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ABSTRACT: Lateral mesoscale eddy-induced tracer transport is traditionally represented in coarse-resolution models by
the flux–gradient relation. In its most complete form, the relation assumes the eddy tracer flux as a product of the large-scale
tracer concentration gradient and an eddy transport coefficient tensor. However, several recent studies reported that the ten-
sor has significant spatiotemporal complexity and is not uniquely defined, that is, it is sensitive to the tracer distributions and
to the presence of nondivergent (“rotational”) components of the eddy flux. These issues could lead to significant biases in
the representation of the eddy-induced transport. Using a high-resolution tracer model of the Gulf Stream region, we exam-
ine the diffusive and advective properties of lateral eddy-induced transport of dynamically passive tracers, reevaluate the util-
ity of the flux–gradient relation, and propose an alternative approach based on modeling the local eddy forcing by a
combination of diffusion and generalized eddy-induced advection. Mesoscale eddies are defined by a scale-based spatial filter-
ing, which leads to the importance of new eddy-induced terms, including eddy-mean covariances in the eddy fluxes. The re-
sults show that the biases in representing these terms are noticeably reduced by the new approach. A series of targeted
simulations in the high-resolution model further demonstrates that the approach outperforms the flux–gradient model in re-
producing the stirring and dispersing effect of eddies. Our study indicates potential to upgrade the traditional flux–
gradient relation for representing the eddy-induced tracer transport.
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1. Introduction

Mesoscale eddies, broadly defined here as deviations from
large-scale fields, profoundly impact the ocean by redistributing
dynamically active and passive tracers. Eddies modify the
large-scale currents by transporting momentum (Waterman
et al. 2011), maintain the mean stratification in the Southern
Ocean by transporting buoyancy (Marshall and Speer 2012),
and potentially influence the climate by transporting heat and
carbon (Jayne and Marotzke 2002; Sallée et al. 2012). Meso-
scale eddies remain largely unresolved in most current climate
models (Meijers 2014; Hewitt et al. 2020), and thus their large-
scale effects need to be parameterized.

The most common method of parameterizing eddy effects on
tracers is the flux–gradient relation, which represents eddy tracer
fluxes as a product of the large-scale tracer concentration gradi-
ent and a transport coefficient tensor (Taylor 1922; Bachman
and Fox-Kemper 2013). The tensor characterizes the eddy-
induced diffusion and eddy-induced advection (Griffies 1998)
and is considered to be a function of the flow properties such as
eddy energy (Eden and Greatbatch 2008; Marshall and Adcroft
2010) and eddy mixing length scale (Prandtl 1925; Ferrari and
Nikurashin 2010). The large-scale and eddy fields are com-
monly separated using a long-term time (Reynolds) averaging
(Gent and McWilliams 1990) or a basin-scale spatial averaging
(Abernathey et al. 2013; Bachman and Fox-Kemper 2013;
Klocker and Abernathey 2014), which simplifies the eddy

fluxes and reduces variations in the transport tensor. Other stud-
ies define eddies as deviations from spatially low-pass filtered
(“coarsened”) fields (e.g., Bachman et al. 2017; Aluie et al. 2018;
Haigh et al. 2021a,b). This study uses the latter definition, which
can more accurately account for spatial and temporal variability
in the large-scale fields but leads to additional complexity in the
tensor.

The mesoscale eddy-induced transport, as well as the transport
tensor, is mainly two-dimensional due to the joint effect of strati-
fication and rotation. In the interior ocean, mesoscale currents
move primarily along isopycnal surfaces (i.e., neutral surfaces).
Thus, it is convenient to study the along-isopycnal eddy flux sepa-
rately from the cross-isopycnal flux in isopycnal coordinates. For
example, the widely used Gent–McWilliams parameterization
scheme (hereafter GM; Gent and McWilliams 1990) approxi-
mates the time-mean isopycnal eddy transport as a combination
of the Redi isopycnal diffusion (hereafter Redi; Redi 1982) and
the advection by mass (layer thickness) eddy-induced velocity
(EIV). In the mixed layer, the tracer distribution is influenced
horizontally by eddy stirring while is homogenized vertically by
turbulent mixing (Ferrari et al. 2008). In this study we focus on
the lateral eddy transport defined as horizontal in the mixed layer
and isopycnal in the near-adiabatic interior.

In eddy-resolving numerical simulations, the transport tensor
can be diagnosed from eddy fluxes (Abernathey et al. 2013;
Bachman and Fox-Kemper 2013; Bachman et al. 2015). Recent
studies, however, found inherent complexity of the tensor: ubiq-
uitous negative (antidiffusive) eigenvalues of its symmetric com-
ponent and strong variability in space and time of all its elements
(Bachman et al. 2015, 2020; Haigh et al. 2020, 2021a,b; Haigh andCorresponding author: Yueyang Lu, yueyang.lu@miami.edu
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Berloff 2021; Kamenkovich et al. 2021; Sun et al. 2021). These
properties cast doubts on the accuracy of using a positive, station-
ary, and isotropic diffusivity for eddy parameterization in oceanic
components of climate models (Meijers 2014), especially for the
simulation of the transient tracer field.

Even more concerning is the nonuniqueness of the transport
coefficient tensor. The tensor is not uniquely defined because of
the nondivergent (“rotational”) component in the eddy fluxes.
The component does not directly affect tracer distributions, but
can have a large magnitude (Marshall and Shutts 1981; Jayne
and Marotzke 2002; Griesel et al. 2009; Kamenkovich et al.
2021; Sun et al. 2021) and thus imprint heavily on the tensor.
The separation of rotational and divergent flux components
is possible, but it causes ambiguity due to the dependence
on boundary conditions and its intrinsic spatial nonlocality
(Fox-Kemper et al. 2003; Maddison et al. 2015). In addition,
no matter whether the rotational flux component is retained or
removed, the diagnosed tensor is generally not unique for a
given flow as evidenced by its sensitivity to the initial tracer
distributions, i.e., tracer dependence (Bachman et al. 2015,
2020; Kamenkovich et al. 2021; Sun et al. 2021). This unde-
sirable property contradicts the fundamental assumption of
the flux–gradient relation that the eddy transport coefficient
is a quantity inherent to the flow.

The reported complexity and nonuniqueness raise serious
concerns on interpretation and utility of the flux–gradient re-
lation in situations where the temporal and spatial variations
in the eddy-induced diffusion are important. The inherent
spatiotemporal variability implies errors in the instantaneous
eddy flux represented by only a time- and/or space-invariant
eddy diffusivity. Since the tracer distributions in coarse-reso-
lution models are very sensitive to the eddy diffusivity (Dana-
basoglu and McWilliams 1995; Gent et al. 2002; Kuhlbrodt
et al. 2012; Gnanadesikan et al. 2015), the nonuniqueness can
also lead to biases in simulating different tracers. However,
the significance of such biases is uncertain because most previ-
ous studies only used a highly simplified form (isotropic, time-
invariant) of the diffusivity, partly due to the numerical insta-
bilities induced by negative diffusivity (Leonard 1997; Trias
et al. 2020). Overall, although the above evidence does not
prove that the “classical” flux–gradient relation is wrong or in-
accurate, it provides motivation for exploring modifications
and extensions of the century-old formalism.

This study examines the advective and diffusive properties
of lateral mesoscale eddy-induced tracer transport. Mesoscale
eddies are defined by a high-pass spatial filter, resulting in several
distinct components of the eddy tracer flux. We further explore
the relative importance of these components for tracer distribu-
tions and the properties of corresponding transport tensors. The
conclusions question the utility of the flux–gradient model and
motivate us to explore other methods of representing the eddy
effects on tracers. We propose a new approach that directly mod-
els the local eddy forcing as a combination of eddy-induced diffu-
sion and generalized eddy-induced advection, which helps to
alleviate some of the deficiencies of the flux–gradient model. The
skills of the two approaches in reproducing the eddy-induced stir-
ring are further evaluated in a series of targeted tracer simula-
tions with the full and truncated eddy terms. All simulations in

this study are carried out on the fine grid, which avoids numerical
errors arising from rediscretization of all terms onto a coarser
grid. This study, therefore, is not a direct attempt to develop a
new eddy parameterization scheme for coarse-resolution models.

This paper is organized as follows. Section 2 describes the
offline tracer model used to perform the tracer simulations.
Section 3 describes the key theories and formulations of the
eddy effects, eddy-representing approaches, and tracer ex-
periments. Section 4 discusses properties of the lateral eddy
fluxes and corresponding transport tensors. Section 5 dis-
cusses properties of the new approach. Section 6 presents re-
sults of the targeted experiments. Conclusions and discussions
are offered in section 7.

2. Model

Simulations in this study were performed in an offline
tracer model, which uses previously computed velocities
and layer thicknesses (Kamenkovich et al. 2017, 2021). The
reference solution was obtained in a separate online simulation
with the Hybrid Coordinate Ocean Model (HYCOM; Bleck
2002). The simulation (Mensa et al. 2013) covers the Gulf Stream
region (28.788–45.728N, 81.448–508W) and spans over 1.5 years;
only the last 365 days were used in this study. The model uses a
Mercator horizontal grid with 1/488 resolution. The vertical grid
has 30 hybrid layers: isopycnal in the interior ocean, z levels near
the surface, and sigma coordinates in the shallow coastal regions.
The reference velocities and layer thicknesses were saved every
12 h and were interpolated in time with a step of 1 h in the offline
model. As in Kamenkovich et al. (2017), we used a purely advec-
tive version of the code, that is, without explicit vertical tracer
diffusion below the surface mixed layer. Tracer concentration
within the mixed layer is vertically homogenized on each time
step.

The simulated currents contain a realistic Gulf Stream, fully
resolved mesoscale currents, and partially resolved submeso-
scale currents that are mainly restricted to the surface mixed
layer (Mensa et al. 2013). The main advantage of the offline for-
mulation is the ability to carry out computationally efficient sen-
sitivity runs with modified (e.g., spatially filtered) advection.
Kamenkovich et al. (2017) compared online and offline simula-
tions of idealized tracer releases with the same offline code
used here and concluded that the offline tracer patch dispersion
stays within 2% of the online simulations. They used daily
velocities and layer thicknesses with a 1/128 spatial resolution,
instead of the 12-h fields at 1/488 resolution used here. The off-
line model solves the following equation for the tracer in each
model layer:

(hc)
t

1 = · (Uc) 1 s(wc) 5 Ah= · (h=c), (1)

where c is the tracer concentration, h is the layer thickness, U
is the lateral thickness flux (uh) within the layer, and = is the
lateral gradient. The term Ah is the explicit lateral diffusivity
that represents effects of unresolved subgrid mixing; its value
is 0.02 m s21 Dx in the reference simulation, with Dx being the
horizontal grid spacing. The w term is the volume flux through
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layer interfaces, which is vertical within the mixed layer and
diapycnal in the interior ocean; we will refer to it as w-flux
hereafter. Operator sF 5 Ft 2 Fb is the difference between
fluxes through the top (Ft) and the bottom (Fb) of the layer.
The w flux is diagnosed from the mass conservation within
each layer

sw 5 2
h
t

2 = · U: (2)

Figure 1 shows the simulated tracer concentration field and
upper-ocean speed, as well as the meridional cross sections of
temperature and layer interfaces. The tracer was initialized with
a sinusoidal meridional distribution ranging from unity at the
southernmost points to nearly zero at the northernmost points
(appendix A). After 60 days of integration, the tracer deviates
significantly from the initial distribution and forms anomalies,
due to both the large-scale and eddy-induced stirring.

3. Effects of eddies and their representation

This study will analyze the eddy effects on tracers and evalu-
ate two different approaches to representing these effects.
We define the eddy effects in section 3a, discuss the flux–
gradient relation in section 3b, and derive the new model of
eddy effects in section 3c, and discuss tracer experiments in
section 3d.

a. Tracer “eddy forcing”

We first separate the lateral isopycnal thickness fluxes
and layer thicknesses into the large-scale (angle brackets)
and mesoscale (primes) components

U 5 hU(x, y, z, t)i 1 U′(x, y, z, t),
h 5 hh(x, y, z, t)i 1 h′(x, y, z, t): (3)

The large-scale component of the w flux, hwi†, is calculated
from the mass conservation

shwi† 5 2
hhi
t

2 = · hUi, (4)

and the eddy part is w′ 5 w2 hwi†. In this study the low-pass
filter h:::i is a nominal 28 (1012 horizontal grid points) boxcar
spatial averaging. This definition is different from the common
Reynolds (long-term temporal or zonal) averaging and allows
for a direct quantification of the interaction between different
spatial scales (Aluie et al. 2018; Garabato et al. 2022). The super-
script of hwi† is to distinguish it from the directly filtered flux
hwi, because the spatial filter does not commute precisely with
differential operators on a sphere (Aluie 2019). We verified their
difference to be small and hereafter drop the superscript. Since
the submesoscale is partially resolved in our model, the “eddies”
include both mesoscale and submesoscale anomalies. Note,

FIG. 1. Model fields. (a) The tracer concentration anomalies vertically averaged within the mixed layer after
2 months of evolution in the offline model. The initial distribution (ct1) is subtracted. (b) Flow speed from the online
model averaged in the mixed layer at day 9 of year 9 that corresponds to (a). (c) Temperature section along 3058E at
day 9 of year 9, overlapped with layer bottom interfaces (white solid lines) and mixed layer depth (red dashed line).
Only interfaces of layers 1–10 and 16–29 are plotted in the upper and lower subplots, respectively.

L U E T A L . 3275DECEMBER 2022

Unauthenticated | Downloaded 11/22/22 05:31 PM UTC



however, that although the submesoscales are ubiquitous in the
surface mixed layer, they are generally very weak in deeper
layers (Mensa et al. 2013). We confirm that the conclusions are
the same when using a medium-pass filter (Capet et al. 2008) to
extract the mesoscale, and we continue to use “mesoscale” and
“eddies” interchangeably.

Inserting (3) and (4) into (1) then leads to

(hhic)
t

1 = · (hUic) 1 s(hwic) 2 Ah= · (hhi=c) 5 2D e ,

(5)

where the tracer “eddy forcing” D e(x,y,z, t) includes all the
eddy effects on tracer,

D e 5
(h′c)
t

1 = · (U′c) 1 s(w′c) 2 Ah= · (h′=c), (6)

and is the main object of this study. Note thatD e is a function
of the full tracer concentration c including both the large-scale
and eddy parts. An alternative and equivalent form of D e
can be derived by combining (2), (4), and (6):

D e 5 h′
c
t

1 U′ · =c 1 [s(w′c) 2 csw
′] 2 Ah= · (h′=c):

(7)

This study will focus only on the lateral components of
the eddy forcing D e, namely, the lateral eddy flux diver-
gence = · (U′c) in (6) and the lateral advection by eddy vol-
ume flux U′ · =c in (7). We will use the flux–gradient
relation and a new approach to model the two terms, respec-
tively. We do not consider the eddy tendency and vertical/
diapycnal terms, t(ch′) 1 s(w′c) in D e, because they cannot
be easily expressed by the flux–gradient relation. Although in a
closed domain they can be incorporated into a divergent flux
(Sun et al. 2021; Haigh et al. 2021b), the appropriate boundary
conditions for the corresponding Poisson problem do not exist in
a general case. In addition, the w-flux is induced not only by me-
soscale eddies but also by dynamically different processes, such
as buoyancy mixing due to breaking of internal gravity waves. Fi-
nally, vertical terms are difficult to quantify in the mixed layer of
our idealized simulations. The neglect of the eddy tendency and
vertical/diapycnal terms can, however, cause biases in tracer evo-
lution, which can be particularly significant in situations where
these terms and = · (U′c) are both large and partially balance
each other in D e. For this reason, we anticipate that truncating
D e to U′ · =c will lead to lower biases in tracer evolution than
truncating D e to = · (U′c), and our tracer experiments will con-
firm this.

Note also that D e does not include the flux of eddy tracer
anomalies by the large-scale currents hUic′, because this term
is included into the left-hand side of (5) for consistency with
the high-resolution tracer experiments in section 3d. For the
sake of completeness and comparability with previous studies
(e.g., Haigh et al. 2020), we will discuss properties of hUic′
wherever appropriate, and confirm that our main conclusions
hold true for that term as well.

b. The flux–gradient relation: Transport tensor and its
reduced form

The lateral eddy tracer flux Fe 5 U′c in the eddy forcing can
be conventionally represented by the eddy transport tensor K via
the flux–gradient relation:

Fe 5 2hhiK=hci, (8)

where the space- and time-dependent K is a 2 3 2 tensor that
characterizes the properties of lateral eddy-induced transport.
Within this framework, the eddy forcing D e is approximated
by D̂ 5 2= · (hhiK=hci) with the hat denoting a parametric
model.

The tensor can be split into the symmetric and antisymmetric
parts that represent physically distinct transport processes
(Griffies 1998). The symmetric part S stands for a diffusive pro-
cess affecting the domain-integrated tracer variance. It can be
further modified to outline the anisotropy of diffusion:

S 5
1
2
(K 1 KT) 5 S11 S12

S12 S22

( )
5 IR

l1 0

0 l2

( )
ITR, (9)

where IR is a rotation matrix for the diffusion angle u that defines
the coordinates (eigenvectors) along which the Fickian diffusions
occur with corresponding diffusivities (eigenvalues) l1,2 (Haigh
et al. 2021a). The antisymmetric part A corresponds to an
eddy-induced advection of the large-scale tracer concentration
(Griffies 1998; Haigh et al. 2021b):

A 5
1
2
(K 2 KT) 5 0 2A

A 0

( )
, (10)

where hhiA is the streamfunction for the eddy-induced advec-
tive flux u*chhi5 ẑ 3=(hhiA)5 [2y(hhiA), x(hhiA)], with
u*c being the corresponding tracer EIV.

In this study, the full tensor K will be used mainly for diagnos-
tic analysis. In tracer simulations, we will use a reduced transport
tensor Kred that combines isotropic diffusion and eddy-induced
advection:

Kred 5
Kiso 2Ared
Ared Kiso

( )
, (11)

where Kiso is an isotropic diffusivity and Ared corresponds also
to a tracer EIV u*c-red 5 ẑ 3=(hhiAred)

/hhi. The main reason of
introducing Kred is that the full anisotropic tensor K causes nu-
merical instability, which is not surprising given the persistent
presence of negative eigenvalues l1,2 (Leonard 1997; Trias et al.
2020; Haigh and Berloff 2021). Note that the anisotropy of
eddy-induced transport can still be partly captured by the advec-
tive part of Kred, because u*c-red can always lead to tracer spread-
ing along a well-defined direction.

There are several challenges of using the flux–gradient rela-
tion. A significant one is the presence of the rotational (non-
divergent) component in eddy tracer fluxes. This component
does not affect tracer distributions but is generally an order of
magnitude larger than the divergent component (Jayne and
Marotzke 2002; Griesel et al. 2009; Kamenkovich et al. 2021;
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Sun et al. 2021), leading to large values in the corresponding ten-
sor. Thus, the biases in the parameterized eddy fluxes, inevitable
when the tensor is simplified or approximated, can also be very
large. This justifies the need to remove the rotational component
from eddy fluxes when estimating the tensor, which is typically
done by the Helmholtz decomposition. However, the definition
of the rotational component is “nonlocal” and nonunique, be-
cause the decomposition depends on boundary conditions for
both the divergent and rotational components, and these bound-
ary conditions are arbitrary (Fox-Kemper et al. 2003; Maddison
et al. 2015). Therefore, the dominance of rotational eddy flux
leads to an inherent source of ambiguity in the estimate of the
tensor. In addition, the Helmholtz decomposition is computa-
tionally expensive and is impractical if one wants to obtain the
full spatiotemporal variability of the tensor. For example, the
decomposition technique used in this study, as will be described
later, costs about 2 CPU hours to solve for the divergent com-
ponent of each instantaneous eddy flux.

The tracer dependence is another important source of uncer-
tainty in modeling eddy fluxes. Although the origins of this
uncertainty remain poorly understood, it hints at the need to
revisit the flux–gradient relation. In addition, some components
of the eddy forcing, such as the tendency and vertical/diapycnal
terms that are not in a flux form, cannot be easily represented
by the relation in a general case. These components are tradi-
tionally ignored in studies with long-term time averaging defini-
tion of eddies (e.g., Gent et al. 1995), but can be large under a
more relevant non-Reynolds definition (e.g., Sun et al. 2021).
These challenges of the flux–gradient relation will be further
outlined by our results in section 4.

Note that the eddy fluxes in this study are unfiltered in order
for preserving their divergence on the fine grid for the tracer
experiments and for consistency to the eddy forcing D e. The
results do not, however, change qualitatively, if hFei is consid-
ered instead.

c. The generalized advective–diffusive approach

Besides the above issues of the flux–gradient relation, there
are two more fundamental properties of the eddy-induced stir-
ring that motivate us to seek a new approach. First, some compo-
nents of the eddy flux cannot be expected to be successfully
modeled by downgradient diffusion. For example, the mixing
length theory (Taylor 1922; Prandtl 1925), on which the flux–gra-
dient model is based, relates tracer anomalies to the mean tracer
gradient and water parcel excursion, c′ ;2l′jjhci, which yields
the definition of eddy transport tensor via u′i c′ ;2u′i l

′
jjhci.

Here the eddy velocity u′i and excursion l′j are assumed to be cor-
related, and indices i and j denote spatial coordinates. Flux huiic′
can also be expressed similarly as huiic′ ;2huiil′jjhci. How-
ever, the eddy stirring of mean tracer contour, U′hci, is not con-
sistent with this framework, because the theory only gives the
relation between c′ and jhci, not between hci and jhci. This flux
term is clearly “advective” in nature, but cannot be represented
by the advection of the antisymmetric tensor because of the di-
vergent U′. Therefore, a different “eddy-induced advection” is
needed.

Second, it is the eddy forcing (e.g., flux divergence) that
directly appears in the tracer budget and determines tracer
evolution. The flux–gradient relation, which models the eddy
flux, involves a nonlocal, ill-defined problem due to the rota-
tional eddy flux component. This nonlocal property not only
causes uncertainty in determining the tensor, but is also intui-
tively suspicious: why should mesoscale fluxes in the ocean in-
terior depend on the remote boundary conditions? These
considerations argue for modeling the tracer eddy forcing
directly. George et al. (2021) attempted a similar idea by
modeling eddy heat flux divergence from sea surface height
anomalies with a data-driven method.

Here, we formulate a new approach with generalized eddy-
induced advection (GEIA). The new model is motivated by
the aforementioned properties of the flux–gradient relation and
our own results, as is further discussed in section 5. We start
from modifying the flux–gradient relation in two major ways.
We choose to model the eddy forcing instead of the eddy flux,
thus avoiding the discussed issues associated with calculating the
rotational flux component. Then, to deal with the part of the
eddy forcing that cannot be represented by the flux–gradient
relation, we add a new advection term,Ux · =hci:

D̂ 5 2= · (hhiK=hci) 1 Ux · =hci, (12)

where vector Ux is a free parameter, which is divergent
and independent of A. This term is a key difference from
the flux–gradient relation in which the eddy-induced ad-
vective fluxes are nondivergent and determined uniquely
by A.

The generic, divergent form of Ux also makes the for-
mulation purely local. To see that, we expand the first
term on the right-hand side of (12) and collect all advec-
tive terms into a generalized eddy-induced advective (GEIA)
flux x:

D̂ 5 2hhi(S11xxhci 1 2S12xyhci 1 S22yyhci)
1 x · =hci, (13)

where the detailed derivation is provided in appendix B. The
GEIA flux x is treated as an independent parameter that
needs to be determined from tracer distributions, because it
includes the free parameter Ux. This new formulation is local
because all parameters are outside of the spatial gradient, and
thus can be diagnosed directly from the local eddy forcing. It
eliminates the ambiguity associated with solving for the diver-
gent eddy flux component.

Given the large number of parameters needed in (13) and
to provide a direct comparison to the reduced tensor Kred,
this study will consider a simplified form of (13) with isotropic
diffusion and GEIA. As discussed previously, the simulations
with a full diffusive tensor S suffer from numerical instabil-
ities, which further justifies our choice on isotropic diffusiv-
ity here. Specifically, we set S11 5 S22 5 k, S12 5 0 in (13)
and get

D̂ 5 2hhik=2hci 1 x · =hci, (14)

L U E T A L . 3277DECEMBER 2022

Unauthenticated | Downloaded 11/22/22 05:31 PM UTC



where k(x, y, z, t) (m2 s21) is an isotropic diffusivity and
x(x, y, z, t) (m2 s21) incorporates all eddy-induced advec-
tive terms: x5 2=(hhik)1 u*chhi1Ux. This new model
can still lead to anisotropic transport of tracers because of
the directional GEIA flux x. Thus, some anisotropic prop-
erties of eddy-induced transport, such as the eddy-induced
filamentation (Kamenkovich et al. 2021), can be poten-
tially captured, although a fully anisotropic formulation
(13) would still be needed for better accuracy in future
studies.

Equations (13) and (14) are counterparts of the full tensor
K and the reduced tensor Kred in the flux–gradient approach,
respectively. In what follows, we will explore applications of (14)
and Kred to the tracer model and demonstrate advantages of the
new approach.

Note that modeling the eddy forcing indicates reduction of
the information available when diagnosing the parameters, e.g.,
direction and magnitude of eddy tracer fluxes will be missing. In
particular, the regional eddy tracer transports cannot be easily
inferred from the approach. Our approach, however, is still

TABLE 1. Description of numerical experiments in the high-resolution offline tracer model. Different forms of eddy forcing D are
applied in (15). Note that c̃ is the “run-time” tracer solution, whereas c is the tracer solution of the reference (FULL) run.

Experiment Description Formulation

MEAN Tracer transported by zero eddy flows
(mean flows only)

D 5 0

EXP-ADV By lateral eddy tracer advection D 5U
′ · =c̃

EXP-Kred By lateral eddy tracer flux divergence
where the flux is represented by the
reduced transport tensor

D 5 2= · (hhiKred=hc̃i), where Kred is pre-estimated from
U

′c5 2hhiKred=hci

EXP-kx By lateral eddy tracer advection
represented by the generalized
advective–diffusive approach

D 5 2hhik=2hc̃i1 x · =hc̃i, where k and x are
pre-estimated from U

′ · =c5 2hhik=2hci1 x · =hci

FULL By full (mean plus eddy) flows D 5 t(c̃h′)1= · (U′c̃)1 s(w′c̃)2Ah= · (h′=c̃)

FIG. 2. Eigenvalues of S calculated from (top) the total lateral eddy flux Fe and (bottom) its divergent flux compo-
nent, overlapped with the direction of the major axes (direction of the maximal eigenvalue described by the angle u)
in yellow bars. The tensor is averaged over days 71–80 in layer 24 (;1500-m depth on average) and is overdetermined
from five tracers (c1–c5). Note that the values in the top and bottom rows are an order of magnitude different. Para-
meters are smoothed by a 0.48 3 0.48 boxcar filter for presentation.
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justified because the eddy fluxes are contaminated by ill-defined
rotational components.

d. Tracer experiments

The sensitivity experiments solve for tracer c̃ advected by
the large-scale volume fluxes and forced by forcingD :

(hhic̃)
t

1 = · (hUic̃) 1 s(hwic̃) 2 Ah= · (hhi=c̃) 5 2D ,

(15)

where all fields are defined on the high-resolution grid and c̃
will contain both large-scale and eddy parts. The forcing D
will be either a truncated form of the full forcing D e or its
parametric representation D̂ with (14) or (8) with Kred. All
the tracer experiments and corresponding D are listed in
Table 1 and will be discussed in detail in section 6.

The benchmark for the solution c̃ is the full tracer concen-
tration c of the reference simulation (1). It is obvious that c̃
will not equal c if D Þ D e. Thus, the difference between c̃
and c measures the ability of the corresponding D to repro-
duce the eddy-induced stirring. Although theoretically one
can aim at reproducing only the large-scale component of
the tracer c̃ 5 hci by using D 5 t(h′c1 hhic′)1= · (U′c1
hUic′) (the w flux and subgrid mixing terms are ignored for sim-
plicity) in (15), we do not pursue this objective for the following
reason. Our experiments are carried out in a high-resolution
model, which means that generation of small-scale tracer
anomalies is inevitable. For example, the solution will have a
nontrivial eddy component c̃′ even in the case of D 5 0, as
will be seen in section 6. The anomalies c̃′ will in turn gener-
ate an additional eddy flux through large-scale currents,
hUic̃′, which will result in a solution c̃ diverting from hci. An
alternative way is to solve for c̃ in a coarse-resolution offline
model (Porta Mana and Zanna 2014), but this task presents
its own challenges in, for example, extrapolating and rediscre-
tizing all physical fields onto a coarser grid (Patching 2022),
and is beyond the scope of this study.

The eddy effects on tracer evolution in isopycnal coordinates
have been studied by Gent et al. (1995), who parameterized the
layer-thickness EIV u′h′ /h using a long-term time (Reynolds)
averaging (:::). Our study is different in two aspects: (i) we focus
on the eddy tracer flux U′c instead of layer-thickness EIV in
hUi, and (ii) we use a more general scale-based filtering h:::i.
To clarify the differences and similarities between two ap-
proaches, we rewrite the tracer equation in the advective form
by substituting (4) into (5), and ignore the vertical and small-
scale mixing terms:

c
t

1
hUi
hhi · =c 5 2

D e

hhi , (16)

where the second term hUi/hhi 5 hui 1 u* and the layer thick-
ness EIV u* 5 (hUi 2 huihhi)/hhi. In this study, we assume that
the large-scale layer-thickness flux hUi is known and focus on
the eddy forcingD e. The equation is the same as the Eq. (5) of
Gent et al. (1995) with u∗ 5 u′h′ /h, D e 5= · U′c′ , and h:::i
taken to be (:::). In most modern coarse-resolution ocean
models u* is parameterized by the GM closure and D e is pa-
rameterized by an isotropic Redi diffusion. However, Haigh
et al. (2021b) showed that in a quasigeostrophic model, u* is sig-
nificantly smaller than the tracer EIV u*c calculated from the ad-
vective tensor A, indicating the importance of the advective
part in D e. Our analysis will arrive at a similar conclusion and
further demonstrate the need of the new eddy-induced advec-
tion in our approach. As is explained in section 3c, the
GEIA flux x includes u*c, and thus x 1 u*hhi describes the to-
tal advective effect of eddies on tracer.

Our x has some similarities with the “residual velocity” pro-
posed by Pratt et al. (2016): They both measure the advective ef-
fect of eddies and both are able to contain diabatic terms.
Nevertheless, we stress that they correspond to different
processes: x describes the eddy forcing whereas the residual
velocity is derived directly as the residual of the large-scale
and eddy tracer flux.

Due to the tracer fluxes through the open boundaries of our
domain, the global tracer mass, Mc, is not conserved. Instead,

TABLE 2. Inhomogeneity and root-mean-square (rms) values of the diffusive (l1,2, Kiso, k) in different parametric models
estimated from different eddy terms. Inhomogeneity is defined as the spatial standard deviation of absolute values. The statistics
of l1 and l2 are similar and are averaged. Parameters are diagnosed at day 100, layer 24, using tracers c1–c5. Note that F1 5 U′hci,
F2 5 U′c′ and Fe 5 F1 1 F2, with the rotational components removed. For reference the inhomogeneity and rms values of hUi/hhi
are 0.014 and 0.023 m s21, respectively.

l1,2 Kiso k

Eddy terms Fe F1 F2 Fe F1 F2 U′ · =hci U′ · =hci U′ · =c′
Inhomogeneity (m2 s21) 3830 3760 466 1310 1270 236 1120 0.49 1120
rms (m2 s21) 4230 4140 525 1510 1470 271 1220 0.56 1220

TABLE 3. As in Table 2, but for the advective (u*c , u
*
c-red, x/hhi) parameters. The statistics of the fluxes are calculated from their norms.

u*c u*c-red x/hhi
Eddy terms Fe F1 F2 Fe F1 F2 U′ · =hci U′ · =hci U′ · =c′

Inhomogeneity (m s21) 0.15 0.14 0.016 0.07 0.07 0.01 0.034 0.019 0.031
rms (m s21) 0.19 0.19 0.021 0.087 0.087 0.012 0.041 0.025 0.035
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Mc becomes part of the solution and will depend partly on
the domain volume integral of the parametric model
D̂ (x,y,z, t). This integral determines the eddy-induced change in
the global tracer mass, D Mc, eddy. For simplicity and a fair com-
parison of the different models D̂ , we force D Mc, eddy to zero in

the two eddy-representing experiments with (15). In both cases,
only the large-scale flow is allowed to take tracers into or out of
the domain. In the flux–gradient case, D̂ is in a form of flux di-
vergence, and thus the conservation ofMc, eddy can be guaranteed
by requiring the eddy fluxes across all boundaries to be zero. We
do this at both solid and open boundaries, because the eddy fluxes
at open boundaries are generally unknown. In the case of the
new approach, however, the conservation of Mc;eddy has to be
enforced by different means because of the advection term Ux ·
=hci. We will correct the eddy forcing (14) by subtracting its do-
main average at each grid point, to ensure D Mc, eddy 5 0 when
applying this approach in the tracer experiment. We confirm that
the volume averaged forcing is less than 1% smaller than the
forcing, so the effect of the correction on tracer distributions is
negligible.

4. Properties of the lateral eddy transport

a. Calculation of the transport coefficient tensor

We calculate the full transport coefficient tensorK by inverting
the flux–gradient relation (8) using two methods. One way is to
obtain an exact solution (Haigh et al. 2020). Two independent
tracers are needed in this case since K has four unknowns. As
discussed by Kamenkovich et al. (2021) and Sun et al. (2021), the
resulting tensor is different for each tracer pair. An alternative
way is to use multiple tracers to form an overdetermined
problem (Bachman et al. 2015), where the resulting tensor is
an approximation that minimizes the mismatch between the
reconstructed and original eddy fluxes in the tracer ensem-
ble. Bachman et al. (2020) showed that this method leads to

an “optimal” solution of K, judging by errors in reconstruct-
ing the eddy fluxes of temperature and salinity. Similarly,
we will here use errors in reconstructing fluxes of tracers
withheld from the inversion method.

To prepare the fields for calculating the tensors, 10 tracers
were initialized with vertically uniform but horizontally differ-
ent distributions (appendix A). The tracer model (1) was
then integrated over four consecutive 110-day segments
with the first 20 days of each segment overlapped by the end
of previous one, providing a 1-yr evolution for each tracer.
Because of the indeterminate boundary conditions for the
open boundaries, we use a minimization technique with
Tikhonov regularization to remove the rotational eddy flux
component (Li et al. 2006; Kamenkovich et al. 2021;
Kamenkovich and Garraffo 2022). The method is able to
obtain a decomposition without the need of explicitly speci-
fying boundary conditions.

The reduced transport coefficient tensor Kred is also diag-
nosed from (8) using the same two inversion methods. The
problem has only two unknowns so only one tracer is required
for an exact solution.

b. Properties of the transport tensors

The complexity of the eddy transport tensor has been
shown by several earlier studies (Bachman et al. 2020;
Haigh et al. 2020; Kamenkovich et al. 2021; Sun et al.
2021). Below we briefly review these properties in our
model.

Figure 2 shows the eigenvalues l1,2 of K estimated from the
full eddy flux Fe and from its divergent component, overlapped
with the diffusion angle u. In agreement with previous studies
(Bachman et al. 2020; Haigh et al. 2020; Kamenkovich et al.
2021; Sun et al. 2021), both l1,2 and u exhibit remarkable spatial
complexity. The magnitude and spatial structure of l1,2 change
significantly when the rotational component is removed, and the
magnitudes are over 10 times less than those estimated from the

FIG. 3. Isotropic diffusivity Kiso and antisymmetric part Ared of Kred (11) calculated from the divergent component
of Fe. The tensor is averaged over days 71–80 in layer 24 and calculated from tracers c1–c5. Parameters are spatially
smoothed by a 0.48 3 0.48 boxcar filter for presentation.
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full eddy flux. The inhomogeneity of l1,2 and the root-mean-
square (rms) values are reported in Table 2. The inhomogeneity
is quantified by the spatial standard deviation of the absolute
value. The eigenvalues are mostly of opposite sign (“polarity” of
the tensor), indicating that the eddy-induced diffusion is predom-
inantly a filamentation process and thus highly anisotropic
(Haigh et al. 2021a; Kamenkovich et al. 2021). For the advective
part (Table 3), the rms tracer EIV u*c is found to be one order of
magnitude larger than the rms mean advective velocity hUi/hhi,
which results from the importance of a lateral eddy flux diver-
gence discussed later.

The anisotropy of eddy-induced diffusion in the midlatitude
oceanic flows has been well known from Lagrangian studies
(Sallée et al. 2008; Klocker et al. 2012a; Rypina et al. 2012;
Kamenkovich et al. 2015). However, the Lagrangian diffusiv-
ity (tensor) is conceptually different from the locally defined K.
Although some studies (e.g., Riha and Eden 2011; Abernathey
et al. 2013) found similarities between the two tensors, the
asymptotically defined Lagrangian diffusivity is nonlocal in space
and time, and it, therefore, cannot quantify the transient and

local eddy effects. For example, the polarity of the Lagrangian
diffusivity is particularly hard to capture, because the correspond-
ing filamentation cannot proceed for long time. In addition, the
tracer EIV u*c cannot be estimated by Lagrangian diffusivity.

Figure 3 shows the two elements of the reduced tensor Kred.
The inhomogeneity and rms statistics of Kiso and u*c-red are
roughly one-third of those for K (Tables 2 and 3). The re-
duced magnitudes are possibly due to the truncated aniso-
tropic diffusion. Negative values are still common in Kiso

(;40% of the domain), indicating transient antidiffusive
processes.

The transport tensor is also known to depend on the initial
tracer distributions, although the tracers are stirred by the
same flow (Bachman et al. 2015, 2020; Kamenkovich et al.
2021; Sun et al. 2021). This tracer dependence violates the
main assumption that the tensor coefficient is a function of
the flow only. This property is quantified here by calculating
K (Kred) from all possible tracer pairs (tracers), which results
in an ensemble of the corresponding eigenvalues l1,2 (Kiso).
The resulting values of both l1,2 and Kiso change by more

FIG. 4. Domain-median of absolute values of the (top) divergence and (bottom) advection for different lateral mean and eddy forcing
terms over 8 months in layer 24. Bars denote the 20th–80th percentile range. Similar results are found in other layers. The initial distribu-
tion of the tracer is ct1 (appendix A). Note that = · (U′hci) is an order of magnitude larger than the other forcing terms.
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than 300% over the entire ensemble. This result questions the
utility of the flux–gradient relation and the diffusion model.

c. Eddy flux components and their importance

The lateral eddy tracer flux Fe 5 U′c is comprised of two
components with distinct physical interpretations: U′hci and
U′c′. They represent the eddy advection of the large-scale
tracer contours and the tracer anomalies, respectively. We
now discuss their relative importance and properties of the
corresponding transport tensors. For completeness, the prop-
erties of the third eddy-induced flux, the flux of tracer anoma-
lies by the large-scale flow hUic′, are also discussed here.

Figure 4 (top) compares magnitudes of the divergences of
these eddy flux terms with that of hUihci. An intriguing result
is that the divergence of the eddy advection of the large-scale
tracer U′hci is largest among all four. To gain further insight
into this term, we split it into two components:

= · (U′hci) 5 hci= · U′ 1 U′ · =hci: (17)

Within an isopycnal layer, the first term on the right-hand
side represents the effect of volume convergence, which leads

to the squeezing/stretching of the layer and its diapycnal mass
exchanges with the adjacent isopycnal layers. We refer to this
term as the “expansion term.” In the mixed layer, the term
corresponds to the vertical convergence of the volume flux. In
both regimes, the term is the main cause of the exaggerated
importance of = · (U′hci), because the second term on the
right-hand side of (17) is of the same order of magnitude
as the other eddy advection terms (Fig. 4, bottom). There
are two reasons for the dominance of the expansion term
hci= · U′: (i) hci is generally larger than c′, which explains why
the expansion term is larger than c′= · U′; (ii) the divergence
of U′ tends to be larger than the divergence of the large-scale
volume flux hUi, which explains why the expansion term is
larger than c′= · hUi. The expansion term can also be ex-
pected to explain a large part of the tracer dependence in K,
since hci= · U′ strongly depends on the initial tracer distribu-
tion and would also change if a constant were added to c all
over the domain. Note that the expansion term is zero in qua-
sigeostrophic studies (e.g., Haigh et al. 2020). The dominance
of the expansion term hci= · U′ and its dependence on hci
thus complicate application of the flux–gradient relation to
the lateral (isopycnal) fluxes, especiallyU′hci.

FIG. 5. Tracer dependence (ratio of the standard deviation to the absolute ensemble mean) of the (a) diffusive and
(b) advective parameters of the two parametric models D̂ , estimated from different eddy forcing terms. Error bars
denote the median and the 20th–80th percentile range of the ratio. (a) Diffusive parameters include the average of
the eigenvalues l1,2 of S, the isotropic diffusivity Kiso, and k of the generalized advective–diffusive model. (b) Advective
parameters include the tracer EIVs associated with A and Ared, and the generalized advective flux x normalized by hhi.
All three ensembles of Kred, K, and k and x contains 10 estimates, with K randomly chosen from all the 45 possible esti-
mates (tracer pairs) and k and x randomly chosen from the 120 possible estimates (tracer triplets). For a flux, the ratios
of its two horizontal components are averaged. The x axis denotes different eddy terms from which the parameters are
estimated. Note that tensors (K, K1,2) are estimated from eddy fluxes (F, F1,2) whereas k and x are estimated from
eddy advections (e.g.,U′ · =c). All parameters are diagnosed at day 100, layer 24. Other layers have similar results.
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All the eddy forcing terms in Fig. 4 remain large after being
spatially filtered by h:::i, meaning that they not only affect the
full but also the large-scale tracer distribution. Remarkably,
U′hci, as well as its divergence, is still the largest eddy terms
after the filtering. This property results from the lack of scale
separation between the large-scale and eddy fields. Note that
for the Reynolds decomposition, only the eddy–eddy term,
U′c′, remains nonzero after long-term time averaging.

Because the flux–gradient relation is linear, we can further ex-
plore properties of K estimated fromU′hci andU′c′ separately:

F1 5 U′hci 5 2hhiK1=hci, F2 5 U′c′ 5 2hhiK2=hci: (18)

The rotational component is removed from each of the flux
components separately. Tables 2 and 3 list the inhomogeneity
and rms magnitudes of both the eigenvalues and tracer EIVs
of K1,2. Both variables are much larger for K1 than for K2, which
is due to large mean values and fluctuations of F1. Similarly, the
reduced transport tensor Kred from F1 (Tables 2 and 3) also has
larger inhomogeneity and rms values than Kred from F2.

The tracer dependence of the tensors is quantified next. We
first estimate an ensemble of tensors K1,2 from a set of tracer
pairs, and calculate their eigenvalues and tracer EIVs. The tracer
dependence is then defined as the ratio of the ensemble standard
deviation to the absolute ensemble mean of these parameters.
The results show that both the diffusion (Fig. 5a) and advection
(Fig. 5b) tensor components are strongly tracer-dependent
(.300% in most of the domain) for all flux components,

although this dependence in K2 is weaker than in both K and K1.
The tensors calculated from hUic′ (not shown) have tracer de-
pendence similar to K2 The tracer dependence in Kred is higher
than Kred except for F2. The elevated tracer dependence in F1
can be explained by the expansion term being the leading source
of tracer dependence. For example, if a constant is added to the
tracer field, the tensor calculated by 2U′hci · (=hci)21 will
change correspondingly, leading to unphysical dependence of
the tensor on the tracer concentration. In agreement with Sun
et al. (2021), we verified that tensors calculated from large-scale
eddy fluxes, hFei, have very similar properties.

Because of tracer dependence, eddy fluxes reconstructed from
K will always have biases regardless of the number of tracers
used in the calculation. For K calculated from a large ensemble
of tracers (overdetermined problem), the biases are inevitable
for each of the eddy fluxes. ForK calculated exactly from a tracer
pair, the tracer dependence leads to biases for a third tracer. We
use the relative error in the divergence of the eddy flux to exam-
ine the significance of these biases on tracer distribution, because
it is the flux divergence that directly enters the tracer budget. We
define the relative error « that results from using a parametric
model D̂ to represent the eddy forcingD for a given tracer as

« 5

∣∣∣∣D 2 D̂

D

∣∣∣∣, (19)

where D 5= · Fe and D̂ 5 2= · (hhiK=hci). The relative er-
ror quantifies the biases in the reconstructed eddy forcing fields

FIG. 6. Effects of the tracer dependence in the flux–gradient approach on the accuracy of the
represented eddy forcing. Dots are median of the relative error « of the eddy flux divergence at
day 100, layer 24. Bars denote the 20th–80th percentile range. Different components of the eddy
flux are reconstructed by K for tracer c6. N is the number of tracers in the set {cn} (c6 �2 {cn}) that
was used to calculate K. Similar results were found for different times, layers, and tracers.
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(e.g., in flux divergence) that are caused by the uncertainty (e.g.,
tracer dependence) in the parameters (e.g., K) that represent the
eddy forcing. It is zero only when K is calculated exactly from a
pair of tracers that includes the given tracer.

Figure 6 shows « for Fe and F1,2, as a function of the number
of tracers in the set (cn, n5 1, … , N) used to calculate K. The
tensor is solved either exactly (N 5 2) or by using the over-
determined method (N . 2). The results are shown for the
tracer c6, which is not included in the tensor calculations,
but the conclusions are the same for all other tracers. The
errors « for different terms are larger than 100% in most of
the domain and are not improved significantly with increas-
ing N. This implies that the multitracer inversion cannot re-
duce the tracer dependence effectively. It is, therefore,
almost certain that the tracer dependence of K has a signifi-
cant effect on tracer transport through the errors in eddy

forcing. We also see larger bias in the divergence of U′hci,
which is particularly problematic because it dominates lat-
eral eddy fluxes. As discussed in section 3c, this flux term is
inconsistent with the flux–gradient framework. We have
now confirmed that it is one of the sources of bias in the
relation.

5. Properties of the generalized advective–diffusive approach

The results in the last section illustrate challenges of the
flux–gradient approach and provide motivation for the gener-
alized advective–diffusive approach. In this section, we per-
form similar analyses of our new formulation (14) and show
the improvement relative to the flux–gradient method.

One advantage of the new approach is that it can be used to
represent any term in the eddy forcing, such as the lateral eddy

FIG. 7. Snapshots of k and x/hhi in the new approach, estimated from lateral eddy advectionU′ · =c. They are averaged over days 71–80 in
layer 24 and are overdetermined from tracers c1–c5. Here, k is on the same order of magnitude with l1,2 and Kiso, but has different spatial
structure. Parameters are spatially smoothed by the 0.483 0.48 boxcar filter for presentation clarity.

FIG. 8. Effects of tracer dependence on the accuracy of modeling of the eddy forcing in the gen-
eralized advective–diffusive approach. Median of the relative errors « between the eddy advection
reproduced by k and x and the original advection term, for the tracer concentration c6 in layer 24.
Bars denote the 20th–80th percentile range. The relative error forU′ · =hci is nearly zero (not shown).
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tracer flux divergence = · (U′c), the lateral eddy advection
U′ · =c, the vertical term, and eddy tendency. As mentioned in
section 3a, this study focuses on the lateral eddy-induced trans-
ports only. This is for the sake of a direct and fair comparison
with the flux–gradient approach, which can only be applied to
the lateral eddy flux. The advection form of the lateral term
U′ · =c is anticipated to be more accurate than the flux diver-
gence form = · U′c. for the following reason. In section 4, we
showed that a large portion of the lateral eddy flux divergence is
devolved into the “expansion” term, i.e., hci= · U′

.. U′ · =hci.
Using the advection form will thus eliminate the need to account
for this expansion term and avoids its elevated sensitivity to hci.
We will later confirm this by analyzing the corresponding tracer
dependence and errors in the represented eddy forcing. We
leave the consideration of the vertical/tendency terms for a
future study. We will, however, show in section 6 that the lateral
eddy advection effectively captures the bulk effect of the eddy
forcing.

The diffusivity k and GEIA flux x are calculated by inverting
(14) from the lateral eddy advection using the same set of ideal-
ized tracers. We use either three independent tracers to get an
exact solution or more than three tracers to get a least squares
solution of the three unknowns. Figure 7 shows snapshots of
k and x overdetermined with five tracers. Similar to the diffu-
sivities of K and Kred, k is spatially inhomogeneous and exhibits
both positive and negative values. The inhomogeneity and rms
values of k (Table 2) have similar magnitude with Kiso of Kred,
although the spatial pattern is very different (Fig. 3). This is not
unexpected because the two isotropic diffusivities are formu-
lated differently.

The new divergent GEIA flux x is of particular interest. Its
magnitude (divided by hhi) is about 2 times less than u*c from
both K and Kred (Table 3). A key question is on the importance
of the new term Ux and whether this part is really divergent,
i.e., cannot be represented by the antisymmetric tensor. Al-
though Ux and u*chhi cannot be calculated individually in this

FIG. 9. Tracer concentration anomalies from the five experiments (Table 1) in layer 15 (;500-m depth) after 200 days
of advection. The initial distribution (ct1) is subtracted out.
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framework, we can extract the divergent component of their
sum, which equals x 1 =(hhik) by definition. The divergent
component then measures the importance of Ux because u*chhi
is purely rotational. Using the same technique as for the eddy
tracer flux to calculate the divergent and rotational compo-
nents, we found that their rms values, divided by hhi, are
0.57 and 0.04 m s21, respectively. This indicates that there is
indeed a significant divergent component in the GEIA flux that
cannot be possibly described by a streamfunction and thus by
the eddy transport tensor.

We next evaluate the tracer dependence in k and x using the
same method as for K and Kred. We remind the reader that this
dependence contradicts the assumption that the parameters of
D̂ are functions of the flow only and increases uncertainty in
estimating these parameters for practical applications. Figure 5
shows the spread of k and x derived from different eddy
advection terms among the tracer triplets. We observe modest
reduction in the tracer dependence relative to the diffusive and

advective parts of K and Kred. The only exception is the spread
of x for the term U′ · =hci which is zero; this is expected be-
cause x5 U′ in this case.

To examine how the tracer dependence affects the accuracy
of representing the eddy forcing, we recalculated the relative
error « from (19), with D 5U′ · =c and D̂ given by (14). In
this case, k and x are calculated for a subset of tracer triplets
and the error is evaluated for the rest of the tracer ensemble.
Figure 8 shows « for different eddy advection terms. We see
that « is significantly reduced compared to the flux–gradient
model (Fig. 6). We conclude that the new approach leads to
reduced uncertainty in estimating the eddy forcing, despite the
remaining sensitivity of its parameters to tracer distributions.

6. Application in the high-resolution model

This section aims to evaluate the skill of the flux–gradient rela-
tion and the generalized advective–diffusivemodel in reproducing

FIG. 10. The skill of the truncated and the approximated eddy forcings in reproducing the eddy effects. (a) The
Frobenius norm of the vertically averaged tracer concentration differences between the four experiments and FULL
as a function of time. The Pearson correlation of tracer fields between (b) MEAN, (c) EXP-Kred, (d) EXP-kx, and
(e) EXP-ADV and FULL, over 270 days. The initial distribution is ct1. Tracers are averaged within the mixed layer.
Similar results are observed for tracers averaged below layer 15.
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the eddy-induced stirring, as well as the effects of truncating the
eddy forcing D e to its lateral part. This is done by performing a
series of tracer experiments (15) with various forms of eddy forc-
ing D , and by quantifying how close the approximate solution c̃
is to the reference solution. To assess the robustness of conclu-
sions, our analysis on the tracers is carried out in two distinct parts
of the domain: in the mixed layer and below the isopycnal layer
15 (;500-m depth) of the model. We remind the reader, that the
tracer in the mixed layer is stirred horizontally by a combination
of mesoscale and partially resolved submesoscale currents and is
homogenized vertically at each time step.

a. Tracer experiments

The total of five experiments are listed in Table 1. The
MEAN run has D 5 0 with tracers transported by the large-
scale volume flux, and the FULL run is the reference (control)
simulation with the full flow. The EXP-ADV run illustrates the
importance of the lateral eddy advection (D 5U′ · =c) in the
eddy forcing and serves to quantify the effect of omitting
the nonlateral terms in eddy forcing (7). It also represents
the “best scenario” when this advection term is represented
accurately.

The other two experiments examine how well the flux–
gradient approach (EXP-Kred) and the new approach (EXP-kx)
represent the lateral eddy forcing. In both experiments,
D̂ (x,y,z, t) is applied to simulate tracers that were not used to
calculate the parameters in this D̂ . The tracer dependence in
these parameters will inevitably cause bias in D̂ , which leads to
the difference between c̃ and c from the FULL simulation. The
difference between solutions thus mainly quantifies the impact of
tracer dependence and the “goodness” of the approaches. Our
previous analysis on the relative errors in eddy forcing is a com-
plementary measure in a diagnostic way. The other source of the
difference is the omitted eddy tendency and vertical/diapycnal
terms, whose effect is measured by EXP-ADV. In the EXP-Kred

run, we use the reduced transport tensor (11) to represent the lat-
eral eddy flux. The new approach (14) is applied in the EXP-kx
run. Both representations are the combination of an isotropic dif-
fusion and an eddy-induced advection. As discussed in section 3b,
we did not employ the anisotropic diffusion because it is numer-
ically unstable as a result of negative diffusivities. The compari-
son serves to evaluate the implications of the generalized
advection. We used five tracers (c1–c5) to estimate Kred, k, and
x, which ensures that the same amount of information is

FIG. 11. The skill of different D̂ in reproducing eddy stirring effect on a large-scale tracer profile. The figures show the temporal evolution of
the relative difference in the zonally and vertically averaged tracer concentrations between the three sensitivity experiments and FULL. Tracer
concentrations were averaged (top) over the mixed layer and (bottom) over the isopycnal layers below layer 15. The initial distribution is c6.
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provided for both approaches. Note that these experiments are
not eddy parameterizations because the parameters are diag-
nosed from the reference simulation, and the experiments are
carried out in the same high-resolution model.

Figure 9 shows the snapshots of tracer solutions in the five
experiments. Comparison of MEAN and FULL illustrates that
eddies influence the tracer distribution mainly in two ways:
(i) they smooth out sharp large-scale tracer concentration
fronts (gradients) and the peak values on each side of a front
and (ii) they induce small-scale concentration structures all over
the domain, and especially along the large-scale fronts. The
tracer field in EXP-ADV and EXP-kx is visually similar to
FULL. We then quantify the difference between the solutions of
FULL and the other runs by the Frobenius norm (Fig. 10a) and
the correlation coefficients (Figs. 10b–e). The results show that
the EXP-ADV solution (green line and Fig. 10e) is significantly
closer to the FULL than is the MEAN (black line and Fig. 10b),
indicating an improvement because of using the lateral eddy ad-
vection. The remaining bias results from the truncated terms
h′tc 1 [s(w′c) 2 csw′] in (7), and are confirmed small. This
justifies our choice to model the lateral term by the new
approach. In contrast, the same bias for the flux–gradient ap-
proach cannot be quantified because an additional experiment
with D 5= · (U′c) (not shown) exhibits unrealistic tracer
concentration patterns, which is a possible consequence
of excessively large biases caused by the absent terms
t(ch

′) 1 s(w
′c) in (6). The solution of EXP-kx (red line

and Fig. 10d) is closer to FULL than EXP-Kred (blue line and
Fig. 10c), indicating a statistical improvement brought by the
new approach.

Mesoscale eddies can have cumulative effect on the large-
scale tracer distribution through stirring and dispersion. We
next consider two physically meaningful processes for the sensi-
tivity experiments: evolution of a large-scale tracer gradient and
dispersion of a tracer patch along the Gulf Stream path.

b. Evolution of a large-scale tracer gradient

The analysis in this section is focused on the efficiency of
eddy stirring in reducing the meridional gradients. Simulations
are initialized with the tracer c6 which has a sinusoidal structure
in the meridional direction and is uniform zonally and vertically.
Over time, the eddy stirring reduces the meridional gradients
and the tracer slowly approaches a uniform distribution.

Figure 11 shows the relative difference of tracer fields (“tracer
bias”) between the FULL and three sensitivity experiments,
MEAN, EXP-Kred, and EXP-kx, as a function of time and lati-
tude. In both the mixed layer and deeper layers, EXP-kx is
closer to FULL than EXP-Kred, showing that the new approach
captures the eddy stirring more accurately than the flux–gradient
approach. An intriguing feature in the mixed layer tracer concen-
trations (Fig. 11, top) is the large relative difference at about
428N. We attribute this difference to the presence of a transport
barrier at the Gulf Stream core (Rypina et al. 2011) in the FULL
run. Since velocities at this core in MEAN is smeared out by the

FIG. 12. The skill of different D̂ in reproducing eddy-induced dispersion of an isolated tracer patch. Shown is the
vertically averaged tracer concentration below layer 15 at day 120 after release. Circle in magenta represents the ini-
tial tracer patch (ct2). Tracer concentration less than 13 1023 (0.1% of the initial concentration) is set to zero.
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spatial filter, the associated transport barrier breaks down, lead-
ing to a significant bias in tracer distributions.

c. Dispersion of a tracer patch

Mesoscale eddies disperse tracers anisotropically. The effi-
ciency and preferential direction of the dispersion can be
measured by the time rate of change of the second moment
for a tracer patch (Rypina et al. 2012). The second moment is
defined as a covariance matrix (Wagner et al. 2019):

s2
ij 5

	 	
(xi 2 xci )(xj 2 xcj )c(x, y)dx dy	 	

c(x, y)dx dy
, i, j 5 1; 2, (20)

where xci 5

 


xic(x,y)dx dy
/
 


c(x,y)dx dy is the position of
center of mass.

We released a tracer anomaly near the Gulf Stream axis at
35.58N, 63.58W. The initial tracer concentration distribution is
vertically uniform and has a shape of a round patch with the
diameter of 38. It is larger than the typical length scale of me-
soscale eddies to prevent the tracer from being trapped in a
single eddy like a Gulf Stream ring. Figure 12 shows the evo-
lution of the vertically averaged tracer patch in the sensitivity
experiments. In all simulations, the patch propagates along
the Gulf Stream axis due to the mean advection and disperses
away due to the eddy stirring. Unsurprisingly, the tracer in
FULL spreads much farther away from its initial position
than in MEAN. The shape of the tracer patch in EXP-kx is
similar to that in the FULL run, which demonstrates the

efficiency of GEIA in capturing anisotropic dispersion. In
contrast, the spreading in EXP-Kred is more isotropic than in
FULL.

A quantitative comparison is done through the dispersion
covariance matrix. Similar to the symmetric tensor S, the covari-
ance matrix can be rotated onto a new coordinate, where the ma-
jor axis is along the maximum dispersion direction, and the
minor axis is perpendicular to it. Figure 13 compares the disper-
sion of the vertically averaged tracers within the mixed layer.
Along the major axis, all results are similar, because the
large-scale sheared flow in the Gulf Stream dominates over
the eddy effects. In contrast, the differences between the ex-
periments are significant in the transverse direction, along
the minor axis (e.g., Oh et al. 2000). We see that the FULL
dispersion increases much faster and asymptotes to a larger
value than in MEAN (Fig. 13, bottom). Across the Gulf
Stream, the dispersion in both the EXP-Kred and EXP-kx
cases is close to FULL, demonstrating that they can capture
the eddy dispersive effects.

The improvement due to the generalized advective–diffusive
approach can be seen most clearly in the deeper layers (Fig. 14).
Along each axis, the dispersion in EXP-kx is close to FULL. In
contrast, the EXP-Kred dispersion along the minor axis is highly
overestimated. The eddy-induced spreading in the Gulf Stream
region is known to be strongly anisotropic (Rypina et al. 2012;
Kamenkovich et al. 2015). Our results from EXP-Kred show that
the instantaneous isotropic diffusivity with an anisotropic anti-
symmetric part mixes excessively along the minor axis. In con-
trast, the anisotropic dispersion is reproduced effectively by using
the generalized advection (EXP-kx).

FIG. 13. Dispersion along the (top) major and (bottom) minor axes of the isolated tracer patch
averaged within the mixed layer.
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7. Conclusions and discussion

This study aims to make progress in understanding effects of
large-scale and mesoscale currents on passive tracer distribution.
In light of the complexity of representing the eddy-induced
transport by the traditional flux–gradient relation, the study ex-
plores a new representation approach and evaluates the two ap-
proaches in a high-resolution model of the Gulf Stream region.

We focus on the lateral mesoscale eddy tracer transport, with
“lateral” being defined as horizontal in the surface mixed layer
and along-isopycnal in the ocean interior. Mesoscale eddies are
defined broadly via a high-pass spatial filter, which is motivated by
the need to study transient eddy-induced processes missing in
coarse-resolutionmodels. In this definition, the eddies include sub-
mesoscale currents that are containedmainly in the surface mixed
layer and are partially resolved in our numerical simulations. This
scale-based filter is different from the conventional Reynolds de-
composition in that it introduces new eddy-mean “cross terms”
that represent interscale interactions. Our results showed that
these terms have distinct implications on tracer transport. For ex-
ample, the divergence of U′hci dominates the lateral transport
due to the divergence of the lateral eddy volume flux amplified by
the large-scale tracer, hci= · U′. This flux term not only contrib-
utes the most to the spatial variability of the eddy transport ten-
sor, but is also a major source of biases in representing the eddy
forcing by the flux–gradient relation. Using the mixing length
theory, we also showed that U′hci cannot be properly approxi-
mated by the turbulent diffusion. These properties compromise
the utility of the flux–gradient relation in isopycnal layers.

Besides the complications from the cross terms, the flux–
gradient approach is also affected by the ambiguity due to

the rotational (nondivergent) component in eddy tracer flux.
The definition of this component and, thus, of the transport
tensor, is not unique and is highly sensitive to the ill-defined
boundary conditions. At the same time, errors in parameteri-
zation of the rotational component will be significant for
tracer evolution, because the component tends to dominate
the eddy tracer flux. In addition, several nonflux and w flux
terms in the eddy forcing, i.e., tch

′
1 sw′c, cannot be readily

represented by the flux–gradient relation in isopycnal layers and
in a general computational domain. These challenges motivated
us to consider an alternative to the flux–gradient model.

The proposed generalized advective–diffusive approach is able
to resolve the aforementioned issues by including a divergent
generalized eddy-induced advective (GEIA) flux x and modeling
the local eddy forcing. This study considered a simplified form of
the approach that consists of isotropic diffusion and generalized
advection. Although the GEIA flux is advective and introduces a
well-defined direction in the eddy-induced stirring, a full diffusiv-
ity tensor would still be needed to capture anisotropic diffusive
effects. We did not, however, use such a tensor in our tracer sim-
ulations because of persistent numerical instability that plausibly
results from the opposite-signed diffusivities. Our results showed
that the new model leads to reduced biases in representing the
tracer eddy forcing. The biases cannot, however, be completely
eliminated, because the parameters in both the flux–gradient and
the new formulations still depend on tracers, and thus cannot be
uniquely defined.

This study is one of the first attempts to use the eddy-
induced advection and eddy-induced diffusion with their
full spatiotemporal variability to represent the eddy effects.
By performing a series of targeted tracer simulations in a

FIG. 14. As in Fig. 13, but for tracer patches averaged below layer 15.
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high-resolution model, we showed the importance of the
eddy-induced lateral advection. We also demonstrated that
the new approach is more accurate in reproducing the stir-
ring and dispersing effect of eddies than the flux–gradient
approach.

One of the notable advantages of the generalized advective–
diffusive approach is that it can represent any form of the local
eddy forcing. In this study, we focused on the lateral stirring for a
direct comparison with the flux–gradient model. We used the
new approach to represent the lateral eddy advection U′ · =c,
and our analysis showed that it captures the full eddy effects
more effectively than does the lateral eddy flux divergence
= · (U′c). This could be one of the main reasons why the new
approach outperforms the flux–gradient model besides the re-
duced tracer dependence.

The proposed approach could eventually lead to new eddy
parameterizations. It should be reemphasized, however, that
this study is not a direct attempt at eddy parameterization
for several reasons. First, we do not consider eddy-induced
mass fluxes. The isopycnal layer thickness eddy-induced ve-
locity (EIV) u* that can be parameterized by the Gent and

McWilliams (1990) closure in not studied here. In future de-
velopments, the GEIA flux x can be combined with u* to ad-
vect tracers, uniting these two distinct eddy-induced advective
effects: the former represents the advective eddy transport of
tracers whereas the latter is the eddy advection of water mass
in which the tracer is embedded. However, our calculation of
u*hhi, defined as hUi 2 huihhi, showed that it is at least one
order of magnitude smaller than x. This result is in agreement
with the conclusions from an idealized quasigeostrophic study
(Haigh et al. 2021b) that systematically compared the tracer
EIV u*c and u*.

Second, the parameters Kred, k, and x were diagnosed from
the high-resolution reference simulation and applied to the same
model. The use of a high-resolution model avoids additional
errors associated with extrapolation and rediscretization of rele-
vant physical terms to a coarser grid. In contrast, a parameteriza-
tion scheme would need to be developed and tested on a coarse
numerical grid and must involve a closure, that is, calculation of
all the parameters from large-scale quantities. Development of
closures is a difficult and unsettled task. For example, the physi-
cal expressions of Redi and GM coefficients are still challenging

FIG. A1. Initial distributions of tracer fields. Tracers are constant in the vertical direction.
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to derive (Marshall and Speer 2012; Mak et al. 2017), although
their application has been fairly successful.

An important source of ambiguity in modeling eddy effects
lies in the definition of eddies. This study used a spatial coarsen-
ing that may explain the strong variability in the eddy-induced
diffusion and eddy-induced advection. Studies that use a long-
term time and/or zonal averaging alone (e.g., Bachman and
Fox-Kemper 2013; Klocker and Abernathey 2014) or combine
the temporal and spatial averaging (e.g., Bachman et al. 2020;
Zhang and Wolfe 2022) to separate mesoscale and large-scale
fields could find reduced variability of K. For example, Zhang
and Wolfe (2022) reported only occasional negative eigenvalues
and a modest tracer dependence. This could be a result of the
intensive smoothing they applied to eddy fluxes, which reduces
variations in the tensor. Dynamically meaningful definition of
eddies as the type of currents missing in coarse-resolution models
is needed. A recently novel method is to define “dynamically
unresolved eddies” (Agarwal et al. 2021; Berloff et al. 2021;
Ryzhov and Berloff 2022), but it requires additional computa-
tions for passive tracers. The sensitivity of properties of the
modeled eddy-induced transport to the definition of eddies and
eddy forcing is an important research topic.

It is also an intriguing and practical question of how the
(Eulerian) eddy diffusivities of the approaches in this study
(S and k) could be estimated by the Lagrangian method using
drifters (e.g., Lumpkin et al. 2002; LaCasce 2008) or a dye release
experiment (e.g., Ledwell et al. 1998) in the real ocean. The task
would be difficult in practice, because the required dense spatio-
temporal coverage of the concurrent tracer and velocity fields is
not available on a global scale. Besides the limitation of sparse
observations, this open question roots in the unsettled physical
connection between the Eulerian and Lagrangian (particle- or
tracer-based) estimates in the complex oceanic flows. Even if a
sufficient amount of Lagrangian observations can be obtained in
a numerical model, the consistency between the two estimates
has only been evaluated in a strongly zonal flow (Abernathey
et al. 2013). This question is out of the scope of our study. We
refer readers to Klocker et al. (2012b) and Qian et al. (2019),
who used theoretical considerations to reconcile the different
estimates of eddy diffusivities.

This study is motivated by the recently uncovered issues with
the flux–gradient relation. However, we emphasize that these
issues do yet not prove that the relation is fundamentally un-
suitable for parameterization of eddies. The new approach suf-
fers from some of the same issues: e.g., the tracer dependence
in parameters is still large. Future works should be extended
to include the nonflux eddy terms such as the time tendency of
tracer mass (ch), and the anisotropic diffusion, which we leave
in a companion study.
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APPENDIX A

Initial Distributions of Tracers

Ten tracers were used in total for diagnosing the para-
meters in the flux–gradient and generalized advective–diffusive
approaches. Tracer concentrations were initialized with different
horizontal distributions and were taken constant in the vertical
direction (Fig. A1):

c1 � cos 2p
ny
Ny

+ 2;

c2 � cos 2p
nx
Nx

+ 2;

c3 � cos 2p
nx
Nx

+ ny
Ny

( )
+ 2;
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Nx 2 nx

Nx

+ ny
Ny
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2 1
( )2

9
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0:4
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2 1

( )2
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦;

(A1)

where nx and ny are grid indices in the zonal and meridional
directions, respectively, and Nx 5 1573 and Ny 5 1073 are the
total numbers of grid points in the corresponding directions.
Tracers used for the experiments in section 6 have different
initial distributions:

ct1 5 0:5 cosp
ny
Ny

1 0:5;

ct2 5
3 2 2

d2

752
, if d2 ≡ (nx 2 900)2 1 (ny 2 400)2 # 752

0; otherwise
:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(A2)
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APPENDIX B

Derivation of the Generalize
Advective–Diffusive Approach

We start by modeling the eddy forcing field with combining
the flux–gradient framework and a generalized advection:

D̂ 5 2= · (hhiK=hci) 1 Ux · =hci, (B1)

where Ux is an independent (vector) parameter that can be
divergent. Realizing that the spatial gradient of K also corre-
sponds to advection, we expand (B1) as

D̂ 5 2hhiKijijhci 1 [2i(hhiKij) 1 Ux
j ]jhci, (B2)

where i and j are used to index the spatial coordinates, and
summation over the repeated indices is assumed. By splitting
Kij, in the first term on the right-hand side, into its symmet-
ric Sij and antisymmetric Aij parts, and by taking Aij 5 2Aji,
(B2) becomes

D̂ 5 2hhi{S11xxhci 1 2S12xyhci

1 S22yyhci
}
1 x · =hci , (B3)

where x(x, y, z, t) (m2 s21) incorporating all advective terms,
2i(hhiSij)1 ẑ 3=(hhiA21)1Ux, is generally divergent, and
is referred to as generalized eddy-induced advective (GEIA)
flux. Both Sij and x need to be diagnosed from tracer fields as
independent parameters. Thus, the proposed approach involves
a set of point-wise local problems (on each grid node).

This study considers a simplified form of (B3) by taking the
diffusive part to be isotropic (S12 5 0 and S11 5 S22 5 k) and
by incorporating the antisymmetric part of the tensor into the
generalized advection:

D̂ 5 2hhik=2hci 1 x · =hci, (B4)

where k(x, y, z, t) (m2 s21) is an isotropic diffusivity. Here,
we assumed that the anisotropy can be partly captured by the
eddy-induced advection, since the advection has a well-defined
direction (anisotropic).

REFERENCES

Abernathey, R., D. Ferreira, and A. Klocker, 2013: Diagnostics of
isopycnal mixing in a circum-polar channel. Ocean Modell.,
72, 1–16, https://doi.org/10.1016/j.ocemod.2013.07.004.

Agarwal, N., E. Ryzhov, D. Kondrashov, and P. Berloff, 2021:
Correlation-based flow decomposition and statistical analysis
of the eddy forcing. J. Fluid Mech., 924, A5, https://doi.org/
10.1017/jfm.2021.604.

Aluie, H., 2019: Convolutions on the sphere: Commutation with
differential operators. Int. J. Geomath., 10, 9, https://doi.org/
10.1007/s13137-019-0123-9.

}}, M. Hecht, and G. K. Vallis, 2018: Mapping the energy cascade
in the North Atlantic Ocean: The coarse-graining approach. J.
Phys. Oceanogr., 48, 225–244, https://doi.org/10.1175/JPO-D-17-
0100.1.

Bachman, S. D., and B. Fox-Kemper, 2013: Eddy parameterization
challenge suite I: Eady spindown. Ocean Modell., 64, 12–28,
https://doi.org/10.1016/j.ocemod.2012.12.003.

}}, }}, and F. O. Bryan, 2015: A tracer-based inversion
method for diagnosing eddy-induced diffusivity and advection.
Ocean Modell., 86, 1–14, https://doi.org/10.1016/j.ocemod.2014.
11.006.

}}, }}, and B. Pearson, 2017: A scale-aware subgrid model for
quasi-geostrophic turbulence. J. Geophys. Res. Oceans, 122,
1529–1554, https://doi.org/10.1002/2016JC012265.

}}, }}, and F. O. Bryan, 2020: A diagnosis of anisotropic
eddy diffusion from a high-resolution global ocean model. J.
Adv. Model. Earth Syst., 12, e2019MS001904, https://doi.org/
10.1029/2019MS001904.

Berloff, P., E. Ryzhov, and I. Shevchenko, 2021: On dynamically
unresolved oceanic mesoscale motions. J. Fluid Mech., 920,
A41, https://doi.org/10.1017/jfm.2021.477.

Bleck, R., 2002: An oceanic general circulation model framed in
hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4,
55–88, https://doi.org/10.1016/S1463-5003(01)00012-9.

Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F.
Shchepetkin, 2008: Mesoscale to submesoscale transition
in the California Current system. Part I: Flow structure, eddy
flux, and observational tests. J. Phys. Oceanogr., 38, 29–43,
https://doi.org/10.1175/2007JPO3671.1.

Danabasoglu, G., and J. C. McWilliams, 1995: Sensitivity of the
global ocean circulation to parameterizations of mesoscale
tracer transports. J. Climate, 8, 2967–2987, https://doi.org/10.
1175/1520-0442(1995)008,2967:SOTGOC.2.0.CO;2.

Eden, C., and R. J. Greatbatch, 2008: Towards a mesoscale eddy
closure. Ocean Modell., 20, 223–239, https://doi.org/10.1016/j.
ocemod.2007.09.002.

Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy diffusiv-
ity across jets in the southern ocean. J. Phys. Oceanogr., 40,
1501–1519, https://doi.org/10.1175/2010JPO4278.1.

}}, J. C. McWilliams, V. M. Canuto, and M. Dubovikov, 2008:
Parameterization of eddy fluxes near oceanic boundaries. J.
Climate, 21, 2770–2789, https://doi.org/10.1175/2007JCLI1510.1.

Fox-Kemper, B., R. Ferrari, and J. Pedlosky, 2003: On the
indeterminacy of rotational and divergent eddy fluxes.
J. Phys. Oceanogr., 33, 478–483, https://doi.org/10.1175/
1520-0485(2003)033,0478:OTIORA.2.0.CO;2.

Garabato, A. C. N., X. Yu, J. Callies, R. Barkan, K. L. Polzin,
E. E. Frajka-Williams, C. E. Buckingham, and S. M. Griffies,
2022: Kinetic energy transfers between mesoscale and subme-
soscale motions in the open ocean’s upper layers. J. Phys.
Oceanogr., 52, 75–97, https://doi.org/10.1175/JPO-D-21-0099.1.

Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean
circulation models. J. Phys. Oceanogr., 20, 150–155, https://doi.
org/10.1175/1520-0485(1990)020,0150:IMIOCM.2.0.CO;2.

}}, J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995:
Parameterizing eddy-induced tracer transports in ocean circu-
lation models. Ocean Modell., 25, 463–474, https://doi.org/10.
1175/1520-0485(1995)025,0463:PEITTI.2.0.CO;2.

}}, A. P. Craig, C. M. Bitz, and J. W. Weatherly, 2002: Parame-
terization improvements in an eddy-permitting ocean model
for climate. J. Climate, 15, 1447–1459, https://doi.org/10.1175/
1520-0442(2002)015,1447:PIIAEP.2.0.CO;2.

George, T. M., G. E. Manucharyan, and A. F. Thompson, 2021:
Deep learning to infer eddy heat fluxes from sea surface
height patterns of mesoscale turbulence. Nat. Commun., 12,
800, https://doi.org/10.1038/s41467-020-20779-9.

L U E T A L . 3293DECEMBER 2022

Unauthenticated | Downloaded 11/22/22 05:31 PM UTC

https://doi.org/10.1016/j.ocemod.2013.07.004
https://doi.org/10.1017/jfm.2021.604
https://doi.org/10.1017/jfm.2021.604
https://doi.org/10.1007/s13137-019-0123-9
https://doi.org/10.1007/s13137-019-0123-9
https://doi.org/10.1175/JPO-D-17-0100.1
https://doi.org/10.1175/JPO-D-17-0100.1
https://doi.org/10.1016/j.ocemod.2012.12.003
https://doi.org/10.1016/j.ocemod.2014.11.006
https://doi.org/10.1016/j.ocemod.2014.11.006
https://doi.org/10.1002/2016JC012265
https://doi.org/10.1029/2019MS001904
https://doi.org/10.1029/2019MS001904
https://doi.org/10.1017/jfm.2021.477
https://doi.org/10.1016/S1463-5003(01)00012-9
https://doi.org/10.1175/2007JPO3671.1
https://doi.org/10.1175/1520-0442(1995)008<2967:SOTGOC>2.0.CO;2
https://doi.org/10.1175/1520-0442(1995)008<2967:SOTGOC>2.0.CO;2
https://doi.org/10.1016/j.ocemod.2007.09.002
https://doi.org/10.1016/j.ocemod.2007.09.002
https://doi.org/10.1175/2010JPO4278.1
https://doi.org/10.1175/2007JCLI1510.1
https://doi.org/10.1175/1520-0485(2003)033<0478:OTIORA>2.0.CO;2
https://doi.org/10.1175/1520-0485(2003)033<0478:OTIORA>2.0.CO;2
https://doi.org/10.1175/JPO-D-21-0099.1
https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2
https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015<1447:PIIAEP>2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015<1447:PIIAEP>2.0.CO;2
https://doi.org/10.1038/s41467-020-20779-9


Gnanadesikan, A., M.-A. Pradal, and R. Abernathey, 2015: Isopyc-
nal mixing by mesoscale eddies significantly impacts oceanic an-
thropogenic carbon uptake. Geophys. Res. Lett., 42, 4249–4255,
https://doi.org/10.1002/2015GL064100.

Griesel, A., S. T. Gille, J. Sprintall, J. L. McClean, and M. E.
Maltrud, 2009: Assessing eddy heat flux and its parameteri-
zation: A wavenumber perspective from a 1/108 ocean simu-
lation. Ocean Modell., 29, 248–260, https://doi.org/10.1016/j.
ocemod.2009.05.004.

Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys.
Oceanogr., 28, 831–841, https://doi.org/10.1175/1520-0485
(1998)028,0831:TGMSF.2.0.CO;2.

Haigh, M., and P. Berloff, 2021: On co-existing diffusive and anti-
diffusive tracer transport by oceanic mesoscale eddies. Ocean
Modell., 168, 101909, https://doi.org/10.1016/j.ocemod.2021.
101909.

}}, L. Sun, I. Shevchenko, and P. Berloff, 2020: Tracer-based
estimates of eddy-induced diffusivities. Deep-Sea Res. I, 160,
103264, https://doi.org/10.1016/j.dsr.2020.103264.

}}, }}, J. C. McWilliams, and P. Berloff, 2021a: On eddy trans-
port in the ocean. Part I: The diffusion tensor. Ocean Modell.,
164, 101831, https://doi.org/10.1016/j.ocemod.2021.101831.

}}, }}, }}, and }}, 2021b: On eddy transport in the
ocean. Part II: The advection tensor. Ocean Modell., 165,
101845, https://doi.org/10.1016/j.ocemod.2021.101845.

Hewitt, H. T., and Coauthors, 2020: Resolving and parameterising
the ocean mesoscale in Earth system models. Curr. Climate
Change Rep., 6, 137–152, https://doi.org/10.1007/s40641-020-
00164-w.

Jayne, S. R., and J. Marotzke, 2002: The oceanic eddy heat trans-
port. J. Phys. Oceanogr., 32, 3328–3345, https://doi.org/10.1175/
1520-0485(2002)032,3328:TOEHT.2.0.CO;2.

Kamenkovich, I., and Z. Garraffo, 2022: Importance of mesoscale
currents in AMOC pathways and timescales. J. Phys. Ocean-
ogr., 52, 1613–1628, https://doi.org/10.1175/JPO-D-21-0244.1.

}}, I. I. Rypina, and P. Berloff, 2015: Properties and origins of
the anisotropic eddy-induced transport in the North Atlantic. J.
Phys. Oceanogr., 45, 778–791, https://doi.org/10.1175/JPO-D-14-
0164.1.

}}, Z. Garraffo, R. Pennel, and R. A. Fine, 2017: Importance of
mesoscale eddies and mean circulation in ventilation of the
Southern Ocean. J. Geophys. Res. Oceans, 122, 2724–2741,
https://doi.org/10.1002/2016JC012292.

}}, P. Berloff, M. Haigh, L. Sun, and Y. Lu, 2021: Complexity of
mesoscale eddy diffusivity in the ocean. Geophys. Res. Lett., 48,
e2020GL091719, https://doi.org/10.1029/2020GL091719.

Klocker, A., and R. Abernathey, 2014: Global patterns of meso-
scale eddy properties and diffusivities. J. Phys. Oceanogr.,
44, 1030–1046, https://doi.org/10.1175/JPO-D-13-0159.1.

}}, R. Ferrari, and J. H. LaCasce, 2012a: Estimating suppres-
sion of eddy mixing by mean flows. J. Phys. Oceanogr., 42,
1566–1576, https://doi.org/10.1175/JPO-D-11-0205.1.

}}, }}, }}, and S. T. Merrifield, 2012b: Reconciling float-
based and tracer-based estimates of lateral diffusivities. J. Mar.
Res., 70, 569–602, https://doi.org/10.1357/002224012805262743.

Kuhlbrodt, T., R. S. Smith, Z. Wang, and J. M. Gregory, 2012:
The influence of eddy parameterizations on the transport of
the Antarctic circumpolar current in coupled climate models.
Ocean Modell., 52–53, 1–8, https://doi.org/10.1016/j.ocemod.
2012.04.006.

LaCasce, J. H., 2008: Statistics from Lagrangian observations. Prog.
Oceanogr., 77, 1–29, https://doi.org/10.1016/j.pocean.2008.02.002.

Ledwell, J. R., A. J. Watson, and C. S. Law, 1998: Mixing of a
tracer in the pycnocline. J. Geophys. Res., 103, 21 499–21 529,
https://doi.org/10.1029/98JC01738.

Leonard, A., 1997: Large-eddy simulation of chaotic convection and
beyond. 35th AIAA Aerospace Sciences Meeting and Exhibit,
Reno, NV, AIAA, 1–8, https://doi.org/10.2514/6.1997-204.

Li, Z., Y. Chao, and J. C. McWilliams, 2006: Computation of the
stream function and velocity potential for limited and irregular
domains. Mon. Wea. Rev., 134, 3384–3394, https://doi.org/10.
1175/MWR3249.1.

Lumpkin, R., A.-M. Treguier, and K. Speer, 2002: Lagrangian eddy
scales in the northern Atlantic Ocean. J. Phys. Oceanogr., 32,
2425–2440, https://doi.org/10.1175/1520-0485-32.9.2425.

Maddison, J. R., D. P. Marshall, and J. Shipton, 2015: On the
dynamical influence of ocean eddy potential vorticity fluxes.
Ocean Modell., 92, 169–182, https://doi.org/10.1016/j.ocemod.
2015.06.003.

Mak, J., D. Marshall, J. Maddison, and S. Bachman, 2017: Emergent
eddy saturation from an energy constrained eddy parameterisa-
tion. Ocean Modell., 112, 125–138, https://doi.org/10.1016/j.
ocemod.2017.02.007.

Marshall, D. P., and A. J. Adcroft, 2010: Parameterization of ocean
eddies: Potential vorticity mixing, energetics and Arnold’s first
stability theorem. Ocean Modell., 32, 188–204, https://doi.org/
10.1016/j.ocemod.2010.02.001.

Marshall, J., and G. Shutts, 1981: A note on rotational and divergent
eddy fluxes. J. Phys. Oceanogr., 11, 1677–1680, https://doi.org/
10.1175/1520-0485(1981)011,1677:ANORAD.2.0.CO;2.

}}, and K. Speer, 2012: Closure of the meridional overturning
circulation through Southern Ocean upwelling. Nat. Geosci.,
5, 171–180, https://doi.org/10.1038/ngeo1391.

Meijers, A. J. S., 2014: The Southern Ocean in the Coupled
Model Intercomparison Project phase 5. Philos. Trans. Roy.
Soc., A372, 20130296, https://doi.org/10.1098/rsta.2013.0296.

Mensa, J. A., Z. Garraffo, A. Griffa, T. M. Özgökmen, A. Haza,
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