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ABSTRACT

A framework for parameterizing eddy potential vorticity fluxes is developed that is consistent with con-

servation of energy and momentum while retaining the symmetries of the original eddy flux. The framework

involves rewriting the residual-mean eddy force, or equivalently the eddy potential vorticity flux, as the di-

vergence of an eddy stress tensor. A norm of this tensor is bounded by the eddy energy, allowing the com-

ponents of the stress tensor to be rewritten in terms of the eddy energy and nondimensional parameters

describing the mean shape and orientation of the eddies. If a prognostic equation is solved for the eddy

energy, the remaining unknowns are nondimensional and bounded in magnitude by unity. Moreover, these

nondimensional geometric parameters have strong connections with classical stability theory. When applied

to the Eady problem, it is shown that the new framework preserves the functional form of the Eady growth

rate for linear instability. Moreover, in the limit in which Reynolds stresses are neglected, the framework

reduces to a Gent and McWilliams type of eddy closure where the eddy diffusivity can be interpreted as the

form proposed by Visbeck et al. Simulations of three-layer wind-driven gyres are used to diagnose the eddy

shape and orientations in fully developed geostrophic turbulence. These fields are found to have large-scale

structure that appears related to the structure of the mean flow. The eddy energy sets the magnitude of the

eddy stress tensor and hence the eddy potential vorticity fluxes. Possible extensions of the framework to

ensure potential vorticity is mixed on average are discussed.

1. Introduction

The ocean is populated by an intense geostrophic

eddy field with a dominant energy-containing scale on

the order of 100 km at midlatitudes. To obtain plausible

turbulent cascades of dynamic and passive tracers, it is

necessary for models to resolve spatial scales of at least

an order of magnitude higher, with grid spacings of

10 km if not finer (Hecht and Smith 2008). Thus, ocean

climate models are unlikely routinely to resolve geo-

strophic eddies for the foreseeable future and further

development and validation of improved parameteriza-

tions remains an important task. Moreover, development

and validation of improved eddy parameterizations is

an excellent strategy for testing and further advancing

our knowledge of how geostrophic ocean eddies impact

the large-scale circulation.

A popular parameterization of geostrophic eddies

is the scheme of Gent and McWilliams (1990). This

scheme is motivated by the physical principle that eddies

flatten neutral density surfaces adiabatically and do so

via extraction of potential energy from the mean state,

modeled by the inclusion of an eddy-induced overturn-

ing circulation acting to flatten neutral surfaces (Gent

et al. 1995), equivalent to a diffusion of the height of

neutral surfaces. Despite many notable model improve-

ments offered by the Gent and McWilliams closure

(Danabasoglu et al. 1994; Gent 2011), the influence of

eddy Reynolds stresses is neglected. This results in

a number of processes being poorly modeled by the

scheme, including freely decaying turbulence and the

establishment of Fofonoff gyres (Cummins 1992; Wang

and Vallis 1994), strong recirculations around topo-

graphic features (Bretherton and Haidvogel 1976), and the

formation of jets as a result of up-gradient momentum
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fluxes (Starr 1968; McIntyre 1970) (also see Eden 2010,

for a recent attempt to parameterize up-gradient mo-

mentum fluxes).

An alternative concept to the Gent and McWilliams

closure is that geostrophic eddies mix potential vorticity

along neutral density surfaces (Green 1970; Rhines and

Young 1982b). The idea that eddies mix potential vor-

ticity in this manner arises from the result that fluid

parcels materially conserve their potential vorticity in

the absence of forcing and dissipation and therefore

might be expected to mix the potential vorticity along

neutral surfaces like a passive tracer. This has led to the

idea that the eddy flux of potential vorticity can be pa-

rameterized as being directed down the mean gradient

potential vorticity gradient,

Q9u9
b

5 2k$bQb. (1)

Here, Q is the Rossby–Ertel potential vorticity (e.g.,

Pedlosky 1987; Vallis 2006), u is the horizontal velocity,

k is an eddy diffusivity (normally assumed positive defi-

nite), and $b represents the component of the gradient

operator directed along a buoyancy surface; primes and

overbars represent transient and time-mean components,

where the mean is defined through a suitable filtering

operator, here evaluated on a buoyancy surface.

However, because potential vorticity is a fundamental

dynamical tracer and because the dynamics are con-

strained by conservation principles, constraints upon k

are implicit in such a down-gradient potential vorticity

closure. Specifically, although such a down-gradient clo-

sure leads to a consistent eddy enstrophy budget, it does

not in general lead to a consistent eddy energy budget

or satisfy relevant momentum constraints. Exclusion of

these constraints can therefore result in physically in-

consistent flows. In the following, we discuss these short-

comings by considering two simple examples, in which

the eddy potential vorticity fluxes are strongly constrained

by the need to conserve energy and momentum, respec-

tively. For a more general discussion, the reader is re-

ferred to Salmon (1998, chapter 6).

a. Conservation of energy

In Adcock and Marshall (2000), an idealized flow

over topography is presented, sketched schematically in

Fig. 1. The configuration consists of an inverted reduced-

gravity model with a moving abyssal layer overlaying

a seamount. Complete homogenization of the abyssal

potential vorticity requires the layer interface between

the abyssal and upper layers to rise completely over the

seamount. Such motion is forbidden because of ener-

getic constraints: such a final state has a higher energy

than the initial state. Rather, Adcock and Marshall (2000)

conclude, based on further numerical integrations that

in this case potential vorticity is partially mixed, with the

degree of mixing constrained by the initial system en-

ergy. Similar behavior was first described in a barotropic

model by Bretherton and Haidvogel (1976).

In Eden and Greatbatch (2008), a modification to the

Gent and McWilliams closure is formulated with such

an energy constraint integrated into the formulation.

The thickness diffusivity is estimated from the eddy

energy using mixing length theory, and the eddy energy

is carried as a prognostic variable by solving a param-

eterized eddy kinetic energy budget. In Marshall and

Adcroft (2010), it is shown that an energetically con-

strained down-gradient potential vorticity closure leads

to a parameterized analog of Arnold’s first stability the-

orem (Arnold 1965).

b. Conservation of momentum

Consider the specific case of a zonal, periodic chan-

nel of uniform depth, as sketched in Fig. 2. Utilizing an

appropriate d-sheet definition of potential vorticity to

account for surface buoyancy anomalies, it can be shown

that, in a quasigeostrophic framework (Bretherton 1966),

ð ð ð
q9y9

z
dx dy dz 5 0. (2)

Here, q is the quasigeostrophic potential vorticity; y is

the meridional velocity component; x, y, and z are zonal,

meridional, and vertical Cartesian coordinates; and the

average is evaluated at constant z, consistent with the

quasigeostrophic approximation. This result is clear when

one considers the meridional potential vorticity flux as

the divergence of the Eliassen–Palm flux (Andrews and

FIG. 1. Schematic diagram illustrating a difficulty with eddy

closures based on unconstrained potential vorticity mixing (adap-

ted from Adcock and Marshall 2000). Flow is confined to an abyssal

layer, underlying an infinitely deep, motionless upper layer. (left)

The initial state consists of a set of geostrophically balanced eddies,

associated with a deformed layer interface (solid line), above a

seamount (solid shading). (right) If the eddies were to completely

homogenize the potential vorticity field, this would require the

layer interface to rise completely over the seamount and in turn

a large anticyclonic circulation around the seamount. However, the

energy of this hypothetical end state exceeds that in the initial state,

indicating that unconstrained potential vorticity mixing is physi-

cally impossible.
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McIntyre 1976), subject to zero normal eddy flux on do-

main boundaries. Hence, eddies can only redistribute

but not create momentum.1

Now suppose that the eddy flux of potential vorticity is

parameterized through a down-gradient closure. Then,

q9y9
z

5 2k
›qz

›y
0

ð ð ð
q9y9

z
dx dy dz 6¼ 0,

unless very strong constraints are imposed on k (Green

1970; Marshall 1981; White and Green 1982; Killworth

1997). In particular, k . 0 implies that ›qz/›y must

change sign within the domain; or, conversely, a mean

flow for which ›qz/›y is positive or negative definite re-

quires that k 5 0. This is no more than a heuristic deri-

vation of the Charney–Stern stability criterion (Charney

and Stern 1962), once again indicating that the con-

straints imposed by conservation principles are closely

related to stability criteria in classic stability theory (for

related discussions, see Vallis 2006, chapter 6; Wood and

McIntyre 2009).

c. Aims of this paper

In this paper, we formulate a parameterization frame-

work whereby momentum and energy constraints are

satisfied by construction. Specifically, we seek to relate

the eddy stress tensor, whose divergence is the eddy po-

tential vorticity flux, to the total (kinetic plus potential)

eddy energy. Subject to appropriate boundary conditions

on the components of the eddy stress tensor, this satisfies

the integral momentum constraint by construction and can

satisfy energy conservation subject to solving for a pa-

rameterized eddy energy budget. This manuscript repre-

sents an initial contribution toward the longer-term goal of

developing an eddy parameterization that mixes potential

vorticity while conserving energy and momentum.

The paper proceeds as follows. In section 2, we pres-

ent an overview of the new framework and list the

benefits of parameterizing the eddy shape and orienta-

tion, rather than the eddy potential vorticity fluxes di-

rectly. In section 3, we derive a bound for a norm of

the eddy stress tensor expressed in terms of the total

eddy energy. In section 4, this bound is used to reexpress

the stress tensor in terms of the eddy energy and di-

mensionless parameters relating to the eddy shape and

orientation. In section 5, we show that the functional

form of the Eady growth rate is retained by this new

framework. We further show that a down-gradient buoy-

ancy closure in the new framework yields a variant of

the Gent and McWilliams scheme that is similar in

form to that proposed by Visbeck et al. (1997). In sec-

tion 6, we present results from a three-layer baroclinic

quasigeostrophic double-gyre simulation and show that

the nondimensional parameters are of tractable order

(i.e., that they are not vanishingly small) and have large-

scale structure. This confirms that the eddy energy sets

the magnitude of the eddy stress tensor. The paper con-

cludes with a summary in section 7, including a discussion

of how one might enforce potential vorticity mixing

within this framework.

2. The new framework

We seek a framework for parameterizing eddy poten-

tial vorticity fluxes in a manner that is consistent with

conservation of both energy and momentum. We ini-

tially discuss the more general residual-mean equations,

where the eddy forcing appears as the divergence of

a stress tensor. We then restrict our analysis to quasi-

geostrophic dynamics, which, although requiring further

assumptions for its applicability, provides a tractable

framework in which to progress.

a. Residual-mean equations

Our starting point is the equations of motion written in

residual-mean form. The key idea, following Greatbatch

and Lamb (1990), Wardle and Marshall (2000), and

Ferreira and Marshall (2006), is to write the equations

in terms of residual-mean variables, such that all of the

eddy forcing appears on the right-hand side of the mo-

mentum equation through a term involving only the eddy

potential vorticity flux.

FIG. 2. Schematic diagram illustrating a further difficulty with

eddy closures based on unconstrained potential vorticity mixing.

The flow in the zonal channel is such that the meridional potential

vorticity gradient is positive definite. Conservation of zonal mo-

mentum requires that the meridional eddy potential vorticity flux

q9y9
z

integrates to zero over the entire domain. However, this is

consistent with a local down-gradient potential vorticity closure if

the eddy diffusivity is identically zero. The latter is consistent with

the unconditional stability of the initial flow.

1 One may also consider this constraint as a conservation of

angular momentum; conservation of zonal momentum in the ro-

tating frame is equivalent to conservation of angular momentum

in an inertial frame.
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Recently, Young (2012) has shown that the residual-

mean formulation requires far fewer assumptions than

previously suspected (also see Andrews 1983, for the

zonally averaged case). Assuming only that the buoyancy

increases monotonically with height, Young shows that

the Boussinesq primitive equations can be rewritten in

residual-mean form,

Du

Dt
1 f k 3 u 1

$p

r0

5 F 2 $3 � E, (3)

1

r0

›p

›z
5 b, (4)

$ � u 1
›w

›z
5 0, and (5)

Db

Dt
5 B. (6)

Here, u and w are the horizontal and vertical velocities,

$ is the horizontal gradient operator, $3 � is the three-

dimensional divergence operator, D/Dt 5 ›/›t 1 u � $ 1

w›/›z is the Lagrangian time derivative, f is the Coriolis

parameter, p is pressure, r0 is the reference density, F

represents explicit mechanical forces, k is the unit ver-

tical vector, b is the buoyancy, and B represents explicit

buoyancy forcing. Eddy forcing is provided by the di-

vergence of a (3 3 2) eddy stress tensor2 E consisting of

the three-dimensional Eliassen–Palm vectors in each

of its columns (see section 2c). The main virtue of this

formulation is that each of the variables in Eqs. (3)–(6)

are defined as residual-mean quantities where the eddy

forcing is confined to the right-hand side of the hori-

zontal momentum equation and nonresidual-mean vari-

ables do not appear. The details of the averaging in

(3)–(6) are complicated, and the reader should refer to

Young (2012) for full details.

For the remainder of this paper, we restrict our atten-

tion to quasigeostrophic dynamics. We make the ap-

proximation that the eddy flux of Rossby–Ertel potential

vorticity along neutral density surfaces is closely related

to the eddy flux of quasigeostrophic potential vorticity

along height surfaces (following Charney and Stern 1962;

Treguier et al. 1997), such that

$3 � E ’ k 3 q9u9
z

(7)

(see appendix), where

q 5 =2c 1 by 1
›

›z

f 2
0

N 2
0

›c

›z

 !
(8)

is the quasigeostrophic potential vorticity; c is the geo-

strophic streamfunction defined such that u 5 2›c/›y,

y 5 ›c/›x, and f 5 f0 1 by, where f0 and b are constants;

and N
0

5N
0
(z). In (7) and all subsequent expressions,

the average is taken at constant height.

The quasigeostrophic approximation has a number of

obvious disadvantages, including the neglect of finite

variations in bottom topography, the importance of which

has been emphasized in section 1b. Nevertheless, we

hope that the relation between the eddy forcing in the

residual-mean primitive equations and in the quasigeo-

strophic equations presents a clear road map for applying

our ideas to the residual-mean primitive equations in

future manuscripts.

b. Conservation of energy

Having written the equations in residual-mean form,

it is straightforward to evaluate the conversion of en-

ergy between the mean flow and eddies. For quasigeo-

strophic dynamics, the eddy energy equation is

›E

›t
1 $3 � ( . . . ) 5 u � k 3 q9u9

z
2 DE(E)

5 $c � q9u9
z

2 DE(E), (9)

where

E 5
$c9 � $c9

z

2
1

f 2
0

2N 2
0

›c9

›z

� �2
z

(10)

is the eddy energy and D
E

is an operator represent-

ing eddy energy dissipation due to bottom drag (e.g.,

Sen et al. 2008), loss of energy to internal waves (e.g.,

Molemaker et al. 2005; Polzin 2008; Marshall and

Naveira Garabato 2008; Nikurashin and Ferrari 2010),

western boundary dissipation (e.g., Dewar and Hogg

2010; Zhai et al. 2010), and other processes. The term

in brackets on the left-hand side of (9) represents internal

energy fluxes: for example, due to westward Rossby

propagation (Chelton et al. 2007).

Crucially, the first term on the right-hand side of (9)

represents the conversion of energy from the mean flow

to the eddies; a corresponding term appears in the mean

energy equation, such that the total energy (mean plus

2 Young has pointed out that E should be defined as two sep-

arate vectors, because E does not, in general, transform as a ten-

sor (W. R. Young 2011, personal communication). However, in

the quasigeostrophic limit we consider for the remainder of this

paper, E does transform as a tensor under horizontal transforma-

tions and might therefore be termed a ‘‘quasigeostrophic tensor.’’

542 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 42



eddy) is conserved aside from explicit energy sources

and sinks. Notwithstanding the challenges of parame-

terizing the internal eddy energy fluxes and eddy energy

dissipation, here we assume that (9) is solved for the

total (kinetic plus potential) eddy energy and we use

this to constrain the magnitude of the eddy stress ten-

sor, as defined in the following subsection. Note that

Eden and Greatbatch (2008), in contrast, solve a prog-

nostic eddy kinetic energy equation and use this to set

the value of the eddy diffusivity, but further approxi-

mations must be applied in constructing an eddy kinetic

energy budget.

c. Eddy stress tensor

Through (7), the residual-mean eddy force, or equiv-

alently the quasigeostrophic eddy potential vorticity

flux, can be expressed as the divergence of an eddy stress

tensor (Plumb 1986). The stress tensor E has columns

equal to the Eliassen–Palm flux vectors and takes the

form

E 5

2M 1 P N

N M 1 P

2S R

0
@

1
A, (11)

where

M 5
y92 2 u92

z

2
, N 5 u9y9

z
, P 5

b92
z

2N 2
0

,

R 5
f0

N 2
0

b9u9
z
, and S 5

f0

N 2
0

b9y9
z

(12)

and where f0 is the mean value of the Coriolis param-

eter and N 0 is the buoyancy frequency. Here, M and N

represent the eddy Reynolds stresses associated with

lateral momentum transfer,3 P is the eddy potential en-

ergy. Here, R and S are proportional to the components

of the eddy buoyancy flux; under the quasigeostrophic

approximation, these are in turn equal to the interfacial

eddy form stress associated with vertical momentum

transfer (Munk and Palmén 1951; Johnson and Bryden

1989; Aiki and Richards 2008). Note that P yields a purely

divergent residual-mean force, equivalent to a rotational

potential vorticity eddy flux, and hence the stress due to

P has no influence on the resulting dynamics.

The terms involving M and N, as well as the related

barotropic ‘‘E vector,’’ are discussed in Hoskins et al.

(1983). The lower row (the buoyancy fluxes) contains

exactly those terms that are parameterized in Gent and

McWilliams (1990) and Greatbatch and Lamb (1990).

The surface and bottom boundary conditions for the

eddy form stresses are, neglecting variations in bottom

topography (consistent with the quasigeostrophic ap-

proximation), R 5 S 5 0. On lateral boundaries, M 5

2K cos2f0 and N 5 K sin2f0, where f0 is the angle at

which the boundary is oriented with respect to the x axis

and K is the eddy kinetic energy,

K 5
u9 � u9

z

2
.

Note that, with no-slip boundaries, which are common in

ocean models, M 5 N 5 0.

Our proposal is to parameterize the four dynamically

relevant components of the eddy stress tensor, M, N, R,

and S, rather than the eddy potential vorticity flux di-

rectly. Note that, although this requires parameteriza-

tion of four eddy fluxes (M, N, R, and S), this is no more

than in the original equations of motion (two eddy Rey-

nolds stresses and two eddy buoyancy fluxes), though

two more than in the residual-mean equations (two

eddy potential vorticity fluxes).

There are number of potential advantages of this

approach:

1) It follows from (7), (11), and the boundary conditions

that appropriate momentum constraints are satisfied.

For example, in a zonal channel (2) is satisfied.

2) It is easily ensured that the parameterized eddy

potential vorticity flux preserves the ‘‘tensorial prop-

erties’’ and symmetries of the original eddy potential

vorticity flux (cf. Popovych and Bihlo 2011, manu-

script submitted to J. Math. Phys.).

3) If we neglect the Reynolds stresses, M and N, then

this formulation reduces to parameterizing the eddy

form stress, as in Gent and McWilliams (1990) and

Greatbatch and Lamb (1990). Thus, the framework is a

natural one to use for extending Gent and McWilliams

to include contributions from Reynolds stresses.

4) The two columns of the eddy stress tensor are the

Eliassen–Palm vectors, associated with the flux of

wave activity, in turn related to the propagation of

eddy energy (Eliassen and Palm 1961; Andrews and

McIntyre 1976). These may provide useful informa-

tion for parameterizing the fluxes of eddy energy.

5) The eddy energy provides a rigorous upper bound on a

norm of the eddy stress tensor (detailed in section 3).

Note that it is the total eddy energy that is bounded,

not the eddy kinetic energy used by Eden and Great-

batch (2008) for which there is no conservation law.

3 Note that the signs of the fluxes M and N are defined in-

consistently in the literature.
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6) This upper bound allows the eddy stress tensor to be

rewritten, with no loss of generality, in terms of the

eddy energy, two eddy anisotropy parameters, and

trigonometric factors involving three eddy orienta-

tions. Assuming that the eddy energy is available from

the solution of a parameterized eddy energy equation,

all of the remaining unknowns are nondimensional

and bounded in magnitude by unity. All dimensional

freedom in the parameterization problem is therefore

encapsulated in the eddy energy (section 4).

7) The eddy orientations have a strong connection with

classical stability theory, the eddies extracting energy

from the mean flow when the eddies lean against the

mean shear, and conversely returning energy to the

mean flow when the eddies lean with the mean shear

(section 4).

8) As a result of preserving the symmetries of the

original eddy potential vorticity flux, the framework

is able to retain some results from classical stability

theory, such as the functional form of the Eady

growth rate (section 5) and, with a further constraint

to ensure potential enstrophy is dissipated, Arnold’s

first stability theorem (section 7).

9) Application to the Eady problem suggests a con-

nection between the proposed framework and the

Visbeck et al. (1997) form of the Gent and McWilliams

eddy closure, in the limit of negligible Reynolds

stresses (section 5).

As with any new approach, there are also disadvan-

tages. Here, the most significant disadvantage is the

loss of explicit potential vorticity mixing. On the other

hand, for the reasons outlined in section 1, we argue that

simple-minded down-gradient diffusive closures have

fundamental limitations that, despite four decades of

research (since Green 1970), remain far from being re-

solved, if indeed this is possible (see Ringler and Gent

2011, for a related discussion). In section 7, we propose

a resolution to this particular issue by solving a prognostic

budget for the eddy potential enstrophy, in precisely the

same manner as the eddy energy, and using this budget to

ensure that potential vorticity is mixed on average

through explicit dissipation of eddy potential enstrophy.

3. Bounded norm of the eddy stress tensor

We now proceed to bound the magnitude of the eddy

stress tensor (11) by the eddy energy. This will allow us,

in section 4, to rewrite the eddy stress tensor in terms

of the eddy energy and bounded nondimensional pa-

rameters.

First, we note that the components of the eddy stress

tensor, M and N, are bounded by

M2 1 N2 # K2, (13)

where K is the eddy kinetic energy (Hoskins et al. 1983).

To prove (13), note that the result is an equality at any

instant in time, before averaging, then apply the triangle

inequality to the integral in the averaging operator. Sec-

ond, we note that P is exactly the eddy potential energy.

Third, again through application of the triangle in-

equality, we have

N 2
0

2f 2
0

(R2 1 S2) # 2KP #
E2

2
. (14)

The latter inequality follows by noting P 5 E 2 K and

maximizing the resultant quadratic.

Summing each of the above results, we obtain the final

result,

1

2
(2M 1 P)2

1 N2 1 N2 1 (M 1 P)2
1
N 2

0

f 2
0

(R2 1 S2)

" #

5 M2 1 N2 1 P2 1
N 2

0

2f 2
0

(R2 1 S2) # E2, (15)

where E is the total eddy energy as defined in Eq. (10).

The left-hand side of (15) represents a weighted4 Fro-

benius norm of the eddy stress tensor and bounds its

magnitude. Note that the bound is expressed in terms of

the total eddy energy and not simply the eddy kinetic

energy used to set the magnitude of the eddy diffusivity

in Eden and Greatbatch (2008). Physically, a finite eddy

buoyancy flux requires both eddy kinetic energy, for fi-

nite u9, and eddy potential energy, for finite b9.

4. Eddy flux angles and eddy anisotropies

Without any loss of generality, the bound (15) allows

us to rewrite the components of the eddy stress tensor

for an arbitrary eddy field in the form

M 5 2gmE cos2fm cos2l, N 5 gmE sin2fm cos2l,

P 5 E sin2l, R 5 gb

f0

N 0

E cosfb sin2l,

S 5 gb

f0

N 0

E sinfb sin2l. (16)

Here, we have introduced two eddy anisotropies, 0 # gm #

1 and 0 # gb # 1; two eddy flux angles, 0 # fm # p and

4 Weighting of vertical components by factors of N
0
/f

0
occurs

frequently in quasigeostrophic theory.
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2p # fb # p; and an eddy energy partition angle, 0 # l

# p/2. Thus, eddy fluxes are recast in terms of six pa-

rameters, five of which are independent. Five of the pa-

rameters are dimensionless and bounded, with the only

remaining dimensional parameter being the eddy energy

E. In the limit of plane waves, it follows that gm 5 gb 5 1

and fm 5 fb 5 f9, the angle of phase propagation.

The anisotropy parameter gm measures the relative

magnitudes of the Reynolds stresses and eddy kinetic

energy,

gm 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 1 N2

p
K

. (17)

Similarly, the anisotropy parameter gb measures the rel-

ative magnitude of the eddy buoyancy fluxes to the

(square root of the) kinetic and potential energies,

gb 5
N 0

2f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 1 S2

KP

s
. (18)

One can further define a ‘‘net anisotropy’’ parameter,

ge 5
1

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 1 N2 1 P2 1

N 2
0

2f 2
0

(R2 1 S2)

s
, (19)

where 0 # ge # 1. This quantifies the extent to which the

bound (15) constrains the magnitude of the eddy fluxes.

It follows that ge, gm, and gb are related through

(1 2 g2
e) 5 (1 2 g2

m) cos4l 1
1

2
(1 2 g2

b) sin22l. (20)

However, ge contains no additional information to that

already contained within gm, gb, and l.

The angles fm and fb measure the dominant orien-

tation of the eddy momentum and buoyancy fluxes,

cos2fm 5 2
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 1 N2
p , cosfb 5

Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 1 S2

p . (21)

Note that there is a p rotation symmetry in M and N

as opposed to a 2p rotation symmetry in R and S, con-

sistent with the symmetry of the original eddy fluxes.

Thus, parameterizing these angles ensures that the com-

ponents of the eddy stress tensor retain the correct rota-

tional symmetries. The angle l measures the partitioning

of eddy energy between kinetic and potential forms,

K

E
5 cos2l,

P

E
5 sin2l. (22)

For an elliptical horizontal eddy, shown in Fig. 3a, it

follows that fm is the angle of eddy orientation and gm

is a measure of the eddy eccentricity in the horizontal,

gm 5
c2

1 2 c2
2

c2
1 1 c2

2

, (23)

where c1 and c2 are as shown in Fig. 3a. This interpre-

tation of fm and gm has previously been derived in

Hoskins et al. (1983).

The terms gb and l measure the vertical shape of

the eddies. The buoyancy fluxes can be written equiva-

lently as

R 5 gt

f0

N 0

E sin2ft cosfb, S 5 gt

f0

N 0

E sin2ft sinfb,

where gt and ft are defined such that

tan2ft 5 gb tan 2l, gt 5
cos2l

cos2ft

and where it is easily shown that 0 # gb # gt # 1. Then,

for a vertically planar elliptical eddy, shown in Fig. 3b,

it follows that ft is the angle of eddy tilt in the vertical

and gt is a measure of the eccentricity,

gt 5
d2

1 2 d2
2

d2
1 1 d2

2

, (24)

where d1 and d2 are as shown in Fig. 3b.

This geometric interpretation of the eddy fluxes

also provides a strong physical connection with linear

stability theory (Pedlosky 1987, chapter 7), illustrated

schematically in Fig. 4. Eddies extract energy from the

mean flow when they lean into the shear, consistent with

instability; conversely, eddies return energy to the mean

flow when they lean with the shear, consistent with sta-

bility. A related discussion of observed and modeled

eddy Reynolds stresses decelerating and accelerating

the Kuroshio is given in Waterman et al. (2011, partic-

ularly their Fig. 24); also see Greatbatch et al. (2010) for

an illustration of eddy Reynolds stresses accelerating the

separated Gulf Stream.

5. Application to the Eady model

In the next two sections, we apply the new framework

to two limiting cases: (i) baroclinic instability in a chan-

nel and (ii) fully developed turbulence in a closed, wind-

driven basin.

Following Eady (1949), we consider a uniform bar-

oclinic shear in an infinite zonal channel,
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u 5 Lz 0 c 5 2Lyz 0 b 5 2f0Ly.

The Coriolis parameter is assumed constant (i.e., f 5 f0),

and hence the potential vorticity is uniform at each level,

Q 5 f0, except at the upper and lower boundaries, where

we interpret the buoyancy gradients as a d sheet of po-

tential vorticity anomalies following the approach of

Bretherton (1966). Eady theory predicts that the energy

of the most unstable mode on this background shear

grows at a rate,

2T 21
Eady ’ 0:62

f0L

N 0

. (25)

Note that this is twice the growth rate of the eddy

streamfunction and other linear eddy quantities.

a. Eady growth rate in the new parameterization
framework

We first show that the functional form of the Eady

growth rate is automatically retained by the new param-

eterization framework. The global eddy energy budget is

›

›t

ð ð ð
E dx dy dz 5 2

ð ð ð
uq9y9

z
dxdy dz

5

ð ð ð
LS dx dy dz. (26)

The terms involving M and N integrate out through the

boundary conditions. Assuming only that S is directed

down the mean buoyancy gradient, necessary for the

eddy energy to grow, and

S 5 a
f0E

N 0

from (16), where a 5 gb sinfb sin2l # 1 is an un-

determined nondimensional parameter, we find

FIG. 3. (a) An elliptic barotropic eddy at horizontal angle fm and with major and minor axes

of c1 and c2, respectively. It follows that fm is the eddy momentum flux angle and that the

momentum anisotropy is a measure of the eddy eccentricity, gm 5 (c2
1 2 c2

2)/(c2
1 1 c2

2). Here,

u9 and y9 are normalized by the maximum value of u9. (b) An elliptical vertically planar baro-

clinic eddy at vertical angle ft and with major and minor axes of d1 and d2, respectively. The

eddy tilt ft and eccentricity gm 5 (d2
1 2 d2

2)/(d2
1 1 d2

2) are determined by the buoyancy anisot-

ropy parameter gb and the eddy energy partitioning l. The u9 and b9/N 0 are normalized by the

maximum value of b9/N
0
.

FIG. 4. Schematic diagram illustrating the relation between the

orientation of eddies and their stability. The solid arrows represent

the background mean flow u, and the dashed contours represent

eddy streamfunction contours c9: (a) purely barotropic eddies that

tilt in the horizontal and (b) purely baroclinic eddies that tilt in the

vertical. Eddies that lean against the mean shear are unstable, in

the sense that they extract energy from the mean flow and grow;

conversely, eddies that lean into the mean shear are stable, in the

sense that they surrender energy to the mean flow and decay.
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›

›t

ð ð ð
E dx dy dz 5

ð ð ð
a

f0L

N 0

E dx dy dz

5 ~a
f0L

N 0

ð ð ð
E dx dy dz, (27)

where ~a # amax # 1.

Thus, without specifying the form of the eddy closure

for the components of the stress tensor, other than that

the eddy buoyancy flux is on average down the mean

buoyancy gradient, this new approach is guaranteed to

preserve the functional form of the Eady growth rate,

with an upper bound that is within a factor of 0.62 of

the growth rate actually obtained. This is in marked

contrast to previous down-gradient eddy closures in

which arbitrary, dimensional eddy diffusivities need to be

specified.5

b. A down-gradient buoyancy closure in the new
parameterization framework

As shown above, the eddy Reynolds stresses have no

integral effect on the eddy energy growth in the Eady

problem, effectively reducing to the new approach to

that employed by Gent and McWilliams (1990) and sub-

sequent extensions. We now consider a general down-

gradient buoyancy closure and infer an effective eddy

diffusivity. Writing

b9u9
z

5
N 2

0

f0

(R, S) 5 N 0Egb sin2l(cosfb, sinfb) (28)

and applying a down-gradient buoyancy closure,

b9u9
z

5 2k$bz, (29)

it follows that

k 5 aE

ffiffiffiffiffiffi
Ri
p

f0

, (30)

where a 5 gb sin2l is a nondimensional constant, boun-

ded by unity in magnitude, and Ri 5N 2
0/j›u/›zj2 is the

Richardson number. This is a general form of the Gent and

McWilliams coefficient in a quasigeostrophic framework.

We can, for example, relate this form for the Gent and

McWilliams coefficient to Visbeck et al. (1997). Assum-

ing equipartition of eddy energy yields E ’ 2K ’ u2
eddy,

where ueddy is an eddy velocity. Following Green (1970)

and Stone (1972), the eddy velocity can be approximated

as an eddy length scale divided by the Eady growth rate,

ueddy ’ l/T Eady, yielding the result

k ’ â
f0ffiffiffiffiffiffi
Ri
p l2. (31)

This is precisely the form proposed by Visbeck et al.

(1997), which drops out of the new formulation as a nat-

ural limiting case. Note, however, that because of ambi-

guity in the definition of the eddy length scale, the

coefficient â that appears here can no longer be bounded.

Of the parameters in (30), Ri depends upon the mean

flow, whereas a and E are properties of the eddies.

Hence a down-gradient buoyancy closure in this general

form requires a parameterized eddy energy budget and

a parameterization for a. Note, however, that Visbeck

et al. (1997) find in numerical experiments that the

constant â in (31) has little spatial dependence. It should

also be noted that, in stable regions of the flow, corre-

sponding to regions of high Richardson number and to

large Eady growth time scales, the coefficient prescribed

by (30) becomes the product of a small eddy energy

(as the flow is stable) but a large Eady growth time

scale. This potentially complicates the direct application

of this functional form of the Gent and McWilliams

coefficient.

6. Application to wind-driven gyres

The eddy stress tensor decomposition (11) is general,

but it is not self-evidently applicable as a framework for

eddy parameterization. In particular, should the an-

isotropy parameters be small or should any of the pa-

rameters exhibit finescale spatial structure, then the

potential vorticity fluxes would be highly sensitive to

the details of their parameterization. In such a situa-

tion, the problem of parameterizing the geometric pa-

rameters would be highly intractable and could not be

expected to capture the influence of the eddies on the

mean flow.

In this section, we investigate, in an idealized ocean-

ographic context exhibiting fully developed geostrophic

turbulence, whether the nondimensional parameters have

a magnitude of tractable order for the purposes of pa-

rameterization (i.e., that they have an order close to

unity). We further investigate whether the parameters of

the flux decomposition exhibit large-scale structure with

features relating to the mean flow structure. For these

purposes, we use a three-layer quasigeostrophic model

to simulate a baroclinic double-gyre configuration, as de-

scribed in Berloff et al. (2007).

5 Conversely, if we assume S is directed up the mean buoyancy

gradient, then the same result is obtained, except with the opposite

sign on the right-hand side of (27); this corresponds to eddy decay

(i.e., to the stable Eady mode).
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a. Model configuration

The three-layer quasigeostrophic equations are dis-

cretized using a potential vorticity–conserving, second-

order centered finite difference formulation in space and

using the leapfrog method in time with a Robert–

Asselin filter of strength 0.1 in time. The simulations are

conducted in a square domain 2L # x # L, 2L # y # L

with a partial-slip boundary condition applied at all

lateral boundaries. The model parameters are listed in

Table 1 and correspond to a Reynolds number, defined

using the upper-ocean Sverdrup velocity scale U 5 t0/

(r1H1Lb) of Re 5 1600 and a Munk boundary layer scale

of dM 5 (n/b)1/3 5 17 km. An asymmetric wind forcing

is applied, equivalent to a prescribed Ekman upwelling

velocity in the upper layer,

wEk 5 2
pt0

r0f0L

1

A
sin

p(L 1 y)

L 1 Bx
for y # Bx,

1
pt0

r0 f0L
A sin

�
p(y 2 Bx)

L 2 Bx

�
for y . Bx,

where A 5 1.1 generates an asymmetric wind stress

amplitude in each gyre, B 5 0.2 creates a moderate tilt

of the zero wind stress line to the x axis, and t0 is a pre-

scribed parameter that sets the magnitude of the wind

stress.

The model is integrated using a uniform grid with 513

nodes in the meridional and zonal directions, corre-

sponding to 7.5-km resolution and with a time step size

of 1800 s. The model is integrated for 20 000 days, until

a statistical equilibrium is reached (determined using

measurements of the flow kinetic and potential energy),

and then integrated for a further 50 000 days, with the

eddy fluxes (12) computed based upon a time average

over this full 50 000-day window. These eddy fluxes are

decomposed into the eddy energy, the eddy anisotropies,

and the eddy angles following (16). Because the buoyancy

is defined at model layer interfaces and the velocity is

defined within layers, the buoyancy fluxes R and S are

computed within each layer by averaging the buoyancy

between the two adjacent interfaces. The eddy energy is

diagnosed by rewriting in the form

E 5
=2c92

z

4
1

›

›z

f 2
0

4N 2
0

›c92
z

›z

 !
2

q9c9
z

2
,

where this latter expression is naturally computed within

each layer. The eddy potential energy is diagnosed as

the residual of the eddy energy and eddy kinetic energy,

P 5 E 2 K.

Figure 5 shows the final instantaneous transport stream-

function and potential vorticity. One sees the expected

characteristic double-gyre regime, with an intense east-

ward jet separating two gyres and with transient eddies

observed throughout the domain. Partial homogenization

of mean potential vorticity in the middle layer and in the

central part of the domain is also observed (Holland and

Rhines 1980; Rhines and Young 1982a,b).

b. Eddy energy

The eddy energy and eddy energy partitioning angle l

are shown in Fig. 6. The eddy energy is primarily con-

centrated in the thin eastward jet, and it decreases in the

lower layers, as expected. The eddy energy partitioning

indicates that the energy is approximately equipartitioned

between potential and kinetic parts, with a slightly larger

potential energy part in the middle larger and kinetic part

in the lower layer. The normalized histogram of the par-

titioning angle l peaks at values of 0.25p, 0.28p, and

0.16p in the upper, middle, and lower layers, respectively.

Elevated values of l, indicating relatively increased po-

tential energy, are observed in the eastward jet and in the

western boundary region.

c. Eddy anisotropies

The momentum anisotropy gm and the buoyancy an-

isotropy gb are shown in Fig. 7. Significant structure is

observed in the momentum anisotropy parameter gm,

with larger values of gm observed toward the eastern

boundary. A thin zonal line of low momentum anisotropy

is observed near the northern and southern boundaries.

The buoyancy anisotropy gb also exhibits some signif-

icant structure. In particular, two clear tracks of in-

creased buoyancy anisotropy are observed on the flanks

of the eastward jet in the upper and middle layers.

Somewhat decreased values of the buoyancy anisotropy

are observed in the recirculation regions. The normal-

ized histograms of gm and gb in each layer are shown in

Fig. 8. The histogram of gm exhibits a clear peak in the

TABLE 1. Model parameters used for the quasigeostrophic

three-layer model.

Parameter Symbol Value

Domain size 2L 3840 km

Layer depths H1 250 m

H2 750 m

H3 3000 m

Deformation radii R1 40 km

R2 23 km

Partial-slip length scale a 120 km

Planetary vorticity gradient b 2 3 10211 m21 s21

Max wind stress t0 0.8 N m22

Laplacian viscosity coef n 100 m2 s21

Bottom friction coef r 4 3 1028 s21
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upper layer at gm ’ 0.15. The values of gm are observed

to increase in the lower layers. The boundary condition

for gm on lateral boundaries leads to a second peak at

gm 5 1 in all layers. The histogram of gb also exhibits

a clear peak in the upper layer at gb ’ 0.15. The values of

gb are observed to decrease somewhat in the lower layers.

d. Eddy flux angles

For completeness, the eddy flux angles fm and fb are

shown in Fig. 9. Both fm and fb show significant variation

in the region of the eastward jet and toward the western

boundary. We do not consider the detailed structure of

fm and fb here, except to note that the structure in the

flux angles is large scale and related to the structure of

the eddy anisotropies. The physical processes controlling

these structures will be studied in detail in a subsequent

manuscript.

e. Implications for parameterization

These simulations represent an initial step toward as-

sessing the utility of the eddy flux decomposition (16).

Hence, we have not examined correlations between the

parameters, either between each other or with the mean

flow. We have also limited attention to the long-term

average; one might expect low-frequency variability

of the eddy statistics. Crucially, however, the anisotropy

FIG. 5. A three-layer quasigeostrophic baroclinic double-gyre simulation. Snapshots of the

transport streamfunction HiCi in the (a) upper, (b) middle, and (c) lower layers. Snapshots of

the potential vorticity q in the (d) upper, (e) middle, and (f) lower layers.
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parameters are not vanishingly small—rather they are on

the order of ;0.1 or larger—and all geometric parame-

ters exhibit large-scale spatial structure with identifiable

features that are related to the mean flow. These are

crucial requirements for the eddy flux decomposition (16)

to serve as a useful framework for eddy parameterization.

7. Concluding remarks

In this manuscript, we have proposed a new frame-

work for parameterizing eddy potential vorticity fluxes

in ocean circulation models. The framework involves

rewriting the residual-mean eddy force, or equivalently

the eddy potential vorticity flux, as the divergence of an

eddy stress tensor. We have shown that a norm of the

eddy stress tensor is bounded by the eddy energy. This

allows the elements in the eddy stress tensor to be re-

written in terms of (i) the eddy energy, for which we

propose solving prognostic equation for the eddy energy

(following Eden and Greatbatch 2008), and (ii) non-

dimensional parameters that are bounded in magnitude

by unity and have geometric interpretation in terms of

eddy shapes and orientations. Numerical calculations

suggests that the eddy anisotropies are typically on the

FIG. 6. Eddy energy in the three-layer baroclinic double-gyre simulation. The eddy energy E

in the (a) upper, (b) middle, and (c) lower layers. The eddy energy partitioning angle l 5

arctan(P/K) in the (d) upper, (e) middle, and (f) lower layers.
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order of 0.1 in fully developed geostrophic turbulence,

indicating that the bound provides a useful constraint on

the magnitude of the eddy fluxes.

It is important to emphasize that the new framework

does not represent an eddy closure. We have merely

moved the need for parameterization from one set of

quantities (eddy potential vorticity fluxes) to another (eddy

anisotropies and tilts). Nevertheless, assuming that the

eddy energy is available at each time level, the fact that

the outstanding quantities requiring parameterization are

all nondimensional and bounded exerts strong constraints

on the resultant eddy potential vorticity fluxes, ensuring

that relevant energy and momentum constraints are

preserved. We have also demonstrated strong connec-

tions between the new framework and classical stability

theory.

a. Potential vorticity mixing

The most important physics missing from the frame-

work is the principle that eddies mix potential vorticity

along neutral density surfaces. Thus, we need to en-

sure that any parameterization of the eddy anisotropies

FIG. 7. The eddy anisotropy parameters in the three-layer baroclinic double-gyre simulation.

The momentum anisotropy parameter gm in the (a) upper, (b) middle, and (c) lower layers, on

a logarithmic color scale. The buoyancy anisotropy parameter gb in the (d) upper, (e) middle,

and (f) lower layers, on a logarithmic color scale.
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and tilts is consistent with potential vorticity mixing

and does not permit potential vorticity unmixing. An

obvious approach, analogous to the method for con-

serving total energy (Eden and Greatbatch 2008), is

to solve a prognostic equation for the eddy potential

enstrophy,

›L

›t
1 $ � ( . . . ) 5 2$q � q9u9

z
2 D

L
(L), (32)

where

L 5
q92

z

2
(33)

is the eddy potential enstrophy and D
L

is an suitable

dissipation operator. Because potential vorticity mix-

ing is equivalent to dissipation of eddy potential ens-

trophy, this allows eddy potential vorticity to be mixed

in a controlled manner, provided that we have some

mechanism to turn off the eddy fluxes when the potential

enstrophy vanishes. Moreover, it is easily shown, fol-

lowing the same approach discussed in Marshall and

Adcroft (2010), that the eddy framework then preserves

an analog of Arnold’s first stability theorem (Arnold

1965): when dq/dc is everywhere positive in free, steady

flow, eddy energy can only grow at the expense of eddy

potential enstrophy and the flow is stable in the sense of

Lyapunov.

FIG. 8. Normalized histograms of eddy anisotropy parameters in the three-layer double-gyre

simulation. The distribution is formed from a 256-interval histogram (with a linear scale),

normalized such that
Ð 1

0P(gi) dgi 5 1 in each case. The distribution of the momentum anisot-

ropy parameter gm in the (a) upper, (b) middle, and (c) lower layers. The distribution of the

buoyancy anisotropy parameter gb in the (d) upper, (e) middle, and (f) lower layers.
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FIG. 9. The eddy flux angle parameters in the three-layer baroclinic double-gyre simulation.

Note that there is a p symmetry in fm, and hence fm indicates a flux line rather than a unique

flux direction. The angles are displayed at every eighth grid point in each direction. The flux

angle associated with momentum fm in the (a) upper, (b) middle, and (c) lower layers. The

buoyancy flux angle fb in the (d) upper, (e) middle, and (f) lower layers.
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Finally, on a more speculative note, in Fig. 10 we show

the eddy potential enstrophy and its ratio with the eddy

energy. This ratio is equivalent to mean squared wave-

number in eddy energy space. In layer 1, there is close,

though not exact, correspondence between the structure

of this ratio and that of the eddy anisotropies plotted in

Fig. 7, and this ratio, although a similar correspondence is

not found in layers 2 and 3, in particular in the pool of

nearly homogenous potential vorticity where the poten-

tial enstrophy is small. In future work, we will investigate

the extent to which the ratio of the eddy potential

enstrophy and eddy energy might constrain the eddy an-

isotropies or otherwise.

b. Parameterization of eddy tilts

The numerical diagnostics suggest that equipartitioning

of eddy energy provides an adequate zero-order param-

eterization of the vertical eddy tilts. For the horizontal

eddy tilts, there are a number of potential approaches.

The first is to use classical stability theory to select

eddy angles that maximize the growth of eddy energy,

on the assumption that these are the eddies that emerge

FIG. 10. Eddy potential enstrophy and its ratio to the eddy energy in the three-layer baro-

clinic double-gyre simulation. The eddy potential enstrophy L in the (a) upper, (b) middle,

and (c) lower layers. The ratio of the eddy potential enstrophy to the eddy energy L/E in the

(d) upper, (e) middle, and (f) lower layers.
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at finite amplitude. The second is to select eddy angles

that maximize mixing of potential vorticity, although

preliminary results suggest that such an approach requires

calculation of high-order derivatives and is impractical.

Alternatively, to the extent that the eddies can be

modeled as linear waves, one might use ray-tracing the-

ory (e.g., Bühler 2009) to determine how the eddies are

deformed by the background shear. Intriguingly, the ray-

tracing formulation is also closely related to the propa-

gation of wave activity, in turn related to the propagation

(and growth) of eddy energy. It is therefore possible that

a ray-tracing approach could be used simultaneously to

solve for the propagation and growth of eddy energy as

well as the deformation of eddies by the mean flow.

c. Divergent eddy potential vorticity fluxes

The new framework relates the total eddy potential

vorticity flux to the divergence of the eddy stress tensor.

However, it is only the divergent component of the eddy

potential vorticity flux that influences the evolution of the

mean flow; the rotational flux results in a divergent force

on the right-hand side of the momentum Eq. (3) that

projects on the pressure gradient and has no influence on

the evolution of the flow (in the three-dimensional, non-

quasigeostrophic residual-mean equations, the divergent

and rotational fluxes must be defined through a three-

dimensional decomposition; cf. Marshall and Pillar 2011).

An important issue is therefore the extent to which

the new framework provides useful constraints on the

magnitude and structure of the divergent, rather than

full, eddy potential vorticity fluxes. Previous diagnostics

of rotational and divergent eddy potential vorticity

fluxes suggest that the latter are typically an order of

magnitude smaller (Marshall and Shutts 1981; Roberts

and Marshall 2000). The new framework includes an

explicit rotational potential vorticity flux through the

contribution of the eddy potential energy, but it is likely

that the remaining terms also project significantly onto

the rotational eddy potential vorticity flux.

d. Application to the primitive equations

Finally, although we have focused on quasigeostrophic

eddy potential vorticity fluxes in this manuscript, for

reasons of analytical tractability, the fact that eddy fluxes

of Rossby–Ertel potential vorticity appear on the right-

hand side of the residual-mean Eq. (3) provides a clear

road map for applying any parameterization developed

using the new framework directly to the primitive equa-

tions. Although this will require further assumptions, the

use of an eddy stress tensor means that it should be

straightforward to enforce any momentum constraints.

We also anticipate that the application of the new frame-

work to the primitive equations may be of value for

studying the influence of variable bottom topography

on the eddy potential vorticity fluxes and their forcing

of mean flows.
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APPENDIX

Quasigeostrophic Residual-Mean Equations

The time-filtered quasigeostrophic momentum and

buoyancy equations can be written as

Dgug

Dt
1 byk 3 ug 1 f0k 3 uag 1 $

pag

r0

1
u9 � u9

z

2

 !

5 F 2 k 3 z9u9
z

and (A1)

Dgb

Dt
1 wN 2

0 5 B 2 $ � b9u9
z
, (A2)

where z is the relative vorticity and subscripts (. . .)g and

(. . .)ag indicate geostrophic and ageostrophic components.

Now, define the nondivergent eddy bolus velocity

(Gent et al. 1995),

u* 5 2
›

›z

b9u9
z

N 2
0

 !
, w* 5 $ � b9u9

z

N 2
0

 !
. (A3)

This allows the momentum and buoyancy equations to

be rewritten in residual-mean form,

Dgug

Dt
1 byk 3 ug 1 f0k 3 (uag 1 u*)

1 $
pag

r0

1 K 2 P

� �
5 F 2 k 3 q9u9

z
and (A4)

Dgb

Dt
1 (w 1 w*)N 2

0 5 B, (A5)

where K and P are the eddy kinetic and potential

energies. Explicit eddy forcing appears only in the

momentum equation, through the eddy potential vor-

ticity flux. The ageostrophic velocity, (uag, w), is re-

placed by a residual ageostrophic velocity, (uag 1 u*, w 1

w*), and the ageostrophic pressure is replaced by

a modified pressure, pag 1 r0(K 2 P), neither of which

affects the evolution of the geostrophic flow.
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