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A B S T R A C T

Accurate representation of large-scale flow patterns in low-resolution ocean simulations is one of the most
challenging problems in ocean modelling. The main difficulty is to correctly reproduce effects of unresolved
small scales on the resolved large scales. For this purpose, most of current research is focused on development
of parameterizations directly accounting for the small scales. In this work we propose an alternative to the
mainstream ideas by showing how to reconstruct a dynamical system from the available reference solution
data (our proxy for observations) and, then, how to use this system for modelling not only large-scale but
also nominally-resolved flow patterns at low resolutions. This approach is advocated as a part of the novel
framework for data-driven hyper-parameterization of mesoscale oceanic eddies in non-eddy-resolving models.
The main characteristic of this framework is that it does not require to know the physics behind large–small
scale interactions to reproduce both large and small scales in low-resolution ocean simulations. We tested it in
the context of a three-layer, statistically equilibrated, steadily forced quasigeostrophic model for the beta-plane
configuration and showed that non-eddy-resolving solution can be substantially improved towards the reference
eddy-resolving benchmark. The proposed methodology robustly allows to retrieve a system of equations
governing reduced dynamics of the observed data, while the additional adaptive nudging counteracts numerical
instabilities by keeping solutions in the region of phase space occupied by the reference fields. Remarkably,
its solutions simulate not only large-scale but also small-scale flow features, which can be nominally resolved
by the low-resolution grid. In addition, the proposed method reproduces realistic vortex trajectories. One of
the important and general conclusions that can be drawn from our results is that not only mesoscale eddy
parameterization is possible in principle but also it can be highly accurate (up to reproducing individual
vortices) for significantly reduced dynamics (down to 30 degrees of freedom). This conclusion provides great
optimism for the ongoing parameterization studies, which are still far away from being completed.
1. Introduction

It is typical of low-resolution ocean simulations to have significantly
distorted or even absent large-scale flow structures that are otherwise
present in the high-resolution simulations. This failure is due to miss-
ing effects of the small scales, which are not adequately resolved in
low-resolution simulations. To mitigate the problem, many parame-
terizations for both comprehensive and idealized ocean models have
been proposed (e.g., Gent and Mcwilliams (1990), Duan and Nadiga
(2007), Frederiksen et al. (2012), Jansen and Held (2014), Mana and
Zanna (2014), Cooper and Zanna (2015), Grooms et al. (2015), Berloff
(2015, 2016, 2018), Danilov et al. (2019), Ryzhov et al. (2019), Juricke
et al. (2020a,b), Cotter et al. (2019), Ryzhov et al. (2020), Cotter et al.
(2020a,b,c), Shevchenko and Berloff (2021b)), but overall the problem
remains largely unresolved for several reasons. First, defining the small
and large scales is ambiguous, because they are not separated by a clear
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spectral gap or otherwise. Second, definition of the small and large
scales should be consistent with the specific resolving capabilities of
a low-resolution model in which their interactions are to be parame-
terized. Third, dynamical interactions across the scales are remarkably
complex, as well as spatially inhomogeneous and non-stationary.

In this work we have further developed the hyper-parameterization
approach to reproduce the effects of mesoscale oceanic eddies on the
large-scale ocean circulation. The main characteristic of this approach
is that it does not require to know the physics behind large–small
scale interactions to reproduce them. Complimentary to the main-
stream physics-based perspective, we propose to deal with the eddy
effects from the dynamical systems point of view, and interpret the
lack of them as the persistent tendency of phase space trajectories
representing the low-resolution solution to escape the right region of
the corresponding phase space, which is occupied by the reference
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eddy-resolving solution. Therefore, we approach the problem from a
different direction: instead of parameterizing small-scale effects, we re-
trieve an underlying dynamical system and use it to model evolution of
the nominally-resolved flow patterns at low resolutions. The nominally-
resolved flow patterns are those that are resolved by the grid. In our
case, we need at least 7 grid points per the flow pattern to ensure
it is resolved, since we use the CABARET scheme (Karabasov et al.,
2009), while conventional methods would require at least 10 points.
For example, a vortex of 70km in diameter requires the grid step to
e at least 10km. Although the basic idea has long research history,
ur application of it is novel, and the proposed methodology has many
ovel features. Let us first discuss below the relevant background.

Retrieving reduced equations underlying the observed flow evo-
ution is one of the most challenging problems in dynamical sys-
ems (e.g.,(Aguirre and Letellier, 2009; Brunton et al., 2016)). Al-
hough, this field has been researched for decades, most of the efforts
sed low-dimensional dynamical systems with 3–5 degrees of freedom
e.g., Brunton et al. (2017), Mangiarotti and Huc (2019)), and even
his turned out difficult. The other problem is about frequent numerical
nstabilities of the retrieved dynamical systems (e.g., Sceller et al.
1999)). This implies that applying known methodologies for thousands
f degrees of freedom, typical for describing low-resolution oceanic
lows, is unfeasible.

For developing and testing the approach, we considered an
ntermediate-complexity, quasigeostrophic, eddy-resolving model of
he wind-driven midlatitude ocean circulation — this is a respected
nd widely used (e.g., Siegel et al. (2001), Karabasov et al. (2009),
hevchenko and Berloff (2016), Shevchenko et al. (2016) and refer-
nces there in) paradigm for process studies involving large-/small-
cale turbulent interactions and their parameterizations. To mitigate
he model size problem, we applied the Empirical Orthogonal Function
EOF) analysis (Preisendorfer, 1988; Hannachi et al., 2007) to the
eference flow, defined here as the high-resolution solution subsampled
n a coarse grid, and reconstructed a dynamical system for the evolving
rincipal Components (PCs) corresponding to the leading EOFs. Suc-
essful examples of reduced-order modelling with EOF-PC description
an be found in Kondrashov and Berloff (2015), Kondrashov et al.
2018). Other types of space reduction are possible and can improve
he outcome even further, but they are not considered in this study.
o resolve the problem with numerical instabilities, we used adaptive
udging methodology, which is an upgraded extension of the nudging
ethod proposed in Shevchenko and Berloff (2021a).

. The method

The main objective of this study is to reconstruct a dynamical sys-
em from the reference solution (say 𝐱(𝑡), 𝐱 ∈ R𝑛); the reference solution

is the high-resolution solution projected onto the coarser grid. Note
that 𝐱(𝑡) cannot be evolved in terms of 𝐱(𝑡) only (without knowledge of
the high-resolution solution), i.e. the evolution equation for 𝐱(𝑡) is not
losed. This is why we reconstruct a dynamical system for the evolution
f 𝐱(𝑡).

This dynamical system is meant to correctly simulate the reference
arge-scale flow patterns on a low-resolution grid. The full dimension-
lity of the problem is the total number of the grid nodes, and for
he reconstructed dynamical system we aim to reduce it by orders of
agnitude via EOFs/PCs decomposition of the reference data. Next, we

ormulate general dynamical system in terms of the leading PCs:
′(𝑡) = 𝐅(𝐲), 𝐲 ∈ R𝑚, 𝑡 ∈ [0, 𝑇 ], 𝑚 ≪ 𝑛 , (1)

here the PCs are combined in the vector and denoted by 𝐲(𝑡), and
he dash means time differentiation. In our case the dimensionality has
een eventually reduced by three orders of magnitude (from 𝑛 = 16441
o 𝑚 = 30).
 s

2

In (1) we used 30 leading PCs that captured 98% of the reference
low variance. The right hand side of (1) is approximated with polyno-
ial of order two in all the variables, 𝐏(𝐲), and with the Fourier series,

 (𝐲), containing 50 leading harmonics:

𝐅(𝐲) ≈ 𝐏(𝐲) +  (𝐲) , (2)

where

𝐏(𝐲) ∶= 𝑎0 +
30
∑

𝑖=1
𝑎𝑖𝑦𝑖 + 𝑏𝑖𝑦2𝑖 + 𝑐𝑖𝑦𝑖𝑦𝑗 , 𝑗 = 1,… , 𝑚, 𝑖 ≠ 𝑗, (3)

and

 (𝐲) ∶=
25
∑

𝑘=1
𝑑𝑘 cos

(

2𝜋𝑘𝑡
𝑇

)

+ 𝑒𝑘 sin
(

2𝜋𝑘𝑡
𝑇

)

, (4)

with unknown coefficients 𝐜 = {𝑎0, 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑘, 𝑒𝑘}, 𝑖 = 1,… , 30, 𝑘 =
,… , 25 to be defined with the least squares method from the system
f equations:

𝐜 = 𝐲′. (5)

he derivative on the right hand side of (5) is approximated with the
orward finite difference, and it is computed over the time interval
0, 𝑇 ] for which the leading PCs (computed from the reference solution)
re available.

Note that 𝐅(𝐲) can be approximated differently, and its optimal
hoice (beyond the scope of this work) is a challenge for the dynamical
ystem reconstruction. Without proper information for tailoring the
ight hand side more specifically, a polynomial expansion is justified
y the Weierstrass approximation theorem, while the use of the Fourier
eries allows one to approximate the mean flow more accurately. We
ill get back to this choice when discussing the results. We note that the

hoice of the polynomial basis is justified by the Weierstrass theorem
s one can approximate the right hand side with a desired order of
ccuracy using polynomial functions. It does not mean though that the
eierstrass theorem justifies the use of quadratic polynomials for the

ynamical system reconstruction as the latter is not guaranteed to be
ccurate even if the right hand side is accurately approximated.

Having approximated 𝐅(𝐲) up to a given order of accuracy, one can
olve the reconstructed dynamical system

′(𝑡) = 𝐏(𝐳) +  (𝐳), 𝐳 ∈ R𝑚, 𝑡 ∈ [0, 𝑇 ], 𝑇 > 𝑇 . (6)

ote that this system is integrated over a time interval which is longer
here, 2 times longer) than that of the original system (1). In all further
imulations we will have 𝑇 = 2 years and 𝑇 = 4 years. However, an
ccurate approximation of 𝐅(𝐲) does not guarantee that system (6) can
e easily solved, because the integration errors can quickly contaminate
he solution and result in severe numerical instability — this is what
ctually happened in our case. In order to stabilize the numerical in-
egration, we used the nudging methodology (Shevchenko and Berloff,
021a):

′(𝑡) = 𝐏(𝐳) +  (𝐳) + 𝜂
(

1
𝑁

∑

𝑘∈ (𝐳(𝑡))
𝐲(𝑡𝑘) − 𝐳(𝑡)

)

, 𝑡 ∈ [0, 𝑇 ] , (7)

here  (𝐳(𝑡)) is a neighbourhood of 𝐳(𝑡), and index 𝑘 is the timestep
f the corresponding PC 𝐲(𝑡𝑘); the timestep of the PC is the timestep
ith which the actual data for the EOF analysis was generated. The
otation 𝑘 ∈  (𝐳(𝑡)) means that 𝑘’s are taken for those 𝐲(𝑡𝑘) that are in
he neighbourhood of 𝐳(𝑡). The neighbourhood is computed in 𝑙2 norm
s the average of 𝑁 = 5 points nearest to the solution 𝐳(𝑡). Note that
he number of neighbourhood points is a parameter, and its sensitivity
hould be explored and taken into account for each application of the
roposed methodology. We have defined its value from a series of
xperiments with values 2, 5, 10, 20; 𝑁 = 5 gives the most accurate
olution.
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Having solved Eq. (7), we approximated the reference solution by
sing the leading EOF-PC pairs as follows:

(𝑡) ≈
𝑚
∑

𝑖=1
𝑧𝑖(𝑡)𝐄𝑖 , (8)

with 𝐄𝑖 and 𝑧𝑖 being the 𝑖th EOF and PC, respectively. The choice of 𝑚
results from the variability of the reference solution to be reproduced.

Note that 𝑁 in Eq. (7) can be made time-dependent and adaptive,
like the nudging coefficient 𝜂, which is the other important parameter.
In order to make the numerical integration stable with the Euler
method, we used the following adaptive nudging:

𝜂(𝑡𝑖) =

⎧

⎪

⎨

⎪

⎩

𝜂(𝑡𝑖−1) + 𝜂ℎ if 𝜎(𝐳(𝑡𝑖)) > max𝑡∈[0,𝑇 ] 𝜎(𝐲(𝑡)),
𝜂(𝑡𝑖−1) − 𝜂ℎ if 𝜎(𝐳(𝑡𝑖)) ≤ max𝑡∈[0,𝑇 ] 𝜎(𝐲(𝑡)), 𝑖 = 1, 2,…
0 if 𝜂(𝑡𝑖−1) − 𝜂ℎ < 0.

(9)

with 𝜎 being the standard deviation, 𝜂ℎ = 0.001, and 𝜂(𝑡0) = 0.
We opted for an adaptive nudging, as it keeps the system within

a neighbourhood of the phase space region occupied by the reference
solution. As an alternative, a constant 𝜂 can be also used with some
tuning and caution, keeping in mind that its small value may not be
enough for keeping the solution within the right region and its large
value may result in an over-stabilized solution with suppressed flow
variability (slow flow dynamics).

3. Multilayer quasi-geostrophic model

We consider a 3-layer quasi-geostrophic (QG) model with forcing
and dissipation for the evolution of the potential vorticity (PV) anomaly
𝐪 = (𝑞1, 𝑞2, 𝑞3) in domain 𝛺 (Pedlosky, 1987):

𝜕𝑡𝑞𝑗 + J(𝜓𝑗 , 𝑞𝑗 + 𝛽𝑦) = 𝛿1𝑗𝐹w − 𝛿𝑗3 𝜇∇2𝜓𝑗 + 𝜈∇4𝜓𝑗 , 𝑗 = 1, 2, 3 , (10)

where J(𝑓, 𝑔) = 𝑓𝑥𝑔𝑦 − 𝑓𝑦𝑔𝑥, 𝛿𝑖𝑗 is the Kronecker symbol, and 𝝍 =
(𝜓1, 𝜓2, 𝜓3) is the velocity streamfunction in three layers. The plane-
tary vorticity gradient is 𝛽 = 2 × 10−11 m−1 s−1, the bottom friction
parameter is 𝜇 = 4 × 10−8 s−1, and the lateral eddy viscosity is 𝜈 =
50m2 s−1. The asymmetric wind curl forcing, driving the double-gyre
ocean circulation, is given by

𝐹w =
{

−1.80𝜋 𝜏0 sin
(

𝜋𝑦∕𝑦0
)

, 𝑦 ∈ [0, 𝑦0),
2.22𝜋 𝜏0 sin

(

𝜋(𝑦 − 𝑦0)∕(𝐿 − 𝑦0)
)

, 𝑦 ∈ [𝑦0, 𝐿],

with the wind stress amplitude 𝜏0 = 0.03Nm−2 and the tilted zero
forcing line 𝑦0 = 0.4𝐿 + 0.2𝑥, 𝑥 ∈ [0, 𝐿]. The computational domain
𝛺 = [0, 𝐿]×[0, 𝐿]×[0,𝐻] is a closed, flat-bottom basin with 𝐿 = 3840 km,
and the total depth 𝐻 = 𝐻1+𝐻2+𝐻3 given by the isopycnal fluid layers
of depths (top to bottom): 𝐻1 = 0.25 km, 𝐻2 = 0.75 km, 𝐻3 = 3.0 km.

The PV anomaly 𝒒 and the velocity streamfunction 𝝍 are coupled
through the system of elliptic equations:

𝒒 = ∇2𝝍 − 𝐒𝝍 , (11)

with the stratification matrix

𝐒 =
⎛

⎜

⎜

⎝

1.19 ⋅ 10−3 −1.19 ⋅ 10−3 0.0
−3.95 ⋅ 10−4 1.14 ⋅ 10−3 −7.47 ⋅ 10−4

0.0 −1.87 ⋅ 10−4 1.87 ⋅ 10−4

⎞

⎟

⎟

⎠

.

The stratification parameters are given in units of km−2 and chosen
so, that the first and second Rossby deformation radii are 𝑅𝑑1 = 40 km
and 𝑅𝑑2 = 23 km, respectively; the choice of these parameters is typical
for the North Atlantic, as it allows to simulate a more realistic than
in different QG setups but yet idealized eastward jet extension of the
western boundary currents

System (10)–(11) is augmented with the integral mass conservation
constraint (McWilliams, 1977):

𝜕𝑡 (𝜓𝑗 − 𝜓𝑗+1) 𝑑𝑦𝑑𝑥 = 0, 𝑗 = 1, 2 (12)
∬𝛺

3

with the zero initial condition, and with the partial-slip lateral bound-
ary condition (Haidvogel et al., 1992):
(

𝜕𝐧𝐧𝝍 − 𝛼−1𝜕𝐧𝝍
)

|

|

|𝜕𝛺
= 0 , (13)

where 𝛼 = 120 km is the partial-slip parameter, and 𝐧 is the normal-
to-wall unit vector; no-flow-through boundary condition is also imple-
mented (as part of the elliptic solver). The value of the parameter 𝛼 is
chosen based on the study by Shevchenko and Berloff (2015), where it
has been shown that smaller values of 𝛼 inhibit the eastward jet exten-
sion penetration length and volume transport, while larger values have
much less pronounced influence on the jet. As with other governing
parameters used in this study, our choice of 𝛼 is justified by a more
realistic eastward jet. The QG system (10)–(13) is solved using the
high-resolution CABARET method, which is based on a second-order,
non-dissipative and low-dispersive, conservative advection scheme.

For this study we need both high- and low-resolution solutions.
In order to compute them, we first spin up the model (10)–(13) for
100 years and then solve it for the other 4 years on 2 uniform horizontal
grids: 513 × 513 (high resolution) and 129 × 129 (low resolution).
Note that all the parameters in the QG model are held fixed for
both high- and low-resolution setups. In order to obtain the reference
solution (denoted as 𝑞1), we project the high-resolution solution on
the coarse grid 129 × 129 by using point-to-point projection, i.e. the
high-resolution solution is subsampled at the low-resolution grid points,
(Fig. 1a). The low-resolution solution (denoted as 𝑞1) is the solution
of the QG model on grid 129 × 129 (Fig. 1b). Our goal is to find
a dynamical system that can model the leading PCs (which are then
used to approximate the reference solution given by (8)), so that the
approximate solution (denoted as 𝑞1) simulates the reference large-
scale flow patterns in qualitatively correct way. We would like to draw
the reader’s attention to the fact that in the general description of the
method the reference solution is denoted as 𝐱(𝑡), while in the context
of the QG model 𝐱(𝑡) ∶= 𝑞1.

For the purpose of this work, it is enough to consider only the first
layer, as it consists of both large- and small-scale features (Fig. 1a)
which we aim to reproduce. Moreover, the upper layer is more difficult
to model than the deep ones. As seen in Fig. 1a, the solution is charac-
terized by the well-pronounced eastward jet extension of the western
boundary currents and surrounding small-scale coherent vortices. Both
of these features are missed in the low-resolution solution (Fig. 1b)
due to the under-resolved eddy effects. In order to restore nominally-
resolved flow patterns (the eastward jet and surrounding vortices),
we first reconstruct a reduced dynamical system (for the leading PCs)
which is based on the second-order polynomials and then the one
based on the second-order polynomials and Fourier series. The solution
corresponding to the former is presented in Fig. 1c. Although the
snapshots show that both the eastward jet and vortices are successfully
reproduced, the time-mean flow significantly differs from the reference
solution: the eastward jet separation point is shifted north and the jet
itself manifests fluctuations unseen in the reference solution.

For a better approximation we combined the second-order poly-
nomial basis with the Fourier series. The corresponding solution (8)
computed from the leading EOF-PC pairs is significantly improved
(Fig. 1d), mostly due to the better approximation of the PCs (Fig. 2).
The low-resolution solutions 𝑞∗1 and 𝑞1 (Figs. 1c, d) have excessive spa-
tial variance in the 4-year averages compared to the reference solution
𝑞1 (Fig. 1a). This is improved by adding the Fourier basis (Fig. 1d).
Also, the low resolution solutions have excessive time variance (Fig. 1,
standard deviation panels). This is made worse by adding the Fourier
basis (for example in the jet detachment region).

Recall that the solution in Fig. 1 is over 4 years, and only the first
2 years were used to reconstruct the dynamical system. This shows that
the proposed method preserves not only the large-scale flow structure
but also the small-scale flow features, all of them over a long time
interval. It means that the proposed method maintains the large-scale
flow structure (the eastward jet extension of the western boundary
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b
i

Fig. 1. Shown is a series of snapshots, 4-year average, and standard deviation of the top layer PV anomaly of (a) the reference solution 𝑞1 (computed on grid 513 × 513 and
projected on grid 129 × 129), (b) low-resolution solution 𝑞1 computed on grid 129 × 129, (c) low-resolution solution 𝑞∗1 on grid 129 × 129 (with the second-order polynomial
asis used for the reconstruction), (d) low-resolution solution 𝑞1 on grid 129 × 129 (with the second-order polynomials and Fourier basis used for the reconstruction). The solution
s given in units of [𝑠−1𝑓−1

0 ], where 𝑓0 = 0.83 × 10−4 s−1 is the Coriolis parameter. The results in panels (c), (d) demonstrate that the proposed method preserves not only large-,
but also small-scale features (nominally resolved on the coarse-grid) like those seen in the reference solution (a) but absent in the low-resolution solution (b).
o

⟨

currents) and small-scale features (nominally resolved on the coarse
grid eddies) akin to those of the reference solution. Fig. 3 shows that
not only the nominally-resolved flow structures are present in the
modelled solution but also realistic vortex trajectories (vortices drift
westward) are correctly reproduced. Moreover, vortices are formed at
the tip of the jet and through meanders along the jet. However, it
does not mean that the exact same individual eddies (vortices) in the
sub-sampled high resolution solution are preserved. For example, the
individual eddies in Figs. 1a, d and Figs. 3a, d are different. Besides, the
dispersion characteristics of the reference and the reconstructed flow
have not been checked and may be different. The ability of the method
to reproduce small-scale features may look surprising, but since these
features were present in the reference data, their reconstruction is a
matter of the high-quality reconstruction of the dynamical system.

A key ingredient that makes the method work is the adaptive
nudging which keeps the solution in the right region of the phase space
 T

4

that is occupied by the reference solution. As an approximation of the
reference region, we used a sphere, 𝑆(𝐪1), centred at the time-mean of
the solution, ⟨𝐪1⟩, and the sphere radius, 𝑟, is the mean distance of the
solution from the centre:

𝑆(𝐪1) ∶= (𝐪1 − ⟨𝐪1⟩)2 − 𝑟2 ≤ 0, ⟨𝐪1⟩ ∶=
1
𝑇 ∫

𝑇

0
𝐪1(𝑡) 𝑑𝑡,

𝑟 ∶= 1
𝑇 ∫

𝑇

0
‖𝐪1(𝑡) − ⟨𝐪1⟩‖2 𝑑𝑡 . (14)

The mean distance between two points 𝐱1(𝑡) and 𝐱2(𝑡) in the phase space
f the QG model is given by

(𝐱1, 𝐱2)⟩ ∶=
1
𝑇 ∫

𝑇

0
‖𝐱1(𝑡) − 𝐱2(𝑡)‖2 𝑑𝑡 . (15)

he mean distance computed below is given in non-dimensional units.
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Fig. 2. Shown are the first three leading PCs and their dependence on the basis
unctions used for the reconstruction of the dynamical system: true PC (black), PC
odelled with the second-order polynomial-only basis (blue), and PC modelled with

oth the second-order polynomials and Fourier series (red). The results demonstrate
hat using the basis consisting of both the second-order polynomials and Fourier series
ields significantly more accurate approximation of the PCs.

The mean distances for the reference and low-resolution solutions
re ⟨(𝑞1, 𝑞1)⟩ = 11.9 and ⟨(𝑞1, 𝑞1)⟩ = 7.2, respectively, showing that

the latter is confined in a smaller region. The 𝑙2-norm distance between
the time means of these solutions (denoted as barred quantities) is
(𝑞1, 𝑞1) = 12.92. The application of the adaptive nudging decreases
he distance between the time means to (𝑞1, 𝑞1) = 2.65, thus shifting
he whole solution 𝑞1 much closer to the phase space region occupied
y the reference solution. It also yields a lot more accurate mean
istance ⟨(𝑞1, 𝑞1)⟩ = 12.6, thus suggesting that the solution has correct
mplitude. On the other hand, ⟨(𝑞1, 𝑞1)⟩ = 12.2 (which is quite close

to ⟨(𝑞1, 𝑞1)⟩ = 12.6) thus reassuring once again that the reconstructed
model gives an adequate approximation of the reference flow dynamics.
Note that the perfect reconstruction over a period [0, 𝑇 ] would mean
that (𝑞1(𝑡), 𝑞1(𝑡)) = 0, 𝑡 ∈ [0, 𝑇 ].

4. Conclusions and discussion

In this study we proposed a method for preserving nominally-
resolved flow patterns in low-resolution ocean model simulations. The
method utilizes the well-known idea of reconstructing the dynamical
system that underlies the observed flow evolution. However, direct
application of this idea to the quasi-geostrophic model studied in this
5

work is numerically unfeasible task because of the high dimension-
ality of the observed flow. Moreover, a numerical integration of the
reconstructed dynamical system can be unstable, but our methodology
can cope with this and ensure stability. We solved the problem of
large dimensionality by applying the Empirical Orthogonal Function
decomposition of the reference solution (the high-resolution solution
subsampled on the coarse grid) that allowed to reduce the dimen-
sion by three orders of magnitude. In order to solve the unstable
integration problem, we developed the adaptive nudging method fol-
lowing Shevchenko and Berloff (2021a). This method keeps the solution
in the neighbourhood of the phase space region occupied by the refer-
ence solution. This is sufficient for accurate reproduction of both the
large- and small-scale flow features at low resolutions, despite the fact
that these features are not present in the dynamical solutions of the low-
resolution model. The proposed method aims to operate with hundreds
of degrees of freedom thus offering orders-of-magnitude acceleration
compared to low-resolution ocean models which have at least 3–4
orders of magnitude more.

The proposed method can formally be classified as a reduced order
modelling method (e.g., Brunton et al. (2016)), since it reduces the
dimensionality of the original system. The principal difference of the
proposed method (compared to the reduced order modelling technique)
is that it does not use the original equation to substitute the reference
solution projected onto the EOF basis functions. Instead, it reconstructs
a dynamical system describing PCs directly and then finds the solution
by using leading EOF-PC pairs. The dynamical system reconstruction
used in this study is not a new idea, while using the adaptive nudging
method is a novel approach in itself not to mention its application in the
context of dynamical systems reconstruction. Moreover, a combination
of the polynomial basis with the Fourier series is another new idea
which can find its use beyond the scope of this work.

The proposed method was tested on a 3-layer quasi-geostrophic
ocean circulation model at low non-eddy-resolving resolution, such that
it cannot simulate the correct large-scale flow structure. Our results
show that if the reconstructed dynamical model is based only on the
second-order polynomials, then it is not sufficiently accurate (compared
with the reference solution), because its time-mean eastward jet separa-
tion point is shifted north, and the jet itself has unrealistic fluctuations
which are not observed in the reference solution. We tried to use higher
order polynomials, but the reconstructed system became very sensitive
to errors leading to severe numerical instabilities which we failed to
stabilize. We resolved this problem by augmenting the polynomial
basis with the additional Fourier series. With all this in place, not
only the large-scale flow structure becomes correct but also the small-
scale coherent vortices, which are unresolved in the low-resolution
full-dynamics model, appear in the solution. All in all, this shows
that the method has potential for modelling even more complicated
oceanic flows. Being small-scales-unaware (not relying on reproducing
the effect of small scales onto large ones like parameterizations), the
proposed method can be thought of as an alternative to the modern
(small-scales-aware) parameterizations, which try to reproduce effects
of small dynamically unresolved scales on the large scales, in the hope
that the solution will stay in the right region of the phase space. The
proposed approach is quite the opposite: it forces the solution to stay
in the right phase space region and predicts the flow evolution via
the reconstructed reduced dynamical system. Note that the method
does not require the original quasi-geostrophic model to be solved at
low-resolution.

It is worth reiterating again that the proposed method maintains
the large-scale flow structure (the eastward jet extension of the western
boundary currents) and small-scale features (nominally resolved on the
coarse grid eddies) akin to those of the reference solution. Moreover,
not only the nominally-resolved flow structures are present in the
modelled solution but also realistic vortex trajectories are correctly
reproduced. However, it does not mean that the exact same individual
eddies in the sub-sampled high resolution solution are preserved.
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Fig. 3. The same panels as in Fig. 1 but with the time step 1 month. Shown is a neighbourhood of the eastward jet for the last two years of the 4-year long simulation. The
results clearly demonstrate that not only the nominally-resolved flow structures (the eastward jet and coherent vortices) are present in the modelled solution but also realistic
vortex trajectories are correctly reproduced.
One of the important and general conclusions that can be drawn
from our results is that not only mesoscale eddy parameterization is
6

possible in principle but also it can be highly accurate (up to reproduc-
ing individual vortices) for significantly reduced dynamics (down to 30
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degrees of freedom). This conclusion provides great optimism for the
ongoing parameterization studies, which are still far away from being
completed.

The reference data is used twice: first, for reconstructing the dy-
namical system; second, for augmenting the solution of this system by
nudging (to compute the PCs, 𝐲(𝑡), in the nudging term in Eq. (7)).
The method can be further improved by using a more sophisticated
nudging methodologies and different dynamical systems which can
better represent the underlying flow dynamics. The proposed method
can be applied to primitive equations, but in this case reconstruction of
the dynamical system will be more subtle, as it will include more PCs
and can require changes of the basis functions. Moreover, EOF analysis
might cease to work for time-dependent forcing and more sophisticated
flow decompositions will therefore be needed (see, e.g., Xie et al.
(2018), Shady et al. (2021)). It is also important to note that the
proposed data-driven method requires the system to be statistically
equilibrated, which is not the case in applications that undergo regime
transitions (e.g., forced climate projections or systems with multiple
(statistically) steady states). In other words, if the system has multiple
attractors and only some of them are presented in data then the pro-
posed method can only reproduce the flow dynamics which is presented
in data.

Another future extensions of this study can be exploring the possi-
bility of generating a forcing for the low-resolution ocean model, based
on the EOFs and the adaptive nudging, perhaps with some ingredients
such as stochastic forcing.
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