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A mechanistic model of mid-latitude decadal climate variability
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d Départment Terre–Atmosphère–Océan and Laboratoire de Météorologie Dynamique (CNRS and IPSL), Ecole Normale Supérieure, Paris, France
e Physical Oceanography Department, Woods Hole Oceanographic Institute, Woods Hole, MA 02543, United States

Received 26 January 2007; received in revised form 9 August 2007; accepted 27 September 2007
Available online 6 October 2007

Communicated by H.A. Dijkstra

Abstract

A simple heuristic model of coupled decadal ocean–atmosphere modes in middle latitudes is developed. Previous studies have treated
atmospheric intrinsic variability as a linear stochastic process modified by a deterministic coupling to the ocean. The present paper takes an
alternative view: based on observational, as well as process modeling results, it represents this variability in terms of irregular transitions between
two anomalously persistent, high-latitude and low-latitude jet-stream states. Atmospheric behavior is thus governed by an equation analogous
to that describing the trajectory of a particle in a double-well potential, subject to stochastic forcing. Oceanic adjustment to a positional shift in
the atmospheric jet involves persistent circulation anomalies maintained by the action of baroclinic eddies; this process is parameterized in the
model as a delayed oceanic response. The associated sea-surface temperature anomalies provide heat fluxes that affect atmospheric circulation
by modifying the shape of the double-well potential. If the latter coupling is strong enough, the model’s spectrum exhibits a peak at a periodicity
related to the ocean’s eddy-driven adjustment time. A nearly analytical approximation of the coupled model is used to study the sensitivity of this
behavior to key model parameters.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Observations [15,36,13] and general circulation models
(GCMs) [24,47,40] have provided evidence for coupled decadal
variability of the mid-latitude North Atlantic ocean–atmosphere
system. Conceptual models suggest explanations for this
variability in terms of a delayed ocean response to a
noisy atmospheric forcing associated with the North Atlantic
Oscillation (NAO; [26]). The NAO is an atmospheric mode
that has a coherent spatial pattern [27] and a time dependence
that contains a large stochastic component [56]. The proposed
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delays have been related to a variety of ocean processes;
examples include mean ocean advection [48] or planetary-wave
propagation [29,42,13]. Coupling can amplify the linear modes
associated with the above physical processes and imprint the
slow time scales onto the NAO variability [38]. Alternative
explanations identified oceanic nonlinearity as a possible source
of the oscillatory behavior [28,11,16,18,49]. Dewar [16], in
particular, argued for a key role of intrinsic oceanic, eddy-
driven variability in controlling the spectral content of the
coupled system at decadal and longer time scales.

Many of the theoretical results mentioned above depend in
a crucial way on the formulation of a sea-surface temperature
(SST) feedback on the atmospheric NAO. The sign, magnitude,
and spatial pattern of this feedback inferred from GCM results
are, however, controversial; compare, for example, Peng et al.
[44,45] and Kushnir and Held [37]. In general, the linear
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Fig. 1. QG model’s atmospheric behavior: (a) Time mean (contours; negative contours dashed, zero contours dotted) and the leading stationary EOF (color levels)
of the ocean Ekman pumping wE (10−6 m s−1); the latter EOF-3 accounts for 15% of the 30-day low-pass filtered wE variance. (b) Time series of EOF-3.
response of the atmospheric circulation to SST anomalies
associated with mid-latitude variability is weak; see, however,
Feliks et al. [19,20].

Kravtsov et al. [34,35], in their idealized quasi-geostrophic
(QG) ocean–atmosphere model, have recently identified a novel
type of coupled behavior in which atmospheric nonlinearity
plays a key role. In particular, ocean-induced SST anomalies
affected the occupation frequency of two distinct atmospheric
regimes associated with the extreme phases of the NAO. The
objective of the present paper is to develop a simple conceptual
model of this coupled phenomenon.

The paper is organized as follows. In Section 2, we review
the dynamics of the decadal coupled mode in [34,35]. A
conceptual model which incorporates the essential ingredients
of this coupled behavior is developed and analyzed in Section 3.
In Section 4 we introduce further model simplifications that
make the problem analytically tractable, and analyze the
sensitivity of the coupled variability to parameters. Concluding
remarks follow in Section 5.

2. Review of coupled variability in the QG model

We provide here a brief description of the Kravtsov et al.’s
[34,35] coupled QG model and refer the reader to [35] for the
complete model formulation. The model consists of a closed
rectangular ocean basin and an overlying atmospheric channel
on a β-plane. This configuration mimics, in an idealized
fashion, the coupled ocean–atmosphere system comprised of
the North Atlantic basin and the mid-latitude atmosphere above
it and extending further upstream and downstream. The model
components have three layers in the ocean and two layers in
the atmosphere, and are coupled via a simple ocean mixed-
layer model with a diagnostic momentum closure and nonlinear
SST advection. Both oceanic and atmospheric components are
placed in a highly nonlinear regime characterized by vigorous
intrinsic variability. This is achieved by choosing the oceanic
horizontal resolution to be 10 km and the oceanic horizontal
viscosity to be 200 m2 s−1. The atmospheric horizontal
resolution is 160 km and the horizontal super-viscosity is
chosen to be −1.6 × 1016 m4 s−1.

The ocean circulation is driven by the wind and (along
with Ekman currents) advects SST, which, in turn, affects the
atmospheric circulation by modifying ocean–atmosphere heat
exchange at the boundary separating the two fluids. All the
vertical heat fluxes are parameterized as functions of SST and
atmospheric temperature using standard linear approximations
for radiative fluxes and bulk formulas for ocean–atmosphere
heat exchange. The atmospheric temperature that enters the
radiation/heat exchange formulas is assumed to be linearly
related to the instantaneous height of the interface dividing
the two atmospheric layers. The atmospheric heat gain per
unit time is being converted into the entrainment mass fluxes
between the two atmospheric layers, which directly enter the
equation for baroclinic QG streamfunction (this quantity is
proportional to atmospheric interface displacement). The heat
exchange with the mixed layer affects the ocean QG interior
in the same fashion, as the entrainment of fluid between
two uppermost oceanic layers; the base-of-the-mixed layer
entrainment heat fluxes being computed via McDougall and
Dewar [39] parameterization.

2.1. Atmospheric climate

The leading stationary mode of the coupled model’s
atmospheric variability is shown in Fig. 1 in terms of the
corresponding empirical orthogonal function (EOF; [46]) of
the Ekman pumping wE. This mode (Fig. 1(a)) is associated
with irregular shifts of the model’s mid-latitude atmospheric
jet north and south of its time-mean position (Fig. 1(b)).
The corresponding probability density function (PDF; not
shown) is skewed, with the main peak near the location of
the dominant high-latitude atmospheric state, and a secondary
shoulder indicative of the presence of the less occupied low-
latitude state. This non-Gaussianity is an intrinsic nonlinear
atmospheric phenomenon, as it is present in uncoupled,
atmosphere-only simulations [31]. It may also characterize
some of the observed atmospheric variability in the Northern
Hemisphere [33], although these results are still a subject of
ongoing scientific debate (see Section 5.2).

2.2. Oceanic climate: Role of eddies

The climatology of oceanic upper-layer transport is shown
in Fig. 2. The ocean circulation exhibits a classical double-
gyre pattern in the northern part of the basin [18], as well as
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Fig. 2. QG model’s oceanic climatology: (a) Upper-layer transport Ψ1 (Sv), contour interval C I = 10, negative contours dashed, zero contours dotted; heavy
solid lines mark the jet-extension subdomain which is studied in more detail in panels (b)–(d) and in Fig. 3. Panels (b)–(d) show Ψ1 [contours, same as in (a)] and
time-mean eddy forcing in the upper layer (color levels, Sv month−1) due to: (b) all eddies; (c) LL eddies; and (d) HH eddies, see text for details.
an additional weaker gyre in the south (Fig. 2(a)). Oceanic
variability (see below) is strongest in the region of the intense
and narrow eastward jet which forms at the confluence of two
western boundary currents; this region is marked by a heavy
solid contour in Fig. 2(a) and will now be considered in greater
detail.

Ocean eddies play an important role in maintaining the
eastward jet. Let us decompose the upper-layer streamfunction
Ψ1 as

Ψ1 = Ψ1 + Ψ ′

1,

Ψ ′

1 = Ψ ′

1,L + Ψ ′

1,H. (1)

Here the bar denotes the time mean, while the prime denotes
the deviations from the time mean; the subscripts L and H refer
to the low-pass and high-pass filtered [43] variations of the
streamfunction; the cut-off frequency that separates L from H is
1/2 year−1. Let us also define the upper-layer potential vorticity
Q1 as

Q1 = ∇
2Ψ1 +

f 2
0

g′ H
(Ψ2 − Ψ1), (2)

where Ψ2 is the middle-layer streamfunction, f0 is the Coriolis
parameter, g′ is the reduced gravity, and H is the unperturbed
depth of the upper layer. The quantities Ψ2 and Q1 are also
decomposed, in analogy with Eq. (1), into the time mean, as
well as low- and high-pass filtered components.

If the Jacobian operator is defined as usual, by J (Ψ , Q) ≡

Ψx Q y − Ψy Qx , the tendency ∂ Q′

1/∂t of the upper-layer,
transient potential vorticity is given by

∂ Q′

1/∂t = −J (Ψ ′

1,H, Q′

1,H) − J (Ψ ′

1,L, Q′

1,L)
− [J (Ψ ′

1,H, Q′

1,L) + J (Ψ ′

1,L, Q′

1,H)]

+ [linear terms]; (3)

analogous expressions hold for the other two layers. The
streamfunction tendency ∂Ψ ′

1/∂t (multiplied by the thickness
H of the upper layer) associated with the time-mean eddy
forcing due to the sum of the nonlinear terms in Eq. (3) is
shown, for the eastward-jet region, in Fig. 2(b), while the
analogous quantity due to the first and second nonlinear terms
in Eq. (3) is displayed in Fig. 2(c) and (d), respectively;
the tendencies due to cross-frequency term are much smaller
and not shown. Note that high-frequency (Fig. 2(c)) and low-
frequency (Fig. 2(d)) eddy tendencies have a similar dipolar
pattern and are comparable in magnitude near the western
boundary. The high-frequency eddies, however, dominate
maintenance of the eastward-jet extension in the interior of the
ocean, as represented by a relatively weak tendency dipole of
the opposite sign and to the east of the main dipole, located
close to the western boundary; the weaker, secondary dipole
extends all the way to the eastern boundary of the inertial
recirculation region shown in Fig. 2(b) and (c).

The decomposition (1) uses a simple statistical time filtering
to isolate the baroclinic eddies. A more dynamically consistent
decomposition was developed by [3,4] to show that the high-
frequency eddies help maintain the eastward-jet extension via a
nonlinear rectification process. These eddies do so by supplying
the potential vorticity anomalies that are then preferentially
deposited as positive anomalies to the north of the jet and
negative anomalies to the south, thereby forcing an intensified
jet; the anomaly-sign selection is carried out by the combined
action of β-effect and nonlinearity [5]. Berloff et al. [6] have
shown how this process plays a central role in the coupled
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Fig. 3. QG model’s oceanic variability. Shown is lagged regression of Ψ1 (contours; C I = 2 Sv, negative contours dashed, zero contours dotted) and ocean eddy
forcing (color levels, in Sv month−1) onto 5-year low-pass filtered time series of Ψ1’s EOF-1 (the latter accounts for 28% of total Ψ1 variance). Columns show
forcing due to all eddies (left), LL eddies (middle), and HH eddies (right); see text for details. (a) Lag −10 years; (b) lag −5 years; (c) lag 0; (d) lag +5 years, and
(e) lag +10 years.
model’s dynamics. One manifestation of this dynamics is the

coupled oscillatory mode discussed next.
Fig. 3 shows the upper ocean streamfunction (contours) and

ocean eddy forcing (color levels) regressed, at various lags,



588 S. Kravtsov et al. / Physica D 237 (2008) 584–599
onto the leading EOF of Ψ1; once again, only the eastward-
jet portion of the ocean basin is displayed. In the course of
the variability illustrated herewith, the ocean’s subtropical and
subpolar gyres change in phase opposition, along with the
intensity of the eastward jet that separates them: at lag 0 the
subtropical gyre is large and the eastward jet is intense, while at
lags ±10 years the subtropical gyre shrinks and the jet becomes
weaker. The associated SST anomalies (not shown) have spatial
patterns similar to those of the streamfunction anomalies, with
a tongue of positive SST anomalies in the eastward-jet region
at lag 0 and negative anomalies at lags ±10 years.

One can show that this mode is due largely (but not solely;
see the next paragraph and Section 2.3) to the forced response
of the ocean to the atmospheric jet-shifting mode (Fig. 1). To
do so, we have first conducted a long atmospheric simulation
forced by the ocean climatology from the coupled run; the
character and amplitude of atmospheric variability in this
simulation were very similar to that in the coupled run. We
then performed two ocean-only simulations, both forced by
histories developed from this uncoupled atmospheric run. In
the first case, the full history was used, and the leading mode
of oceanic variability (not shown) was very similar to that
of Fig. 3. The second simulation employed the atmospheric
history consisting of the full atmospheric history minus the jet-
shifting behavior; that is, the jet-shifting EOF was subtracted
from the atmospheric evolution. In the latter simulation, the
ocean variability was very different from the coupled run’s
variability, and the mode shown in Fig. 3 was not found among
the significant EOFs.

The coupled model’s variability has a preferred time scale
of about 20 years, suggesting that the oceanic processes
controlling the SST anomalies introduce a weak periodicity
into otherwise irregular atmospheric-jet transitions. The high-
frequency ocean eddy interactions, once again, maintain the
ocean circulation anomalies in Fig. 3 and are thus a dominant
contribution to the coupled variability. A coupled model with
a coarse-resolution, high-viscosity ocean, in which the eddies
are largely damped (not shown), does not support the coupled
mode found in the eddy-rich case being discussed.

2.3. Dynamics of the coupled mode

The Fourier spectra of the atmospheric jet-shifting mode
and ocean kinetic energy from an 800-year-long simulation of
the coupled model are shown in Fig. 4(a). Both spectra are
characterized by enhanced power in the interdecadal band and
are thus consistent with Fig. 3. More advanced spectral methods
[23] actually exhibit a broad spectral peak centered at 21 years
(not shown). Fig. 4(b) shows the squared coherence spectrum
[54] of the the atmospheric-jet position and oceanic kinetic
energy. This spectrum also exhibits a broad peak at a bi-decadal
period, which indicates increased synchronization between the
ocean and atmosphere at these frequencies and thus suggests a
coupled phenomenon.

We have used a number of different metrics to characterize
this coupled variability. An example is shown in Fig. 5(a),
which shows cross-correlations between the annual upper
Fig. 4. Coupled mode in QG model: (a) Spectra of the ocean kinetic energy
and atmospheric-jet position time series based on an 800-year-long integration
of the model. Both time series were annually averaged, centered and normalized
by their respective standard deviations prior to the analysis. The spectra were
computed by Welch’s method using a window size of 40 years. (b) Squared
coherence spectrum of the ocean kinetic energy and atmospheric-jet position.
The data were processed in the same way as for computing the spectra shown
in (a).

ocean heat content time series and a measure of atmospheric
variability, at various lags. The particular atmospheric quantity
used here was the occupation frequency of the atmospheric low-
latitude state. It was defined as the number of days per year
during which the atmospheric jet was located within a range
of latitudes southward of the jet’s climatological location. Both
oceanic heat content and atmospheric regime occupation time
series exhibit statistically significant spectral peaks in the bi-
decadal range (not shown), and are essentially in quadrature.
Such a definitive phase relationship between the oceanic and
atmospheric variables is yet another proof for the coupled
nature of the bi-decadal signal under consideration. Note that
while the multi-year lags may characterize oceanic response to
the atmospheric forcing anomalies due to ocean’s large thermal
and dynamical inertia (see the next paragraph), the multi-year
lag between an ocean variable and an atmospheric variable can
only mean that there is a lag between this oceanic variable and
the metric of the ocean–atmosphere heat flux that subsequently
rearranges atmospheric circulation; this rearrangement is bound
to happen quickly, on atmospheric intrinsic time scales.

Fig. 5(b) shows the results from an ocean adjustment
experiment, in which the ocean circulation responded to
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Fig. 5. Coupled mode in QG model (continued): (a) Lagged correlation
between the time series of annual occurrences of atmospheric low-latitude state
and upper ocean heat content annual time series (see text for details). (b) Ocean
adjustment to a permanent atmospheric-jet shift from the low-latitude to the
high-latitude state; normalized time series of the distance between the final and
initial zonally averaged SST fields (light solid line). Heavy solid line represents
a manual smoothing of the original time series to better visualize different
stages of the adjustment process (see text).

a permanent shift in the atmospheric forcing regime; the
high-latitude and low-latitude regimes were computed by
compositing the atmospheric time series over time intervals
with positive and negative values of the projection onto the
jet-shifting mode (Fig. 1(b)). The results in this figure are
plotted in terms of a normalized Euclidean distance between the
final and current zonally averaged SST states of the adjustment
experiment; Euclidean distance between two vectors x ≡ {xi }

and y ≡ {yi }, 1 ≤ i ≤ N , is given by {
∑N

i=1(xi − yi )
2
}
1/2.

Consider the oceanic adjustment from an initial low-latitude
atmospheric-jet state to a final high-latitude state; the opposite
case is analogous. The adjustment has two stages. During the
fast advective stage (years 1–4 in Fig. 4(b)), the eastward jet
relocates due to the northward shift of the line of zero wind-
stress curl associated with the onset of the high-latitude regime.
This stage is also characterized by the ocean jet’s overshoot,
so that its location at year 4 (not shown) is to the north of the
ocean jet’s final location; the latter coincides with the latitude
of the atmospheric jet’s high-latitude state. Associated with
this circulation anomaly relative to the final, adjusted state, is
a positive zonal SST anomaly north of the atmospheric jet’s
axis (see Fig. 9(f) of [34]). The overshoot of the ocean jet and
the associated zonal SST anomaly are maintained, during years
5–15 (Fig. 4(b)), by the action of oceanic baroclinic eddies, in
exactly the same fashion as the climatological jet is maintained;
see also Berloff [5] and Berloff et al. [6].

The period of the coupled oscillation is related to the
duration of the second, eddy-related stage of the adjustment. In
particular, Kravtsov et al. [34,35] have shown that the period
of the oscillation depends on the ocean’s bottom drag; in
a coupled experiment with a strong bottom drag, the eddy-
driven adjustment time scale was one-half of that in the present
experiment, and the period of the coupled oscillation was
roughly 7–15 years. Furthermore, the coupled mode was not
found in experiments employing a coarser-resolution, higher-
viscosity ocean model, in which the eddy field was much
weaker; accordingly, the coarse-resolution ocean adjustment
did not have the eddy-driven stage at all (compare zonal SST
curves in Figs. 9(c), (f) of [34]).

The SST anomalies associated with the eddy-driven
adjustment influence the atmospheric state’s PDF by increasing
the probability of the low-latitude state for positive SST
anomalies to the north of the high-latitude state’s location, and
by decreasing this probability for negative SST anomalies to
the south of the low-latitude state’s location. It is this coupled
feedback that is responsible for the oscillatory behavior of the
present model.

We model this effect of SST anomalies on the atmospheric
statistics by the scalar, stochastic differential equation

dx = −Vx dt + σdw; (4)

here x(t) is the temporal amplitude of the spatially coherent
atmospheric jet-shifting mode, subscript x denotes a derivative
with respect to x , and w is a Wiener process whose
increments have unit variance. The potential V (x; y) depends
parametrically on the “ocean state” y. It is convenient to think
about y in terms of the position of the oceanic eastward jet,
which affects the atmospheric potential through the associated
SST anomalies: y = +1 thus corresponds to the oceanic jet’s
high-latitude state, and y = −1 to its low-latitude state. To
compute V , we performed uncoupled integrations of the QG
model’s joint atmospheric and mixed-layer components forced
by ocean circulations composited over the extreme phases of
the coupled oscillation, denoted here by y = ±1; see Kravtsov
et al. [35] for details. Each integration lasted 800 years and
we denote by x the centered, normalized time series of the jet-
axis position. The potentials V (x; ±1) and standard deviations
σ(±1) of the noise were determined by polynomial regression
[32] assuming V (x; ±1) =

∑I
i=0 ai x i and I = 7. The

dependence of σ on oceanic state was weak (not shown), so
we will later use state-independent noise in (4).

The resulting V profiles are plotted in Fig. 6(a) for the low-
latitude (y = −1; light solid line) and high-latitude (y =

+1; light dashed line) phases of the coupled oscillation. The
potential in both cases consists of a pronounced dip at x ≈ 0.4,
which corresponds to the model’s high-latitude state, and an
additional flat “shoulder” centered at x ≈ −2 for the low-
latitude state. The ocean affects the atmospheric statistics by
changing primarily the height of this low-latitude plateau of the
potential V relative to its absolute, high-latitude state minimum;
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Fig. 6. (a) The potential V (x; ±1) conditioned on two extreme ocean states of the QG model’s coupled mode: low-latitude state (light solid line) and high-latitude
state (light dashed line). Heavy lines show the potential V (x; ±1) used in the conceptual model of Eqs. (4)–(6), in which the shape of V is governed by the parameter
a: a = 0.6 (heavy solid line) and a = 0.05 (heavy dashed line). The quantity x assumes values from the centered, normalized atmospheric jet-position time series.
(b) The same as in (a), except that the light lines show the potentials computed by the same procedure as for the QG model time series, but applied to the signal
produced by the coupled conceptual model. This signal’s “oceanic” component was contaminated by the red noise to mimic the processes absent from the conceptual
model.
this results in roughly 10% changes in the probability of the
atmospheric low-latitude jet state [35] over the course of the
coupled oscillation.

3. Development of a mechanistic model

The coupled interdecadal oscillation described in Section 2
is a highly nonlinear phenomenon. We develop in this section a
conceptual model that combines the two essential ingredients of
this variability: (i) the presence of low-latitude and high-latitude
atmospheric states whose occupation is modulated by the ocean
state; and (ii) an oceanic lagged response to atmospheric jet
shifts between high- and low-latitude atmospheric regimes.
Before we do so, we need to emphasize that the variability
we describe is “coupled” in a somewhat different sense than
“classical” coupled modes (for example, ENSO). Indeed, much
of the atmospheric variability, including persistent states and
transitions between them, is intrinsic. It forces the lagged
oceanic response which, in turn, modulates the occurrences of
atmospheric regimes and introduces some temporal regularity
into these occurrences. Secondly, we do not attempt to model
all of the QG model’s variability by our mechanistic model,
but only its “coupled” component. The full variability can be
interpreted as a mixture of this coupled signal and white (red)
noise in the atmosphere (ocean).

3.1. Atmospheric component and coupling

We assume that the atmospheric variable x , which represents
the instantaneous position of the zonal jet, behaves according to
Eq. (4), with σ = 0.29 day−1 and the potential V (x; y) given
by

V (x; y) =
1

500

(
x +

1
2

)4

− 0.1

{
exp

[
−

1
2

(
x −

1
2

)2
]

+ a(y) exp
[
−

1
2

(x + 3)2
] }

. (5)

Here y is the ocean-state (SST) variable, and

a(y) =
1
2

[(a2 − a1)y + (a2 + a1)] , (6)

where a1 ≡ a(−1) = 0.05 and a2 ≡ a(1) = 0.6. The potential
V (x; y) defined by Eqs. (5) and (6) is shown in Fig. 6(a)
for a = a2 (heavy solid line) and a = a1 (heavy dashed
line). The heavy lines (solid and dashed), based on Eqs. (5)
and (6), bracket the light lines (solid and dashed, respectively)
determined by the polynomial fit to the QG model’s potential
V (x; ±1) (cf. Kravtsov et al. [34,35]); the two fits, for y = ±1,
agree with the qualitative dependence of the potential on the
ocean-state parameter a(y): when the ocean is in its high-
latitude state (y = 1) the height of the atmospheric low-latitude
state’s plateau decreases relative to its position subject to the
ocean’s low-latitude state (y = −1).

As we mentioned above, the variation between the
conditional potentials given by Eqs. (5) and (6) are larger in
magnitude compared to the values derived from the QG model
simulation. This discrepancy accounts for the fact that QG
model-based estimates involve substantial averaging, due to the
compositing, and thus underestimate the range of the potential’s
actual realizations. In order to check if this explanation is
sensible, we have applied the fitting procedure used to define
the conditional QG model’s potential functions to the output of
our conceptual coupled model (see Sections 3.3 and 4), whose
oceanic variable was contaminated by the red noise to represent
the processes not explicitly resolved by this model. The results
are presented in Fig. 6(b) and show that the compositing
procedure may indeed be responsible for the underestimation of
actual difference between the potential functions representing
high-latitude and low-latitude states.
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Fig. 7. Behavior of a conceptual one-variable, one-parameter atmospheric
model given by Eqs. (4)–(7). (a) Probability density function (PDF) for a = 0.6
(heavy solid line) and a = 0.05 (heavy dashed line). (b) Spectra for a = 0.6
(light solid line) and a = 0.6 (light dashed line); heavy solid and dashed lines
show corresponding spectral fits associated with the super-position of random
telegraph and Ornstein–Uhlenbeck processes (see text for details).

The behavior of the conceptual atmospheric model (4)–(6) is
summarized in Fig. 7 in terms of its PDF (Fig. 7(a)) and power
spectra (Fig. 7(b)) for two values of y: y = 1 (ocean’s high-
latitude state; solid lines) and y = −1 (ocean’s low-latitude
state; dashed lines). In both cases, the PDF is strongly skewed,
as expected from the shape of the potential V (Fig. 6), thus
defining two quasi-stationary states; mixture modeling [50]
based on the jet position’s time series confirms the assertion of
two distinct, statistically significant Gaussian components (not
shown). Both spectra have a red-noise character and roll off to a
white spectrum for frequencies f < 1 year−1. For y = 1 (solid
lines), the probability of the atmospheric low-latitude state, as
well as the spectral power at low frequencies, increases relative
to these quantities for y = −1 (dashed lines).

3.2. Ocean component

Evolution of the oceanic variable y is governed by

ẏ = −λy + Ax(t − Td), (7)

where the dot denotes the derivative with respect to time. The
ocean responds to the atmospheric forcing x after a delay
Td = 5 years, and is characterized by the linear decay time
scale of λ−1

= 2 years. The fact that our conceptual ocean
“sees” the exact atmospheric history delayed by 5 years is
somewhat artificial, especially given a relatively flat spectrum
of atmospheric variability shown in Fig. 4(a) and (b). This
choice was dictated by our intention to analyze the conceptual
coupled model analytically (see Section 4).

The ocean adjustment to a permanent switch of the
atmospheric forcing regime, from the high-latitude to the
low-latitude state or vice versa, mimics the sum of the two
adjustment times shown in Fig. 4(b); this sum is dominated
by the slow, eddy-driven stage of the QG model’s adjustment
(Fig. 4(b)). The delay thus reflects the property of the oceanic
jet to stay at position y = +1/ − 1 (oceanic high-/low-latitude
state) for several years without immediately responding to the
switch of the atmospheric forcing to x = −1/+1 (atmospheric
low-/high-latitude state) and, at the same time, maintaining SST
patterns supportive of the atmospheric jet position at x = −1/+

1. Kravtsov et al. [34] show, by considering two-dimensional
patterns of SST anomalies during such an adjustment (their
Figs. 6 and 9) and estimating the effect of the latter anomalies
on the atmospheric jet’s PDF, that the effective delay time in
the coupled system is somewhat shorter than that suggested by
the simple, zonally averaged SST metric used in Fig. 5(b). This
argument explains our choice of the delay time in (7) to be only
5 years, rather than the 10 years suggested by Fig. 5.

On the other hand, the parameter λ describes frictional
processes which are only able to damp oceanic anomalies,
rather than maintain them. The scaling factor A−1

= 140 days
was chosen so that the standard deviation of y is equal to unity;
y thus represents, formally, a normalized time series of the QG
model’s leading oceanic EOF, which captures the shifting of the
jet.

3.3. Coupled model’s variability

The conceptual coupled model governed by Eqs. (4)–(7),
was integrated for 4000 years with a time step of 1t = 1
day. The Fourier spectrum of the resulting daily data is shown
in Fig. 8. The atmospheric spectrum has a general red-noise
shape, as in Fig. 7(b), but exhibits a broad spectral peak with
a central frequency that corresponds to the period of T ≈ 15
years, as well as secondary peaks at higher frequencies. The
ocean spectrum has a much higher slope; it exhibits the same
spectral peaks as the atmospheric spectrum and rolls off to a
white spectrum at frequencies f < 1/30 year−1. This behavior
will be explained in Section 4 by developing a counterpart of
the conceptual coupled model (4)–(7) that is solvable nearly
analytically.

4. Theoretical analysis

4.1. Atmospheric low-frequency variability as a random
telegraph process

The Eq. (4), for a fixed y, describes the motion of a particle
in the potential V (x) given by Eqs. (5) and (6) [8,21,9,52,10,
41]. The PDF φ(x) evolves according to the corresponding
Fokker–Planck equation

∂tφ = ∂x (Vxφ) + κ∂2
x φ, (8)

where the symbols ∂t and ∂x denote the partial t- and x-
derivatives, respectively, while the diffusion coefficient κ is
given by

κ = σ 21t/2. (9)
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Fig. 8. Fourier spectra based on a 4000-year-long simulation of a conceptual
coupled model (4)–(7) [light solid lines] along with the associated 95%
confidence intervals (light dashed lines), and the theoretical spectra of their
simplified counterparts (14) and (15) [heavy solid lines].

The stationary solution to Eq. (9) is

φs(x) = C exp(−V (x)κ−1), (10)

where the constant C is chosen so that
∫

∞

−∞
φs(x)dx = 1. The

stationary PDFs (not shown) given by Eq. (10), with V defined
by Eqs. (5) and (6) for y = ±1, closely resemble those from
direct numerical simulation (Fig. 7(a)).

In the case of two potential wells centered at x = xL and
x = xH, and separated by a potential barrier at x = x0 (xL <

x0 < xH), one can derive analytical approximations for the
mean escape times of a particle from one well to the other [21,
22] in the limit of weak diffusion κ � min(1VL, 1VH), where
1VL ≡ V (x0) − V (xL) or 1VH ≡ V (x0) − V (xH) is the depth
of the corresponding well. The resulting estimates of the mean
escape times 〈t〉 depend exponentially on κ−11V :

〈tL→H〉 ∼ exp(κ−11VL),

〈tH→L〉 ∼ exp(κ−11VH). (11)

Kramers [30] has shown that the low-frequency behavior of the
probabilities PxL ≡

∫ x0
−∞

φ(x, t)dx and PxH ≡
∫

−∞

x0
φ(x, t)dx

of a particle to be in one or the other potential well are governed
by the equation for a random telegraph process (Appendix A),
in which only two states xL and xH are allowed and the decay
rates µL and µH toward the minima of the potential wells are
inversely proportional to the corresponding mean escape times.
The mean MRT, autocorrelation CRT, and Fourier spectrum SRT
of a random telegraph process are given in Appendix A.

The high-frequency behavior associated with fluctuations
around either of the two equilibrium states xL or xH can be
approximated by an Ornstein–Uhlenbeck process [55,9,10]; the
corresponding spectra SxL and SxH are

SxL =
σ 2dt

ω2 + Vxx (xL)2 ,
SxH =
σ 2dt

ω2 + Vxx (xH)2 . (12)

The full atmospheric spectrum Sa can be obtained by patching
the above approximations for low and high frequencies [10],
and is given by

Sa = SRT +
µHSxL + µLSxH

µL + µH
. (13)

The analytical approximations used above to estimate the
spectra of the solution to a double-well potential problem rely
on the assumptions that do not hold in our case of interest,
where the potential consists of one major well and an additional
plateau (Fig. 6). It turns out, however, that these spectra are
still well described by the fit (13), in which xL = −2.25 and
xH = 0.43. The quantities µL and µH were estimated directly
from the simulated data sets’ residence-time information; for
y = −1, µL,−1 ≈ 0.02 and µH,−1 ≈ 0.005, while for y = +1,
µL,+1 ≈ 0.03 and µH,+1 ≈ 0.004. In both cases, it turns out
that using the value of ω0 = Vxx (xL) = Vxx (xH) = 0.15 day−1

in the high-frequency spectra (11) does provide a fairly good
fit to this portion of the spectrum, despite the assumption of
Vxx (xL) = Vxx (xH) being clearly a pretty crude one. The
resulting sum of high- and low-frequency spectra (Fig. 7(b),
heavy lines; Eq. (13)) matches the spectra obtained from a
direct model simulation very well.

The time-mean values of x in the two uncoupled,
atmosphere-only simulations for y = ±1 can be found from
Eq. (A.6); they also match the values estimated directly from
the model simulations and are equal to 〈x〉±1 = x̄±1 ≈ ±0.1.

4.2. A simplified conceptual model

In order to further simplify the conceptual coupled system
(4)–(7), we assume that the sole effect of the oceanic variability
on the atmospheric statistics is to change, on a slow time scale,
the expected value x̄(y) of x , while neglecting the dependencies
of µL and µH on y (see the preceding subsection). Thus,

x = x̄(y) + x ′,

x̄(y) = −Dy, (14)

where D = 0.1 and x ′ is a stationary process whose spectrum
is approximated by 0.5(Sa,+1 + Sa,−1); see Eq. (13). Using Eq.
(14) to rewrite Eq. (7) yields

ẏ = −λy − ADy(t − Td) + Ax ′. (15)

The latter is formally identical to a classical delayed
oscillator equation [8,53,2,1,38], except that x ′ is a red-noise,
rather than a white-noise process. More importantly, however,
the possibility of active coupling between x and y stems from
the atmospheric model’s nonlinear sensitivity to the oceanic
state; the latter sensitivity is expressed via non-Gaussian
changes to the atmospheric-flow PDF, namely the atmospheric
mean state changes as in (14); see also Neelin and Weng [42].
The “delayed-feedback” term and the “stochastic-forcing” term
in (15) are thus multiplied by the same factor A to explicitly
reflect this property.
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4.3. Analytical model results

4.3.1. Spectrum and covariance
Assuming, in Eq. (15), y = ŷeiωt and x ′

= x̂ ′eiωt , where
i2 = −1, one obtains for the oceanic spectrum So = 〈ŷ ŷ∗

〉 the
expression

So(ω) =
0.5A2

[Sa,+1 + Sa,−1]

[AD cos(ωTd) + λ]2 + [ω − AD sin(ωTd)]2 . (16)

The atmospheric spectrum Sa,c of the coupled simulation can
be found, using Eq. (14), to be

Sa,c(ω) = 0.5[Sa,+1 + Sa,−1]

+
D

A
So(ω)[ω sin(ωTd) − λ cos(ωTd)], (17)

where the first member of the sum represents the uncoupled
spectrum 〈x̂ ′ x̂ ′∗

〉, while the second term is due to coupling. The
resulting analytical spectra are plotted as heavy solid lines in
Fig. 8 and match remarkably well those obtained directly from
the simulation of the conceptual coupled model (4)–(7). The
discrepancies at very low frequencies are due, most likely, to
the neglect of the µL- and µH-dependencies on the oceanic
state y (see the preceding subsection). The otherwise excellent
agreement between the full conceptual model simulation and
its simplified analytical counterpart (15) justifies the latter
approximation.

The most obvious effect of coupling on the model spectra
is to decrease the power at very low frequencies, which
can immediately be seen from the expressions (16) and (17)
estimated at ω = 0, because both So(0) and Sa,c(0) decrease
as the coupling coefficient D increases. This damping arises
because of the oceanic control of the atmospheric variability; at
low frequencies ω � T −1

d , positive y anomalies induce a decay
in x anomalies (see Eq. (14)) and vice versa.

More interestingly, coupling can also produce spectral
peaks. To obtain the locations ωm of these spectral peaks, we
differentiate So(ω) in (16) with respect to ω and set the result to
zero. Let us introduce nondimensional quantities ωĎ

≡ ωmTd,
ω
Ď
a ≡ (µL + µH)Td, λĎ ≡ λTd, and AĎ

≡ ADTd; then the
resulting approximate equation for ωm � ω0 is

ωĎ

AĎ

{
1 +

2[(AĎ cos ωĎ
+ λĎ)2

+ (ωĎ
− AĎ sin ωĎ)2

]

ω
Ď2
a + ωĎ2

}
= (λĎ + 1) sin ωĎ

+ ωĎ cos ωĎ. (18)

The spectral maxima are those solutions of Eq. (18) for which
the second derivative is negative Soωω < 0. The dependence
of spectral peaks on model parameters is complex and will be
further discussed in the next subsection. For the set of control
parameters used thus far, the lowest-frequency solution of Eq.
(18) is ωĎ

≈ 2, which corresponds to a dimensional period of
T ≡ 2πTd/ω

Ď
≈ πTd = 15 years (see Fig. 8).

The lagged covariances of the conceptual coupled model
solution Co(τ ) and Ca,c(τ ) are given by

Co(τ ) =
1

2π

∫
∞

−∞

So(ω)eiωτ dω,
Fig. 9. Autocorrelation function of: (a) ocean variable; (b) atmospheric
variable. The estimates are based on: simulation of the conceptual model (4)–
(7) [solid lines]; and theoretical prediction from a simplified conceptual model
(14) and (15) [dashed lines].

Ca,c(τ ) =
1

2π

∫
∞

−∞

Sa,c(ω)eiωτ dω, (19)

respectively, and are estimated in Appendix B. These analytical
estimates match very well the direct estimates of covariances
based on the full conceptual model simulation (Eqs. (4)–(7));
both analytical and direct estimates are shown in Fig. 9. The
oceanic lagged covariance (Fig. 9(a)) is characterized by a
gradual decay from Co(0) = 1 to minima at τ ∗

≈ ±T/2,
at which the autocorrelation has a relatively large magnitude
of Co(τ

∗) ≈ −0.2 (compare this with reverse of the sign of
circulation anomalies in Fig. 3(a), (c), (e)). In contrast, the
atmospheric autocorrelation is very small for all |τ | > 1 year;
nevertheless, the sharp drop of Ca,c that occurs at τ ∗∗

≈ Td and
a subsequent slow decay of correlation at |τ | > τ ∗∗ are both the
effects of coupling.

In order to put these results into a perspective, we also
plot, in Fig. 10, the autocorrelation functions of the coupled
QG model’s ocean kinetic energy and atmospheric-jet position
time series. Both autocorrelations were computed for the
annual data, unlike the daily data used in Fig. 9 for the
conceptual model’s quantities. The oceanic autocorrelation in
Fig. 10(a) decays somewhat faster than its conceptual model’s
counterpart (Fig. 9(a)) at small lags up to ±3 years, and the
dips in autocorrelation at ±7 years are less pronounced. This
reflects the presence, in the QG model’s time series, of the
variability not directly associated with the coupled dynamics
of the conceptual model. We fitted the QG model’s oceanic
autocorrelation function much better by mixing the conceptual
model’s time series with the red-noise process characterized by
the autocorrelation of 0.99 at a lag of one day, and the same
annual variance as in the original conceptual model time series
(not shown). This contaminated signal was used to produce
Fig. 6(b).



594 S. Kravtsov et al. / Physica D 237 (2008) 584–599
Fig. 10. Same as in Fig. 9, but for the QG model variables: (a) oceanic kinetic
energy; (b) atmospheric-jet position. Annual time series were used.

Finally, the qualitative structure of the QG model’s
atmospheric-jet position autocorrelation (Fig. 10(b)) is consis-
tent with that in Fig. 9(b); it quickly drops to essentially zero
and maintains zero values within the first few years, then ex-
hibits a second drop to negative values at the lag of ±7 years
and a subsequent few-year-long come back to slightly positive
values. We conclude that our conceptual model captures essen-
tial features of the coupled variability simulated by the full QG
model.

4.3.2. Parameter sensitivity

We explore sensitivity of the decadal-to-interdecadal
variability in model (15) to the coupling coefficient D and
the ocean’s linear decay parameter λ, by changing each in
turn, while keeping the other fixed at its control value. Fig. 11
shows analytical spectra as functions of D. If the coupling is
weak (D = 0.01; Fig. 11(a)), both oceanic and atmospheric
spectra do not differ significantly from the uncoupled case
D = 0, which is characterized by a white atmospheric spectrum
and red-noise oceanic behavior. For an intermediate coupling
strength (D = 0.05; Fig. 11(b)), an interdecadal peak that is
still broad and weak arises. The amplitude of this interdecadal
oscillation increases, while the period and the bandwidth of
the associated spectral peak decrease as the coupling strength
increases further to normal (D = 0.1; Fig. 11(c)) and high
(D = 0.15; Fig. 11(d)) values.
Fig. 11. Sensitivity of a simplified conceptual model’s (14) and (15) ocean-variable (heavy lines) and atmospheric-variable (light lines) spectra to coupling parameter
D: (a) D = 0.01; (b) D = 0.05; (c) D = 0.1 (control case); (d) D = 0.15. In each panel, dashed lines represent the corresponding uncoupled spectra (D = 0).
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Fig. 12. Sensitivity of a simplified conceptual model’s (14) and (15) spectra to ocean damping parameter λ: (a) λ = 0.5 year−1 (control case); (b) λ = 1.5 year−1;
(c) λ = 2.5 year−1; (d) λ = 3.5 year−1. Same symbols and conventions as in Fig. 11.
The dependence of the coupled oscillation on λ is shown in
Fig. 12. Panels (a)–(d) present results for progressively larger
values of λ. In addition to straightforward damping of the ocean
variance at all frequencies and “diffusing” the spectral peak,
increasing λ decreases the oscillation period.

5. Concluding remarks

5.1. Summary

We have constructed a conceptual model of mid-latitude
climate variability that incorporates two essential aspects of
the novel, highly nonlinear decadal mode found recently in
a coupled quasi-geostrophic (QG) model by [34,35], namely:
(i) nonlinear sensitivity of the atmospheric circulation to SST
anomalies; and (ii) extended, mainly eddy-driven adjustment of
the ocean’s wind-driven gyres to the corresponding changes in
the atmospheric forcing regime.

The dynamics of the QG model’s coupled decadal mode
was summarized in Section 2. Atmospheric intrinsic variability
is characterized by irregular shifts of the model’s jet stream
between two anomalously persistent states, located north and
south of its time-mean position (Fig. 1). The oceanic response
is dominated by changes in the position and intensity of its
eastward jet; the latter is largely maintained by high-frequency
eddy interactions (Fig. 2). These interactions also maintain
ocean circulation anomalies in the course of the coupled
oscillation (Figs. 3–5(a)), which has a period of about 20 years.
The period is related to the lag associated with the ocean’s
adjustment to atmospheric forcing transitions between its high-
latitude and low-latitude regimes (Fig. 5(b)). The portion of this
lag during which the ocean eddies create circulation anomalies
and ensuing SST anomalies that are supportive of the opposite
atmospheric-jet state determines the effective lag at work in the
coupled system; this lag is thus shorter than that apparent in
Fig. 5(b).

The jet-shifting mode that dominates atmospheric intrinsic
variability was modeled by Eq. (4), which describes the motion
of a particle in a nonconvex potential. Such a potential was
obtained by fitting the jet position of the full, coupled QG
model, and is characterized by a deep “high-latitude” well and
a low-latitude “plateau” (Fig. 6). Eddy-driven SST anomalies
affect the height of this plateau relative to the potential’s high-
latitude minimum.

A conceptual model was developed in Section 3 to describe
the key aspects of the coupled QG model’s behavior. The
conceptual model has two variables, one of which represents
the jet-shifting mode x , whose evolution is governed by
Eq. (4), while the other is the oceanic variable y, representing
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the position of the oceanic eastward jet; this position is
associated, in the QG model, with SST anomalies that can
change the shape of the atmospheric potential V . The potential
V (x; y) is given by Eqs. (5) and (6) and depends linearly on y in
a way consistent with the QG model-based fit. The atmospheric
model’s strongly non-Gaussian PDF (Fig. 7(a)) and spectra
(Fig. 7(b)) thus depend on the “ocean” state. The SST equation
(7) has a linear damping component and directly responds to
atmospheric forcing x with a lag of a few years; the latter delay
mimics the QG model’s adjustment. The coupled model (4)–(7)
supports an interdecadal oscillation (Fig. 8) similar to that in the
QG model (Fig. 4(a); also compare Figs. 9 and 10).

In Section 4, we have further simplified the conceptual
model by representing its atmospheric component as a sum of a
random telegraph process (see Appendix A) at low frequencies
and an Ornstein–Uhlenbeck process at high frequencies [10].
Both the expectation value 〈x〉 and the spectrum of x depend
on the ocean variable y and are in excellent agreement with
direct simulations (Fig. 7(b)). Neglecting the latter spectral
dependence results in a simplified model (14) and (15), which
has the form of a classical delayed oscillator and explains
remarkably well the simulated spectra (Fig. 8) and time-
correlation function (Fig. 9; see Appendix B for the analytical
derivation).

The analytical model (14) and (15) is then used to study
the dependence of the coupled oscillation on the coupling
coefficient (Fig. 11) and oceanic damping (Fig. 12). Most
importantly, the value of the coupling coefficient reflects the
ability of SST anomalies to affect the atmospheric long-term
mean; hence, no oscillatory coupled mode exists in a unimodal
atmospheric setting.

5.2. Discussion

The present conceptual model (4)–(7), in its simplified
form (14) and (15), is formally similar to delayed oscillators
formulated elsewhere [38,16]; the dynamics it represent,
though, are fundamentally different. Most importantly, the
oscillation is entirely based upon coupling; it does not exist
if the ocean is not allowed to affect the atmosphere. In
contrast, the linear models summarized by Marshall et al. [38]
can exhibit spectral peaks in an uncoupled setting, in which
ocean-state-independent atmospheric noise excites a damped
oceanic standing-wave oscillation. Coupling merely enhances
such spectral peaks, since a delayed feedback due to planetary-
wave propagation tends to overcome damping.

Extending the linear-model analysis of Marshall et al. [38],
Dewar [16] studied effects of oceanic turbulence on coupled
mid-latitude variability. The primary effect of coupling in [16]
was to arrest the inter-gyre heat flux due to the ocean’s
intrinsic variability on decadal and longer time scales; the
atmospheric decadal variability was thus completely controlled
by the oceanic processes. In our model, as in [38], the
atmospheric intrinsic variability is essential in launching the
adjustment process; our oceanic eddy-driven adjustment is,
however, entirely different from the planetary-wave or purely
advective adjustment [29,48,42,13,38]. Differences are evident
in both spatial pattern and time dependence [17,34,35].

Our conceptual model emphasizes nonlinearity of the
atmospheric intrinsic variability as an essential ingredient of
coupling. In particular, the eddy-driven SST anomalies change
the statistics of the atmospheric high-latitude and low-latitude
regimes, thereby affecting the conditional expectation of the
atmospheric-jet position; Neelin and Weng [42] called this a
“deterministic feedback.” The sign and magnitude of this SST
feedback are like those in other conceptual models. In contrast,
though, to the ad hoc formulation of the feedback by the latter
authors, ours is based on the dynamics of a fairly realistic
atmospheric model [31].

The issue of nonlinear atmospheric sensitivity is intimately
related to the concept of atmospheric-flow regimes — a
few anomalously persistent flow patterns, whose occurrence
frequency depends on oceanic state. The existence of such
a non-Gaussian behavior in the observational data sets is
still a subject of an ongoing debate [25,51,14]. Berner and
Branstator [7] identified significant deviations from Gaussianity
in a four-dimensional phase space of an atmospheric general
circulation model and showed that the corresponding phase-
space structure can be described in terms of two off-centered
Gaussian distributions. This is consistent with the behavior of
our atmospheric QG model in the sense that the latter does
not produce bimodal probability density function, but is still
characterized by two distinctive atmospheric states.

Finally, our coupled QG model is by itself but a metaphor
for climate variability. The simplifications within this model
that may strongly affect the simulated climate behavior include,
among other things, extreme vertical truncation and cartesian
geometry. We should also mention that the thermal coupling
in our QG model assumes that ocean-induced SST anomalies
affect the atmospheric interior circulation directly, whereas
in reality the air–sea interaction involves complex chain of
physical processes and feedbacks associated with atmospheric
boundary-layer dynamics. This may potentially exaggerate the
atmospheric response to oceanic variability. The above issues
need to be addressed by experimenting with progressively more
complex coupled climate models.

To conclude, the coupled mechanism summarized in this
paper with the help of a conceptual climate model calls
for GCM studies of mid-latitude coupling that will explore
more highly nonlinear atmospheric regimes, as well as eddy-
resolving ocean components.
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Appendix A. Random telegraph process

A random telegraph signal x(t) can only attain one of the
two values xL or xH. Given the value of x = x(t0) at initial
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time t = t0, the conditional probabilities P(xL, t |x, t0) and
P(xH, t |x, t0) of x(t) = xL and x(t) = xH at some time t > t0,
respectively, are governed by the following master equation
[21]:

Ṗ(xL, t |x, t0) = −µL P(xL, t |x, t0) + µH P(xH, t |x, t0),

Ṗ(xH, t |x, t0) = −µH P(xH, t |x, t0) + µL P(xL, t |x, t0), (A.1)

in which the dot denotes the derivative with respect to time and

P(xL, t |x, t0) + P(xH, t |x, t0) = 1. (A.2)

The initial condition for Eq. (A.1) can be written as

P(x ′, t0|x, t0) = δx,x ′ , (A.3)

where δx,x ′ is the Kronecker delta.
The solution of Eq. (A.1) subject to conditions (A.2) and

(A.3) is

P(xL, t |x, t0) =
ωH

ωL + ωH
+

(
ωL

ωL + ωH
δxL,x

−
ωH

ωL + ωH
δxH,x

)
exp[−(ωL + ωH)(t − t0)],

P(xH, t |x, t0) =
ωL

ωL + ωH
−

(
ωL

ωL + ωH
δxL,x

−
ωH

ωL + ωH
δxH,x

)
exp[−(ωL + ωH)(t − t0)]. (A.4)

The stationary probabilities Ps(xL) and Ps(xH) can be found
from Eq. (A.4) by letting t0 → −∞:

Ps(xL) =
µH

µL + µH
,

Ps(xH) =
µL

µL + µH
. (A.5)

The stationary mean MRT ≡ 〈x〉s ≡ xL Ps(xL) + xH Ps(xH),
where the angle brackets denote ensemble average, is given
therewith by

MRT =
µHxL + µLxH

µL + µH
. (A.6)

The stationary time-correlation function 〈x(t)x(s)〉s ≡∑
xx ′ P(x, t |x ′, s)Ps(x ′) is also easily computed from (A.4)

and (A.5):

〈x(t)x(s)〉s = 〈x〉
2
s +

µLµH

(µL + µH)2 (xH − xL)2

× exp[−(µL + µH)|τ |]; (A.7)

it is only a function of τ = t − s, because of the
translational invariance of the defining process (A.1). Thus, the
autocorrelation CRT(τ ) ≡ 〈x(t)x(s)〉s − 〈x〉

2
s is

CRT(τ ) =
µLµH

(µL + µH)2 (xH − xL)2 exp[−(µL + µH)|τ |]. (A.8)

The spectrum of x , SRT(ω), is the Fourier transform of the
autocorrelation function (A.8):

SRT(ω) =

∫
∞

−∞

CRT(τ )e−iωτ dτ, (A.9)
where i2 = −1. The approximate expression for SRT(ω) has
been given by Kramers [30] and Gardiner [21]:

SRT(ω) =
2µLµH(xH − xL)2

(µL + µH)[(µL + µH)2 + ω2]
. (A.10)

Appendix B. Covariance of analytical coupled solution

Let us define, as in Section 4.3, dimensionless quantities
(ωĎ, ω

Ď
L, ω

Ď
H, ω

Ď
0, λ

Ď, σ Ď, AĎ
0) ≡ (ω, µL, µH, ω0, λ, σ, A)Td,

ω
Ď
a ≡ ω

Ď
L + ω

Ď
H, and AĎ

≡ D AĎ
0; the dimensionless oceanic

spectrum S̃o ≡ So/Td, where So is given by Eq. (16), is

S̃o(ω
Ď) =

AĎ2
0

(AĎ cos ωĎ + λĎ)2 + (ωĎ − AĎ sin ωĎ)2

×

{
2(ω

Ď
Lω

Ď
H/ω

Ď
a)(xH − xL)2

ω′2
a + ωĎ2

+
2σ Ď2(1t/Td)

ω
Ď2
0 + ωĎ2

}
,

(B.1)

while the expression (19) for ocean covariance can be rewritten
as

Co(τ
Ď) =

1
2π

∫
∞

−∞

S̃o(ω
Ď)eiωĎτĎdωĎ, (B.2)

where τ Ď ≡ τ/Td.
The integral (B.2) can be estimated by standard methods

[12] via integrating the complex function F(z) ≡ S̃o(z)eizτĎ ,
with z ≡ ξ + iη, counterclockwise along the real axis and
around the boundary of the upper half of the circle |z| = R
for τ Ď > 0, or lower half of this circle otherwise, and taking
the limit of R → ∞. The integrand is analytic within the
integration contour except for a countable set of simple poles,
and uniformly converges to zero as R → ∞. Call Kn the
residue of F at the nth pole; then the integral (B.2) is given
by

Co(τ
Ď) = i

∑
n

Kn . (B.3)

One can show that contributions to the integral (B.2) due to
the poles z = iωĎ

a and z = iωĎ
0 are negligible. It is convenient,

therefore, to rewrite F(z) as

F(z) = f (z)/g(z), (B.4)

where

f (z) = AĎ2
0 eizτĎ

{
2(ω

Ď
Lω

Ď
H/ω

Ď
a)(xH − xL)2

ω
Ď2
a + z2

+
2σ Ď2(dt/Td)

ω
Ď2
0 + z2

}
(B.5)

and

g(z) = (AĎ cos z + λĎ)2
+ (z − AĎ sin z)2. (B.6)

The poles g(z) = 0 that have positive imaginary parts are given
by

AĎ cos ξ = (η − λĎ)e−η,
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AĎ sin ξ = ξe−η, (B.7)

which, for the control set of model parameters, have
approximate solutions zn,± ≡ ξn,± + iηn,±

ξ0,± ≈ ±2.23, η0,+ = η0,− = η0 ≈ 0.772,

ξn,± ≈ ±

(π

2
+ 2πn

)
,

ηn,+ = ηn,− = ηn ≈ ln
ξn,+

AĎ
; n ≥ 1. (B.8)

The residues associated with these poles can be grouped as

Kn =
f (zn,+)

g′(zn,+)
+

f (zn,−)

g′(zn,−)
; (B.9)

it can easily be shown that all of Kn have zero real parts, so the
integral (B.3) is a real function of τ Ď.

The covariance is thus written in terms of the sum of an
infinite number of terms; however, the major contribution to
the covariance is due to the term associated with K0, which
accounts for 70% of variance at lag 0 and for nearly 100% of
variance at lags |τ | > 1 year. The theoretical prediction shown
in Fig. 9(a) uses 10 terms in Eq. (B.3), while the contributions
of higher-order terms are negligible.

The atmospheric autocorrelation function Ca,c has two
contributions: the one associated with the “uncoupled” part of
atmospheric spectrum (17) and the one due to coupling. The
former contribution, given in Appendix A, accounts for nearly
100% of covariance at lag 0. To estimate the “coupled” part
is completely analogous to the procedure above for oceanic
covariance. The integrand in this case decays slower as R →

∞, but still uniformly converges to zero, so the formulas above
can be applied directly by using appropriate f and the same g.
Unlike for oceanic case, the residue K0 accounts for majority
of covariance only for lags |τ | > 7 years, while for shorter lags
the contributions of the terms Kn , 1 ≤ n ≤ 10 are all important
and lead, in particular, to a step-function-like behavior at lag
±5 years (see Fig. 9(b)).

References

[1] K. Bar-Eli, R.J. Field, Earth average temperature: A time delay approach,
J. Geophys. Res. Atmos. 103 (D20) (1998) 25,949–25,956.

[2] D.S. Battisti, A.C. Hirst, Interannual variability in the tropical
atmosphere/ocean system: Influence of the basic state, ocean geometry
and non-linearity, J. Atmos. Sci. 46 (1989) 1687–1712.

[3] P.S. Berloff, On dynamically consistent eddy fluxes, Dyn. Atmos. Oceans
38 (2005) 123–146.

[4] P.S. Berloff, Random-forcing model of the mesoscale ocean eddies,
J. Fluid Mech. 529 (2005) 71–95.

[5] P. Berloff, On rectification of randomly forced flows, J. Mar. Res. 31
(2005) 497–527.

[6] P.S. Berloff, W.K. Dewar, S.V. Kravtsov, J.C. McWilliams, Ocean eddy
dynamics in a coupled ocean–atmosphere model, J. Phys. Oceanogr. 37
(2007) 1103–1121.

[7] J. Berner, G. Branstator, Linear and nonlinear signatures of the planetary
wave dynamics of an AGCM: Probability density functions, J. Atmos. Sci.
64 (2007) 117–136.

[8] K. Bhattacharya, M. Ghil, I.L. Vulis, Internal variability of an energy-
balance model with delayed albedo effects, J. Atmos. Sci. 39 (1982)
1747–1773.
[9] K. Bryan, F.C. Hansen, A toy model of North Atlantic climate variability
on a decade-to-century time scale, in: The Natural Variability of the
Climate System on 10–100 Year Time Scales, U. S. Natl. Acad. of Sci.,
1993.

[10] P. Cessi, A simple box model of stochastically forced thermohaline flow,
J. Phys. Oceanogr. 24 (1994) 1911–1920.

[11] P. Cessi, Thermal feedback on wind stress as a contributing cause of
climate variability, J. Climate 13 (2000) 232–244.

[12] R.V. Churchill, Complex Variables and Applications, McCraw-Hill, New
York, 1960, 297pp.

[13] A. Czaja, J. Marshall, Observations of atmosphere–ocean coupling in the
North Atlantic, Q. J. R. Meteorol. Soc. 127 (2001) 1893–1916.

[14] A. Deloncle, R. Berk, F. DAndrea, M. Ghil, Weather regime prediction
using statistical learning, J. Atmos. Sci. 64 (2007) 1619–1635.

[15] C. Deser, M.L. Blackmon, Surface climate variations over the North
Atlantic Ocean during winter: 1900–1989, J. Climate 6 (1993)
1743–1753.

[16] W.K. Dewar, On ocean dynamics in mid-latitude climate, J. Climate 14
(2001) 4380–4397.

[17] W.K. Dewar, Nonlinear midlatitude ocean adjustment, J. Phys. Oceanogr.
33 (2003) 1057–1081.

[18] H.A. Dijkstra, M. Ghil, Low-frequency variability of the large-scale ocean
circulation: A dynamical systems approach, Rev. Geophys. 43 (2005)
RG3002. doi:10.1029/2002RG000122. 38 pp.

[19] Y. Feliks, M. Ghil, E. Simonnet, Low-frequency variability in the
midlatitude atmosphere induced by an oceanic thermal front, J. Atmos.
Sci. 61 (2004) 961–981.

[20] Y. Feliks, M. Ghil, E. Simonnet, Low-frequency variability in the mid-
latitude baroclinic atmosphere induced by an oceanic thermal front,
J. Atmos. Sci. 64 (2007) 97–116.

[21] C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry,
and the Natural Sciences, Springer-Verlag, 1985, 442+xix.

[22] M. Ghil, S. Childress, Topics in Geophysical Fluid Dynamics
Atmospheric Dynamics, Dynamo Theory and Climate Dynamics,
Springer-Verlag, New York, 1987, 485 pp.

[23] M. Ghil, et al., Advanced spectral methods for climatic time series, Rev.
Geophys. 40 (1) (2002) 3.1–3.41. doi:10.1029/2000GR000092.
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