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In this short note we develop some basic results related to the notions of ir-
reducible components and dimensions of locally Noetherian algebraic stacks. We
work in the basic framework of the Stacks Project [Stacks]; we also note that most
of the results proved here have now been incorporated into [Stacks, Tag 0DQR]
(sometimes with weaker hypotheses than in this note).

The main results on the dimension theory of algebraic stacks in the literature
that we are aware of are those of [Oss15], which makes a study of the notions
of codimension and relative dimension. We make a more detailed examination of
the notion of the dimension of an algebraic stack at a point, and prove various
results relating the dimension of the fibres of a morphism at a point in the source
to the dimension of its source and target. We also prove a result (Lemma 2.40
below) which allow us (under suitable hypotheses) to compute the dimension of an
algebraic stack at a point in terms of a versal ring.

While we haven’t always tried to optimise our results, we have largely tried to
avoid making unnecessary hypotheses. However, in some of our results, in which we
compare certain properties of an algebraic stack to the properties of a versal ring
to this stack at a point, we have restricted our attention to the case of algebraic
stacks that are locally finitely presented over a locally Noetherian scheme base,
all of whose local rings are G-rings. This gives us the convenience of having Artin
approximation available to compare the geometry of the versal ring to the geometry
of the stack itself. However, this restrictive hypothesis may not be necessary for
the truth of all of the various statements that we prove. Since it is satisfied in the
applications that we have in mind, though, we have been content to make it when
it helps.
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1. Multiplicities of components of algebraic stacks

If X is a locally Noetherian scheme, then we may write X (thought of simply
as a topological space) as a union of irreducible components, say X = ∪Ti. Each
irreducible component is the closure of a unique generic point ξi, and the local ring
OX,ξi is a local Artin ring. We may define the multiplicity µTi(X) of X along Ti to
be `(OX,ξi).

Our goal here is to generalise this definition to locally Noetherian algebraic
stacks. If X is such a stack, then it has an underlying topological space |X |
(see [Stacks, Definition 04Y8]), which is locally Noetherian (by [Stacks, Defini-
tion 04Z8]), and hence which may be written as a union of irreducible components;
we refer to these as the irreducible components of X . If X is quasi-separated, then
|X | is sober (by [LMB00, Cor. 5.7.2]), but it need not be in the non-quasi-separated
case.1 (Consider for example the non-quasi-separated algebraic space X := A1

C/Z.)
Furthermore, there is no structure sheaf on |X | whose stalks can be used to define
multiplicities.

In order to define the multiplicity of a component of |X |, we use the fact that
if U → X is a smooth surjection from a scheme U to X (such a surjection exists,
since X is an algebraic stack), it induces a surjection |U | → |X | by [Stacks, Tag
04XI] (here |U | simply denotes the topological space underlying U), and for each
irreducible component T of |X | there is an irreducible component T ′ of |U | such
that T ′ maps into T with dense image. (See Lemma 1.2 below for a proof.)

Definition 1.1. We define µT (X ) := µT ′(U).

Of course, we must check that this is independent of the choice of chart U , and
of the choice of irreducible component T ′ mapping to T . We begin by making this
verification, as well as proving Lemma 1.2.

Lemma 1.2. If U → X is a smooth morphism from a scheme onto a locally
Noetherian algebraic stack X , then the closure of the image of any irreducible com-
ponent of |U | is an irreducible component of |X |. If this morphism is furthermore
surjective, then all irreducible components of |X | are obtained in this way.

Proof. This is easily verified, using the fact that |U | → |X | is continuous and open
by [Stacks, Lem. 04XL], and furthermore surjective if U → X is, once one recalls
that the irreducible components of a locally Noetherian topological space can be
characterised as being the closures of irreducible open subsets of the space. �

The preceding lemma applies in particular in the case of smooth morphisms
between locally Noetherian schemes. This particular case is implicitly invoked in
the statement of the following lemma.

1We follow the Stacks Project in allowing our algebraic stacks to be non-quasi-separated.

However, in the applications that we have in mind, the algebraic stacks involved will in fact be
quasi-separated, and so the reader who prefers to restrict their attention to the quasi-separated

case will lose nothing by doing so.

http://stacks.math.columbia.edu/tag/04Y8
http://stacks.math.columbia.edu/tag/04Z8
http://stacks.math.columbia.edu/tag/04Z8
http://stacks.math.columbia.edu/tag/04XI
http://stacks.math.columbia.edu/tag/04XI
http://stacks.math.columbia.edu/tag/04XL
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Lemma 1.3. If U → X is a smooth morphism of locally Noetherian schemes, and
if T ′ is an irreducible component of U , with T denoting the irreducible component
of X obtained as the closure of the image of T ′, then µT ′(U) = µT (X).

Proof. Write ξ′ for the generic point of T ′, and ξ for the generic point of T , so that
we need to show that `(OX,ξ) = `(OU,ξ′).

Let n = `(OX,ξ), and choose a sequence OX,ξ = I0 ⊃ I1 ⊃ · · · ⊃ In = 0 with
Ii/Ii+1

∼= OX,ξ/mX,ξ. The map OX,ξ → OU,ξ′ is flat, so that we have

IiOU,ξ′/Ii+1OU,ξ′ ∼= (Ii/Ii+1)⊗OX,ξ OU,ξ′ ∼= OU,ξ′/mX,ξOU,ξ′ ,
so it suffices to show that mX,ξOU,ξ′ = mU,ξ′ , or in other words thatOU,ξ′/mX,ξOU,ξ′
is reduced.

Since the map U → X is smooth, so is its base-change Uξ → Specκ(ξ). As Uξ is
a smooth scheme over a field, it is reduced, and thus so its local ring at any point.
In particular, OU,ξ′/mX,ξOU,ξ′ , which is naturally identified with the local ring of
Uξ at ξ′, is reduced, as required. �

Using this result, we may show that notion of multiplicity given in Definition 1.1
is in fact well-defined.

Lemma 1.4. If U1 → X and U2 → X are two smooth surjections from schemes to
the locally Noetherian algebraic stack X , and T ′1 and T ′2 are irreducible components
of |U1| and |U2| respectively, the closures of whose images are both equal to the same
irreducible component T of |X |, then µT ′

1
(U1) = µT ′

2
(U2).

Proof. Let V1 and V2 be dense subsets of T ′1 and T ′2, respectively, that are open
in U1 and U2 respectively. The images of |V1| and |V2| in |X | are non-empty open
subsets of the irreducible subset T , and therefore have non-empty intersection.
By [Stacks, Tag 04XH], the map |V1 ×X V2| → |V1| ×|X | |V2| is surjective, and
consequently V1×X V2 is a non-empty algebraic space; we may therefore choose an
étale surjection V → V1 ×X V2 whose source is a (non-empty) scheme. If we let T ′

be any irreducible component of V , then Lemma 1.2 shows that the closure of the
image of T ′ in U1 (respectively U2) is equal to T ′1 (respectively T ′2).

Applying Lemma 1.3 twice we find that

µT ′
1
(U1) = µT ′(V ) = µT ′

2
(U2),

as required. �

It will be convenient to have a comparison between the notion of multiplicity of
an irreducible component given by Definition 1.1 and the related notion of multi-
plicities of irreducible components of (the spectra of) versal rings of X at finite type
points. In order to have a robust theory of versal rings at finite type points, we
assume for the remainder of this note that X is locally of finite presentation over a
locally Noetherian scheme S, all of whose local rings are G-rings. (This hypothe-
sis on the local rings may not be necessary for all the assertions that follow, but it
makes the arguments straightforward, and in any case seems to be necessary for the
actual comparison of multiplicities. We also note that condition this is equivalent
to the apparently weaker condition that the local rings of S at finite type points
are G-rings; indeed, the finite type points are dense in S [Stacks, Lem. 02J4], and
essentially by definition, any localization of a G-ring is again a G-ring.)

We begin by recalling the following standard consequence of Artin approxima-
tion.

http://stacks.math.columbia.edu/tag/04XH
http://stacks.math.columbia.edu/tag/02J4
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Lemma 1.5. Let X be an algebraic stack locally of finite presentation over a locally
Noetherian scheme S, all of whose local rings are G-rings, and let x : Spec k → X
be a morphism whose source is the spectrum of a field of finite type over OS.

If Ax is a versal ring to X at x, then we may find a smooth morphism U → X
whose source is a scheme, containing a point u ∈ U of residue field k, such that the
induced morphism u = Spec k → U → X coincides with the given morphism x, and

such that there is an isomorphism ÔU,u ∼= Ax compatible with the versal morphism

Spf Ax → X and the induced morphism Spf ÔU,u → U → X .

Proof. Since X is an algebraic stack, the versal morphism Spf Ax → X is effective,
i.e. can be promoted to a morphism SpecAx → X [Stacks, Lem. 07X8]. By assump-
tion X is locally of finite presentation over S, and hence limit preserving [EG14,
Lem. 2.1.9], and so Artin approximation (see [Stacks, Lem. 07XH] and its proof)
shows that we may find a morphism U → X with source a finite type S-scheme,
containing a point u ∈ U of residue field k, satisfying all of the required properties
except possibly the smoothness of U → X .

Since X is an algebraic stack, we see that if we replace U by a sufficient small
neighbourhood of u, we may in addition assume that U → X is smooth (see e.g.
[EG14, Lem. 2.4.7 (4)]), as required. �

Lemma 1.6. Let X be an algebraic stack locally of finite presentation over a locally
Noetherian scheme S, all of whose local rings are G-rings, and let x : Spec k → X be
a morphism whose source is the spectrum of a field of finite type over OS. If Ax and
A′x are two versal rings to X at x, then the multi-sets of irreducible components of
SpecAx and of SpecA′x (in which each component is counted with its multiplicity),
are in canonical bijection.

Furthermore, there is a natural surjection from the set of irreducible components
of each of SpecAx and SpecA′x to the set of irreducible components of |X | con-
taining the class of x in |X |; this surjection sends components that correspond by
the above bijection to the same component of |X |; and this surjection preserves
multiplicities.

Proof. By Lemma 1.5 we can find smooth morphisms U,U ′ → X whose sources are
schemes, and points u, u′ of U,U ′ respectively, both with residue field k, such that

the induced morphisms ÔU,u → U → X and ÔU ′,u′ → U ′ → X can be identified
respectively with the versal morphisms Spf Ax → X and Spf A′x → X . We then
form the fibre product U ′′ := U×X U ′; this is an algebraic space over S, and the two
monomorphisms u = Spec k → U and u′ = Spec k → U ′ induce a monomorphism
u′′ = Spec k → U ′′. Following [EG14, Prop. 2.2.14, Def. 2.2.16], we consider the

complete local ring ÔU ′′,u of U ′′ at u′′.

Since U ′′ → U is smooth, we see that the induced morphism Ax = ÔU,u →
ÔU ′′,u′′ induces a smooth morphism of representable functors, in the sense of [Stacks,

Def. 06HG], and hence, by [Stacks, Lem. 06HL], we see that ÔU ′′,u′′ is a formal
power series ring over Ax. Similarly, it is a formal power series ring over A′x. Recall
that if A is a complete local ring and B is a formal power series ring in finitely
many variables over A, then the irreducible components of SpecB are in a natural
multiplicity preserving bijection with the irreducible components of SpecA. Thus,
we obtain multiplicity preserving bijections between the multi-sets of irreducible

http://stacks.math.columbia.edu/tag/07X8
http://stacks.math.columbia.edu/tag/07XH
http://stacks.math.columbia.edu/tag/06HG
http://stacks.math.columbia.edu/tag/06HL
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components of each of SpecAx and SpecA′x with the multi-set of irreducible com-

ponents of Spec ÔU ′′,u′′ , and hence between these two multi-sets themselves.
The morphism SpecAx → X factors through U , and the scheme-theoretic im-

age of each irreducible component of SpecAx is an irreducible component of U (as
follows from the facts that SpecAx → U is flat, and that flat morphisms satisfy
the going-down theorem). Composing with the natural map from the set of irre-
ducible components of U to the set of irreducible components of X , we obtain a
morphism from the set of irreducible components of SpecAx to the set of irreducible
components of |X |. A consideration of the commutative diagram

|SpecOU ′′,u′′ | //

��

|U ′′|

��

|SpecAx| // |X |

and of the analogous diagram with A′x in place of Ax, shows that this map, and
the corresponding map for A′x, are compatible with the bijection constructed above
between the irreducible components of SpecAx and the irreducible components of
SpecA′x.

It remains to show that this map, from the irreducible components of SpecAx
to those of X , is multiplicity preserving. A consideration of the definition of the
multiplicity of an irreducible component of X , and of the preceding constructions,
shows that it suffices to show that the map from the set of irreducible components

of Spec ÔU ′′,u′′ to the set of irreducible components of U ′′, given by taking Zariski
closures, is multiplicity preserving. As we will see, this follows from the assumption
that the local rings of S are G-rings.

More precisely, noting that it suffices to compare these multiplicities after making
an étale base-change, we may replace U ′′ by a scheme which covers it via an étale
map, and hence assume that U ′′ itself is a scheme, so that the local ring OU ′′,u′′ is
defined. (Alternatively, we could apply Artin approximation to the versal morphism

Spf ÔU ′′,u′′ → U ′′, so as to replace U ′′ by a scheme.) The scheme U ′′ is of finite
type over S, and hence the local ring OU ′′,u′′ is a G-ring. Let p be a minimal
prime ideal of OU ′′,u′′ , corresponding to an irreducible component of U ′′ passing

through u′′, and let q be a minimal prime of ÔU ′′,u′′ lying over p (corresponding

to an irreducible component of Spec ÔU ′′,u′′ whose closure in U ′′ is the irreducible

component corresponding to p); we have to show that the length of (ÔU ′′,u′′)q is
equal to the length of (OU ′′,u′′)p. Since q lies over p, there is a natural isomorphism

(ÔU ′′,u′′)q ∼=
(
ÔU ′′,u′′ ⊗ (OU ′′,u′′)p

)
q
.

Now if ` is the length of (OU ′′,u′′)p, then we may find a filtration of length ` on
(OU ′′,u′′)p, each of whose graded pieces is isomorphic to κ(p). This induces a

corresponding filtration on
(
ÔU ′′,u′′ ⊗ (OU ′′,u′′)p

)
q
, each of whose graded pieces is

isomorphic to
(
ÔU ′′,u′′⊗κ(p)

)
q
. Since OU ′′,u′′ is a G-ring, the formal fibre ÔU ′′,u′′⊗

κ(p) is regular. Since q is a minimal prime in this ring, the localization
(
ÔU ′′,u′′ ⊗

κ(p)
)
q

is thus a field, and hence equal to κ(q). We conclude that (ÔU ′′,u′′)q has

length `, as required.
�
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Definition 1.7. If X is an algebraic stack locally of finite presentation over a
locally Noetherian scheme S all of whose local rings are G-rings, if x : Spec k → X
is a morphism whose source is the spectrum of a field of finite type over OS , and if
Ax is a versal ring to X at x, then we define the set of formal branches of X through
x to be the set of irreducible components of SpecAx, and we define the multiplicity
of a branch to be the multiplicity of the corresponding component in SpecAx.

Lemma 1.6 shows, in the context of the preceding definition, that the set of
formal branches of X through x, and their multiplicities, are well-defined indepen-
dently of the choice of versal ring used to compute them. It also shows that there
is a natural map from the set of formal branches of X through x to the set of ir-
reducible components of |X | containing the class of x, and that this map preserves
multiplicities.

As a closing remark, we note that it is sometimes convenient to think of an
irreducible component of X as a closed substack. To this end, if T is an irreducible
component of X , i.e. an irreducible component of |X |, then we endow T with its
induced reduced substack structure (see [Stacks, Def. 050C]).

2. Dimension theory of algebraic stacks

In this section we discuss some concepts related to the dimension theory of locally
Noetherian algebraic stacks. Since we intend to make arguments with them, it will
be helpful to recall the basic definitions related to dimensions, beginning with the
case of schemes, and then the case of algebraic spaces.

Definition 2.1. If X is a scheme, then we define the dimension dim(X) of X to
be the Krull dimension of the topological space underlying X, while if x is a point
of X, then we define the dimension dimx(X) of X at x to be the minimum of the
dimensions of the open subsets U of X containing x [Stacks, Def. 04MT]. One has
the relation dim(X) = supx∈X dimx(X) [Stacks, Lem. 04MU].

If X is locally Noetherian, then dimx(X) coincides with the supremum of the
dimensions at x of the irreducible components of X passing through x.

Definition 2.2. If X is an algebraic space and x ∈ |X|, then we define dimxX =
dimu U, where U is any scheme admitting an étale surjection U → X, and u ∈ U
is any point lying over x [Stacks, Def. 04N5]. We set dim(X) = supx∈|X| dimx(X).

Remark 2.3. In general, the dimension of the algebraic space X at a point x may
not coincide with the dimension of the underlying topological space |X| at x. E.g.
if k is a field of characteristic zero and X = A1

k/Z, then X has dimension 1 (the
dimension of A1

k) at each of its points, while |X| has the indiscrete topology, and
hence is of Krull dimension zero. On the other hand, in [Stacks, Ex. 02Z8] there
is given an example of an algebraic space which is of dimension 0 at each of its
points, while |X| is irreducible of Krull dimension 1, and admits a generic point (so
that the dimension of |X| at any of its points is 1); see also the discussion of this
example in [Stacks, Tag 04N3]

On the other hand, if X is a decent algebraic space, in the sense of [Stacks,
Def. 03I8] (in particular, if X is quasi-separated; see [Stacks, Def. 03I7]), then
in fact the dimension of X at x does coincide with the dimension of |X| at x;
see [Stacks, Lem. 0A4J].

http://stacks.math.columbia.edu/tag/050C
http://stacks.math.columbia.edu/tag/04MT
http://stacks.math.columbia.edu/tag/04MU
http://stacks.math.columbia.edu/tag/04N5
http://stacks.math.columbia.edu/tag/02Z8
http://stacks.math.columbia.edu/tag/04N3
http://stacks.math.columbia.edu/tag/03I8
http://stacks.math.columbia.edu/tag/03I7
http://stacks.math.columbia.edu/tag/0A4J
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In order to define the dimension of an algebraic stack, it will be useful to first have
the notion of the relative dimension, at a point in the source, of a morphism whose
source is an algebraic space, and whose target is an algebraic stack. The definition
is slightly involved, just because (unlike in the case of schemes) the points of an
algebraic stack, or an algebraic space, are not describable as morphisms from the
spectrum of a field, but only as equivalence classes of such.

Definition 2.4. If f : T → X is a locally of finite type morphism from an algebraic
space to an algebraic stack, and if t ∈ |T | is a point with image x ∈ |X |, then we
define the relative dimension of f at t, denoted dimt(Tx), as follows: choose a
morphism Spec k → X , with source the spectrum of a field, which represents x,
and choose a point t′ ∈ |T ×X Spec k| mapping to t under the projection to |T |
(such a point t′ exists, by [Stacks, Lem. 04XH]); then

dimt(Tx) := dimt′(T ×X Spec k).

(Note that since T is an algebraic space and X is an algebraic stack, the fibre
product T ×X Spec k is an algebraic space, and so the quantity on the right hand
side of this proposed definition is in fact defined, by Definition 2.2.)

Remark 2.5. (1) One easily verifies (for example, by using the invariance of the
relative dimension of locally of finite type morphisms of schemes under base-change;
see e.g. [Stacks, Lem. 02FY]) that dimt(Tx) is well-defined, independently of the
choices used to compute it.

(2) In the case that X is also an algebraic space, it is straightforward to confirm
that this definition agrees with the definition of relative dimension given in [Stacks,
Def. 04NM (3)].

We next recall the following lemma, on which the definition of the dimension of
a locally Noetherian algebraic stack is founded.

Lemma 2.6. If f : U → X is a smooth morphism of locally Noetherian algebraic
spaces, and if u ∈ |U | with image x ∈ |X|, then

dimu(U) = dimx(X) + dimu(Ux)

(where of course dimu(Ux) is defined via Definition 2.4).

Proof. See [Stacks, Lem. 0AFI], noting that the definition of dimu(Ux) used here
coincides with the definition used there, by Remark 2.5 (2). �

Definition 2.7. If X is a locally Noetherian algebraic stack, and x ∈ |X |, then we
define the dimension dimx(X ) of X at x as follows: let U → X be a smooth mor-
phism from a scheme (or, more generally, from an algebraic space) to X containing
x in its image, let u be any point of |U | mapping to x, and define

dimx(X ) := dimu(U)− dimu(Ux)

(where the relative dimension dimu(Ux) is defined by Definition 2.4).

Remark 2.8. The preceding definition is justified by the formula of Lemma 2.6, and
one can use that lemma to verify that dimx(X ) is well-defined, independently of the
choices used to compute it. Alternatively (employing the notation of the definition,
and choosing U to be a scheme), one can compute dimu(Ux) by choosing the repre-
sentative of x to be the composite Specκ(u)→ U → X , where the first morphism
is the canonical one with image u ∈ U . Then, if we write R := U ×X U , and let

http://stacks.math.columbia.edu/tag/04XH
http://stacks.math.columbia.edu/tag/02FY
http://stacks.math.columbia.edu/tag/04NM
http://stacks.math.columbia.edu/tag/0AFI
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e : U → R denote the diagonal morphism, the invariance of relative dimension
under base-change shows that dimu

(
Ux) = dime(u)(Ru), and thus the preceding

definition of dimx(X ) coincides with the definition as dimu(U)−dime(u)(Ru) given
in [Stacks, Def. 0AFN], which is shown to be independent of choices in [Stacks,
Lem. 0AFM].

Remark 2.9. For Deligne–Mumford stacks which are suitably decent (e.g. quasi-
separated), it will again be the case that dimx(X ) coincides with the topologically
defined quantity dimx |X |. However, for more general Artin stacks, this will typ-
ically not be the case. For example, if X := [A1/Gm] (over some field, with the
quotient being taken with respect to the usual multiplication action of Gm on A1),
then |X | has two points, one the specialisation of the other (corresponding to the
two orbits of Gm on A1), and hence is of dimension 1 as a topological space; but
dimx(X ) = 0 for both points x ∈ |X |. (An even more extreme example is given
by the classifying space [Spec k/Gm], whose dimension at its unique point is equal
to −1.)

We can now extend Definition 2.4 to the context of (locally finite type) mor-
phisms between (locally Noetherian) algebraic stacks.

Definition 2.10. If f : T → X is a locally of finite type morphism between locally
Noetherian algebraic stacks, and if t ∈ |T | is a point with image x ∈ |X |, then
we define the relative dimension of f at t, denoted dimt(Xx), as follows: choose a
morphism Spec k → X , with source the spectrum of a field, which represents x, and
choose a point t′ ∈ |T ×X Spec k| mapping to t under the projection to |T | (such a
point t′ exists, by [Stacks, Lem. 04XH]); then

dimt(Tx) := dimt′(T ×X Spec k).

(Note that since T is an algebraic stack and X is an algebraic stack, the fibre
product T ×X Spec k is an algebraic stack, which is locally Noetherian by [Stacks,
Lem. 06R6]. Thus the quantity on the right side of this proposed definition is
defined by Definition 2.7.)

Remark 2.11. Standard manipulations show that dimt(Tx) is well-defined, indepen-
dently of the choices made to compute it.

We now establish some basic properties of relative dimension, which are obvious
generalisations of the corresponding statements in the case of morphisms of schemes.

Lemma 2.12. Suppose given a Cartesian square of morphisms of locally Noether-
ian stacks

T ′

��

// T

��

X ′ // X
in which the vertical morphisms are locally of finite type. If t′ ∈ |T ′|, with images
t, x′, and x in |T |, |X ′|, and |X | respectively, then dimt′(T ′x′) = dimt(Tx).

Proof. Both sides can (by definition) be computed as the dimension of the same
fibre product. �

http://stacks.math.columbia.edu/tag/0AFN
http://stacks.math.columbia.edu/tag/0AFM
http://stacks.math.columbia.edu/tag/04XH
http://stacks.math.columbia.edu/tag/06R6
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Lemma 2.13. If f : U → X is a smooth morphism of locally Noetherian algebraic
stacks, and if u ∈ |U| with image x ∈ |X |, then

dimu(U) = dimx(X ) + dimu(Ux).

Proof. Choose a smooth surjective morphism V → U whose source is a scheme,
and let v ∈ |V | be a point mapping to u. Then the composite V → U → X is
also smooth, and by definition we have dimx(X ) = dimv(V ) − dimv(Vx), while
dimu(U) = dimv(V )− dimv(Vu). Thus

dimu(U)− dimx(X ) = dimv(Vx)− dimv(Vu).

Choose a representative Spec k → X of x and choose a point v′ ∈ |V ×X Spec k|
lying over v, with image u′ in |U ×X Spec k|; then by definition dimu(Ux) =
dimu′(U ×X Spec k), and dimv(Vx) = dimv′(V ×X Spec k).

Now V ×X Spec k → U ×X Spec k is a smooth surjective morphism (being the
base-change of such a morphism) whose source is an algebraic space (since V and
Spec k are schemes, and X is an algebraic stack). Thus, again by definition, we
have

dimu′(U ×X Spec k) = dimv′(V ×X Spec k)− dimv′
(
(V ×X Spec k)u′)

= dimv(Vx)− dimv′
(
(V ×X Spec k)u′).

Now V×XSpec k
∼−→ V×U (U×XSpec k), and so Lemma 2.12 shows that dimv′

(
(V×X

Spec k)u′) = dimv(Vu). Putting everything together, we find that

dimu(U)− dimx(X ) = dimu(Ux),

as required. �

Lemma 2.14. Let f : T → X be a locally of finite type morphism of algebraic
stacks.

(1) The function t 7→ dimt(Tf(t)) is upper semi-continuous on |T |.
(2) If f is smooth, then the function t 7→ dimt(Tf(t)) is locally constant on |T |.

Proof. Suppose to begin with that T is a scheme T , let U → X be a smooth
surjective morphism whose source is a scheme, and let T ′ := T ×X U . Let f ′ : T ′ →
U be the pull-back of f over U , and let g : T ′ → T be the projection.

Lemma 2.12 shows that dimt′(T
′
f ′(t′)) = dimg(t′)(Tf(g(t′))), for t′ ∈ T ′, while,

since g is smooth and surjective (being the base-change of a smooth surjective
morphism) the map induced by g on underlying topological spaces is continuous
and open (by [Stacks, Lem. 04XL]), and surjective. Thus it suffices to note that
part (1) for the morphism f ′ follows from [Stacks, Tag 04NT], and part (2) from
either of [Stacks, Lem. 02NM] or [Stacks, Lem. 02G1] (each of which gives the result
for schemes, from which the analogous results for algebraic spaces can be deduced
exactly as in [Stacks, Tag 04NT]).

Now return to the general case, and choose a smooth surjective morphism h :
V → T whose source is a scheme. If v ∈ V , then, essentially by definition, we have

dimh(v)(Tf(h(v))) = dimv(Vf(h(v)))− dimv(Vh(v)).

Since V is a scheme, we have proved that the first of the terms on the right hand
side of this equality is upper semi-continuous (and even locally constant if f is
smooth), while the second term is in fact locally constant. Thus their difference is

http://stacks.math.columbia.edu/tag/04XL
http://stacks.math.columbia.edu/tag/04NT
http://stacks.math.columbia.edu/tag/02NM
http://stacks.math.columbia.edu/tag/02G1
http://stacks.math.columbia.edu/tag/04NT
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upper semi-continuous (and locally constant if f is smooth), and hence the func-
tion dimh(v)(Tf(h(v))) is upper semi-continuous on |V | (and locally constant if f
is smooth). Since the morphism |V | → |T | is open and surjective, the lemma
follows. �

Before continuing with our development, we prove two lemmas related to the
dimension theory of schemes.

To put the first lemma in context, we note that if X is a finite-dimensional
scheme, then since dimX is defined to equal the supremum of the dimensions
dimxX, there exists a point x ∈ X such that dimxX = dimX. The following
lemma shows that we may furthermore take the point x to be of finite type.

Lemma 2.15. If X is a finite-dimensional scheme, then there exists a closed (and
hence finite type) point x ∈ X such that dimxX = dimX.

Proof. Let d = dimX, and choose a maximal strictly decreasing chain of irreducible
closed subsets of X, say

(2.16) Z0 ⊃ Z1 ⊃ · · · ⊃ Zd.
The subset Zd is a minimal irreducible closed subset of X, and thus any point of
Zd is a generic point of Zd. Since the underlying topological space of the scheme
X is sober, we conclude that Zd is a singleton, consisting of a single closed point
x ∈ X. If U is any neighbourhood of x, then the chain

U ∩ Z0 ⊃ U ∩ Z1 ⊃ · · · ⊃ U ∩ Zd = Zd = {x}
is then a strictly descending chain of irreducible closed subsets of U , showing that
dimU ≥ d. Thus we find that dimxX ≥ d. The other inequality being obvious,
the lemma is proved. �

The next lemma shows that dimxX is a constant function on an irreducible
scheme satisfying some mild additional hypotheses. (See Lemma 2.35 below for a
related result.)

Lemma 2.17. If X is an irreducible, Jacobson, catenary, and locally Noetherian
scheme of finite dimension, then dimU = dimX for every non-empty open subset
U of X. Equivalently, dimxX is a constant function on X.

Proof. The equivalence of the two claims follows directly from the definitions. Sup-
pose, then, that U ⊂ X is a non-empty open subset. Certainly dimU ≤ dimX,
and we have to show that dimU ≥ dimX. Write d := dimX, and choose a maximal
strictly decreasing chain of irreducible closed subsets of X, say

X = Z0 ⊃ Z1 ⊃ · · · ⊃ Zd.
Since X is Jacobson, the minimal irreducible closed subset Zd is equal to {x} for
some closed point x.

If x ∈ U, then

U = U ∩ Z0 ⊃ U ∩ Z1 ⊃ · · · ⊃ U ∩ Zd = {x}
is a strictly decreasing chain of irreducible closed subsets of U , and so we conclude
that dimU ≥ d, as required. Thus we may suppose that x 6∈ U.

Consider the flat morphism SpecOX,x → X. The non-empty (and hence dense)
open subset U of X pulls back to an open subset V ⊂ SpecOX,x. Replacing U by
a non-empty quasi-compact, and hence Noetherian, open subset, we may assume
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that the inclusion U → X is a quasi-compact morphism. Since the formation
of scheme-theoretic images of quasi-compact morphisms commutes with flat base-
change [Stacks, Tag 081I]), we see that V is dense in SpecOX,x, and so in particular
non-empty, and of course x 6∈ V. (Here we use x also to denote the closed point of
SpecOX,x, since its image is equal to the given point x ∈ X.) Now SpecOX,x\{x} is
Jacobson [Stacks, Tag 02IM], and hence V contains a closed point z of SpecOX,x \
{x}. The closure in X of the image of z is then an irreducible closed subset Z
of X containing x, whose intersection with U is non-empty, and for which there
is no irreducible closed subset properly contained in Z and properly containing
{x} (because pull-back to SpecOX,x induces a bijection between irreducible closed
subsets of X containing x and irreducible closed subsets of SpecOX,x). Since U ∩Z
is a non-empty closed subset of U , it contains a point u that is closed in X (since X
is Jacobson), and since U ∩Z is a non-empty (and hence dense) open subset of the
irreducible set Z (which contains a point not lying in U , namely x), the inclusion
{u} ⊂ U ∩ Z is proper.

As X is catenary, the chain

X = Z0 ⊇ Z ⊃ {x} = Zd

can be refined to a chain of length d+ 1, which must then be of the form

X = Z0 ⊃W1 ⊃ · · · ⊃Wd−1 = Z ⊃ {x} = Zd.

Since U ∩ Z is non-empty, we then find that

U = U ∩ Z0 ⊃ U ∩W1 ⊃ · · · ⊃ U ∩Wd−1 = U ∩ Z ⊃ {u}

is a strictly decreasing chain of irreducible closed subsets of U of length d + 1,
showing that dimU ≥ d, as required. �

We will prove a stack-theoretic analogue of Lemma 2.17 in Lemma 2.21 below,
but before doing so, we have to introduce an additional definition, necessitated by
the fact that the notion of a scheme being catenary is not an étale local one (see the
example of [Stacks, Tag 0355]), which makes it difficult to define what it means for
an algebraic space or algebraic stack to be catenary (see the discussion of [Oss15,
p. 3]). For certain aspects of dimension theory, the following definition seems to
provide a good substitute for the missing notion of a catenary algebraic stack.

Definition 2.18. We say that a locally Noetherian algebraic stack X is pseudo-
catenary if there exists a smooth and surjective morphism U → X whose source is
a universally catenary scheme.

Example 2.19. If X is locally of finite type over a universally catenary locally
Noetherian scheme S, and U → X is a smooth surjective morphism whose source
is a scheme, then the composite U → X → S is locally of finite type, and so U is
universally catenary [Stacks, Tag 02J9]. Thus X is pseudo-catenary.

The following lemma shows that the property of being pseudo-catenary passes
through finite type morphisms.

Lemma 2.20. If X is a pseudo-catenary locally Noetherian algebraic stack, and if
Y → X is a locally of finite type morphism, then there exists a smooth surjective
morphism V → Y whose source is a universally catenary scheme; thus Y is again
pseudo-catenary.

http://stacks.math.columbia.edu/tag/081I
http://stacks.math.columbia.edu/tag/02IM
http://stacks.math.columbia.edu/tag/0355
http://stacks.math.columbia.edu/tag/02J9
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Proof. By assumption we may find a smooth surjective morphism U → X whose
source is a universally catenary scheme. The base-change U ×X Y is then an al-
gebraic stack; let V → U ×X Y be a smooth surjective morphism whose source
is a scheme. The composite V → U ×X Y → Y is then smooth and surjec-
tive (being a composite of smooth and surjective morphisms), while the morphism
V → U ×X Y → U is locally of finite type (being a composite of morphisms that
are locally finite type). Since U is universally catenary, we see that V is universally
catenary (by [Stacks, Tag 02J9]), as claimed. �

We now study the behaviour of the function dimx(X ) on |X | (for some locally
Noetherian stack X ) with respect to the irreducible components of |X |, as well as
various related topics.

Lemma 2.21. If X is a Jacobson, pseudo-catenary, and locally Noetherian alge-
braic stack for which |X | is irreducible, then dimx(X ) is a constant function on |X |.

Proof. It suffices to show that dimx(X ) is locally constant on |X |, since it will
then necessarily be constant (as |X | is connected, being irreducible). Since X is
pseudo-catenary, we may find a smooth surjective morphism U → X with U being
a univesally catenary scheme. If {Ui} is an cover of U by quasi-compact open
subschemes, we may replace U by

∐
Ui,, and it suffices to show that the function

u 7→ dimf(u)(X ) is locally constant on Ui. Since we check this for one Ui at a
time, we now drop the subscript, and write simply U rather than Ui. Since U
is quasi-compact, it is the union of a finite number of irreducible components, say
T1∪· · ·∪Tn. Note that each Ti is Jacobson, catenary, and locally Noetherian, being
a closed subscheme of the Jacobson, catenary, and locally Noetherian scheme U .

By definition, we have dimf(u)(X ) = dimu(U) − dimu(Uf(u)). Lemma 2.14 (2)
shows that the second term in the right hand expression is locally constant on U ,
as f is smooth, and hence we must show that dimu(U) is locally constant on U .
Since dimu(U) is the maximum of the dimensions dimu Ti, as Ti ranges over the
components of U containing u, it suffices to show that if a point u lies on two
distinct components, say Ti and Tj (with i 6= j), then dimu Ti = dimu Tj , and then
to note that t 7→ dimt T is a constant function on an irreducible Jacobson, catenary,
and locally Noetherian scheme T (as follows from Lemma 2.17).

Let V = Ti \
(⋃

i′ 6=i Ti′
)

and W = Tj \
(⋃

i′ 6=j Ti′
)
. Then each of V and W

is a non-empty open subset of U , and so each has non-empty open image in |X |.
As |X | is irreducible, these two non-empty open subsets of |X | have a non-empty
intersection. Let x be a point lying in this intersection, and let v ∈ V and w ∈ W
be points mapping to x. We then find that

dimTi = dimV = dimv(U) = dimx(X ) + dimv(Ux)

and similarly that

dimTj = dimW = dimw(U) = dimx(X ) + dimw(Ux).

Since u 7→ dimu(Uf(u)) is locally constant on U , and since Ti ∪ Tj is connected
(being the union of two irreducible, hence connected, sets that have non-empty in-
tersection), we see that dimv(Ux) = dimw(Ux), and hence, comparing the preceding
two equations, that dimTi = dimTj , as required. �

Lemma 2.22. If Z ↪→ X is a closed immersion of locally Noetherian schemes, and
if z ∈ |Z| has image x ∈ |X |, then dimz(Z) ≤ dimx(X ).

http://stacks.math.columbia.edu/tag/02J9
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Proof. Choose a smooth surjective morphism U → X whose source is a scheme;
the base-changed morphism V := U ×X Z → Z is then also smooth and surjective,
and the projection V → U is a closed immersion. If v ∈ |V | maps to z ∈ |Z|, and
if we let u denote the image of v in |U |, then clearly dimv(V ) ≤ dimu(U), while
dimv(Vz) = dimu(Ux), by Lemma 2.12. Thus

dimz(Z) = dimv(V )− dimv(Vz) ≤ dimu(U)− dimu(Ux) = dimx(X ),

as claimed. �

Lemma 2.23. If X is a locally Noetherian algebraic stack, and if x ∈ |X |, then
dimx(X ) = supT {dimx(T )}, where T runs over all the irreducible components of
|X | passing through x (endowed with their induced reduced structure).

Proof. Lemma 2.22 shows that dimx(T ) ≤ dimx(X ) for each irreducible component
T passing through the point x. Thus to prove the lemma, it suffices to show that

(2.24) dimx(X ) ≤ sup
T
{dimx(T )}.

Let U → X be a smooth cover by a scheme. If T is an irreducible component
of U then we let T denote the closure of its image in X , which is an irreducible
component of X . Let u ∈ U be a point mapping to x. Then we have dimx(X ) =
dimu U − dimu Ux = supT dimu T − dimu Ux, where the supremum is over the
irreducible components of U passing through u. Choose a component T for which
the supremum is achieved, and note that dimx(T ) = dimu T−dimu Tx. The desired
inequality (2.24) now follows from the evident inequality dimu Tx ≤ dimu Ux. (Note
that if Spec k → X is a representative of x, then T ×X Spec k is a closed subspace
of U ×X Spec k.) �

Lemma 2.25. If X is a locally Noetherian algebraic stack, and if x ∈ |X |, then for
any open substack V of X containing x, there is a finite type point x0 ∈ |V| such
that dimx0(X ) = dimx(V).

Proof. Choose a smooth surjective morphism f : U → X whose source is a scheme,
and consider the function u 7→ dimf(u)(X ); since the morphism |U | → |X | induced
by f is open (as f is smooth) as well as surjective (by assumption), and takes finite
type points to finite type points (by the very definition of the finite type points of
|X |), it suffices to show that for any u ∈ U , and any open neighbourhood of u, there
is a finite type point u0 in this neighbourhood such that dimf(u0)(X ) = dimf(u)(X ).
Since, with this reformulation of the problem, the surjectivity of f is no longer
required, we may replace U by the open neighbourhood of the point u in question,
and thus reduce to the problem of showing that for each u ∈ U , there is a finite
type point u0 ∈ U such that dimf(u0)(X ) = dimf(u)(X ). By definition dimf(u)(X ) =
dimu(U) − dimu(Uf(u)), while dimf(u0)(X ) = dimu0

(U) − dimu0
(Uf(u0)). Since f

is smooth, the expression dimu0(Uf(u0)) is locally constant as u0 varies over U (by
Lemma 2.14 (2)), and so shrinking U further around u if necessary, we may assume
it is constant. Thus the problem becomes to show that we may find a finite type
point u0 ∈ U for which dimu0(U) = dimu(U). Since by definition dimu U is the
minimum of the dimensions dimV , as V ranges over the open neighbourhoods V
of u in U , we may shrink U down further around u so that dimu U = dimU . The
existence of desired point u0 then follows from Lemma 2.15. �



14 M. EMERTON AND T. GEE

Lemma 2.26. Let T ↪→ X be a locally of finite type monomorphism of algebraic
stacks, with X (and thus also T ) being Jacobson, pseudo-catenary, and locally Noe-
therian. Suppose further that T is irreducible of some (finite) dimension d, and
that X is reduced and of dimension less than or equal to d. Then there is a non-
empty open substack V of T such that the induced monomorphism V ↪→ X is an
open immersion which identifies V with an open subset of an irreducible component
of X .

Proof. Choose a smooth surjective morphism f : U → X with source a scheme,
necessarily reduced since X is, and write U ′ := T ×X U . The base-changed mor-
phism U ′ → U is a monomorphism of algebraic spaces, locally of finite type,
and thus representable [Stacks, Tag 0418, Tag 0463]; since U is a scheme, so
is U ′. The projection f ′ : U ′ → T is again a smooth surjection. Let u′ ∈ U ′,
with image u ∈ U . Lemma 2.12 shows that dimu′(U ′f(u′)) = dimu(Uf(u)), while

dimf ′(u′)(T ) = d ≥ dimf(u)(X ) by Lemma 2.21 and our assumptions on T and X .
Thus we see that

(2.27) dimu′(U ′) = dimu′(U ′f(u′)) + dimf ′(u′)(T )

≥ dimu(Uf(u)) + dimf(u)(X ) = dimu(U).

Since U ′ → U is a monomorphism, locally of finite type, it is in particular un-
ramified, and so by the étale local structure of unramified morphisms [Stacks, Tag
04HJ], we may find a commutative diagram

V ′ //

��

V

��

U ′ // U

in which the scheme V ′ is non-empty, the vertical arrows are étale, and the upper
horizontal arrow is a closed immersion. Replacing V by a quasi-compact open subset
whose image has non-empty intersection with the image of U ′, and replacing V ′ by
the preimage of V , we may further assume that V (and thus V ′) is quasi-compact.
Since V is also locally Noetherian, it is thus Noetherian, and so is the union of
finitely many irreducible components.

Since étale morphisms preserve pointwise dimension [Stacks, Tag 04N4], we
deduce from (2.27) that for any point v′ ∈ V ′, with image v ∈ V , we have
dimv′(V

′) ≥ dimv(V ). In particular, the image of V ′ can’t be contained in the
intersection of two distinct irreducible components of V , and so we may find at
least one irreducible open subset of V which has non-empty intersection with V ′;
replacing V by this subset, we may assume that V is integral (being both reduced
and irreducible). From the preceding inequality on dimensions, we conclude that
the closed immersion V ′ ↪→ V is in fact an isomorphism. If we let W denote the
image of V ′ in U ′, then W is a non-empty open subset of U ′ (as étale morphisms are
open), and the induced monomorphism W → U is étale (since it is so étale locally
on the source, i.e. after pulling back to V ′), and hence is an open immersion (being
an étale monomorphism). Thus, if we let V denote the image of W in T , then V
is a dense (equivalently, non-empty) open substack of T , whose image is dense in
an irreducible component of X . Finally, we note that the morphism is V → X is
smooth (since its composite with the smooth morphism W → V is smooth), and
also a monomorphism, and thus is an open immersion. �

http://stacks.math.columbia.edu/tag/0418
http://stacks.math.columbia.edu/tag/0463
http://stacks.math.columbia.edu/tag/04HJ
http://stacks.math.columbia.edu/tag/04HJ
http://stacks.math.columbia.edu/tag/04N4
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Lemma 2.28. Let f : T → X be a locally of finite type morphism of Jacobson,
pseudo-catenary, and locally Noetherian algebraic stacks, whose source is irreducible
and whose target is quasi-separated, and let Z ↪→ X denote the scheme-theoretic
image of T . Then for every finite type point t ∈ |T |, we have that dimt(Tf(t)) ≥
dim T − dimZ, and there is a non-empty (equivalently, dense) open subset of |T |
over which equality holds.

Proof. Replacing X by Z, we may and do assume that f is scheme theoretically
dominant, and also that X is irreducible. By the upper semi-continuity of fibre
dimensions (Lemma 2.14 (1)), it suffices to prove that the equality dimt(Tf(t)) =
dim T − dimZ holds for t lying in some non-empty open substack of T . For this
reason, in the argument we are always free to replace T by a non-empty open
substack.

Let T ′ → T be a smooth surjective morphism whose source is a scheme, and let
T be a non-empty quasi-compact open subset of T ′. Since Y is quasi-separated, we
find that T → Y is quasi-compact (by [Stacks, Tag 050Y], applied to the morphisms
T → Y → SpecZ). Thus, if we replace T by the image of T in T , then we may
assume (appealing to [Stacks, Tag 050X]) that the morphism f : T → X is quasi-
compact.

If we choose a smooth surjection U → X with U a scheme, then Lemma 1.2
ensures that we may find an irreducible open subset V of U such that V → X
is smooth and scheme-theoretically dominant. Since scheme-theoretic dominance
for quasi-compact morphisms is preserved by flat base-change, the base-change
T ×X V → V of the scheme-theoretically dominant morphism f is again scheme-
theoretically dominant. We let Z denote a scheme admitting a smooth surjection
onto this fibre product; then Z → T ×X V → V is again scheme-theoretically
dominant. Thus we may find an irreducible component C of Z which scheme-
theoretically dominates V . Since the composite Z → T ×X V → T is smooth,
and since T is irreducible, Lemma 1.2 shows that any irreducible component of the
source has dense image in |T |. We now replace C by a non-empty open subset W
which is disjoint from every other irreducible component of Z, and then replace
T and X by the images of W and V (and apply Lemma 2.21 to see that this
doesn’t change the dimension of either T or X ). If we let W denote the image
of the morphism W → T ×X V , then W is open in T ×X V (since the morphism
W → T ×X V is smooth), and is irreducible (being the image of an irreducible
scheme). Thus we end up with a commutative diagram

W

!!

// W //

��

V

��

T // X

in which W and V are schemes, the vertical arrows are smooth and surjective,
the diagonal arrows and the left-hand upper horizontal arrow are smooth, and
the induced morphism W → T ×X V is an open immersion. Using this diagram,
together with the definitions of the various dimensions involved in the statement
of the lemma, we will reduce our verification of the lemma to the case of schemes,
where it is known.

Fix w ∈ |W | with image w′ ∈ |W|, image t ∈ |T |, image v in |V |, and image x
in |X |. Essentially by definition (using the fact thatW is open in T ×X V , and that

http://stacks.math.columbia.edu/tag/050Y
http://stacks.math.columbia.edu/tag/050X
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the fibre of a base-change is the base-change of the fibre), we obtain the equalities

dimv Vx = dimw′Wt

and

dimt Tx = dimw′Wv.

Again by definition (the diagonal arrow and right-hand vertical arrow in our dia-
gram realise W and V as smooth covers by schemes of the stacks T and X ), we
find that

dimt T = dimwW − dimwWt

and

dimx X = dimv V − dimv Vx.

Combining the equalities, we find that

dimt Tx − dimt T + dimx X
= dimw′Wv − dimwW + dimwWt + dimv V − dimw′Wt.

Since W → W is a smooth surjection, the same is true if we base-change over the
morphism Specκ(v) → V (thinking of W → W as a morphism over V ), and from
this smooth morphism we obtain the first of the following two equalities

dimwWv − dimw′Wv = dimw(Wv)w′ = dimwWw′ ;

the second equality follows via a direct comparison of the two fibres involved. Sim-
ilarly, if we think of W → W as a morphism of schemes over T , and base-change
over some representative of the point t ∈ |T |, we obtain the equalities

dimwWt − dimw′Wt = dimw(Wt)w′ = dimwWw′ .

Putting everything together, we find that

dimt Tx − dimt T + dimx X = dimwWv − dimwW + dimv V.

Our goal is to show that the left-hand side of this equality vanishes for a non-empty
open subset of t. As w varies over a non-empty open subset of W , its image t ∈ |T |
varies over a non-empty open subset of |T | (as W → T is smooth).

We are therefore reduced to showing that if W → V is a scheme-theoretically
dominant morphism of irreducible locally Noetherian schemes that is locally of
finite type, then there is a non-empty open subset of points w ∈ W such that
dimwWv = dimwW − dimv V (where v denotes the image of w in V ). This is a
standard fact, whose proof we recall for the convenience of the reader.

We may replace W and V by their underlying reduced subschemes without
altering the validity (or not) of this equation, and thus we may assume that they
are in fact integral schemes. Since dimwWv is locally constant on W, replacing W
by a non-empty open subset if necessary, we may assume that dimwWv is constant,
say equal to d. Choosing this open subset to be affine, we may also assume that
the morphism W → V is in fact of finite type. Replacing V by a non-empty open
subset if necessary (and then pulling back W over this open subset; the resulting
pull-back is non-empty, since the flat base-change of a quasi-compact and scheme-
theoretically dominant morphism remains scheme-theoretically dominant), we may
furthermore assume that W is flat over V . The morphism W → V is thus of relative
dimension d in the sense of [Stacks, Tag 02NJ], and it follows from [Stacks, Tag
0AFE] that dimw(W ) = dimv(V ) + d, as required. �

http://stacks.math.columbia.edu/tag/02NJ
http://stacks.math.columbia.edu/tag/0AFE
http://stacks.math.columbia.edu/tag/0AFE
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Remark 2.29. We note that in the context of the preceding lemma, it need not be
that dim T ≥ dimZ; this does not contradict the inequality in the statement of
the lemma, because the fibres of the morphism f are again algebraic stacks, and
so may have negative dimension. This is illustrated by taking k to be a field, and
applying the lemma to the morphism [Spec k/Gm]→ Spec k.

If the morphism f in the statement of the lemma is assumed to be quasi-DM (in
the sense of [Stacks, Tag 04YW]; e.g. morphisms that are representable by algebraic
spaces are quasi-DM), then the fibres of the morphism over points of the target are
quasi-DM algebraic stacks, and hence are of non-negative dimension. In this case,
the lemma implies that indeed dim T ≥ dimZ. In fact, we obtain the following
more general result.

Corollary 2.30. Let f : T → X be a locally of finite type morphism of Jacobson,
pseudo-catenary, and locally Noetherian algebraic stacks which is quasi-DM, whose
source is irreducible and whose target is quasi-separated, and let Z ↪→ X denote the
scheme-theoretic image of T . Then dimZ ≤ dim T , and furthermore, exactly one
of the following two conditions holds:

(1) for every finite type point t ∈ |T |, we have dimt(Tf(t)) > 0, in which case
dimZ < dim T ; or

(2) T and Z are of the same dimension.

Proof. As was observed in the preceding remark, the dimension of a quasi-DM stack
is always non-negative, from which we conclude that dimt Tf(t) ≥ 0 for all t ∈ |T |,
with the equality

dimt Tf(t) = dimt T − dimf(t)Z
holding for a dense open subset of points t ∈ |T |. �

We close this note by establishing a formula allowing us to compute dimx(X ) in
terms of properties of the versal ring to X at x. In order to state a clean result, we
will make certain hypotheses on the base-scheme S (which has remained implicit
up to this point). As with the discussion at the end of Section 1, these hypotheses
may not be needed for the result to hold, but they allow for a simple argument.

Before stating our hypotheses, we recall some topological results. These re-
sults are essentially contained in [EGAIV1, §0.14.3]. However, as is pointed out
in [Hei17], the key proposition of that discussion, namely [EGAIV1, §0 Prop. 14.3.3],
is in error. As is made implicit in the examples of [Hei17], and was pointed out ex-
plicitly to us by Brian Conrad, the error occurs because a topological space can be
equicodimensional without its irreducible components themselves being equicodi-
mensional. We now state (and recall the proof of) a corrected version of that
proposition (and of Cor. 14.3.5, which is deduced from Prop. 14.3.3).

We first recall the definition of equicodimensionality.

Definition 2.31. A finite-dimensional topological space X is called equicodimen-
sional if codim(Y,X) is constant as Y ranges over all the minimal irreducible closed
subsets of X. (By considering a maximal chain of irreducible closed subsets of X,
we then see that this constant is equal to dimX.)

Lemma 2.32. If X is an irreducible, equicodimensional, finite-dimensional topo-
logical space, then the following are equivalent:

(1) X is catenary.

http://stacks.math.columbia.edu/tag/04YW
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(2) For any irreducible closed subsets Y ⊆ Z of X, we have

dimY + codim(Y, Z) = dimZ.

(3) All maximal chains of irreducible closed subsets of X have the same length.
Furthermore, if these equivalent conditions hold, then any irreducible closed sub-

set of X is also equicodimensional.

Proof. Let Y be an irreducible closed subset of X, and consider maximal chains of
irreducible closed sets

(2.33) Y0 ⊂ Y1 ⊂ · · · ⊂ Ya = Y

and

(2.34) Y = X0 ⊂ X1 ⊂ · · · ⊂ Xb = X

Since (2.33) is maximal, we see that Y0 is a minimal irreducible closed subset of Y
(or, equivalently, of X). Concatenating these two chains yields a maximal chain of
irreducible closed subsets in X.

Suppose now that (1) holds, i.e. that X is catenary. Then all maximal chains
joining Y0 to X have the same length, which is then codim(Y0, X), which also
equals dimX (since X is equicodimensional, by assumption). Thus we find that
a + b = dimX, and in particular is independent of the choice of either chain.
Varying (2.33), while leaving (2.34) fixed, we find that the value of a is independent
of the choice of the maximal chain (2.33). Thus we see that a = dimY , and also
that codim(Y0, Y ) = dimY for any minimal irreducible closed subset of Y (so that
Y is again equicodimensional, as claimed).

Now fixing the maximal chain (2.33), and varying the maximal chain (2.34),
we find that the value of b is independent of the choice of chain (2.34), and in
particular that b = codim(Y,X). Thus we may rewrite the equation a+ b = dimX
as dimY + codim(Y,X) = dimX, showing that (2) holds in the case when Z = X.
If we consider the general case of (2), then since Z is irreducible (by assumption),
finite-dimensional and catenary (being a closed subset of a finite-dimensional and
catenary space), and equicodimensional (as we proved above), we may replace X
by Z, and hence deduce the general case of (2) from the special case already proved.

Suppose next that (2) holds, and consider a maximal chain of irreducible closed
subsets of X, say

X0 ⊂ X1 ⊂ · · · ⊂ Xd = X.

Noting that dimX0 = 0 (as X0 is minimal), and also that codim(Xi, Xi+1) = 1
(since by assumption there is no irreducible closed subset lying strictly between Xi

and Xi+1), we find, by repeated application of (2), that dimXi = i. In particular,
d = dimX is independent of the chain chosen, so that (3) holds.

Finally, suppose that (3) holds; we wish to show that (1) also holds. If we
consider chains of the form (2.33) and (2.34), and their concatenation, then (3)
implies that a + b = dimX is indepedent of the choice of either chain, and thus,
by varying these chains independently, that each of a and b is independent of the
choice of chain.

Now let Y ⊆ Z be an inclusion of irreducible closed subsets of X. We wish to
show that all maximal chains of irreducible closed subsets joining Y and Z are of
the same length. By applying what we have just proved to Z, we find that Z also
satisfies (3). Thus we may replace X by Z, and hence assume that Z = X. But
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we have already shown that all maximal chains of the form (2.34) are of the same
length. Thus X is indeed catenary. �

Although we don’t need it, we also note the following result, which among
other things provides a purely topological variant of Lemma 2.17. (Note, though,
that [EGAIV3, (10.7.3)] gives an example of a Jacobson, universally catenary, in-
tegral, Noetherian scheme S which is not equicodimensional; this gives an example
of a situation to which Lemma 2.17 applies, although Lemma 2.35 does not.)

Lemma 2.35. Let X be an irreducible, equicodimensional, finite-dimensional, Ja-
cobson topological space. If U is a non-empty open subset of X, then U is also
irreducible, equicodimensional, finite-dimensional, and Jacobson. Furthermore, we
have that dimU = dimX.

Proof. It is standard that U is again irreducible and Jacobson. The function T 7→
T (closure in X) induces an order-preserving bijection between irreducible closed
subsets of U and irreducible closed subsets of X that have non-empty intersection
with U ; thus U is certainly also finite-dimensional.

Since X and U are Jacobson, the minimal irreducible closed subsets of either
X or U are just the closed points, and the closed points of U are precisely the
closed points of X that lie in U . Thus, under the bijection T 7→ T described above,
the collection of maximal chains of irreducible closed subsets of U containing some
given closed point u ∈ U maps bijectively to the collection of maximal chains of
irreducible closed subsets of X containing the same closed point u. In particular,
we find that

codim(u, U) = codim(u,X) = dimX

(the last equality hoding since X is equidimensional, by assumption.) We thus
see that codim(u, U) is independent of the particular closed point u ∈ U , so U is
equicodimensional. Furthermore, it is then necessarily equal to dimU , and so we
also find that dimU = dimX, as claimed. �

We next note the following scheme-theoretic result.

Lemma 2.36. If S is a Jacobson, catenary, locally Noetherian scheme, all of
whose irreducible components are of finite dimension and equicodimensional, and if
s ∈ S is a finite type point (or equivalently, a closed point, by Jacobsonness), then
dims S = dimOS,s.

Proof. We have the equality dimOS,s = codim(s, S) [Stacks, Tag 02IZ]. If we
let T1, . . . , Tn denote the irreducible components of S passing through s, then
codim(s, S) = maxi=1,...,n codim(s, Ti), and similarly, dims S = maxi=1,...,n dims Ti.
Thus it suffices to show that codim(s, Ti) = dims Ti for each Ti. This follows from
Lemma 2.17, which shows that dims Ti = dimTi, together with the assumption
that Ti is equicodimensional. �

We now state the hypothesis that we will make on our base scheme S.

Hypothesis 2.37. We assume that S is a Jacobson, universally catenary, locally
Noetherian scheme, all of whose local rings are G-rings, and with the further prop-
erty that each irreducible component of S is of finite dimension and equicodimen-
sional.

http://stacks.math.columbia.edu/tag/02IZ
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Remark 2.38. Since S is catenary by assumption, we see that the equivalent condi-
tions of Lemma 2.32 hold for S. The conditions of Lemma 2.35 also hold. Combin-
ing these lemmas, we find in particular that each irreducible locally closed subset of
T is equicodimensional. Since S is Jacobson, so is its locally closed subset T . The
finite type points in T are then the same as the closed points [Stacks, Tag 01TB],
and these are also the minimal irreducible closed subsets of T . Thus to say that
T is equicodimensional is to say that codim(t, T ) is constant (equal to dimT ) as t
ranges over all closed points of T .

Lemma 2.39. If X → S is a locally finite type morphism of schemes, and if S
satisfies Hypothesis 2.37, then so does X.

Proof. The properties of being Jacobson, of being universally catenary, and of the
local rings being G-rings, all pass through a finite type morphism. (In the case
of being universally catenary, this is immediate from the definition; for Jacobson
see [Stacks, Tag 02J5]; and for local rings being G-rings, see [Stacks, Tag 07PV]).
Suppose then that T is an irreducible component of X; we must show that T is
finite-dimensional and equicodimensional.

We regard T as an integral scheme, by endowing it with its induced reduced
structure. The composite T → X → S is again locally of finite type, and so replac-
ing X by T , and S by the closure of the image of T , also endowed with its reduced
induced structure (note that by Remark 2.38, this closure is again equicodimen-
sional, and since closed immersions are finite type, the discussion of the preceding
paragraph shows that it also satisfies the other conditions of Hypothesis 2.37), we
may assume that each of X and S are integral. We now have to show that X is
finite-dimensional, and that codim(x,X) is independent of the closed point x ∈ X.

If x ∈ X, we may find an affine neighbourhood U of x, as well as an affine
open subset V ⊂ S containing the image of U in S. By assumption V is finite-
dimensional, and U is of finite type over V ; thus U is also finite-dimensional. Since
U is furthermore irreducible, Jacobson, catenary, and locally Noetherian (being
open in the irreducible, Jacobson, catenary, locally Noetherian scheme X), we see
from Lemma 2.17 that the function u 7→ dimu U is constant on U . Since U is
open in X, we have an equality dimu U = dimuX for each point u ∈ U , and
hence the function u 7→ dimuX is constant on U . Thus each point of X has a
neighbourhood over which dimxX is constant (and finite valued). Thus dimxX
is a locally constant finite valued function on X. Since X is irreducible (and so
in particular connected) we find that dimxX is constant (and finite valued), and
consquently that X is finite-dimensional.

We turn to proving that X equicodimensional. To this end, let x ∈ X be a closed
point. Since S is universally catenary, the dimension formula [Stacks, Tag 02JU],
together with the formula of [Stacks, Tag 02IZ], shows that

codim(x,X) = codim(s, S) + trdegR(S)R(X) + trdegκ(s) κ(x);

here s denotes the image of x in S, which, being a finite type point of the Jacobson
scheme S, is closed in S, and R(X) (resp. R(S)) is the function field of X (resp. S).
Since Specκ(x)→ Specκ(s) is of finite type, we have that κ(x) is a finite extension
of κ(s), so that the final term on the right-hand side of the formula vanishes. Thus
codim(x,X)− codim(s, S) is constant (i.e. independent of the closed point x ∈ X).
Since S is equicodimensional, the term codim(s, S) is also independent of the closed
point s ∈ S; thus codim(x,X) is indeed independent of the closed point x ∈ X. �

http://stacks.math.columbia.edu/tag/01TB
http://stacks.math.columbia.edu/tag/02J5
http://stacks.math.columbia.edu/tag/07PV
http://stacks.math.columbia.edu/tag/02JU
http://stacks.math.columbia.edu/tag/02IZ
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We are now able to state and prove the following result, which relates the di-
mension of an algebraic stack at a point to the dimension of a corresponding versal
ring.

Lemma 2.40. Suppose that X is an algebraic stack, locally of finite presentation
over a scheme S which satisfies Hypothesis 2.37. Suppose further that x : Spec k →
X is a a morphism whose source is the spectrum of a field of finite type over OS,

and that [U/R]
∼−→ X̂x is a presentation of X̂x by a smooth groupoid in functors,

with U and R both Noetherianly pro-representable2, by Spf Ax and Spf Bx respec-
tively. Then we have the following formula:

2 dimAx − dimBx = dimx(X ).

Proof. By Lemma 1.5, we may find a smooth morphism V → X , whose source is
a scheme, containing a point v ∈ V of residue field k, such that induced morphism

v = Spec k → V → X coincides with x, and such that ÔV,x may be identified
with Ax. If we write W := V ×X V, and we write w := (v, v) ∈ W, then we may

furthermore identify ÔW,w with Bx. Now Remark 2.8 shows that

dimx X = dimv V−dimw(Wv) = dimv V−(dimwW−dimv V ) = 2 dimv V−dimwW.

Since v is a finite type point of V , we have that dimv V = dimOV,v = dim ÔV,v =
dimAx (where we apply Lemmas 2.39 and 2.36 to obtain the first equality), and
similarly dimwW = dimBx. Thus the formula of the lemma is proved. �
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Sci. Publ. Math. 20 (1964), p. 259.
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