝐽 (⋅, ⋅) is
the Jacobian operator, 𝛿𝑖𝑗 is the Kronecker delta, 𝛥 is the horizontal
Laplacian operator, 𝛽 = 2 ⋅ 10−11 m−1 s−1 is the planetary vorticity
gradient, 𝜈 is the eddy viscosity (its values are further specified for
different spatial resolutions), 𝛾 = 4 ⋅ 10−8 s−1 is the bottom friction
parameter. The basin is square: −𝐿 ≤ 𝑥, 𝑦 ≤ 𝐿, and the length of each
side is 2𝐿 = 3840 km.

The flow is forced at the surface by the stationary asymmetric wind
stress curl,

𝑊 (𝑥, 𝑦) =

⎧

⎪

⎨

⎪

⎩

−
𝜋𝜏0𝐴
𝐿

sin
𝜋(𝐿 + 𝑦)
𝐿 + 𝐵𝑥

, 𝑦 ≤ 𝐵𝑥 ,

𝜋𝜏0
𝐿𝐴

sin
𝜋(𝑦 − 𝐵𝑥)
𝐿 − 𝐵𝑥

, 𝑦 > 𝐵𝑥 ,
(2)

where the asymmetry parameter is 𝐴 = 0.9, the tilt parameter is 𝐵 = 0.2,
and the wind stress magnitude is 𝜏0 = 0.8 N m−2.

The PV anomaly can be inverted to obtain the streamfunctions,
according to:

𝑞1 = 𝛥𝜓1 + 𝑆1(𝜓2 − 𝜓1) ,

𝑞2 = 𝛥𝜓2 + 𝑆21(𝜓1 − 𝜓1) + 𝑆22(𝜓3 − 𝜓2) ,

𝑞3 = 𝛥𝜓3 + 𝑆3(𝜓2 − 𝜓3) , (3)

where the stratification parameters 𝑆1, 𝑆21, 𝑆22, 𝑆3 (corresponding to
𝜌𝑖 and 𝐻𝑖) are such, that the first and second baroclinic Rossby defor-
mation radii are 40 and 23 km, respectively. The boundary conditions
are no-flow-through and partial-slip (with the partial-slip length scale
equal to 120 km), and the mass conservation constraint is imposed in
each layer.

The model produces a classical double-gyre flow pattern, charac-
terized by a well-developed and turbulent eastward jet extension of
the western boundary currents with its adjacent recirculation zones.
The model solutions crucially depend on the spatial grid resolution;
e.g., see Shevchenko and Berloff (2015). When the eddies are not
properly resolved, the eastward jet extension weakens, shortens and
becomes less coherent. The eddy feedback that sustains the eastward jet
extension in the eddy-resolving regime is referred to as the backscatter
process (Shevchenko and Berloff, 2016; Berloff, 2018).

The next section addresses the fundamental differences between the
low- and high-resolution solutions of the model.

3. Statistical differences between the low- and high-resolution
solutions

3.1. Overview

A comprehensive study of the resolution and Reynolds number
dependencies of the QG double gyres is in Shevchenko and Berloff
(2015). Here, we focus only on two horizontal grid resolutions: the
low-resolution grid 1292 (which corresponds to the physical grid scale
of ∼ 30 km); and the high-resolution grid 5132 (which corresponds
to ∼ 7.5 km and allows for reliable resolution of the first baroclinic
Rossby radius). The low- and high-resolution solutions are obtained
with 𝜈 = 50 and 2 m2 s−1, respectively. The larger value of 𝜈 in the
low-resolution model is necessary to regularize solutions and resolve
the viscous western boundary layer. Thus, the low-resolution model
mishandles the small scales for 3 reasons: (1) scales smaller than the
grid interval are simply not taken into account; (2) scales corresponding
to several grid intervals have misrepresented dynamics due to the
numerical errors; and (3) the above scales are also more damped.

For each solution the model is spun up for 100 years, until it reaches
the statistical equilibrium; then, over 30k days the daily output is saved
for further analyses. Fig. 1 illustrates the main differences between
the low- and high-resolution circulations. A well-developed meandering
eastward jet and its ambient eddy variability are clearly seen in the
high-resolution flow and not seen in the low-resolution one.

3.2. Spectral analysis by Data-Adaptive Harmonic Decomposition (DAHD)

The DAHD methodology (Chekroun and Kondrashov, 2017; Kon-
drashov et al., 2018a) is a novel spectral analysis framework for mul-
tiscale spatio-temporal datasets. It yields a set of spatial Data-Adaptive
Harmonic Modes (DAHMs) operating with individual temporal frequen-
cies. This allows to avoid mixing temporal scales along with retaining
high spectral resolution. DAHD is more appropriate than a spatio-
temporal Fourier analysis, when dealing with coherent features of
spatially inhomogeneous turbulence, because DAHMs are not imposed
but fit empirically for the given data.

The utility of DAHD has been demonstrated for such complicated
geophysical datasets, as large-scale oceanic variability (Kondrashov
et al., 2018a), solar wind-magnetosphere interactions (Kondrashov and
Chekroun, 2018), and sea ice conditions (Kondrashov et al., 2018b).
Here, the main novelty is in applying DAHD to the eddying circulation
(Fig. 1c, f).

Next is a brief introduction of DAHD, following Chekroun and
Kondrashov (2017) and Kondrashov et al. (2018a). Let 𝑿(𝑡𝑛) =

(

𝑋1(𝑡𝑛),
… , 𝑋𝑑 (𝑡𝑛)

)

with 𝑛 = 1,… , 𝑁 be a multivariate time series formed of
𝑑 evenly sampled spatial channels. Then, for a given pair of channels
𝑝 and 𝑞, we calculate the double-sided cross-correlation coefficients
𝜌(𝑝,𝑞)𝑘 , characterized by time lag 𝑘 (in sampling intervals) such that
−(𝑀 − 1) ≤ 𝑘 ≤ 𝑀 − 1. The size of temporal embedding window 𝑀
(not to be confused with the spatial averaging window 𝑊 used in the
following sections) should be larger than the typical decorrelation time
scale in the data, and 𝑀 ′ = 2𝑀 − 1 is the slowest time scale captured
by DAHD.

By combining all the time-lagged cross-correlation coefficients, we
construct the cross-correlation Hankel matrix 𝑯 (𝑝,𝑞), which is symmet-
ric and obtained by left shifts of the row vector (𝜌(𝑝,𝑞)−𝑀+1,… , 𝜌(𝑝,𝑞)0 ,… ,
𝜌(𝑝,𝑞)𝑀−1), so that every anti-diagonal consists of the same elements.

Then, by arranging all 𝑯 (𝑝,𝑞) for each pair of channels (𝑝, 𝑞), we
obtain the block-Hankel matrix:

(𝑝,𝑞) = 𝑯 (𝑝,𝑞), 𝑝 ≤ 𝑞, (4)
(𝑝,𝑞) = 𝑯 (𝑞,𝑝), elsewhere

Block-matrix  consists of 𝑑2 (𝑝 = 1,… , 𝑑, 𝑞 = 1,… , 𝑑) blocks of
size (2𝑀 − 1)2 each. An important property is that eigenvalues of 
come in pairs of opposite values but with opposite sign. Moreover,
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Fig. 1. The main nonlinear effect of the eddies: amplification of the eastward jet and its adjacent recirculation zones. PV anomaly maps of the double-gyre upper-ocean reference
circulations: left column of panels shows the low-resolution (1292) solution; right column of panels shows the high-resolution (5132) solution. (a), (d) — instantaneous snapshots
of the flow; (b), (e) — time means; (c), (f) — standard deviations. The colour scale units are nondimensional (with the length scale being the grid interval and the velocity scale
0.01 m∕s) and the same across the figures. Solutions in the deep layers are not shown for brevity, but they convey essentially the same message.

these eigenvalues can be attributed to the corresponding single tem-
poral frequencies characterizing the corresponding eigenvectors 𝐖𝑗 =
(𝐄𝑗1,… ,𝐄𝑗𝑑 ). Here, 𝐄𝑗𝑘 is an 𝑀 ′-long row vector, which can be expressed
as

𝐄𝑗𝑘(𝑠) = 𝐵𝑗𝑘 cos(2𝜋𝑓𝑠 + 𝜃
𝑗
𝑘), 1 ≤ 𝑠 ≤𝑀 ′; 1 ≤ 𝑘 ≤ 𝑑 , (5)

where the amplitudes 𝐵𝑗𝑘 and phases 𝜃𝑗𝑘 are data-adaptive, while fre-
quency 𝑓 is equally spaced in Nyquist interval [0 0.5] with 𝑀 values:

𝑓 =
(𝓁 − 1)
𝑀 ′ − 1

, 𝓁 = 1,… , 𝑀
′ + 1
2

(6)

In total, 𝑗 = 1,… , 𝑑(2𝑀 − 1) spectral eigenelements (𝜆𝑗 ,𝐖𝑗) are com-
puted, and there are exactly 𝑑 eigenvalue pairs associated with each
frequency 𝑓 ≠ 0, while there are 𝑑 unpaired eigenvalues corresponding
to 𝑓 = 0.

By plotting the eigenvalues |𝜆𝑗 | according to the frequencies 𝑓 of
corresponding DAHMs, we obtain the DAHD power spectrum. By using

the largest possible embedding window 𝑀 = 𝑁∕2, we obtain the
best possible frequency resolution and also representation of the lowest
available frequencies.

We applied DAHD to the upper-ocean PV anomaly daily fields of the
reference solutions (Section 3). To make our analyses computationally
efficient, first, we compressed these fields by applying a standard
principal component analysis (PCA) (Preisendorfer, 1988) and retaining
the leading 𝑑 = 2000 empirical orthogonal function (EOF) modes. These
modes captured nearly all variance in the low- and high-resolution
simulations: 98% and 95%, respectively. Next, we projected the original
PV anomaly fields on the retained EOFs, and, thus, obtained the cor-
responding principal components (PCs). These PCs constitute 𝑑 = 2000
time series used as the input for DAHD analyses.

To have both the adequate spectral resolution and the low-frequency
part of the spectrum, we considered 30k days long PCs, sub-sampled
every 5 days. Thus, we have 𝑁 = 6000 samples and use the largest
possible embedding window with width 𝑀 = 𝑁∕2 = 3000 (i.e., 𝑀 ′ =
5999 ≈ 80 years). However, these values of 𝑀 and 𝑑 yield  of size

3
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Fig. 2. Temporal spectral content of the reference solutions: (a) 1292, (b) 5132 grids. Leading part of DAHD power spectrum (30 largest values of |𝜆| are shown at each frequency)
of the upper-layer PV anomalies. Blue dots in panel (b) correspond to the interdecadal variability peak at ≈ 20 years; this variability is absent in the low-resolution solution
corresponding to panel (a).

≈ 107⋅107, which renders its direct eigendecomposition computationally
prohibitive.

Following results of earlier studies (Chekroun and Kondrashov,
2017; Kondrashov et al., 2018a), we thus rely on alternative and
computationally efficient way to calculate DAHD eigenvalues by using
a singular value decomposition (SVD) of 𝑑 × 𝑑 cross-spectral matrix
S(𝑓 ):

S𝑝,𝑞 =

{

𝜌𝑝,𝑞(𝑓 ) if 𝑞 ≥ 𝑝,
𝜌𝑞,𝑝(𝑓 ) if 𝑞 < 𝑝,

(7)

where 1 ≤ 𝑝, 𝑞 ≤ 𝑑, and 𝜌𝑝,𝑞(𝑓 ) is the Fourier transform of the cross-
correlation 𝜌(𝑝,𝑞)𝑘 time series in the embedding space, i.e. −(𝑀 − 1) ≤
𝑘 ≤𝑀 − 1.

Theorem V.1 of Chekroun and Kondrashov (2017) establishes that
for each singular value 𝜎𝑝(𝑓 ) of S(𝑓 ) there exists, when 𝑓 ≠ 0, a pair
of opposite eigenvalues (𝜆𝑝−(𝑓 ), 𝜆

𝑝
+(𝑓 )) of , such that:

𝜆𝑝+(𝑓 ) = −𝜆𝑝−(𝑓 ) = 𝜎𝑝(𝑓 ), 1 ≤ 𝑝 ≤ 𝑑 , (8)

i.e., there are 2𝑑 eigenvalues associated with each frequency. The
same theorem also states that there are only 𝑑 unpaired eigenvalues
corresponding to 𝑓 = 0. Additional advantage of using SVD of S(𝑓 )
for computing the set of 𝜆 is that it can be done in parallel for each
frequency, i.e., it is computationally efficient (even laptop-enabled).

Fig. 2 compares the DAHD power spectra of the reference solutions:
overall, the shapes of the spectra are similar and characterized by
the band of higher values separated by a small gap from the broadly
distributed band of lower values. The spectral band of higher values
corresponds to the most energetic DAHMs, which dominate the solu-
tion. A power law dependence in the high-frequency part is found by
fitting a straight line in the corresponding log–log plot.

The low-resolution solution spectrum has significantly smaller mag-
nitudes, which is in agreement with the reduced eddy activity. Fur-
thermore, only the high-resolution solution is characterized by signif-
icant low-frequency variability (LFV) corresponding to the dominant
spectral power peak at ≈ 20 years. This interdecadal LFV was stud-
ied elsewhere (Berloff and McWilliams, 1999; Berloff et al., 2007;
Shevchenko et al., 2016), and here we just note that a well-augmented
low-resolution model should aim to recover it.

4. Eddy forcing inference from the high-resolution solutions

Our main goal is to dynamically augment the low-resolution model,
so that its solution recovers the key features of the high-resolution
solution: the eastward jet extension and its adjacent recirculation zones,
and the interdecadal LFV (Figs. 1 and 2).

First, we need to address the dynamics missing from the low-
resolution model. Generally speaking, one may assume, that low-
resolution models are capable of resolving slowly varying large-scale
dynamics but fail to resolve more transient small-scale dynamics,
whereas high-resolution models resolve everything. The caveat here
is that the low-resolution model can still need an augmentation to
realize its capability. As a preliminary step, we assume that the low-
and high-resolution large-scale dynamics are similar and implement a
decomposition of the high-resolution fields of interest, that is, stream-
function 𝛹 and PV anomaly 𝑄 (in general notation, without layer
indexing):

𝛹 = 𝛹 + 𝛹 ′, 𝑄 = 𝑄 +𝑄′, (9)

where overbar indicates large-scale component and prime indicates
small-scale (eddy) component. All the fields vary in time and space.
Note, that the decomposition is somewhat arbitrary and not objectively
constrained, and in practice it is not unique (Hasselmann, 1988; von
Storch et al., 1995; Schmid, 2010; Li and von Storch, 2013; Dijkstra,
2013, 2018; Viebahn et al., 2019), which is a problematic issue.

By substituting (9) into the governing equation (1) rewritten in
terms of material derivative of the large-scale flow component, we
obtain the following equation that couples the large-scale and eddy
dynamics:

𝜕𝑄
𝜕𝑡

+ 𝐽 (𝛹,𝑄) = 
(

𝛹,𝑄, 𝛹 ′, 𝑄′
)

+(𝛹,𝑄) + (𝛹 ′𝑄′) , (10)

where the operator  contains all the nonconservative terms involving
only the large-scale components, the linear operator  contains the
eddy tendency term and all the nonconservative terms involving only
the eddy components, whereas the remaining term,

 = −
(

𝐽 (𝛹,𝑄′) + 𝐽 (𝛹 ′, 𝑄) + 𝐽 (𝛹 ′, 𝑄′)
)

, (11)

is the eddy forcing (Berloff, 2005a) exerted by the nonlinear coupling
between the eddy and large-scale flow components, as well as by the
eddy nonlinearity. The linear eddy term  can be neglected, because
we found that its contribution is about 2% of that of the eddy forcing.

For decomposition (11) implemented on the high-resolution grid,
we apply the simplest technique – a spatial moving-average filter – and
extract the large-scale flow component; the small-scale component is
obtained as the residual. The averaging window is taken to be of the
order of the first baroclinic Rossby deformation radius; it is a square
window with the side of 𝑊 = 21 high-resolution grid intervals (which
corresponds to physical scale of ∼ 150 km). The filter is applied to
the layer-wise streamfunction, and the corresponding PV anomaly is
obtained from (3); the layer-wise eddy forcing  is found from (11)
and then coarse-grained onto 129x129 low-resolution grid.
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Fig. 3. Spatial structure of the eddy forcing  in the upper layer. Inferred upper-layer ∞: (a) an instantaneous snapshot; (b) the mean; (c) the standard deviation.

Fig. 3 illustrates typical features of the inferred eddy forcing. Over-
all, the eddy forcing is most intense around the eastward jet; its
time mean is small relative to the fluctuations, and its spatial pattern
is complicated and characterized by small-scale features. It is worth
noting that  is typically more intense for larger averaging windows,
which result in more intense eddies, whereas relative changes of the
large-scale flow component are modest.

Next, we applied DAHD to analyse the spatio-temporal structure of
the eddy forcing. Similar to the analysis of PV anomaly (Section 3),
first, we applied PCA to the daily dataset of  and retained the leading
𝑑 = 2000 PCs, which capture 90% of the variance. Then we applied
DAHD to the dataset composed of these PCs, using the embedding
window of 𝑀 = 3000 days. The resulting DAHD power spectrum
is such that 10 largest values of |𝜆| are organized in the red-noise
background distribution, but there is also sharp peak of power at zero
frequency (see Fig. 4) that accounts for the modulation of the eddy
forcing intensity at very slow time scales. We argue that the latter
yields the corresponding interdecadal LFV peak in the high-resolution
reference spectrum solution (Fig. 2.)

Our next step is to augment the low-resolution model with the
inferred eddy forcing  , so that it simulates a significantly improved
solution.

5. Augmentation of the low-resolution model by inferred eddy
forcing

As a first step, the 30k days long record of raw  was added to the
right-hand side of the low-resolution model and looped around. Then,
the model was spun up for several years and after that integrated for
30k days, with the solution output saved for further analyses. While the
eastward jet in the augmented solution is restored, its shape is blurred
and poorly resembles the reference high-resolution truth (compare
Figs. 5 and 1). The difference is especially conspicuous in the region

Fig. 4. Spectral content of the eddy forcing. Leading part of the DAHD power spectrum
(shown are 10 largest |𝜆| at each frequency) of the upper-layer eddy forcing inferred
from the reference high-resolution solution. A sharp peak at zero frequency (blue dots)
accounts for the modulation of the eddy forcing intensity at very slow time scales.

where the eastward jet separates from the western boundary. To fix
this problem the inferred  has to be modified to be dynamically
more consistent with the low-resolution model. In particular, the fact
that the low-resolution model partially resolves the nonlinear dynamics
responsible for maintaining the eastward jet extension should be taken
into account.

5
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Fig. 5. Low-resolution model solution augmented with the unconstrained eddy forcing. Statistical characteristics of the upper-layer PV anomaly: (a) an instantaneous snapshot; (b)
the mean; (c) the standard deviation. Compare this solution with Fig. 1 and note that while there is obvious improvement towards the high-resolution truth, the eastward jet is
characterized by excessive variability, especially in the upstream region.

Fig. 6. Constraining eddy forcing by taking into account partially resolved eddy dynamics. Standard deviations of the upper-layer eddy forcing components: (a) the excess forcing
𝐿𝑅; (b) the modified eddy forcing 𝑚𝑜𝑑 obtained by removing the excess forcing. Compare with Fig. 3b, which shows the raw eddy forcing.

We achieve dynamically-consistent eddy forcing by considering the
low-resolution model solutions of streamfunction 𝛹𝐿𝑅, potential vor-
ticity 𝑄𝐿𝑅 and Jacobian 𝐽𝐿𝑅(𝛹𝐿𝑅, 𝑄𝐿𝑅). The spatio-temporal structure
of 𝐽𝐿𝑅 provides us with information on resolved dynamics in the low-
resolution model, that is statistically removed from the eddy forcing
 . First, we apply PCA to decompose the spatio-temporal field of 𝐽𝐿𝑅,
and retain 2000 EOFs that capture 99% of its variance. Then  (that
has the same temporal length 30 K days and spatial size 1292 as 𝐽𝐿𝑅)
is projected onto this set of EOFs, and subsequently reconstructed in
time and space to diagnose corresponding spatio-temporal field 𝐿𝑅
(Fig. 6), which is then subtracted from  to obtain spatio-temporal field
of modified forcing 𝑚𝑜𝑑 =  − 𝐿𝑅.

With the modified forcing 𝑚𝑜𝑑 =  − 𝐿𝑅 imposed, the excessive
variability in the upstream part of the eastward jet is largely sup-
pressed, and the solution is improved (Fig. 7); the apparent improve-
ments can be seen by comparing with the low- and high-resolution

reference solutions (Fig. 1). From now on, we will refer to the con-
strained augmented solution as the reference augmented solution. The
reference augmented flow develops a lot more eddies and resembles
the eddy-resolving reference solution. These eddies couple with the
evolving eastward jet and enhance it (most likely via the backscatter
mechanism (Berloff, 2018), but the proper analysis will be included
in a separate paper). Furthermore, the mean and standard deviation
fields attest that the geometrical structure of the flow statistics is
also significantly improved (Fig. 7). On the other hand, the eastward
jet in the reference augmented solution (Fig. 7c) is broader and less
coherent than in the eddy-resolving truth (Fig. 1f). The other noticeable
difference is that the augmented large-scale subtropical and subpolar
gyres are moderately weaker than the eddy-resolving truth; in other
words the augmentation amplified (relatively weak) counter-rotating
gyre anomalies (Shevchenko and Berloff, 2016). Understanding the
underlying mechanisms of this secondary effect is beyond the limited
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Fig. 7. Reference augmented (low-resolution) solution with dynamically constrained eddy forcing. Statistical characteristics of the upper-layer PV anomaly: (a) an instantaneous
snapshot; (b) the mean; (c) the standard deviation. Compare this with Fig. 5 illustrating the unconstrained case and with Fig. 1 showing the non-augmented reference solutions.

Fig. 8. Spectral content of the reference augmented (low-resolution) solution. The
leading part of the DAHD power spectrum (shown are 30 largest |𝜆| at each frequency)
of the upper-layer PV anomaly. The prominent peak at ≈ 20 years (blue dots)
corresponds to the LFV, which is structurally similar to the reference one obtained
in the high-resolution solution (Fig. 2b).

goals of this paper, but we speculate that this is because of the incon-
sistencies between the imposed eddy forcing and the large-scale flow
response, which enhance material transport across the eastward jet and,
thus, reduce the PV contrast between the gyres.

We analysed the DAHD spectrum to continue assessment of the
quality of the reference augmented solution. A key problem of the
unconstrained augmented low-resolution solution is the absence of the
LFV. In contrast, the reference augmented solution recovers the LFV,

albeit it is less intensive (Fig. 8; compare with Fig. 2). Overall, the
shape and magnitude of the DAHD spectrum are well reproduced.
The patterns of the leading LFV EOFs are also captured qualitatively
well (not shown). To summarize, the augmented reference solution is
characterized by significant improvement of not only the spatial flow
structure but also the LFV characteristics. By considering the latter
property, we add a quality requirement for assessing the performance
of the upcoming parameterization.

As mentioned above, the eddy forcing is not unique and depends
on the flow decomposition into a combination of large- and small-scale
components. Complete analysis of the sensitivity to the decomposition,
as well as the search for objective and optimal decompositions, remains
beyond the scope of this paper. However, we studied the dependence
of the augmentation on the averaging filter width 𝑊 , by considering
filters with the shorter 𝑊 = 11 (corresponds to ∼ 75 km in the
physical scale) and the longer 𝑊 = 31 (∼ 225 km). Relative to the
reference case with 𝑊 = 21, the augmented solutions with 𝑊 = 11
and 𝑊 = 31 produce underpredicted and overpredicted eastward jet
extensions, respectively (Fig. 9), and the corresponding DAHD spectra
are characterized by the lower and higher magnitudes, respectively (not
shown), which is consistent with the differences in eddy intensity. From
this we conclude that for a non-eddy-resolving grid, with the nominal
resolution about half of the first baroclinic Rossby deformation radius,
the optimal flow decomposition scale is about 4 deformation radii. In
other words, the augmentation allows to coarsen the grid by an order
of magnitude, which is quite encouraging.

6. Conclusions and discussion

We have presented a general data-driven approach on augmenting
low-resolution ocean circulation models with a specifically tailored
extra (eddy) forcing that represents eddy feedbacks, which cannot
be properly resolved. The eddy forcing is inferred diagnostically by
decomposing the high-resolution model solution, which is treated as the
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Fig. 9. Dependence of the augmented solution on the decomposition filter width. Standard deviation of the upper-layer PV anomaly from the reference augmented solution based
on the averaging window: (a) 𝑊 = 11 (corresponds to 75 km); (b) 𝑊 = 31 (225 km). Compare with Fig. 7c illustrating the outcome of a more optimal filter width.

available data, into a combination of large- and small-scale flow com-
ponents (both are spatio-temporal fields). The forcing, first, is applied
as it is, but, then, it is modified to be dynamically consistent with the
low-resolution model. For this we applied the novel method utilizing
spatio-temporal characteristics of the low-resolution Jacobian operator
(i.e., nonlinear advection term) and removes the ‘‘double counting’’
effect due to partially resolved eddies of the low-resolution dynamics.
We refer to this method as the constrained augmentation. The geomet-
rical shape of the eastward jet extension and its adjacent recirculation
zones, as well as the interdecadal low-frequency variability (LFV) of the
constrained augmented solution are significantly improved towards the
eddy-resolving truth.

Our results can be extended in several directions. First, feedback
from the low-resolution model can be interactively incorporated into
online calculation of the eddy forcing (e.g., as in Berloff, 2005a), pro-
vided that the eddy field is statistically emulated based on the available
data (Kravtsov et al., 2005; Kondrashov and Berloff, 2015; Kondrashov
et al., 2018a). In this case the coupling between eddy and large-scale
dynamics should be more consistent. In the meantime, we explored
the eddy forcing extracted from the high-resolution data, assuming
that the large-scale flow component is indeed an accurate solution of
the low-resolution model, which is not necessarily the case. A related
issue concerns the consistency of the applied flow decomposition. More
focused research into effects of scale-adaptive decompositions, which
have a spatial filter width (and even shape) depending on the local
spatial correlation radius may improve quality of the augmented low-
resolution model. Treating temporal filtering in a similar way is also
on the wish-list.

The utility of a long record of the eddy forcing, as in the present
study, is unclear and should be studied separately. We hypothesize
that only short-time variability of the eddy forcing actually matters,
and, if true, this will justify shorter statistical emulations of the eddies.
The question of augmenting models with incomplete or noisy data is
big, problematic, and completely left out for separate studies. Finally,
extending the approach presented in this paper, as well as its obvious
extensions mentioned above, to the comprehensive general circulation
models written in terms of primitive equations will be a practical step
forward.
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