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ABSTRACT. We prove the Sato-Tate conjecture for Hilbert modular forms.
More precisely, we prove the natural generalisation of the Sato-Tate conjecture
for regular algebraic cuspidal automorphic representations of GLa(Ag), F a
totally real field, which are not of CM type. The argument is based on the
potential automorphy techniques developed by Taylor et. al., but makes use of
automorphy lifting theorems over ramified fields, together with a “topological”
argument with local deformation rings. In particular, we give a new proof
of the conjecture for modular forms, which does not make use of potential
automorphy theorems for non-ordinary n-dimensional Galois representations.
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1. INTRODUCTION

1.1. In this paper we prove the Sato-Tate conjecture for Hilbert modular forms.
More precisely, we prove the natural generalisation of the Sato-Tate conjecture for
regular algebraic cuspidal automorphic representations of GLo(Ap), F' a totally
real field, which are not of CM type.

Several special cases of this result were proved in the last few years. The papers
[HSBT10] and [Tay08] prove the result for elliptic curves over totally real fields
which have potentially multiplicative reduction at some place, and it is straightfor-
ward to extend this result to the case of cuspidal automorphic representations of
weight 0 (i.e. those corresponding to Hilbert modular forms of parallel weight 2)
which are a twist of the Steinberg representation at some finite place. The case of
modular forms (over Q) of weight 3 whose corresponding automorphic representa-
tions are a twist of the Steinberg representation at some finite place was treated in
[Gee09], via an argument that depends on the existence of infinitely many ordinary
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places. The case of modular forms (again over Q) was proved in [BLGHT09] (with
no assumption on the existence of a Steinberg place). The main new features of
the arguments of [BLGHT09] were the use of an idea of Harris ([Har07]) to ensure
that potential automorphy need only be proved in weight 0, together with a new
potential automorphy theorem for n-dimensional Galois representations which are
symmetric powers of those attached to non-ordinary modular forms. Recent devel-
opments in the theory of the trace formula remove the need for an assumption of
the existence of a Steinberg place in both this theorem and in the case of elliptic
curves over totally real fields.

In summary, the Sato-Tate conjecture has been proved for modular forms and
for elliptic curves over totally real fields, but is not known in any non-trivial case for
Hilbert modular forms not of parallel weight 2 over any field other than Q. It seems
to be hard to extend the arguments of either [Gee09] or [BLGHT09] to the general
case; in the former case one has no way of establishing the existence of infinitely
many ordinary places (although it is conjectured that the set of such places should
be of density one), and in the latter case one has no control over the mixture of
ordinary and supersingular places over any rational prime. In this paper, we adopt
a new approach: we combine the approach of [Gee09], which is based on taking
congruences to representations of GLa(Ap) of weight 0, with the twisting argument
of [Har07] (or rather the version of this argument used in [BLGHTO09]). These
techniques do not in themselves suffice to prove the result, as one has to prove a
automorphy lifting theorem for non-ordinary representations over a ramified base
field. No such theorems are known for representations of dimension greater than
two. The chief innovation of this paper is a new technique for proving such results.

Our new automorphy lifting theorem uses the usual Taylor-Wiles-Kisin patching
techniques, but rather than identifying an entire deformation ring with a Hecke
algebra, we prove that certain global Galois representations, whose restrictions
to decomposition groups lie on certain components of the local lifting rings, are
automorphic. That this is the “natural” output of the Taylor-Wiles-Kisin method
is at least implicit in the work of Kisin, cf. section 2.3 of [Kis07]. One has to
be somewhat careful in making this precise, because it is necessary to use fixed
lattices in the global Galois representations one considers, and to work with lifting
rings rather than deformation rings. In particular, it is not clear that the set of
irreducible components of a local lifting ring containing a particular Og-valued
point, K a finite extension of Q;, is determined by the equivalence class of the
corresponding K-representation. This necessitates a good deal of care to work with
Og-liftings throughout the paper.

Effectively (modulo the remarks about lattices in the previous paragraph) the
automorphy lifting theorem that we prove tells us that if we are given two congru-
ent n-dimensional [-adic regular crystalline essentially self dual representations of
Gr (the absolute Galois group of a totally real field F') with the same [-adic Hodge
types, with “the same ramification properties”, and satisfying a standard assump-
tion on the size of the mod [ image, then if one of them is automorphic, so is the
other. By “the same ramification properties”, we mean that they are ramified at
the same set of places, and that the points determined by the two representations
on the corresponding local lifting rings lie on the same components. For example,
we require that the two representations have unipotent ramification at exactly the
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same set of places; we do not know how to adapt Taylor’s techniques for avoiding
Thara’s lemma ([Tay08]) to this more general setting.

The local deformation rings for places not dividing [ are reasonably well-understood,
so that it is possible to verify that this condition holds at such places in concrete
examples. On the other hand, the components of the crystalline deformation rings
of fixed weight are not at all understood if ! ramifies in F', unless n = 2 and the
representations are Barsotti-Tate, when there are at most two components, cor-
responding to ordinary and non-ordinary representations. This might appear to
prevent us from being able to apply our theorem to any representations at all. We
get around this problem by making use of the few cases where the components are
known. Specifically, we use the cases where n = 2 and either the representations
are Barsotti-Tate; or F' is unramified in [, and the representations are crystalline
of low weight. To explain how we are able to bootstrap from these two cases, we
now explain the main argument.

We begin with a regular algebraic cuspidal representation m of GLy(Afp), as-
sumed not to be of CM type. By a standard analytic argument, it suffices to prove
that for each n > 1 the (n — 1)-st symmetric power of 7 is potentially automor-
phic, in the sense that there is a finite Galois extension F"'/F of totally real fields
and an automorphic representation 7,, of GL,,(Ar~) whose L-function is equal to
that of the base change to F” of the (n — 1)-st symmetric power L-function of .
Equivalently, if we fix a prime [, then it suffices to prove that the (n — 1)-st sym-
metric power of an [-adic Galois representation corresponding to 7 is potentially
automorphic, i.e. that its restriction to G g is automorphic. This is what we prove.

We choose [ to be large and to split completely in F', and such that , is unram-
ified at all places v of F' lying over . We begin by making a preliminary solvable
base change to a totally real field F’/F, such that the base change 7/ of 7 to F”
is either unramified or an unramified twist of the Steinberg representation at each
finite place of F’. We then choose an automorphic representation 7’ of GLa(Ap)
of weight 0 which is congruent to m, which for any place v t [ is unramified (re-
spectively an unramified twist of the Steinberg representation) if and only if 7 is,
and which is a principal series representation (possibly ramified) or a supercuspidal
representation for all v|l. Furthermore we choose 7’ so that for places v|l, m, is
ordinary if and only if 7] is ordinary.

We now prove that the (n — 1)-st symmetric power of 7’ is potentially automor-
phic over some finite Galois extension F” of F. This is straightforward, although
it is not quite in the literature. This is the only place that we need to make use of
a potential automorphy theorem for an n-dimensional Galois representation, and
the theorems of [HSBT10] (or rather the versions of them which are now available
thanks to improvements in our knowledge of the trace formula, which remove the
need for discrete series hypotheses) would suffice, but for the convenience of the
reader we use a theorem from [BLGHTO09] (which, for instance, already include
the improvements made possible by our enhanced understanding of the trace for-
mula) instead. This also allows us to avoid having to make an argument with
Rankin-Selberg convolutions as in [HSBT10]. We note that the theorem we use
from [BLGHT09] is for ordinary representations, rather than the far more technical
result for supersingular representations that is also proved in [BLGHTO09].
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We now wish to deduce the potential automorphy of the (n — 1)-st symmetric
power of 7, or rather the automorphy of the corresponding [-adic Galois representa-
tion r : Gpr — GL,(Q;), from the automorphy of the l-adic Galois representation
r" . Gpr — GL,(Q,) corresponding to the (n—1)-st symmetric power of /. We can-
not directly apply our automorphy lifting theorem, because the Hodge-Tate weights
of v’ and r are different. Instead, we employ an argument of Harris ([Har07]), and
tensor both r and ' with representations obtained by the automorphic induction of
algebraic characters of a certain CM field. The choice of the field and the characters
is somewhat delicate, in order to preserve various technical assumptions for the au-
tomorphy lifting theorem, in particular the assumption of big residual image. The
two characters are chosen so that the resulting Galois representations r” and 7'’
are potentially crystalline with the same Hodge-Tate weights. The representation
r""" is automorphic, by standard results on automorphic induction. We then apply
our automorphy lifting theorem to deduce the automorphy of . The automorphy
of r then follows by an argument as in [Har07] (although we employ a version of
this which is very similar to that used in [BLGHTO09)]).

In order to apply our automorphy lifting theorem, we need to check the local
hypotheses. At places not dividing [, these essentially follow from the construc-
tion of 7/, together with a path-connectedness argument, and a check (using the
Ramanujan conjecture) that a certain point on a local lifting ring is smooth. At
the places dividing [ the argument is rather more involved. At the places where
7 is ordinary the hypothesis can be verified (after a suitable base change) using
the results of [Ger09]. At the non-ordinary places we proceed more indirectly. For
each non-ordinary v|l we choose two local 2-dimensional I-adic representations p
and p’ of Gp, which are induced from characters of quadratic extensions. The
representations p and p’ are chosen to be congruent to the local Galois represen-
tations attached to m, 7’ respectively, with p crystalline of the same Hodge-Tate
weights as the local representation attached to 7, and p’ non-ordinary and poten-
tially Barsotti-Tate. Then p is on the same component of the local crystalline lifting
ring as the local representation attached to 7, and a similar statement is true for
p and 7' after a base change to make it crystalline (using the knowledge of the
components of Barsotti-Tate lifting rings mentioned above). Since the image of
an irreducible component under a continuous map is irreducible, a straightforward
argument shows that we need only check that the Galois representations corre-
sponding to the (n — 1)-st symmetric powers of p and p’, when tensored with the
Galois representations obtained from the characters induced from the CM field, lie
on a common component of a crystalline deformation ring (possibly after a base
change). We ensure this by choosing our characters so that the two Galois represen-
tations are both direct sums of unramified twists of the same crystalline characters,
and making a path-connectedness argument.

We should note that we have suppressed some technical details in the above
outline of our argument; we need to take considerable care to ensure that the
hypotheses relating to residual Galois representations having big image are satisfied.
In addition, as mentioned above, rather than working with Galois representations
valued in fields it is essential to work with fixed lattices throughout. We remark
that in the forthcoming paper [BLGGT10] we remove the need to consider lattices,
and generalise the arguments of this paper to prove potential automorphy theorems
for a broad class of Galois representations.



SATO-TATE 5

We now outline the structure of the paper. In section 2 we recall some basic
notation and definitions from previous papers on automorphy lifting theorems. The
automorphy lifting theorem is proved in section 3, together with some results on
the behaviour of local lifting rings under conjugation and functorialities. The most
technical section of the paper is section 4, where we construct the characters of
CM fields that we need in the main argument. In section 5 we recall various
standard results on base change and automorphic induction, and give an exposition
of Harris’s trick in the level of generality we require. In section 6 we prove a
potential automorphy theorem in weight 0; the precise result we require is not in
the literature, and while it is presumably clear to the experts how to prove it, we
provide the details. Finally, in section 7 we carry out the strategy described above,
and deduce the Sato-Tate conjecture.

We would like to thank Richard Taylor for some helpful discussions related to
the content of this paper. We would also like to thank Florian Herzig and Sug Woo
Shin for their helpful comments on an earlier draft.

2. NOTATION

If M is a field, we let Gj; denote its absolute Galois group. We write all matrix
transposes on the left; so ‘A is the transpose of A. Let € denote the l-adic or mod
[ cyclotomic character. If M is a finite extension of Q, for some p, we write Ips for
the inertia subgroup of Gp;. If R is a local ring we write mp for the maximal ideal
of R.

We fix an algebraic closure Q of Q, and regard all algebraic extensions of Q as
subfields of Q. For each prime p we fix an algebraic closure @p of Qp, and we fix
an embedding Q — @p. In this way, if v is a finite place of a number field F', we
have a homomorphism Gr, — Gr.

We will use some of the notation and definitions of [CHT08] without comment.
In particular, we will use the notions of RACSDC (regular, algebraic, conjugate
self-dual, cuspidal) and RAESDC (regular, algebraic, essentially self-dual, cuspidal)
automorphic representations, for which see sections 4.2 and 4.3 of [CHT08]. We will
also use the notion of a RAECSDC (regular, algebraic, essentially conjugate self-
dual, cuspidal) automorphic representation, for which see section 1 of [BLGHT09).
If 7 is a RAESDC automorphic representation of GL,(Ar), F a totally real field,
and ¢ : Q; — C, then we let 7, () : Gp — GL,(Q;) denote the corresponding
Galois representation. Similarly, if 7 is a RAECSDC or RACSDC automorphic
representation of GL,(Ar), F a CM field (in this paper, all CM fields are totally
imaginary), and ¢ : Q; — C, then we let r,,(7) : Gr — GL,(Q;) denote the
corresponding Galois representation. For the properties of r;,(7), see Theorems 1.1
and 1.2 of [BLGHTO09]. If K is a finite extension of Q,, for some p, we will let recx be
the local Langlands correspondence of [HT01], so that if 7 is an irreducible complex
admissible representation of GL,, (K), then recg (m) is a Weil-Deligne representation
of the Weil group Wy. If K is an archimedean local field, we write reck for the
local Langlands correspondence of [Lan89]. We will write rec for recx when the
choice of K is clear.

3. AN AUTOMORPHY LIFTING THEOREM

3.1. The group G,. Let n be a positive integer, and let G,, be the group scheme
over Z which is the semidirect product of GL, x GL; by the group {1,;}, which
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acts on GL,, x GL; by

(g, m)i " = (g™ p).
There is a homomorphism v : G,, — GL; sending (g, i) to p and j to —1. Write g2
for the trace zero subspace of the Lie algebra of GL,,, regarded as a Lie subalgebra
of the Lie algebra of G,,.
Suppose that F is an imaginary CM field with totally real subfield F'. If R is a
ring and 7 : Gg+ — G, (R) is a homomorphism with r~}(GL,(R) x GL1(R)) = GF,
we will make a slight abuse of notation and write r|g, (respectively r|g,, for w

a place of I') to mean r|g, (respectively r|g,, ) composed with the projection
GL,(R) x GL;(R) — GL,(R).

3.2. l-adic automorphic forms on unitary groups. Let F'* denote a totally
real number field and n a positive integer. Let F'/FT be a totally imaginary qua-
dratic extension of F'* and let ¢ denote the non-trivial element of Gal(F/FT).
Suppose that the extension F//F7T is unramified at all finite places. Assume that
n[FT : Q] is divisible by 4. Under this assumption, we can find a reductive algebraic
group G over F'* with the following properties:

e G is an outer form of GL,, with G,p = GL,,/F;

e for every finite place v of '™, G is quasi-split at v;

e for every infinite place v of F'*, G(F, ) = U,(R).
We can and do fix a model for G over the ring of integers O+ of F'* as in section
2.1 of [Ger09]. For each place v of F*© which splits as ww® in F there is a natural
isomorphism

tw : G(EF) =5 GL,(Fy)

which restricts to an isomorphism between G(Op+) and GL,(OF,). If v is a place
of F'* split over I and w is a place of F' dividing v, then we let

e Iw(w) denote the subgroup of GL,,(OF,) consisting of matrices which re-
duce to an upper triangular matrix modulo w;

e Up(w) denote the subgroup of GL,(OF,) consisting of matrices whose last
row is congruent to (0,...,0,*) modulo w;

e U;(w) denote the subgroup of Uy(w) consisting of matrices whose last row

is congruent to (0,...,0,1) modulo w.

Let [ > n be a prime number with the property that every place of F'* dividing !
splits in F'. Let S; denote the set of places of F’ + dividing I. Let K be an algebraic
extension of QQ; in @, such that every embedding F' — ; has image contained in
K. Let O denote the ring of integers in K and k the residue field. Let S; denote
the set of places of F* dividing ! and for each v € Sj, let ¥ be a place of F over v.

Let W be an O-module with an action of G(Op+ ;). Let V. C G(A%,) be a
compact open subgroup with v; € G(Op+ ;) for all v € V, where v; denotes the
projection of v to G(F;"). We let S(V, W) denote the space of l-adic automorphic
forms on G of weight W and level V| that is, the space of functions

frGIFEINGAF) - W
with f(gv) =v; ' f(g) for allv € V.

Let I, denote the set of embeddings F' < K giving rise to one of the places
v. Let (Zi)ll denote the set of A € (Z")!t with A\;1 > A\;2 > ... > A, for all
embeddings 7 € I;. To each \ € (Z1)!t we associate a finite free O-module M) with
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a continuous action of G(Op+ ;) as in Definition 2.2.3 of [Ger09]. The representation
M, is the tensor product over 7 € I, of the irreducible algebraic representations of
GL,, of highest weights given by the A,. We write S\ (V, Q) instead of S(V, M)
and similarly for any O-module A, we write S)(V, A) for S(V, M) ®co A).

Assume from now on that K is a finite extension of Q;. Let [ denote the product
of all places in S;. Let R and S, denote finite sets of finite places of F'T disjoint
from each other and from S; and consisting only of places which split in F'. Assume
that each v € S, is unramified over a rational prime p with [F({,) : F] > n. Let
T =S ]]R]]Sa. Foreachv e T fix a place v of F dividing v, extending the choice
of v for v € S;. Let U =[], U, be a compact open subgroup of G(A%, ) such that

e Uy =G(Op+) if v RUS, splits in F}

o U, = 15" ker(GL,(OF,) = GL,(k(?))) if v € Sq;

e U, is a hyperspecial maximal compact subgroup of G(F,") if v is inert in
F.

(At this stage we impose no restrictions on U, for places v € R.) We note that
if S, is non-empty then U is sufficiently small (which means that its projection
to G(F,") for some place v € F™ contains no finite order elements other than the
identity).

For any O-algebra A, the space Sy (U, A) is acted upon by the Hecke operators

19 =t ([6taon) (TgV ") 6Laon))

1,

for w a place of F, split over F'T and not lying over T, j = 1,...,n and w,
a uniformizer in Op,. We let TZ (U, A) be the A-subalgebra of End (S, (U, A))
generated by these operators and the operators (T,S,n))_l.

To any maximal ideal m of T2 (U, Q) one can associate a continuous representa-
tion

Fm : Gp — GL, (T (U, 0)/m)

characterised by the following properties:
(1) 7 = e
(2) 7 is unramified outside T. If v & T is a place of F* which splits as
ww® in F and Frob,, is the geometric Frobenius element of G, /I, , then

7m (Frob,,) has characteristic polynomial
X" 4. 4 (1) (Nw)U=D27@ Xm0 4 (1) (Nw)" =127,

The maximal ideal m is said to be non-FEisenstein if 7, is absolutely irreducible.
In this case, 7 can be extended to a homomorphism 7, : Gp+ — G, (T (U, O) /m)
(in the sense that 7 |G, = (Fm, €' ™)) with 7,1 ((GL,, x GL1)(TL (U, O)/m)) = GF.
Also, any such extension has a continuous lifting

ot G — Gu(TL(U,0)n)

with the following properties:
(0) ral((GL, x GL1) (T (U, O)m)) = Gp.
(1) vory = 61*”6;‘/“F+ where 0/ p+ is the non-trivial character of Gal(F/F™)
and pm € Z/27.
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(2) 7y is unramified outside T. If v ¢ T is a place of F* which splits as
ww® in F' and Frob,, is the geometric Frobenius element of Gg, /IF, , then
rm (Frob,,) has characteristic polynomial

X" 4 (1) (Nw)?U-DR2T@ xn=d 4 (—1)(Nw)" (= D/27(m),

v € 5], an : , — 75 is a homomorphism of O-algebras, then

3) If S d ¢ ']I‘f U0 Q h h f O-algeb h
Cormla o 18 crystalline of I-adic Hodge type vy, (in the sense of Definition
3.3.4 below).

3.3. Local deformation rings. Let [ be a prime number and K be a finite exten-
sion of Q; with residue field k£ and ring of integers O, and write me for the maximal
ideal of O. Let Co be the category of complete local Noetherian (O-algebras with
residue field isomorphic to k via the structural homomorphism. As in section 3 of
[BLGHTO09], we consider an object R of Co to be geometrically integral if for all
finite extensions K’/K, the algebra R ®» Ok is an integral domain.

Let M be a finite extension of Q, for some prime p possibly equal to [ and let
p: Gy — GL, (k) be a continuous homomorphism. Then the functor from Co to
Sets which takes A € Co to the set of continuous liftings p : Gy — GL,(A) of
p is represented by a complete local Noetherian O-algebra R%’. We call this ring
the universal O-lifting ring of 5. We write p& : Gy — GLn(RﬁD) for the universal
lifting.

The following definitions will prove to be useful later.

Definition 3.3.1. Suppose p : Gy — GL2(O) is a representation. We can think
of this as putting a G ps-action on the vector space K? (=V, say), in a way that
stabilizes the lattice generated by the standard basis {eg,e;}, where ey = (1,0),
e1 = (0,1). Considering Sym™ ' p as a quotient of V™1 we have an ordered
basis {go, - - ., gn_1} of Sym™ 'V, where g; is the image of egg’("_l_i) ®ef’. We call
this the O-basis of Sym™ 'V inherited from our original basis in p.

Definition 3.3.2. Suppose p : Gy — GL,(0),p’ : Gy — GL,(O) are represen-
tations, which we think of as putting Gjs-actions on the vector spaces V, = K",
fo = K" ina way that stabilizes the lattices generated by the standard bases of
each. In this situation we have an ordered O-basis on V, ®¢ Vp’ given by the vectors
ej @ fi, ordered lexicographically, where the e; are the standard O-basis in V,, and
the fj are the standard basis in Vp’. We call this the O-basis of p ®p p’ inherited
from our original bases.

3.3.1. Local deformations (p =1 case). Suppose that p = . In this section we will
define an equivalence relation on crystalline lifts of p. For this, we need to consider
certain quotients of RﬁD. Assume that K contains the image of every embedding

M— K.
Definition 3.3.3. Let (Z7)1om(M.K) denote the subset of (Z")1om(M-K) consisting
of elements A which satisfy

AT,l Z )\7,2 Z A )\T,n

for every embedding 7.

Let A be an element of (Z%)Hom(AK) - We associate to A an l-adic Hodge type
v in the sense of section 2.6 of [Kis08] as follows. Let Dg denote the vector space



SATO-TATE 9

K". Let Dg y = Dg ®q, M. For each embedding 7 : M — K, we let Dg , =
Dr v @xeom,ier K so that Dy = @Dk . For each 7 choose a decreasing
filtration Fil® Dy + of Dk, so that dimg gr’ Dy, = 0 unless i = (j — 1) + Arn—j+1
for some j = 1,...,n in which case dimg gr’ D, = 1. We define a decreasing
filtration of Dk a» by K ®q, M-submodules by setting

Fil' Dk y = @, Fil' Dg ;.

Let V) = {DK,FIIZ DK,M}
We now recall some results of Kisin. Let A be an element of (Z7})
let v be the associated l-adic Hodge type.

Definition 3.3.4. If B is a finite K-algebra and Vg is a free B-module of rank
n with a continuous action of Gj; that makes Vp into a de Rham representation,
then we say that Vg is of [-adic Hodge type vy if for each ¢ there is an isomorphism
of B ®q, M-modules

Hom(M,K) and

gr' (Ve ®@q, Bar)“™ > (gr’ Dk,m) @k B.

Corollary 2.7.7 of [Kis08] implies that there is a unique I-torsion free quotient

o of R%] with the property that for any finite K-algebra B, a homomor-

phism of O-algebras (¢ : RﬁD — B factors through RZ* if and only if ¢ o -
is crystalline of [-adic Hodge type vy. Moreover, Theorem 3.3.8 of [Kis08] implies
that Spec R3*“"[1/1] is formally smooth over K and equidimensional of dimension
n?+in(n—1)[M: Q.

By Lemma 3.3.3 of [Ger09] there is a quotient RﬁA*’CT of R7M" corresponding
to a union of irreducible components such that for any finite extension F of K, a
homomorphism of O-algebras ¢ : R7*" — E factors through RﬁA AT if and only if

¢ o pH is crystalline and ordinary of weight .
We now introduce an equivalence relation on continuous representations Gy —
GL,,(0) lifting p.

Definition 3.3.5. Suppose that pi, p2 : Gar = GL,(O) are two continuous lifts of
0. Then we say that p; ~ po if the following hold.
(1) Thereisa A € (Z7)Hem(K) guch that p; and pa both correspond to points
of Rg*’cr (that is, p1 ® K and ps ®e K are both crystalline of I-adic Hodge
type vi).
(2) For every minimal prime ideal p of RZ, the quotient RZ* /g is geo-
metrically integral.

(3) p1 and po give rise to closed points on a common irreducible component of
Spec RY*"[1/1].

In (3) above, note that the irreducible component is uniquely determined by
V\,CT

either of p1, po because Spec R7*"[1/1] is formally smooth. Note also that we can
always ensure that (2) holds by replacing O with the ring of integers in a finite
extension of K.

Suppose that p; ~ py as above and let M'/M be a finite extension. Assume
that K contains the image of every embedding M’ — K. Then we claim that

pila,, ~ p2lg,, - Indeed, let A be such that p; and pp have l-adic Hodge type vy.
Define X' € (z7)Hom(M"K) by N = X\ for all 7: M’ — K. Then restriction
to G gives rise to an (O-algebra homomorphism RE‘G — R which factors

T|m

M’
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through R (using the fact that R7»" is reduced and I-torsion free). The
M/

le
result now follows from the formal smoothness of Spec R%"*G”CT[l /1], which implies
M/

that the image of any irreducible component of Spec RZ*“"[1/1] is contained in a

unique irreducible component of Spec R;ﬁ;’cr[l /1.
M/

In a similar vein, it follows that if n = 2 and p; ~ po, then Sym*~!p; ~
SymF~* po for all k& > 1, where we take the O-basis on the SymF~! p; inherited
from the bases we have on the p;, in the sense of Definition 3.3.1. [The same is true
if n > 2, with an appropriate modification of Definition 3.3.1.]

We will make one final variation on this theme. Suppose p’ : Gpr — GL,,,(O) is
crystalline of l-adic Hodge type v/ for some m and some X € (ZT)Hom(M’K), and
p1 ~ po are as above. (Note n need no longer be 2.) Then p1 ®p p’ ~ pa@e p’, where
we take as (O-basis on the p; ®o p’ the inherited bases in the sense of Definition
3.3.2.

Lemma 3.3.6. Let p : Gy — GL,, (k) be a continuous homomorphism. Suppose
p1,p2 : Gy — GL,(O) are two lifts of p with py ~ pa. If O’ denotes the ring of
integers in a finite extension of K with residue field k', then p1 ~ p2, regarded as
lifts of p @y k' to GL,(O).

Proof. Let X\ € (Z’_}_)HO“‘(M’K) be such that p; and p have [-adic Hodge type v.
Let R = R7* and R = R®e O'. We need to show that p; and py give rise
to closed points of Spec R'[1/] lying on a common component. Note that if C’
is an irreducible component of Spec R'[1/l], then the image of C’ in Spec R[1/]]
is an irreducible component. Indeed, the image of C’ in Spec R[1/l] is irreducible
and closed (as R — R’ is finite). If 2’ is a closed point of Spec R'[1/I] lying in
C" with image z in Spec R[1/[], then the completed local rings of Spec R'[1/1] and
Spec R[1/1] at 2’ and z respectively are isomorphic. We deduce that the image of
C’ has the same dimension as C’ and hence is an irreducible component.

Now, let 21 and z2 denote the closed points of Spec R[1/I] corresponding to p;
and po and let C denote the irreducible component of Spec R[1/!] containing x; and
x2. Then we claim that the preimage of C in Spec R’[1/I] is irreducible. Indeed,
suppose there are two distinct irreducible components C’ and C” of Spec R'[1/]]
mapping to C. Then there are points z} and 2} of C’ and C” respectively mapping
to z1. However, the preimage of x; in Spec R'[1/] consists of a single point (let
m denote the maximal ideal of R[1/l] corresponding to z1. Then the fibre over
x1 is given by the spectrum of (R[1/l]/m) ®p O = K @p O’ = K'.) Thus z} =
x/ lies in the intersection of C' and C”, contradicting the formal smoothness of
Spec R'[1/1]. O

3.3.2. Local deformations (p # | case). Suppose now that p # . By Theorem

2.1.6 of [Geel0], Spec R%‘[l/l] is equidimensional of dimension n?.

Definition 3.3.7. Let p1,p2 : Gy — GL,(O) be two lifts of p. We say that
p1 ~>o p2 if the following hold.
(1) For each minimal prime ideal p of RY, the quotient R” /p is geometrically
irreducible.
(2) p1 corresponds to a closed point of Spec R%'[l /1] which is contained in a
unique irreducible component and this irreducible component also contains
the closed point corresponding to ps.
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We remark that, we can always replace O by the ring of integers in a finite
extension of K so that condition (1) above holds. Also, condition (1) ensures that
if py ~o p2 and if O’ is the ring of integers in a finite extension of K then p; ~»o po.

3.4. Properties of ~~» and ~.
Lemma 3.4.1. ~ is an equivalence relation.

Proof. This follows immediately from the definitions. (]

Lemma 3.4.2. Let M be a finite extension of Q, for some prime p. Letp: Gy —
GL,, (k) be a continuous homomorphism. If p # 1, let R = R%], If p =1, assume
that K contains the image of each embedding M — Q; and let R = RV for
some A € (21 )Hom(MK) - Let O denote the ring of integers in a finite extension of
K. Let p and p' be two lifts of p to O giving rise to closed points of Spec R[1/1].
Suppose that after conjugation by an element of ker(GL,(0’") — GL,(0'/me/))
they differ by an unramified twist. Then an irreducible component of Spec R[1/]
contains p if and only if it contains p'.

Proof. The universal unramified O-lifting ring of the trivial character Gj; — k™ is
given by O[[Y]] where the universal lift x" sends Frobys to 1+ Y. Let R[[Y, X]] =
R[YN[[Xij : 1 <i,5 < n]]. Let p~ denote the universal lift of 7 to R. Consider
the lift (1, + (Xi;))p" (1, + (Xi5)) "' @ X7 of p to R[[Y, X]]. This lift gives rise
to a homomorphism R%' — R[[Y, X]] which factors through R. Let a denote the
resulting O-algebra homomorphism R — R[[Y, X]]. Let ¢ : R — R[[Y, X]] be the
standard R-algebra structure on R[[Y, X]].

The minimal prime ideals of R[[Y,X]] and R are in natural bijection (if p is
a minimal prime of R then t(p) generates a minimal prime of R[[Y,X]]). Let
© be a minimal prime of R. We claim that the kernel of the map 5 : R —
R[[Y, X]]/(p) = (R/p)[[Y, X]] induced by « is p. Indeed, the R-algebra homo-
morphism (with R[[Y, X]] considered as an R-algebra via ¢) v : R[[Y,X]] — R
which sends Y and each X;; to 0 is a section to the map 3. The composition

R (R/p)[[Y,X]] & R/p is thus the natural reduction map. In particular its
kernel is p. Since ker(8) C ker(yo ) = p and p is minimal, we deduce ker(5) = p.
The lemma follows. O

Lemma 3.4.3. Let M be a finite extension of Q;. Let p: Gy — GLy (k) be the
trivial representation, and let p and p’' : Gy — GL,(O) be two crystalline lifts of
P of l-adic Hodge type vy which are GL,,(O)-conjugate. Then p ~ p'.
Proof. Take g € GL,(O) with p' = gpg~'. Let A = O(X;;,Y)/(Y det(X;;) — 1)
where O(X;;,Y) is the mp-adic completion of O[X;;,Y]. Let pa : Gy — GL,,(A4)
be given by XpX ! where X is the matrix (X;;). By Lemma 3.3.1 of [Ger09],
there is a continuous homomorphism RpD — A such that pa is the push-forward
of the universal lifting p= : Gy — GLn(R%’). Now, for any Q;-point of A, the
corresponding specialisation of p4 is a Q;-conjugate of p, and is thus crystalline of
l-adic Hodge type vy, so corresponds to a Q;-point of RZV. Since the Q;-points
of A are dense in Spec A, we conclude that the homomorphism R%' — A factors
through BRIV

Now, Spec A is irreducible, and the points 2 and 2’ of Spec RZ*“" corresponding
to p and p’ respectively are in the image of the map Spec A — Spec R%*’Cr, because
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they correspond to specialising the matrix X to the matrices 1,, and g respectively.
The result follows. ([

Corollary 3.4.4. Let M be a finite extension of Q;. Let p : Gy — GL, (k) be
the trivial representation, and let p, p' : Gpr — GL,(O) be two crystalline lifts of p
which are both GL,,(O)-conjugate to direct sums of unramified twists of a common
set of crystalline characters. Then p ~ p'.

Proof. After applying Lemma 3.4.3, we may assume that

p=®i_1pi
and
/ n /
P = DBi=10;
where p; and p; are crystalline characters Gy — O which differ by an unramified
twist for each 7 and reduce to the trivial character modulo mey. It suffices to check
that the corresponding points  and 2" of RJ*»*“" are path-connected.
As in the proof of Lemma 3.4.2, the universal unramified O-lifting ring of the

trivial character Gy — k* is given by O[[Y]] with the universal lifting x" sending
Frobj; to 1+ Y. Taking n copies of this character, we obtain a lifting

S @ XF

of pto O[[Y1,...,Y,]], and thus a continuous map Spec O[[Y1, ..., Y, ]] — Spec RV
Both x and 2’ are in the image of this map, so the result follows. O

The following is Lemma 3.4.3 of [Ger09] (recall that the ring RﬁA 2 s defined
below Definition 3.3.4, and is universal for crystalline ordinary lifts of weight \).

Lemma 3.4.5. Suppose M is a finite extension of Q; and p : Gy — GL, (k) is

the trivial representation. If the ring RﬁA*’CT is mon-zero, then it is irreducible.

Lemma 3.4.6. Let M be a finite extension of Q, for some prime p and let p :
Gy — GL, (k) be a continuous homomorphism. Let p1,ps : Gy — GL,(O) be
two lifts of p. If p # 1, suppose that p1 ~>o p2 and pa ~o p1. (Equivalently,
assume that for each minimal prime p of R® the quotient RD/p is geometrically
irreducible, and py, p2 each correspond to closed points contained in a common
irreducible component of Spec R'ﬁ][l/l], and neither point is contained in any other
irreducible component.) If p = I, assume that p1 ~ pa. Let x1,x2 : Gy — O
be continuous characters with X1 = Xo and X1|r,, = Xolr,,- Suppose in addition
that if p = 1 then x1 and x2 are crystalline. Then x1p1 ~~o Xxo2p2 if p # 1 and
X1p1 ~ X2p2 if p=1L.

Proof. We treat the case p # [, the other case being similar. Let ¥ = X; = Xa-
Then the operation of twisting by x1 defines an isomorphism of the lifting problems
of p and Xp. It therefore defines an isomorphism R% = R%’. It follows that
X1p1 ~o Xx1p2 and that x1p2 gives rise to a closed point of Spec R%[l/l] lying
on a unique irreducible component. Since x; and ys differ by a residually trivial
unramified twist, an easy argument shows that this component also contains ysps
(c.f. the proof of Corollary 3.4.4). It follows that x1p1 ~~o X2p2- O
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3.5. Global deformation rings. Let F'/F T be a totally imaginary quadratic ex-
tension of a totally real field F'*'. Let ¢ denote the non-trivial element of Gal(F/F ™).
Let k& denote a finite field of characteristic [ and K a finite extension of @, inside
our fixed algebraic closure Q;, with ring of integers © and residue field k. Assume
that K contains the image of every embedding F < @Q; and that the prime [ is
odd. Assume that every place in F'* dividing [ splits in F. Let S denote a finite
set of finite places of F'* which split in F', and assume that S contains every place
dividing I. Let S; denote the set of places of F* lying over I. Let F(S) denote
the maximal extension of F' unramified away from S. Let G+ ¢ = Gal(F(S)/F™T)
and Gp g = Gal(F'(S)/F). For each v € S choose a place v of F' lying over v and
let S denote the set of ¥ for v € S. For each place v|oo of FT we let ¢, denote a
choice of a complex conjugation at v in Gp+ g. For each place w of F' we have a
G s-conjugacy class of homomorphisms G, — Gp,s. For v € S we fix a choice
of homomorphism Gr, = Gps.
Fix a continuous homomorphism

T GF*.,S — Qn(k)

such that Gp,g = 7~ *(GL, (k) xGL1 (k)) and fix a continuous character x : Gp+ g —
O* such that v o7 = X. Assume that 7|g, ; is absolutely irreducible. As in
Definition 1.2.1 of [CHTO08], we define
e a lifting of ¥ to an object A of Co to be a continuous homomorphism
r:Gp+ g — Gn(A) lifting 7 and with vor = x;
e two liftings r, ' of 7 to A to be equivalent if they are conjugate by an
element of ker(GLy,(A) — GL,(k));
e a deformation of T to an object A of Co to be an equivalence class of liftings.

Similarly, if T C S, we define

e a T-framed lifting of 7 to A to be a tuple (r,{a,}yer) where r is a lifting
of 7 and a, € ker(GL,(A) — GL,(k)) for v € T}

e two T-framed liftings (r, {cw tver), (7', {0 }ver) to be equivalent if there
is an element 3 € ker(GL,,(A) — GL,(k)) with ' = Brs~! and o, = Ba,
forv eT;

e a T-framed deformation of 7 to be an equivalence class of T-framed liftings.

For each place v € S, let RE‘G denote the universal O-lifting ring of 7|, and
Fy v

let Ry denote a quotient of RElG which satisfies the following property:
Fy

(*) let A be an object of Co and let (, ¢’ : Rf[llc — A be homomorphisms
Fe

corresponding to two lifts r and 7’ of F|GFB which are conjugate by an
element of ker(GL, (A) — GL,(k)). Then ¢ factors through Ry if and only
if ¢/ does.

We consider the deformation problem
S= (F/FJrv S, §7 o,7,x, {RZ}UES)

(see sections 2.2 and 2.3 of [CHTO08] for this terminology). We say that a lifting r :
Gr+.s — Gn(A)is of type S if for each place v € S, the homomorphism RE‘G — A
Fy

corresponding to 7|g, factors through R;. We also define deformations of ‘;ype S
in the same way.
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Let Defs be the functor Co — Sets which sends an algebra A to the set of
deformations of 7 to A of type S. Similarly, if T C S, let DefET be the functor
Co — Sets which sends an algebra A to the set of T-framed liftings of 7 to A which
are of type §. By Proposition 2.2.9 of [CHTO8] these functors are represented by

objects R4™Y and RET respectively of Co.

Lemma 3.5.1. Let M be a finite extension of Q, for some prime p. Letp: Gy —
GL,, (k) be a continuous homomorphism. If p # 1, let R be the maximal l-torsion
free quotient of R%'. If p =1, assume that K contains the image of each embedding
M < Q, and let R = RV for some \ € (27 )Hem(M.K) - Then R satisfies property
(x) above.

Proof. This can be proved in exactly the same way as Lemma 3.4.2. (I
3.6. Automorphy lifting.
3.6.1. CM Fields.

Theorem 3.6.1. Let F' be an imaginary CM field with totally real subfield F'+ and
let ¢ be the non-trivial element of Gal(F/F*). Let n € Z>y and let | > n be a
prime. Let K C Q, denote a finite extension of Q; with ring of integers O and

residue field k. Assume that K contains the image of every embedding F — Q.
Let
be a continuous representation and let p = p mod my. Suppose that p enjoys the
following properties:
(1) pc gp\/el—n‘
(2) The reduction p is absolutely irreducible and p(Gr(c,)) C GLn(k) is big (see
Definition 4.1.1).
(3) (F)ker2d? does not contain (.
(4) There is a continuous representation p' : Ggp — GL,(O), a RACSDC au-
tomorphic representation m of GL,(Ar) which is unramified above I and
t:Q, = C such that
(a) p @0 Q =1, (1) : Gp — GL,(Q)).
(b) p="7"
(¢) For all places v11 of F, either
® plgy, and m, are both unramified, or
* Vlar, ~o plag, -
(d) For all places v|l, plge, ~ p'ly, -
Then p is automorphic.

Proof. Choose a place vy of F' not dividing [ such that
e vp is unramified over a rational prime p with [F((,) : F] > n;
e vy does not split completely in F({;);
e p and 7 are unramified at vy;
ad p(Frob,, ) = 1.
Extending O if necessary, choose an imaginary CM field L/F' such that:
e L/F is solvable;
e L is linearly disjoint from er”(g) over F;
e 4|[LT : FT] where L™ denotes the maximal totally real subfield of L;
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e L/L7 is unramified at all finite places;

e Every prime of L dividing [ is split over L™ and every prime where p|g, or
7y, ramifies is split over Lt (here 7, denotes the base change of w to L);

e Every place of L over v; or cv; is split over Lt. Moreover, v; and cv; split
completely in L;

e Every place v|l of F splits completely in L;

e If v { I is a place of F' and at least one of p|g,, or 7, is ramified, then v
splits completely in L.

Let G0, be an algebraic group as in section 3.2 (with F/F T replaced by
L/L*). By Théoréme 5.4 and Corollaire 5.3 of [Lab09] there exists an automorphic
representation IT of G(Ap+) such that m is a strong base change of II. Let .S
denote the set of places of Lt dividing | and let R denote the set of places of LT
not dividing [ and lying under a place of L where p or 7, is ramified. Let S, denote
the set of places of L™ lying over the restriction of vy to F*. Let T = S; [ R]] Sa.
For each place v € T, choose a place v of L lying over it and let T denote the set
of v forveT. Let U =[], U, C G(A%) be a compact open subgroup such that

e U, =G(O+) for v € S and for v ¢ T split in L;

e U, is a hyperspecial maximal compact subgroup of G(L;") for each v inert
in L;

e U, is such that IIY» # {0} for v € R;

o U, =ker(G(Op+) — G(ky)) for v € S,.

Extend K if necessary so that it contains the image of every embedding L < Q.
For each v € S, let Ay be the element of (27 )Hm(27:5) with the property that p|,

and p’|g,_ have l-adic Hodge type vy, . Let I, denote the set of embeddings L — K

giving rise to one of the places v. Let A = (\g)yes, regarded as an element of (Z7)"
in the evident way and let Sy (U, O) be the space of l-adic automorphic forms on G of
weight A introduced above. Let T% (U, Q) be the O-subalgebra of Endp (S, (U, O))
generated by the Hecke operators qu,j ), (Tis,n))_1 for w a place of L split over L*, not
lying over T and j = 1,...,n. The eigenvalues of the operators qu,j) on the space
(¢7HI°°)Y give rise to a homomorphism of O-algebras T1 (U, 0) — Q;. Extending
K if necessary, we can and do assume that this homomorphism takes values in O.
Let m denote the unique maximal ideal of T% (U, O) containing the kernel of this
homomorphism.

Let dr,/+ be the quadratic character of G+ corresponding to L. By Lemma
2.1.4 of [CHTO08] we can and do extend p and p’ to homomorphisms r, 7" : Gp+ —
Gn(O) with r@k =1 ®k : Gp+ — Go(k), rla, = (plar,€7), " |a, = (V]cL, € ™™)
and vor =vor' = elfndz/LJr for some p € (Z/2Z). Let T=r®@k : Gp+ — Gn(k).
O
Tlay, . .
Note that REch is formally smooth over O for v € S, by Lemma 2.4.9 of [CHTOS§]
O
’F|GLE =R

7‘|GL17

=0
For v e RUS,, let Ry oy denote the maximal [-torsion free quotient of R

so R . Consider the deformation problem

~ _ n 5CT —O
S = (L/L+7T,T, O,7, e 55/L+, {RYA boes, U {RHGL~ }veRUSa> .

T|GL17
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_ -0
By Lemma 3.5.1, the rings R:rc“’cr for v € S and Ry, for v € R satisfy the
Ly 5

property (*) of section 3.5. Let Rg“i" be the object representing the corresponding
deformation functor. Note that 7|g, is GL,(k)-conjugate to 7y, where 7y, is the
representation associated to the maximal ideal m of TZ (U, O) in section 3.2. After
conjugating we can and do assume that 7|g, = 7. Since m is non-Eisenstein, we
have as above a continuous lift

Tm : Gre = Go(TX (U, 0)m)

of 7. Properties (0)-(3) of rn and the fact that T (U,O)y is [-torsion free and
reduced imply that ry, is of type S. Hence r, gives rise to an O-algebra homomor-
phism

REY T (U, O}

(which is surjective by property (2) of ry,). To prove the theorem it suffices to show
that the homomorphism Rgni" — O corresponding to r factors through T{(U , O
We define
oc ~ Vi) o (o —0O
R <®U€Sl Fl/\GLa ) ® (®UERUS"RHGL5)
where all completed tensor products are taken over O. Note that R!°° is equidimen-
sional of dimension 1 + n?#7T + [L* : Q]n(n — 1)/2 by Lemma 3.3 of [BLGHT09).

Sublemma. There are integers g, g € Z>( with
14 q+n’#T =dim R + ¢

and a module M, for both Ro := R1°[[21, ..., 24]] and Seo := O[[21, .-, Zn247: Y1, - - - Yq]
such that:

(1) My is finite and free over Se.

(2) Moo/(zi,y;) = SA(U, O)m.

(3) The action of Sy, on My, can be factored through an O-algebra homomor-
phism S, — Reo.

(4) There is a surjection Re — R whose kernel contains all the z; and y;
which is compatible with the actions of R /(2;,y;) and R&Y on Mo /(2i, y;) =
S\ (U, O). Moreover, there is a lift r2"V : Gp+ — G, (R¥Y) of 7 repre-
senting the universal deformation so that for each v € T, the composite
Rfljlcb — R'°° — Ry — R¥Y arises from the lift r§n1V|GLE.

Assuming the sublemma for now, let us finish the proof of the theorem. Since
R is equidimensional of dimension dim R!°°+g, it follows from (1) and (3) that the
support of M, in R is a union of irreducible components. (Indeed by Lemma 2.3
of [Tay08] it is enough to check that the mp_-depth of M is equal to dim R =
dim S. By (3) it is enough to check the same statement for the mg_-depth, and
this is immediate from (1)). The conjugacy class of ' determines a homomorphism
¢+ R¥™Y — O so that 1’ is ker(GL,(O) — GL,(k))-conjugate to ¢’ o ra™v. By
the choice of L, for each v € R, | Ly lies on a unique irreducible component Cy of

—0
Spec R

e, [1/1]. By Lemma 3.4.2, Cy is also the unique irreducible component of
=0 _ ; o
Spec Ry, containing ("ord™|g, . For v[l, a similar argument shows that ¢’ o

puniv| G1, and 1'|g, lie on the same irreducible component Cz of Spec R:‘Lﬁ;ir[l /1.
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The conjugacy class of r determines a homomorphism ¢ : R — O so that
r is ker(GL,(O) — GL,(k))-conjugate to ¢ o 7@V, By Lemma 3.4.2, the set of

univ

irreducible components of Specﬁflch [1/1] containing ¢ o r§"|g, _ is equal to the
set of components containing r|g Ly i’)y the choice of L it follows that Cz contains
CordVig .- A similar argument, using part (d) of assumption (4) of the theorem,
shows that Cy contains ¢ o rg“iV|GLﬂ for w|l.

By part 5 of Lemma 3.3 of [BLGHT09] the irreducible components Cy for v €
S; U R determine an irreducible component C,. of Spec R, (as mentioned above,

RE‘G is formally smooth over O for v € S,;). Moreover, ¢’ composed with the
Ly )

surjection Ry, — RE™Y of part (4) of the sublemma gives rise to a closed point of

Spec Roo[1/1] which is in the support of M, and which lies in C,» but does not lie in

any other irreducible component of Spec R.,. We deduce that C,- is in the support

of M. Since the closed point of Spec Ry[1/!] corresponding to ¢ lies in C,- it is

also in the support of M, and we are done by assertion (4) of the sublemma.

Proof of sublemma. We apply the Taylor-Wiles-Kisin patching method. Let
go=[L":Qn(n —1)/2+[LT : Qln(1 — (=1)*7")/2.

If (Q, Q, {¢z}veq) is a triple where

e (Q is a finite set of places of LT disjoint from T and consisting of places
which split in L;

) @ consists of one place v of L over each place v € Q;

e for each v € @, fIGL: & 1)~ @3y where dim¢); = 1 and 15 is not isomorphic
to any subquotient of S3;

then for each v € Q, let R:f‘”;; denote the quotient of RH corresponding to lifts
L~

b T‘GL@“
r : Gr, — GLy(A) which are ker(GL,(A) — GL,(k))-conjugate to a lift of the
form 1 @ s where 1 lifts ¥; and s is an unramified lift of 5. We then introduce
the deformation problem

Vkﬁ c

~ ~ _n Ned —0O -
SQ = <L/L+a T ) Q7 T U Q7 07 ’F7 61 (SZ/LJra {R— }’UGSZ U {RflGLN }’UGRUSa U {RI—Z}“ B }vGQ) .

T‘GLF T‘GL

We define deformations (resp. T-framed deformations) of 7 of type S¢ in the evident
manner and let Rg‘;" (resp. REQT) denote the universal deformation ring (resp. T-
framed deformation ring) of type Sg.

By Proposition 2.5.9 of [CHT08] we can and do choose an integer ¢ > ¢ and for
each N € Z>1 a tuple (Qu, Qn, {Yz}veqy) as above with the following additional
properties:

e #Q N = ¢ for all N;
e Nu=1 mod ¥ for v € Qn;
e the ring RE{;N can be topologically generated over R°¢ by

¢—qo=q—[L":Qn(n—1)/2—[LT: Qn(1 - (-1)""")/2

elements.

For each N > 1, let U1(Qn) =[], U1(@nN)v and Up(@Qn) =[], Uo(Qn)» be the
compact open subgroups of G(A7.) with U;(Qn), = U, for v € Qn, i = 0,1 and
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Ui(Qn)v = ¢5'Ui(v) for v € Qn, i = 0,1. Note that we have natural maps
TZ\“UQN U1(Qn),0) — TZ\"UQN (Uo(QnN),O) — ’]I‘Z:UQN (U,0) — T;(U7 0).

Thus m determines maximal ideals of the first three algebras in this sequence
which we denote by mg, for the first two and m for the third. Note also that

T} 9N (U, O) = TL (U, O) by the proof of Corollary 3.4.5 of [CHTOS].

For each v € QN choose an element ¢y € Gy lifting geometric Frobenius
and let wy € O, be the uniformiser with Art; wy = ¢75|L%b. Let P3(X) €
TfUQN (U1(@Qn), O)mQN [X] denote the characteristic polynomial of Tmg (¢%). By
Hensel’s lemma, we can factor P5(X) = (X — A3)Qz(X) where Ay lifts 15(¢3)
and Qy(Ay) is a unit in TfUQN(Ul(QN),O)mQN. For i = 0,1 and @ € Ly of
non-negative valuation, consider the Hecke operator

Vo i=15" ([Ui(ﬂ) (1"0‘1 g) Ui(i)])

on Sx(Ui(@QN), O)mg,, - Let Goy = Us(Qn)/U1(Qn) and let Ag, denote the max-
imal [-power order quotient of G, . Let ag, denote the kernel of the augmentation
map O[Agy] — O. For i =0,1, let

Higx = [ @s(Var)SA(UA@QN), O)mg, -
vEQN

and let T; g, denote the image of TZ:UQN (Ui(@n),0) in Endp(H;,qgy). Let H =
SA\(U, O) . We claim that the following hold:

(1) For each N, the map

I @5(Ve,) : H = Hog,
vEQN
is an isomorphism.
(2) For each N, Hy g, is free over O[Aq, ] with

HLQN/aQN = HO,QN'

(3) For each N and each v € Qn, there is a character with open kernel V5 :
Ly — Ty, so that
(a) for each @ € Ly of non-negative valuation, V,, = Vz(a) on Hi g, ;
() (Tmg, @ Tion)lw,, Zs& (Vo Art;ﬂl) with s unramified, lifting 53
and (Vg o Artzal) lifting .
To see this, note that Lemmas 3.1.3 and 3.1.5 of [CHTO08] imply that Py(V,) =0

b

on Sx(U1(@nN), O)mg,, - Property (1) now follows from Lemma 3.2.2 of [CHT08] to-

gether with Lemma 3.1.5 of [CHT08] and the fact that TTUQN (U,0) = TL(U,O) .
Property (3) follows exactly as in the proof of part 8 of Proposition 3.4.4 of
[CHT08]. Note that Hiqy is a T} (U1(Qn), O)mg, [Goy]-direct summand of
SA(U1(@N), O)mg,, - Moreover, it follows from the fact that U is sufficiently small
(see Lemma 3.3.1 of [CHTO8]) that S\(U1(QnN), O)me,, is finite free over O[Gq ]
with G -coinvariants isomorphic to Sx(Up(@n), O)mg,, via the trace map trg,, -
It follows that Hy,g, has Gq,-coinvariants isomorphic to Ho,q, via trg,, . Fi-
nally, note that by (3) the action of a = (ag)vegy € Goy on Hi g, is given by
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[Tocoy Vi(az). Since each ¢ is unramified, the action of Gg, on Hy g, must
factor through Ag, and (2) follows.
For each N, the lift rm, ® Ti,gy of 7 is of type Sg, and gives rise to a
surjection ng‘;‘\’[ — T1,gy- Thinking of Ag, as the maximal [-power quotient of
univ

11 Iy, the determinant of any choice of universal deformation r gives rise
VEQN v . SQN

to a homomorphism Ag, — (Rgg}‘;)x. We thus have homomorphisms O[Ag,] —
Rsyy — RESN and natural isomorphisms Rgy /agy = R and RESN Jagy =
RQ".

Let
T = O[[Xv,i,j NS T,i,j = 1,,’[7,]]
Choose a lift r3"V : G+ — G, (RY"Y) representing the universal deformation. The

univ

tuple (g™, (1, + Xy, j)ver) gives rise to an isomorphism

Rg" = REV@oT.
For each N, choose a lift rggi; G+ = G (Rggi:,) representing the universal defor-
mation with rggi; mod ag, = rgni". This gives rise to an isomorphism RESN =
Rggi:] ®eT which reduces modulo ag, to the isomorphism RET = Rg“i"@@T.
We let

O
HY" = H@pyw Rg"
DT . . I:lT
Higx = Hiox ®rg Rsl
Or _ . Or
Troy = Tiew O Rsg,-
N

Then HID,CSN is a finite free T[Ag, |-module with HID,CSN/QQN >~ [H7 | compatible
. . . | ~ pO
with the isomorphism Rg” Jagy = Rg™.
Let g = ¢ — qo and let

A = Zf
Roo = RIOC[[xl, coZg]]
S = TlAx]]

and let a denote the kernel of the O-algebra homomorphism S., — O which sends
each X, ; ; to 0 and each element of A, to 1. Note that S is a formally smooth
over O of relative dimension g+n?#7T. For each N, choose a surjection A, —» Aoy
and let ¢y denote the kernel of the corresponding homomorphism Soe — T[Ag, |-
For each N > 1, choose a surjection of R!°°-algebras

Or
L

W; regard each RESN as an Sec-algebra via Soo - T[Ag,] — RESN. In particular,
RSSN /a = REMY.
Choose a sequence of open ideals (by)n>1 of So with

e by Dy
e by D bN—i—l
e Nyby = (0).
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Let T = Tx(U,O)n. Choose a sequence of open ideals (0x)n>1 of R with the
following properties:

o by RYY 4 ker(RYY — T) Doy D by REY

® Oy DOnNy1

e NyON = (O)
In the first bullet point S acts on RE™MY via the quotient Soo/a = O. In what
follows, we also consider Sy, acting on T and H via the quotient S /a.

For each N > 1, define a ‘patching datum of level N’ to consist of a tuple

(¢, M, 1)) where

e ¢ is a surjective homomorphism of O-algebras
¢ : Roo — REVY .

e M is a module over ROO®OSOO which is finite free over So, /by .
e ¢ is an isomorphism of O-modules

Y :Mja—"5 H/by

compatible with the action of Ry, on M /a, the action of RE™Y /oy on H/by

(via REMY/on — T/bx) and the homomorphism ¢.
We consider two such patching data of level N (¢, M, ) and (¢, M’,9)’) to be
equivalent if ¢ = ¢’ and there is an isomorphism M = M’ of Re®Seo-modules
which is compatible with ¢ and ¢’ when reduced modulo a. Note that there are
only finitely many patching data of level N up to equivalence. Note also that given
N’ > N > 1 and a patching datum of level N’, we can obtain a patching datum of
level N in an obvious fashion.

For each M > N > 1, let D(M, N) be the patching datum of level N consisting

of

e the surjective homomorphism
Or Op __ puniv univ
ROO_»RSQ]\/I_»RSQAI/CL_RS _”RS /DN

e the module HFCBM/[JN which is finite free over S /by and acted upon by
R via Roe — Rg? = Ty,

e the isomorphism
HY% [(a+by) = Hfby

which is compatible with the homomorphism R., — RESM — Rgni" JON.

Since there are only finitely many patching data of each level NV, we can and do
choose a sequence of pairs of integers (M;, N;)i>1 with M;11 > M;, Nip1 > N;
and M; > N; for all ¢ such that D(M;11, N;+1) reduced to level N; is equivalent to
D(M;, N;). In other words

e for each 4, the homomorphism

. . N
G R RST = RST Ja=RE™ = RE™/oy
i1

i1
M4

when reduced modulo dy, is equal to the homomorphism

O O i i
¢'L : Roo —» RSCFQFM,. —» RSCFQFM /a — RgﬂlV — Rgmv/aNi.
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e for each 4, we can and do choose an isomorphism of R ®eSs-modules
O ~ 700
Yi ¢ Hl’ggMHl /bNI = HLg«?Mi /le
Taking the inverse limit of the ¢; gives rise to a surjection
Ry, — REMY,
Define
HY™ = lim HE /b
oot # 1,Qu, /U Ni
(]

where the limit is taken with respect to the ;. Then H, EOT is a module for Roo®0 Seo
which is finite free over S.,. Note that the image of S, in Endg_ (HZ7) is contained
in the image of R (indeed, the image of R+, is closed and the corresponding
statement is true for each H E Oar /bN;). Since Sy is formally smooth over O, we
can and do factor the action of S, on HJT through R, (note that it suffices to
define the factorisation on a set of topological generators of So, over O). Note that
we have

Hmja= H
compatible with the surjection Ro, — RMV. Since Ro, is equidimensional of
dimension
L+n®#T+ LY : Qn(n—1)/2+¢—qo = L +q+n*#T —[L* : Qn(1 - (-1)* ") /2
and HJT has mp_-depth at least

1+ q+n?#T

(the dimension of S ) we deduce from Lemma 2.3 of [Tay08] that p = n mod 2.
Hence
14+ q+n’#T =dim R + ¢

and taking M., = H, EDT, the sublemma is proved. O

Since proving the sublemma was our only remaining task, the automorphy lifting
theorem is proven. ([

3.6.2. Totally real fields.

Theorem 3.6.2. Let 't be a totally real field. Letl > n be a prime and let K C Q,
denote a finite extension of Q with ring of integers O and residue field k. Assume
that K contains the image of every embedding F* — Q. Let

p: GF+ — GLn(O)

be a continuous representation and let p = p mod me. Suppose that p enjoys the
following properties:
(1) pV = pe"~Lx for some character x : Gp+ — O* with x(c,) independent of
vloo (where ¢, denotes a complex conjugation at v).
(2) The reduction p is absolutely irreducible and p(Gp+(,)) C GLy(k) is big
(see Definition 4.1.1).
(8) (F+)kerad? does not contain (.
(4) There is a continuous representation p' : Gp+ — GL,(O), a RAESDC
automorphic representation m of GLy,(Ap+) which is unramified above [
and v : Q, — C such that
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(a) 0 80Ty = r1,(m) : Cs — CLo(@) and ()" = fer1x’ for some
character X' : Gp+ — O* with Y =X.
() p=7.
(c) For all places vl of F*, either p|GFv+ and m, are both unramified, or
the following both hold:
* Ve, worle,; andple,, ~o e,
L4 X|I i =X lIF+
(d) For all places u|l, p|GF ~plap, -

Then p is automorphic.

Proof. Extending O if necessary, choose a quadratic CM extension F' of F'™ and
algebraic characters 1,1’ : Gp — O* such that the following hold.

(i) F is linearly disjoint from erﬁ(g) over F'T.

(ii) Each place of F'* lying over [ and each place at which p or 7 is ramified splits
completely in F.

(iil) ¥ = xlap-

(iv) ¥ and @’ are crystalline above .

(v) ' (W) =Xler-

(vi) Let S denote the set of places of F' which divide [ or which lie over a place of
F* where p or 7 ramifies. Then for all w € S, we have ¢'|;, =[r, .

(vit) =7

(Take F to be a quadratic CM extension of F'™ satisfying (i) and (ii). Use Lemma

4.1.5 of [CHTO8] to construct a 1 which satisfies (iii) and (iv). Note that x and x’

are crystalline characters of G p+ with the same Hodge-Tate weights. In particular,

for each place v|l of F* we have x|r o = X |1 + We can therefore apply Lemma

4.1.6 of [CHTO8] to find a v’ satlsfymg (v), (v1) and (vii).)

Let r = ¢plg, and ' = ¢'p'|g,. Then ¥ = #, r¢ = ¢Vel=™ and (/)¢ =
(r’)vel_”. For w € S, Lemma 3.4.6 implies that 7|g, ~ 7'|g., if v|l and both
rlgg, ~o r'lap, and 7’|, ~o r|ay, otherwise.

The theorem now follows from Theorem 3.6.1 applied to r|¢, and r’|g,., together
with Lemma 1.5 of [BLGHTO09]. O

3.6.3. Finiteness of a deformation ring. We now deduce a result on the finiteness
of a universal deformation ring. This result is not needed for the main theorem, so
this section may be skipped by readers interested only in the Sato-Tate conjecture.
However, we believe that it is of independent interest, and it will prove useful to us
in future work.

Let F be an imaginary CM field with totally real subfield F* and let ¢ be the
non-trivial element of Gal(F//FT). Let n € Z>; and let | > n be a prime. Let
K C @Q denote a finite extension of Q; with ring of integers @ and residue field
k. Assume that K contains the image of every embedding F' < Q,. Suppose in
addition that each place of F* dividing [ splits in F. Let

p:Grp — GL, (k)
be a continuous homomorphism and suppose

p/ : GF — GLH(O)
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is a continuous lift of p which is automorphic of level prime to [. In particular,
()¢ = (p')Vel™™. By definition, there is an RACSDC automorphic representation
7 of GL,(Ar) (which is unramified above ) and an isomorphism ¢ : Q, — C
such that p' ® Q; = 7, (7) : Gr — GL,(Q;). Suppose that every finite place of
F at which 7 is ramified is split over F*. Let S; denote the set of places of I’
lying above I. Let R denote a finite set of finite places of F'* disjoint from .S; and
containing the restriction to F'* of every finite place of F' where 7 is ramified.

Let 0p/p+ be the quadratic character of G+ corresponding to F. By Lemma
2.1.4 of [CHTO08] we can and do extend p and p’ to homomorphisms 7 : Gp+ —
Gn(k)and r' : Gp+ — G, (O) with '@k = 7, Flg, = (0, ™), "' |gp = (' lgp, €87™)
and vor' = 61*"5;/F+ for some u € (Z/27) (which is independent of the choice of
r').

For each v € RU S choose once and for all a place v of I’ lying above v. Let R
and S; denote the set of v for v in R and S respectively. For each v € R, let REl'G

v

denote the universal O-lifting ring of 7|, . Suppose that for each v € R and each
minimal prime ideal g of RE‘G , the quotient R%’G /p is geometrically integral.
F~ F~

Note that this can always be achieved by replacing O with the ring of integers in
a finite extension of K. Suppose that the lift r’|g, corresponds to a closed point

of Spec R%‘GF [1/1] which lies on only one irreducible component. Let Ry denote

the quotient of RE‘GFN by the minimal prime ideal corresponding to this irreducible
component.

For v € Sy, let A5 be the element of (Z% )Hem(Fo-K) with the property that |G
has [-adic Hodge type v),. Suppose that for each minimal prime ideal g of R;‘AGEF’CT,

the quotient R:ﬁ;’cr /p is geometrically integral. Let Ry be the quotient of R:ﬁ;’cr
Fy .

by the minimal prime ideal corresponding to the (necessarily unique) irreducible

component of Spec R,Zlf’cr[l/l} containing ’|q,. .
F b

Consider the deformation problem
8= (F/FY RUSLRUS:, 0,7, 0 s {Ribucnos, )

By Lemma 3.5.1, the rings Ry for v € S; U R satisfy the property (*) of section 3.5.
Let R§"Y be the object of Cp representing the corresponding deformation functor.

Proposition 3.6.3. Maintain the assumptions made above. Suppose in addition
that

(i) p(Gr(e)) C GLy(k) is big, and

(ii) F 7 does not contain .
Then

(1) RV is a finite O-algebra.

(2) An;/ Q,-point of grr‘iv gives rise to a representation Gg — GL,(Q,;) which

’

is automorphic of level prime to [.
(8) u=mn mod 2.

Proof. Choose a place v; of F' not lying over [ and such that

e v; is unramified over a rational prime p with [F((,) : F] > n;
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e vy does not split completely in F({;);
e p and 7 are unramified at vy;
e adp(Frob,,) = 1.
Choose an imaginary CM field L/F such that:
L/F is solvable;
L is linearly disjoint from fkcw((l) over F;
4|[L* : Ft] where LT denotes the maximal totally real subfield of L;
L/L7* is unramified at all finite places;
Every place of L over v; or cv; is split over LT. Moreover, v; and cv; split
completely in L;
The places v € R U S; split completely in L*.

Let Sp; denote the set of places of LT dividing [ and let Ry, denote the set of places
of LT lying over R. Similarly, let St 1 and Ry denote the sets of places of L lying
over Sl and R respectively. Let Sf, , denote the set of places of Lt lying over the
restriction of v; to F*. Let SL_,a denote the set of places of L lying over v;. Let
T =S, ]1RL]]SL,qa and let T = §L,l 11 R 11 §L7a so that T consists of one place
v for each place v € T.

For v € R, USL;, let Ry = Ry

vlF

regarded as a quotient of RE‘]G (note that
Ly
Fy. — Lz by the choice of L). For v € Ry U SL a let R Pla, be the maximal [-

torsion free quotient of R;' . Forv e Sp ,, F\c is formally smooth over O and
Ly Ly

we let Ry = REG = RT|G . For each v € S, let Ay = A

Consider the deformation problems

o (Zi)Hom(L;,,K).

1 n o ,CT
6L/L+’ {RT|G

L+’

SL = <L/L+,T,T,O,f|G }UESLL U{Rr‘G }UERLUSL a)

St = (L/LJr T, T 0, T|GL+’ - 6Z/L+’{R5}”€T)'

By Lemma 3.5.1, the rings R:| 7" , Ry forv e Sp, R TD‘G , Ry for v € Ry, and
—0O
Ry . for v € S, satisfy the property (*) of section 3.5. Let R“’“V and R“”“’

be the objects of Cop representing the corresponding deformation functors. Note
that there is a natural surjection R“‘“V Ru““’ Note also that there is a natural

homomorphism of O-algebras R“mV, — R“mV Which is obtained by restricting the

universal deformation of type S, to Gp+. "This map is finite by an argument of
Khare and Wintenberger (cf. Lemma 3.2.5 of [GG09]) and hence it suffices to show
that R“n“’, is finite over O.

Let G/o,, be an algebraic group as in section 3.2 (with F/F* replaced by
L/L7"). By Théoréme 5.4 and Corollaire 5.3 of [Lab09] there exists an automorphic
representation IT of G(A+) such that 7y, is a strong base change of II. Let U =
[1, Uy € G(AS%) be a compact open subgroup such that

e U, = G(OL:r) for v € Sp; and for v & T split in L;

e U, is a hyperspecial maximal compact subgroup of G(L;") for each v inert
in L;

e U, is such that ITY> # {0} for v € Ry;
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o U, =ker(G(Op+) — G(ky)) for v € S q.

Let fl denote the set of embeddings L — K giving rise to one of the places
v € Spy. Let A = (Ag)ves, , regarded as an element of (Z')" in the evident way and

let S)(U, O) be the space of l-adic automorphic forms on G of weight A introduced
above. Let TI(U,0) be the O-subalgebra of Endp(Sy(U,O)) generated by the
Hecke operators qu,j ), (Tqv(,,n))_1 for w a place of L split over L*, not lying over T'
and j = 1,...,n. The eigenvalues of the operators TQE,J) on the space (1 71II)V give
rise to a homomorphism of O-algebras T1 (U, O) — Q;. Extending K if necessary,
we can and do assume that this homomorphism takes values in O. Let m denote
the unique maximal ideal of T% (U, O) containing the kernel of this homomorphism.

Note that 7|g, is GLj,(k)-conjugate to 7, where 7y, is the representation associ-
ated to the maximal ideal m of TZ (U, O) in section 3.2. After conjugating we can
and do assume that 7|, = 7. Since m is non-Eisenstein we have a continuous lift

m: Gt = Gu(TE (U, 0) )

of 7. Properties (0)-(3) of 7y and the fact that T (U,O)y is I-torsion free and
reduced imply that 7, is of type Sp. Hence 7, gives rise to an O-algebra homo-
morphism
Rg™ = TX(U, O)m
(which is surjective by property (2) of 7).
We define

Vg CT

. PN =0
RIOC = (®”€SL,LRT‘GL~ ) © (®U€RLUSL'O,RF|GLN)

where all completed tensor products are taken over . Note that R!°° is equidimen-
sional of dimension 1+ n?#7T + [LT : Q]n(n — 1)/2 by Lemma 3.3 of [BLGHT09).

Sublemma. There are integers ¢, g € Z>( with
1+ q+n?#T =dim R +g¢

and a module M, for both Ro, := R'°[[21, ..., z4]] and Sec := O[[21, ..., Zn247: Y1, - - - Yql]
such that:

(1) My is finite and free over Seo.

(2) Moo/ (2i,y;) = SA(U, O)m.

(3) The action of So, on My, can be factored through an O-algebra homomor-
phism S, — Reo.

(4) There is a surjection Ro — RE™™ whose kernel contains all the z; and y;
which is compatible with the actions of Roo/ (2, ;) and RE™Y on Moo / (2, y;) =
S\(U, O)m. Moreover, there is a lift "V : G+ — G,(REMY) of F repre-
senting the universal deformation so that for each v € T, the composite

O loc univ . : univ
RHGLN — R = Re — Rg)" arises from the lift 7§!"[¢, .

Moreover, 4 =n mod 2.

This is proved in exactly the same way as the sublemma in the proof of Theorem
3.6.1 (for the fact that p = n mod 2, see the penultimate sentence of loc. cit.).
Points (1) and (3) tell us that the support of M in Spec R is a union of irreducible
components. Let

RIS® = ®@yer Ry
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Then RS¢ is a quotient of R'°° corresponding to an irreducible component (see
part 5 of Lemma 3.3 of [BLGHT09]). Let Ry v = Roo ®poc RIS, Again Reg
is a quotient of R, corresponding to an irreducible component. The lift 7’ |GL N
of 7|lg,, gives rise to a closed point of Spec Ro.[1/l] which lies in the support of
M and which lies in Spec Ry ,[1/1] but in no other irreducible component of
Spec Roo[1/1]. We deduce that Spec Ro .+ is contained in the support of Mo,. In
other words, in the terminology of section 2 of [Tay08], Mo, ®p., Reo is a nearly

faithful R.. ,~-module. It follows (by Lemma 2.2 of [Tay08]) that M., ®z_ RV

Sp
is a nearly faithful Rg‘;i‘f/—module. Note that Mo ®r__ Rgﬁi‘f, is a finite O-module,

being a quotient of S\ (U, O)n. Let I denote the annihilator of M. ®p_ Rgzi", in
RV . Then REWY /I is finite over O. The same is true of (REY )rd since I is
L,r L L,r

17‘/

nilpotent. It follows that Rg‘;" /me is Artinian (being Noetherian of dimension 0)

!

and hence Rg‘zi‘f, is finite over O by the topological version of Nakayama’s lemma.
We have established parts (1) and (3) of the proposition. For part (2), it is

clear from the above that any Q,-point of Rg’“i" gives rise to a representation
Gr — GL,(Q;) which becomes automorphic upon restriction to Gy and hence

is automorphic by Lemma 1.4 of [BLGHTO09] (since L/F is solvable). O

4. A CHARACTER BUILDING EXERCISE

4.1. The main purpose of this section is to prove a lemma allowing us to construct
Galois characters with certain properties. Before we do so, we must discuss the no-
tion of bigness and prove a result which will allow us to deduce that representations
are ‘big’ in certain circumstances.

We begin by recalling the definition of m-big from [BLGHT09].

Definition 4.1.1. Let k/F; be algebraic and m a positive integer. We say that a
subgroup H C GL,, (k) of GL, (k) is m-big if the following conditions are satisfied.

H has no [-power order quotient.
H(H,sl,(k)) = (0).
H'(H,sl,(k)) = (0).
For all irreducible k[H]-submodules W of gl, (k) we can find h € H and
a € k such that:
— « is a simple root of the characteristic polynomial of &, and if £ is any
other root then o™ # g™.
— Let mp, o (respectively ip o) denote the h-equivariant projection from
k™ to the a-eigenspace of h (respectively the h-equivariant injection
from the a-eigenspace of h to k™). Then 7 o 0 W o i, o # 0.

We simply write “big” for 1-big. If 7 is a representation of some group valued in
GL,,(k), then we say that 7 has m-big image if the image of 7 is m-big. If K is
an algebraic extension of Q; with residue field k£ and r is a representation of some
group valued in GL,,(K), then we say that r has m-big image if 7 has m-big image,
where 7 is the semisimplification of the reduction mod [ of r.

The following lemma is essentially implicit in the proof of Theorem 7.6 of [BLGHT09],
but it is hard to extract by reference the material we need from the proof there, so
we will give a self-contained statement and proof.



SATO-TATE 27

Lemma 4.1.2. Suppose that F is a totally real field, 1 is a rational prime, m* is
a positive even integer not divisible by I, n is a positive integer with | > 2n — 2,
r: Gp — GLn(Z) is a continuous l-adic Galois representation, and M is a cyclic
CM extension of F' of degree m™ such that:

o M is linearly disjoint from F**'7(¢;) over F, and
e cvery prime v of F' above | is unramified in M.

Suppose also that 0 : Gy — le is a continuous character.

—ker ad 7

(1) Suppose [erradr_(g‘l)  F | > m*. Then the fized field of the kernel of
the representation ad(F @ Indgf/l ') does not contain (.

(2) Suppose that r|G,,, has m*-big image and that (?I)@/)C can be extended
to Gr. Suppose further that there is a prime Q of M lying above a prime
q of F lying in turn above a rational prime q, such that:
e 1 is unramified at all primes above ¢,
°* qF#l,
q splits completely in M,
q is unramified in F*"7((),
q—1>2n,
(0")(0")¢ is unramified at primes above q, and
q|#0'(Iq) (and so q|#0'(Iq<)), and 0’ is unramified at all primes above
q except Q and Q°.
Then (r ® Indg" ¢')

|GF<<1> has big image.

Proof. We will begin by proving the first part; so suppose that r has the property as-
—ker ad 7 —ker ad 7
sumed there. By the given assumption, there is an element of Gal(F — (&)/F ")
(&)

—ker 7 —ker ad 7
er ad F( —ker ad 7

of order larger than m*; using the assumption that M and F© ({;) D F
Q)/F M)
—ker ad 7

with the same property, and lift this to an element o of Gal(F/MF ). (This
element will have the property that €;(c) has order > m*.) Let 7 be a generator of
Gal(M/F). Then lift 7 to an element 7 of Gp; let

. Ce . . —k
are linearly disjoint over F', we can consider this as an element of Gal(M F

m*—1

o = H FloF!
i=0

and notice that ad(F ® Indg; 0') is trivial on o', while €(c’) = &(c)™ # 1. This
proves (1).

We now turn to proving the second part; so let us assume that we have k, ¢, q, Q
with the properties stipulated there. We will follow the proof of Theorem 7.6 of
[BLGHTO09] very closely. Since [ > 2n — 2, the main result of [Ser94] shows that
ad f|GF(CL) is semisimple, and we may write

(4.1.1) adf|GF(<l) :VOEBmo EB‘/l@nn @@Keams

where the V; are pairwise non-isomorphic, irreducible F;[G F(cy)-modules and the
m; are positive integers. Let V) = 1. By the assumption that T|GF<<Z) has m*-big

image, mo = 1. Adopting r’ as an abbreviated name for Indg; 0', let us choose

€0y---,€m+_1 a basis for r’ as follows. First, choose 7 € Gp a lifting of 7 €
Gal(M/F). Then, choose a non-zero primitive vector eg in v’ such that 7'(o)eq =
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0'(0)eq for all o € Gy, and set e; = r/(7)eg for z =1,...,m* — 1. Note that this

means that (Gps acts on e; via the character 07 . Moreover7
' (7)(eme—1) = 7 (F™ eg = 0/ (F™ eg

Now let fo,..., fm_1 be the basis of Hom(r’,7Z;) dual to eq,...,em~_1. Let us
quickly establish a sublemma:

Sublemma. Suppose there is some character ¢ : Gy — EX which is unramified at

_  _zk _=l _=m _ _=m _ =l _ =k
primes above ¢ such that '/’ =07 /0’ ) (or equivalently 0'0'" =67 0'" );
then either k =m and | =0, k—Oandl—m orl— m*/2) + k and m = m* /2.

Conversely, if kK = m and [ = 0, then 0’/0’ =07 /9’ " and the same is true if
k=0andl=m,orifl=(m */Z)Jrkandm m* /2.

Proof. For the first part, we consider the action of inertia above q on each side of
g =070

We first set up some notation. Let ¢;, denote the inclusion of I into G'as, and
let § := 0" o17,. (Note that § is not trivial, by our assumption that q|#6'(Iq).)
For i an integer, let ¢z : Gy — Gar denote the ‘conjugation by 7%’ map, and let
8; == 0" o czi oty,. Observe that g = 6, that §; is trivial for i # 0,m*/2 (by the
assumption that 8" is unramified at all primes above q except Q and Q°¢), and that

_ 7:771*/2 .
Omejo = 071 (since 8pxjo = (0 0 Czmes2 0 115) = (0 otrg) = (") o) =
(1/0") o 11,) = 1/3, where the penultimate equality is by our assumption that
(0")(6")¢ is unramified at primes above q).

Now let us consider the maps §; := (9_’0_’%7”) o czi o tp, for each i. These maps
are clearly trivial unless ¢ = 0, m*/2, m or m + (m*/2) (considering ¢ mod m*).
Let us split into cases:

e We have m # (m*/2),0. In this case, it is easy to see that the values i = 0,
m*/2, m or m+ (m*/2) mod m* are distinct. It is also easy to see that §;
for these i values are (respectively) §,01, 8,01, where § is some character.

On the other hand, consider f] := (g’Tlé’Tkw) © czi 0 tr,. For these
maps to be nontrivial for 4 distinct values of ¢ mod m™*, as they must, we
need | # k,k + (m*/2); then it will be nontrivial for ¢ = I, [ + (m*/2),
k, k + (m*/2), for which values of i we get 6,671,6,5 ! respectively; and
comparing, we conclude that [ =0 and k = m or | = m and k = 0 (since
§#671).

o We have m = 0. In this case, §; is nontrivial for ¢ = 0 or ¢ = m*/2 (mod
m*), which are distinct, and the corresponding 3; are (respectively) 62,67 2.

Now consider 3} := (9’ (9’ 1/1) o czi 0L, . For these maps to be nontrivial
for at most two values of i we need [ = k or [ = k + (m*/2), and in the
latter case we see that all 5] are in fact trivial. Thus we must have [ = k.
Comparing the ¢ for which 8; and 3] are nontrivial, we see that [ = 0.

e We have m = m*/2. In this case, it is easy to see that all 3; are trivial.

Now, considering S, := (é’T 6" ¥)ocziotr,, we see that for these maps to
be nontrivial for at most two values of ¢ (as they must be) we need | = k or
Il =k+ (m*/2), and we see that only in the latter case is it in fact trivial
for all values of i.
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For the converse, if kK = m and [ = 0, the fact that 0_’/0_’% 9//0/ is trivial.
Similarly, if & = 0 and = m, we need to prove that 0//0' = @ /@, which is
also trivial. Finally, if | = (m*/2) + k and m = m*/2, it remains to show that
(0)(0") = ((97)(97)0)%’“ (where we write c for complex conjugation), which is true
since one of our hypotheses is that (6”)(0")¢ can be extended to Gp. O

We can now decompose:

m*—1
(4.1.2) ad |G, = P w, | @ (@ Wi>
) _

x€Hom(Gal(M (¢;)/F(¢1)).F)

where
o W, is the span of 7 " "1 (79)e; @ fi, so Wy = Fy(x).

o W; is the span of {€; ® fi+;}j=0,...m—1, s0 W; = Indg;(fé)) (9’/9’%71).

From this we turn to study 7 ® 7/, which we will abbreviate 7/. We can decom-
pose:

(4.1.3)
S S m—
0d'l6y, = | D & vito™ o | @D @ v oW
I=0 xeHom(Gal(M (&) /F(¢1)).F) J=0 =1

We then have the following straightforward lemma:

Lemma. The decomposition 4.1.83 enjoys the following properties:
(1) Each V;(x) is irreducible.
(2) We have V;(x) # Vy ( ") unless x = X/ and j =j'.

(3) Each V; @ W; = IndGF(fC”)(V ® 9’/9’ ) is irreducible; moreover, we have

IndGAF;(C;I))(Vj ® 9’/9’ ) a2 IndGF(C’) (Vi ® 9’/9’ ) unless j = j' and i €

M(Gp)
{¢/,m* —i'}.

(4) Vi(x) # Indg" (Vs @ 0/87 ) for all x,7', 5,5

Proof. For part 1, see equation 4.1.1 and the remarks immediately following it.
Part 2 is clear, because M is linearly disjoint from EF¥*7((;) over F. Both of the
assertions in part 3 follow from (a) the fact that the only cases where Gy, acts
via the same character on eg ® fr and ¢; ® f,, are when k =m and [ =0, k=0
and | = m, or | = (m*/2) + k and m = m*/2 (this fact is our sublemma) and (b)
from examining the action of inertia above ¢. Finally, part 4 again follows from a
consideration of the action of inertia above q. ([

It is immediate (since there are no terms in the decomposition of ad ™|,
isomorphic to 1 other than V;(1)™) that

H°((ad ") (G r(e,)),ad’ 7') = (0).

Let H (resp. H', resp. H"”) denote the image (ad 7)(Gp(c,)) (resp. (ad7)(G p(c,)),
resp. (ad7)(Gp(c,))). We note that the only element of H which is a scalar when
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thought of as an element of Autad is the identity'; and the same is true for H’,
so that

HxH' — Aut(ad7”) and kerad 7’|, , = kerad 7|, ,Nkerad 7

Thus, if we define K, = ((kerad7|c, ), (keradr
Gr()/Ku, we have maps

,|GF(g,) (=Kn, say)

/|GF(q))> < Gy, and H =

G G — G G
a0 = F_(Cl) L FC) and 7 H — F_sCz) _, TP
keradr\GF(cl) K, kerad T |GF(C[) K,
such that G,y = {(h,h') € H x H'|r(h) = «'(h')}. (This is surjective; it suffices
to show a) that for each h € H, the image contains (h, z) for some x, and b) that

the image contains (e, h’) for each A’ in the kernel of 7/, both of which are clear.)
Finally,

ker(GF(Q) d {(h,hl) € H x H/"]T(h) = W/(h/)}) = ker(GF(Q) — H x HI)
= ker(Gp(,) = H) Nker(Gp(,) = H') = Kn = kerad 7’

and hence there is an isomorphism H" = Gp(,)/kerad|g, ., = {(h,}') € H x
H'|m(h) = «'(h')}.
Let K’ denote the kernel of 7. It is the case that:
e The image of the inertia group at any prime above g in H' is contained in
K’ (as 7 is unramified above q).
o K' < H' — Gal(M(¢)/F({)) is surjective (since M is linearly disjoint
from er”(cl) over F).

From this we easily see that (ad#)X" = ad# (use the decomposition (4.1.3)),
and hence (by inflation-restriction, using the fact that [ 1 #K’, so that the group
H'(K’,ad’ #") vanishes, and the assumption that TG p(,, has big image) that:

(0) = H'(H,ad’7) = H'(H"/K', (ad7")*") 5 H'(H",ad" 7).
All that still remains is to show the non-group-cohomology-related part of the
definition of ‘big image’. To this end, let us fix a copy V; C ad 7. (Note that every
copy of Vj(x) C ad” will be of the form V; ® W, for some copy of V; C adf;

this uses our analysis, above, of the conditions under which terms in the direct
sum (4.1.3) are isomorphic.) Since T|GF(CL> has m*-big image, hence big image, and

=H

'l
Gr)

M is linearly disjoint from er”(cl) over F', we see that r|g,, ., has big image.
Thus we can find a 0 € Gy(¢,) and a simple root « of the characteristic polynomial
det(X — 7(0)) such that 754y o Vjir(o),a 7 (0). Altering o by elements of inertia
subgroups at primes above ¢ (which does not affect #(c)), we can assume? that

for i = 1,...,m* — 1 the ratio (5’/(9_’%1)(0) does not equal o'/« for any root o

n case it will help avoid confusion, let us spell this out a little more. The representation 7
can equivalently be thought of as a vector space Vi on which the Galois group acts; similarly, we
can think of the representation ad 7 as a vector space V,q = with an action of the Galois group; the
underlying vector space of V,q is just the vector space Endyectspe Vi of endomorphisms of the
underlying vector space of V. Each element h of H determines an element of Autvectspe Vad 73
this is what we mean by h ‘thought of as an element of Autad7’.

2In particular, we note that we can alter the quantities 28 (o) for 1 <4 < (m*/2)—1 indepen-

_ ; i
dently of each other, and of 6’ (o), since altering o by inertia at a prime 07" will only affect 67 (o)

_ =it (m*/2) - _ i (m*/2)
and 6'7 (o). Moreover, since (8’/6’" )(o) and (6’/6'" )(o) are related via the fact
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(including ) of the characteristic polynomial det(X —7(c)). (That this is possible
relies on the fact that ¢ > 2n+1.) Thus af’(0) is a simple root of the characteristic
polynomial of 7/(o) and, for each ¥,

Tw1(a),00 (o) © Vi (X) © G5r(a),a6 (o)

m*—1
= (T (0),0 © Vj 0 ir(0),a) (”ma),e'(o) ° < Yo x e ﬂ-) ° if’(ow(a))

=0
= T (o),a © Vjo 17 (0),a # (0)

Next, let us fix j € {0,...,s} and i € {1,...,m*/2}, and let v : W; = W,_
be the isomorphism such that y(eg ® fi) = €(m=/2)+i ® f(m=/2)- (In the special case
2i = m*, v will happen to be the identity; we will in fact not make use of v in this
case.) We can write any submodule of ad 7 which is isomorphic to V; ® W;
as:

/|GF<< )

{m@) @ w+mn2(v) @ y(w) :v e V;,we W;}

where 11,72 are embeddings V; — adr, and where we suppress the second term
in the sum if 2¢ = m*. (This uses our analysis, above, of the conditions under
which terms in the direct sum 4.1.3 are isomorphic.) Using the fact that T‘GFK;) is
m*-big, we can find a 0 € Gp(¢,) and a root a of det(X — 7()) such that:

® T7(o),a © V} © Z.'F(O'),a 7é (0) .
e No other root of det(X — 7(o)) has m*th power equal to o™

Since M is linearly disjoint from er”:(cl) over F', we may additionally assume:
e o maps to the generator 7 of Gal(M ((;)/F (1))
Define By, ... Bm+_1 by:

7:,(0')67; = /81'61'_;'_1

(where we take subscripts modulo m*). The roots of the characteristic polynomial
of 7(o) are exactly the m*th roots of By83i...B8m<—1. If B is such a root, so
8™ = Bof...Bm~_1, then a corresponding eigenvector is:

vs —€o+% 1+5;§1 2*"*%%*_1

and the corresponding equivariant projection is

ﬁj
@8 = m*Bop . -~5j—1UB

757" (o)
)(0))/(8 (o)),

that (07)(6")¢ is unramified at all places of M above ¢, we may ensure that

(
avoids taking the value o’ /a by ensuring that 8 (o) avoids the value (o (6/6"¢
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We see that a3 is a simple root of the characteristic polynomial det(X — 7/ (o)),
and that for v € Vj
Tr(0),08 © (M(0) @ €0 @ fi +12(v) @ e(m+/2)1i @ flam/2)) © U7/ (0),08
= (T7(0).a © (V) © in(0).a) (M7 (0,8 © (€0 ® fi) © 7 (0),8)
+ (Ti(0),0 © M2(V) © ir(0),0) (T (0),8 © (€(m= /2)+i @ f(m*/2)) © i7(e),8)
1 Bo...Bioa

= (Tr(0),a ©M(v) © if(a),a)m* 5

pm /2 Bo - B a1
m*Bo .. Bnxj24i-1 pme/2

+ (7‘-?(0),04 o 772(U) © 7;?(0),04)

. Bo-.-Bi-1 . g
ﬂ-FJ,aonl(U OZFO’,Q%—FFFG’,O(OTIZUOZ’FUAO() )
(Frer 0m0) @ inon ) FE + (ot om0 i) g
This will be nonzero for some choice of 8 and v.
Since all terms in the sum (4.1.3) are isomorphic either to a V;(x) or a W; @ Vj,
the only remaining point is to check that 7'(Gr(¢,)) has no quotients of [-power

order. It suffices to prove that H"” = (ad7")(Gp(c,)) has no quotients of [-power

1

m*

order (because the group of scalar matrices in GLy,y,~ (F;) has no elements of order
divisible by [). Since m* is not divisible by I, H’ has order prime to [, and we
see that any quotient of H” of l-power order would also be a quotient of H. Since
T‘Gﬂcl) has m*-big image, H has no quotients of [-power order, and we are done. [

4.2. We now return to the main business of section: constructing characters. For
the entire remainder of this section, we will be working with the following combi-
natorial data in the background:

Situation 4.2.1. Suppose that F is a totally real field, [ is a rational prime which
splits completely in F, and that we are given the following data:

e A partition of the set of primes above [ into two subsets Sg.q and S,
e For each prime v above [, integers a, and b,, and
e A set T of places of F', not containing places above I.

such that the sum —2a, + b, takes some fixed value, w say, independent of v.

(It may be helpful to the reader if we remark that this combinatorial data is
intended to be related to the automorphic representation 7 of GLa(Ap) with which
we will eventually be working in the following manner: the sets Sqo.q, Sss reflect the
places above | where 7 is ordinary and where it is supersingular; 7 is thought of as
being associated to a Galois representation having Hodge-Tate numbers {—a,,, b, —
a,} at the place v; and the set T' contains the places away from [ where 7 is
ramified.)

We define a certain integer m*, dependent on the set of b,’s of Situation 4.2.1,
but not on the prime [ itself.

Definition 4.2.2. Let B = {b,|v a prime of F above [}, considered as a set with-
out multiplicity. We define the integer m* to be the least common multiple of the
integers in the set {2} U B.

We have seen in the previous section that our lifting theorems require us to
maintain careful control of the lattices with which we work. We therefore single
out certain lattices which will be important in the sequel.
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Definition 4.2.3. Suppose we are in the situation of Situation 4.2.1. We make the
following definitions:

(1)

Suppose that v € Sy is a place of F' above [, and let L be the quadratic
unramified extension of F, in F, (so that L is isomorphic to Q). Let
K be a finite extension of Q; with ring of integers O, and suppose that
X : G — O* is a de Rham character. Finally suppose we have chosen
o € G, mapping to a generator of Gal(L/F,). Then we can consider the
ordered O-basis {fo, f1} of Indgf” X where f; : Gg, — O is the function
supported on ¢*G, and taking the value 1 on 0. We call this the o-standard
basis for Indg?’ X-

Continue the assumptions of the previous point. We get an ordered ba-
sis {go, .., gn_1} of Sym"~* Indg? X inherited (in the sense of Definition

3.3.1) from the o-standard basis on Indgf“ x defined in the previous part.

We call this the o-standard basis of Sym™ ™! Indgf“ X- (Concretely, consid-

ering Sym™ ! Indgf“ X as a quotient of (Indgf" )= g; is the image

of fo " @ )

Suppose M/F is a cyclic degree m* extension with F' totally real and M
CM, K is a finite extension of Q; with ring of integers O, 7 € GFr an
element mapping to a generator 7 € Gal(M/F), and 0 : Gy — O is a
character. We consider the ordered O-basis {eg,...,em*—1} of Indgif 0,
where e; : Ggp — O is the function supported on 7°G); with value 1 on 7,
and call this the T-standard basis for Indgz 6.

If v,L,K,M,x,0,0,7 are as above, then we consider Sym”* Indgf“ X ®
Indgif 0, which is a representation of Gr,, and has an ordered basis inher-
ited (in the sense of Definition 3.3.2) from the o-standard and 7-standard
bases on Sym™ ! Indg? x and Indg; 0 already defined. We call this the

(o,7)-standard basis of Sym" ! Indgfv Y ® Indg; 0.

We are now in a position to construct the characters we will need.

Lemma 4.2.4. Suppose we are in the situation described in Situation 4.2.1, and
we have fized an integer n and an extension F(P2) of F. Assume that | tm* and
Il > 2n—2. Then we can find a degree m* cyclic CM extension M of F, linearly
disjoint from F(*2Y) over F, and continuous characters

0.0 : Gy — 7,

which are de Rham at all primes above l, and which enjoy the following further
properties:

(1) 0,0 are congruent (mod 1).

(2) Suppose that v € Sy is a place of F above 1, and let L be the quadratic

unramified extension of F, in F, (so that L is isomorphic to Q). Suppose

that x, X' : G — @IX are de Rham characters with X = X'. Suppose
furthermore that the Hodge-Tate weights of x are —a, and b, — a,,, while
those of X' are 0 and 1.

Let K C Q, be a finite extension of Q; with ring of integers O, and
suppose that K is large enough that 0, 0', x and X' are all valued in O. Let
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(3)

(4)

(5)

(6)

(7)
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o € Gp, be an element mapping to a generator of Gal(L/F,), and T € Gp
an element mapping to a generator T € Gal(M/F).
Let L' be a finite extension of L in I, such that x|a,,, X’GL/, Oa,,, and

9'|c,, are all crystalline. Let

_ Gr,

px = (Sym" 1IndGi” X)la,, ® (Indgz Nla,,
_ G
and py = (Sym™ ' Ind&"™ X)|a,, ® (IndGr 0)a,,,

regarded as representations G — GLyy+ (O) with respect to their (o,T)-
standard bases. Note p, and p;, become equal after composition with the
homomorphism GLym«(O) = GLyy- (k). Assume in fact that L' has been
chosen so that this common composite is the trivial representation.

Then py ~ py (in the sense of Definition 3.3.5).
For any r : Gal(F/F) — GL,(Z;), a continuous Galois representation

—ker 7

ramified only at primes in T and above 1, which satisfies F~ ((;) C F(bad) .
® Ifr|Gp, hasm”-big image, then (r®Indg$ ) and (r@lndgfj 0"
have big image. )
o If [err adr(g“l) e T} > m* then neither the fized field of the kernel
of ad(T ® Indgif ) nor that of ad(f ® Indg; ") will contain ;.
We can put a perfect pairing on Indgij 0 satisfying
(a) (v1,v2) = (_1>n<v27v1>'
(b) For o € Gp, we have
(ov1,009) = (o)™ I Teg(g) (TN () gy)

where w is the Teichmdiiller lift of the mod | cyclotomic character.
Thus, in particular,

(IndGF 6)Y = (IndGF 6) @ ¢ "~ HImmuge-Hin-1),

(Note that the character on the right hand side takes the value (—1)"™ on
complex conjugations.)

Similarly, we can put a perfect pairing on Indgz 0" satisfying

(a) (v1,v2) = (=1)"(v2,v1).

(b) For o € Gp, we have (cvy,0vy) = €(0) ™" =D (v vy).

Thus, in particular, (Indg" 6')" = (Indg" 0') ® el(m*_l)".

(Again the character on the right hand side is (—1)™ on complex conjuga-
tions.)

Suppose v : Gal(F/F) — GLa(Z;) is a continuous representation with
Hodge- Tate weights {—a,, b, — a,} at v for each place v of F above l; then
Sym" 'r® Indgﬁ 0 has the following Hodge-Tate weights at v:

{0,1,2,...,m"n —2,m*n — 1}

|GF<q>

(for each v). In particular, Sym™ r ® Indgfl 0 is reqular.

Suppose 7' 1 Gal(F/F) — GLa(Z;) is a continuous representation with
Hodge- Tate weights {0,1} atv for each place v of F above l; then Sym™ ' '®
Indgij 0" also has the following Hodge-Tate weights at v:

{0,1,2,...,m"n —2,m"n — 1}

(for each v). In particular, Sym™ r’ ® Indgz 0" is reqular.
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Proof. Step 1: Finding a suitable field M. We claim that there exists a surjective
character x : Gal(F/F) — iy~ (where i~ is the group of m*-th roots of unity in

Q") such that

e x is unramified at all places of F' above (.

e x(Frob,) =1 for all v € Siq-

e x(Frob,) = —1 for all v € Sg.

e x(c,) = —1 for each infinite place v (where ¢, denotes a complex conjuga-
tion at v).

(bad)

—k
o "N s linearly disjoint from F' over F.

We construct the character y as follows. First, we find using weak approximation
a totally negative element o € F* which is a v-adic unit for each v|l, and which is
congruent to a quadratic residue mod each v € S,;q and a quadratic non-residue
mod each v € Sg. Let xo be the quadratic character associated to the extension
we get by adjoining the square root of this element. Then:

Xo is unramified at all places of F' above [.

Xo(Frob,) =1 for all v € Sgq.

Xo(Frob,) = —1 for all v € Sg.

Xo(¢y) = —1 for each infinite place v (where ¢, denotes a complex conjuga-
tion at v).

Now choose (for example by Theorem 6 of chapter 10 of [AT09]) a cyclic totally
real extension M;/Q of degree m* such that:

. . . . -k
e M;/Q is unramified at all the rational primes where F

ramified.
e [ splits completely in M.

F(bad) /Q is

Since F~ X0 p(bad) /Q and M;/Q ramify at disjoint sets of primes, they are linearly

—k
disjoint, and we can find a rational prime p which splits completely in F(Pad)F" X

but such that Frob, generates Gal(M;/Q). Since M;/Q is cyclic, we may pick an
isomorphism between Gal(M;/Q) and fi,», and we can think of M; as determining
a character x; : Gg — ftm~ such that:

e X1 is trivial on Gg,.
e Y is trivial on complex conjugation.
e x1(Frob,) = (p,+, a primitive m*th root of unity.

Then, set x = (x1|ar)xo0- Note that this maps onto pi,,-, even when we restrict to
G paa) (since p splits completely in F(*2) and if o is a place of F(P2D) gver p, we
have xo(Frob,,) = 1 while x1(Frob,,) = (mn+). The remaining properties are clear.

Having shown x exists, we set M = chrx; note that this is a CM field, and a
cyclic extension of F' of degree m*. Write 7 for a generator of Gal(M/F). Write
M for the maximal totally real subfield of M.

Step 2: Defining certain sequences of numbers. We now will now define certain
sequences of numbers. The reason for introducing them is that the characters 6 and
0" will be engineered such that their Hodge-Tate numbers at the primes above [ in
M will be given according to the sequences we are about to construct, and many
of the formulae we use in defining 6 and 6’ will require explicit mention of these
numbers. Thus it will be helpful to have introduced notation for them.
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In particular, for each prime v of F' above [, we define m*-tuples of integers
(ho,0,- -+ Ryme—1) and (), 01 h;),m,*—l) by putting:

(ho,0s- -y home—1) = (ap(n —1),1 + a,(n —1),24+a,(n —1),...,b, — 1+ a,(n —1),
bon+ay(n—1),byn+1+a,(n—1),...,0,n+ (b, — 1) + a,(n — 1),
(m* —by)n+a,(n—1),(m* —b,)n+ 1+ a,(n—1),
(M =by)n+b, — 14+ a,(n—1))

(Boygs -y by e 1) = (0,1,2n, ..., (m* — 1)n).
We note that, so defined, h and A’ satisfy, for each i:
(4.2.1)
hoi+hyme—i—1=(Mm" —=by)n+b, —1+2a,(n—1)=m"'n—-14+ (1 —-n)w
(4.2.2)

h'lu i + h'u m*—i—1 — (m* - l)n
(The characters § and ¢’ will be engineered to have these Hodge-Tate numbers at
the primes above [ in M.)

Step 3: An auxiliary prime q. Choose a rational prime ¢ such that

e no prime of T lies above ¢,
q#1,

q splits completely in M,

q is unramified in F(2) and
q—1>2n.

Also choose a prime q of F' above ¢, and a prime £ of M above q.

Step 4: Defining certain algebraic characters ¢,¢' : A5, — (M’')*. For each
prime v of F' above [, let us choose a prime w, of M above v. We now have a
convenient notation for all the primes above v; if v € Syq there are m* of them,
Iw, for j = 0,...,m* — 1; and if v € Sy there are m*/2 of them, 77w, for
j=0,...,(m*/2) — 1. Also, choose ¢, to be an embedding M — Q, attached to
the prime w, (in case v € Sopq there is only one choice; in case v € Sy there are
two).

We are now forced into a slight notational ugliness. Write M for the Galois
closure of M over Q. (Thus Gal(M/Q) is in bijection with embeddings M — Q.)
Let us fix ¢*, an embedding of M into Q,, and write v* for the prime of M below
this.®> Given any embedding ¢/ of M into Q,, we can choose an element o,/ in
Gal(M /Q) such that // = 1* 0 0,/

We claim that there exists an extension M’ of M, and a character ¢ : Ay, —
(M’)* with open kernel such that:

e Forao e M*,
(m*/2)—
o= ] H Grror—1 ()3 (0, g s 2 (@) =15

VESoraUSss  j=0

3The choice of this ¢* will affect the choice of the algebraic characters ¢, ¢’ below, but will
be cancelled out—at least concerning the properties we care about—when we pass to the l-adic
characters 6,6’ below.
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e For o € (Ap+)*, we have

o(a) = (] low| T smn, (0n)dnsar (Artas (@)= mH=mme,
vf oo v|oo
where 0p7/p+ is the quadratic character of G+ associated to M. (Note
that, in the right hand side, we really think of o as an element of A,;+, not
just as an element of Ay, which happens to lie in A,;+; so for instance v
runs over places of M, and the local norms are appropriately normalized
to reflect us thinking of them as places of M+.)
e ¢ is unramified at [.
This is an immediate consequence of Lemma 2.2 of [HSBT10]; we must simply
verify that the conditions in the bullet points are compatible; the only difficult part
is comparing the first and second, where equation 4.2.1 gives us what we need®.
Similarly, we construct a character ¢’ : (Ap)* — (M’)* (enlarging M’ if neces-
sary) with open kernel such that:
e For a« € M*,

(m*/2)— , ,

¢'(a) = H H Opyor—i ()" (0, rim(mn 2 (@) o= =13

Uesordusss _] 0
e For o € (Apr+)*, we have
¢'(a) = (H || H sgn,, (v )Ops/nr+ (Artpg+ ()~ =1m,
vf oo v|oco

(Again, we think of « in the right hand side as a bona fide member of
Apt.)

e ¢’ is unramified at .

* q|#¢'(O}; 5), but ¢ is unramified at primes above g other than 9 and Q°

Again, this follows from Lemma 2.2 of [HSBT10], now using equation 4.2.2.
Step 5: Defining the characters 6,6 : Gal(M /M) — Z, . Write M’ for the Galois

closure of M’ over Q, and extend * : M — @, to an embedding ¢** : M’ — Q.
Define l-adic characters 6,6’ : Gal(M /M) — ZX by:

(m*/2)—1
Oo(Art @) H H (b0 0 T79) (Qpig, ) 9 (1 0 T*j*(m*/2))(a7<m*/z)+1wv)7}“"’”**1*1
vl
(m*/2) ; ) _ )
0 (Arta) = o* H H (b0 0 T7) (i, ) 0 (10 0 I TN (v 214y ) T oimt 13

vl

where v runs over places of F' dividing I. (It is easy to check that the expressions
on the right hand sides are unaffected when « is multiplied by an element of M *.)
Observe then that they enjoy the following properties:

o oVt = (616M/M+)*(m*71)" where Viz/pr+ is the transfer map G}’“\% —

G32. In particular, 0'6'¢ = el_(m*_l)”.

4We also use the fact that, if we fix a complex embedding ¢c of M, (¢ 00, o Will run through
all other complex embeddings as v runs through primes above [ and j runs from 0 to m* — 1, as
may be seen by taking a field isomorphism C 22 Q
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o OooVarm+ = (€10p/na+ and hence , 0p05 = efm*nﬂf(l*n)w.
e For v € Sorqa and 0 < j < (m*/2) — 1, the Hodge-Tate weight of 6y|c,, .

Jwy

)—m*n+1—(1—n)w

is hy j, and the Hodge-Tate weight of 6y|c,, iS Moy pmr —1—5-

JH+m* /24,

e For v € S5 and 0 < j < (m*/2) — 1, the Hodge-Tate weights of 6y|q,, N
are Ny j and Ry mx—1—5. :

e For v € Syq and 0 < j < (m*/2) — 1, the Hodge-Tate weight of ¢'|¢,, ;

is Ay, ;, and the Hodge-Tate weight of 9/|GMTj+m*/2wv is Dy, e -

e For v € Sss and 0 < j < (m*/2) — 1, the Hodge-Tate weights of #'|q,, ;
are hy, ; and by, . g

e q|#0'(Iq), but ¢ is unramified at all primes above q except Q, Q°.
We now define 6 = 6y(6' /6y)—where 6 (resp 6') denotes the Teichmuller lift of the
reduction mod [ of 6y (resp #')—and observe that:

e 0 (mod!) =0 (mod ).
o 000 =¢ " TG (0D,

Step 6: Properties of Indgfl 0 and Indgz 6'. We begin by addressing point 4.
We define a pairing on Indgi{ 0 by the formula

AN = > (o)™ TG () DD A ()X (eo)
o€Gal(M/M)\ Gal(M/F)
where ¢ is any complex conjugation. One easily checks that this is well defined and

perfect, and that the properties (a) and (b) hold.
We can address point 5 in a similar manner, defining:

(AN) = > a(@) ™ A (@)X (co)

o€Gal(M/M)\ Gal(M/F)

and checking the required properties.

Next, we address point 6. We will use the following notation: if S, T are multisets
of integers, we will write S@ T for the ‘union with multiplicity’ of S and T (so that
{1}&{1} = {1,1}), and S®T for the convolution of S and T" (i.e. {s+t|s € S,t € T}
with appropriate multiplicities). Finally, for 7 : G — GL(Z;) a de Rham Galois
representation and v a prime above [, we will write HT,(r) for the multiset of
Hodge-Tate numbers of r at the place v. (Note that I splits completely, so this is
well defined.)

Now, supposing r : Gal(F/F) — GL3(Z;) to be a continuous representation
with HT,(r) = {—ay,b, — a,} for each place v of F above I, we can calculate
HT,(Sym™ 'r® Indg; ) and show it has the required value; see Figure 1.

Next we address point 7, in a similar manner. Supposing r : Gal(F/F) —
GL2(Z) to be a continuous representation with HT, (r) = {0,1} for each place v
of F' above [, we can calculate:

HT,(Sym™ ' r ® Ind&" 0) = HT,(Sym™ " r) ® HT,(Indg" 6)
={0,1,....,n =1} @ {hy 0, -, hy e 1}
={0,1,...,n—1}®{0,n,2n,...,(m* — 1)n}
={0,1,...,m*n—1}
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HT,(Sym" ' r @ Indg” 6) =
=HT,(Sym" ' r) ® HT,(Ind&" 6)
={—(n—1)ay,,—(n—2)a, + (by — ay),...,(n —1)(b, — a,)}
@ {hv,0,-- s hom=—1}
—{0,bu s (1= Db} & ({— (0 — D)} & gy s e 1}
={0,by,...,(n —1)by}
® ({0,1,2,...,b, — 1} @ {nby,nb, + 1,...,nb, + (b, — 1)}&
ce@{(m* = by)n, (m* —by)n+1,...,(m" —b,)n+b, — 1})
—={0,by, ..., (n—1)b} ®{0,1,2,...,b, — 1}
®1{0,by,...,(n—1)b,} @ {nby,nb, + 1,...,nb, + (b, — 1)}
b...
®1{0,by,...,(n—1)by}
Q{(m* —by)n,(m* —by)n+1,...,(m" —b,)n+b, — 1}
={0,1,...,nb, — 1} & {nby,nb, +1,...,2nb, — 1}
@--d{n(m" —b,),n(m" —b,)+1,...,nm* — 1}
={0,1,...,m"'n—1}

FIGURE 1. Computation of HT, (Sym" ' r ® Indgfd 0)

Next, we address point 2. Let v € Si. The assumption that L’ contains L
means that the representations p, and p, are both GLy,;,+(O)-conjugate to direct
sums of characters, and the other assumptions on L’ ensure that these characters
are all crystalline. The Hodge-Tate weights of these characters with respect to any
embedding i : L' < Q, are determined by the restriction of i to L, so we may
think of each character as having two Hodge-Tate weights in the obvious way. For
both p, and p,-, the set of ordered pairs of Hodge-Tate weights, running over all
the characters, is exactly the set of ordered pairs of non-negative integers with sum
nm* — 1 (this follows from the calculations establishing points 6 and 7). Since
two crystalline characters with the same Hodge-Tate weights must differ by an
unramified twist, the result follows from Corollary 3.4.4.

Step 7: Establishing the big image/avoid (; properties. All that remains is to
prove the big image and avoiding (; properties; that is, point (3). We will just show
the stated properties concerning Indgi] 0'; the statement for Indgij 0 then follow
since # and 6" are congruent.

Let r be a continuous /-adic Galois representation with m*-big image, such that
the following properties hold:

e 7 is ramified only at primes of 7" and above [, and
e we have F*er7(¢)) ¢ F(bad),

We may now apply Lemma 4.1.2. Applying part 2 of that Lemma will give that

(r® Indgi[ 9/)|Gp(cl) has big image, (the first part of point (3) to be proved) and
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applying part 1 will give the fact that we avoid ¢; (the second part of point (3)).
All that remains is to check the hypotheses of Lemma 4.1.2.

The fact that M is linearly disjoint from er”(g) (common to both parts) comes
from the fact that err T(Cl) c F®ad) and M was chosen to be linearly disjoint from
F(bad).

We turn now to the particular hypotheses of the second part. That T\GF( o
has m*-big image is by assumption. The properties we require of q follow directly
from the bullet points established in Step 3, the properties of r just above, and
the first and last bullet points (concerning 6’6'¢ and #6'(Iq) respectively) in the
list of properties of 8 given immediately after 6 is introduced in step 5. The fact
that (0")(6")¢ can be extended to G comes from the fact that it is a power of the
cyclotomic character. O

Finally, we will prove that, when we have applied this lemma, it is in fact possible
to strengthen point 2 a little.

Lemma 4.2.5. Suppose that we are in the situation of Lemma 4.2.4, and suppose
that v, L, L', x,x',0,K,O are as in point (2) of that Lemma. Using o-standard
bases, we can consider Indgf“ X as a representation vy : Gg, = GL2(O), and do
the same for ry .

Suppose further that r,1' : Gr, — GL2(O) are Galois representations, and that
there is a matriz A € GL2(O) such that r = Ary A™', v/ = Ar, A1, Let

pr = (Sym" ' 1)|g,, ® (Indg" 0)|q,,,
and pr = (Sym™'1')|g,, ® (IndG" 0')|c,,.

We have a given basis of r, from which we inherit a basis on Sym" 'r using
Definition 3.3.1; we have the T—standard basis on Indgi[ 0; and thus we inherit a
natural basis on p, and can consider it as a representation into GLiy.,«(O). The
same is true of pr.

Then p, and p, are congruent, and moreover p, ~ p. in the sense of Definition
3.8.5.

Proof. The matrix A gives rise to a matrix A4, := Sym" ' A4, and (abbreviating
Sym™ 'r as r,, Sym" ¢’ as 7/, Sym" 'r, as ry, and Sym" 'r. as r..,),
T = Anryn Ay, vl = Apry n AL

Then we can define an element B of GL,,,,,« (O) by putting B := A, ®id, and see
that p, = BpXB_l (where p, is as defined in point (2) of lemma 4.2.4); similarly
Prt = BpXIB_l.

Since point (2) of Lemma 4.2.4 tells us p, = p,,, we have:

pr=DBpB~' =BpyB~1 =Dp,.
Moreover, since py ~ py (again from point (2)), we can deduce that
pr=BpyB~!' ~ BpyB~! = p,

(since conjugation by B defines a natural isomorphism between the lifting problems
for p, and for Bp, B!, and hence a natural isomorphism between all the relevant
universal lifting rings), as required. (]
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5. TWISTING AND UNTWISTING

5.1. Twisting. In this section we establish some basic results about automorphic
induction and Galois representations, which are presumably well-known but for
which we lack a reference. If K is a number field, we say that an automorphic
representation m of GL,(Ak) is regular if m, is regular for all v|oo, in the sense
of section 7 of [BLGHT09]. We caution the reader that while “regular algebraic”
(which is also defined in section 7 of [BLGHT09]) implies “regular”, the two notions
are not equivalent.

Lemma 5.1.1. Suppose that L/K is a cyclic extension of number fields. Let k
be a generator of Gal(L/K)V. Let w be a cuspidal automorphic representation of
GL,(Ag), and suppose that m % 7 @ (k' o Artx odet) for any 1 <i < [L: K| —1.
Then there is a cuspidal automorphic representation I1 of GL,,(AL) such that for
all places w of L lying over a place v of K we have

rec(Il,) = rec(my)|w,, -

Proof. By induction on [L : K] we may reduce to the case that L/K is cyclic of
prime degree. The result then follows from Theorems 3.4.2 and 3.5.1 of [AC89],
together with Lemma VII.2.6 of [HT01] and the main result of [Clo82]. O

We will write BCp, k() for II.

Lemma 5.1.2. Suppose that L/ K is a cyclic extension of number fields of degree
m. Let 7 be a regular cuspidal automorphic representation of GL,(AL). Let o be
a generator of Gal(L/K). Assume that m % 7° for any 1 < i < m — 1. Suppose
further that Indﬁ’: Too (the local automorphic induction) is reqular. Then there is
a regular cuspidal automorphic representation 11 of GLyn(Ak) such that for all
places v of K we have

(5.1.1) rec(Il,) = @)y Ind%ﬁ‘u’ rec(my,)
(the sum being over places w of L dividing v).

Proof. The case that m is prime follows from Theorem 3.5.1 and Lemma 3.6.4 of
[ACB89], together with Lemma VII.2.6 of [HT01] and the main result of [Clo82] (the
assumption that Indf:: Tso 18 Tregular is of course equivalent to the statement that IT
is regular). For the general case we use induction. Suppose that L D Ly D L1 D K
with Lo/Lq cyclic of prime degree, and suppose that we have found a regular

cuspidal automorphic representation Ilz, of GL(z.1,], (AL, ) satisfying the analogue
[Ly:K]i

of (5.1.1). The result will follow for L; provided we know that 11z, % II, for
any 1 <i < [Lg: L1] — 1; but if this fails to hold then it is easy to see that

Indf: Moo = Ind{%;)oo (Ind(LL;)‘” Too) = Ind{i";)oo (ML,)eo
cannot be regular, a contradiction. O

We will write Ind% 7 for II.

Let F be a totally real field and let M be an imaginary CM field which is a
cyclic Galois extension of F' of degree m. Fix +: Q, — C. Let © be an RAESDC
automorphic representation of GL,(Ar), and let x be an algebraic character of
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M>*\AY,, chosen so that the Galois representation Indg; r1,,(x) is essentially self-
dual. Then the Galois representation

71, () ® Iﬂdgfd 1, (X) : Gr = GLyn (Q))
is also essentially-self dual. We have the following result.
Proposition 5.1.3. Assume that

Moo X Indj\F/[":o Xoo

is regular; equivalently, . ,(m) ® Indgz r1,.(x) ts reqular. Assume also that if k
is a generator of Gal(M/F)V, then m % © ® (k' o Artg odet) for any 1 < i <
[M : F] —1. Then the representation ry,(7) ® Indgz r1,.(x) is automorphic. More
precisely, there is an RAESDC automorphic representation 11 of GLym (Ap) with
r, (I0) 27, (m) @ Indg; r1.(x). In fact, for every place v of F', we have

rec(IL, | - |17"/2) = rec(my| - [ 7/%) @ (@u, Indyy 7, rec(xu))
(the sum being over places w of M dividing v ).

Proof. 1t is enough to prove that there is a regular cuspidal automorphic repre-
sentation IT of GL,,,(Ar) satisfying the final assertion (II is then algebraic by the
conditions at the infinite places, and is automatically essentially self-dual by the
strong multiplicity one theorem and the conditions at the finite places, and thus
has a Galois representation 7 ,(IT) associated to it, which satisfies the required
condition by the Tchebotarev density theorem).

By Lemma 5.1.1 and Lemma 5.1.2 we have a regular cuspidal automorphic rep-
resentation

I1:= (Indj (BCyyyp(n] - |1 772) @ )| - =D/

(note that BCyy/r(m| - |1~™/2) ® x satisfies the hypotheses of Lemma 5.1.2 by the
assumption that 7., X IndI\F/}’; Xoo 18 regular). By definition this choice of II satisfies

rec(HU| . ‘(1*777,77«)/2) — @wh} Ind%i:w (I'eC('/TU| . |(17Tl)/2)‘WA{w ® I‘eC(Xw))
for each place v of F, and the result follows. ([

5.2. Untwisting. In this section we explain a kind of converse to Proposition
5.1.3, following an idea of Harris ([Har07], although our exposition is extremely
similar to that found in the proof of Theorems 7.5 and 7.6 of [BLGHTO09]).

Suppose that F is a totally real field and that M is an imaginary CM field which
is a cyclic extension of F' of degree m. Suppose that 6 is an algebraic character of
M>*\Aj, and that II is a RAESDC representation of GLy,,(Ap) for some n. Let
2 @l ;> C.

Proposition 5.2.1. Assume that there is a continuous irreducible representation
r: Grp — GL,(Q,) such that r|q,, is irreducible and

r, (II) Z2r® Indg; r,(0).

Then r is automorphic.



SATO-TATE 43

Proof. Let o denote a generator of Gal(M/F), and k a generator of Gal(M/F)V.
Then we have

r,, (II® (ko Artpodet)) =7, (II) @ 1, (k 0 Artp)
=7 @ (ry,(k o Artp) @ IndS” 1y, ()
~rQ Indgz (ri, (ko Artyp)|a, @r..(0))
Yr® Indgz r1,,(0)
= r“(H),
so that II ® (k o Artp odet) = II.

We claim that for each intermediate field M D N D F there is a regular cuspidal
automorphic representation Il of GLy[as.n) such that

Iy ® (ko Arty odet) 2 Ty

and BCy,p(II) is equivalent to

N:F]—1

Iy BB B

in the sense that for all places v of N, the base change from F,|,. to N, of I, is

|F

N:F]—1

My, B, 8- B0

,U

We prove this claim by induction on [N : F]. Suppose that M D My D M; D F
with My /M cyclic of prime degree, and that we have already proved the result for
M;. Since

Iy, ® (ko Artpy, odet) = Iy,

we see from Theorems 3.4.2 and 3.5.1 of [AC89] (together with Lemma VII.2.6
of [HT01] and the main result of [Clo82]) that there is a cuspidal automorphic
representation 1Ty, of GL,[az:as,] such that BCyy, ,p(I1) is equivalent to

[Mg:F]—1

My, B, 8- B3,

2

Since II is regular, IIy, is regular. The representation Iy, ® (k o Artyy, odet)
satisfies the same properties (because II ® (k o Artpodet) = II), so we see (by
strong multiplicity one for isobaric representations) that we must have

Iy, @ (k0 Artyy, odet) = ‘1{;2

for some 0 <i < [M : Ms] — 1. If ¢ > 0 then

[Mg:F]—1
My, BIOG, B---BIIY,

cannot be regular (note that of course & is a character of finite order), a contradic-

tion, so in fact we must have ¢ = 0. Thus

Iy, @ (Ko Artag, odet) 2 Iy,

and the claim follows. _

Let m := II5;. Note that the representations 7% for 0 <i<m—1 are pairwise
non-isomorphic (because II is regular). Note also that 7 ® | det |(*~"™)/2 is regular
algebraic (again, because II is regular algebraic).
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Since IT is RAESDC, there is an algebraic character y of F*\AZ such that
ITY = TI®(yodet). It follows (by strong multiplicity one for isobaric representations)
that for some 0 <7 <m — 1 we have

™V (X © Nag/p o det).

Then we have

" (rY)

= (7r" (x © Nag/r o det))”

o (7rv) ® (x~ ONM/Fodet))

= (17 @ (x o Nagyr 0 det))” @ (x " o Ny p o det))
~ 71'”21

so that either ¢ = 0 or ¢ = m/2. We wish to rule out the former possibility. Assume
for the sake of contradiction that

7 271 ® (x o Npyp o det).

Since F is totally real, there is an integer w such that x|-|~* has finite image. Then
7| det |"/2 has unitary central character, so is itself unitary. Since 7®| det |(»="7)/2
is regular algebraic, we see that for places v|oco of M the conditions of Lemma 7.1

of [BLGHTO09] are satisfied for | det |;}U/27 so that
(1o @ | det [*/2)° @ (] - |7%/% o det))

™, By =, B

(
=, B ((m, @ |det [*/2)Y @ (|- [T/ o det))
=7, B (my ®(|-|7" o det))
=, ® (7TU ® (X| : ‘7111 O]VM/F Odet))

which contradicts the regularity of II Thus we have i = m/2, so that

7J|F'
T 2 7° @ (x o N/ o det).
Thus 7 ® | det |(*~"™)/2 is a RAECSDC representation, so that we have a Galois

representation r; , (7 ® | det |(»~"™)/2). The condition that BC)yp(11) is equivalent
to

m—1

rBa°B---Br
translates to the fact that
r1u () |Gy = (@ | det [ /2) @@y (1@ | det |0 mm)/2)e
By hypothesis, we also have

m—1

()]G = (Flay @711,(0) - ® (rlay @r1.(0)7 ).
Since 7|g,, is irreducible, there must be an i such that
Flay = (r @ | det |PTM/2) @ Tz,L(G)"_i,

so that r|g,, is automorphic. The result now follows from Lemmas 1.4 and 1.5 of
[BLGHTO09]. O
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6. POTENTIAL AUTOMORPHY IN WEIGHT 0

6.1. In our final arguments, we will need to rely on certain potential automorphy
results for symmetric powers of Galois representations with Hodge-Tate numbers
{0,1} at every place. The fact that such results are immediately available given
the techniques in the literature is well known to the experts, but because we were
unable to locate a reference which states the precise results we will need, we will
give very brief derivations of them here. We hope that providing a written reference
for these results may prove useful to other authors.

Lemma 6.1.1. Suppose that 1 > 2(n — 1)m + 1 is a prime; that k is an algebraic
extension of By; that k' C k is a finite field and that H C GL, (k). Suppose that

EX Sym™ ' GLy(k') D H D Sym™ ' SLy (k)
Then H is m-big.

Proof. This may be deduced from Lemma 7.3 of [BLGHT09] as Corollary 2.5.4 of
[CHTO08] is deduced from Lemma 2.5.2 of loc. cit. O

Lemma 6.1.2. Suppose that m is a positive integer, that k is an algebraic extension
of Fy, that k' C k is a finite field and that that F is a totally real field. Suppose that
[ is a prime such that [F(¢;) : F] > 2m, and that 7 : Gal(F'/F) — GLa(k) has

kX GLy(K') D 7(Gp) 2 SLa(K').

Then, for any n, [FreradSym™ "7y . pkeradSym™ ') o p - In particular, the
conclusion holds if | is unramified in F and [ > 2m + 1.

Proof. We have
PSLy (k') C (ad Sym™ ' 7#)(Gr) C PGLy(K'),

PGLy(k")/ PSLa(k') has order 2, and PSLy (k') is simple. Thus the intersection of
FadSym™ ™7 and F((;) has degree at most 2 over F. Since [F(() : F] > 2m, the
result follows (for the final part, note that if [ is unramified in F' then [F({;) : F] =
[—1). O

Proposition 6.1.3. Let F be a totally real field, Fv°id) o finite extension of F,
L a finite set of primes of F, n a positive integer, and | > 4(n — 1) + 1 a prime
which is unramified in F. Suppose that
r: GF — GLQ(Zl)

is a continuous representation which is unramified at all but finitely many primes,
and enjoys the following properties:

(1) detr =¢; .

(2) 7(Gr) > SLa(F). -

(3) For each prime v|l of F, r|a,, is crystalline for all T € Hom(F,Q,), and

we have

. 1 +=0,1
dim= er'(r @, p Bqr)®™ = ’
g, & (7 ®r.p, Ban) {O (otherwise)

(4) L does not contain primes above l, and r is unramified at places in L.
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Then there is a Galois totally real extension F" of F, linearly disjoint from F@void)
over F such that (Sym™ ! )Gy is automorphic of weight 0 and level prime to I,
and no prime of LU {v|v a prime of F,v|l} ramifies in F".

Proof. We will deduce this result from Theorem 7.5 of [BLGHTO09] in the same
way that Theorem 3.2 of [HSBT10] is deduced from Theorem 3.1 of [HSBT10],
following the proof of Theorem 3.2 of [HSBT10] very closely. Our argument is in
fact simpler, because we need no longer maintain a Steinberg place, and so when
we apply the Theorem of Moret-Bailly (Proposition 2.1 of [HSBT10]), we do not
impose any local condition at auxiliary primes v,, vy, unlike in [HSBT10]. Thus
all arguments earlier on in the proof concerning these primes become unnecessary.

In particular, we copy the argument up to the application of Proposition 2.1 of
[HSBT10] almost verbatim, with only the following changes:

The character ¢; det r is trivial, so the field F7 is simply F', and in particular,
F} is linearly disjoint from F@void) gyer F.

Rather than choosing I’ > C(n),n, we take I’ > 4(n — 1)+ 1, !’ > 5 and
U'eL.

When we choose E; in the application of Proposition 2.1 of [HSBT10], we
choose it to have good reduction at primes of L.

As mentioned above, we no longer impose any local condition at the primes
Vg, Vg Since we no longer need the conclusion, after the application of Propo-
sition 2.1 of [HSBT10], that E has split multiplicative reduction at auxiliary
primes vg, Vgr.

In the application of Proposition 2.1 of [HSBT10], we may also assume that
the field F” is linearly disjoint from F(avoid) (this is easy, as Proposition 2.1
of [HSBT10] allows us to avoid any fixed field.) We also impose a local
condition to ask that F' not ramify at primes of £; we must then check
that we can find some elliptic curve whose mod [l’ cohomology agrees with
HY(E, x F,Z/I'Z) x ¥ when restricted to inertia at primes of £. Ej itself
fills this role, all the representations involved being trivial in this case.

As in [HSBT10], the result of all this is the construction of an elliptic curve E over
a finite Galois extension F’ of F', which together have the following properties:

F' is linearly disjoint from F(@veid) Fker(rxm1) ‘where 7 is the Galois repre-
sentation H'(E; x F,Z/I'Z) attached to a certain elliptic curve E; chosen
earlier in the portion of the proof we followed from [HSBT10], as mentioned
above.

In particular, since E; was chosen such that Gp — Aut H*(Ey x F,Z/I'Z),
we also have Gpr — Aut HY(Ey x F,Z/l'Z). (A1)
F’ is totally real.

All primes above [I’ and the primes of £ are unramified in F’.

E has good reduction at all places above /I’ and the primes of L.

HY(E x F,ZIZ) = r|q,,

E has good ordinary reduction at I’ (note that I’ is unramified in F, that
E has good reduction at I/, and that its I’ torsion is isomorphic to the I’
torsion of F;, which was chosen to be ordinary at ). (A2)
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We then apply Theorem 7.5 of [BLGHT09]° to the Galois representation Sym”™ H'(Ex
F,Zy), which we will call 7/, for brevity. Let us check the conditions of this theorem
in turn. We have two unnumbered conditions: first that r/, is almost everywhere
unramified (which is obvious, as it comes from geometry), and second that there
is a perfect, Galois equivariant, pairing on r], towards Z;(u), for some character p
(such a pairing on H'(E x F,Zy) is furnished by Poincaré duality, going towards
Zi(—1); thus we get such a pairing on 7/, with = ¢/ ). Now we address the
numbered conditions:

1: The sign of u on complex conjugations agrees with the parity of the pairing.
Poincare duality on H'(E x F,Z;) will be an alternating pairing, so the
pairing on 7}, will satisfy (u,v) = (—1)'""(v,u) and p = ¢ " is (—1)'™"
on complex conjugations.

2: We have [FXerad 7, (¢;) : Fkeradm] 5 9 We can use the fact that the Galois
representation on the !’ torsion of F is surjective (since it agrees with the
action on the !’ torsion of Fj, and using point (A1) above), and Lemma
6.1.2 (using the fact that I’ > 5).

3: We have that 7, (G p(,)) is 2-big. Again we use the fact that the Galois
representation on the !’ torsion of E is surjective, this time together with
the simplicity of PSLa(k), and Lemma 6.1.1 (using I’ > 4(n — 1) 4+ 1).

4: 1] is ordinary of regular weight. This is immediate given point (A2) above.

We immediately deduce that there exists an extension F”/F’, with Sym™ ! H'(E x
F, Zy)|G,., automorphic of weight 0 and level prime to [, and such that

e F"/F is Galois.
e Primes above [ and I’ are unramified in F’, as are the primes of L.
e F" is linearly disjoint from F(avoid) g pkeradr pkerad?, yer I’ (and hence
linearly disjoint from F(@veid) pkerad? oyep f), (A3)
We now apply Theorem 5.2 of [Gue09] to the Galois representation Sym"* |G s
which we call r,, for brevity. Let us check the conditions of this theorem in turn:

1: r4|q,., is essentially self dual. r acquires a perfect symplectic pairing with
cyclotomic multiplier from the determinant; from this r,|g,, inherits a
perfect pairing with the desired properties.

2: 7y|q,, is almost everywhere unramified. This is trivial, since we assume r
has this property.

3: rn|G,.,, is crystalline at each place above [. This too is trivial, since we
assume 7 has this property (condition 3 of the theorem being proved).

4: |G, is regular with Hodge-Tate weights lying in the Fontaine-Laffaille
range. It follows from condition 3 of the theorem being proved that the
Hodge-Tate weights of r,,|q,.,, are {0,1,...,n — 1}; this suffices, as [ > n.

5: Fkeradm™ does not contain ¢;. This follows by condition 2 of the theorem
being proved, the fact [ > 3, and point A3 above, using Lemma 6.1.2.

6: 77"|GF~(<Z) has big image. This is true by condition 2 of the theorem being
proved, the simplicity of PSLs(F;), and point A3 above, as we can see by
applying Lemma 6.1.1.

5In fact, we need a slight extension incorporating a set of primes £ where we do not want our
extension to ramify, and a fixed field from which we want our extension to be linearly disjoint.
Adding this is a routine modification of the proof of Theorem 6.3 of [BLGHT09], in the same
spirit as the modifications above of the arguments of [HSBT10].
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7: ¥, is automorphic, with the right weight. We know r and H'(E xF,Z;) are
congruent, and manifestly Sym" ! H! (E x F,Z;) has Hodge-Tate weights
{0,1,...,n— 1}, which is indeed the required weight as we saw in verifying
hypothesis 4 above.

We conclude that Sym” ™! r is automorphic over F” of weight 0 and level prime to

l, as required. O

7. HILBERT MODULAR FORMS

7.1. Let 7 be a regular algebraic cuspidal automorphic representation of GLy(AFr),
where F' is a totally real field. Assume that 7 is not of CM type. Let the weight of
mbe X € (Zi)Hom(F’C). Let m* be the least common multiple of 2 and the values
Au,1 — A2 + 1. Let n > 1 be a positive integer. Choose a prime [ > 5, and fix an
isomorphism ¢ : Q, — C. We choose [ so that:

e [ splits completely in F'.

e 7, is unramified for all v|l.

e The residual representation 7, (7) : Gp — GLa(F;) has large image, in the
sense that there are finite fields F; C k C k" with

SLy(k) € 7. () (GF) C K™ GLy(k).

(Note that this is automatically the case for all sufficiently large I by Propo-

sition 0.1 of [Dim05].) (B1)

e [>2(n—1)m*+1. (B2)

Note that, as a consequence of points B1 and B2, the simplicity of PSLo(F;), and
Lemmas 6.1.1 and 6.1.2, it follows that:

e Sym”™ ' 7, (7) has m*-big image. (B3)

n—1 =

° [erradSym Tl’L(ﬂ-)(Cl) . erradSym”’lﬁyL(ﬂ')] > m*. (B4)
Choose a solvable extension F’/F of totally real fields such that
e [ splits completely in F”.

F’ is linearly disjoint from o™ ver F

At each place w of F’, mps ,, is either unramified or an unramified twist of
the Steinberg representation (here we let 7z denote the base change of 7
to F).

[F': Q] is even.

That such an extension exists follows exactly as in the proof of Theorem 3.5.5 of
[Kis09]. After a further quadratic base change if necessary, we may also assume
that

e 7 is ramified at an even number of places.

Proposition 7.1.1. There is a cuspidal algebraic automorphic representation '
of GLa(Ap+) such that
(1) @ has weight 0.
(2) (7)) = 7(7)|ay -
(8) ifwtl is a place of F', then w,, is ramified if and only if T 4 is, in which
case it is also an unramified twist of the Steinberg representation.
(4) m1..(7")|a,, is potentially Barsotti-Tate for all v|l, and is ordinary if and
only if 7“17LU(7T)\GF73 is ordinary.
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Proof. Choose a quaternion algebra B with centre F’ which is ramified at precisely
the infinite places and the set ¥ of finite places at which 7p/ is ramified. We
will use Lemma 3.1.4 of [Kis09] and the Jacquet-Langlands correspondence to find
7’. Let v € ¥ and let p be an irreducible representation of B corresponding
to the irreducible admissible representation JL(p) of GLy(F)) under the Jacquet-
Langlands correspondence. We recall that poé’v is non-zero if and only if JL(p)
is an unramified twist of the Steinberg representation. We now introduce [-adic
automorphic forms on BX. Let K be a finite extension of Q; inside Q; with ring
of integers O and residue field k, and assume that K contains the images of all
embeddings F' — Q;. Fix a maximal order Op in B and for each finite place v € &
of F’ fix an isomorphism i, : Op,, — M2(Op;). Since [ splits completely in F”,
we can and do identify embeddings F’ < Q,; with primes of F’ dividing [. For each
place v|l we let tv denote the real place of F’ corresponding to the embedding ¢ o v.
Similarly, if o : F' < R is an embedding we let :~!o denote the corresponding
place of F’ dividing .
For each X € (22)Hom(F. @) and |l consider the algebraic representation

Wy, = Sym 1Az 02 @ (det) M2

of GL2(O). We consider it as a representation of Oy , via O , —> GL2 ((’)F/)

GL2(0). Let Wy = ®,;Wx, considered as a representation of GL2(Opv ). For
each vl let 7, denote a smooth representation of GL2(OF:) on a finite free O-module
W-,. Let 7 denote the representation ®,);7, of GL2(Ops ;) on W := @,;,W,,. We
let Wy, = Wy @0 W;. Suppose that ¢’ : (F')*\(A¥)* — O is a continuous
character so that for each prime vll, the action of the centre Of, of Of , on
Wi, ®0 W, is given by (¢')~ 1|O>< . The existence of such a character implies

that there exists an integer w’ such that w' = =\, 1 + A, o + 1 for each v|l.
Let U =[], Uy C (B ®g A>)* be a compact open subgroup with U, C Og,v
for all v and U, = Of , for v[l. We let Sy ; 4 (U, O) denote the space of functions

f:BX\(B®g A®)* = Wy ,

with f(gu) = (N @ 7)(w)~" f(g) and f(g2) = ¢'(2)f(g) for all u € U, z € (AF)*
and g € (B ®g A®)*. Writing U = U' x Uj, we let

S/T/U,Ozli S/.,-y/UlXU,O
N (U, O) %A,w( 1,0)

and we let (B ®g Ab>)* act on this space by right translation.
Let ¢¢ : (F')*\AZ, — C* be the algebraic Hecke character defined by

2 Nivjglaa0) ™ -1 (Nija(a)” 71/ ())
Let W, c = W; ®0,, C. We have an isomorphism of (B ®g Ab>)*_modules
(7.1.1) Sxt iz (U1, 0) ®0,, C = P Homex (Wye, 1) @ I
where the sum is over all automorphic representations II of (B ®g A)* of weight

LA = (N, )e € (Zi)Hom(F,’C) and central character ¢ (see for instance the
proof of Lemma 1.3 of [Tay06]).
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Let U be as above and let R denote a finite set of places of F’ containing all
those places v where U, # OEXM. Let T*“2 denote the polynomial algebra O[T, S,]
where v runs over all places of F’ away from I, R and . For such v we let T, and
Sy act on Sy -4 (U, O) via the double coset operators

1 (w, O .1 [ Wy 0
[Uzv (O 1>U} and {U% (0 wy)U}

respectively, where @, is a uniformizer in Op.
Let 7 denote the automorphic representation of (B ®g A)* of weight Aps :=
(Aojp)o € (22)Hom(F".C) corresponding to 7 under the Jacquet-Langlands corre-

spondence. Let t*A = (Ap')w)v € (Zi)Hom(Flv@l). Let U =], U, C (B ®qA>)*

be the compact open subgroup with U, = OE’U for all v. Then the space 7V

is non-zero. Let x : G¥ — @IX denote the character edetr;,(7)|g,, and let

Y =xoArtp : AY, /(FL)Z(F')* — Q. Note that y is totally even and hence we
may regard 1 as a character of (A%)*/(F')* — A%, /(F.)*(F')*. Extending K
if necessary, we can and do assume that ¢ is valued in O*. Further extending K if
necessary, choose a T>“F-eigenform f in S 1,0 (U, O) corresponding to an element
of (7*°)V under the isomorphism (7.1.1). The T="E_eigenvalues on f give rise to
an O-algebra homomorphism T>"F — © and reducing this modulo me gives rise
to a maximal ideal m of T,

Let ¥ : G3% — O denote the Teichmiiller lift of the reduction of x. Let
9" = X o Artp/, which we can regard as a character (A%)*/(F')* — O*. Let v be
a place of I dividing .

o If rl’b(w)\gﬂ3 is ordinary and t* A\, 1 # (* Ay 2, let x1, x2 ¢ F — Q/ be the
characters given by xi1(z) = 1 and yo(x) = Z“ *»2 where  denotes
the Teichmiiller lift of x. Then let 7, denote the representation

I(x1,x2) = Tnd 2" (1 @ x2)

of GLy(F;) where B is the Borel subgroup of upper triangular matrices in
GLs.
o If rl,L(7r)|GF15 is ordinary and t* Ay 1 = t* Ay 2, let x : F — Q;° be the char-
acter x(z) = 2* *»2. Let 7, denote the representation y o det of GLy(IF;).
o If Tl,L(TF)|GF1/) is not ordinary, let x : Fj2 — Q5 be the character given by
x(z) = 3 vt A2t 24D Ae2—1) - Let 7, be the Q;-representation of
GLy(F;) denoted O(x) in section 3 of [CDT99] (note that y! # x since
0<t*Ap1 =t Ap2+2<i+1).
Extending K if necessary, we can and do fix a model for 7, on a finite free O-module
W, We also view W, as a smooth U, = O -module via U, vy GL2(OF1) 5
GL2(Z;) — GL2(F;). By Lemma 3.1.1 of [CDT99], W, ®¢ k is a Jordan-Hoélder
constituent of W, ®o k.

It follows that W) ®e k is a Jordan-Holder constituent of the U;-module W, Q0 k.
Also, since | > 3 and [ is unramified in F’, B* contains no elements of exact order
[ and hence the group U satisfies hypothesis 3.1.2 of [Kis09] (with [ replacing p).
We can therefore apply Lemma 3.1.4 of [Kis09] to deduce that m is in the sup-
port of Sy -y (U, O). Let I’ denote the automorphic representation of (B ®g A)*
corresponding to any non-zero T>“F-eigenform in 50,70 (U, O)m ®0,, C under the
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isomorphism (7.1.1). Let 7" be the automorphic representation of GLa(Apg/) cor-
responding to II' under the Jacquet-Langlands correspondence. Then 7’ is regular
algebraic and of weight 0 by construction. The choice of m ensures that property
(2) of the theorem holds and hence that ' is cuspidal. Property (3) holds by the
choice of U.

It remains to show that 7’ satisfies property (4). Let v be a place of F’ dividing
I and suppose firstly that r;,(7)|g,, is non-ordinary. Then by the choice of 7,
and part (3) of Lemma 4.2.4 of [CbT99] we see that r;,(7')|g,, is potentially
Barsotti-Tate and moreover '

WD(W,L(W/)'GF{) )|IF15 ~ &Q—L*kml—ll}*)\vyg-'rl—l ® a«}Q—lL*)\vyl—L*)\vg-‘rl—l

where wy is a fundamental character of niveau 2. We deduce that r;,(7')|q,,
only becomes Barsotti-Tate over a non-abelian extension of Gp; and hence is non-
ordinary. Now suppose that 7"17L(7r)\GF7S is ordinary. Then by the choice of 7, and

parts (1) and (2) of Lemma 4.2.4 of [CDT99] we see that r;,(7’)|g,., is potentially
Barsotti-Tate and moreover

WD(TI,L(']T,”GF{) )|IF{] o~ Q—L*ka &) O’B—L*XU,Z

where w is the mod [ cyclotomic character. Since 7,(7)|a s reducible, it follows
from Theorem 6.11(3) of [Sav05] that r;,(7')|¢,, is either decomposable (in which
case it is easy to see that it must be ordinary), or it corresponds to a potentially crys-
talline representation as in Proposition 2.17 of [Sav05], with v;(z1) = 1 or v;(z2) =1
(because if neither of these hold, then by Theorem 6.11(3) of [Sav05] the represen-
tation 7y, (7’)|g,, = 71,.(7)|a,, would be irreducible, a contradiction). In either
case the representation is ordin;ry (for example by Lemma 2.2 of [BLGHT09]). O

We would like to thank Richard Taylor for pointing out the following lemma to
us.

Lemma 7.1.2. Let F' be a totally real field, and let m be a RAESDC representation
of GL,,(Ar). Letl be a prime number, and fix an isomorphism v : Q, — C. Suppose
that for some place v {1 of I, the Galois representation 1, (7)|g,, is pure. Then
we have
WD (11, (m) |, )77 = 17 (ree(m,) @ | Art ! %),
where WD(ry,,(7)|G, ) denotes the Weil-Deligne representation associated to ry ,(7)|ay, -

Proof. By Theorem 1.1 of [BLGHT09], the claimed equality holds on the Weil group
(but we do not necessarily know that the monodromy is the same on each side).
However, m, is generic (because m is cuspidal) and rec™'(WD(ry,(7)|q,, )" )
is also generic (because it is tempered, by Lemma 1.4(3) of [TY07], and thus a
subquotient of a unitary induction of a square-integrable representation of a Levi
subgroup, by Theorem 2.3 of [BW00]. Any such induction is irreducible (cf. page
72 of [DKV84]), and the result follows from Theorem 9.7 of [Zel80].) The claimed
equality follows (because a generic representation is determined by its supercuspidal

support - this follows easily from the results of Zelevinsky recalled on page 36 of
[HTO01)). |

Theorem 7.1.3. Continue using the setup at the beginning of this section, and
let " be as in Proposition 7.1.1. Let N/F' be a finite extension of number fields.
There is a finite Galois extension of totally real fields F"' /F'" such that
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(1) F" is linearly disjoint from Tl )(Cl)N over F".

(2) There is a RAESDC automorphic representation ), of GL,(Ap») of weight
0 and level prime to l such that vy, (7)) = Sym"™~! 1, (7)) G -

Proof. The central character w,/ of 7’ has finite order and is trivial at the infinite
places, so we can choose a quadratic totally real extension F; of F’ linearly disjoint

from NF " )(Q) (which we will henceforth call F@v°id)) over F’, such that

if 7, = BCp,p(7'), then wy,  has a square root (note that the obstruction to
1

taking a square root is in the 2-torsion of the Brauer group of F’). Say x? = w

LI
and write 7”7 = 7p, ® (x ! o det). Making a further solvable base change (anld
keeping Fy linearly disjoint from F(@veid) gyer F” ), we may assume in addition that
7" has level prime to [ (that this is possible follows from local-global compatibility
and Proposition 7.1.1(4)).

Then choose a rational prime I’ # | and an isomorphism ¢’ : Q; — C such that:

m is unramified for all v|l’.

" is unramified in Fj.

U!'>4(n—-1)+1.

I’ splits completely in the field of coefficients of 7.

The residual representation 7y ,/(7”) : Gp, — GLa(Fy/) has large image, in
the sense that there are finite fields Fy C & C &’ with

SLQ(k) C ’F[/’L/(W//)(GFI) ol e GLQ(k)

(Note that this is automatically the case for all sufficiently large I’ by Propo-
sition 0.1 of [Dim05].) Coupled with the previous point, this in fact means
that:

SLQ(]FI/) C Ty (W/I)(GFI) C GLQ(F[’).

Since 7" has trivial central character, detry ,(7") = ¢ ', and we can apply
Proposition 6.1.3 to find a Galois extension Fy/F}, linearly disjoint from F(aveid)
over F', such that Sym" 'y ,/(7") is automorphic over Fy of weight 0. That it
is in fact automorphic of level prime to [ follows from Lemma 7.1.2 (note that
Sym™ ! 1. (7")|Gp, is pure, because rp ,/(7") is pure, for example by the main
result of [Bla06], and Sym" ™" rys /(7 )|Gr, is unramified at all places dividing I by
the choice of F3). Replacing F» by a further solvable base change, also disjoint from
F(@void) gyer F’ if necessary, we may assume that y is unramified at all places of
F, lying over I. We are then done, taking F”" = F, (because Sym™ ! T ()G, =
e ()" Har, © Sym™ T (") G, ) O

Theorem 7.1.4. Let F be a totally real field, and let m be a non-CM regular
algebraic cuspidal automorphic representation of GLa(Ag). Then there is a prime
I, an isomorphism Q, — C, a finite Galois extension of totally real fields F" |F

~

and an RAESDC' automorphic representation my, of GLy,(Apr) such that ry,(m,) =
Sym"~! 71, (7) |G s -

Proof. We continue to use the notation established above, and in particular we will
fix [ and ¢ as above, and make use of F’ and 7’. F” will be as in the conclusion
of Theorem 7.1.3, which we will apply with a particular choice of field IV, to be
determined below. We can and do assume that 7 ,(7) and r;,(7’) both take values
in GL,(O) where O is the ring of integers in a finite extension K of Q; inside Q.
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Let k denote the residue field of K. We can and do further assume that r;,(7)|q,.,
and r;, (') are equal (as homomorphisms) when composed with the natural map
GL,(0) — GL, (k). Write 7y, ()|a,, = 71, (") for this composition.

We write 7 = Sym” ™! r.(m)|G,, and " = Sym"™ ! r,, ('), thought of as repre-
sentations valued in GL,(O) via the bases specified in Definition 3.3.1. We begin
by applying Lemma 4.2.4 in the following situation (where the field F' of Lemma
42.41s F'):

e Sorq is the set of places of F’ dividing [ lying over a place for which 7 is
ordinary with respect to ¢.
e For each v|l, thought of as an embedding F' — Q;, a, = —Alov|p,2 and
b, = )\Lov|p,1 - >\LOU|F,2 +1.
e T is the set of places away from [ at which 7’ is ramified.
. (F/)(bad) _ errr(g)'
We deduce that (after possibly extending K) there is a CM extension M of F’ of
degree m*, and de Rham characters

0,0 : Gpy — O,

satisfying various properties that we will now describe. We can fix an element
7 € Gp/ mapping to a generator 7 € Gal(M/F’), and we regard Indgij' 6 and

Indgg 0" as representations valued in GL,,+(O) via their 7-standard bases 8 =
{e0,.. . em=—1} and B’ = {e],...,€},-_1} respectively, in the sense of Definition
4.2.3. Note that these two representations become equal when composed with the
homomorphism GL,«(O) — GLy,» (k). Then, by the conclusions of Lemma 4.2.4,
the following hold:

e 0=20.

e (1® Indgz )

G =
N F(kerad(f@lndci{ 0))

|GF’(Cl) has big image.

does not contain (.
e r® Indg;' 0 and ' ® Indg;' #' are both de Rham, and have the same
Hodge-Tate weights at each place of F’ dividing .

o7 = 1r® Indg;' 0 is essentially self-dual; that is, there is a character
X:Gp — @lx with x(¢,) independent of v|oo (where ¢, denotes a complex
conjugation at v) such that (r”)Y = r"y.

° Indgz 0’ is essentially self-dual.

Applying Theorem 7.1.3 with N = M % we find a totally real field F”//F’ with
|G, automorphic of level prime to I. By Proposition 5.1.3, the representation

(r'® Indgﬂ ¢')|c,, is automorphic. We now choose a solvable extension F*/F"
of totally real fields such that

o F* is linearly disjoint from F&erad™ (¢, )M over F'.

o g, =(r® Indgz 0)lc,, and (' ® Indgz ¢')|c,, are both crystalline

at all places dividing (.

o ("® Indgil' ¢')|c,., is automorphic of level prime to I (note that 7’|, is
automorphic of level prime to [, so this is easily achieved by Lemma 5.1.1
and Proposition 5.1.3).

e The extension F'TM/F7 is unramified at all finite places, and is split com-

pletely at all places of F'* lying over places in 7.
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e Olg,,, and &'|g_, are both unramified at all places not dividing /.
e Ifv|lis a place of F'™, then F, contains the unramified quadratic extension
of F}, and r”|G is trivial.

Write p := r"|q,, = (7" ® Indgﬂ Nlg,. > o= (0" ®IndG§’ e, : Grr —
GLym+(O), so that p’ is automorphic of level prime to [.

Sublemma. For each place w|l of F't, p‘GF,j; ~ p/‘GF,j,"

Proof. If w lies over a place of S,.q, this follows from Lemma 3.4.5. Otherwise, w
lies over a place v in Sg. Let L be the unramified quadratic extension of F! in
p— G ’
F; Then 7y, (7)|q,, = Indsz X for some character X : G — k> (see for example
Théoreme 3.2.1(1) of [Ber10]). We can and do (after possibly extending K) choose
a crystalline lift y : G, — O* of ¥ with Hodge-Tate weights —a,, and b, —a, (recall
that [ splits completely in F’). We can also (again, extending K if necessary) choose
a de Rham character ' : G — O lifting ¥ with Hodge-Tate weights 0 and 1,
which becomes crystalline over F” (we can do this by the assumption that 7’ \GF N
is trivial).

Choose an element 0 € G, mapping to a generator of Gal(L/F}), and fix

G ! G ’
the o-standard (in the sense of Definition 4.2.3) bases of IndG?’ X IndGiv X,
G G
Sym"™ ! IndGz” x, and Sym™ ™ Inde“ X’
G !
Choose a matrix A € GL,(O) with A(Inde“ X)A™!t = 7,(7)|q,, , and write

Y = A(Indgf’l’ x)A~!. We have r, ~ Tl,b(”)bp,;v because both liftings are crys-
talline of the same weight, F, is unramified, and the common weight is in the
Fontaine-Laffaille range (see e.g. Lemma 2.4.1 of [CHT08] which shows that the
appropriate lifting ring is formally smooth over ). Then by the remarks fol-
lowing Definition 3.3.5, we have (rx)|GF¢ ~ Tl,L(W)\Gth, and Sym"_l(rx)|GF$ ~

Sym” ! T“(W)|GF+, so that (with the inherited bases)

n— G o n— [ery)
(Sym" ! (r)le, ) ® (IndGr O)la, . ~ (Sym™ ' ri(n)la, ) © (Indgt; O)le ,

w

Similarly, write ry, = A(IndG X')A~!. Then ry|q i (e . because

both representations are Barsotti-Tate and non- ordlnary (see Prop051t10n 2.3 of
[Gee06] which shows that all non-ordinary points lie on the same component of the
appropriate lifting ring). Then Sym”fl(rxf)|GF+ ~ Sym" ! Tl,L(ﬂ/)‘GF+, and

n— Gpr n—
(Sym 1(7“x’)|GF$) ® (Indg" 9')‘GF$ ~ (Sym™ ! Tl,L(W/)IGm) (Ind %"

By Lemma 4.2.5, we have

G
F’ /)lGFJ; .

n— (e n— G pr
(Sym I(Tx/)|GF$) (Ind " /)|GFJV ~ (Sym 1(TX)|GF$) ® (Indg™ 0)|Gp$'
Since
n— G o
P, = Sym" i (n)le,, )@ (ndil O,
GF/

p/|GF;7 = (Symnil T“( )|G +) (Ind )|G iy

Fy Foy

the result follows from the transitivity of ~. O
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For v a place of F'™, let R%"G denote the universal O-lifting ring of ﬁ|GF -
T v

Extending O if necessary, we can and do assume that if v is such that at least one P

or p' is ramified at v, then for each minimal prime ideal g of R%G , the quotient
+

F’U

RY
p‘GF+

v

/¢ is geometrically integral.

Sublemma. For all places v { [ of F*, either

* pla - and p’|¢ oy ATC both unramified, or
° each of the followmg conditions hold:
- /la b 0 p\G (see Definition 3.3.7),
= rla,y mop \Gﬁv and
— the similitude characters of p and p’ agree on inertia at v.

Proof. If v does not lie over a place in T then there is nothing to prove, so we
may suppose that v lies over a place of T. The condition on similitude characters
is immediate since p and p’ are both unipotent on inertia at v. Let us then turn
to checking the condition that p’ |GF + o p|GF » By assumption, condition (1)
in Definition 3.3.7 is satisfied so we just need to check condition (2). Let p, =
1"l7b(71')|(;p+ and pl, = r,(7')|a e Then p, and p) are both lifts of the same
reductionuﬁv t Gp+ — GLa(k). Tt follows easily from Corollary 2.6.7 of [Kis09]
that there is a quotient R%z of RﬁDv corresponding to lifts which are extensions of
an unramified character v by e, and furthermore that the ring R%z is an integral
domain of dimension 5. Let pl) denote the universal lift to R%z. Then p, and p),
arise as specialisations of this lift at closed points of R%z [1/1]; let us call these points
z and z’.
Grr g

Note that (Indg"
or _1(9” fel +)e’A. For i = 0,...,m* — 1, let 6; : Gp+ — O denote the Te-

=0

m*— P .. Gpr
0)lc et = Ol N |GFJ)62- and similarly (Ind;" 19’)|GF;r =

ichmiiller lift of 8" |G it If R is an object of Co and r € R, we let \(r) : G+ —

R* denote the unramified character sending Frobp+ to r.
Let R= R andlet S = Ry'[[Xo, ..., Xm~—1]]. The lift
P v

Sym™ ! p @ (@?507151')\(1 + Xi)) €;

of p‘Gﬂ gives rise to a map Spec S — Spec R. Since S is a domain, the image of
this mavp must be contained in an irreducible component of Spec R. We deduce that
pla,, and p'|g,, are contained in a common irreducible component of Spec R[1/1].
To prove that z’ is contained in a unique irreducible component, it then suffices
to prove that 2’ is a smooth point of Spec R[1/1]. Since the completed local ring R?,
at o’ is the universal K-lifting ring of (p/‘Gpj) ®o K, a standard argument shows
that R}, is smooth if H*(G p+,ad p'|c +) = 0. By Tate local duality, it suffices to
show that H(Gp+,ad pf|g e (1)) =0, i.e. that Homg +(p |GF+,p ¢ . (1)) =0.
Let St, denote the n- d1mens1onal representation of G Fr correspondlng to the
Steinberg representation. Then p |GF . 1s GL,, (K)-conjugate to an unramified twist
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of
oy St @0 g, -
We may therefore assume that p’ |GF . is equal to this representation. It is easy to

check (for example by considering the corresponding Weil-Deligne representation)
that the representation St, contains a unique j-dimensional subrepresentation for
each j. Then a nonzero element of Home_, (¢c_ . ,0'lc, . (1)) would have to give

a non-zero map from the unique j-dimensional quotient of St, ®9’7i|GF , to the
unique j-dimensional subrepresentation of St, 0 (1)|GF . for some i, i and j.

This implies that (O’Ti, /0'™)

¢ . is a nonzero power of the cyclotomic character
foh ’

which is impossible, because 6’ YA ™ is a ratio of algebraic characters of the same
weight, and is thus pure of weight 0.
Finally, we can see that ,O\C;Fv+ 0 '0/|GF,T using the same argument. (Il

By Theorem 3.6.2, p is automorphic (the conditions on the image of p follow
from Lemma 4.2.4 and the choice of F*, and the remaining conditions follow by
construction and the two sublemmas just proved). Since F't/F” is solvable and
p= T,/|GF+7 "’|G,.,, is automorphic by Lemma 1.3 of [BLGHTO09]. But r"|g,, =

(Sym"™ " 11,(7)) |6, @(IAEE )y, = (Sym™ ' 11, (7)), @G (Blcy, ),

G]VIF”
so by Proposition 5.2.1 (Sym" ™' r;,(r))|q,., is automorphic, as required. O

Corollary 7.1.5. Suppose that F is a totally real field and that w is a non-CM
regular algebraic cuspidal automorphic representation of GLa(Ag) of weight A, and
let wy be the common value of the numbers A, 1 + Ay.2, v|oco. Suppose that n is a
positive integer and that ¢ : F*\A} — C* is a finite order character. Then there
is a meromorphic function L(Sym"™ ' 7 x 1,s) on the whole complex plane such
that:

e For any prime | and any isomorphism ¢ : Q, — C we have L(Sym"_1 T X

b, 5) = L(L(Symnil Tl,L(ﬂ) Y Tl,L(qz/}))v 5)'

o The expected functional equation holds between L(Sym™ 'm x 1), s) and
L(Sym™ *(7V|det |~“7) x 1,1 + (n — Dwy — ).

o Ifn>1ory #1 then L(Sym™ ' 7 x 1, s) is holomorphic and non-zero in
Rs > 14 (n—Nwe/2.

Proof. This follows from Theorem 7.1.4, as in the proof of Theorem 4.2 of [HSBT10].
We give the details. The L-function L(¢(Sym™ ' 7, (1) @1, (1)), s) is independent
of the choice of [, ¢+ by definition, so it is enough to prove the result for the I, ¢« fixed
throughout this section. Let m,,, F” be as in the conclusion of Theorem 7.1.4.

We claim that rec(m,,) = (Sym”_lrec(wv)ﬂWF,, for all places v of F”. If
v 1 1, this follows from Lemma 7.1.2 and the pulu*ity of r;,(m) (which follows
from the main result of [Bla06]). If v|l, then we choose a prime p # [ and
an isomorphism ¢/ : Q, — C. By the Tchebotarev density theorem we have
Tpur (1) = (Sym"™ 17y (7))|Gpn, and we may argue as before.

By Lemma 1.3 of [BLGHTO09], for any intermediate field FF C F; C F" with
F" | F; soluble, there is an automorphic representation 7/ of GL,, (A p, ) with 7y, (77) =
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(Sym™ ! rm(ﬂ'))\GFi. By Brauer’s theorem, we can write

1= Zaj Indgg X
j J

with a; € Z and x; : Gr; — C* a homomorphism. Then by the above discussion
(applied to the representations 77), we have

Lu(Sym" ™ i, (m) @ 1, (1)), 8) = [ [ L7 @ (xj 0 Artr,) @ 4, ).

The result follows. (|

We now deduce the Sato-Tate conjecture for m, following the formulation of
[Gee09] (see also section 8 of [BLGHTO09]). Recall w, is the common value of the
Av1 + Ay2, vjoo. Let 1 be the product of the central character of = with |- |“~,
so that ¢ has finite order. Let a denote the order of ), and let U(2), denote the
subgroup of U(2) consisting of those matrices g € U(2) with det(g)* = 1. Let
U(2),/ ~ denote the set of conjugacy classes of U(2),. By “the Haar measure on
U(2)s/ ~" we mean the push forward of the Haar measure on U(2), with total
measure 1.

The Ramanujan conjecture is known to hold at all finite places of 7 (see [Bla06]),
so for all v for which 7, is unramified, the matrix (Nv)~*=/2 rec(r, )(Frob,) lies in
U(2),. Let [m,] denote its conjugacy class in U(2),/ ~.

Theorem 7.1.6. Suppose that F is a totally real field, and that w is a non-CM
regular algebraic cuspidal automorphic representation of GLo(Ag). Then the classes
[mv] are equidistributed with respect to the Haar measure on U(2),/ ~.

Proof. This follows from Corollary 7.1.5, together with the corollary to Theorem
I.A.2 of [Ser68] (note that the irreducible representations of U(2), are the repre-
sentations det® ® Symd C?for0<c<a,d>0). O

This may be reformulated in a somewhat more explicit fashion as follows. Note
that the space U(2),/ ~ is disconnected if a # 1, so that to make an explicit
statement we choose a connected component, which amounts to choosing ( as in
the statement below (of course, one may replace ¢ by —(, and it is only the choice
of ¢? which determines a component).

Corollary 7.1.7. Suppose that F is a totally real field, and that © is a non-CM
reqular algebraic cuspidal automorphic representation of GLo(Ap). Let ¢ be the
product of the central character of m with |-|*~, so that ¥ is a finite order character.
Let ¢ be a root of unity with ¢% in the image of 1. For any place v of F such that
m, is unramified, let t,, denote the eigenvalue of the Hecke operator

[GLQ(OFW) (7% ?) GLQ(OE,)]

(where @, is a uniformiser of O, ) on 72O - Note that if ¥y () = (2 then

ty/(2(Nw)+wn)/2¢) € [-1,1] C R.
Then as v ranges over the places of F' with 7, unramified and v, (w,) = (2, the
values t,/(2(Nv)Hw=)/2¢) are equidistributed in [—1, 1] with respect to the measure

(2/m)V/1 — t2dt.
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