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A B S T R A C T

A common approach for parameterising eddy transport of passive tracers by mesoscale eddies in the
ocean is by invoking a transport tensor. The symmetric part of this tensor, the diffusion tensor, quantifies
diffusive eddy tracer transport. Recent studies have diagnosed opposite-signed eigenvalues (diffusivities) of the
diffusion tensor from eddy-resolving simulations, while all current parameterisations implement only positive
diffusivities. For opposite-signed eigenvalues the associated diffusive eddy tracer flux is not necessarily down-
gradient and therefore may not mix the tracer by transferring variance to the small scales. In this study we
explore such diffusive eddy fluxes by using an eddy-resolving simulation of passive tracers with a relaxation
(source/sink) forcing. After confirming that the diffusion tensors for different tracer pairs have opposite-signed
eigenvalues, we show that the corresponding diffusive eddy tracer flux drives a net down-gradient transfer
of variance, as would be guaranteed when the diffusion tensor eigenvalues are both positive. Locally up-
gradient fluxes are common, with their frequency strongly dependent on the relaxation profile. The effects of
weakening/strengthening the relaxation on the frequency of down-gradient fluxes is different for each tracer.
However, for all tracers considered the amplitude of the net down-gradient transfer weakens as the relaxation
strengthens, a consequence of the homogeneous diffusion dissipating less eddy variance. Our results indicate
that for oceanic tracers with sources/sinks the parameterised diffusive eddy tracer fluxes should not be globally
down-gradient.
. Introduction

Mesoscale eddies make a leading-order contribution to the transport
f passive tracers about the ocean, but computational limitations often
ictate that eddy effects cannot be resolved in ocean circulation models.
he current solution to this issue is to parameterise the missing eddy
ffects. Current parameterisations for passive tracers typically assume
hat eddy transport is both homogeneous and isotropic, but there is
omprehensive evidence that eddy transport is in fact highly inho-
ogeneous and anisotropic (Berloff et al., 2002; Eden et al., 2007;
amenkovich et al., 2009; Rypina et al., 2012; Kamenkovich et al.,
015; Bachman et al., 2020). For example, transport in eastward jets
s highly anisotropic, with zonal eddy transport much greater than the
eridional eddy transport due to meridional transport barriers on the

et core. On the jet flanks and beneath the jet, critical layers cause
axima in meridional transport, meaning there is significant cross-jet

ransport inhomogeneity (Ferrari and Nikurashin, 2010; Abernathey
t al., 2010; Klocker and Abernathey, 2014). More generally, shear
ispersion (Young et al., 1982; Jones and Young, 1994; Smith, 2005)
eads to anisotropic transport being ubiquitous in the ocean. Many
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E-mail address: m.haigh15@imperial.ac.uk (M. Haigh).

parameterisations of eddy transport implement a scalar transfer co-
efficient which cannot represent such anisotropy. For this reason the
recent precursor studies Haigh et al. (2021a) and Haigh et al. (2021b),
among others, make the case that transport tensors rather than scalar
coefficients are more suitable for parameterising eddy tracer transport.

In this study we take a transport tensor approach, whereby an eddy
tracer flux 𝒇 is related to the large-scale tracer gradient ∇𝐶 by the
transport tensor 𝑲 using the flux-gradient relation:

𝒇 = −𝑲∇𝐶. (1)

We diagnose the transport tensor from an eddy-resolving simulation,
using a spatial filter to separate the large and small (eddy) scales. The
diagnosed large- and small-scale flow and tracer fields are intended to
represent the resolved and unresolved fields in non-eddy-resolving or
eddy-permitting ocean models. For isopycnal transport 𝑲 is a 2 × 2
tensor whose symmetric part 𝑺 quantifies diffusive effects and whose
antisymmetric part 𝑨 quantifies advective effects. The diffusive flux
𝒇diff = −𝑺∇𝐶 affects the tracer variance (and all other moments
apart from the mean (Griffies, 1998)) while the advective transport
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only ‘stirs’ the tracer and does not affect any moments. In this study
we focus on the diffusive transport. The conceptual link to molecular
diffusion and the requirement for simulations with parameterised eddy
diffusion to be stable means authors usually seek positive (or non-
negative) diffusion eigenvalues (Bachman et al., 2020). In this case the
associated eddy tracer flux is never up-gradient, and always mixes the
tracer by dissipating large-scale variance. Specifically, this means that
the diffusive part of the eddy tracer flux drives a transfer of variance
from the large (resolved) scales to the small (unresolved) scales.

Recent studies (Haigh et al., 2020; Stanley et al., 2020; Haigh et al.,
2021a; Kamenkovich et al., 2021) have revealed that polar (opposite-
sign) eigenvalues are a prevalent feature of the diagnosed diffusion
tensor 𝑺 for passive tracers. For polar eigenvalues the effects of the
associated diffusive eddy tracer flux 𝒇diff are not immediately clear. In
general, for polar eigenvalues 𝒇diff will drive filamentation of the tracer
field, with 𝒇diff being the sum of a down-gradient flux in the direction
f the diffusion axis, that is the direction of preferential mixing, and
n up-gradient flux perpendicular to this. When the diffusion axis
s exactly parallel/perpendicular to ∇𝐶, polar eigenvalues imply that

the diffusive flux will be directly down-gradient/up-gradient, therefore
having a diffusive/anti-diffusive effect. Thus, in the case of polar eigen-
values the direction of the variance transfer depends on the orientation
of the diffusion axis relative to the orientation of the large-scale tracer
gradient. One aim of this study is to determine the qualitative effects
of the diffusive flux when the corresponding diffusion tensor has polar
eigenvalues.

In ocean circulation models localised and transient up-gradient
transfer is not necessarily an issue, but persistent up-gradient trans-
fer could cause singularities to develop. Thus, care would have to
be taken when parameterising diffusion tensors with any negative
eigenvalues. To do this it is necessary to understand the effects of
diffusion tensors with polar eigenvalues. In this study we diagnose
eddy tracer fluxes, diffusion tensors and diffusion eigenvalues from an
eddy-resolving quasigeostrophic simulation in which case the variance
transfer effects of the diffusive eddy tracer flux are constrained by a
stable ocean simulation with no development of singularities. Analysis
of this diffusive eddy tracer flux can then inform future eddy transport
parameterisations.

This study is organised as follows. In Section 2 we define the
ocean model, the tracer model and the method for computing the eddy
transport tensor. We also present the diffusion eigenvalues for two
pairs of tracers. In Section 3 we define the variance budget for passive
tracers and consider the domain-mean and time-mean balances. We
then discuss how the variance transfer from the large scales to the small
scales depends on relaxation of the tracer fields, and how the diffusion
tensor accounts these dependencies. Lastly, in Section 4 we conclude
and discuss our results.

2. The model

2.1. The ocean and tracer model

We consider passive tracers advected about a three-layer, square
ocean basin (𝑥, 𝑦 ∈ [0, 𝐿], 𝐿 = 3840 km) by a lateral velocity field from
a quasigeostrophic (QG) simulation. In each of the three layers the QG
potential vorticity (PV) equation has the form
𝜕𝑞𝑘
𝜕𝑡

+ 𝐽 (𝜓𝑘, 𝑞𝑘) + 𝛽
𝜕𝜓𝑘
𝜕𝑥

= 𝜈∇4𝜓𝑘 − 𝛿3𝑘𝛾∇2𝜓𝑘 +
𝛿1𝑘
𝜌1𝐻1

𝑊 , (2)

where 𝑘 = 1, 2, 3 is the layer index. We also have: the beta-plane
planetary vorticity gradient 𝛽 = 2 × 10−11 m−1 s−1; the eddy viscosity

= 40 m2 s−1; the bottom friction parameter 𝛾 = 4 × 10−8 s−1;
the upper-layer density 𝜌1 = 103 kg m−3; the mean layer thicknesses

1 = 250 m, 𝐻2 = 750 m and 𝐻3 = 3 km. The asymmetric, tilted wind
orcing 𝑊 , used in numerous QG studies (e.g., Berloff, 2015; Haigh
t al., 2020), is active only in the upper layer (𝑘 = 1), the bottom
 e

2

riction is active only in the bottom layer, and both are controlled by
he Kronecker delta 𝛿𝑖𝑗 .

The Jacobian term 𝐽 (𝜓𝑘, 𝑞𝑘) represents nonlinear advection of the
QG PV anomalies 𝑞𝑘 by the non-divergent lateral velocity 𝒖𝑘(𝑥, 𝑦, 𝑡) =
̂ × ∇𝜓𝑘 where 𝜓𝑘 is the streamfunction and 𝐳̂ is the vertical unit vector.
he streamfunctions and the PV anomalies are related via the elliptic
quations,

1 = ∇2𝜓1 + 𝑠1(𝜓2 − 𝜓1), (3)

𝑞2 = ∇2𝜓2 + 𝑠21(𝜓1 − 𝜓2) + 𝑠22(𝜓3 − 𝜓2), (4)

3 = ∇2𝜓3 + 𝑠3(𝜓2 − 𝜓3). (5)

he stratification parameters, 𝑠1, 𝑠21, 𝑠22 and 𝑠3, are defined such
hat the first and second Rossby deformation radii are 40 km and
0.6 km, respectively. The QG PV equations are simulated using the
ABARET scheme (Karabasov et al., 2009) on a uniform 5132 grid,
orresponding to a resolution of 7.5 km. On the boundaries we use
artial-slip conditions,

𝑏
𝜕2𝜓𝑘
𝜕𝑛2

−
𝜕𝜓𝑘
𝜕𝑛

= 0, (6)

where 𝐿𝑏 = 120 km is a boundary layer lengthscale and 𝑛 is the
coordinate normal to the boundary. Herein we will drop the layer index
𝑘 for brevity, as all following equations are the same in each layer.

In each layer the evolution of a tracer 𝐶(𝑥, 𝑦, 𝑡) is governed by the
dvection–diffusion equation,
𝜕𝐶
𝜕𝑡

+ ∇ ⋅ (𝒖𝐶) = 𝜈∇2𝐶 + 𝑅. (7)

We use the same value of the eddy viscosity 𝜈 = 40 m2 s−1 for the
omogeneous subgrid diffusion of tracers. We will focus on two tracer
airs: one pair with nonlinear initial conditions, 𝐶𝑟1 = sin(2𝜋𝑥∕𝐿),
𝐶𝑟2 = sin(2𝜋𝑦∕𝐿), and one pair with linear initial conditions, 𝐶𝑟3 = 𝑥,
𝐶𝑟4 = 𝑦. In (7) 𝑅 represents relaxation (Plumb and Mahlman, 1987) of
the large-scale tracer field back to its initial condition:

𝑅 = 𝑟(𝐶𝑟 − 𝐶), (8)

for a relaxation rate 𝑟. We will focus on two cases: a strong relaxation
case where 𝑟 = 1∕5 day−1 and a weak relaxation case where 𝑟 = 1∕100
day−1. Here 𝐶𝑟 is the tracer’s initial condition/restoration field, and
𝐶(𝑥, 𝑦, 𝑡) is the large-scale part of 𝐶. We use a spatial filter to obtain

field’s large-scale part — the filter is formally defined in the next
ection. The QG and tracer simulations are spun up from rest until
tatistical equilibrium, after which we simulate the evolution for a
urther 2000 days with data saved daily. These 2000 days are deemed
ufficient for the accumulated statistics presented in this study to have
eached a steady state.

The purpose of the relaxation forcing is to maintain misalignment
etween the gradients of the tracers in each pair, which is necessary
o accurately compute transport tensors for the pairs. The inclusion of
elaxation can also be motivated by sources and sinks of many oceanic
racers. Typical examples include air–sea heat fluxes (Moore et al.,
012; Liang and Yu, 2016), air–sea exchange of tracers such as oxygen
nd carbon (Gruber et al., 2001; Gregg et al., 2014; Bushinsky et al.,
019), and precipitation and evaporation (Schmitt et al., 1989; Yu,
019). These surface processes cause tracer sources/sinks with system-
tic large-scale spatial patterns leading to effects similar to a relaxation.
t depth sources/sinks can be due to biogeochemical processes such as
emineralisation and fixation of nitrate (Gruber and Sarmiento, 1997;
schlies and Kähler, 2004; Eden and Oschlies, 2006). In our model

he tracer evolution and the eddy tracer fluxes depend on the strength
nd spatial profile of the relaxation forcing, just as tracers and their
ddy fluxes in ocean models depend on the sources/sinks (Wilson
nd Williams, 2006; Shuckburgh et al., 2011). The above-described
rocesses are commonly implemented in the passive tracer component
f ocean circulation models (e.g., Oschlies and Garçon (1998), Eden
nd Greatbatch (2009)). These models also include a standard down-
radient diffusion closure (Redi, 1982) to represent subgrid effects. It
s the aim of this study to better inform parameterisations of subgrid
ffects in non-eddy-resolving and eddy-permitting ocean models.
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2.2. Eddy transport

In this study we define eddies using a spatial filter (Nadiga, 2008;
Fox-Kemper and Menemenlis, 2008; Lu et al., 2016; Bachman et al.,
2017; Stanley et al., 2020). Given a discrete field snapshot 𝜙𝑖𝑗 , where
, 𝑗 denote the grid point in 2D space, the large-scale component is
efined as

𝜙𝑖𝑗 =
1
𝑤2

𝑖+𝑙
∑

𝑚=𝑖−𝑙

𝑗+𝑙
∑

𝑛=𝑗−𝑙
𝜙𝑚𝑛, where 𝑙 = 𝑤 − 1

2
. (9)

Here 𝑤 is the odd filter width, which is reduced in size near the
boundaries so that the filter remains square. The eddy field is 𝜙′

𝑖𝑗 =
𝜙𝑖𝑗 − 𝜙𝑖𝑗 . The spatial filter approach is a more suitable method than
he temporal Reynolds decomposition for a number of reasons provided
y Haigh et al. (2021a). In particular, in eddy-permitting ocean models,
hich are becoming more common given increasing computational
ower, there is no timescale separation between resolved and un-
esolved flows (Nadiga, 2008), meaning a temporal Reynolds eddy
ecomposition is not valid. In addition, our ability to resolve mesoscale
ddies is limited by the spatial resolution, rather than temporal reso-
ution, in which case a spatial filter is more suitable. We use a spatial
ilter with 𝑤 = 7, corresponding to a physical filter side length of 45 km,
lightly larger than the first deformation radius. This choice is best for
argeting unresolved features of eddy-permitting ocean models, rather
han entirely non-eddy-resolving models. We also computed our results
or 𝑤 = 15 and the conclusions made in this study apply in this case
lso. In our study we compute the large-scale and eddy velocity fields
rom the large-scale and eddy streamfunctions, rather than by directly
ecomposing the velocities. With this approach the 2D non-divergence
f the velocities can be guaranteed for a general filter.

A common alternative to our square spatial filter is the Gaussian
ilter, but it is not known whether or not this option produces large-
cale fields closer to the fields from a coarse-grid model. Alternatives to
he standard spatial filtering have recently been developed by Agarwal
t al. (2021) and Berloff et al. (2021). Agarwal et al. (2021) presented
method whereby the local dimensions of the filtering kernel are

etermined by local spatial correlations in the field being decomposed.
erloff et al. (2021) introduced the dynamical decomposition method
ia which, using eddy-resolving and non-eddy-resolving solutions, the
xact eddy field missing from the non-eddy-resolving solution can
e calculated. Both methods have been shown to lead to improved
epresentations of mesoscale eddies and their effects. A worthwhile
xtension of the present study will therefore be to repeat the analysis
sing either of these two novel decomposition methods.

Filtering the tracer evolution equation yields the equation for the
arge-scale tracer field:

𝜕𝐶
𝜕𝑡

+ ∇ ⋅ (𝒖𝐶) + ∇ ⋅ 𝒇 = 𝜈∇2𝐶 + 𝑅, (10)

where

∇ ⋅ 𝒇 = ∇ ⋅ (𝒖𝐶) − ∇ ⋅ (𝒖𝐶) (11)

is the divergence of the eddy tracer flux 𝒇 , which includes all eddy
effects that are hypothetically not resolved in a coarse-grid simulation.
Note that the filter operator commutes with the divergence operator
everywhere except near the lateral boundaries.

Some authors Bachman et al. (2015, 2020) opt to work with the full
eddy tracer flux. However, the rotational part of 𝒇 typically dominates
the divergent part by up two orders of magnitude Marshall and Shutts
(1981), which was confirmed for the eddy fluxes of this model by Haigh
et al. (2020). This means that inclusion of the rotational part of 𝒇
will obscure analysis of its dynamically active divergent part, namely
𝒇div. In addition, because 𝒇 is two orders of magnitude larger than

div, parameterising the latter is the safer option since any errors
ill be substantially less severe. For this reason we proceed with the
 i

3

divergent eddy tracer flux, as in recent studies (Haigh et al., 2021a,b;
Kamenkovich et al., 2021). To obtain 𝒇div we use the Helmholtz
decomposition (Lau and Wallace, 1979) which separates a vector into
divergent, rotational and harmonic parts. Specifically 𝒇div is obtained
by inverting the Poisson equation ∇2𝜙 = ∇ ⋅ 𝒇 and then setting 𝒇div =
∇𝜙. The Helmholtz decomposition has a dependence on boundary
conditions (Fox-Kemper et al., 2003); we use physically motivated zero
normal flux boundary conditions (Maddison et al., 2015) that minimise
the magnitude of 𝒇div. For brevity we will refer to 𝒇div as just the eddy
tracer flux.

In ocean circulation models the eddy tracer flux can be parame-
terised using a transport tensor :

𝒇div = −𝑲∇𝐶. (12)

The above equation, referred to as the flux-gradient relation, translates
the need parameterise the eddy flux 𝒇div into a need to parameterise the
transport tensor 𝑲(𝑥, 𝑦, 𝑡). This approach is motivated by classical parcel
excursion theory (Taylor, 1921) in which, given a scale separation
between the eddy and large scales, a Taylor expansion of the eddy
flux predicts it is approximately proportional to the large-scale tracer
gradient. Such a scale separation, either temporal or spatial, does not
truly exist in the ocean, so use of a transport tensor in this way to
quantify eddy tracer fluxes represents a somewhat ad hoc approach.
An alternative is to parameterise the eddy tracer flux divergence di-
rectly, but unlike the flux-gradient approach this does not automatically
guarantee conservation of tracer.

To invert the flux-gradient relation for 𝑲 requires two tracers, or
ore if a least-squares approach were adopted (Bachman et al., 2015,
020). In this study we compute 𝑲 for a nonlinear tracer pair (restora-
ion fields/initial conditions 𝐶𝑟1 = sin (2𝜋𝑥∕𝐿), 𝐶𝑟2 = sin (2𝜋𝑦∕𝐿)) and

linear tracer pair (restoration fields/initial conditions 𝐶𝑟3 = 𝑥, 𝐶𝑟4 =
𝑦). For a pair of tracers 𝐶𝑝(𝑥, 𝑦, 𝑡) and 𝐶𝑞(𝑥, 𝑦, 𝑡) with corresponding
divergent eddy tracer fluxes 𝒇 𝑝 = (𝑓 (𝑢)

𝑝 , 𝑓 (𝑣)
𝑝 ) and 𝒇 𝑞 = (𝑓 (𝑢)

𝑞 , 𝑓 (𝑣)
𝑞 ),

inverting (12) gives

𝑲 ≡
(

𝐾11 𝐾12
𝐾21 𝐾22

)

= 1
𝑑

(

𝑓 (𝑢)
𝑝 𝑓 (𝑢)

𝑞

𝑓 (𝑣)
𝑝 𝑓 (𝑣)

𝑞

)(

−𝐶𝑞,𝑦 𝐶𝑞,𝑥
𝐶𝑝,𝑦 −𝐶𝑝,𝑥

)

, (13)

where

𝑑 = 𝐶𝑝,𝑥𝐶𝑞,𝑦 − 𝐶𝑝,𝑦𝐶𝑞,𝑥 (14)

is the determinant of the matrix of large-scale tracer gradients. In
general 𝑲 is non-unique meaning that it depends on the tracer pair
sed in the inversion, but this non-uniqueness is less severe once the
otational part of 𝒇 is removed (Sun et al., 2021). Two reasons proposed
or this non-uniqueness by Haigh et al. (2021a,b) are (i) incompleteness
f the flux-gradient relation, meaning that 𝒇div depends on the local
racer fields’ curvature or history, and (ii) chaotic advection (Pierre-
umbert, 1991), meaning that 𝑲 is a stochastic object with a sensitive
ependence on flow and tracer configurations. Note, though, because
e remove the rotational part of 𝒇 , and because of the linearity of the

lux-gradient relation and the tracer evolution equation, 𝑲 is the same
or all pairs of tracers with linear initial conditions/restorations fields.

We consider eddy transport with eddies defined using a spatial
ilter; Haigh et al. (2021a) compared 𝑲 for spatial filter eddies with the
ransport tensor obtained for eddies defined using a temporal Reynolds
ecomposition. Despite the distinct scale separation method, many of
he same processes will contribute to these different transport tensors.
t was found that these transport tensors exhibit similar qualitative
eatures, but with some significant differences, most notably near the
astward jet and western boundary current. A primary source of such
ifferences are stationary eddies (Lu et al., 2016) which have small
cales but persist in time and are common near the eastward jet and

ts meanders.
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2.3. Eddy diffusion

The transport tensor 𝑲 encompasses both diffusive and advec-
tive eddy effects, which can be separated by decomposing 𝑲 into its
symmetric and antisymmetric parts. We refer to the symmetric and
antisymmetric parts as the diffusion tensor 𝑺 and the advection tensor
𝑨, respectively. The physical difference between these tensors is that
only the diffusion tensor and its associated diffusive flux 𝒇diff = −𝑺∇𝐶
contribute to the variance transfer between the large and small scales.
Such transfer is often referred to as ‘mixing’, with the implicit assump-
tion that the transfer is down-gradient/down-scale. However, we will
show that 𝒇diff can often be up-gradient and has an anti-diffusive effect
which contrasts the typical picture of 𝒇diff being a strictly diffusive,
i.e., strictly down-gradient, flux. The advection tensor and its associated
skew flux1 𝒇 skew = −𝑨∇𝐶 only ‘stir’ the tracer (Griffies, 1998; Bachman
t al., 2015), by which we mean that the transport does not affect the
ariance budget since the skew flux is perpendicular to the large-scale
racer gradient. Advective transport does, however, play an important
ole in the tracer redistribution and can enhance the gradients on which
ddy diffusion and homogeneous diffusion act.

This study focuses on only the diffusive part of eddy transport, as is
uantified by the diffusion tensor,

= 1
2
(

𝑲 +𝑲𝑇 ) . (15)

hysical interpretation of 𝑺 is aided by considering its eigenvalues
nd its principal axis, namely the diffusion eigenvalues and the diffusion
xis, respectively. The diffusion axis 𝒗1 represents the direction of
referential (down-gradient) diffusion, and its orientation is referred
o as the diffusion angle, 𝛼 ∈ [−𝜋∕2, 𝜋∕2], where

= 1
2
tan−1

(

2𝑆12
𝑆11 − 𝑆22

)

. (16)

Given the diffusion angle, the diffusion eigenvalues are

𝜆1 = 𝑆11 cos2 𝛼 + 𝑆22 sin
2 𝛼 + 2𝑆12 cos 𝛼 sin 𝛼, (17)

𝜆2 = 𝑆11 sin
2 𝛼 + 𝑆22 cos2 𝛼 − 2𝑆12 cos 𝛼 sin 𝛼. (18)

If we ensure that 𝛼 lies in the appropriate quadrant we guarantee
that 𝜆1 ≥ 𝜆2. In this case the diffusion axis 𝒗1 = (cos 𝛼, sin 𝛼) is the
eigenvector corresponding to the most positive eigenvalue, 𝜆1. The
second eigenvector 𝒗2 = (sin 𝛼,−cos 𝛼) is perpendicular to the first. With
hese definitions it can be shown that the diffusive flux is

diff = −𝑺∇𝐶 = −|∇𝐶|
(

𝜆1 cos (𝛼 − 𝜔)𝒗1 + 𝜆2 sin (𝛼 − 𝜔)𝒗2
)

, (19)

where 𝜔 is the orientation of the large-scale tracer gradient.
This study is motivated by the fact that opposite-signed, i.e., polar,

eigenvalues have recently been diagnosed to be a prevalent feature
of the diffusion tensor in both idealised QG simulations (Haigh et al.,
2020, 2021a) and in comprehensive general circulation model simu-
lations (Stanley et al., 2020; Kamenkovich et al., 2021). Haigh et al.
(2020) and Haigh et al. (2021a) confirmed that polar eigenvalues
were obtained for both a spatial filter scale separation and a temporal
Reynolds decomposition. The expression (19) for the diffusive flux
implies that with polar eigenvalues the diffusive flux is the sum of
an up-gradient flux and a down-gradient flux, i.e., a truly diffusive
flux and an anti-diffusive flux. The relative magnitudes of these fluxes
is governed by the magnitudes of 𝜆1, 𝜆2 and the orientation of the
diffusion axis 𝒗1 relative to the large-scale tracer gradient ∇𝐶. For
xample, when 𝒗1 aligns with ∇𝐶 only the 𝜆1 flux matters, while

when 𝒗1 and ∇𝐶 are perpendicular only the 𝜆2 flux matters. In gen-
ral, with polar eigenvalues the diffusive flux acts to stretch a tracer
atch in the direction of the diffusion axis via the down-gradient flux

1 Note the skew flux has the same divergence as the advective flux 𝒇 adv =
𝑐
∗𝐶, where 𝒖𝑐∗ is an eddy-induced velocity whose streamfunction is the

off-diagonal entry 𝐴 of 𝑨 (Griffies, 1998; Haigh et al., 2021b).
21

4

contribution, and compress the patch in the transverse direction via
the up-gradient flux contribution. Any net up-gradient fluxes involved
cannot persist indefinitely as this would lead to the development of sin-
gularities in the model. This of course does not occur in our stable tracer
simulations, but the potential for such singularities to occur can moti-
vate the consideration of only non-negative eigenvalues/diffusivities in
parameterisations and diagnostics (Bachman et al., 2020).

In Fig. 1 we show 2D histograms of the diffusion eigenvalues for
both the weak (𝑟 = 1∕100 day−1) and strong (𝑟 = 1∕5 day−1) relaxation
cases for the nonlinear tracers 𝐶1 and 𝐶2. In Fig. 2 we show the same
data but for the linear tracers 𝐶3 and 𝐶4. In each plot the data is
accumulated over all grid points in the lower layer for 2000 days.
(Throughout this study we will focus on the lower layer since here
the statistics are least noisy and suffer least from alignment of tracer
gradients. The weaker alignment is simply due to the flow being less
vigorous at depth.) Firstly, the eigenvalue distributions depend on the
tracer pair and the relaxation strength, with the tracer dependence
amplified when the relaxation is stronger. For strong relaxation the
eigenvalues are smaller in amplitude on average, most notably for the
linear tracer pair. For both tracer pairs and relaxation strengths polar
eigenvalues are most common, that is, compared to either pairs of
negative or pairs of positive eigenvalues. Even though the eigenvalue
distributions in Figs. 1 and 2 share this similarity, the diffusive nature
of 𝒇diff – that is, the extent to which it transfers variance from the large
scales to the small scales – could be drastically different in each case.

Speaking more generally, we are yet to confirm that the diffusive
flux in these simulations is even down-gradient, a ‘desirable’ property
for a diffusive flux. In Fig. 3 we show histograms of the angle between
the diffusive flux 𝒇diff and the large-scale tracer gradient ∇𝐶 in the
ower layer for tracers 𝐶1 and 𝐶4. We choose these two tracers as

they best illustrate the significant dependence that this angle has on
the tracer restoration field and the relaxation amplitude. In some cases
𝒇diff is most often oriented up-gradient (angles near zero), and almost
as often down-gradient, whereas in other cases 𝒇diff is most often
oriented perpendicular to the tracer gradient. Such high frequencies of
up-gradient eddy fluxes would be expected for active tracers such as
momentum and PV (Haigh and Berloff, 2018, 2020), but may not be
expected for passive tracers. For all tracers considered strengthening
the relaxation increases the frequency of up-gradient fluxes. The extent
of the diffusive or anti-diffusive effects of 𝒇diff are determined by the
amplitude of 𝒇diff and ∇𝐶 in addition to their relative orientation. To
proceed we take these amplitudes into account in the context of the
variance budget.

3. Eddy variance and variance transfer

3.1. The equations

Given a tracer field 𝐶 and its large-scale part 𝐶, we define the large-
scale variance as 𝛷 = 𝐶

2
∕2. The eddy variance (also often referred to

s the subgrid-scale variance, residual variance or small-scale variance)
s defined as 𝜙 = (𝐶2 − 𝐶

2
)∕2 (da Silva and Pereira, 2005). This can

be interpreted as the sum of a covariance term 𝐶𝐶 ′ and an eddy-eddy
variance term (𝐶 ′)2∕2. Some large-eddy simulation studies (Jiménez
et al., 2001a,b; Balarac et al., 2008, 2013) define the eddy/subgrid
scale variance as 𝐶2−𝐶

2
, but these rely on the filter being a projection

operator such that 𝐶 = 𝐶 (Cook and Riley, 1994; Cook et al., 1997).
We opt to not impose this restriction on the spatial filter in this study,
maintaining generality of our variance budget. For both our definition
of the eddy variance 𝜙 = (𝐶2 − 𝐶

2
)∕2 and the alternative definition

𝐶2 − 𝐶
2

the role of the eddy tracer flux in the variance budget is
exactly the same (aside from a factor of two). Therefore, the variance
transfer and the dependence on relaxation is the same, meaning that
the conclusions we make in this study do not depend on our precise
definition of eddy variance.
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Fig. 1. 2D histograms of the two diffusion eigenvalues, 𝜆1 and 𝜆2, of the diffusion tensor for a pair of tracers with nonlinear restoration fields, 𝐶𝑟1 = sin (2𝜋𝑥∕𝐿) and 𝐶𝑟2 = sin (2𝜋𝑦∕𝐿).
anel (a) shows results for the case of weak relaxation and panel (b) is for the case of strong relaxation. Units on all axes are m2 s−1. The range for each eigenvalue is discretised
nto 200 bins. The colour represents the number of grid points whose eigenvalues lie in the bin, with data accumulated over 2000 days over all grid points in the lower layer.
Fig. 2. 2D histograms of the two diffusion eigenvalues, 𝜆1 and 𝜆2, of the diffusion tensor for a pair of tracers with linear restoration fields, 𝐶𝑟3 = 𝑥 and 𝐶𝑟4 = 𝑦. Results are for
(a) the weak relaxation case and (b) the strong relaxation case. All other details are the same as in Fig. 1.
Fig. 3. Histograms of the angle between the diffusive flux 𝒇 diff and the large-scale tracer gradient ∇𝐶 for tracers 𝐶1 (blue, orange) and 𝐶4 (green, red) in the lower layer. Results
re for both weak (blue, green) and strong (orange, red) relaxation strengths.
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Multiplying the large-scale tracer Eq. (10) by 𝐶 yields the equation
for the large-scale variance,
𝜕𝛷
𝜕𝑡

= 𝐹𝛷 +𝐷𝛷 + 𝑅𝛷 + 𝑇𝛷, (20)

where

𝐹𝛷 = −∇ ⋅
(

𝒖𝛷 + 𝒇div𝐶
)

, 𝐷𝛷 = 𝜈𝐶 ∇2𝐶 and 𝑅𝛷 = 𝐶 𝑅. (21)

Here 𝐹𝛷 is the large-scale variance flux convergence, and 𝐷𝛷 and 𝑅𝛷
represent the effects on 𝛷 due to dissipation and external forcing,
respectively. Since the rotational part of the eddy tracer flux 𝒇 does
not affect the tracer evolution, it does not affect the variance budget.
The variance transfer from the small scales to the large scales is

𝑇𝛷 = 𝒇div ⋅ ∇𝐶 = 𝒇diff ⋅ ∇𝐶. (22)

Because the skew flux is perpendicular to ∇𝐶 only the diffusive flux
contributes to the transfer of variance between the scales. That only
𝒇diff contributes to the variance transfer is the defining quality of a
diffusive flux. The equation for the eddy variance is
𝜕𝜙
𝜕𝑡

= 𝐹𝜙 +𝐷𝜙 + 𝑅𝜙 + 𝑇𝜙, (23)

where the eddy variance flux convergence (𝐹𝜙) and the effects of
dissipation (𝐷𝜙) and external forcing (𝑅𝜙) on the eddy variance budget
are

𝐹𝜙 = ∇ ⋅
( 1
2

(

𝒖𝐶
2
− 𝒖𝐶2

)

+ 𝒇div𝐶
)

, 𝐷𝜙 = 𝜈𝐶∇2𝐶 − 𝜈𝐶 ∇2𝐶 and

𝜙 = 𝐶𝑅 − 𝐶 𝑅. (24)

The transfer of variance from the large scales to the small scales is

𝑇𝜙 = −𝑇𝛷 = −𝒇div ⋅ ∇𝐶 = −𝒇diff ⋅ ∇𝐶. (25)

ositive/negative 𝑇𝜙 implies an increase/decrease in 𝜙 and a de-
rease/increase in 𝛷.

In deriving our variance budget we have made no extra assump-
ions and have neglected no terms. Past studies often neglect a triple
orrelation term which represents advection of eddy variance by the
ddy flow (Rhines and Holland, 1979; Marshall and Shutts, 1981),
ut Wilson and Williams (2004) have shown that this term is not
egligible, just as it is not negligible in our budget. We also highlight
hat our variance budget includes no additional averaging, and applies
or all time and space, unlike for the eddy variance budget with a
eynolds decomposition. Similarly, the variance transfer 𝑇𝜙 takes a
imilar form as when a Reynolds decomposition is used (Medvedev and
reatbatch, 2004; Wilson and Williams, 2004, 2006), but in our case

he eddy tracer flux featuring in 𝑇𝜙 is contributed to by a number of
erms and is not averaged.

.2. The time-mean balance

In this section we present the time-mean eddy variance budget for
he nonlinear tracer 𝐶1, which has restoration field 𝐶𝑟1 = sin (2𝜋𝑥∕𝐿). In

Fig. 4 we show the time-mean (averaged over 2000 days) terms from the
eddy variance budget 𝐹𝜙, 𝐷𝜙, 𝑅𝜙, 𝑇𝜙, for the case of weak relaxation
(1∕𝑟 = 100 days). In Fig. 5 we show the same data but for the case of
strong relaxation (1∕𝑟 = 5 days). Both examples are in the lower layer,
but the main conclusions apply to all layers and all tracers considered.

Comparison of Figs. 4(a) and 5(a) indicates that the eddy vari-
ance flux convergence has a significant dependence on the relaxation
strength, in addition to having a known dependence on the choice of
tracer. For weaker relaxation 𝐹𝜙 is notably larger in magnitude, which
is primarily due to the eddy tracer flux being larger in magnitude in
this case, this being due to the weaker relaxation suppressing tracer
field eddies less than strong relaxation does. Figs. 4(c) and 5(c) show
that for both relaxation strengths in most of the domain we have down-
gradient (diffusive) time-mean variance transfer, but smaller regions of
weak up-gradient (anti-diffusive) time-mean transfer are also present.
6

For the case of strong relaxation, the relaxation term 𝑅𝜙 is the
rimary dissipator of eddy variance, while the effects of diffusion 𝐷𝜙

are an order of magnitude weaker. This is the case despite in some
regions the relaxation acting to increase the eddy variance. These
conclusions will be backed up in the next section. Importantly, although
the relaxation is of the form 𝑅 = 𝑟(𝐶𝑟 − 𝐶), it still projects onto the
eddy field because (𝐶𝑟 − 𝐶)′ ≠ 0. The effects of relaxation on the
ddy variance budget are about half as strong in the weak relaxation
ase compared to the strong relaxation case, despite the relaxation
ate being 20 times smaller in the former. The effects of homogeneous
iffusion 𝐷𝜙 are an order of magnitude stronger in the case of weak
elaxation compared to the case of strong relaxation. This is because,
irstly, the weaker relaxation rate 𝑟 means the difference 𝐶𝑟−𝐶 is larger

so that the magnitude of the relaxation forcing 𝑅 = 𝑟
(

𝐶𝑟 − 𝐶
)

does not
decrease proportionally with 𝑟. Secondly, the weaker relaxation means
that small-scale spatial variability is more weakly suppressed, causing
the effects of homogeneous diffusion to be stronger than in the case of
strong relaxation. Overall, this means that the net dissipation of eddy
variance due to the relaxation and diffusion is stronger in the case of
weak relaxation. This can only be compensated for by an increase in
the transfer of variance from the large scales to the small scales as
the relaxation weakens. This phenomena is evident when comparing
Figs. 4(c) and 5(c), and will be demonstrated more completely for all
tracers in the next section.

For eddies defined as the deviation from the time mean, Wilson
and Williams (2006) found a strong positive correlation between the
eddy variance transfer and the local advection of eddy variance. This
led to the conclusion that a Lagrangian increase in tracer variance is
associated with local down-gradient eddy fluxes. We do not observe
any correlation (evaluated over all 𝑥, 𝑦, 𝑡, i.e., 513 × 513 × 2000 data
points) between 𝐹𝜙 and 𝑇𝜙 and still not for 𝑇𝜙 lagged behind 𝐹𝜙 (we
tested lags from 0 to 50 days). Correlations between 𝑇𝜙 and 𝑅𝜙 may be
useful as this would link up- and down-gradient fluxes to the relaxation,
but we find no correlation between these terms. It is true, though, that
positive 𝑇𝜙 typically occurs where 𝑅𝜙 is large and of any sign. We find
a notable positive correlation (≈ 0.25) between 𝑇𝜙 and |𝑅𝜙| which is
maximised when 𝑇𝜙 is lagged by 6 days behind 𝑅𝜙. Wilson and Williams
(2006) also concluded that local down-gradient fluxes can additionally
be attributed to strong eddy variance dissipation (by eddy diffusion);
our results agree with this finding since the time-mean down-gradient
transfer is generally largest where the dissipation 𝐷𝜙 is largest, and
time-mean up-gradient transfer occurs where 𝐷𝜙 is weak.

In the large-scale variance 𝛷 budget (not shown) the dominant local
balance is between the redistribution 𝐹𝛷 and the forcing effects 𝑅𝛷.
The spatial patterns of the eddy and large-scale variance budget terms
depend on the tracer restoration field, but the dominant balances are
the same for all four tracers that we consider. We only show spatial
distributions of the eddy variance budget for tracer 𝐶1 for brevity. To
consider these in any more detail is out the scope of this study, and
would require separate consideration of all tracers.

3.3. The domain-mean balance

The net transfer of variance from the large scales to the small scales
is greater when relaxation is weaker, as is illustrated in Figs. 4(c) and
5(c) for tracer 𝐶1. Although the spatial distributions of the variance
budget terms depend on the tracer, this conclusion is true for all tracers
considered and in all layers. To demonstrate this result further, we
consider the domain-mean eddy variance budget. The domain-mean
flux divergences of large-scale and eddy variance, 𝐹𝛷 and 𝐹𝜙, are zero
since are both associated fluxes are zero through the boundaries. Thus,
the steady-state, domain-mean balance for the large-scale and eddy
variance budgets are

̃ ̃ ̃ ̃ ̃ ̃
𝐷𝛷 + 𝑅𝛷 + 𝑇𝛷 ≈ 0 and 𝐷𝜙 + 𝑅𝜙 + 𝑇𝜙 ≈ 0, (26)
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Fig. 4. The 2000-day time-mean terms (a) 𝐹𝜙, (b) 𝑅𝜙, (c) 𝑇𝜙 and (d) 𝐷𝜙 of the eddy variance budget for the case of weak relaxation (1∕𝑟 = 100 days) and tracer 𝐶1. Units are
dimensionless. Panels (a) and (b) have colorbar ranges five times larger than panels (c) and (d).
where ⋅̃ denotes the domain mean. These state that when in equilibrium
the transfer of variance at a given scale is approximately balanced by
the effects of homogeneous diffusion and external forcing.

In Fig. 6 we show time series of 𝑇̃𝜙, −𝐷̃𝜙 and −𝑅̃𝜙 (note the minus
signs) for both weak (upper panel) and strong (lower panel) relaxation.
As before, these results are for tracer 𝐶1 in the lower layer. Fig. 6
confirms that in both cases the integrated effect of the diffusive flux
is to dissipate large-scale variance, i.e., transfer it down-gradient from
the large scales to the small scales. For strong relaxation the eddy
variance reduction due to the relaxation is predominantly balanced
by the transfer from the large scales. For weak relaxation, the net
variance reduction by 𝑅̃𝜙 only slightly decreases, while the net variance
reduction by the diffusion term 𝐷̃𝜙 increases by a factor of 5. Therefore
these time series confirm the result that there is an increase in total
eddy variance dissipation when the relaxation is weaker, which must
be compensated for by an increase in the down-gradient transfer of
variance, 𝑇̃𝜙. We note, though, that the three terms 𝑇̃𝜙, −𝐷̃𝜙 and −𝑅̃𝜙
do not sum exactly to zero, which is due to temporal oscillations in
the domain-mean eddy variance and small numerical errors induced
by repeated filtering and differentiation.

In Fig. 7 we show time series of the domain-integrated transfer 𝑇̃𝜙
for tracers 𝐶2, 𝐶3 and 𝐶4 for both relaxation strengths from which we
make two conclusions. (1) For all tracers and both relaxation strengths
the eddy tracer flux is on average down-gradient, since 𝑇̃𝜙 > 0 in all
cases. That is, even though the diffusion tensor has polar eigenvalues,
the diffusive flux still has the ‘desirable’ effect of dissipating large-
scale variance. (2) The net down-gradient transfer is greater when the
relaxation is weaker for all tracers we consider. Although the diffusion
eigenvalues are in general weaker for strong relaxation (Figs. 1 and
2), this is insufficient information to have made conclusion (2). This is
because co-occurrences of negative diffusion eigenvalues are less likely
7

in the case of strong relaxation and because other factors, such as the
diffusion axis and correlations between the diffusion axis, diffusion
eigenvalues and the tracer gradients can also play an important role.
We explore these factors in the next section.

3.4. The role of the diffusive flux and diffusion tensor

Polar eigenvalues are a prevalent feature of the diffusion tensor
for both the weak and strong relaxation cases for both tracer pairs.
We have shown, though, that for weaker relaxation the down-gradient
variance transfer is stronger. This suggests that the diffusion axis is
more likely to be oriented parallel to the tracer gradient when the
relaxation is weaker. However, the variations in variance transfer could
also be accounted for by the correlations between the diffusion axis, the
diffusion eigenvalues and the tracer gradient. To explore this we return
to the definition of the down-gradient variance transfer,

𝑇𝜙 = −𝑇𝛷 = −𝒇diff ⋅ ∇𝐶. (27)

With Eq. (19) we showed that the diffusive flux can be expressed in
terms of the diffusion eigenvalues 𝜆1, 𝜆2, the diffusion angle 𝛼 and the
tracer gradient amplitude |∇𝐶| and orientation 𝜔. Written in terms of
the same quantities the variance transfer is

𝑇𝜙 = |∇𝐶|2
[

𝜆1 cos2 (𝛼 − 𝜔) + 𝜆2 sin
2 (𝛼 − 𝜔)

]

. (28)

This equation confirms that when the diffusion axis and tracer gradient
are parallel/perpendicular, only the first/second eigenvalue contributes
to the transfer. This equation also illustrates how the eigenvalues are
not the sole determinant of the variance transfer, and that |∇𝐶|

2
and

(𝛼 − 𝜔) are important.
In Fig. 8 we show 2D histograms of (a) |∇𝐶|

2
𝜆1 versus min(𝛼 − 𝜔)

and (b) |∇𝐶|
2
𝜆 versus min(𝛼 − 𝜔) in the case of weak relaxation. We
2
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Fig. 5. The 2000-day time-mean terms (a) 𝐹𝜙, (b) 𝑅𝜙, (c) 𝑇𝜙 and (d) 𝐷𝜙 of the eddy variance budget for the case of strong relaxation (1∕𝑟 = 5 days) and tracer 𝐶1. The time-means
of 𝑅𝜙 and 𝐷𝜙 both exhibited noisy spatial oscillations in the eastern fifth of the domain that appear when summing large contributions that mostly cancel. A filter was applied
in the eastern fifth of the domain to reduce these oscillations. Panels (a) and (b) have colorbar ranges five times larger than panels (c) and (d).
scale the eigenvalues by |∇𝐶|
2

motivated by the prefactor in Eq. (28).
he term min(𝛼−𝜔) represents the smallest angle between the diffusion
xis and the large-scale tracer gradient. In Fig. 9 we show the same data
s in Fig. 8 but for the case of strong relaxation. Both figures are for
racer 𝐶1 which has a nonlinear relaxation profile 𝐶𝑟1 = sin (2𝜋𝑥∕𝐿).

There are two important differences between the two pairs of distribu-
tions. First, the products |∇𝐶|

2
𝜆1 and |∇𝐶|

2
𝜆2 are on average larger in

he case of weak relaxation — this is due to both the tracer gradient and
he eigenvalues being stronger for weak relaxation. Second, for weak
elaxation there is a notably higher frequency of positive and relatively
arge |∇𝐶|

2
𝜆2 co-occurring with angle differences near 𝜋∕2. Both of

these account for the increased variance transfer in the weak relaxation
case. For the other three tracers (results not shown) we make similar
observations. We highlight, though, that for a given tracer pair the local
diffusion axis cannot become more aligned (or more perpendicular)
with both tracer gradients, since the two tracer gradients for a given
tracer pair are close perpendicular in most instances. This means that
the second observation, the relatively large |∇𝐶|

2
𝜆2 co-occurring with

angle differences near 𝜋∕2, must be contributed to by different grid
oints for each tracer in a pair.

The conclusions we make in this section describe general trends
hich are not true at every grid point and instance in time. We can
ake the general conclusion, however, that the variations in variance

ransfer as the relaxation strength varies are accounted for by all
roperties of the diffusion tensor, i.e., the diffusion eigenvalues, the dif-
usion angle and correlations that these have with the large-scale tracer
radient. This notion adds to the apparent growing complexity (Ka-
enkovich et al., 2021) of the transport tensor for passive tracers.
o move away from standard down-gradient eddy tracer transport
arameterisations, and instead parameterise the highly complicated
8

transport/diffusion tensors that we diagnose represents a significant
task. However, since polar eigenvalues, tracer filamentation, and co-
existing diffusive and anti-diffusive eddy fluxes are such prevalent
features of this eddy transport we argue that such an upgrade is
necessary.

4. Conclusion

Recent studies have found that polar (opposite-signed) eigenvalues
are a prevalent feature of the diffusion tensor for passive tracers in
both idealised quasigeostrophic (QG) simulations (Haigh et al., 2020,
2021a) and general circulation model simulations (Stanley et al., 2020;
Kamenkovich et al., 2021). Studies of polar diffusion eigenvalues, or
any negative diffusivities, are scarce since simulations with parameter-
isations using negative diffusivities are more susceptible to instability
issues. This has motivated some authors (Bachman et al., 2020) to
use diagnostic methods that exclude negative diffusion eigenvalues.
We argue that since polar eigenvalues are such a prevalent feature of
diagnosed diffusion tensors, they require more research so that their
associated tracer transport effects could eventually be incorporated into
mesoscale eddy parameterisations.

In this study we categorised the mixing effects of eddy tracer fluxes
whose associated diffusion tensors have polar eigenvalues by examining
the variance transfer in an eddy-resolving QG simulation. We define
eddies and the large scales using a spatial filter, akin to a large-
eddy simulation (Fox-Kemper and Menemenlis, 2008; Nadiga, 2008)
approach, but Haigh et al. (2020) and Haigh et al. (2021a) showed
that polar eigenvalues were obtained for eddies defined using the more
common temporal Reynolds decomposition. We considered two pairs
of passive tracers, a ‘linear’ pair and a ‘nonlinear’ pair, and for each
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Fig. 6. Time series of the domain-mean terms in the eddy variance budget 𝑇̃𝜙, −𝐷̃𝜙 and −𝑅̃𝜙. These are for the case of weak relaxation (upper panel, 1∕𝑟 = 100 days) and strong
elaxation (lower panel, 1∕𝑟 = 5 days) in the lower layer. Results are for tracer 𝐶1. In each panel the time series are normalised by the maximum value of 𝑇̃𝜙. This value is roughly

twice as large in the weak relaxation case compared to the strong relaxation case.
Fig. 7. Time series of domain-mean down-gradient variance transfer 𝑇̃𝜙 for tracers 𝐶2, 𝐶3 and 𝐶4 for both relaxation strengths (see legend). The solid lines represent the weak
relaxation cases and the dashed lines represent the strong relaxation cases. For each tracer its weak and strong relaxation 𝑇̃𝜙 time series are normalised by the maximum value
of the weak relaxation time series.
pair the transport tensor and its symmetric part, the diffusion tensor,
were obtained. In the tracer simulations the large-scale tracer com-
ponents are relaxed towards the tracer initial condition, maintaining
misalignment of tracer pairs, necessary for computing the transport
tensors. The relaxation forcing can also be motivated by real-world
tracer sources/sinks such as air–sea heat fluxes (Moore et al., 2012;
Liang and Yu, 2016), air–sea exchange of oxygen and carbon (Gruber
et al., 2001; Gregg et al., 2014; Bushinsky et al., 2019), precipitation
and evaporation (Schmitt et al., 1989; Yu, 2019), and remineralisation
and fixation of nitrate (Gruber and Sarmiento, 1997; Oschlies and
9

Kähler, 2004; Eden and Oschlies, 2006). We consider two relaxation
strengths, a weak relaxation for which the relaxation timescale is 100
days, and a strong relaxation for which the timescale is 5 days. For
each tracer pair and each relaxation strength the diffusion tensor is
characterised by polar eigenvalues whose magnitudes are generally
weaker in the strong relaxation case.

Polar eigenvalues in general parameterise fluxes that act to fila-
ment a tracer field (Ledwell et al., 1998), achieved by stretching a
tracer patch in one direction and compressing it in the perpendicular
direction. There is an additional dependence on the diffusion axis (the
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Fig. 8. Weak relaxation case. 2D histograms of (a) the scaled first diffusion eigenvalue |∇𝐶|
2
𝜆1 and the angle difference 𝛼 −𝜔 and (b) scaled second diffusion eigenvalue |∇𝐶|

2
𝜆2

nd the minimum angle difference 𝛼 − 𝜔. Results are for the lower layer and tracer 𝐶1.
Fig. 9. The same as Fig. 8 but for the strong relaxation case.
principle axis of the diffusion tensor), such that polar eigenvalues can
also quantify direct up- and down-gradient transfer. This means that for
diffusion tensors with polar eigenvalues, the mixing effects of the diffu-
sive eddy tracer flux, that is, the down-gradient transfer of variance that
it drives, is not immediately clear. One of the main results of this study
is that although the diffusion tensor has polar eigenvalues there is a net
down-gradient transfer of variance for all tracers considered and both
relaxation strengths. The eddy tracer flux therefore has the typically de-
sirable effect of driving mixing, or more precisely dissipating large-scale
variance, as would be guaranteed if both diffusion eigenvalues were
positive. Locally up-gradient, i.e., anti-diffusive, fluxes are possible and
for some tracers are more frequent (but weaker) than down-gradient
ones. The location of these up-gradient fluxes strongly depends on the
tracer and its relaxation profile; for each tracer we found a notable
correlation (≈ 0.25) between the down-gradient variance transfer 𝑇𝜙
and the magnitude of the relaxation effects on the eddy variance budget
|𝑅𝜙|. Slightly larger correlations are found when 𝑇𝜙 is lagged 6 days
ehind |𝑅𝜙|. These findings imply that strong down-gradient transfer
s most common where |𝑅𝜙| is large, whereas up-gradient transfer is
ost common where |𝑅𝜙| is weak. A related finding is that the up-

radient fluxes are most persistent where the eddy variance dissipation
s weakest, agreeing with the results of Wilson and Williams (2006).

The second main result is that as we weaken the relaxation strength,
he net down-gradient transfer becomes markedly stronger, even
hough the prevalence of polar eigenvalues may not change, or that
n the case of the linear tracers negative eigenvalues become more
ommon. The variance transfer increases in this way because for weak
elaxation the eddy field is more weakly suppressed, meaning that the
10
homogeneous diffusion has stronger small-scale gradients on which
to act. The increased eddy variance dissipation by the homogeneous
diffusion is only partly compensated for by a decrease in the dissipation
by the relaxation forcing. Thus, an increase in down-gradient transfer
as the relaxation weakens is required to maintain an approximate
balance in the eddy variance budget. In the diffusion tensor this
altered down-gradient transfer is jointly accounted for by the diffusion
eigenvalues, the diffusion axis and the correlations that these have with
the large-scale tracer gradient.

An important aim of any eddy transport parameterisation is to
accurately emulate the transfer of variance between the resolved and
unresolved scales (Jiménez et al., 2001a; Balarac et al., 2008, 2013; Lu
and Porté-Agel, 2013). In this study we have shown that up-gradient
fluxes and tracer filamentation are common features of eddy transport
of passive tracers, but that down-gradient transfer remains the net
effect. In contrast, current parameterisations of eddy tracer transport
in ocean circulation models are strictly down-gradient. Our results
therefore suggest that current parameterisations may require upgrading
in order to accurately represent the tracer transport by mesoscale ed-
dies missing in non-eddy-resolving and eddy-permitting ocean models.
These models will simulate the evolution of tracers such as heat, salt,
nitrate, oxygen and carbon (e.g., Eden and Oschlies (2006), Gregg et al.
(2014)), each of which are forced by sources and sinks, and we have
shown that such sources/sinks or relaxation effects can affect the nature
of the eddy tracer transport. For example, persistent up-gradient fluxes
are most common where the relaxation effects on the eddy variance
budget are the weakest, a dependence which future parameterisations
could aim to incorporate.
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In our stable eddy-resolving tracer simulation advection and dis-
ipation (by homogeneous diffusion and relaxation) of eddy variance
revent up-gradient fluxes from creating singularities. In a coarse-
rid model with eddy transport parameterised, any prescribed negative
iffusion eigenvalues may guarantee model instability. Future research
ust therefore focus on incorporating polar diffusion eigenvalue pairs

nto stable simulations by examining how other effects temper up-
radient fluxes in stable simulations. In a tracer transport model with
olar eigenvalues it is sensible to retain a homogeneous down-gradient
iffusion term to represent sub-mesoscale effects, such as those not
esolved by the model we use in this study. Such a term will temper
he effects of negative diffusion eigenvalues. Ensuring that negative
iffusion eigenvalues are sufficiently transient or that the diffusion
xis varies in time can also temper persistent up-gradient transfer and
re known features of the diagnosed diffusion tensor. Lastly, it may
e that the diffusion eigenvalues and diffusion angle have a precise
elationship with the large-scale tracer field, accounted for by the non-
niqueness of 𝑲 and 𝑺, which if somehow altered would cause the
table simulation to become unstable. Understanding this and the other
rocesses that prevent up-gradient fluxes from causing singularities
emains an important research extension.
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