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A B S T R A C T

In this study we develop an alternative way to model the ocean reflecting the chaotic nature of ocean flows
and uncertainty of ocean models — instead of making use of classical deterministic or stochastic differential
equations we offer a probabilistic evolutionary approach (PEA) that capitalizes on the use of probabilistic
dynamics in phase space. The main feature of the data-driven version of PEA proposed in this work is that it
does not require to know the physics behind the flow dynamics to model it. Within the PEA framework we
develop two probabilistic evolutionary methods, which are based on probabilistic evolutionary models using
quasi time-invariant structures in phase space.

The methods have been tested on complete and incomplete reference data sets generated by the Lorenz 63
system and by an idealized two-layer quasi-geostrophic model. The results show that both methods reproduce
large- and small-scale features of the reference flow by keeping the probabilistic dynamics within the phase
space of the reference flow. The proposed approach offers appealing benefits and a great flexibility to ocean
modellers working with mathematical models and measurements. The most remarkable one is that it provides
an alternative to the mainstream ocean parameterizations, requires no modification of existing ocean models,
and is easy to implement. Moreover, it does not depend on the nature of input data, and therefore could
work with both numerically-computed flows and real measurements from different sources (drifters, weather
stations, etc.).
1. Introduction

The modern ocean modelling utilizes a wide spectrum of tools rang-
ing from observations to using comprehensive ocean models (Ocean
General Circulation Models). Most of the latter are based on deter-
ministic or stochastic differential equations, and use both the physics-
and data-driven paradigms, some rely on the statistical modelling
(e.g., Storch and Zwiers, 2002; Vanem et al., 2022 and references there
in). The majority operate in physical space (e.g., Marshall et al., 1997;
Chassignet et al., 2007; Danilov et al., 2017; Madec and NEMO System
Team, 2022), while some, umbrellaed under the recently proposed
hyper-parameterization approach (e.g., Shevchenko and Berloff, 2021,
2022a,b, 2023), take advantage of working in phase space. In this study
we develop an alternative way to model the ocean reflecting the chaotic
nature of ocean flows and uncertainty of ocean models — instead of
making use of classical deterministic or stochastic differential equations
we offer a probabilistic evolutionary approach (PEA) that capitalizes
on the use of probabilistic dynamics in phase space. In this study we
develop a data-driven version of PEA, where the main feature is that
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it does not require to know the physics behind the flow dynamics
to model it. It is achieved by its data-driven nature and by shifting
the focus from the physical to the reference phase space (the phase
space of the reference flow). The reference flow can be a numerical
solution (generated by an ocean model), observational data from differ-
ent sources (drifters, weather stations, etc.), or a combination of both.
Within the PEA framework we develop two probabilistic evolutionary
methods which are based on probabilistic evolutionary models.

The PEA offers appealing benefits and a great flexibility to ocean
modellers working with mathematical models and measurements: (1)
it requires no modification of existing ocean models, (2) is easy to
implement, and (3) does not depend on the nature of input data. Most
remarkably, the PEA provides an alternative to the mainstream ocean
parameterizations. Namely, instead of running long high-resolution
simulations of ocean models one can generate its relatively short
coarse-grained version that retains flows that are nominally-resolved
on the coarse grid (referred to as ‘‘nominally-resolved on the grid
flows’’ below) and use it as input data for the PEA, thus replacing
vailable online 20 October 2023
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Fig. 1. Shown is a change of state in (a) deterministic models, (b) stochastic models, (c) probabilistic evolutionary (PE) models studied in this work, (d) probabilistic-stochastic
evolutionary (PSE) models left for future studies; state and their neighbourhoods are denoted by black dots and grey discs, function (𝐱𝑖𝑘 ) is a transition probability function for
state 𝐱𝑖𝑘 .
computationally-intensive ocean models with a way faster probabilistic
evolutionary model. In other words, the PEA addresses the eddy-
parameterization problem from a different angle. Namely, the PEA (1)
shifts the focus from the physical space to the phase space of the model;
and (2) considers the inability of the low-resolution model to reproduce
the nominally-resolved flow structures as the persistent tendency of the
phase space trajectory to escape the reference phase space. Note that
the phase space trajectory represents the low-resolution solution and
the reference phase space is the phase space of the reference solution.

First, we explain the probabilistic evolutionary approach and how
to build probabilistic evolutionary models, and show how they work
on the example of the Lorenz 63 system with complete and incom-
plete data sets. Then, we apply them to two-layer quasi-geostrophic
(QG) flows with complete and incomplete reference data. It is worth
mentioning that this work is intended as a proof of concept, there-
fore we deliberately reduce the technicalities beyond the PEA to a
bare minimum, while focusing the attention on the key points of the
approach.

2. The probabilistic evolutionary approach (PEA)

The probabilistic evolutionary approach is a new approach to ocean
modelling that capitalizes on the chaotic nature of ocean dynamics
by taking advantage of using the probability distribution of states in
the reference phase space as opposed to making use of deterministic
or stochastic differential equations. By construction, fluid dynamics
models can be divided into two classes: deterministic and stochastic.
In deterministic models, the dynamics is determined by a set of de-
terministic differential equations, i.e. the transition from a state 𝐱𝑖 to
a state 𝐱𝑖+1 is unique (Fig. 1a). Stochastic models expands the class
of deterministic models by introducing noise that does not lead to
the unique state 𝐱𝑖+1 but to a cloud of possible states neighbouring
state 𝐱𝑖+1. In other words, stochastic models describe the transit from
a state 𝐱𝑖 to a neighbourhood of state 𝐱𝑖+1 (Fig. 1b), where the size
of the neighbourhood depends on the noise statistics and the way it is
included in the model (additively, multiplicatively, or otherwise).

The probabilistic evolutionary approach (proposed in this study)
offers a different point of view: infinitely many states (𝑥𝑖1 , 𝑥𝑖2 ,…) can be
reached from a state 𝐱𝑖, and the transition to a particular state is defined
by a transition probability function,  , which assigns a probability to
any possible transition (Fig. 1c). Note that probabilistic evolutionary
models do not describe the evolution of a probability function, the
evolution in these models is governed by a probability function. In
the data-driven version of PEA proposed in this study, the transition
probability function is calculated from available reference data as the
current state changes (i.e., on the fly). In the physics-driven PEA,
we envisage that the transition probability function can be defined
from the physics of the studied phenomenon. Another class of models
that naturally follows from the stochastic and probabilistic ones is the
probabilistic-stochastic evolutionary models in which every possible
state is replaced with a cloud of states neighbouring it (Fig. 1d). This
gives rise to probabilistic evolutionary models with noise which are
beyond the scope of this work.

In this study we are focused on the data-driven PEA, where the tran-
sition probability function is calculated locally from available reference
2

Fig. 2. Schematic of the data-driven PEA. A state 𝐲 of the probabilistic evolutionary
model (2) neighbouring to the reference states 𝐱𝑖 equipped with directional vectors
𝐅(𝐱𝑖), 𝑖 = 1, 2, 3, 4, denoted by black arrows. The neighbourhood  (𝐲) of 𝐲 is denoted
by the grey disc, and  is an operator sampling from the transition probability function
 . The new vector 𝐆(𝐲) is denoted by a red arrow.

data for every transition from one state to another, i.e. a new state of
the probabilistic flow evolution is defined by the likelihood of reference
states neighbouring to the current state of the probabilistic evolutionary
model. Within the PEA framework, the probabilistic nature of the flow
evolution implies that even very unlikely (rare) events are expected to
occur once in a while thus echoing extreme weather and climate events.
More importantly, it allows the probabilistic trajectory to cover regions
of the reference phase space that are not presented in the reference data
set, but can potentially happen. By an extreme event (state) we mean
an event for which there exists a highly unlikely path in the phase space
that moves the current state towards this extreme event. Extreme events
per se are not supposed to be sampled. However, the highly unlikely
path (or paths) that leads to extreme events needs to be sampled,
otherwise extremes can probably not be found. More accurately, the
reference data should include a set of states, sampling from which can
give this path (or paths) with a non-zero probability.

We would like to remind the reader that a system of ordinary
differential equations

𝐱′(𝑡) = 𝐅(𝐱), 𝐱 ∈ R𝑛 (1)

can be geometrically interpreted as a vector field in the phase space
of Eq. (1); here, the prime denotes a time derivative. The direction of
the vector field at a given point 𝐱 is determined by the vector 𝐅(𝐱)
for ∀𝐱 ∈ R𝑛. Once 𝐅(𝐱) is known, it can be used to calculate a new
position of point 𝐱 in the phase space. This idea is used in the hyper-
parameterization method ‘‘Advection of the image point’’ (Shevchenko
and Berloff, 2021, 2023).

The PEA works in a different way. In the data-driven version of PEA
the analytical form of Eq. (1) is not available. The only reference data
available to the PEA is a numerical solution of (1), i.e. the reference
solution, or observations if one works with data from weather stations,
satellites, etc. Therefore, instead of directly calculating 𝐅(𝐱) at a give
point 𝐱, the PEA computes a new vector, 𝐆(𝐲), by sampling from
the transition probability function,  , based on the joint probability
distribution of states neighbouring to the current state in the reference
phase space (Fig. 2). Further below, 𝐱(𝑡) is a reference state at time 𝑡,
while 𝐲(𝑡) is a state of the probabilistic model.

Thus, the probabilistic evolutionary model can be written as follows:

𝐲′(𝑡) = {{𝐅(𝐱(𝑡)) }}, 𝐲(𝑡 ) = 𝐱(𝑡 ), (2)
|𝐱(𝑡)∈ (𝐲(𝑡)) 0 0
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with  being an operator sampling from the joint probability distribu-
ion, i.e. it returns a point in phase space given a probability.

We have developed two methods within the PEA framework. These
ethods use different probability distributions to calculate the direc-

ional vector 𝐆(𝐲) for the probabilistic evolutionary model. The first
ethod calculates directional angles and the length of 𝐆(𝐲) based

n its joint probability distribution function computed from available
eference data. Hence the probabilistic evolutionary model for the
robabilistic solution 𝐲(𝑡) is given by
′(𝑡) = 𝐆(𝐲) + (𝐱(𝑡), 𝐲(𝑡)),

𝐆(𝐲) ∶= 𝐶−1
𝑆 {{𝑎{𝐶𝑆{𝐅(𝐱(𝑡))|𝐱(𝑡)∈ (𝐲(𝑡))}}}}, 𝐲(𝑡0) = 𝐱(𝑡0), (3)

here  (𝐲(𝑡)) is the neighbourhood of probabilistic solution 𝐲(𝑡), 𝐶𝑆
s the transformation from Cartesian to spherical coordinates (used to
ompute the angles and lengths of reference vectors), 𝑎 is a transi-
ion probability function based on the joint probability distribution of
irectional angles and lengths of the reference vectors neighbouring
o the current state 𝐲(𝑡) in the phase space of (1), i.e. the vectors
𝐅(𝐱(𝑡))|𝐱(𝑡)∈ (𝐲(𝑡)); 𝐶−1

𝑆 is the inverse of 𝐶𝑆 used to compute 𝐆(𝐲) in the
artesian space. The second term on the right hand side of Eq. (3) is a
udging term:

(𝐱(𝑡), 𝐲(𝑡)) ∶= 𝜂

(

1
𝑀

∑

𝑖∈ (𝐲(𝑡))
𝐱(𝑡𝑖) − 𝐲(𝑡)

)

, (4)

where 𝜂 is a nudging strength, 𝑀 is the number of nearest (in 𝑙2 norm)
to the solution 𝐲(𝑡) points over which the averaged reference solution
𝐱(𝑡) is computed.

The second method does not use the joint probability distribution of
the directional angles and lengths of reference vectors to compute 𝐆(𝐲).
Instead, it computes 𝐆(𝐲) from the joint probability distribution of the
coordinates of reference vectors neighbouring to the current state 𝐲(𝑡) in
he phase space of (1). Hence, the probabilistic evolutionary equation
eads as follows:
′(𝑡) = 𝐆(𝐲) + (𝐱(𝑡), 𝐲(𝑡)), 𝐆(𝐲) ∶= {𝑐{𝐅(𝐱(𝑡))|𝐱(𝑡)∈ (𝐲(𝑡))}},

𝐲(𝑡0) = 𝐱(𝑡0), (5)

where 𝑐 is a transition probability function based on the joint proba-
bility distribution of the coordinates of the reference vectors neighbour-
ing to the current state 𝐲(𝑡) in the phase space of (1), i.e. the vectors
𝐅(𝐱(𝑡))|𝐱(𝑡)∈ (𝐲(𝑡)).
Calculation of the transition probability function. The transition

probability function for the probabilistic models is based on the joint
probability distribution (JPD) of states neighbouring to the current
state in the reference phase space. The JPD is calculated with the
histogram method from the ‘‘raw’’ reference data, i.e. only the solution
and its tendencies are used; the tendencies are pre-computed with the
central finite difference in time before the model run. We do not use
model tendencies computed directly in the model, as they are not
always available; moreover, they are hardly available when working
with observations. The JPD is calculated at every integration step of the
model, as the information is scooped from the neighbourhood of the
probabilistic solution. Also note that the only difference between the
models is in the reference coordinates used for the relevant neighbours
for the joint probability distribution.

As the proposed approach is developed to work in high-dimensional
phase spaces, computing a multidimensional JPD and keeping it in
memory for further sampling is an unaffordable option. Instead, we
calculate a coordinate-wise PDF of the tendencies. That gives us access
to all necessary information for sampling.

The schematic of the JPD calculation for the second method is
presented in Fig. 3. We deliberately exemplify it for the second method
to avoid unnecessary and irrelevant (to this illustrative example) cal-
culations of 𝐶𝑆 and 𝐶−1

𝑆 .
The classical approach to the JPD calculation (or more accurately

its approximation) with the histogram method is to divide the domain
3

(the neighbourhood  (𝐲) in our case) into bins (boxes) and count the
umber of points (black dots in Fig. 3a) in every bin to compute the
eight of each column of the JPD (Fig. 3e). This approach is, however,
nly applicable when the number of dimensions is relatively low, as
he space complexity (the total amount of memory used) grows as the
umber of bins to the power of dimensions. For example, the JPD in
ig. 3e has 20 bins in each dimension thus giving 400 in total. It does
ot look like much, but in spaces of tens of thousands of dimensions
which are typical for idealized ocean models not to mention those
ased on the primitive equations) this number rules the method out
f use.

In order to use the histogram method in multi-dimensional spaces,
e do not calculate the whole JPD, instead we compute the PDF for
very component of the tendency 𝐅 (Fig. 3f,g) and then use these PDFs

to sample from the JPD. It is also worth noting that the histograms
in Fig. 3e–g can be interpolated if there are not enough points in the
neighbourhood to properly represent the JPD and individual PDFs.

Sampling from the JPD. In order to sample from the JPDs 𝑎 and
𝑐 , we use the sampling operator  based on the inverse transform
ampling method (Devroye, 1986); we also tried the rejection sampling
ut did not observe that much of a difference. However, we do not use
he classical form of the inverse transform sampling method to sample
irectly from the JPD, as computing the JPD and its multivariate
umulative distribution function (CDF), which is needed for sampling,
s too computationally intensive. Instead, we compute coordinate-wise
DFs and its CDFs for every component of the tendency 𝐅 within the
eighbourhood  (𝐲).

To get more insights into the sampling procedure, we illustrate how
t works on the two-dimensional case considered above; recall, we use
he second method for this purpose. The sampling procedure starts
ith computing the CDF of 𝐹1 (Fig. 4b), we use the PDF of 𝐹1 for

that (Fig. 4a). Then, we draw a random number, 𝑟1, from a uniform
distribution in the unit interval denoted as U[0, 1] (it is the vertical
coordinate in Fig. 4b) and find the corresponding horizontal coordinate
𝐹1(𝑟1) =∶ 𝐺1; the map  in Eq. (5) does that, i.e.  ∶ 𝑟1 → 𝐹1(𝑟1). It
gives the first component of the new tendency 𝐺1. In the next step we
calculate the PDF of 𝐹2 (Fig. 4c) given 𝐹1(𝑟1) and then compute its CDF
(Fig. 4d). We draw another random number 𝑟2 ∈ U[0, 1] and compute
𝐹2(𝑟2) =∶ 𝐺2; it is the action of  onto 𝑟2, i.e.  ∶ 𝑟2 → 𝐹2(𝑟2). It gives
the second component of the new tendency 𝐺2. Having two components
of the new tendency 𝐆(𝐲) = (𝐺1, 𝐺2), we plug it into Eq. (5) and
integrate it over one time step. It completes the sampling procedure.

Probabilistic nudging. The form of the nudging term used in the
probabilistic evolutionary models (3) and (5) is governed by our desire
to keep the probabilistic evolutionary model as simple as possible.
Different metrics and forms of the nudging term can be used instead
(for example, adaptive Shevchenko and Berloff, 2022b or probabilistic
nudging).

The idea behind probabilistic nudging is also based on using the
probabilistic evolutionary machinery. However, instead of computing
the joint probability distribution of the vectors 𝐅(𝐱(𝑡))|𝐱(𝑡)∈ (𝐲(𝑡)) as
above, we compute the joint probability distribution of the states 𝐱(𝑡)
themselves. Thus, the probabilistic nudging term can be written as

 (𝐱(𝑡), 𝐲(𝑡)) ∶= 𝜂
(

𝑐{𝐱(𝑡)}||𝐱(𝑡)∈ (𝐲(𝑡)) − 𝐲(𝑡)
)

, (6)

where 𝑐 is a probability function based on the joint probability distri-
bution of the coordinates of the reference states 𝐱(𝑡) neighbouring to the
current state 𝐲(𝑡) in the phase space of (1), i.e. the states 𝐱(𝑡)|𝐱(𝑡)∈ (𝐲(𝑡)).
We do not study how the probabilistic nudging performs in this work
and leave it for future research.

On the optimal choice of parameters. Note that the neighbour-
hood  (𝐲(𝑡)) in Eqs. (3) and (5) is computed as 𝑁 (and 𝑀 for the
nudging term) nearest (in 𝑙2 norm) to the solution 𝐲(𝑡) points. The
neighbourhood can be computed differently, and the way it is com-
puted affects the solution. The optimal value of 𝑁 and 𝑀 (as well as 𝜂)
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Fig. 3. Schematic of the JPD calculation. Given the reference data 𝐱𝑖 , 𝑖 = 1,… , 𝑛 (black dots in (a)), we calculate its tendencies with the central finite difference in time (black
vectors in (b)); the reference data can be a numerical solution (generated by an ocean model), observational data from different sources (drifters, weather stations, satellites, etc.),
or a combination of both. Given a point, say 𝐲, (red circle in (c)) we find 𝑁 nearest (in 𝑙2 norm) points 𝐱𝑗 to 𝐲 and their tendencies 𝐅(𝐱𝑗 ), 𝑗 = 𝑗1 ,… , 𝑗𝑁 (red vectors in (d)), it
gives the neighbourhood 𝐅(𝐱𝑗 )

|

|

|𝐱𝑗∈ (𝐲)
. Given the tendencies 𝐅(𝐱𝑗 ), 𝑗 = 𝑗1 ,… , 𝑗𝑁 we calculate the JPD (or more accurately, an approximation to the JPD) as a histogram (e); this

JPD represents the term 𝑐{ 𝐅(𝐱(𝑡))|𝐱(𝑡)∈ (𝐲)} in Eq. (5). We compute the JPD in the coordinate-wise manner by using PDFs for every component of the tendency 𝐅 = (𝐹1 , 𝐹2) (see
(f) and (g)). Note that we denote axes only when it is relevant for the schematic.
Fig. 4. Schematic of sampling from the JPD. Given the PDF of 𝐅1 (a), we compute its CDF (b), draw a random number 𝑟1 ∈ U[0, 1], and find 𝐅1(𝑟1) — the first component of the
new tendency 𝐺1. Then, we compute the PDF of 𝐅2 given 𝐅1(𝑟1) (c) and its CDF (d), draw another random number 𝑟2 ∈ U[0, 1] and find 𝐅2(𝑟2) — the second component of the
new tendency 𝐺2.
for a given reference solution can be computed by solving the following
optimization problem

min
𝑁,𝑀,𝜂

 (𝐱(𝑡), 𝐲(𝑡)), 𝑡 ∈ [0, 𝑇 ] (7)

where  is a problem-specific function, and 𝑇 is the length of the
reference solution 𝐱(𝑡). For example,  can be defined as a norm of
the difference between the reference and probabilistic solutions. Our
choice of 𝑁 , 𝑀 , and 𝜂 is driven by our measure of goodness (to keep
the probabilistic solution 𝐲(𝑡) within the reference phase space). This
measure is used because it allows the probabilistic solution to evolve
in the neighbourhood of the reference phase space, since the failure
to do so results in a wrong flow dynamics typically shown by low-
resolution ocean models. Studying optimal strategies of computing the
neighbourhood and its size as well as the nudging strength 𝜂 is a topic
beyond the scope of the present paper.

Conservation laws. In order to address conservation laws within
the PEA context, let us consider a quantity 𝜙 in a domain 𝛺. The
conservation of 𝜙 in 𝛺 is given by

(𝐼𝜙 ∶=) ∫𝛺
𝜙𝑑𝛺 = 𝑐𝑜𝑛𝑠𝑡 . (8)

To check whether 𝜙 is conserved along the probabilistic trajectory let
us focus on the right hand side of the probabilistic model. It consists
of two terms: the directional vector 𝐆 and the nudging term  . First
we note that nudging defined by a linear operator, as in (4), does not
affect the conservation of 𝜙 given the integration starts from a 𝜙0 for
which 𝐼 = 0. On the other note, the probabilistic nudging (6) and
4

𝜙0
the directional vector 𝐆 can potentially compromise the conservation
law, and a special treatment might be needed in this case, depending
on how 𝐆 and 𝑐 (in the nudging term) are calculated; brute forcing (8)
is always an option. The coordinate-wise calculation of the transition
probability function in 𝐆, as in our case, is likely to lower the accuracy
(compared to the reference 𝜙) with which (8) holds. The vector-wise
calculation of the transition probability function is less error-prone and
therefore can be an alternative to the brute force approach when a
higher accuracy is needed. We will return to the conservation laws in
the context of quasi-geostrophic dynamics discussed later. We would
also like to note that the hyper-parameterization method ‘‘Advection
of the image point’’ (Shevchenko and Berloff, 2021, 2023) preserves
𝜙 with the reference accuracy, as the right-hand side of the equation
used to compute 𝐲 is defined by an average of directional vectors and
the nudging term is given by (4).

As an example, we consider the Lorenz 63 system (Lorenz, 1963):

𝐱′(𝑡) = 𝐅(𝐱(𝑡)), 𝐅 ∶=
⎛

⎜

⎜

⎝

𝜎(𝑦 − 𝑥)
𝑥(𝜌 − 𝑧) − 𝑦
𝑥𝑦 − 𝛽𝑧

⎞

⎟

⎟

⎠

, (9)

with 𝐱(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)), and 𝜎 = 10, 𝛽 = 8∕3, 𝜌 = 28. As an initial
condition, we take 𝐱(𝑡0) = (−8.6,−12.4, 21.0) to make sure the solution
is close to the Lorenz attractor (Fig. 5a). Along with the solution of
the Lorenz system, we compute the probabilistic solutions to Eqs. (3)
and (5) with 𝑁 = 10 (Fig. 5b,c); we have also tested the probabilistic
evolutionary methods for 𝑁 = 5 and the results are qualitatively the
same (not shown). Note that all probabilistic solutions are computed
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Fig. 5. Shown is (a) the solution of the Lorenz system (9) for the time interval 𝑡 ∈ [0, 200], (b) and (c) the probabilistic solutions of (3) and (5), respectively. The probabilistic
solutions use only the first half of the reference data (i.e., 𝑡 ∈ [0, 100]), and over the second half the probabilistic evolutionary methods work out of the sample. Both probabilistic
solutions stay in the reference phase space, and reproduce the Lorenz attractor.
without nudging (i.e., for 𝜂 = 0), as it is not required to reproduce
the Lorenz attractor; however, nudging will play an essential role in
simulations of the QG model discussed in Section 3.

As seen in Fig. 5b,c, the probabilistic solution stays within the
same region of the phase space as the reference solution of the Lorenz
system, despite that only the first half of the reference solution is
available (i.e., 𝑡 ∈ [0, 100]), and the method runs out of the sample
over the second half, i.e. for 𝑡 ∈ [100, 200]. This is important, as for
the probabilistic evolutionary approach the measure of goodness is how
close the probabilistic solution is to the reference phase space.

Incomplete reference data. As the proposed probabilistic evolu-
tionary approach is intended to work with ocean models, it is instruc-
tive to test its methods on incomplete reference data sets which are
not uncommon in ocean modelling, when using observational data
for reanalysis in comprehensive ocean models. By incomplete data we
mean incomplete in time, i.e. some tendencies and prognostic variables
in the phase space are removed from the reference data set. We consider
three test cases: (1) gappy dynamics, (2) holey attractor, and (3)
disjoint wings.

Gappy dynamics. For this test we generate two data sets that are
used as reference data for both methods. Namely, we take the Lorenz
solution over the time period [0, 100] and keep every second and every
fourth point of the solution, thus retaining only 50% and 25% of the
original reference data, respectively. We set 𝑁 = 10 and present the
results in Fig. 6; the results for 𝑁 = 5 are qualitatively the same
(not shown). As we see in Fig. 6, both methods keep the probabilistic
solution on the Lorenz attractor, despite the reference solution missing
a substantial portion of data.

Holey attractor. In this test case we cut out some regions of the
reference dynamics by making three holes of radius 4 in the attractor
itself (Fig. 7a). As in the first test, both probabilistic evolutionary meth-
ods (Fig. 7b,c) keep the solution on the attractor. More importantly, the
methods restore the dynamics on the attractor as if there are no holes.

Disjoint wings. In this test we cut the attractor into two disjoint
sets (Fig. 8a) thus simulating a substantially corrupted data set; the cut
width is 2, which corresponds to a 13% loss of reference data. As seen
in Fig. 8b,c, both probabilistic evolutionary methods not only recover
the attractor but also restore the dynamics in between the wings where
the reference solution is unavailable.

On the detrimental role of nudging. We did not use nudging in
the probabilistic evolutionary methods to model the Lorenz system,
as it is not necessary to reproduce the reference dynamics, i.e. the
attractor. But, within the context of the QG model discussed below
we will see the beneficial effect of nudging on the flow dynamics.
However, it should be noted in advance that nudging can also play a
detrimental role when using out of place. As an example, we take the
Lorenz system and demonstrate how improper use of nudging can affect
the solution. As seen in Fig. 9, the nudging strength has a substantial
5

effect on the solution. Namely, for a relatively strong nudging the
probabilistic solution cannot properly develop on the attractor, and
the whole dynamics is confined in a narrow strip. It is a simple but
illustrative example of how one should use caution to properly adjust
the nudging strength to get a good solution.

Summing up our findings for the Lorenz 63 system, we conclude that
the proposed probabilistic evolutionary methods have strong potential
for modelling geophysical flows. It may seem that the first method is
somewhat inferior to the second one, as the former gives the trajec-
tories which do stay in the reference phase space, but can experience
rapid changes of the direction that may lead to undesirable effects in
geophysical flows; in fact, these changes can be mitigated by using a
shorter integration step (not shown) for the reference and probabilistic
solutions. Despite this seeming disadvantage we do not disregard the
first method and test it too on the QG model, as this effect might be of
minor or no influence within the context of QG dynamics.

3. Multilayer quasi-geostrophic equations

In this section we apply the probabilistic evolutionary methods to
the 2-layer quasi-geostrophic (QG) model describing the evolution of
potential vorticity (PV) anomaly 𝐪 = (𝑞1, 𝑞2) in a domain 𝛺 (Pedlosky,
1987):

𝜕𝑡𝑞1 + 𝐮1 ⋅ ∇𝑞1 = 𝜈∇4𝜓1 − 𝛽𝜕𝑥𝜓1,

𝜕𝑡𝑞2 + 𝐮2 ⋅ ∇𝑞2 = 𝜈∇4𝜓2 − 𝜇∇2𝜓2 − 𝛽𝜕𝑥𝜓2,
(10)

where 𝐮 = (𝑢, 𝑣) is a horizontal velocity vector, 𝝍 = (𝜓1, 𝜓2) is the
stream function in the top and bottom layers, 𝜈 = 3.125m2 s−1 is the
lateral eddy viscosity, 𝛽 = 2 × 10−11 m−1 s−1 is the planetary vorticity
gradient, and 𝜇 = 4 × 10−8 s−1 is the bottom friction parameter. The
computational domain 𝛺 = [0, 𝐿𝑥] × [0, 𝐿𝑦] × [0,𝐻] is a horizontally
periodic flat-bottom channel of depth 𝐻 = 𝐻1 + 𝐻2 given by two
stacked isopycnal fluid layers of depth 𝐻1 = 1.0 km, 𝐻2 = 3.0 km, and
𝐿𝑥 = 3840 km, 𝐿𝑦 = 𝐿𝑥∕2.

Forcing in (10) is introduced via a vertically sheared, baroclinically
unstable background flow (e.g., Cotter et al., 2020):

𝜓𝑖 → −𝑈𝑖 𝑦 + 𝜓𝑖, 𝑖 = 1, 2, (11)

with the background-flow zonal velocities 𝑈1 = 6.0, 𝑈2 = 0.0 cm s−1.
The PV anomaly and stream function are related through the system

of elliptic equations:

𝑞1 = ∇2𝜓1 + 𝑠1(𝜓2 − 𝜓1), (12a)

𝑞2 = ∇2𝜓2 + 𝑠2(𝜓1 − 𝜓2), (12b)

with the stratification parameters 𝑠1 = 4.22 ⋅ 10−3 km−2, 𝑠2 = 1.41 ⋅
10−3 km−2; chosen so that the first Rossby deformation radius is 𝑅𝑑1 =
25 km.
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Fig. 6. Shown is (a) the reference solution (over 𝑡 ∈ [0, 100]) with every second point retained, (b)/(c) the first/second probabilistic solution (computed with the first/second
method) over 𝑡 ∈ [0, 200]; (d)–(f) are the same as (a)–(c) but for the reference solution with every forth point retained. The axes are the same as in Fig. 5.

Fig. 7. Shown is (a) the reference solution (over 𝑡 ∈ [0, 100]) with three holes of radius 4, (b)/(c) the first/second probabilistic solution over 𝑡 ∈ [0, 200]. The axes are the same as
in Fig. 5.

Fig. 8. Shown is (a) the reference solution (over 𝑡 ∈ [0, 100]) with disjoint wings, (b)/(c) the first/second probabilistic solution over 𝑡 ∈ [0, 200]. The axes are the same as in Fig. 5.



Ocean Modelling 186 (2023) 102278I. Shevchenko and P. Berloff
Fig. 9. Shown is the dependence of the Lorenz solution (computed with the second probabilistic evolutionary method) on the nudging strength 𝜂 for 𝑡 ∈ [0, 200]. The results for
the first method are qualitatively similar (not shown).
System (10)–(12) is augmented by the integral mass conservation
constraint (McWilliams, 1977):

𝜕𝑡∬𝛺
(𝜓1 − 𝜓2) 𝑑𝑦𝑑𝑥 = 0, (13)

by the periodic horizontal boundary conditions set at eastern, 𝛤2, and
western, 𝛤4, boundaries

𝝍||
|𝛤2

= 𝝍||
|𝛤4

, (14)

and no-slip boundary conditions

𝒖||
|𝛤1

= 𝒖||
|𝛤3

= 0 . (15)

set at northern, 𝛤1, and southern, 𝛤3, boundaries of the domain 𝛺.
The QG equations (10) can be recast in the form of Eq. (1) as

follows:

𝐪′(𝑡) = 𝐅(𝐪,𝝍 ,𝐮), (16)

where the right hand side 𝐅 defines the vector field used to evolve 𝐪; 𝐅
is computed with the central finite difference in time from the available
reference data. The only difference with the Lorenz system (9) is the
vector 𝐅 and the advected quantity 𝐪; note that the dimension of phase
space is defined by the number of degrees of freedom used to discretize
the equation in space. Thus, the analogue of Eqs. (3) and (5) for the QG
equations reads:

𝐲′(𝑡) = 𝐆(𝐲) + (𝐪(𝑡), 𝐲(𝑡)), 𝐲(𝑡0) = 𝐪(𝑡0). (17)

For the purpose of this study both high- and low-resolution solutions
are needed. We compute these solutions on uniform grids of size
513 × 257 and 129 × 65 over a period of 4 years after a 10-year initial
spin up; the resolution of these grids is 7.5 km and 30 km, respectively.
In order to test the probabilistic evolutionary methods in different
regimes, we use both the high-resolution solution and its point-to-
point projection onto the coarse grid 129 × 65; the coarse-graining
is of little importance to the probabilistic evolutionary approach, and
any other method (e.g., interpolation schemes, spatial averaging, or
filters) can be used. The high-resolution solution is needed to study
to what extent the probabilistic evolutionary methods can be used as
an alternative to high-resolution ocean simulations, whereas its low-
resolution projection is to compare the performance of the methods
with the low-resolution solution computed on the coarse grid with the
QG model. We should also note that these solutions are denoted as 𝐱(𝑡)
in Eq. (1), while their corresponding probabilistic solutions are denoted
as 𝐲(𝑡) in Eqs. (3) and (5). It is an important comparison which will
show whether the probabilistic evolutionary methods can reproduce
flow features that are presented in the low-resolution projection but are
missing in the low-resolution QG solution. For the purpose of this study,
it is enough to consider the first layer PV anomaly, as it is much more
energetic than the second layer and full of both large- and small-scale
flow features.
7

In order to demonstrate the ability of the probabilistic evolutionary
methods to reproduce nominally-resolved on the coarse grid flow fea-
tures, we take only the first two years of the 4-year long high-resolution
solution, coarse-grain it onto the grid of size 129 × 65 and then use it
as a reference solution (Fig. 10a). As for the Lorenz 63, we firstly apply
the methods without nudging.

The build-up effect. As seen in Fig. 10b,c, at the very beginning the
probabilistic solution reproduces both large-scale flow structures (two
zonally-elongated jets) as well as small-scale vortices and meanders
along the jets of the reference solution (Fig. 10a). It is because the
probabilistic solution remains in the reference phase space. But, after
a short period of time the build-up effect takes over and makes the
probabilistic solution drift away from the reference phase space, and
eventually to settle to a virtually constant in time direction (i.e., the
amplitude of the solution changes much faster compared to its struc-
ture); ‘‘virtually constant’’ comes from the fact that sampling gives some
variance of the directional vector, but (depending on the JPD) this
variance can be too small thus leading to negligible changes in the
structure of the solution compared to its amplitude. After 40- and 60-
day solutions already show almost no change in the structure. It takes
only 60 days for the solution to ‘‘freeze’’ down (almost no structural
changes) to a point of no use.

The lack of reference data for the PEA and/or bad choice of pa-
rameters (𝑁 , 𝑀 , 𝜂) can steer the probabilistic trajectory away from
the reference phase space. We refer to this as the build-up effect,
meaning that after a period of time, say 𝑇 , the neighbourhood of
the nearest points stalls (the points in the neighbourhood become
the closest ones to the point 𝐲(𝑡) for ∀𝑡 > 𝑇 ); therefore, the same
points are used again and again during the integration thus driving
the probabilistic trajectory away from the reference phase space. In
principle, building up numerical errors may terminate this drift, and
the solution can return back to the reference phase space, but this is
case dependent. However, if the return time is relatively long (longer
than the characteristic time of the reference solution) then the flow
dynamics can be seriously distorted over the period of the trajectory
injection. For more details on the build-up effect we refer the reader
to Shevchenko and Berloff (2023).

In order to avoid the build-up effect we use the nudging method-
ology. We set the nudging parameter as 𝜂 = 0.1 (it is not the only
choice) in Eqs. (3) and (5), and present the results in Fig. 11. As seen
in Fig. 11b,c, both methods reproduce the large-scale reference flow
structures (two zonally-elongated jets) as well as small-scale vortices
and meanders along the jets of the reference solution (Fig. 11a). How-
ever, the coarse-grid QG model cannot reproduce the large-scale flow
structures not to mention the small-scale structures (Fig. 11d).

It might seem counterintuitive that for the Lorenz model nudging
leads to a collapse of the attractor, while for the QG model without
nudging it results in a ‘‘frozen’’ state. The reason for this behaviour
can be rooted in the structure of the phase space itself. If the phase
space is dense and the trajectory wanders in a kind of cyclic way
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Fig. 10. Shown are snapshots of the top layer PV anomaly: (a) the reference solution (computed on the 513 × 257 grid and then projected onto the 129 × 65 grid), (b)/(c)
probabilistic solution computed with the first/second method. All solutions are given in units of [𝑠−1𝑓−1

0 ], where 𝑓0 = 0.83 × 10−4 s−1 is the Coriolis parameter. Both methods
reproduce nominally-resolved on the coarse grid flow features but over a short period the build-up effect kicks in and arrests the dynamics.
(like in the Lorenz case) then it is likely that a strong nudging will
force the solution to evolve in a narrow band and therefore will not
allow it to properly develop on the attractor. It happens because the
neighbourhood is always formed of the points that lay in this narrow
band. On the other note, if the vector field in the phase space can form
directions leading the trajectory outside of the field (it happens because
of lack of data) then after a period of time the neighbourhood of the
nearest points can stall (i.e. the points in the neighbourhood become
the closest ones to the image point for all time). Therefore, the same
points are used again and again during the integration thus leading to
a stagnation of the flow dynamics. It is what happens in the QG model.
Stagnations can be detected and the phase space can be deformed to
prevent them but this technique is currently under development.

Note that in Fig. 10b,c (where the solutions are computed without
nudging) and in Fig. 11b,c (where the solutions are computed with
nudging) the solutions computed with the two methods stay close to
each other (even after 4 years of integration in the second case), while
some form of chaotic behaviour is introduced by the sampling of the
probability distributions, so that, even for the same method, after a
certain time, two simulations seeded with different random selections
of the probability distributions should diverge substantially. In the first
case, this similarity comes from the fact that there is not enough time
for the solutions to diverge (they ‘‘freeze’’ very quickly). In the second
case, it happens because the nudging might be too strong for this case
thus substantially affecting the probabilistic evolution. If the nudging
strength is weaker (Fig. 12) then solutions computed with different
probabilistic methods diverge quicker.

It is also important to remark that the rapid change of the trajectory
computed with the first method (which we observed for the Lorenz
system) does not seem to reveal itself in the QG dynamics, and both
methods give qualitatively the same results. Therefore we further use
the second method as it is somewhat faster than the first one.

Incomplete reference data. Incomplete observational data are typ-
ical in ocean modelling when using observational data for reanalysis in
comprehensive ocean models. Obviously, such data cannot be directly
used for numerical modelling, as they may include undefined values,
missing parts of data records, or a combination of both. There are
different interpolation methods and reanalysis data to overcome the
problem. As the probabilistic evolutionary approach is intended to
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work with comprehensive ocean models, it would be instructive to
study its performance on incomplete, raw reference flows, i.e. without
engaging interpolation or reanalysis. For doing so, we take the second
method and consider similar to the Lorenz system test cases (Fig. 13):
(1) gappy trajectory, (2) holey dynamics, and (3) disjoint space. We
use the same 2-year long reference solution as above, while running
the probabilistic evolutionary model for four years.

In the gappy trajectory test we remove every second (Fig. 13a) and
every fourth (Fig. 13b) point from the original 2-year long reference
solution thus retaining only 50% and 25% of the reference data. As
seen in Fig. 14a,b, the probabilistic evolutionary solution reproduces
the nominally-resolved reference flow structures way beyond the time
period over which the reference data is available.

In the holey dynamics test we remove a vast region of the reference
dynamics. Namely, the reference solution contained in the sphere of
radius 𝑟 = 0.979 centred at its time mean has been excluded from the
reference solution thus making voids in different parts of the refer-
ence trajectory; note that only half of the reference solution remained
after this resection. As with the previous test case, the probabilistic
evolutionary method restores (Fig. 14c) the nominally-resolved flow
structures of the reference solution.

The disjoint space is a test where we cut the phase space into two
disjoint regions (divided by a gap of width 0.02). Despite that, the
probabilistic evolutionary solution is still able to evolve in the reference
phase space and reproduce nominally-resolved reference flow features
(Fig. 14d).

Although the probabilistic solution reproduces both large- and
small-scale reference flow structures for substantially corrupted data
sets, the results in Fig. 14 clearly show that it is overheated, i.e. sub-
stantially larger in the absolute value than the reference solution. It
happens because the incomplete reference data works as a repeller thus
pressing the probabilistic trajectory out of the reference space. On the
one hand, it might be considered a weakness of the proposed approach,
while, on the other hand, it might be an option to explore vaster regions
of the reference phase space, and thus study reference solutions that can
potentially be simulated with the reference model. In order to keep
the probabilistic evolutionary solution in the reference phase space
(and thus make its amplitude closer to the reference one), we crank
up the nudging strength (Fig. 15). It can be done either manually (as
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Fig. 11. Shown are snapshots of the top layer PV anomaly: (a) the reference solution (computed on the 513 × 257 grid and then projected onto the 129 × 65 grid), (b)/(c)
probabilistic solution computed with the first/second method, (d) modelled solution computed with the QG Eqs. (10) on the coarse grid 129 × 65, and a 4-year time-average (last
row); the nudging strength is 𝜂 = 0.1 for both probabilistic solutions. All solutions are given in units of [𝑠−1𝑓−1

0 ], where 𝑓0 = 0.83 × 10−4 s−1 is the Coriolis parameter. Note that
the probabilistic evolutionary methods use only the first 2 years out of the 4-year long reference solution. Both methods reproduce nominally-resolved on the coarse grid flow
features, while the coarse-grid QG solution results in complete failure to reproduce even large-scale jets not to mention nominally-resolved features.
Fig. 12. Shown are snapshots of the top layer PV anomaly computed with the first (top row) and second (bottom row) probabilistic methods; the nudging strength is 𝜂 = 0.075
(it is weaker than that in Fig. 11). All solutions are given in units of [𝑠−1𝑓−1

0 ], where 𝑓0 = 0.83 × 10−4 s−1 is the Coriolis parameter. The results show that the two probabilistic
solutions diverge quicker when the nudging is weaker.
in this study) or automatically with the adaptive nudging (Shevchenko
and Berloff, 2022b). The stronger nudging makes the amplitude of all
probabilistic solutions smaller by keeping them closer to the reference
phase space, although we adjusted the nudging strength individually
for each case. Based on the PEA performance for the incomplete
reference solutions, we conclude that the PEA works well even with
substantially corrupted reference data. This is an appealing feature
not only for ocean modellers working with models but also for those
working with measurements.

Long simulations. It might seem from the results above that simu-
lations with the PEA can only be twice as long as the reference solution,
thus setting the upper time limit for PEA simulations. In what follows,
we demonstrate how the PEA works for longer periods. We take the
second method and run it for 8 years, while using the same 2-year
long reference solution (Fig. 16). As seen in the figure, the method
reproduces nominally-resolved flow features (large-scale jets, small-
scale vortices, and meanders along the jets) of the reference solution.
This, once again, ensures that the PEA can model ocean flows far
beyond the reference data set.

Further insights into the dynamics can be provided with more
quantitative diagnostics (Fig. 17). The energy spectral density (ESD)
9

of the 8-year averaged probabilistic solution (Fig. 17c) is two orders
of magnitude closer to that of the reference solution (Fig. 17a) than
the ESD of the modelled solution (Fig. 17b). The root-mean-square
error is lower for the probabilistic solution (Fig. 17e) compared to the
modelled solution (Fig. 17d). Besides, the integral of the PV anomaly
(conserved quantity in the QG model) over the domain is of order
10−4 which indicates that the PEA respects conservation laws (Fig. 17f).
The integral of the PV anomaly for the modelled solution (not shown)
is of order 10−12. The accuracy with which conservation laws hold
in the PEA can be improved by (1) cranking up the accuracy of the
sampling procedure, or using (2) the vector-wise calculation of the
transition probability function (i.e. sampling whole directional vectors
rather than their coordinates) or (3) the brute-force approach (imposing
conservation laws in every time step).

The high-resolution simulation. As the PEA is proposed as an
alternative to modelling the ocean, it would be instructive to assess
it on high-resolution data as well. In order to do it, we take a 2-year
long high-resolution QG solution (computed on the grid 513 × 257)
as a reference solution, and study how the second method performs
(Fig. 18). As with the low-resolution reference solution, the method
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Fig. 13. Shown is the trajectory of the top-layer PV anomaly (𝑞1(𝑥𝑖 , 𝑦𝑖 , 𝑡), 𝑞1(𝑥𝑗 , 𝑦𝑗 , 𝑡)) for two randomly-chosen points (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗 ) for the original 2-year long reference
solution used in the QG simulations above (the axes denote the PV anomaly value at the corresponding point), (a)/(b) gappy trajectory with every second/fourth point retained,
(c) holey dynamics (the reference solution contained in a sphere of radius 𝑟 = 0.979 centred at its time mean is removed), (d) disjoint space (the reference phase space is cut into
two disjoint regions; the cut width is 0.02).
performs equally well and reproduces the nominally-resolved reference
flow features.

4. Conclusions and discussion

In this work we have proposed a probabilistic evolutionary ap-
proach (PEA) to ocean modelling that capitalizes on the chaotic nature
of ocean dynamics by taking advantage of using the probability distri-
bution of neighbourhood states in the reference phase space as opposed
to making use of deterministic or stochastic differential equations. A
new state of the model is determined by the likelihood of the states
neighbouring to the current state. The probabilistic nature of the flow
evolution implies that even very unlikely (rare) events are expected to
occur once in a while thus echoing observations of extreme weather
and climate events.

Within the PEA framework we have developed two probabilistic
evolutionary methods. These methods have been tested on the Lorenz
63 system and showed that both methods reproduce the Lorenz attrac-
tor even for substantially corrupted reference data sets. In addition,
we have shown how the nudging strength can influence the prob-
abilistic solution. Being assured in the PEA potential for modelling
geophysical flows, we have considered an idealized ocean model (two-
layer quasi-geostrophic model configured for a horizontally periodic
flat-bottom channel) and showed that a non-eddy-resolving solution
can be substantially improved towards the reference eddy-resolving
10
solution compared to the low-resolution simulation. Within the context
of QG dynamics we have demonstrated the build-up effect and its
detrimental consequences on the probabilistic solution, and how to
avoid it with the nudging methodology. We have also studied how
the probabilistic evolutionary models work on incomplete reference
data and demonstrated that they reproduce nominally-resolved on the
coarse grid reference flow features even for substantially corrupted
reference data sets. In addition, we have demonstrated that the PEA
works very well over long time periods (8 years in our case) even
for short reference solutions (2-year long). Our results show that the
probabilistic evolutionary approach performs equally well for both low-
and high-resolution reference solutions.

The appealing advantages of the probabilistic evolutionary ap-
proach are: (1) it requires no modification of the ocean model; (2)
easy to implement; (3) it can take not only the reference solution as
input data but also real measurements from different sources (drifters,
weather stations, etc.), or a combination of both; note that points in
the phase space represent states of the system and are irrelevant to
how these states are computed or observed (for example, if the Argo
fleet provides irregular in space data then it should be preprocessed
to properly cover the area of interest); (4) it is ready out of the box
for generating ensembles of solutions, (5) copes with substantially
corrupted data sets, (6) performs equally well for both low- and high-
resolution reference data, and reproduces nominally-resolved reference
dynamics; (7) works over long periods without degradation of the
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Fig. 14. Shown are snapshots of the top layer PV anomaly for the incomplete reference solution (Fig. 13): (top row) the original 2-year long complete reference solution (as in
Fig. 11a), (a)/(b) probabilistic evolutionary dynamics for the gappy reference solution with every second/fourth point removed (Fig. 13a,b), (c) probabilistic evolutionary dynamics
for the holey reference solution (Fig. 13c), (d) probabilistic evolutionary dynamics for the disjoint reference solution (Fig. 13d). and a 4-year time-average (last column); the
nudging strength is 𝜂 = 0.1. All solutions are given in units of [𝑠−1𝑓−1

0 ], where 𝑓0 = 0.83 × 10−4 s−1 is the Coriolis parameter. Note that the probabilistic evolutionary method
reproduces both large- and small-scale flow features even for substantially incomplete reference data sets.

Fig. 15. The same as Fig. 14 but with the nudging strength 𝜂 = 0.2 for (a)–(b), 𝜂 = 0.6 for (c), and 𝜂 = 0.4 for (d).
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Fig. 16. Shown are snapshots of the top layer PV anomaly: (a) the reference solution, (b) probabilistic solution computed with the second method, and a 8-year time-average (last
column); the nudging strength is 𝜂 = 0.1. All solutions are given in units of [𝑠−1𝑓−1

0 ], where 𝑓0 = 0.83 × 10−4 s−1 is the Coriolis parameter. As with shorter runs, the probabilistic
evolutionary method reproduces the nominally-resolved reference flow features (both large and small scales) over the period of 8 years.

Fig. 17. Shown are different diagnostics of the top layer PV anomaly, 𝑞1, computed over 8 years: the energy spectral density (ESD) for (a) 8-year averaged reference solution
(last column in Fig. 16a), (b) difference between (a) and ESD for 8-year averaged modelled solution, (c) difference between (a) and ESD for 8-year averaged probabilistic solution
computed with the second method (last column in Fig. 16b) (ESD is in units of [𝑠−1𝑓−1

0 𝑚2]2, and the axes represent wavenumbers), (d) root mean square error between the reference
solution and modelled solution, (e) root mean square error between the reference solution and solution computed with the second method, (f) evolution of the integral 𝐼𝑞1 from
the second method (the horizontal axis shows time in days, and the vertical axis represents the integral value); (d)–(f) are in units of [𝑠−1𝑓−1

0 ], with 𝑓0 = 0.83 × 10−4 s−1 being the
Coriolis parameter.

Fig. 18. Shown are snapshots of the top layer PV anomaly: (a) the reference solution (computed on the 513 × 257 grid), (b) probabilistic solution (computed with the second
method on the grid 513 × 257), and a 4-year time-average (last column); the nudging strength is 𝜂 = 0.1. All solutions are given in units of [𝑠−1𝑓−1

0 ], where 𝑓0 = 0.83 × 10−4 s−1 is
the Coriolis parameter. Note that the probabilistic evolutionary method reproduces the nominally-resolved reference flow features (large-scale jets and small-scale vortices).
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probabilistic solution (even for short reference records) thus operating
well beyond the reference data range.

All this offers a great flexibility to ocean modellers working with
comprehensive ocean models and measurements, and allows us to
expect that the proposed approach has strong potential for the use in
the context of primitive equations which we plan to approach in future
research.
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