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ABSTRACT 
Various steady and time-dependent regimes of a quasi-geostrophic 1.5 layer model of an oceanic 

circulation driven by a steady wind stress are studied. After being discretized as a numerical model, 
the quasi-geostrophic equations of motion become a dynamical system with a large dimensional 
phase space. We find that, for a wide range of parameters, the large-time asymptotic regimes of the 
model correspond to low-dimensional attractors in this phase space. Motion on these attractors is 
significant in determining the intrinsic time scales of the system. In two sets of experiments, we 
explore the dependence of solutions on the viscosity coefficient and the deformation radius. Both 
experiments yielded a succession of solutions with different forms of time dependence including 
chaotic solutions. The transition to chaos in this model occurs through a modified classical 
Ruelle-Takens scenario. We computed some unstable steady regimes of the circulation and the 
associated fastest growing linear eigenmodes. The structure of the eigenmodes and the details of the 
energy conversion terms allow us to characterize the primary instability of the steady circulation. It is 
a complex instability of the western boundary intensification, the western gyre and the meander 
between the western and central gyres. The model exhibits ranges of parameters in which multiple, 
stable, time-dependent solutions exist. Further, we note that some bifurcations involve the appear- 
ance of variability at climatological time scales, purely as a result of the intrinsic dynamics of the 
wind-driven circulation. 

1. Introduction 

The main purpose of this research was to investigate the types of circulation regimes 
possible in a small, closed, rectangular basin and their dependence on different physical 
parameters, such as eddy viscosity, wind forcing and the basin’s geometrical length scales, 
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with a view to understanding some of the mechanisms influencing the circulation in small 
inland seas. 

Examples of almost-closed basins include the Mediterranean, Black, Red, Baltic and 
Caspian Seas. These bodies of water are almost closed in the sense that the straits 
connecting them with oceans are quite narrow.* Although the straits are very important for 
the formation of vertical stratification in the inner seas, dynamically, the basins are 
relatively isolated from main bodies of water. The shapes, sizes and circulation patterns of 
these basins are all different. 

Observations (Oguz et al., 1993) and some numerical simulations of the Black Sea (see 
Stanev, 1990; Meacham, 1997) suggest a rather complicated flow pattern with time- 
dependent and spatially variable mesoscale features like eddies and jets, but some robust 
flow features may be easily identified. Among them is the cyclonic Rim Current, flowing in 
a narrow band (its width is less than 75 km) around the periphery of the basin, along the 
continental slope, with typical alongshore surface velocities of about 0.2-0.3 m/set. A 
series of eddies is confined between the coast and the Rim Current (Oguz et al., 1993). 
These eddies are baroclinic features, anticyclonic above and cyclonic below the permanent 
thermocline. The Rim Current surrounds a basin-wide multi-centered cyclonic cell (Oguz 
et al., 1993). The two dominant parts of the cyclonic cell are referred to in the literature as 
the Eastern and Western Gyres. The Gyres occupy the eastern and western parts of the Sea 
respectively, and one can see their shape and structure in Oguz et al.‘s Figure 1. There is an 
associated elevation of isopycnals in the Gyre centers and depression of isopycnals around 
the basin’s continental slopes. Observations (Blatov et al., 1984) suggest that the Gyres are 
a time-dependent feature, and that they occur on an interannual time scale. An appearance 
of the Gyres is associated with an occasional breaking of the Rim Current into two closed 
loops, each of which surrounds one Gyre. This two-dome structure of the Gyres usually 
appears in summer, when cyclonic forcing is weaker. While some of the interannual 
variability in the Gyres is a result of variations in atmospheric forcing, we believe that 
some is a consequence of time scales intrinsic to the dynamics of the basin. Unfortunately, 
the lack of synoptic observational data is a major drawback in present studies of the 
mesoscale variability in the Sea. 

From the existing observations, the circulation in the Black Sea is an interesting example 
of a phenomenon that exhibits large-scale organization. A sophisticated numerical model 
can simulate some of the basic features of the Sea circulation, but in this study the goal is to 
investigate the wind-driven circulation in a greatly simplified version of the Black Sea-a 
flat-bottomed, rectangular basin. This particular geophysical problem is an extension to the 
almost half-century old study of a wind-driven circulation in a closed basin pioneered by 
the works of Stommel (1948) and Munk (1950) on linear solutions of the barotropic 
vorticity equation. 

Recently Jiang et al. (1995) discovered periodic solutions in the double-gyre wind- 

2. The Caspian Sea has no direct connection with an ocean. 
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Figure 1. From Oguz et al. (1993). Schematic of the main features of the upper layer general 
circulation in the Black Sea. Solid (dashed) lines indicate quasi-permanent (recurrent) features of 
the circulation. Note the Rim Current flowing around the periphery of the basin and the Western 
and Eastern Gyres. 

driven reduced-gravity shallow-water oceanic model. They concluded that periodic solu- 
tions arise by a Hopf bifurcation (i.e. an oscillatory instability and the nonlinear continua- 
tion of this instability; Drazin, 1992) from the steady state. Kamenkovich and Kamenkovich 
(1993) considered the evolution of frictionless Rossby waves generated by a wind stress in 
a closed basin. They demonstrated that a solution with a zero boundary value for the stream 
function fails to describe the wave motion in the basin, and that a consistent quasi- 
geostrophic formulation of the problem should include the total mass conservation 
constraint. As a result, interior Sverdrup flow may be obtained only in a time-average sense 
and, in the limit of zero friction, the Rossby wave oscillations do not decay with time. 
Ierley and Sheremet (1995) discovered multiple steady solutions in a barotropic single- 
gyre wind-driven model with slip boundary conditions on the lateral walls. The multiple 
solutions in that case exist in regimes in which the thickness of the inertial boundary layer, 
6,, is comparable to the thickness of the viscous boundary layer 6,. One solution is 
characterized by the presence of the western boundary layer. In this case, the input of 
vorticity from the wind is balanced by the diffusion of vorticity with opposite sign from the 
western boundary. Another solution is an inertial-gyre circulation, characterized by large 
velocities and large vorticity gradients which are necessary for global vorticity balance. 
Velocities in the second type of solution are unrealistically large and this solution does not 
seem to be realized in the ocean. In addition to the pure antisymmetric solutions, 
asymmetric steady stable solutions were found in double-gyre antisymmetrically wind- 
driven reduced-gravity shallow-water (Jiang et al., 1995) and barotropic (Cessi and Ierley, 
1995) models. These solutions exist in pairs: strong cyclone and weak anticyclone, or vice 
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versa. Speich et al. (1995) showed that the multiple stationary solutions undergo Hopf 
bifurcations as the control parameters are varied, and eventually the flow becomes 
aperiodic and even chaotic. The chaotic behavior was related to an increased number of 
recirculations interacting with each other. 

Starting with a very simple model, we try to simulate and explain the fundamental 
behavior of wind-driven flow in a small closed basin. We address the following questions. 
How does the circulation in the basin become unstable? What form do time-dependent 
solutions take and how do they behave in the parameter space? We solve numerically a 
discretized equation of motion. Before being discretized, it is a partial differential equation. 
When it is considered as a dynamical system, the phase space of the PDE is infinite 
dimensional. After discretization, we deal with a dynamical system of large but finite 
dimension (of the order of several thousand). The time-dependent evolution of the system 
from a given initial condition corresponds to a trajectory in this large-dimensional phase 
space. 

The theory of forced, dissipative PDE’s (e.g. Lions et al., 1992; Robinson, 1995; 
Temam, 1995) suggests that the solution trajectories of equations similar to the nonlinear 
equivalent-barotropic vorticity equation, (2) below, should asymptotically tend to a finite 
dimensional attractor. Moreover, the expectation is that, in a sufficiently dissipative regime, 
the dimension of such an attractor should be relatively low. With this in mind, we pursue 
the following strategy. 

We start from some arbitrarily chosen initial states and integrate the numerical mode1 
until the trajectory in the high dimensional phase space asymptotes to some attractor of a 
low dimension. We are interested in finding and classifying such asymptotic attractors for 
different values of the control parameters of the problem. Each low-dimensional attractor 
corresponds to a highly organized flow in physical space. An important issue is the extent 
of the ranges of the control parameters over which the system preserves its low dimension- 
ality. We investigate bifurcation sequences that lead from steady states of the system to 
chaotic time-dependent behavior through several intermediate steps. The physics of the 
primary bifurcation is revealed by looking at the energy conversion associated with the 
growth of the most unstable eigenmode. An energy approach helps to localize an unstable 
part of the spatially nonuniform steady state circulation. 

In this work, the focus is on a quasi-geostrophic reduced-gravity model; comparable 
calculations for barotropic and baroclinic flows are reported in Meacham and Berloff 
(1997, this issue) and Berloff and Meacham (1997a), respectively. 

2. Modeling approach 

In this research, we limit ourselves to a rectangular basin with 2 latitudinal and 2 
meridional boundaries. We choose the y-axis to point northward, and the x-axis to point 
eastward. Basin sizes were chosen to be 800 km in the west-east direction (L,) and 400 km 
in the south-north direction &), which roughly corresponds to the horizontal scales of the 
Black Sea. We restrict the problem in hand to midlatitudes, and since the basin’s length 
scales are much less than the Earth’s radius, resort to a B-plane approximation. Thus, the 
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Coriolis parameter isf=fa + Boy, wheref, = .93 X 10e4 see-i, PO = 2 X 10-i’ m-i seci 
and y = 0 in the middle of the basin. No topographic forcing was included in the model and 

no thermohaline effects were considered. Instead a 1.5layer model of stratification was 

used. In this model, only the upper layer is active. When at rest, the upper layer depth is H. 
The lower layer is always at rest and infinitely deep. The densities of the upper and lower 

layers are pi and p2 respectively. Vertical mixing, vertical viscosity and bottom friction 

were not included. We model horizontal mixing of momentum using a Laplacian diffusion 
with uniform eddy diffusivity. The eddy viscosity coefficient (v) was one of the main 

parameters of the problem and was varied from 50 m2/sec to 150 m%ec. This range is 
comparable to some of the values used in modem eddy resolving ocean GCMs. For 

example, in Stanev (1990) the eddy viscosity coefficient was v = 400 m*/sec, while 
Figueroa and Olson (1994) used v = 50 m2/sec for a double gyre GCM. The viscous length 
scale (which will be defined below) in our model was about 13.6 km for the lowest 

viscosity coefficient of v = 50 m2/sec. The grid resolution in the model is chosen so that 

this viscous length scale can just be resolved. 
At the lateral boundaries, boundary conditions of no normal flow and no slip were used. 

At the surface a rigid-lid approximation was used and a wind stress imposed. The 

wind-stress forcing was distributed over the whole active layer depth and acted as a body 
force. We chose a wind stress of the form (0,~) = (0, rO(x/L, - 1)) with a uniform positive 
curl. In the experiments, r. was fixed: T o = 0.5 dyn/cm2. The positive sign of the curl 

corresponds to the cyclonic annual average wind forcing over the Black Sea. In future 
research, we intend to examine the effects of a time-dependent wind stress, but in this paper 
the wind stress is steady. 

The governing equations, describing a single shallow layer of fluid lying over an 

infinitely deep layer of denser fluid below and forced with the chosen wind stress, are 

all au au ah 7 
i)l+U--$+V--jiJ=-g’--&+vV2U+ 

dY p,(h + H) 

av av av ah 
c3t+U-$+v-+fu= -g’-+vv2v 

dY dY 
(1) 

1 + t (u(H + h)) + ; (v(H + h)) = 0, 

where h is the deviation of the upper layer depth from H and g’ = g(p2 - p,)/p, is the 

reduced graviational acceleration. 
A quasi-geostrophic approximation of the governing equations gives rise to the Equiva- 

lent Barotropic (EB) model. The derivation of the corresponding vorticity equation for the 

EB model can be found in Pedlosky (1987). Although the EB model lacks fast internal 
gravity waves and is strictly valid only for interface deviations that are small in comparison 

to the total depth of the active layer (due to the quasi-geostrophic approximation), it still 
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reproduces Rossby waves, overall basin dynamics, and has found wide use. Given the 

anticipated sizes of the dynamical changes in the upper layer depth, it would be physically 
more appropriate to use the shallow water approximation, but quasi-geostrophy gives 
results qualitatively similar to those of the shallow water model in circulation regimes far 

from an isopycnal outcropping, which is the case here. Some experiments were made with 
a shallow water reduced-gravity (1.5-layer) model, for purposes of comparison with the EB 

model. In those it was found that the maximal interface deviation, corresponding to the 

strong western recirculation gyre, was about one quarter of the total active layer depth. A 
great advantage of the quasi-geostrophic models is their computational efficiency because, 
in the absence of fast gravity waves, one can use longer time steps in the numerical scheme. 
A computational study of the bifurcation structure of this model then becomes feasible. 

The EB model fails to incorporate physical processes such as baroclinic instability. The 
effect of baroclinic instability on the dynamics of the wind-driven circulation is addressed 

in a companion study (Berloff and Meacham, 1997a) which uses a two-layer quasi- 
geostrophic model. The baroclinic model yields bifurcation sequences that differ from 
those reported in this work, although the general route to chaos is similar to the one found 

in the EB model and reported here. Through the agency of baroclinic instability, time 

dependence appears at a lower Reynolds number than in the EB model. However, simple 
periodic and quasi-periodic motion is seen over a broader range of Reynolds number as the 
eddies spin up in the lower layer. The flows in the baroclinic model, though low- 
dimensional, tend to contain a more prominent Rim Current with more energetic meanders. 

We chose the upper layer thickness at rest to be H = 200 m. The density jump across the 

interface between the upper and the lower layers was p2 - p, = 2.625 X 10m3 kg/m3, 

yielding a reduced gravity g’ = 2.575 X 10m2 rn/sec2. An important parameter of the 
problem is the Rossby deformation radius, which is Rd = @?&. The choice of the 
basin’s west-east and south-north sizes, active layer depth and density jump was prompted 
by the size and hydrology of the Black Sea. 

In the potential vorticity/stream function formulation of the EB model (Pedlosky, 1987), 

we use the following scalings: L, for the length scale, (B,&x)-r for the time scale, U for the 
velocity scale and TV for the wind-stress scale. We specify the velocity scale from the 
Sverdrup balance: U = r,,/pHL&, and introduce the following dimensional length scales in 

addition to Rd, LA and Ly: 

Here 6, is an inertial length scale and hu is a viscous length scale or Munk scale (Pedlosky, 
1987). The nondimensional parameters of the problem now are 
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Here 6 is an aspect ratio of the rectangular basin, E is a squared ratio of the inertial length 

scale to L,, u is a cubed ratio of the Munk scale to LX, and S is the square of the ratio of the 
zonal geometrical length scale to the Rossby deformation radius. The limit S = 0 yields the 
purely barotropic problem. Using the nondimensional parameters, we can write the 

potential-vorticity equation in the following nondimensional form 

$(v2J,-~*)+tJ(JI,V2*)+~=vXT+pV4*. (2) 

The parameter 6 does not enter (2) directly but arises in the specification of the boundary 
conditions. 

The numerical model solves (2) in dimensional form. The horizontal resolution in the 
model was 6.25 km on a 129 X 65 grid. We solved the potential vorticity equation using 
second order spatial finite differences and an explicit leapfrog scheme for time stepping. 

The nonlinear term was discretized following Arakawa (1966) and does not artificially 
generate energy. 

The normal component of velocity at the boundary of the basin is zero, yielding the 
boundary condition: 

(3) 

where r,(t) depends upon time only and C is the boundary around the basin. We use the 
no-slip condition on the velocity along the boundaries of the basin, 

where n is the normal to C. Another constraint imposed upon the stream function is 

(4) 

which is the conservation of mass law for fluid in a basin of area A. 
The numerical procedure included time-stepping equation (2) for the potential vorticity, 

5 = V2+ - S+, with boundary conditions (3) and (4), and then solving the elliptical 
Helmholtz problem 

(V2 - s>* = 5 (6) 

for + with the mass conservation constraint (5). The Helmholtz problem was solved using a 

FACR method (Hackney, 1970). We checked the effects of truncation error by making 
several runs in which the grid resolution was doubled and the time step was halved. The 
results are discussed in Section 5. 

The system we investigate is a discrete dissipative forced dynamical system with a 
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dimension equal to the number of nodes in the basin multiplied by the number of variables 
at each node. When we solve the present EB problem (which has only one variable Q), this 
dimension, which we’ll refer to as p, is more than 8000. Each state of the system, i.e. 
potential vorticity distribution at the nodes of the grid, corresponds to a point in this 
p-dimensional phase space, and as the system evolves, this phase point traces out a 
trajectory in this space. Thus we work with an autonomous discrete dynamical system with 
states x(t), that are governed by the set of equations 

S = F(x(t, x(0)); a) (7) 

where x(0) is the initial state of the system and a is a set of control parameters. We varied 
two control parameters-the horizontal eddy viscosity coefftcient v and the Rossby 
deformation radius Rd. Thus, in a first set of experiments, we changed the nondimensional 
parameter p by varying the viscosity and keeping all other nondimensional parameters 
fixed; and in a second set of experiments we changed the nondimensional parameter S by 
varying the deformation radius Rd. We have not studied the effects of 6 and E variations. 

3. Methodology 

First, we integrated the model forward in time until it converged asymptotically to some 
attractor in the full phase space. The time required for the system to asymptote was 
typically in the range 104-lo5 days, depending upon the rate of convergence. To decide 
whether the trajectory converged or not and to characterize the nature of the attractor, we 
used a combination of analysis techniques. We describe these briefly here. 

a. Projections into reducedphase spaces. To construct a low-dimensional projection of the 
full p-dimensional phase space, we used the method of delay coordinates, (Packard et al., 
1980; Takens, 198 1). We recorded a time series of the dimensionless total energy J&t), = 
SD 1 V+ I*/2 + S$*/2, where SD denotes integration over the basin. To construct a projection 
of the system trajectory in a reduced phase space, we defined a time-dependent n- 
dimensional vector x(t; 6) = (x,, x2, . . ., x ,J, where 6 is a fixed positive time delay and 

xj = E(t - jS), j=O,l,..., n- 1. 

The best choice of 6 is one such that Xj is not closely correlated with Xj- r, which would be 
the case if 6 is too small; and not completely uncorrelated, as would happen if 6 were too 
large. Sensible choices of 6 include the time to the first zero-crossing of the autocorrelation 
function or the time to the first minimum of the mutual information function (Fraser and 
Swinney, 1986). The exact choice of 6 is not critical; varying 6 over a modest range 
around say the quarter period of the fastest dominant frequency merely distorts the shape of 
the attractor but does not hide its topology which is the fundamental property of interest 
(see Brandstater and Swinney, 1987). For the present problem, we fixed 6 = 30 days. 
Using n = 3, the trajectory can be visualized by plotting the trajectory in the reduced space 

(x01 XI t x2). 
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We use the delay technique to identify different attractors with respect to various v and 
initial conditions. Ideally, the choice of projection dimension n of the p-dimensional phase 

space should depend upon the dimension of the dominant attractor. According to one of 

Whitney’s embedding theorems (Whitney, 1936; Takens, 1981), a smooth compact 
manifold of dimension m in p-dimensional space may be represented without self- 

intersection in a subspace with dimension n = 2 m + 1. However, attractors are typically 

recognizable in projection spaces of lower dimension than 2 m + 1, though they often 
exhibit self-intersection. 

b. Power spectra. Another useful approach for determining the characteristic frequencies 

of motion on an attractor, and for distinguishing between quasi-periodic and chaotic 
motion, is to compute the Fourier power spectrum of a time series. We computed power 

spectra of time series of the total energy integrated over the basin. 

c. Poincart? sections. Poincare sections through low-dimensional attractors in the delay 

space are also useful for distinguishing different types of attractor. We constructed these by 

picking a fixed plane through an attractor and plotting the linearly interpolated intersection 
of a trajectory with the plane each time a trajectory passes through the plane in one 

direction. 

d. Unstable steady states. An unstable solution cannot be detected by a simple time- 

stepping approach; therefore, in order to find unstable steady solutions, we used the 

following techniques. One of them was to reduce the deformation radius in the upper layer 
artificially and by that trick to stabilize the solution. Integration in time of the stabilized 
equations of motion yields a steady solution that would be unstable at the original Rd. In 

the steady state limit the time derivative vanishes and the artificial Rd reduction doesn’t 
matter. In fact, all steady states of the EB model are steady states of a barotropic model with 
a layer depth equal to that of the active layer of the EB model. In general though, the 

stability properties of the steady states in the two types of models are different. 
Another approach was to compute a small amplitude limit cycle and time-average it over 

one period of oscillation. We used the time-averaged state as a new initial condition (the 

time-averaged state is close to the unstable steady state, but does not coincide with it) and 

integrated forward in time until the trajectory began to spiral out in the direction of the 
stable initial limit cycle. This spiral trajectory was time-averaged again over one cycle and 
the process was iterated. This procedure converges only if the initial limit cycle is close 

enough to the unstable steady state. Empirically, this appeared to be the case for small 
amplitude limit cycles in the vicinity of the primary bifurcation threshold. The amplitudes 

of the successive spirals, computed in this iterative procedure, provided a measure of the 
proximity to the unstable steady state and allowed us to decide when to terminate the 
iterations. 
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e. Eigenmodes. For some of the unstable steady states that were close to the marginal 
stability threshold, we searched for an unstable linear eigenmode using the following 
procedure. We used a linear version of the evolution model. The unstable steady state was 
used as the basic state (about which the model was linearized), and the model was 
initialized with a small perturbation. The linear model was integrated forward in time for 
several eigenperiods. The eigenperiods were estimated from the periods of the nearby 
stable limit cycles. At the end of the integration, the evolved perturbation was resealed, 
reducing its amplitude back to a small initial level. The integration forward in time was 
then repeated with the resealed field as the new perturbation. After several iterations we 
were left with something close to the most unstable linear eigenmode. A delay coordinate 
projection of the final iteration of this procedure looks like an exponential spiral, diverging 
from the unstable fixed point. From the spiral, we can extract the growth rate and frequency 
of the unstable eigenmode by a least squares fit to a complex exponential. 

J: Fractal dimension. One of the relevant quantities characterizing an attractor of a 
dynamical system is its dimension. A variety of different definitions of dimension is 
discussed in Farmer ef al. (1983). Motion on attractors with noninteger dimension often 
exhibits sensitive dependence on initial conditions and can be regarded as a form of chaotic 
motion. Estimating dimension is an appropriate way to describe a chaotic system and 
distinguish it from a stochastic one. In the latter case, a trajectory is not attracted to any 
low-dimensional subset, and instead would occupy a large-dimensional part of the whole 
p-dimensional phase space. Calculating the power spectrum fails to clearly distinguish 
between these two cases, since it yields broad band structure for both (although, given 
enough resolution, the way in which the two types of spectra fall off at high frequency can 
be revealing). 

Let us define the information dimension D of an attracting set in p-dimensional phase 
space. We imagine covering the attractor with small p-dimensional hypercubes of side E, 
and set N(E) equal to the minimum number of cubes of size E needed to cover the attractor. 
Then, 

I(E) 
D = lim- 

e-0 

where 

N(E) 

Z(E) = 2 Pi logi 
i=l I 

and Pi is the probability that a phase point on a typical trajectory on the attractor is 
contained within the ith cube. To estimate the information dimension of a chaotic attractor 
we used the nearest neighbor algorithm (Badii and Politi, 1985; Kostelich and Swinney, 
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1987). The basic idea of the method is the following. First, we compute a time series, 
corresponding to a trajectory on or very close to an attractor. Let the total number of points 
in the series be N. We choose M reference points x(m) (1 5 m 5 M) and for each of them 
choose a random set of k, other points. We compute distances 6(m, k,) between x(m) and its 
nearest neighbor y(m) from the k, points. We repeat the procedure for increasing values of 
k,, such that 5-i < k/ << N - 1. The resulting function S(m, k) is recorded. The overall 
procedure is repeated for all M reference points. The underlying idea of the method is that 

M W, k) (s(k)) d&f mz, M - k-“D* k- 00, k << N. 

From this asymptotic scaling in the limit of large A4 we can estimate the dimension D. An 
average time series length N for our problem was about 2 X 105. The number M of 
reference points we used was 4000. The method was implemented using the software of 
Kostelich (1990). 

4. Results. The bifurcation sequences 

a. Viscosity coeffzcient as the control parameter: Keeping a fixed deformation radius, Rd = 
24.4 km, we have explored the viscosity coefficient range 54 5 v 5 150 m*/sec and 
identified a sequence of attractors in this range. For v > 104 m2/sec, the solutions are 
stationary and stable. In the p-dimensional phase space of the full numerical model, each 
solution corresponds to a stable fixed point with a specific value of energy. A sequence of 
steady solutions with different values of v = 1000,500, 300, 200, 105,60 m*/sec is shown 
as the stream function plots in Figure 2a (the last picture corresponds to a steady unstable 
solution and we’ll discuss it later). One can see how a steady, meandering return flow and a 
set of strong recirculations form in the southern part of the basin. Scatterplots of 5 versus $, 
for the same values of v, respectively, as on the previous figure, are shown in Figure 2b. In 
this figure, only points with $ < 40 are used. The points corresponding to the recirculations 
are scattered along the straight lines. This tendency indicates an approximately linear 
functional relationship between 5 and ill within the recirculations. From Figure 2b, one can 
see that the values of d+/d[ within each gyre are slightly different for different steady 
solutions. The last two pictures, corresponding to v = 105 and 60 m2/sec, indicate that the 
several gyres within a given steady state have approximately the same value of dQ/d<. The 
negative slopes of the scatterplots, together with the fact that the scale of the gyres are 
considerably larger than the deformation radius, are consistent with the idea that the 
vorticity balance within the gyres is maintained by down-gradient eddy transport as 
suggested by Marshall and Nurser (1986). We conclude that the tendency toward a linear 
functional relation within the gyres seems to be robust for the problem at hand. This 
suggests that the recirculation in each gyre is mainly dominated by inertia. 

The picture that corresponds to the fixed point with v = 105 m*/sec (see Fig. 2a) shows a 
steady circulation at a value of v very close to the primary bifurcation. This solution has 
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visc=l000 

visc=105 v iec=60 

Figure 2. (a) Stream function plots of six different steady solutions at the values of v = 1000, 500, 
300,200, 105.60 m2/sec. Note how the recirculation gyres develop as u decreases. The last picture 
at 1, = 60 m2/sec corresponds to an unstable fixed point. Contour interval (CI) = 40 (nondimen- 
sional units). (b) Scatterplots of + versus 5 for the six steady solutions in Figure 2a. The samples 
were taken within the contour 9 = 40. (Units for IJ and 5 are dimensionless.) 

three distinctive cyclonic inertial gyres of unequal sizes. The strength of the gyres, in terms 
of absolute velocities and sizes, decreases eastward. Values of the absolute velocity are 
shown in Figure 3; and one can see that the velocity is maximal in bands that correspond to 
the sides of the first meander between the western and central gyres and the part of the 
western intensification where an inflow from the interior merges with fluid circulating in 
the western gyre. 

Below u = 104 m*/sec, the branch of fixed points continues but now the points are 
unstable and represent a family of unstable steady solutions. To compute the unstable 
solutions, we followed the techniques described in Section 3. The full energies of both 
stable and unstable fixed points are shown in Figure 4 as a function of v. The main branch 
for v > 104 m*/sec consists of stable fixed points; for 1, < 104 m*/sec, the lower branch 
corresponds to unstable fixed points while the upper branch of mean energies in Figure 4 
corresponds to time-dependent solutions which will be discussed later. The steady unstable 
solution at 1, = 60 m%ec is shown on the last panel of Figure 2a. 

For the chosen value of Rd, 24.4 km, the threshold between the stable and unstable fixed 
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Figure 2 (Continued) 

points in the model lies between 103 and 104 m2/sec values of u. Numerical experiments 
made for different values of Rd suggest that the stability threshold (or the primary 
bifurcation as we’ll refer to it) occurs at lower values of v if Rd is decreased. In other 
words, a longer deformation radius has, in general, a destabilizing effect on the circulation 
model. 

Destabilization of the family of fixed points is associated with the appearance of stable 
limit cycles (see the phase space projection of the limit cycle for u = 100 m%ec in 
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Figure 3. Values of the absolute velocity at I, = 105 m2/sec. The contour interval is 3.0 cm/s. 

Figure 5). We identified the first (the primary) bifurcation as a supercritical Hopf 
bifurcation, associated with the onset of oscillatory instability of a steady solution and the 
appearance of a stable limit cycle. For this type of bifurcation, the real part of the pair of 
complex conjugate eigenvalues of the two least unstable linear eigenmodes becomes 
positive and the modes begin to grow in amplitude. In Figure 6, we show the behavior of 
the limit cycle amplitudes in the vicinity of the Hopf bifurcation threshold. The amplitude 
of the limit cycles shown in this figure scales as .224- close to the threshold. 

In phase space, a trajectory that starts close to the unstable fixed point spirals outward 
until it converges to a limit cycle. The limit cycle computed for v = 103 m*/sec, which is 
slightly below the stability threshold, has a period of 113 days. The periods of the most 
unstable growing linear eigenmode computed for the unstable fixed point at v = 
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Figure 4. Energies of the stable/unstable fixed points and mean energies of the limit cycles versus v. 
For the values of v below the critical point associated with the primary bifurcation, approximately 
1, = 103.5, the lower branch corresponds to unstable fixed points and the upper branch to limit 
cycles. For the values of Y above the critical point there are only stable fixed points. 
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103 m*/sec and of the least stable decaying linear eigenmode, computed for the stable fixed 
point at v = 105 m*/sec, are both approximately 112 days. 

A limit cycle in phase space corresponds to oscillatory (periodic) behavior of the 
circulation in the basin. In Figure 7a, we show the spatial and temporal structure of the 
limit cycle oscillation for v = 75 m*/sec. For this purpose, we subtracted the steady 
unstable solution at v = 75 m*/sec from the time-dependent stream function on the limit 
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Figure 6. The oscillation amplitudes (circles) as a percentage of mean amplitude versus u. In the 
vicinity of the critical point the amplitude scales as 0.22dm (solid curve). 
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(a> 

Figure 7. The behavior of the circulation over the limit cycle at u = 75 m2/sec. The oscillations of the 
total energy in the limit cycle have an amplitude of approximately 3.5% of the mean. Time 1 is 
measured in days. (a) The unstable steady state stream function subtracted from the time- 
dependent stream function corresponding to the limit cycle. CI = 10; (b) The difference between 
stream functions of the time-averaged and unstable steady states. CI = 6; (c) The time-averaged 
stream function subtracted from the time-dependent one. CI = 10. 



Berloff & Meacham: Equivalent-barotropic model 423 

t=84 

Figure 7. (Continued) 

cycle. The perturbation stream function 

444 Y, t> = *(x3 Y, t) - *“n&9 Y>> 

is then shown in Figure 7a. In Figure 7b we show the difference between the time-averaged 

stream function (Jl(x, y, t)) = l/T lz+r rJ~(x, y, t) dt, where T is one period of the limit cycle, 

and the stream function of the unstable steady state u = 75 m2/sec. The pattern from this 
figure is consistent with a slight displacement of the recirculation gyres to the east. The 

difference between the time-dependent stream function on the limit cycle and the 
time-averaged stream function is 

wx, y, 0 = Jl(x, y, 0 - (w, y, t,). 



424 Journal of Marine Research [55,3 

We show +;(x, y, t) in Figure 7c. Looking at the spatial and temporal structure of +;(x, 
y, t), we see that the oscillation is mostly active in the western part of the basin including 
the western boundary intensification and the western recirculation gyre. Two important 
features of the oscillation may be observed from Figure 7c: first, I&(X, y, t) is localized in 
the western part of the basin; second, it contains a series of eddies, which are cyclonically 
advected around the western recirculation gyre. The oscillations of the total energy in the 
limit cycle at v = 75 m2/sec are 3.5%; and the absolute perturbation velocity U’ = IV+;1 
reaches a maximum of 0.15 m/set during the limit cycle. 

We traced the branch of stable limit cycles down to v = 60.5 m2/sec. The values of the 
mean energy of the periodic attractors versus v are shown by the upper branch of points in 
Figure 4. We computed the mean energy as an arithmetical mean between the highest and 
the lowest values of energy achieved on the attractor. The mean energy values of the limit 
cycles are bigger than those associated with the unstable steady states at the same values of 
v. The period of the limit cycles decreases gradually down to 90 days for the last limit cycle 
at v = 60.5 m2/sec (see frequencies versus v in Fig. Sb). The variation of the amplitudes 
(we define the amplitude as the largest deviation of the total energy from the mean) of the 
periodic solutions with respect to v is shown on the bifurcation diagram (Fig. 8a). The 
diagram shows that, from the primary to the secondary bifurcation, at which the limit cycle 
solution loses stability (between v = 60.3 m2/sec and v = 60.5 m2/sec), the amplitude 
changes in a smooth fashion. 

For the slightly supercritical value of v = 100 m*/sec, we filtered out numerically the 
most unstable growing eigenmode, following the method described in Section 3. The 
spatial structure and the time-dependent behavior of the linear eigenmode are presented in 
Figure 9. The sequence of snapshots corresponds to one oscillation, or, more accurately, to 
one period of the spiraling phase space trajectory around the unstable fixed point. During 
this revolution, the eigenmode grows in amplitude by 11.7%. Further integration in time 
shows that the trajectory finally converges to a limit cycle. In Figure 7c one can see that the 
spatial structure and the time-dependent behavior of the limit cycle at v = 75 m2/sec look 
similar to those of the linear eigenmode. At small oscillation amplitudes, which is the case 
here, it appears that nonlinear oscillations in the limit cycles are just the most unstable 
eigenmodes modified slightly by nonlinearity. 

One approach that proved useful for exploring the nature of the primary instability of the 
circulation was to look at the energetics of the most unstable linear eigenmode of the steady 
unstable circulation. Any instability must be a horizontal shear instability but there are 
several regions of localized shears within the flow that are potential sites of instability. 
After the most unstable linear eigenmode was isolated, we computed the associated 
eddy-mean energy conversion term 

P = +q*I:v**; - *;vqJ:). 

Here 1I’ is the slowly varying mean stream function obtained by averaging over one cycle 
of the unstable eigenmode and IJJ’ is the rapidly varying part of the stream function, $’ = 
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Figure 8. (a) Bifurcation diagram. The oscillation amplitude as a percentage of mean amplitude 
versus v. FP-fixed points; LC-limit cycles (unstable limit cycles are shown with filled circles); 
QPyuasi-periodic motion on toroidal attractors. The amplitude of the chaotic attractor at v = 
56 m*/sec is about 14% and it is not shown on this diagram. (b) Bifurcation diagram. The basic 
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t=16 

Figure 9. Time-dependent behavior of the stream function of the most unstable eigenmode at u = 
100 m2/sec over one eigenperiod. Note, that the eigenmode is trapped in the western part of the 
basin. Time r is measured in days. CI = 4. 

JI - q. When the area integral of P is positive, perturbations grow, gaining energy from the 
mean state. When the integral of P is negative, perturbations decay, transferring energy to 
the mean flow. The spatial structure of P for the most unstable eigenmode at Rd = 24.4 km 

and v = 100 m*/sec is shown in Figure 10. The dominant maximum and minimum of P are 

concentrated near the confluence of the western boundary current and the recirculating 
flow in the western gyre. There are also two smaller extrema of P in the southwest corner of 
the domain, one against the western boundary and one against the southern boundary. 
Lastly there is a weak maximum to the east of the standing meander crest that lies just to 
the east of the western recirculation. It seems that the instability is a complex instability of 
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Figure IO. The spatial distribution of (a) the mean stream function and (b) the energy conversion 
term, P, at v = 100 m*/sec and Rd = 24.4 km. Dimensionless CI = 20 in each. 

the part of the flow that consists of the western boundary intensification and the western 
gyre with some coupling to the meander between the western and the central gyres. 

Berloff and Meacham (1997b) studied the primary equivalent-barotropic instability in 
basins with different aspect ratios 6 and showed that, in addition to the complex instability 
found in our case, there are two possible mechanisms of flow instability. One kind of 
instability is localized in the western boundary current only. It is analogous to the 
barotropic western boundary current instability studied by Ierley and Young (1991). The 
second kind of instability is associated with the meander between the western and the 
central gyres. 

As we saw in Figure 8a, the amplitude of the limit cycle changes smoothly as v is 
reduced until an oscillatory instability of the limit cycle occurs between u = 60.3 m2/s and 
v = 60.5 m2/s. A toroidal attractor was computed at v = 60.3 m2/sec (see Fig. 1 la,b which 
show a phase space projection of a trajectory on the attractor and the associated Poincare 
section). The typical behavior of a trajectory trapped to such an attractor is either 
quasi-periodic motion with two frequencies, the ratio of which is not a rational number or, 
if the frequency ratio is sufficiently close to rational that phase locking may occur, a limit 
cycle embedded on the torus. Poincare sections of quasi-periodic or long period limit cycle 
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Figure 1 I. (a) A delay coordinate phase space projection of the trajectory on the toroidal attractor at 
v = 58 m*/sec; (b) Poincare section of the trajectory on the toroidal attractor at u = 58 m%ec. 

trajectories on a toroidal attractor consist of points lying on a curve (or set of curves). This 
helps to distinguish this class of attractors from limit cycles and chaotic attractors. In what 
follows, we are not able to distinguish between quasi-periodic and very long period limit 
cycles on a torus, therefore we will somewhat inaccurately refer to both of these motions as 
“quasi-periodic.” 

The limit cycle becomes unstable for v just above 60.3 m2/sec. The family of limit cycles 
probably continues as a family of unstable periodic solutions for decreasing viscosity. It 
would be interesting to find an unstable oscillatory solution, corresponding to an unstable 
limit cycle, but this is beyond the scope of this paper, and we concentrate here mainly on 
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the stable attractors (with an exception made for fixed points and some weakly unstable 
limit cycles). The second bifurcation (from limit cycle to torus) also appears to be a Hopf 
bifurcation (Drazin, 1992). In principle, the stability of the limit cycle could be analyzed 
with Floquet theory. The new frequency arising at the bifurcation and the growth rate 
associated with the instability could be estimated from careful study of Poincare sections, 

but with our present model this is fairly difficult and we have not attempted it. 
The family of stable toroidal attractors continues down to v = 58 m2/sec. Quasi-periodic 

motion on the torus has two frequencies associated with it and, in our case, one frequency, 
which we’ll refer to as the basic frequency, is a continuation of the original limit cycle 
frequency. The second period, associated with winding around the torus, is about 420 days. 
Figure 12 shows a power spectrum for the quasi-periodic trajectory on the toroidal 
attractor, corresponding to v = 59 m2/sec. The dominant spikes correspond to periods of 
about 88 and 420 days for the basic and the second frequencies respectively. 

For 57.7 m*/sec < v < 58 m*/sec we observed another bifurcation. The toroidal 
attractor, which existed at the higher value of viscosity (v = 58 m2/sec), becomes weakly 
unstable at v = 57.7 m2/sec; the trajectory leaves it and is attracted to a different torus with 
a significantly lower energy and different geometrical characteristics. In Figure 13, we 
superimposed two Poincare sections. Each section corresponds to a quasi-periodic trajec- 
tory winding around a torus, and both sections were computed using the same plane 
through the three dimensional delay coordinate phase space projection. The trajectory 
winding around the higher energy torus was computed for v = 58 m2/sec and the trajectory 
around the lower energy torus for v = 57.7 m2/sec. The higher energy torus most probably 
continues to exist as an invariant set for v 5 57.7 m2/sec, but is unstable. It is not clear 
whether these two tori belong to the same or different families of time-dependent solutions. 
Since the techniques we are using are not able to locate unstable periodic and unstable 
toroidal solutions, we cannot resolve this question fully. However, a comparison of the 
structure of the attractors is quite helpful. 

After computing the lower energy attractor at v = 57.7 m2/sec, we increased the value of 
viscosity to v = 58 m2/sec and used a point on the trajectory belonging to the lower energy 
attractor as an initial condition for the model. Integrating in time, we observed that the 
trajectory returns to the higher energy toroidal attractor. The return to the higher energy 
torus consists of two stages. During the first stage the trajectory leaves the lower energy 
torus and collapses to a limit cycle. This stage took about lo3 days. The limit cycle is 
weakly unstable. The trajectory diverges from it and is attracted to the higher energy torus 
on a rather long time scale of 0(10(j) days. This is the second stage. The extremely weak 
instability of the limit cycle lets us continue this branch of unstable limit cycles to higher 
values of v. We were able to locate the unstable limit cycles to a good approximation. We 
computed the unstable limit cycles at v = 58, 59, 60, 60.5 m2/sec. In the last run the limit 
cycle was stable and coincided with the stable limit cycle obtained previously at this 
viscosity value by continuing more viscous limit cycles to lower v. The unstable 
continuation of the stable limit cycle branch is shown in Figure 8a. The periods of the 
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Figure 12. Power spectrum of the time series corresponding to the trajectory on the toroidal attractor 
at v = 59 m2/sec. Note two dominant frequencies 0.015 and 0.071 rad/day (periods are 420 and 
88.5 days respectively). The smaller spikes are due to nonlinear interaction between the dominant 
harmonics. 

unstable limit cycles are close to the basic periods of the higher energy toroidal attractors at 
the same u values. When we tried to compute the unstable limit cycle at v = 57.7 m2/sec 
using a point on the limit cycle at v = 58 m2/sec as an initial condition, the trajectory 
converged to the lower energy torus. 

A possible explanation of the bifurcation from the weakly unstable limit cycle to the 
torus might be the following. At some value of the viscosity coefficient vr,, lying between 
60.3 m2/sec and 60.5 m2/sec, a pair of complex conjugate eigenvalues crossed the imagi- 
nary axis, giving rise to a Hopf bifurcation from the limit cycle to the higher energy torus. 
The real part of the Floquet eigenvalues remains small, thus the limit cycle continues for 
lower viscosity coefficient as a weakly unstable structure. A second pair of Floquet 
eigenvalues crosses the imaginary axis at vZcr near 57 m2/sec or 58 m2/sec. This crossing is 
associated with another bifurcation from the now weakly unstable limit cycle to a lower 
energy torus. At roughly the same value of v, a physically similar instability occurs on the 
higher energy torus. The higher energy torus has a relatively small cross-section and so is 
“close” to the unstable limit cycle. It is then plausible that the same sort of physical 
instability should occur on both the limit cycle and the high energy torus. In Figure 14a,b 
we show Poincare sections of the unstable limit cycle at u = 60 and 58 m2/sec. The section 
at v = 60 m2/sec shows persistent regular divergence from the cycle. In contrast, the 
section at v = 58 m2/sec shows quite irregular divergence from the cycle, which might be 
an indication of the first and second eigenvalue pair being both close to the imaginary axis. 
The Hopf bifurcation of the unstable limit cycle may be subcritical, judging by the large 
amplitude of the lower energy torus at v = 57.7 m2/sec, but we do not have enough 
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Figure 13. Superimposed Poincare sections for the higher and lower energy toroidal attractors at v = 
58 m*/sec and u = 57.7 m*/sec respectively. 

experiments to conclude this with certainty. More detailed experiments would be expen- 
sive computationally. 

We have computed a second example on the lower energy branch of toroidal attractors 
for v = 57.5 m%ec (thus we have two experiments, in which this attractor was found). One 
difference between the higher energy and lower energy branches of toroidal attractors is the 
value of the second frequency, associated with a trajectory winding around each of these 
attractors. The basic periods of both seem similar: 90 days for the higher energy torus at 
v = 58 m*/sec and 86 days for the lower energy torus at u = 57.5 m2/sec. This similarity 
suggests that both tori may arise as bifurcations from the same basic limit cycle solution. 
However, the second periods are very different, being 420 days for the higher energy torus 
at v = 58 m2/sec and about 9000 days for the lower energy torus at v = 57.7 m*/sec (at 
u = 57.5 m2/sec the second period is about 7500 days). This is consistent with the idea that 
the two tori arose from two dzrerent Hopf bifurcations of the basic limit cycle. Another 
possibility is that some sort of global bifurcation has occurred. This second possibility 
would be the more plausible if the secondary period on the low energy torus tended to 
infinity as v was increased above 57.7 m*/s but it is very difficult to check this. There are 
types of local bifurcations of a limit cycle that could also introduce a long (initially infinite) 
period but these are nongenetic and therefore are unlikely to occur in a system like this 
which lacks spatial symmetries. In Figure 15, we show the power spectrum corresponding 
to the lower energy torus at v = 57.7 m2/sec. Note the appearance near the dominant 
frequency, ol = 0.072 rad/day, of cross-harmonics with various multiples of the secondary 
frequency w2 Î 0.0007 rad/day. How different does the circulation become in physical 
space when the trajectory leaves the higher energy attractor and winds around the lower 
energy one? The stream function field experiences a significant change as the trajectory 
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Figure 15. Power spectrum of the energy time series corresponding to a trajectory on the lower 
energy toroidal attractor at u = 57.7 m*/sec. Note two dominant frequencies 0.0007 and 
0.072 rad/day (periods are near 9000 and 87 days respectively). The smaller spikes are due to 
nonlinear interaction between the dominant harmonics. 

goes to the lower energy torus; in addition to the three gyres of unequal sizes, which are 
always present in the time-mean stream function for this set of experiments, the circulation 
associated with the lower energy torus now exhibits one more time-dependent vortex-gyre 
in the northern part of the basin between the western and the central gyres. This vortex is 
present everywhere on the trajectory winding around the lower energy torus, and is a 
characteristic feature of this attractor. A snapshot of the stream function field for v = 
57.5 m2/sec is shown in Figure 16; one can see the new recirculation on this picture. 

Figure 16. Snapshot of the stream function corresponding to the lower energy toroidal attractor at 
v = 57.7 m*/sec. Note the presence of the permanent recirculation in the northern part of the basin 
between the western and the central gyres. CI = 30. 
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It would be useful to determine the physical nature of the secondary instabilities. 

Unfortunately, this turns out to be a difficult task. In the case of the lower energy torus, one 

can try averaging the stream function over the short basic period and looking at the 
differences between these averages and the long-term mean stream function as the center of 

the averaging window is varied over the period of the secondary oscillation. There are 

several possible pitfalls in this approach; for example since the “fast” and “slow” 
oscillations are nonlinearly coupled, the basic period is not uniquely defined locally for 

windows within the period of the long oscillation. However, given the sharpness of the 

high frequency spectral peak, it is tempting to try this approach. The result appears to be a 
standing oscillation at the secondary period in which all three main recirculation gyres 
oscillate in position, the primary recirculation oscillates in amplitude, and a fourth, 

oscillatory, zonally elongated recirculation appears in the northern half of the basin. (This 

fourth recirculation can be seen in the circulation snapshot shown in Fig. 16.) Propagating 
wave-like disturbances are not seen in the running averages. The origin of this standing 

oscillation is unknown. 

The lower energy toroidal attractor loses stability for 57.3 < v < 57.5 m*/sec as the 
result of a new Hopf-like bifurcation. For the attractor found at v = 57 m*/sec, we 
estimated the dimension. We computed the energy time series for a trajectory on the 

attractor for lo5 days and estimated the dimension, following the technique described in 
Section 3. Then, we computed the time series for a further 7 X lo4 days and estimated the 

dimension again, but for the full time series of 1.7 X lo5 days. In both cases the dimension 
was estimated to be between 2.95 and 3.05. The frequencies which predominate in the 
power spectrum of the time series are shown in Figure 17. The three main frequencies w 

are: 0.00095, 0.039 and 0.075 rad/day. The attractor might be a 3-torus, or a strange 
attractor with a dimension close to 3, but the techniques which we use here fail to 

distinguish these two possibilities. Figure 18 is a Poincare section of the attractor, 
corresponding to v = 57 m*/sec. For v = 56 m*/sec the attractor’s dimension lies between 
3.02 and 3.05, a value computed following the same procedure as one described for the 
attractor at v = 57 m*/sec. We show the power spectrum of this attractor in Figure 19. The 

noninteger dimension suggests the presence of a strange attractor in the system. This is 

consistent with the appearance of broad band noise in the spectrum. Note especially the red 
appearance of this spectrum and the significant power seen at decadal time scales. A 
comparison of the experiments with v = 56 and 57 m*/sec suggests that the dimension of 

the chaotic attractor has a tendency to grow with decreasing viscosity, but the question of 
for how far in the parameter space the attractor preserves its low-dimensionality is a fairly 

difftcult one and we did not attempt to resolve it. 
In Figure 8a, where we plotted the oscillation amplitude versus v, one can see a sharp 

increase in amplitude for the high energy toroidal attractors and a very big difference in 

amplitude between high and low energy toroidal attractors. Another rapid increase in 



19971 Berloff & Meacham: Equivalent-barotropic model 435 

Figure 17. Power spectrum of the time series corresponding to the attractor at v = 57 m%ec. The 
power is located around 3 frequencies: 0.001, 0.039, 0.075 rad/day (periods are near 6300, 161, 
84 days). 

amplitude occurs for the 3D attractor. As we pass to the strange attractor, the oscillation 
amplitude grows to about 14% at u = 56 m2/sec (not shown in Fig. Sa). 

The sequence of bifurcations which we have seen in our experiments is similar to one of 
the classical routes to chaos through a sequence of Hopf bifurcations, suggested by Ruelle 
and Takens (1971) (see also Newhouse et al., 1978; Eckmann, 1981). According to this 
scenario, quasi-periodic attractors with three or more fundamental frequencies are in 
general unstable and give way to a strange attractor. 

b. Deformation radius as the control parameter: So far, we have considered only the 
dependence of the bifurcation structure on the single control parameter v (this corresponds 
to the nondimensional parameter p). Ideally, we should try to construct the bifurcation 
diagram over the full four-dimensional parameter space spanned by (6, E, u, S), but this is 
too expensive computationally. Instead, we carried out a series of computations with fixed 
v = 100 m2/sec, but variable deformation radius Rd (this corresponds to a variation of the 
nondimensional parameter S). In these experiments, we varied Rd from 20 km to infinity. 
An infinite Rd corresponds to a purely barotropic model. In that case, S = 0. The behavior 
of a barotropic model is somewhat different from the behavior of the EB model and is 
discussed in Meacham and Berloff (1997). The average amplitude, frequency and energy 
of the solutions obtained at various Rd are shown in Figure 20. 

When Rd i 20 km, we found only one steady stable solution, corresponding to a fixed 
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Figure 18. Poincare section of the attractor at u = 57 m2/sec. The dimension estimate of this attractor 
is very close to 3. 

point. This solution exactly coincides with the unstable steady solution, computed above 
for u = 100 m%ec and Rd = 24.4 km. Steady solutions are described by the equation 

E J(+, V*$) + 2 = V x T + g’4\lr, (10) 

which does not contain any information about Rd. This means that all steady solutions are 
exactly the same for any Rd, although the stability properties of the steady solutions depend 
upon the deformation radius. Multiple steady solutions may be possible, although we could 
find only one family of stable fixed points. 

In the range 22 km < Rd -=c 22.5 km, the system experiences a supercritical Hopf 
bifurcation. For the reader’s convenience, we’ll also quote the numerical values of s = 
LiRd = $ when describing the sequence of transitions. In particular, Rd = 22 km 
corresponds to s = 36.36. The period of the decaying eigenmode for Rd = 22 km is 125 
days; the period of the growing eigenmode for Rd = 22.5 km is 120 days and the period of 
the small amplitude limit cycle for Rd = 22.5 km is 121 days. At Rd = 24.4 km 
(s = 32.77) the limit cycle repeats the one from the previous set of experiments, where we 
varied u, keeping Rd fixed. The amplitude of the oscillation increases and the basic period 
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Figure 19. Power spectrum of the time series corresponding to the attractor at v = 56 m%ec. Note 
the broad and noisy structure of the spectrum. 

decreases gradually with increasing Rd as shown on the bifurcation diagrams in Figure 20. 
This branch of time-dependent solutions experiences a secondary Hopf bifurcation for 
56 km < Rd < 57 km (14.04 < s < 14.29), which leads to the appearance of a toroidal 
attractor. We define the basic period of the toroidal attractors on this branch to be the 
continuation of the periods associated with stable limit cycles. We traced this attractor up to 
Rd = 63 km (s = 12.70), but for Rd = 63.5 km (s = 12.60) it lost stability. The period 
corresponding to the second dominant frequency on this toroidal attractor decreased from 
137 days at Rd = 57 km (s = 14.04) to 119 days at Rd = 63 km (s = 12.70). This 
secondary period is within the range of the periods of the eigenmodes of the unforced basin 
(Buchwald, 1972). In Figure 21, we show a projection of the toroidal attractor at Rd = 
62 km (s = 12.90, on the first branch), its Poincare section and the power spectrum. 

A second (or middle) branch of stable asymptotic attractors appeared at Rd = 56 km 
(s = 14.29) and ended at Rd = 75 km (s = 10.67). This is shown with filled circles in 
Figure 20. Slightly beyond these marginal parameters the attractors belonging to the 
middle branch lose stability and a trajectory started close to the continuation of the middle 
attractor converges to an attractor on the first branch (which was the case in the experiment 
with Rd = 55.8 km, s = 14.34) or on a third branch (the experiment with Rd = 75.5 km, 
s = 10.60) which will be discussed below. With techniques which we use here we are not 
able to answer the question of whether or not the second branch is a continuation of the first 
branch. Only computing the unstable time-dependent solutions would allow us to make a 
conclusion about that. We compared the time-averaged stream functions of the middle 
branch limit cycles at Rd = 57 km (s = 14.04) and 72 km (s = 11.11) with the first branch 
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Figure 20. Bifurcation diagram. FP-fixed points; LCI-limit cycle on the first branch of stable 
attractors; QPI-toroidal attractor on the first branch; LC3-limit cycle on the third branch of 
stable attractors; PD-limit cycle with doubled period on the third branch. The “middle” branch 
of attractors is shown with filled circles (see text): (a) The oscillation amplitude as a percentage of 
mean amplitude versus s = L,/Rd. The primary and the secondary Hopf bifurcations occur 
approximately at s = 36 and s = 14 respectively. The period-doubling on the upper branch occurs 
near s = 1.45. (b) The basic frequency of oscillations (only the first and the third branches are 
shown here) in radian/day versus s = L,/Rd. Note the discontinuities in the frequency at s = 36 
(the primary Hopf bifurcation) and at s = 1.45 (the period-doubling). (c) The mean nondimen- 
sional energies of the attractors versus s = L,/Rd. 
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Figure 20. (Continued) 

time-averaged stream function at Rd = 55 km or s = 14.55 (the latter stream function is 
shown in Fig. 24). We found that all three (IJJ) look qualitatively similar as did the 
perturbations IJJ; = LJJ - (+I). This result suggests that the middle branch might be a 
continuation of the first one. 

The results of the experiments on the middle branch are shown in Table 1. From this 
table, one can see that the middle branch corresponds to a whole variety of topologically 
different attractors: of 19 experiments, 8 correspond to chaotic attractors, 5 correspond to 
quasi-periodic attractors, and 6 to phase-locked periodic trajectories on tori. The power 
spectra for the second branch have several distinctive spikes (see Fig. 22). One intrinsic 
period in the spectrum decreases with increasing Rd along the middle branch from 140 to 
131 days, another increases from 59 to 66 days. A third spike in the spectrum appears near 
Rd = 60 km (s = 13.33). The period associated with it decreases from close to 1200 to 630 
days at Rd = 75 km (s = 10.67). Since the frequencies of the oscillations on the second 
branch are relatively close to each other in magnitude, the system has a tendency to exhibit 
a variety of phase-locked orbits (Drazin, 1992). When two of the three dominant 
frequencies are locked, the attractor becomes toroidal (with quasi-periodic motion on it). 
The phase locking of all of the dominant frequencies yields a stable limit cycle. An 
example is the phase locked trajectory for Rd = 68 km (s = 11.76) in Figure 23 (the 
associated spectrum is shown in Fig. 22~); in this case the frequencies near 0.048 and 
0.106 rad/day are locked with the ratio 5/1,, the frequencies near 0.01 and 0.048 rad/day 
yield the ratio ‘/s and 0.0 I, 0.106 rad/day yield the ratio W I. The power spectra for the phase 
locked and quasi-periodic trajectories have several distinctive spikes with no noisy bands 



440 Journal of Marine Research [55,3 

Figure 21. (a) Phase space projection of the trajectory on the toroidal attractor at Rd = 62 km 

(S = 12.90; an attractor on the first branch); (b) Poincare section of the trajectory on the toroidal 
attractor at Rd = 62 km (S = 12.90); (c) Power spectrum of the time series corresponding to the 
toroidal attractor at Rd = 62 km (S = 12.90). Note two dominant frequencies .052 and .113 rad/ 
day (periods are near 12 1 and 56 days). 

around them; the power spectra for the chaotic attractors have several spikes surrounded by 
a noisy broad band structure. This noise suggests the presence of a chaotic strange attractor 
in the system. We estimated the dimensions of the chaotic attractors at Rd = 61 km 
(S = 13.11) and Rd = 74km (S = 10.81) from a 1 X 105 days long time series, then 
integrated further in time for .75 X 105 days and estimated the dimension from the full time 
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Figure 21. (Continued) 

series of 1.75 X 1 O5 days. The longer time series yielded the same dimension estimate as 
the shorter one. The dimension of the attractor at Rd = 61 km (S = 13.11) was estimated to 
be between 3.36 and 3.44. The attractor at Rd = 74 km (S = 10.81) had a somewhat lower 
dimension estimated to be between 2.80 and 2.88. 

Table 1. Table summarizes the experiments on the middle (the second) branch of stable attractors. 

Rd (km) 
Regime (with number of basic 

periods for phase locked orbits) 
Amplitude 

of oscillation (%) 

75 chaos 28.1 
74 chaos 26.8 
73 chaos 26.4 
72 phase locking (8) 19.1 
70 phase locking (17) 17.9 
69 quasi-periodic 16.4 
68 phase locking (5) 15.3 
67 quasi-periodic 15.5 
66 quasi-periodic 15.2 
65 phase locking (6) 14.4 
64 quasi-periodic 14.6 
63 chaos 13.7 
62 chaos 14.8 
61 chaos 14.9 
60 chaos 13.8 
59 chaos 12.3 
58 phase locking (6) 10.2 
57 phase locking (3) 9.07 
56 quasi-periodic 8.16 
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Figure 22. Power spectra of several time series on the middle branch. The attractors are at Rd = 56, 
61, 68 and 74 km respectively (S = 14.286, 13.115, 11.765 and 10.811). (a) Quasi-periodic 
motion on a torus; dominant frequencies are .045 and .107 rad/day (periods are near 140 and 
59 days). (b) Power spectrum of a chaotic attractor with a dimension of about 3.4. (c) Power 
spectrum of a phase locked trajectory on a torus. (d) Power spectrum of a chaotic attractor with a 
dimension of about 2.8. 

A third branch of asymptotic attractors is found at large deformation radii. This branch 
loses stability for Rd < 60 km (S > 13.33) so we have not been able to trace it below 
60 km, but it continues up to infinite Rd (s = 0 in that case and the model is purely 
barotropic). For 60 km 5 Rd 5 500 km (13.33 > s > 1.6) the attractor on this third branch 
is a simple limit cycle. We computed time-averages over one period for two limit cycles; 
one, corresponding to Rd = 55 km (S = 14.55), lies on the first branch of attractors, the 
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Figure 22. (Continued) 

second, with Rd = 60 km (S = 13.33), lies on the third branch (Figure 24). One can see that 
the main difference between the average flows is the appearance/disappearance of a third 
(eastern) gyre. In the limit cycle on the third branch, the circulation develops only two 
relatively weak gyres, whereas on the first branch we observe three, more intense, gyres in 
the time-mean flow. The limit cycle on the first branch at Rd = 55 km (S = 14.55) looks 
qualitatively similar to the limit cycle computed at u = 75 m%ec and Rd = 24.4 km 
(S = 32.79) in the set of experiments with variable V, and shown in Figure 7c. The third 
branch limit cycle oscillations at Rd = 60 km (s = 13.33) are quite different. In Figure 25, 
we show deviations from the mean, ~JJ;, on this limit cycle. The perturbations in this case 
occupy the whole basin and not the western part of it as on the first branch. The third branch 
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Figure 23. Example of a phase locked trajectory at Rd = 68 km (S = 11.765; the middle branch of 
attractors). 

oscillation pattern is not a basin mode (c.f. Pedlosky, 1987), although it has a basin-filling 
structure. The frequency of the limit cycle on this branch is about twice as large as the 
frequency of the gravest basin mode. The third branch oscillation pattern seems to be 
similar to the one found by Meacham and Berloff (1997) in the barotropic case (Rd - m). 

The third branch of asymptotic attractors exhibits a subharmonic bifurcation at some 
critical value of Rd between 500 and 600 km (1.33 < s < 1.60). This corresponds to a 
period-doubling instability (Drazin, 1992). If a Floquet multiplier decreases through - 1, 
when the control parameter passes through a critical value, the system experiences a 
subharmonic instability, and there is a doubling of the period of the attracting limit cycle. 
This is very apparent in delay coordinate phase space where the orbit develops a 
characteristic double-looped structure. The period-doubled limit cycle attractor for Rd = 
700 km (s = 1.14) is shown in Figure 26. For Rd - ~0 (s - 0) the period and amplitude of 
oscillations asymptote to constant values. The physics behind the period-doubling in the 
model remains to be explained. 

5. Conclusions and discussion 

The work in this paper complements previous studies of the wind-driven circulation 
(Bryan, 1963; Veronis, 1966; Ierley and Sheremet, 1995; Jiang et al., 1995; Cessi and 
Ierley, 1995; Speich et al., 1995). By focusing on a relatively small oceanic basin with a 
size comparable to the Black Sea, we have been able to run the model repeatedly at 
different parameter values for a sufficiently long time that the underlying dynamical 
behavior of the model becomes strikingly apparent. Viewed as a dynamical system, the EB 
general circulation model (GCM) can be considered as a large-dimensional forced and 
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Figure 24. Time-average over one limit cycle of the stream functions (a) at Rd = 55 km (s = 14.545) 
on the first branch of the attractors and (b) at Rd = 60 km (S = 13.333) on the third branch. Note, 
that the recirculation gyres are weaker at Rd = 60 km (S = 13.333) and the third (eastern) 
recirculation is not present in the time-average. CI = 20. 

dissipative dynamical system with several control parameters representing forcing, dissipa- 
tion and the internal deformation radius of the problem. For a wide range of the parameters, 
including values of the viscosity coefficient widely used in modem GCMs, and values of 
the deformation radius including those estimated for the Black Sea, the system possesses a 
sequence of low-dimensional attractors. To identify those attractors we applied a delayed 
coordinate technique. Following this technique we synthesized low-dimensional projec- 
tions of the full phase space. Integrating the model in time from some initial conditions, we 
observed that the phase space trajectory asymptotes to attracting sets of rather low 
dimensions, with structures that depend upon the control parameters. Motion on each of the 
unsteady asymptotic attractors corresponds to a time-dependent circulation with one, two 
or three dominant intrinsic time scales. These time scales range from months to decades. 
The low-dimensionality of the formally large-dimensional system is persistent for a wide 
range of parameters and seems to be a robust feature of this wind-driven circulation model. 
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Figure 25. Behavior of the circulation over the limit cycle at v = 100 m2/sec and Rd = 60 km 
(S = 13.333). The evolution of the difference between the instantaneous and the average stream 
functions. Time I is measured in days. CI = 20. 

This is consistent with the ideas of Lions et al. (1992) who showed that, under certain 
assumptions, the time-dependent behavior of an oceanic primitive-equation model ought to 
asymptote to motion on a finite-dimensional invariant set in phase space. 

Varying the viscosity coefficient in one set of experiments, and the internal deformation 
in another, we observed two sequences of successive bifurcations in the system. Each 
bifurcation was associated with a change in the attractor topology, i.e. with a change in the 
structure of the time-dependent solution to which the model asymptotes. The bifurcation 
sequence seen when the viscosity coefficient was varied was similar to a classical 
Ruelle-Takens scenario for a transition to chaos. The attractor that we found for a value of 
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Figure 26. Period-doubled trajectory at a value of Rd = 700 km (s = 1.143), which is close to the 
period doubling bifurcation point. 

the viscosity coefficient just below the critical value associated with the third in a sequence 
of Hopf bifurcations had a dimension very close to three, and the dimension seemed to 
grow as the viscosity coefficient was reduced further. 

In the set of experiments with variable deformation radius, we found ranges of that 
parameter where two or three different, stable, time-dependent attractors coexist. This 
sequence also includes a period-doubling on one branch of attractors, transition to a 
quasi-periodic motion on a torus on another branch, and a stable fragment of a third branch, 
rich in phase lockings, quasi-periodic and chaotic attractors. The existence of parameter 
regimes in which multiple stable time-dependent attractors occur is a significant result. In a 
situation where similar multiple time-dependent equilibria exist but are weakly unstable, 
one might anticipate that models will exhibit multiple persistent regimes such as those 
found by McCalpin and Haidvogel (1996). The situation in which the multiple equilibria 
are stable, as here, raises the question of what sort of transient external perturbations can 
cause the system to switch from one equilibrium to another. This will be a difficult question 
to answer coherently because of the many possible forms a transient perturbation can take. 
Though the attractors themselves are low-dimensional, they are embedded in the high- 
dimensional full phase space of the model. Their basins of attraction are high-dimensional 
objects in this phase space. 

When compared to simulations and observations of the Black Sea, in the range of the 
control parameters which we explored, the time-dependent circulation contains recircula- 
tion gyres, but does not contain a Rim Current. Berloff and Meacham (1997b) have 
considered a simple baroclinic model of the wind-driven circulation in the same basin. This 
too exhibits bifurcation sequences characteristic of low-dimensional behavior. However, in 
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the baroclinic model, the character of the circulation in physical space is closer to that 
observed in the Black Sea and includes a reasonable Rim Current. 

The nature of the primary instability, associated with a Hopf bifurcation, is examined 
through a consideration of the energetics of the most unstable linear eigenmode of the 
steady state flow. The instability appears localized in the western boundary intensification, 
the western gyre and the meander between the western and the central gyres. 

Any GCM is a forced and dissipative system, and any GCM contains nonlinearity and 
mechanisms for internal instabilities. We conjecture that the presence of low-dimensional 
stable attractors for some range of the parameters is a robust feature of GCMs with steady 
forcing. This would be consistent with general results for forced dissipative PDE’s 
discussed by Robinson (1995), Lions et al. (1992) amongst others. Similar attractors were 
found in barotropic (Meacham and Berloff, 1997), baroclinic (Berloff and Meacham, 
1997a) and 1.5layer shallow-water (Speich et al., 1995) models of the wind-driven 
circulation, and in a two-dimensional model of the thermohaline circulation (Quon and 
Ghil, 1996). On the basis of these results, it is plausible that, while realistic topography, 
coastline, stratification, steady heat and freshwater fluxes will modify attractors and the 
convergence rate to them, the existence of low-dimensional attractors will be a persistent 
feature of such models for a significant parameter range. One potential effect of adding 
topography might be to tend to decouple parts of the ocean basin; thus, it may be possible 
to find spatio-temporal chaos as well as temporal chaos in such a model. 

Qualitatively different behavior of the circulation may be observed, if time-dependence 
is added to the forcing. In general, we expect that realistic time-dependent forcing in 
GCMs will prevent complete convergence to a low-dimensional attractor, but in some 
circumstances the circulation will seek to stay “close” to the attractor. In that case, the 

attractor may be a statistically preferred state of the system, and the underlying organized 
patterns and temporal variability associated with the attractor may be present in the flow. 
This statistical presence of the low-dimensional characteristics may be an explanation of 
the organized Gyres and the Rim Current in the Black Sea. In situations where the 
time-dependence of the forcing is simply periodic, the time dependence of the forcing can 
be folded into the dynamical system of the model by adding a degree of freedom that is just 
a constant amplitude oscillator. In this case, a range of transitions through low-dimensional 
attractors should be seen in much the same way as in the constantly forced models. The 
main difference will be that in the strongly dissipative limit, the initial attractor will be a 
limit cycle rather than a fixed point. 

The intrinsic temporal variability associated with the presence of the underlying 
low-dimensional attractors may exhibit itself on interannual-to-decadal time scales, and 
should be distinguished from the seasonal and annual cycles imposed by the atmospheric 
forcing. A significant and robust feature of the bifurcations to chaotic attractors seen in this 
study is the concomitant appearance of spectral power at long (interannual-to-decadal) 
time scales. It seems important, when trying to understand the behavior of ocean models on 
“climatological” time scales, to investigate this intrinsic source of low-frequency variabil- 
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ity in more detail and, in particular, to try and tie the geometrical structure of the attractors 
in phase space to physical processes occurring within the flow. The existence of a natural 
internal mechanism for the generation of long time scale fluctuations is something that 
must be taken into account when considering climatological behavior. For similar reasons, 
but a rather more difficult task, it would be worthwhile to explore the way in which the 
structure of the chaotic attractors seen in this study change as dissipation is reduced further. 
Such changes are likely to affect the distribution of energy at long time scales (see 
Meacham and Berloff, 1997), the length of the “longest” time scale, and the existence and 
form of persistent states within the chaotic regime. 

Meacham and Berloff (1997) showed that, in the barotropic wind-driven model flow, 
energy is predominantly dissipated in thin regions located along the western wall of the 
basin and at the southern edge of the western recirculation gyre. The thinness of these 
regions is scaled by the width of viscous boundary layer & and requires relatively high 
resolution. Meacham and Berloff studied the effect of resolution on the bifurcation 
sequence. They showed that for higher resolution, the primary bifurcation threshold shifted 
slightly to a higher value of v and mean energies of the attractors in the bifurcation 
sequence increased slightly, but the bifurcation sequence qualitatively did not change. For 
the EB model, we changed the resolution from 6.25 km to 3.125 km and halved the time 
step, keeping Rd = 24.4 km, and found that, instead of v = 104 m*/sec, the primary 
bifurcation occurred at a higher value of v, somewhere between 109 and 112 m*/sec. We 
also computed the limit cycle at v = 80 m*/sec and Rd = 24.4 km, and found that, when 
compared to the 6.25 km resolution case, the mean energy of the limit cycle grew by 4% 
and the period changed by less than 1%. These results, as well as those of Meacham and 
Berloff (1997), suggest that under-resolving the western boundary layer may cause the 
circulation to equilibrate at a lower energy level. 

We hope that, with the growing evidence of the organized low-dimensional behavior in 
ocean models, a combination of systematic studies with the dynamical system approach 
applied to more realistic models and observations of the real ocean will lead to a better 
understanding of the ocean’s spatio-temporal variability. 
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