ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE
POTENTIALLY MODULAR
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ABsTRACT. We show that abelian surfaces (and consequently curves of genus 2)
over totally real fields are potentially modular. As a consequence, we obtain the
expected meromorphic continuation and functional equations of their Hasse—
Weil zeta functions. We furthermore show the modularity of infinitely many
abelian surfaces A over Q with Endg A = Z. We also deduce modularity and
potential modularity results for genus one curves over (not necessarily CM)
quadratic extensions of totally real fields.
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POTENTIAL MODULARITY OF ABELIAN SURFACES 3

1. INTRODUCTION

1.1. Our main theorems. Let X be a smooth, projective variety of dimension m
over a number field F' with good reduction outside a finite set of primes S. Asso-
ciated to X, one may write down a global Hasse-Weil zeta function:

1
Cx(s) = Hwa

where the product runs over all the closed points x of some (any) smooth proper
integral model X' /Op[1/S] for X. (We suppress S from the notation — different
choices of S only change (x(s) by a finite number of Euler factors.) The func-
tion (x(s) is absolutely convergent for Re(s) > 1 4+ m. We have the following:

Conjecture 1.1.1 (Hasse-Weil Conjecture, cf. [Ser70], in particular Conj. C9).
The function Cx (s) extends to a meromorphic function of C. There exists a positive
real number A € R>°, nmon-zero rational functions P,(T) for v|S, and infinite
Gamma factors T',(s) for v|oco such that:

E(s) = Cx(s) - A2 T Dols) - [T Po (N (0) ™)

v|oo v|S
satisfies the functional equation &(s) = w-&(m+ 1 — ) with w = 1.

(In Serre’s formulation of the conjecture, the Gamma factors are also given ex-
plicitly in terms of the Archimedean Hodge structures of X.) This conjecture
appears to be first formulated in print (albeit in a less precise form and only for
curves) on the final page of [Weid2]. If FF = Q and X is a point, then (x(s)
is the Riemann zeta function, and Conjecture follows from Riemann’s func-
tional equation [Rieb9]. If F is a general number field but X is still a point,
then (x(s) is the Dedekind zeta function (r(s), and Conjecture is a theorem
of Hecke [Hec20]. If X is a curve of genus zero, then (up to bad Euler factors)
Cx(s) = ¢r(s)Cr(s—1), and Conjecture follows immediately. More generally,
if X is any smooth projective variety whose cohomology is generated by algebraic
cycles over F', then (x (s) is a finite product of Artin L-functions (up to translation),
and Conjecture in this case is a consequence of Brauer’s theorem [Bra47]. In
the case when the Galois representations associated to the [-adic cohomology of X
are potentially abelian (e.g. an abelian variety with CM), Conjecture is also
a consequence of the results of Hecke and Brauer.

The fundamental work of Wiles [Wil95 [TW95| and the subsequent work of
Breuil, Conrad, Diamond, and Taylor [CDT99, BCDT01| proved Conjecture m
for curves X/Q of genus one, since (again up to a finite number of Euler factors)
Cx(s) = Cq(s)¢q(s —1)/L(E,s) (where E = Jac(X)), and the modularity of E
implies the holomorphy and functional equation for L(E,s). More generally, the
potential modularity results of [Tay02] imply Conjecture for curves X/F of
genus one over any totally real field. The methods used in these papers have been
vastly generalized over the past 25 years due to the enormous efforts of many people.
On the other hand, these methods have until recently been extremely reliant on the
assumption that the Hodge numbers h?? = dim H Y/ (X) = dim H?(X,Q?) of X
are at most 1 for all p and ¢, or at least that such an inequality holds (suitably
interpreted) for the irreducible motives occurring in the cohomology of X. While
many such motives exist inside the cohomology of Shimura varieties, there is a
paucity of natural geometric examples satisfying this condition. For example, if X
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is a curve of genus g, then h:* = h%! = g, and so the original Taylor-Wiles method
only applies when g = 0 or 1. For genus two curves, we prove the following theorem.

Theorem 1.1.2. Let X be either a genus two curve or an abelian surface over a
totally real field F. Then Conjecture holds for X.

We prove Theorem [[.1.2] as a corollary of the following theorem.

Theorem 1.1.3. Let X be either a genus two curve or an abelian surface over a
totally real field F. Then X is potentially automorphic.

Here by potentially automorphic we mean that there exists a finite Galois ex-
tension L/F such that the compatible system of Galois representations R attached
to H'(Xq,Qp) (as p varies) over L is automorphic in a precisely circumscribed
sense which we make explicit in Definition (See also Remark for a
discussion of how we distinguish between automorphic and modular in this paper;
this distinction is made purely for technical convenience, and can safely be ignored
while reading this introduction.) In particular, an immediate consequence is that
the L-function of H 1(X6’ Q,) as a Gp-representation extends to a holomorphic
function on all of C. Theorem [L1.2] follows from Theorem [[LT.3 via a standard
argument with Brauer’s theorem and base change, together (in the case of abelian
surfaces) with known functorialities in small rank. (Some care must be taken in
this deduction if the p-adic Galois representations associated to X become reducible
after restriction to L; this issue does not arise in the most interesting cases of The-
orem in particular the case of an abelian surface X with Endc(X) = Z.)

Theorem (and thus also Theorem is a consequence of Theorem
and Corollary [0.3:33] which in turn are deduced from our main modularity lifting
theorem, Theorem [B:4.1] As a consequence of Theorem [[.1.3] we also deduce the
following potential modularity result for genus one curves (see Theorem :

Theorem 1.1.4. Let X be a genus one curve over a quadratic extension K/F of
a totally real field F. Then X is potentially modular.

When K/F is totally real, this result has been known for some time (|Tay02]).
When K/F is totally imaginary, however, the result was only recently proved
in [ACCT18|. For all other quadratic extensions (such as F = Q(v/2) and K =
Q(v/2)), the result is new. (See the remarks in for a comparison between the
methods of this paper with those of JACCT18|.)

Just as elliptic curves over Q can be associated (via the modularity theorem) to
modular forms of weight 2, the Langlands program predicts that abelian surfaces
over Q should be modular in the sense that they correspond to certain weight 2
Siegel modular forms. This is because (due to the existence of polarizations) the
Galois representations associated to the p-adic Tate modules of abelian surfaces
are naturally valued in GSp,(Qp), and GSp, is its own Langlands dual group.
A consideration of the Hodge—Tate weights then suggests that the corresponding
automorphic forms on GSp, should be of weight 2 (see for a more detailed
discussion of this).

Our methods also have implications for the modularity (as opposed to potential
modularity) of abelian surfaces over totally real fields. Here is an example of what
can be proven by our methods.

Theorem 1.1.5. There exist infinitely many modular abelian surfaces A/Q up to
twist with Endc A = Z.
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As a consequence, one deduces that the L-function associated to A in Theo-
rem (that is, the L-function associated to the Galois representation H* (Ag: Qp)
for any prime p) has a holomorphic continuation to the entire complex plane. Note
that Theorem [1.1.3| only implies that this L-function has a meromorphic contin-
uation, with no control over any possible poles. (This is for essentially the same
reason that Brauer’s theorem proves the meromorphic continuation of Artin L-
functions, but not the holomorphic continuation.) In fact, we can also prove an
analogous theorem for any totally real field F' in which 3 splits completely; see
Theorem [[0.2.6

To put Theorem into context, note firstly that if Endc(A) # Z, then the
Galois representations associated to A become reducible over some finite exten-
sion, and hence one may use (or prove) special cases of functoriality to reduce the
problem to the modularity of representations of dimensions 2 or 1. Results of this
kind appear in the papers [Yos80l [Yos84l [RS07al [JLR12, [DK16, BDPcS15|. (Sev-
eral of these arguments could now be redone more systematically in light of the
monumental work of Arthur [Art04, [Art13].)

In the “typical” case that Endc(A) = Z, Brumer and Kramer [BK14] formulated
the paramodular conjecture, which gives a precise prescription for the “optimal”
level structure for an automorphic form corresponding to a given abelian surface;
in particular, this in principle reduces the conjecture for a given A to an explicit
computation of a (finite-dimensional) space of Siegel modular forms. They further-
more showed that the smallest prime conductor of an abelian surface is 277; in
combination with the computations of [PY15], this demonstrates that the conjec-
ture is true in prime conductor less than 277 (because there are neither any abelian
surfaces nor suitable Siegel modular forms).

These considerations are taken further in the recent papers [BPP™19, [BK20]. In
particular, these papers succeed in establishing for the first time the modularity of
(finitely many, up to twist) abelian surfaces A with Endg(A4) = Z. (The explicit ex-
amples in [BPPT19| are conductors 277, 353, and 587, and the example in [BK20]
is of conductor 731. It should be noted that the abelian surfaces considered in
Theorem do not include any of these examples; as explained below, Theo-
rem [1.1.5]is proved by proving the existence of infinitely many abelian surfaces to
which our modularity lifting theorems apply, rather than by starting with explicit
examples of small conductor.) These papers ultimately rely on elaborate explicit
computations of low weight Siegel modular forms, developed in part by Poor and
Yuen [PY15] [PSY17, BPY16].

1.1.6. Our modularity lifting theorem. We now state our main modularity lifting
theorem as it applies to abelian surfaces. The following theorem is proved in
see Proposition (It is possible to slightly weaken the hypothesis at v|p to
deal with certain abelian surfaces which have semistable reduction at v|p.)

Theorem 1.1.7. Let F' be a totally real field in which p > 2 splits completely.
Let A/F be an abelian surface with good ordinary reduction at all places v|p, and
suppose that, at each v|p, the unit root crystalline eigenvalues are distinct modulo p.
Assume that A admits a polarization of degree prime to p. Let

Pap:Gr— GSp,(Fy)

denote the dual of the mod-p Galois representation associated to Alp|, and assume

that D4, is vast and tidy in the sense of Definitions 7,3,5] and [7.5.11. Assume
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that p, , is ordinarily modular, in the sense that there exists an automorphic rep-
resentation ™ of GSp, /F of parallel weight 2 and central character | - |? which is
ordinary at all v|p, such thatp, , = D4 ,, and pr play, is pure for all finite places v
of F. Then A is modular, corresponding to a Hilbert—Siegel eigenform of parallel
weight two.

Moreover, Proposition shows that the modularity hypotheses on 74, can
be omitted in the following situations:

(1) p=3,and p, 3 is induced from a 2-dimensional representation with inverse
cyclotomic determinant defined over a totally real quadratic extension E/F
in which 3 is unramified.

(2) p =5, and py 5 is induced from a 2-dimensional representation valued
in GL2(F5) with inverse cyclotomic character defined over a totally real
quadratic extension F/F in which 5 is unramified.

(3) P4, is induced from a character of a quartic CM field H/F in which p splits
completely.

Theorem may be viewed as the genus two analogue of [Wil95, Thm. 0.2],
which is the main modularity lifting result proved in that paper. Proposition
is then the analogue of [Wil95, Thm. 0.6], which is a modularity result for residually
projectively dihedral representations. The reason one cannot prove an analogue
of [Wil95, Thm. 0.3] (which proves that all ordinary semistable elliptic curves over Q
with pp 5 absolutely irreducible are modular) is that there is no argument to reduce
the residual modularity of a surjective mod-3 representation p; : Gp — GSpy(F3)
(as in §5 of ibid) to special cases of the Artin Conjecture (proved by Langlands—
Tunnell). Note that the difficulty is not simply that GSp,(F3) is not solvable (some
of the indicated representations above for p = 3 and 5 are non-solvable), but also
that Artin representations do not contribute to the coherent cohomology of Shimura
varieties in any setting other than holomorphic (Hilbert) modular forms of weight
one.

For E/F a totally real quadratic extension, the inductions of (modular) repre-
sentations g : Gg — GL2(F3) with determinant z~! to G provide a large source
of residually modular p. We then show that any such p : Gr — GSp,(F3) with
suitable determinant and local conditions at places v|3 is equal to p 4,3 for infinitely
many abelian surfaces A/F with Endc(A) = Z and with good ordinary reduc-
tion at v|3 (see Theorem . Theorem then implies that all such A are
modular, and hence implies Theorem |1.1.5

1.2. An overview of our argument. Let A be an abelian surface over a totally
real field F. We may assume that Endp(A) = Z as otherwise, A is of GLa-type, in
which case it is known that A is potentially modular. If Endz(A) = Z, a generaliza-
tion of the paramodular conjecture predicts the existence of a holomorphic weight 2
Hilbert—Siegel modular cuspidal eigenform f (for the group GSp,/F’) associated to
A in the sense that we have an equality of L-functions L(f,s) = L(H'(A),s). If
such an equality holds, we say that A is modular.

In this paper, we establish that (under some mild further restrictions on A), after
possibly replacing the field F' by a finite totally real extension F’, the conjecture is
true.
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Remark 1.2.1. There are situations where we don’t prove (even potentially) the
paramodular conjecture for A. This is due to the presence of non-trivial endomor-
phisms of A over Q. Nevertheless, we always express the L-function of A using
automorphic forms on groups GL;/K for i € {1,2,4} and K a number field, and
thus establish Conjecture|1.1.1

On the surface, the modularity conjecture for abelian surfaces appears to be
a generalization of the modularity conjecture for elliptic curves. However, this
analogy is somewhat misleading. Elliptic curves are regular motives with weights
(0,1), whereas abelian surfaces are irregular motives with weights (0,0,1,1). On
the automorphic side, weight 2 Hilbert modular cuspforms occur in a single degree
of the Betti and coherent cohomology of the Hilbert modular varieties. Under mild
assumptions, there is an elliptic curve associated to any Hilbert modular cuspidal
eigenform with rational Hecke field.

In contrast, weight 2 Hilbert—Siegel modular cuspforms only occur in the coherent
cohomology of the Hilbert—Siegel modular variety. More precisely, a holomorphic
weight 2 Hilbert—Siegel modular cuspidal eigenform can be viewed as a section of
a line bundle w? over the Hilbert-Siegel modular variety X; here X is a smooth
algebraic variety defined over Q of dimension 3[F : Q] which parametrizes abelian
schemes of dimension 2[F : Q] equipped with an action of Op, a level structure,
and a polarization. Moreover, in the “generic case”, such an eigenform contributes
to cohomology in degrees 0 to [F : Q]. Since the Hecke eigenvalues associated to
such modular forms are not realized in the étale cohomology of a Shimura variety,
we don’t know how to associate a “motive” to a weight 2 Hilbert—Siegel modular
cuspidal eigenform, but only a compatible system of Galois representations which
should correspond to the system of ¢-adic realizations of this motive. These Galois
representations are constructed by using congruences.

From a technical point of view, it turns out that the modularity conjecture for
abelian surfaces over a totally real field F' is closely related to the 2-dimensional
odd Artin conjecture for F' (now a theorem), which is the existence of a bijection
preserving L-functions between the following objects:

e Irreducible, totally odd, two dimensional complex representations of the
absolute Galois group of F', and
e Hilbert modular cuspidal eigenforms (newforms) of weight one.

2-dimensional odd Artin representations have irregular Hodge—Tate weights (0, 0),
and Hilbert modular forms of weight one only occur in the coherent cohomology of
the Hilbert modular variety, where they contribute in degrees 0 to [F : Q].

We now review some of the strategies employed in the proof of Artin’s conjecture,
as they have served as an inspiration for our current work. As with almost all
modularity theorems, one proceeds by combining a modularity lifting theorem with
residual modularity (that is, the modularity of the mod p representation). In the
case of Artin’s conjecture, residual modularity ultimately (if quite indirectly) comes
from the Langlands—Tunnell theorem, whereas in our setting, the residual potential
modularity comes from a straightforward application of Taylor’s method [Tay02]
using a theorem of Moret-Bailly. Accordingly, we ignore the question of residual
modularity for the rest of this introduction, and concentrate on explaining the
modularity lifting theorems.

The first modularity (lifting) theorems which applied to two dimensional odd
Artin representations p over Q were obtained by Buzzard—Taylor and Buzzard [BT99,
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Buz03|. There is an obstruction to generalizing the Taylor-Wiles method (which
was originally applied in the regular case of Hodge—Tate weights (0,1) and weight
two modular forms [Wil95, TW95]) to the irregular case of weights (0, 0) and weight
one modular forms. This obstruction lies in the fact that weight one forms occur in
degrees 0 and 1 of the coherent cohomology and that there exist non-liftable mod p
weight one eigenforms. (There is also a reflection of this obstruction on the Ga-
lois theoretic side — the corresponding local deformation ring at p has dimension
one less in the irregular weight case.) Instead, Buzzard and Taylor proceed quite
differently.

Choose a prime p and view p as a p-adic representation with finite image. We also
assume that p is unramified at p and let «, 8 denote the Frobenius eigenvalues. For
simplicity, we also assume that @ # 3 (where the bar denotes reduction modulo p).

We have that
| (ra O
PlGa, = | ¢ As

for the unramified characters A\, and Ag taking a Frobenius element to «, 3 respec-
tively.

The strategy of Buzzard and Taylor is to first replace the space of classical weight
one modular forms by a bigger space of ordinary p-adic modular forms of weight
one. On the Galois side, classical weight one eigenforms (of level prime to p) have
associated Galois representations which are unramified at p, while an ordinary p-
adic modular form f of weight one has an associated Galois representation which
may be ramified at p of the form:

1 =x
pf|1Qp2 0 1

Moreover, f should be classical if and only if * = 0. A key advantage of working
with ordinary p-adic modular forms is that they are defined as sections of a line
bundle over the ordinary locus, which is affine, and thus only occur in cohomo-
logical degree 0. It follows that ordinary p-adic modular forms of weight one are
unobstructed for congruences and one can (assuming residual modularity) apply the
Taylor—Wiles method in this setting to deduce the existence of two p-adic ordinary
weight one modular forms f, and fg such that py, = ps, = p and U, fo = afa,
Upfs = Bfs-

We observe that the existence of both f, and fz witnesses the fact that p is
unramified at p. In order to show that f, and fs are classical forms of weight one,
one forms the linear combinations h = (afo—Ff3)/(a—p5) and g = (fa—f3)/(a—p).
The property that py, = ps, = p and the explicit relation between g-expansions
and Hecke eigenvalues translates into the geometric property that Frob(h) = g.
Using rigid analytic techniques, one can show that this property implies that f,, f3
are classical forms of weight one. This strategy has been successfully generalized
to any totally real field [Sas13l, [KST14, [Kas16l [PS16b., [Pil17].

From a different direction, the paper [CG18| introduced an alternate method for
proving modularity lifting results in weight one, by modifying the method of Taylor—
Wiles and exploiting the Galois representations associated to coherent cohomology
classes in all degrees. This method eliminates the delicate classicality theorem
in weight one because one only works with classical (but possibly higher degree)
cohomology. This method allows in principle to deal with any obstructed situation,
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but requires some non-trivial input. For 2-dimensional odd Artin representations
over a totally real fields, one needs to prove that (after suitable localization at a
maximal ideal of the Hecke algebra) the cohomology in weight one is supported in
degrees 0 to [F : Q] (this is actually automatic here for cohomological dimension
reasons), and that the Galois representations in all cohomological degrees satisfy a
form of local-global compatibility (at places above p). This last property has been
proved when F' = Q where one can reduce to studying degree 0 torsion cohomology
classes and use the “doubling method” described below, but has not yet been proved
for all primes p over a general totally real field (though see [ERX17] for some partial
results).

After this discussion of Artin’s conjecture, we return to the paramodular con-
jecture. We first assume that F' = Q and fix a prime p. We assume that A has
ordinary good reduction at p so that

Ao O * *

O /\,3 * ES
pA,;D|GQp = 0 0 )\Elg—l 0 3

0 0 0 Ajte !

(63

where, additionally, we assume that @ # §. (The Weil bounds together with the
Cebotarev density theorem guarantee an ample source of such primes p.) Tilouine
and his collaborators [TU95, [Ti98], [TU99, MT02, [GT05], [Til06al, [Til09] developed
modularity lifting results for GSp, /Q in regular weight. In the case of Hodge-Tate
weights (0,0, 1,1), the paper |[Pill12] applied these techniques to ordinary p-adic
modular forms of weight 2 to produce (under technical assumptions) two p-adic
eigenforms f, and fz associated to A (see also [Til06al [Til12], where the case of
certain GSp,-type abelian varieties is treated).

Similarly to the case of GL2/Q, an ordinary p-adic modular form of weight 2
has a Galois representation whose restriction to inertia at p has the shape:

1 * *
0 1 * *
0 0 E_l *9

0 0 0 et

Such a form should be classical if and only if its Galois representation is de Rham
— equivalently: *; = %9 = 0 (because of the symplectic structure, the vanishing
of 7 is equivalent to the vanishing of x5).

As before, the existence of both f, and fg witnesses the property that A is
de Rham at p. One difficulty, however, is that the Fourier expansions of Siegel
modular forms are not explicitly determined by the Hecke eigenvalues (although
we often have an abstract multiplicity one theorem). In particular, one doesn’t
know how to deduce geometrically from py, = py, = pa,, that there exist suitable
linear combinations of f, and fg giving rise to the desired form f by mimicking
the Buzzard—Taylor argument.

In another direction, in [CG20] the modified Taylor-Wiles method was applied to
low weight Siegel modular forms over Q. There were a number of serious difficulties
which prevented the authors from deducing any unconditional modularity lifting
for abelian surfaces. The idea of the method is to consider (a suitable localization
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of) the full cohomology complex RI'(X,w?) where X is an integral model over Z,
of the Siegel threefold. The required inputs are:

(1) to prove that the cohomology is only supported in degrees 0 and 1, and
(2) to prove local-global compatibility for the cohomology classes.

The first point is subtle in the weight of interest, because the cohomology groups
will not generally vanish before localization at some non-Eisenstein maximal ideal m
(and indeed this point was not established in weight 2 in [CG20]). The paper [CG20]
proved the second point for torsion degree 0 cohomology classes, using a “doubling”
argument that we will return to below.

One crucial new ingredient which allows us to proceed in the symplectic case
and deal with (1) is the higher Hida theory developed for GSp, over Q in |Pil20].
The idea of [Pil20] is (loosely speaking) to work over the larger space which is
the complement of the supersingular locus (the rank > 1 strata), which is now no
longer affine. (Since we are working in mixed characteristic, one should imagine
this taking place in the category of formal schemes, as in classical Hida theory.)
Since the cohomological dimension of these spaces is one (more precisely, the image
of these spaces in the minimal compactification has cohomological dimension one,
which is sufficient for our purposes), there should exist complexes of amplitude [0, 1]
computing the coherent cohomology of all the relevant vector bundles. The main
result of [Pil20] is that suitably constructed Hida idempotents cut down such a
complex to a perfect complex, and moreover that the cohomology of this perfect
complex is computed in characteristic zero by the space of weight 2 automorphic
forms of interest. A crucial ingredient in order to study the coherent cohomology is
therefore the introduction of Hecke operators at p and their associated projectors.

A version over Q of our modularity lifting theorem could be proved by applying
the patching method of [CG18] to the higher Hida complexes of [Pil20]. It should
nevertheless be noted that, even if we were only interested in theorems over Q, we
are forced to prove a modularity lifting theorem for any totally real field F' (and
prime p which splits completely in it). This is because we need to employ Taylor’s
Thara avoidance technique [Tay08| to deal with issues of level raising and lowering
at places away from p, and this step crucially relies on using solvable base change.
We can then combine this modularity lifting result with base change techniques
and the Moret-Bailly argument to achieve residual potential modularity, in order
to prove our main potential modularity theorem.

In the light of the above discussion, in order to prove a modularity lifting theorem
for Hilbert—Siegel modular forms it is natural to consider (a suitable localization
of) either the cohomology complex RT'(X,w?) where X is an integral model over
Z,, of the Hilbert—Siegel space, or of the ordinary part of the cohomology complex
for a subspace of X obtained from the p-rank stratification. The required inputs
for the modified Taylor-Wiles method are now:

(1) to prove that the cohomology is only supported in degrees 0 to [F' : Q], and
(2) to prove local-global compatibility for the cohomology classes.

It is to some extent possible to solve (1) using higher Hida theory (although there
are some issues), but (2) seems to be a more serious problem because we only know
how to prove that the Galois representations associated to torsion classes in H*
satisfy the right local-global compatibility condition at v|p if i = 0. Accordingly,
we are unable to argue directly with such complexes.
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Let the number of non-zero degrees of cohomology of the spaces we are consid-
ering be Iy + 1; we refer to ly as the defect. (The original Taylor—Wiles method only
applies if [o = 0, while if [y > 0 we use the method of [CG18]. As mentioned above,
lp also has a Galois-theoretic interpretation: the sum of the dimensions of the local
deformation rings is Iy less than the corresponding dimension in the defect 0 case.)
One key trick we employ in this paper is to reduce to situations where we only have
to consider cohomology in at most two degrees (so the defect is at most one), i.e.
it suffices to work with complexes consisting of at most two terms. This is where
we take advantage of the product situation at p (because p splits in the totally
real field). (Implicitly, what happens in this case is that any cohomology occurring
in H'! can also be seen via the Bockstein homomorphism as coming from H?, pro-
vided that the characteristic zero classes in H' are also seen by the characteristic
zero classes in H?, and this can be established by automorphic considerations; so
we only have to prove local-global compatibility for H°.) We now explain how we
do this in slightly more detail.

We assume that A has ordinary good reduction at all places v|p, so that

Aoy, O * *
0 /\ﬂu * *
pA7P|GFU = 0 0 )\57)16_1 0 )
0 0 0 /\;v g1

where we furthermore assume that @, # f3,,.

Although we expect that there should be a weight 2 eigenform associated to
A of spherical level at p (because A has good reduction at p), it turns out that
because A is ordinary at p, it is more natural to look for an eigenform f associated
to A of Klingen level at p. The Klingen level structure is given by choosing a
subgroup of order p inside A[v] for all v|p. At Klingen level at v, there is a Hecke
operator Ukii(,),1 Whose eigenvalue on f should be o, + ,, and a second Hecke
operator Ukij(y),2 Whose eigenvalue should be «,3,. We observe that the second
operator has an invertible eigenvalue (we say that f is Klingen ordinary) and this
corresponds to the fact that the Galois representation pa ,|a , 1s ordinary.

There is another level structure that plays a role: the Iwahori level structure
given by choosing a complete self dual flag of subgroups inside Afv]. For each
v|p, there are two degeneracy maps from Iwahori level to Klingen level, and there
are Hecke operators Uty (v),1, Utw(v),2 = Uxkli(v),2 at Iwahori level. Pulling back the
expected form f by the degeneracy maps should yield eigenforms at Iwahori level
which have eigenvalues o, and 3, for Uty (.1 (we call them Iwahori ordinary).

We now return to the question of using modularity lifting theorems to find f.
First of all, modularity lifting theorems with p-adic ordinary modular forms (i.e.
with o = 0) allow us to construct 2[F*Ql Iwahori ordinary p-adic modular forms
whose eigenvalue for Uty (y),1 18 @, or 3,, and whose eigenvalue for Uki;(y),2 is oS-
We suspect that these forms are classical, but as explained before, we don’t know
how to establish any geometric relation between them.

As a second step we apply a modularity lifting theorem in the case that the defect
lo equals one. Let us isolate a place v|p. Using higher Hida theory, we construct a
perfect complex of amplitude [0, 1] which is obtained by taking the ordinary (more
precisely Iwahori ordinary at w # v, Klingen ordinary at v) cohomology of the
open subspace of the Hilbert—Siegel Shimura variety which is ordinary and carries
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an Iwahori level structure at all places w # v, and has p-rank at least one at v and
carries a Klingen level structure.

We manage to prove that this cohomology carries a Galois representation which
has the following type of local-global compatibility property:

(1) For all places w|p, w # v:

1 =x * *

L0 1T =« *

pA,p|IFw — 1o o 671 %

00 0 et

(2) For v:

1 0 =% *

0 1 =« *

pA,p|IFU = 0 0 671 0

00 0 et

Using the methods of [CGIS§|, we can prove a modularity lifting theorem, and
produce 2F°QI=1 p_adic modular forms (which converge a lot more in the v direc-
tion) whose eigenvalue for Upy(w),1 i au or By, if w # v, and whose eigenvalue for
Ukili(v),1 18 @y + By, and whose eigenvalue for Ukii(w),2 = Ulw(w),2 18 QB for all
w|p.

Our last step is to prove lots of linear relations between all these forms we have
constructed. This step ultimately relies upon an abstract multiplicity one result
which we prove using the Taylor—Wiles method. Exploiting these linear relations
and using étale descent techniques, we first manage to construct a Klingen ordinary
weight 2 modular form defined on the open subspace of the Hilbert—Siegel Shimura
variety which has p-rank at least one at all v|p and carries a Klingen level structure.
We then manage, using analytic continuation techniques, to prove that this form
extends to the full Shimura variety and is therefore classical.

1.3. An outline of the paper. We briefly explain the outline of the paper; we
refer the reader to the introductions to the individual sections for a further explana-
tion of their contents, and for some elaborations on the overview of our arguments
above.

In §2] we recall some more or less standard background material on Galois rep-
resentations, the local Langlands correspondence, local representation theory, and
related topics. discusses the Shimura varieties which we use, and some prop-
erties of their integral models and compactifications, and recalls the approach to
the normalization of Hecke operators on coherent cohomology via cohomological
correspondences which was introduced in [Pil20].

In §4] we construct the Hida complexes that we work with, and prove some of
their basic properties (in particular, we prove that they are perfect complexes).
In we establish the “doubling” results that we will later use to prove local—
global compatibility for Hilbert—Siegel modular forms over torsion rings. The basic
strategy (employed in a number of other places, see [Gro90, [Edi92] [Wieldl [CGIS|
CG20]) is to show that we can embed (via degeneracy maps) two copies of our space
of ordinary modular forms at Klingen level into a space of ordinary modular forms of
Iwahori level. This allows us to show that the corresponding Galois representations
are ordinary (in the Iwahori sense) in two different ways, namely, with «,, and £,
as unramified subspaces. Then the genericity assumption @,, # 3,, forces there to
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be a 2-dimensional unramified summand of our representation. The key technical
difficulty is proving that the direct sum of the degeneracy maps does indeed give an
embedding. All previous incarnations of the doubling phenomenon ultimately relied
on the g-expansion principle, but our argument is more geometric, and ultimately
rests on analyzing the effect of the Hecke operator Z,, = Ukii(w),1 — Utw(w),1 along
the w-non-ordinary locus.

In We prove that a characteristic zero classicality result for the H° of our Hida
complexes, using Coleman theory. We also show that the complexes we consider are
balanced, in the sense that they have Euler characteristic zero, using a somewhat
intricate interplay between three objects — the complex of classical forms, the
complex of overconvergent forms, and our complex of (Klingen) ordinary forms.

In §7 we carry out our main Taylor-Wiles patching arguments in the cases
that l[p = 0 and [y = 1. We then prove our main modularity lifting theorem in
using analytic continuation, étale descent, and linear algebra arguments based
on the doubling results of §5|to reduce to the classicality results of

In §9 we apply our main automorphy lifting theorem to prove the potential
automorphy of abelian surfaces. The basic idea is to use a version of the p-q trick
(first employed by Wiles as the 3-5 trick), together with an application of a theorem
of Moret-Bailly, to connect general abelian surfaces via a chain of congruences to
the restriction of scalars of an elliptic curve over a totally real quadratic extension
of F, which we know already by [Tay02] to be potentially modular. We are also
left to deal directly with some cases of abelian surfaces with small Mumford-Tate
groups, which can mostly be done immediately with an appeal to the theory of
Grossencharacters. We also include a number of applications as mentioned in the
introduction, including elliptic curves over quadratic extensions of F'.

In §10] we give applications to the automorphy of abelian surfaces. We show
that, given any mod 3 representation p : Gq — GSp,(F3) with (inverse) cyclotomic
similitude character, it can be realized (in infinitely many ways) as the 3-torsion of
an abelian surface over Q. Here we exploit some classical geometry related to the
Burkhardt quartic, which is isomorphic to a compactification of A5(3). The key
point is to show that the variety given by the twist of A5(3) by p has sufficiently
many rational points. We do this by proving it is unirational over Q via a map
of degree at most 6. The argument is similar to that of [SBT97], except that it is
applied not to the twist of A3(3) itself but to a twist of a degree 6 rational cover,
which has the pleasing property (unlike the Burkhardt quartic itself) that the bi-
rational map to P? over Q can be made equivariant with respect to the action of
the automorphism group PSp,(F3). Finally, we conclude with a discussion of the
paramodular conjecture and its relationship to the standard conjectures, and ex-
plain why the original formulation of this conjecture requires a minor modification.

1.4. Some further remarks. For length reasons, we did not try to optimize all
of our theorems — for example, our arguments would surely extend to prove the
potential automorphy of some GSp,-type abelian varieties, but sticking with abelian
surfaces makes the Moret-Bailly arguments somewhat simpler, and (by using a
trick) we manage to avoid any character building whatsoever. However, we have
gone to some lengths to treat the case p = 3, and to use a weaker notion of p-
distinguishedness than in [CG20]; while this is not necessary for our applications
to potential modularity, it significantly increases the applicability of our theorems
to actual modularity problems.
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1.4.1. The work of Arthur. It should be noted that we use Arthur’s multiplicity
formula for the discrete spectrum of GSp,, as announced in [Art04]. A proof of
this (relying on Arthur’s work for symplectic and orthogonal groups in [Art13]) was
given in [GT19], but this proof is only as unconditional as the results of [Art13]
and [MW16al, MW16b|. In particular, it depends on cases of the twisted weighted
fundamental lemma that were announced in [CL10], but whose proofs have not
yet appeared, as well as on the references [A24], [A25], [A26] and [A27] in [Art13],
which at the time of writing have not appeared publicly.

1.4.2. Curves of higher genus. One may well ask whether the methods of this paper
could be used to prove (potential) modularity of curves of genus g > 3 whose Ja-
cobians have trivial endomorphism rings. At the moment, this seems exceedingly
unlikely without some substantial new idea. All generalizations of the Taylor—
Wiles method to this point require that the automorphic representations in ques-
tion are associated to the Betti cohomology groups of locally symmetric spaces, or
the coherent cohomology groups of Shimura varieties, which have integral struc-
tures and hence allow one to talk about congruences between automorphic forms.
Symplectic motives of rank 2¢g over Q are conjecturally associated to automorphic
representations for the (split) orthogonal group SOg441 (When g = 1 or g = 2,
there are well-known exceptional isomorphisms which allow us to replace SOg441
by the groups GLs and GSp, respectively). Following [BK14], Gross has made
some precise conjectures concerning the level structures of newforms associated to
such conjectural automorphic representations in [Grol6].

The automorphic representations contributing to the Betti cohomology groups
of locally symmetric spaces have regular infinitesimal characters, so can only be
used for ¢ = 1. The automorphic representations contributing to the coher-
ent cohomology of orthogonal Shimura varieties are representations of the inner
form SO(2g — 1,2) of SO2441 (which is non-split if g > 1), whose infinity compo-
nents m., are furthermore either discrete series, or non-degenerate limits of discrete
series.

If g = 1, the representations considered by Gross in [Grol6] are discrete series,
and if g = 2, they are non-degenerate limits of discrete series, but if g > 3, then
neither possibility occurs, so the automorphic representations do not contribute to
the cohomology (of any kind) of the corresponding Shimura variety. (Another way
of seeing this is to compute the possible infinitesimal characters of the automor-
phic representations corresponding to automorphic vector bundles on the Shimura
variety, or equivalently the Hodge-Tate weights of the expected 2g-dimensional
symplectic Galois representations; one finds that no Hodge—Tate weight can occur
with multiplicity bigger than 2, while the symplectic Galois representations coming
from the étale H' of a curve of genus g have weights 0, 1 each occurring with mul-
tiplicity ¢g.) In particular, the general modularity problem for curves of genus g > 3
seems at least as hard as proving non-solvable cases of the Artin conjecture for to-
tally even representations, and even proving the modularity of a single such curve
with Mumford-Tate group GSp,, seems completely out of reach.

On the other hand, there are some special families in higher genus which may
well be amenable to our method. In particular, the Tate module of a cyclic
trigonal genus three curve (so-called Picard curves, with affine equations of the
form y3 = 2% + ax?® + bx + ¢) defined over Q splits (over Q(v/—3)) into two essen-
tially conjugate self-dual irregular 3-dimensional representations of Gg(,/=3). These
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Galois representations conjecturally correspond (see the appendix to [Til06a]) to
automorphic representations 7 for a form of U(2,1)/Q (splitting over Q(y/—3))
such that 7., is a non-degenerate limit of discrete series and contributes to the
coherent cohomology of the associated Shimura variety. The methods of this paper
should apply (in principle) to these curves.

1.4.3. K3 surfaces. Our results should also have applications to the Hasse—Weil
conjecture for K3 surfaces over totally real fields with geometric Picard number >
17. While we do not undertake a detailed study of this problem here, we discuss it
in 9

1.4.4. A comparison of this paper with |JACCT18|. Tt follows from Theorem m
that any elliptic curve E over a CM field K/F is potentially modular (simply
consider the abelian surface given by Weil restriction of scalars of E from K to F).
This result is also proved in [ACCT18|. Perhaps surprisingly, there is relatively little
overlap between the two proofs. For example, our argument does not require any of
the results of Scholze [Sch15] on the construction of Galois representations, nor the
derived version of Thara avoidance required in [ACCT18|. The only common theme
is the use of the modified Taylor-Wiles method of [CG18]. To further illustrate the
difference, it is also proved in [ACC™18] that the nth symmetric power of any such E
is potentially automorphic, which is not directly accessible from our approach. On
the other hand, we also deduce (Theorem the potential modularity of elliptic
curves over fields like F = Q(+v/2), which seems out of reach using the methods
of JACC™18|.
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numerous helpful comments and corrections. Both David Geraghty and Jacques
Tilouine have made important contributions to the problem of modularity for
abelian surfaces; we would especially like to thank them for many helpful dis-
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Brian Conrad, Matthew Emerton, Najmuddin Fakhruddin, Dick Gross, Robert Gu-
ralnick, Florian Herzig, Christian Johansson, Keerthi Madapusi Pera, Rutger Noot,
Madhav Nori, Ralf Schmidt, Olivier Taibi, Richard Taylor, Jack Thorne, Andrew
Wiles, and Liang Xiao for helpful conversations. We finally want to thank Bruno
Klingler and the University of Paris 7 for hosting us during part of this project.

2. BACKGROUND MATERIAL

In this section we recall a variety of more or less well-known results that we will
use in the body of the paper.

2.1. Notation and conventions.

2.1.1. GSp,. We define GSp, to be the reductive group over Z defined as a subgroup
of GL4 by

GSpy(R) = {g € GL4(R) : gJg" = v(g)J}
where v(g) is the similitude factor (which is uniquely determined by g, and which
we sometimes call the multiplier factor), and J is the antisymmetric matrix

(%)
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where s = (O 1

1 0
G-
We let Sp, be the subgroup with v =1, and we let B C G = GSp, be the Borel
subgroup of upper triangular matrices, and T' C B be the diagonal maximal torus.
Write W = Ng(T)/T for the Weyl group of (G,T). It acts on the character

group via w - A(t) = AMw™Hw). It is generated by s; = < (f 032 ) and so =
2

). Note that the map v : g — v(g) is a homomorphism GSp, —

1 0 0 0 1
0 s 0 | wheres' = (_1 0>7 and admits the presentation
0 1

Wa = <51,52|s% = s% = (3132)4 =1).

Write X*(T) (resp. X.(T)) for the group of characters (resp. cocharacters) of T
We identify X*(T) with the lattice in Z3 of triples (a,b;c) € Z3 such that c=a+b
(mod 2) via

At = diag(ty, to, vty b, vty ) e t§thplea=0/2,
In particular, the central character is given by A(diag(z, z, z,2)) = 2°. The simple
roots are a; = (1,—1;0) and as = (0,2;0); o is the short root. Note that the o
determine the reflections s;. The similitude factor is (0, 0;2).

The root datum (G, B,T) determines the dual root datum (@,E ,f), where G
is the dual group GSpins. We always identify GSping with GSp, via the spin
isomorphism (see for example [MT02, §3.2] for a detailed explanation of this).

In particular, the cocharacter in X, (T) corresponding to the character (a,b;c) €
X*(T) defined above is given by

RN diag(t(a+b+c)/2, t(a7b+c)/2, t(fa+b+c)/27 t(fafb+c)/2)'

We write g and b for the Lie algebras of GSp, and B, and g° and b° for the Lie
algebras of Sp, and BN Sp,. If v is a finite place of a number field F', with residue
field k(v), then we have the standard parahoric subgroups of GSp,(F3):

e The hyperspecial subgroup GSp,(OpF, ).

e The paramodular subgroup Par(v), the stabilizer in GSp,(F,) of Op, @
Op, @ O, ® w,OF,, where w, € OF, is a uniformizer.

e The Siegel parahoric Si(v), the preimage in GSp,(Op,) of those matrices
in GSp,(k(v)) of the form

ok ok k
* * * *
0 0 x= =
0 * %

e the Klingen parahoric Kli(v), the preimage in GSp,(OF,) of those matrices

in GSp,(k(v)) of the form

* ok % %
0 * * %
0 * * %
0 0 0 =«

e the Iwahori subgroup Iw(v

~

, the preimage of B(k(v)) in GSp,(OpF, ).
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2.1.2. Algebra. If R is a local ring we write mp for the maximal ideal of R.

If M is a perfect field, we let M denote an algebraic closure of M and G, the
absolute Galois group Gal(M /M). For each prime p not equal to the characteristic
of M, we let ¢, denote the p-adic cyclotomic character and g, its reduction modulo
p. We will usually drop p from the notation and simply write ¢, €.

If K is a finite extension of Q,, for some p, we write K™ for its maximal unrami-
fied extension; I for the inertia subgroup of Gk ; Frobi € G /I for the geomet-
ric Frobenius; and Wi for the Weil group. If L/ K is a Galois extension we will write
I,/ for the inertia subgroup of Gal(L/K). We will write Artg : K* — W2P for
the Artin map normalized to send uniformizers to geometric Frobenius elements.

If p is a continuous representation of Gk over Q, for some [ # p, valued ei-
ther in some GL,, or in GSp,, then we write WD(p) for the corresponding Weil-
Deligne representation. (By definition, a GSp,-valued Weil-Deligne representation
is just a GSp,-valued representation of the Weil-Deligne group, i.e. it is considered
up to GSp,-conjugacy). If p is a de Rham representation of Gk on a Qp—vector
space W, then we will write WD(p) for the corresponding Weil-Deligne represen-
tation of Wk, and if 7 : K — Qp is a continuous embedding of fields, then we
will write HT-(p) for the multiset of Hodge—Tate numbers of p with respect to 7,
which by definition contains ¢ with multiplicity dimap(W ®,.x K(i))9%. Thus, for
example, HT,(¢) = {—1}.

Let K/Q be a finite extension. If v is a finite place of K we write k(v) for its
residue field, g, for #k(v), and Frob, for Frobg, . If v is a real place of K, then we
will let [c,] denote the conjugacy class in Gi consisting of complex conjugations
associated to v.

We will frequently adopt the following notation: we let p > 2 be prime, and we
let £ be a finite extension of Q, with ring of integers O, uniformizer A and residue
field k.

We will sometimes use the following well-known lemma without comment.

Lemma 2.1.3. Let T" be a group and let L be an algebraically closed field. Then
a semisimple representation I' — GSp, (L) is determined up to conjugacy by the
composite I' — GSp, (L) — GL4(L) x GLy(L), where the second factor records the
similitude character.

Proof. This follows (for example) from the proof of Lemma 6.1 of [GT11a]. O

2.1.4. Galois cohomology. If L/K is an extension of fields, k is a field, and V
is a finite-dimensional k-vector space with an action of Gal(L/K), then we write
HY(L/K,V) for H(Gal(L/K),V), and hi(L/K,V) for dim), H*(L/K, V). We write
HY(K,V) and hi(K,V) for H(K/K,V) and hi(K /K, V) respectively.

2.1.5. Automorphic representations. We will use the letter 7w for automorphic repre-
sentations of GSp,, II for automorphic representations of GL,, (usually with n = 4),
and 7 for automorphic representations of GLy. We decorate these in various ways,
and aim to be consistent in such decorations. For example, IT will usually denote
the transfer to GL4 of 7 in the sense of so that for example IT, will denote
the transfer of 5.

2.2. Induction of two-dimensional representations. We will sometimes want
to induce representations from GLg to GSp,. Suppose that K/F is a quadratic
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extension of fields, and that r : Gxg — GLy(L) is a representation, for some field L.
Choose 0 € Gf \ Gk, and assume that detr extends to a character x of Gp
Let p := Indgi 7 : Gr — GLy(L). The representation A%p admits the characters y
and x ® np/k as constituents, where 1, denotes the quadratic character. In
particular, the representation p generally preserves two symplectic forms, and hence
gives rise to two representations pi, p2 : Gg — GSp, (L) with similitude factors x
and x ® np/ i respectively. To describe these more explicitly, let V' denote a model
for r so that W =V @ oV is a model for p. Then the Galois action of W preserves
(up to scalar) the symplectic form given by choosing an arbitrary non-degenerate
symplectic form on V, letting oV and V be orthogonal, and then defining ocv; Aows
consistently to be either x(o)vy Awvp or —x(0)vi Ava = x @ Np/k(0)v1 Ava. The
image of (A4, B) € GLa(E) x GLy(F) with det(A) = det(B) inside GSp, relative to
our choice of J can be given by

N GSp,(E).

0
*
*

* O O *
* * O
* O O %

0 0

In our applications, it will always be the case that det r is the inverse of the cyclo-
tomic character of G, and we will write simply write Indgi r for the corresponding
symplectic representation with similitude factor the inverse of the cyclotomic char-
acter of Gp. For example, if K/F is a quadratic extension of number fields, F is
an elliptic curve over K, and r is the dual of the p-adic Tate module of E, then
Indgf{ r is the dual of the p-adic Tate module of the abelian surface A = Resg/r E,
and the corresponding symplectic structure on this representation coincides with
the one coming from the Weil pairing on A. This is because the representation on
the Tate module of A is the induction of the corresponding representation on the
Tate module of F, and because the similitude character on the Tate module of an
abelian variety is always given by the cyclotomic character.

2.3. The non-archimedean local Langlands correspondence. Let K/Q; be
a finite extension for some [. We will let recx be the local Langlands correspon-
dence of [HT01], so that if 7 is an irreducible complex admissible representation of
GL,(K), then reck (m) is a Frobenius semi-simple Weil-Deligne representation of
the Weil group Wx. We will write rec for recx when the choice of K is clear.

If (r,N) is a Weil-Deligne representation of Wy we will write (r, N)¥'=ss for
its Frobenius semisimplification. If 7; is an irreducible smooth representation of
GL,, (K) for i = 1,2 we will write 7 By for the irreducible smooth representation
of GLy,, 4-n, (K) with rec(mHma) = rec(my)@rec(ms). If L/K is a finite extension and
if  is an irreducible smooth representation of GL, (K) we will write BCy, /() for
the base change of 7 to L which is characterized by rec (BCr k(7)) = rec (7)|w,, -

We denote the local Langlands correspondence of [GT11a] by recgr; this is
a surjective finite-to-one map from the set of equivalence classes of irreducible
smooth complex representations of GSp,(K) to the set of GSp,-conjugacy classes of
GSp,(C)-valued Weil-Deligne representations of Wy, which we normalize so that
recgT(m ® (x o v)) = recar(m) ® rec(x), and v o recgr(m) = rec(wy), where w; is
the central character of 7.

We fix once and for all for each prime p an isomorphism 2 =17, : C = Qp. We
will generally omit these isomorphisms from our notation, in order to avoid clutter.
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In particular, we will frequently use that » determines a square root of p in Qp
(corresponding to the positive square root of p in C). We write rec, and recgr,, for
the local Langlands correspondences for Qp—representations given by conjugating
by 2. These depend on 2, but in practice this does not cause us any difficulty; see

Remark 2.3.21

Definition 2.3.1. If p : Gxg — GSp,(Q,) is a continuous representation for
some p # I, then we write L(p) for the L-packet associated to p, which by def-
inition is the set of equivalence classes of irreducible smooth Q,-representations 7

of GSp,(K) with the property that recgr (7 ® [v|73/2) 2 WD(p)F .

|73/2

(In accordance with the convention explained above, note that |v makes

sense because we have a fixed square root of p.)

Remark 2.3.2. Tt is presumably possibly to show that the twist of recgr in Defini-
tion m (which will be present whenever we consider recgr ) gives a local Lang-
lands correspondence for Qp—representations which is independent of the choice of 1,
but we have not tried to establish this, as we do not need it. We make (implicit)
use of this for unramified representations, and of the statement that the rank of
the monodromy operator associated to a representation with Iwahori-fixed vectors
is independent of the choice of 2, both of which are easily verified explicitly.

Remark 2.3.3. We will from now on usually regard automorphic representations as
being defined over Qp, rather than C, by means of the fixed isomorphism 1 : C &
Qp. We will not in general draw attention to this, and no confusion should arise
on the few occasions (for example, when considering compatible systems) where we
think of them as being over C.

If L/K is a finite solvable Galois extension of number fields and if 7 is a cuspi-
dal automorphic representation of GL, (A ), we will write BCr k() for its base
change to L (which exists by the main results of [AC89]), an (isobaric) automorphic
representation of GL, (A ) satisfying

BCL/K(”)w =BCr,/k, (70)
for all places w of L where v = w|k is the restriction of w to K. If m; is an

automorphic representation of GL,,, (A k) for i = 1,2 we will write 71 B 7o for the
automorphic representation of GLy,, +n,(A k) satisfying

(7T1 H 7T2)v =Tl H 2,0

for all places v of K.

If (r,N) is a Weil-Deligne representation, then we write n((r, N)) for the rank
of N. If 7 is an irreducible admissible representation of GL,,(K) (resp. GSp4(K)),
then we write n(r) for n(rec(r)) (resp. n(recar(m))).

2.4. Local representation theory. In this section, we recall a number of more
or less well-known results about the representation theory of GSp,(K), where K
is a local field of characteristic zero. Some of these results are in [GT05], but for
convenience we have gathered them all together here, and have usually given proofs.
Since our applications of this material are all global, and some of the definitions we
make (such as the normalizations of Hecke operators at places dividing p) depend
on global information, we have chosen to work in the same global setting that we
consider in the rest of the paper.
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Let p > 2 be prime, and let F' be a totally real field in which p splits completely.
Let E/Q, be a finite extension with ring of integers O and residue field k. Let v
be a finite place of F', and fix a uniformizer w, € Op,. For most of this section,
we will allow v to divide p, although at the end of the section, we will prove some
results (which follow those of [KT17] for GL,) under the assumption that ¢, = 1

(mod p). We fix once and for all a square root @/ e E.

2.4.1. Generalities. We begin by recalling some results on Iwahori Hecke algebras.
It costs us nothing to recall these in a more general setting, so we temporarily
let G/OF, be a split reductive group with T'C B = T - U a maximal torus and
Borel (with unipotent radical U), and let N be the normalizer of T in G. Let
W = N(F,)/T(F,) be the Weyl group. Let A C X*(T) be the simple roots. We
write W = N(F,)/T(Og,) for the extended affine Weyl group.

Let Iw(v) = ker(G(OF,) — B(k(v))) be an Iwahori subgroup, and let Iwy(v) =
ker(G(Op,) — U(k(v))) be a pro-v Iwahori subgroup. Let

Hi = H1(v) = O[lwi (W\G(F,) /[Twi (v)] = O[G(Fy ) //Twi (v)]

be the pro-v Iwahori Hecke algebra. (Here G//K denotes K\G/K — we tend to
prefer the first notation but we also sometimes use the second notation since it is
more compact and some of our expressions are already typographically somewhat

complicated.)
We let T(Op,)1 = (ker T(Op,) — T'(k(v))). We also let
|

T(F,)* = {z € T(F,) | a(z) € Op,,Ya € A}.
]

For g € G(F,), we write [Iwy(v)gIwy(v)] € H; for the characteristic function of the
double coset Twq(v)glwy(v).

Proposition 2.4.2. For z,y € T(F,)*, we have

[Iwy (v)aIwy (v)] - [Iwy(v)yIwy (v)] = [Iwy (v)zylwy (v)]
and moreover [Iwy(v)alwy (v)] € (H1[1/p])*. Ifv{p, then in fact [Twy(v)xIwy(v)] €
Proof. The first statement is a special case of [Cas, Lem. 4.1.5], while the rest is

immediate from [Vig05, Cor. 1]. O

As a result, there is a homomorphism
T(Fy) = (Ha[1/p])*

which is defined as follows: write z € T(F,) as z = yz~! with y,2 € T(F,)* and
send x to

(0™ (y) [Tw1 (v)yIwy (0)]) (05 (2) w1 (v) 21w (0)]) ™!

where dp is the modulus character. The kernel of this homomorphism is T(Op, ).
If v 1 p, then the image of the homomorphism is in H;°.

Proposition 2.4.3. Let 7 be a smooth admissible E[G(F,)]-module. Then the map
T — 7wy, where wy is the (normalized) Jacquet module, induces an isomorphism of
E[T(F,)]-modules

7_[_le(’u) — (WU)T(OFU)I .
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Proof. By [Cas, Lem. 4.1.1] (noting that the Jacquet module in this reference is
not the normalized Jacquet module), the map m — 7y induces an E[T(F,)]-module
homomorphism 71 (") — (77)T(©r)1 Tt is an isomorphism by [Cas, Prop. 4.1.4]
and Proposition [2.4.2 O

For a character x : T(F,) — E”, write m(x) = n—IndG(F”)X for the corresponding

B(F,)
principal series representation. Then we recall

Proposition 2.4.4. For x : T(F,) — E” there is an isomorphism of E[T(F,)]-
modules

(r()v)* ~ P E(w - x).

weWw

Proof. This is a special case of [Cas, Thm. 6.3.5]. O

We say that 7(x) is a tame principal series if x is trivial on T(Op,); and an
unramified principal series if x is trivial on T(Op,). The results recalled above
immediately imply the well-known facts that if 7 is an irreducible smooth E[G(F,)]-
module, then 7™V1(*) £ {0} if and only if 7 is a constituent of a tame principal series,
and 7™(¥) =£ {0} if and only if 7 is a constituent of an unramified principal series.

Write H := O[Iw(v)\G(F,)/Iw(v)] for the Iwahori Hecke algebra. This enjoys
similar properties to those of H; recalled above; in particular, the analogue of
Proposition 2.4.2] gives an embedding E[X,(T)] < H[1/p], and if v { p, then this
restricts to an embedding O[X,.(T)] — H.

2.4.5. Principal series for GSp,. We now specialize our discussion to G = GSp,.
We recall some known results on constituents of unramified principal series repre-
sentations; many of these results are originally due to [ST93], but for convenience
we refer to the tables in [RS07bl App. A]. (Note that the compatibility of the pro-
posed Langlands parameters in [RSO7D, App. A.5] with the correspondence recgr
is proved in [GT11Dbl Prop. 13.1].)

If x1, x2,0 are characters of F*, then we write

v

GSpy4(F,
X1 X X2 X 0o = n-IndB(;ij; )Xl X x2 ® 0,
where
a * * *
b * *
X1® X2 ®0: -l x| 7 xa(@xa®)a(e).
ca=?

Proposition 2.4.6.

(1) x1xx2X0 is irreducible if and only if none of x1, X2, X1Xa " is equal to |-|F'.
(2) If w is an irreducible constituent of x1 X x2 X o, then

recgr,p(m)™® =0 o Arty' @ ((x1x2) 0 Arty @ x1 0 Arty @ xz0 Artp' @1).

(8) If x1 X x2 x 0 is irreducible, then recgr p(x1 X X2 X 0) is semisimple (that
is, N =0).

Proof. Part (1) is [ST93| Lem. 3.2]. Parts (2) and (3) follow immediately from rows
I-VI of [RSO7b) Table A.7]. O
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2.4.7. Spherical Hecke operators. Define matrices
61},0 = diag(wv7 Wy, Wy, wv)a

Bo,1 = diag(w,, @y, 1, 1),
ﬁU,Q = diag(w?n Wy, Wy, 1)'

We have the spherical Hecke operators T, ; = [GSpy(OF, )Bv.: GSp4(OF, )], which
are independent of w,. It is easy to check (using Proposition (2)) that if 7 is
an unramified representation of GSp,(F,) (that is, if 7GSPa(Or) £ 0 so that 7 is
a constituent of an unramified principal series), then the characteristic polynomial
of recgr (7 ® |v|73/2)(Frob,) is

(248> Qv(X) = X4 - tv,lXS + <Qvtv,2 + (qg + q'u)t'u,O)X2 - qgtv,ot'u,lX + qgtaOa

where we are writing ¢, ; for the eigenvalue of the operator T}, ; on 7GSPa(Or,),

Definition 2.4.9. We say that the Hecke parameters of 7 are the roots of Q,(X),
ordered in such a way that the pairs of roots (1,4) and (2,3) both multiply to
give the value v, of the similitude character evaluated on Frob,. We write these
Hecke parameters as [av, B, Vo8, L, Yoy 1], where implicitly we view these terms
as labelling the vertices of a square:

a’U 751}

’Yvﬁu_l - ’YvOé;l
and the ordering is unique up to the action of the Weyl group Ds = Sym((J). In
particular, the data of the quadruple [a,, By, Vo8, 1, Yy, 1] carries with it the value
of the similitude character.

We will be concerned with the case that the central character of 7 is given by
a > |a|?, in which case the Hecke parameters have the form [a,, 8., ¢, 8,1, quay 1]

2.4.10. Iwahori Hecke operators.

Definition 2.4.11. We say that an unramified principal series 7(x) is general if
the Hecke parameters are pairwise distinct and no ratio of them is ¢,. In particular,
m(x) is irreducible, and |W - x| = 8.

We have Iwahori Hecke operators Uf‘vjz‘é‘;z = [Iw(v)By,Iw(v)]. The notation
“gmaiver is intended to indicated that we have not yet appropriately normalized
these operators, as we will shortly do in the case that v|p. Then we have

Proposition 2.4.12. Let @ be a general unramified principal series with Hecke
parameters [auy, B, @By L, quey '] Then ™) is a direct sum of 8 one-dimensional
simultaneous eigenspaces for the UII“S(‘Z% For a given (ordered) choice of o, and

By the corresponding eigenvalues are u, o = q; 2, Uy1 = 0y, and Uy 2 = gy "y Py.

Proof. The first part is immediate from Propositions and To compute
the eigenvalues, by the definition of the Hecke parameters and Proposition [2.4.6| we
have oy, = g/ *(x1x20) (@), Bu = ¢o > (x10) () and g, = g3 (x1x20°) (). We
then have u, ; = 65(By.:) "2 (x1®X200)(By.:), 50 that u, o = (x1x20)%(w,) = ¢, 2,
w1 = 42 (axeo) (@) = @y, o = 2(3x20%) (@) = g, @y By, as required.
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Proposition has the following converse:

Proposition 2.4.13. Let 7 be an irreducible admissible representation of GSp,(Fy),
and suppose that 7V) contains an eigenvector for the Uf‘vj(‘zg’z with eigenvalues w,,
satisfying u,, = q, 2, Up1 = @y and uy 2 = q, ' By such that no ratio of a pair of
[, Bus @By Y, qua Y] is q,. Then m is the unramified principal series with Hecke

parameters [a, By, ¢uBy ', quay ']

Proof. Reversing the calculation in the previous proof, we let x = x1 ® x2 ® 0 be
the unramified character with x1(w,) = @,Buq; !, x2(@y) = @B, !, and o(w,) =
a;lq;u?. We see that there is an inequality HomT(Fv)(wIW(“), X) # {0}, and hence
Hom(m,m(x)) # {0} by Proposition and Frobenius reciprocity. Finally, by
Proposition m(x) is also irreducible. O

2.4.14. Parahoric level Hecke operators for GLs. We will also need to consider
certain parahoric Hecke algebra and investigate how they relate to the Iwahori
Hecke algebra.

We begin by recalling some standard results for the group GLy. We let Tw(v)’ C
GL2(Op,) be the Iwahori subgroup of matrices which are upper triangular modulo
w, (we put a prime because Iw(v) is used to denote the Iwahori subgroup in
GSp4(Or,))-

We introduce the following operators in the spherical Hecke algebra Hspn[1/p]:

Wy

W) 788 = 6La(0r) (G 7) GLa(OR ),

Wy

@) 785 = 61a(0x) (2 ) CLaOr)]

We also define the following operators in the Iwahori Hecke algebra Hy(y) [1/p]:

W oSk =iy (7 9) w1,

GL w, O
@ v =y (7 2 ) o)
(3) eShiz = [GLy(Op, ).
For any element f of the centre of the Iwahori Hecke algebra, the element eg;;h?
defines an element of the spherical Hecke algebra.

Lemma 2.4.15. The centre Z(Hiw(v) [1/p]) of the Twahori Hecke algebra is gen-
erated by US(I;2 and qUUS(I;Q(USP)_l + US{“, the map eSGFﬁf D Z(Hiwy [1/p]) —
Hspn[1/p] is an isomorphism and we have the following identities:

(1) espirUso® =T,
(2) e§it (aUys* (Uy?) 1 + U*) =Ty
Proof. This follows from [HKP10, §1, §2, §4.6]. d

naive

2.4.16. Klingen level Hecke operators. We have Klingen Hecke operators Kii(o),i =
[Kli(v) 8,,:Kli(v)].
Proposition 2.4.17. Let 7 be a general unramified principal series with Hecke pa-

rameters [, B, w3y L, quay t]. Then 7K s o direct sum of 4 one-dimensional
simultaneous eigenspaces for the Ul’é?il("f)’i. For a given choice of {ay, By}, the eigen-

_ -2 _ _ -1
values are uy 0 = @y %, Up,1 = Qy + Bo, and Uy 2 = Gy Py



24 G. BOXER, F. CALEGARI, T. GEE, AND V. PILLONI

Proof. This follows from a direct computation, see [GT05, Prop. 3.2.1, Cor. 3.2.2].
O

Remark 2.4.18. We sketch another (related) proof of Proposition Let us de-
note by Hiy(v)[1/p] the Iwahori Hecke algebra and by Ziii(y) (Hiw(w)[1/p]) the sub-
algebra generated by Uflvféf}‘)al + QU(UIHVSEZ%)_lUIT’Vj(iZ’;’z, U{’ng’iz, UF;&Z’S’O One checks
that Ziiiv) (Hiw(w)[1/p]) commutes with egi,y = [Kli(v)] by using Bernstein’s re-
lation ([HKP10, §1.15]). Therefore we get a map: exii(v) @ ZKiiv) (Hiw(w)[1/p]) —
Hrki(v)[1/p] where Hii(v)[1/p] is the Klingen Hecke algebra. We claim that:

naive naive \—17rnaive __ Jrnaive

* exii(o) Unyioy1 + @0 WUnen) 1) ™ Uiy 2) = Uklifon 10
naive __ yrnaive

hd eKli(’U)UIw(v),2 = UKli(v),Q’
naive __ yrnaive

* exii(o)Ung(n),0 = Ukli(v),0°

The claim can be checked after restricting all these functions to the Levi GLg x
GL; of the Klingen parabolic by [Vig98, Prop. IL.5], so it follows from Lemma/|2.4.15
The result then follows from Proposition [2.4.12

Remark 2.4.19. Proposition could also be proved using Jacquet modules
(as could analogous results for invariants at other level structures which admit
parahoric factorizations).

Proposition 2.4.20. Let 7 be an irreducible admissible representation of GSp,(Fy),
and suppose that 78 contains an eigenvector for the Uﬁ?ii("f))i with eigenvalues
Uy, Satisfying u,, = a2, Up1 = ay + By and uy 2 = q, ', B, such that no ratio
of a pair of {w, Bu, @By L, qua, Y is q,. Then w is the unramified principal series
with Hecke parameters [, By, ¢y L, quary t].

Proof. As in the proof of Proposition we deduce from 7™W(*) £ 0 that 7 is a
constituent of an unramified principal series representation. The central character
of such a constituent is unramified and so is determined by the value on Frobenius.
From the equation u,, = ¢, 2, we deduce that the central character of 7 is |-|?, and
hence the central character of 7 ® |v|=3/2 is | - |7, and hence that the similitude
character of recgr (7 ® |v|~%/2) is the inverse of the cyclotomic character e~
In particular, the value of the similitude character of the Weil-Deligne representa-
tion on Frob, is ¢,, and thus 7 is a constituent of an unramified principal series
representation with Hecke parameters [, 8!, q.(8)) %, qu(’))71]. (Note that the
ordering of these eigenvalues above is determined up to the action of Dg.) Compar-
ing to Proposition [2:4:.17 without loss of generality, we may rearrange the Hecke
parameters of 7 so that we deduce the two equations

O‘i} + ﬂi/; =0y + ﬂv’ a;;ﬂ:; = O‘vﬂva

and thus (again up to reordering) o/ = «,, and 8., = 3,. By Proposition the
principal series 7 is irreducible. 0

2.4.21. Generic unipotent representations. We say that a GSp,(F)-valued Weil-
Deligne representation r is generic if ad(r)(1) has no invariants, and is unipotent if
7% is unramified.

Proposition 2.4.22. Let r be unipotent. Then the L-packet corresponding to r
contains a generic representation if and only if r is generic.
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Proof. By the main theorem of [GT1Ial] (part vii), the L-packet L(r) contains a
generic representation if and only if the adjoint L-factor L(s,ad(r¥~5%)) is holomor-
phic at s = 1, which, by definition, is easily seen to be equivalent to the statement
that ad(rf=*%)(1) has no invariants. Thus we are reduced to checking that r is
generic if and only if 7'~ is generic. Let W denote the vector space underlying
the representation ad(r)(1). We are reduced to showing that Hom(E, W) = 0 if
and only if Hom(E, W~%) = 0.

One implication is trivial. For the reverse implication, a map from E to W= is
the same as giving a vector x in W which lies in the kernel of N and is a generalized
eigenvector for the Frobenius ¢ with eigenvalue 1. For a suitable choice of n € N,
the vector y = (¢ — 1)"z will be non-zero and a genuine eigenvector for ¢ with
eigenvalue one. On the other hand, since z lies in the kernel of N, so does ¢z,
because Nox = q; ¢ Nz = 0. Similarly, any polynomial in ¢ applied to = also lies
in the kernel of N. Thus y also lies in the kernel of N and gives rise to a nonzero
element of Hom(E, W). O

2.4.23. Normalized Hecke operators, ordinary representations, and ordinary projec-
tors. In this section, we assume that v|p. We fix integers k > 1 > 2, and k = [
(mod 2) (these will correspond to the weights of our automorphic forms; see Sec-
tion. Then we will consider normalized Hecke operators at Iwahori and Klingen
level defined by

Utw(v).0 = P°Una(s5.0 Uxii().0 = P*URH(s) 0
Ulw(v)1 = p(k+l)/272U?§EZ‘)S,1 Ukii(v),1 = p(k+l)/272U§ﬁi(vf),1

Utw(v),2 = pk_lUfl“?EZig Ukii(v),2 = pk_lU}réil(‘f),z

We will often write U, ; for the operators Ury(,),; when the context is clear. We will
also keep writing U, o for the Hecke operator p*[K,3, 0K,| for any subgroup K,
of Iw(v) (because U, ¢ lies in the centre of the Iwahori Hecke algebra and therefore
P [KuBooKy] = ex,Uypo). We will also often write U, o for the Hecke operator
Uxkii(v),2 for the same reason (see Remark [2.4.18). We can and do also normal-
ize the Siegel Hecke operators in the same way, so that for example Usgj,),1 =
p(k+l)/272U§iaE1Uv)ol.

An irreducible smooth E[GSp,(F,)]-representation with central character |- |? is
said to be ordinary of weights k > 1 > 2 if there exists an eigenvector v € 7 ™"(®)
for Ury(v),; with eigenvalues u, ; with vp(uy ;) = 0. If a, and B, are defined by
Qy = U1, Bo = Up2/Uy1, then, by Proposition 7 is a constituent of an
unramified principal series with Hecke parameters

[avp2—(k+l)/2’5vp—(l~c—l)/2’5@—1p1+(k—l)/2’a;lp(k+l)/2—1].

We say that 7 is p-distinguished if these four Satake parameters are pairwise dis-
tinct, or in other words if either [ > 2 or «, # f,.

If | > 2, then again by Proposition v € 7 is the unique eigenvector (up
to scale) with unit eigenvalues for the Ury(y),;- In this case, the ordered pair (av, ;)
is uniquely determined by m, and we call (a,, 8,) the ordinary Hecke parameters
of m. If | = 2 and = is p-distinguished, then there may also be an eigenvector
v € 7% with unit eigenvalues Ulw(v), 10" = BuV’, Ulw(v),2V" = auByv" (we will
see below that in fact such a v" always exists.) Thus at least the set {«,, 8,} is
determined by 7w and we again call them the ordinary Hecke parameters of .
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We let ereg be the ordinary projector (in the sense of Section [2.11) associated
t0 Ulw(v),1Utw(v),2, and let eineg be the ordinary projector associated to Uxkii(y),2-

Proposition 2.4.24. Let 7 be an ordinary p-distinguished representation of weights
k> 1> 2, with ordinary Hecke parameters (., By) (or {ay, By} if 1 =2). Assume
that either k > 1> 3 orl = 2.
(1) If k> 1> 3 orifl =2 and k > 2, then 7 is an irreducible principal series.
(2) If k =1 = 2, then in the sense of the tables of [RSOTc, §1], 7 is a rep-
resentation of type Va if {an,B,} = {1,-1}, Ma if B, = 1, Ha if
#{aw, B} N {1, =1} = 1, or otherwise is an irreducible unramified prin-
cipal series.
In all cases, 7 is generic and the L-packet L(w) of m contains no other ordinary
representations. Moreover:
(1) k> 1> 3 then
dim e,«egﬂ'lw(”) =1
on which Uty ()i has eigenvalues 1, a,, a3y for i =10,1,2.
(2) If l =2 then
dim emgﬂ'lw(”) =2
and there are two eigenspaces for Uy (y),i, with eigenvalues 1, c,, o, 3, and
1, By, i, By TeSPectively, and moreover

dim ewmgWK“(”) =1

with Ukii(y),i eigenvalues 1,a, + By, By, fori=0,1,2.

Proof. As remarked above, by Proposition [2:4.4] 7 is a constituent of an unramified
principal series with Hecke parameters

[avp2—(k+l)/2’va—(k—l)/Z,Bv—lp1+(k—l)/2,a;lp(k+l)/2—1].

If either £ > 1 > 3 or I =2 and k > 2, no ratio of a pair of these parameters can be
p, and hence 7 is an irreducible principal series by Proposition [2.4.6

In the remaining case, k = [ = 2, the Satake parameters are [, 8., 8, ', ay 1p),
and the corresponding principal series may be reducible when one of a2, 82, a, 3, is
equal to 1. The constituents of these principal series are listed in the tables [RS07c|,
§1]. The case that either a2 = 1 or 82 = 1 but not both corresponds to type II,
the case that a2 = 32 = 1 corresponds to type V, and the case that a,3, = 1
corresponds to type III.

For each constituent 7 of such a principal series, the tables give a computation
of the Jacquet module 77, which is equal to my because o, # B,. This allows us,
by Proposition [2.4.3] to determine the simultaneous eigenvalues of the Uty (.); on
W) At this point the result follows from an inspection of the tables. O

We now turn to the global situation. Recall that we have fixed an isomorphism ¢ :
Qp 2 C, so that in particular in the following definition we can and do identify the
infinite places of F' with the places dividing p. See Section [2:6] for our conventions
regarding the weights of automorphic representations.

Definition 2.4.25. Let 7 be a cuspidal automorphic representation of GSp,(Ar)
with central character |- |? and weight (., ly)v|osos Where ky > 1, > 2 and k, = [,
(mod 2) for all v|co. Then we say that 7 is ordinary if for each place v|p, 7, is
ordinary of weights k, > [, > 2.
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The following proposition will be useful for going between ordinary p-adic mod-
ular forms and ordinary automorphic representations. For each subset I C S, we

set
Kp(I) = [[Kli(v) J] Iw(w).

vel vele
We also let e(1) = [[,¢; €irreg [ Logr €res-

Proposition 2.4.26. Let 7 be a cuspidal automorphic representation of GSp,(Ar)
of weight (v, ly)vjoo with ky > 1, > 2 and with central character |- |2, and fiz tuples
of p-adic units (cw, By)y|p. Assume that for each v € Sy, either k, > I, > 3 or
ly =2 and o, # Bs.

Let I' ={ve S, |, =2} and let I C I’ be a subset. Then 7 is ordinary with
ordinary Hecke parameters (cw, By)o)p if and only if

(®UESP WU)KP(I)

contains a vector which is:

o for each v € I¢, an eigenvector for the normalized Uy (v),0, Utw(v),1, and
Utw(v),2, with respective eigenvalues 1, a,y, and o, B,, and

o for each v € I, an eigenvector for Uxii(v),0, Ukii(v),1, and Ukiiw),2 with
respective eigenvalues 1, c, + By, and o, By.

Moreover in this case
dime<1)(®vesp7rv>Kp(1) — 2#(1’_1)_

Note that if 7 is ordinary with ordinary Hecke parameters (o, 8y)y), but v ¢ I’,
then the Ukii(y),1 eigenvalue will not be of the form o, + 3,, but rather, up to some
ordering of «, and f3,, be of the form a,, + p* =23,

Proof. This is simply Proposition 2.4.24) applied for each v € S,. O

2.4.27. An instance of the local Langlands correspondence. Given a pair of charac-
ters Xv,1, Xv,2 : k(v)* — O, which we regard as characters of O;v by inflation, we
define a character of x, of T(O) by

Xv : T(Op,) — O*
(a,b,cb™ ca™) = xp1(ab™ ) xu 2(abe™h).
Then if M is an H;i-module, we write
MX» ={m e M |tm = x,(t)ym Vt € T(k(v))}

and

My, = M/{tm — x,(t)m |t € T(k(v)),m € M).
Then we record:

Proposition 2.4.28. If 7 is an irreducible smooth E[GSp,(F,)]-module with the
property that (™1 ()Xe £ L0} then, for all o € Wi,

det(X — recarp(m)(0)) = (X = Xo,1(Artz, (0)))(X = xo,1(Artp) (0)) 1)
(X = Xv2(Artg, (0)))(X = xu2(Arty, (0)) 7).

If, moreover, the characters x, 1, X:U_,}?Xv,Qa X;é are pairwise distinct, then there is
an equality dimE(wlwl(”))Xv =1.

Proof. This is an immediate consequence of Propositions [2.4.3] 2.4.4 and 2.4.6, O
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2.4.29. The case ¢, =1 (mod p). We suppose from now on for the rest of this sec-
tion that ¢, = 1 (mod p). Recall that we have a homomorphism T'(F,)/T(Op,)1 —
H{, and thus an (injective) homomorphism O[T(F,)/T(OF,)1] — H1; we identify
O[T(F,)/T(OF,)1] with its image in ;. Given elements @y, @ € F;, we let ma, @,
denote the kernel of the homomorphism O[T'(F,)/T(OF,)1] — F, induced by the
character T'(F,)/T(OF,)1 — F; sending T'(Op,) — 1, diag(w,, wy, @y, @) — 1,
diag(w,, @y, 1,1) + @1, and diag(w?, w@,, @, 1) — a10s.
Proposition 2.4.30. Let 7 be an irreducible smooth E[GSp,(F,)]-module with
central character |-|* and with (71'IW1('“))mal = 7 10}. Suppose ail,ay! are pairwise
distinct. Then

recarp(m) =1 @ Gyt @e Iyt
for characters ~; of Gr, with 7, = Ag, (the unramified character taking Frob,
to @;), and T(k(v)) acts on (7r1""1(”))mal =y Vi@ (Yio Artpv)|0; .

Proof. From Proposition |2.4.28] we know the characteristic polynomial of the corre-
sponding representation, and thus immediately deduce that the semi-simplification
of the Galois representation has the required form. It thus suffices to show that, un-
der the hypothesis on @;, that all Galois representations are semi-simple. Suppose
otherwise. Two tamely ramified characters admit an extension if and only if their
ratio is unramified and takes the value ¢, on Frobenius. Since ¢, =1 mod p and &

is trivial modulo p, this implies that Elﬂ, &Qﬂ are not distinct, a contradiction. [J

Remark 2.4.31. Let Z be the centre of GSp,, let A, be the maximal p-power
quotient of T(k(v))/Z(k(v)), and let A! = ker(T(k(v)) — A,). If the 7 of Propo-

sition [2.4.30| additionally satisfies the condition that (ﬁlwl(”))ﬁél =, 7 10}, then we
immediately deduce that A, also acts on (ﬂlwl(v))ﬁ/gl =, Via (i 0 Artg, )| ox -

We now prove some results about the Iwahori Hecke algebra (under our running
assumption that ¢, = 1 (mod p)). We follow [KT17, §5] closely, and our proofs
are essentially an immediate adaptation of their arguments from GL,, to GSp,. As
recalled above, we have an embedding O[X.(T')] < H. This can be refined to
give the Bernstein presentation of H (see e.g. [HKP10, §1]), which is an algebra
isomorphism

H = O[X.(T)]|@0O[lw(v)\ GSpy(OF,) /Iw(v)],
where the twisted tensor product ®¢ is determined by the following relations, where
Sq € W is simple, corresponding to the simple root «, and p € X, (T):

Osny) — 0
(2.4.32) Ty, 05 = 0.y T + (40 — 1)#.
Here we are writing 6, for the image in H of the group element e, of O[X,(T)]
corresponding to p, and for w € W we write T,, := [Iw(v)wlw(v)] where w €

GSp,(Op,) is any representative for w.
Lemma 2.4.33. There is a natural isomorphism H ®o k = k[ X, (T) x W].

Proof. We claim that the natural k-linear map k[W] — k[Iw(v)\ GSp,(OF,)/Iw(v)]
sending w +— T, is an algebra isomorphism. Admitting this claim, note that

since ¢, =1 (mod p), the relation (2.4.32)) becomes
Ts.0n = 05,0 T,
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in H ®o k, so that there is an isomorphism k[X,(T) x W] — H Qe k sending
exw — 0Ty, as required.

It remains to prove the claim. The Weyl group W is generated by s1, sy with
52 = s2 = (s182)* = 1, so it is enough to show that k[Iw(v)\ GSp,(OF,)/Iw(v)]
is generated by the elements T, ,Ts,, subject to the same relations. This follows
from the assumption that ¢, = 1 (mod p); indeed, we have the usual relations
Ti = (QD - 1)T91 +qu ('L = 17 2)7 and Tsl TSgTel Teg = T@gTel TQQTQl? which are eaSﬂy

seen to be equivalent to T2 = T2 = (T, Ts,)* = 1, as required. O

Recall that by definition an O[GSp,(F),)]-module M is smooth if every element
of M is fixed by some open compact subgroup of GSp,(F,), and it is admissible if
it is smooth, and if for each open compact subgroup U C GSp,(F,), MY is a finite
O-module.

Lemma 2.4.34. If M is a smooth O[GSp,(F,)]-module, then the natural inclusion
MGSPa(Or,) « M™W() s canonically split by the Hecke operator
1
€Sph(v)-
(GSp4(Or,) : Tw(o)]

Proof. The Hecke operator egpp(,y € H induces the natural trace map M w(v)
MGSPa(Or,) 5o that the composite map MGSPa(Or) 5 pfIw(v) . NfGSP(Or,)
is given by multiplication by [GSp,(OF,) : Iw(v)]. Since [GSp,(OF,) : Iw(v)] =
|[W| =8 (mod p) is a unit in O, we are done. O

Corollary 2.4.35. If M is a smooth k[G]-module, then M™) is naturally a k[W]-
module, and MGSP+(Or,) = (MfIw@HW
Proof. This is immediate from Lemmas [2.4.33] and [2.4.34] ([
The centre of H is O[X,(T)]", and there is an isomorphism
O[X.(T)]" = O[GSp4(Or, )\ GSp4(F,)/ GSp4(Or, )]
given by x +— egpn(y)® (where we are regarding = as an element of H); this iso-
morphism agrees with the isomorphism given by the usual Satake isomorphism
(see [HKP10, §4.6]). The classical description of O[X,(T)] is as follows. Let xq, x1,
and zo denote the following three cocharacters:
xo : t — diag(t,t,1,1),

x1:t — diag(1/t,1,1,¢),

x9 : t — diag(1,1/t,t,1).
Then 222125 is the cocharacter t — diag(t,t,t,t) and

O[X.(T)] = Olxo, x1, T2, (x2x129) " ] = Ol20, 21, T2, (ToT1222) "]

The effect of the involutions si, so, and s1s9s7 € W on these cocharacters is to
send (zg,x1,x2) to

(20,2, 21), (T, 71,75 ), (ToT1, 2], T2)

respectively. All of these involutions preserve (xg, zoZ1,ZoZ2, Tox122) considered
as an unordered quadruple. Define elements e; (o, z1,72) € O[X.(T)]W,0 <i < 4,
by the following formulae:

(X — 20)(X — 2021) (X — zo22)(X — mom122) = Z ei(wo, w1, 12) X"
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The relation between the e; and the Hecke operators T, ; is given by
> eiwo, w1, w2) X' = XA g3 T A XP (2T 2+ (1402) T 0) X2 =) > Ty 0 T . X417 .

Since we are assuming that ¢, = 1 (mod p), and in our applications of these results
in the global setting there is a twist which makes all of the powers of g, integral
(as in ), we will ignore all powers of q}/ % from now on.

Given any triple v := (y0,71,72) and w € W, let ((wy)o, (wy)1, (wy)2) denote
the triple obtained by substituting in 7; for z; in the action of W on O[X.,(T)]
described above.

Lemma 2.4.36. Let M be an H ®p k-module which is finite-dimensional over k.
Suppose that egpnyM # 0, and that there is a triple vo, 1, v2 with YByiye =1
such that (y1 — 1)(y2 — 1)(71 — 72) (7172 — 1) # 0; equivalently, writing oy = o,
Qo = YY1, Suppose that

aq, 0, 1/0{27 1/0{1

are pairwise distinct. Suppose also that the following operators act by zero on the
module espy(v)M :

Too—1Ty1 —e1(v0,715,72)s To,2 + 210 — €2(v0,71,72)-
Then, for each w € W, the mazimal ideal

My = (20 — (wy)o, 1 — (wy)1, 22 — (wY)2) C k[X.(T)]
s in the support of M.
Proof. Let n C k[X.(T)]" be the ideal

n= (61(150,3317932)—61(70,71772)» cees 64($0,$1’$2)—€4(’Yo,%,’72)79033313?2—’70271’72)~

Then, by assumption, we have egpnyM C M|n], so that in particular M, #
0. The assumptions on ; imply that all the ideals m,, are distinct. We may
view n as an ideal in k[X.(T)]. The support of n in k[X,(T)] corresponds to
triples (Y0,71,72) (or equivalently, pairs (aq, ag)) such that a;, ag, ay ', and aj*
are roots of the polynomial 3" e; (70, ¥1,22) X . Hence the support of n C k[X,(T)]
consists exactly of the maximal ideals m,,, and the product of the m,, is precisely
the radical of n. The ring k[X.(T)], is thus a semi-local ring which is isomorphic
t0 @wew k[X«(T)]m,,, and correspondingly we may write My, = ®pew Mm,, . It
follows that My, # 0 for at least one w € W. Considering the action of W on the
set of maximal ideals of k[X,(T")] in the support of M, we see that in fact My, # 0
for all w € W, as required. O

Lemma 2.4.37. Let M be an H @@ k-module which is finite-dimensional over k.
Suppose that for each maximal ideal n C k[X.(T)]" in the support of M, the degree
four polynomial

Zei(xmxl;zQ)Xi € kX (T)]V[X]
has roots (Yo, Y071, Y0¥2: YoY172) modulo w satisfying (y1—1)(v2—1) (71 —2) (V172 —

1) # 0 and 73712 = 1. FEquivalently, writing vo = a1, Y%y1 = «Q2, assume
that v3y1v2 = 1 and that

al,a2,1/a2,1/a1
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are pairwise distinct. Then egpnyM # 0. If, furthermore, there is a unique
mazimal ideal n C k[X,(T))" in the support of M, then for each maximal ideal
m C k[X.(T)] in the support of M, the maps

k’[W] Rk My — M,

WRT—w-x,

and
My — eSph(v)Ma

T > €3ph(v) " T

are both isomorphisms.

Proof. After possibly enlarging k, we can and do assume that the ~y; arising from the
roots of the degree four polynomial above lie in k. As in the proof of Lemma[2:4.36]
there exist |W| = 8 distinct ideals m,, such that M, ~ @®yew Mm,, where m =
(to — Y0, t1 — 71,2 —72) C k[X.(T)]. Since M, # 0, we may assume that My, #0
for some and hence all m,,. The operator egpp(,) acts by averaging over the action
of the Weyl group. It follows (because the m,, are distinct) that the map egpp(.) :
My — ©wew Mn,, = M, is an injection, and thus egpn )M # 0.

Suppose that n is the only maximal ideal of k[X,(T)] in the support of M. Then
the maximal ideals of k[X,(T')] in the support of M are necessarily of the form m,,,
and we have M = ®yew Mm, = PwewW - My, and the rest of the lemma follows
immediately. O

Remark 2.4.38. Note that (using as usual that ¢, = 1 in k) we have that Up§"e =
adx1xa, and if this equals 1, then UJ§Y® = ¢ and Uy3Y® = (sis2s1)z1. Con-
sequently we see for example that if the hypotheses of Lemma hold then

(Upo —1,Up1 — o1,Uy 2 — ajae) is in the support of M.

2.5. Purity. Let K be a finite extension of Q, for some p, with residue field of
order ¢. Following [TYQT7, §1], we say that a Weil-Deligne representation (W, r, N)
of Wx on a vector space W over an algebraically closed field €2 which is of char-
acteristic 0 and of the same cardinality as C is pure of weight w if there is an
exhaustive and separated ascending filtration Fil; of W such that

e each Fil; W is invariant under r;
o if 0 € Wi maps to Frob}}((a), then all eigenvalues of r(c) on gr; W are Weil
¢"*(?)_numbers;
e and for all j we have N7 : gr, ., W - gry,—; W. (Note that necessarily
we have N Fil; W C Fil;_» W)
Recall that for a Weil-Deligne representation (r, N), we defined in Section
n(r, N) to be the rank of N.

Lemma 2.5.1. If (V,r) is a semisimple representation of Wy, then there is at
most one choice of N for which (V,r,N) is a pure Weil-Deligne representation. If
such an N exists, then the corresponding Weil-Deligne representation is the unique
choice which mazimizes n(r,N).

Proof. The uniqueness of N is [TY07, Lem. 1.4(4)]. The maximality follows easily,
using that by definition all of the induced maps N7 : glyr; W — gr,,_; W are
isomorphisms if and only if (V,r, N) is pure. a
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2.6. Archimedean L-parameters. We now recall some notation for archimedean
L-parameters following [Mok14| §3.1] (although our w has the opposite sign to this
reference). Recall that Wr = CXUC*j, where jzj ! =Zand j2 = —1. Let w € R.
For an integer n > 0, let ¢y, , : Wr — GL2(C) be the L-parameter given by

dadi <(Z/Z)n/2 (Z/z)_"/2> =" (Zn|2|_" Z‘”|z|">

Jj— <(1)n 1) .

The determinant of ¢, . is equal to |z|** if n is odd and sgn - [2]|** if n is even,
where sgn : Wr — C* is the degree two character which is —1 on j (and triv-
ial on C*). We also write ¢, ,, for the restriction of ¢, to We. The GLa(R)
and GLy(C) representations corresponding to the L-parameter ¢, , are cohomo-
logical if and only if n > 0 and w € Z satisfies w +n =1 mod 2.

Let m1 > mg > 0 be integers, and let w € R. Then we write ¢ (w;m, m,) : Wr —
GSp,(C) for the L-parameter sending

and

|2w

(o7
. (2/7)
z e |2]" (Z/E)—(ml—mg)/2

(o/7) s

and
Jj _1)mi+mz

(_1)m1+m2

Note that @(u;m,,m,) is viewed as having image in GSp,(C) with respect to our
particular choice of model for GSp,(C) where J is anti-diagonal. In particular,
the image of j under the composite of @(um, m,) With the similitude character
is (—1)™*t™2_ With respect to the explicit inclusion of
{(A,B) C GL2(C) x GL2(C) | det(A) =det(B)} C GSp,(C)

given in @ we immediately observe that the composite of ¢(yim, m,) With the
inclusion GSpy(C) — GL4(C) identifies @(uim, ms) With Guw m;+me © Pw,mi—m.,
(note that (—1)™1tm2 = (—1)m™=m2) The L-packet of GSp,(R) corresponding
t0 @(wim,,mo) consists of two elements ﬂﬁ];ml,mz) and W(Ww;mmnz)' When my = 0,
they are (up to twist) non-degenerate limits of discrete series, and when ms > 0,
they are (up to twist) discrete series. The representations w{{u.ml ma) and wg’fv‘ml ma)
are respectively holomorphic and generic. Their central character is given by a —
a®, and they are tempered when w = 0. The minimal K-type of Wg},ml_m2) is the
representation det”2*? @ Sym™ ~™271 C2 of U(2). (See for example [Schi7] for
these facts and their proofs.)

Lemma 2.6.1 (Inductions of real archimedean parameters to GL4(C)).
(1) The induction Ind%FcL Gwn : Wr — GL4(C) is conjugate to ¢ n & G-
(2) The composite map

¢(w;n,0) :Wr — GSp4(C) — GL4(C)



POTENTIAL MODULARITY OF ABELIAN SURFACES 33

is conjugate 10 Gy p © P n-

(38) If ¢ : We — GLy(C) is such that Ind%g @ is conjugate 10 Gu.pn B Pwon,
and n # 0, then either ¢ = ¢, ,,, or ¢ is one of the scalar L-parameters
sending z to one of

e (PR 0 N e (0
0 2™z ™" 0 27"z )

(4) If o, ¢" : Wr — GL2(C) are such that ¢ @ ¢’ is conjugate to Guwn O Guw,n,
and n # 0, then ¢ = @' = ¢y .

Proof. Since ¢, , is already a representation of Wg, the first induction is isomor-
phic to ¢y n B P n @sgH. Yet Py p, is itself induced from C*, and so ¢y, , @ sgn
®wn- The second claim was already noted above. Now suppose that ¢ : Wg —
GLy(C) is a complex L-parameter. All such parameters are of the form

29 2|7 2] @ 22 2] T2 [

for integers a; and az. The induction of this representation to Wr is ¢w; 0, B Pws,az-
Now consider the equality of GL4(C)-representations

¢)w1,a1 S ¢w2,a2 = ¢(w;n,0) = ¢w,n @ ¢w,n-

Restricting to S' € C* C Wg, we deduce that |a;| = |az| = n, and then restrict-
ing to the action of C* on the eigenspace where S' C C* acts by 2" (which is
distinct from z7"), we deduce that wy = wy = w, and thus ¢u, 0, = Pwy,as = Pw,n-
If a; and ay have opposite signs, then ¢ = ¢, ,; otherwise we get the possibili-
ties outlined in the statement of the lemma. Finally, (4) is immediate from the
irreducibility of ¢ x. ([

We note in passing that the GSp,(C)-parameter cannot be recovered, in general,
from the GL4(C)-parameter. This is true in particular for ¢(o.1,0), since one may
compute that the GL4(C) representation preserves two symplectic forms whose
similitude characters differ by sgn.

If K is a number field and 7 is an automorphic representation of GLa(A k), we
say that 7 has weight 0 if for each place v|oo of K, 7, corresponds to ¢o,1. If F'is a
totally real field and 7 is an automorphic representation of GSp,(A r), then we say
that m has weight (ky,[,)y|o0 if for each place v|oo of F', we have k, > [, > 2 and
ky, =1, (mod 2), and m, is in the L-packet corresponding to D25k, —1,1,—2)- We say
that 7 has parallel weight 2 if it has weight (2,2),|» (We note that the congruence
ky, =1, (mod 2) is imposed in order to ensure that 7 is algebraic.)

2.7. Galois representations associated to automorphic representations.
We now recall some results from [Mok14] on the existence of Galois representa-
tions (adapted to the particular setting of interest for us), beginning with the
existence of Galois representations for certain cuspidal automorphic representation
of GSp,(AF). The following theorem is essentially due to Sorensen [Sorl0], al-
though at the time that [Sorl(] was written, some additional assumptions needed
to be made, due to the lack of unconditional results on the transfer of automorphic
representations between GSp, and GL4.

Theorem 2.7.1. Suppose that F is a totally real field, and that 7 is a cuspidal
automorphic representation of GSpy(Ar) of weight (ky,ly)vjoc, where ky > 1, > 2
and k, =1, (mod 2) for all v|co. Suppose also that w has central character | - |2.
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Fiz a prime p. Then there is a continuous semisimple representation pr, :

Gr — GSpy(Q,,) satisfying the following properties.

(1) vop,=c1.

(2) For each finite place v, we have
WD(pW7p|GF,,)SS = reCGT,p(Wv ® |V‘73/2)SS'
If furthermore pr p is irreducible, then
WD(prplcp, )F_SS = recgT p(To @ |V‘_3/2)~

(8) If vlp, then pxplcy, is de Rham with Hodge-Tate weights ((ky +1,)/2 —
la (kv - lv)/2 + 17 7(]4311 - lv)/27 2— (kv + 11))/2)
(4) If prp is irreducible, then for each finite place v of F, px play, is pure.

Proof. The existence of a representation p, , valued in GL4(Q,) and satisfying (2)
and (3) is part of [MokI4l Thm. 3.5] (note that the results of [Art04] cited in [Mok14]
hold unconditionally by [GT19]). That the representation actually takes values
in GSp, (Qp) with the claimed multiplier follows from [BC11l Cor. 1.3] (cf. [Mok14]
Rem. 3.3(3)]). Finally, for part (4), note that if p, , is irreducible, then 7 is of
general type in the sense of [Art04] (see Section [2.9), and thus corresponds to an
essentially self-dual algebraic automorphic representation II of GLy4. Purity then

follows from the main results of [Car12l [Car14]. O

For representations which are ordinary in the sense of Section [2.4.23] we have
the following variant on Theorem [2.7.1]

Theorem 2.7.2. Suppose that F is a totally real field, and that 7 is a cuspidal
automorphic representation of GSpy(Ar) of weight (ky,ly)yjoc, where ky > 1, > 2
and k, =1, (mod 2) for all v|oo. Suppose also that w has central character | - |2.
Fiz a prime p. Assume that m, is unramified at all places v|p, and that 7 is

ordinary, with ordinary Hecke parameters (o, By)y)p. Then there is a continuous
semisimple representation pr, : Gp — GSp4(Qp) satisfying the following proper-
ties.

(1) vopm,=ct.

(2) For each finite place vt p, we have

WD (pr plar, )™ & recr p(m @ [v]72/2)%.
If furthermore pr , is irreducible, then
WD (pr plar, )™ = recar p(m @ [v]7/2).

(3) If vlp, then

Ao, eFvtio)/2=2 * * *

o Ag, elke=t)/2 . .

Pr.plGr, = 0 0 )\Elgflf(kvflv)ﬂ "
0 0 S0 Aglel=(kutls)/2

(4) If pxp is irreducible, then for each finite place v of F, pr play, is pure.

Proof. This follows from Theorem part (3) is a standard consequence of p-
adic Hodge theory, and is in particular immediate from [Gerl9, Lem. 2.32] (and
Proposition [2.4.6)). (]
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The following theorem is a variant of the main result of [Mok14], which proves
the existence of Galois representations associated to certain automorphic represen-
tations of GLo(K), K a CM field.

Theorem 2.7.3. Let F' be a totally real field, and let K/F be a quadratic extension.
Write Gal(K/F) = {1,7}. Suppose that 7 is a cuspidal automorphic representation
of GLa(K) of weight 0 with trivial central character.

Then there is a continuous irreducible representation pr , : Gx — GLQ(QP) such
that for each finite place w { p of K, we have

WD gl )™ 2 rocy (mu @1 |/
If wy is not a twist of a Steinberg representation, then in fact
WD gl )77 2 recy(m |- [7112),

For each place w|p of K, the representation px p|cy, is Hodge—Tate, and for each T :
K — Qp, the T-labelled Hodge—Tate weights of px p are (0,1).

Proof of Theorem[2.7.3 In the case that K is CM this is a special case of the main
theorem of [Mok14], and essentially the same proof works in the general case. The
argument of [Mok14l §5.1] goes over unchanged to produce a cuspidal automorphic
representation 7 of GSp,(Ar) (see Theorem below); to see that m, is in the
L-packet corresponding to ¢(a,1,0y at each place v|oo of F, one uses Lemma El
at the places which split in K, and [Mok14l Prop. 5.2] at the places for which K,
is complex. One then easily checks that the arguments of [Mok14) §5.2-5.3] go over
without any changes to the case of general K, as required. ([l

2.8. Compatible systems of Galois representations, L-functions, and Hasse—
WEeil zeta functions. We now recall some definitions concerning compatible sys-
tems from [BLGGTI4D, §5] and [PT15) §1]; in fact, our definition of a “strictly
compatible system” differs slightly from the definitions in those papers, because we
find it convenient to include local-global compatibility at places dividing p. Let F
denote a number field. By a rank n weakly compatible system of l-adic representa-
tions R of G defined over M we mean a 5-tuple

(M, S, {Qv(X)}7 {TA}v {H'r})

where
(1) M is a number field considered as a subfield of C;
(2) S is a finite set of primes of F;
(3) for each prime v € S of F, Q,(X) is a monic degree n polynomial in M[X];
(4) for each prime A of M (with residue characteristic , say)

X : GF — GLn(M)\)

is a continuous, semi-simple, representation such that
e if v & S and v/l is a prime of F, then ry is unramified at v and
rx(Frob,) has characteristic polynomial @, (X),
e while if v|l, then r)|g, is de Rham and in the case v € S crystalline;
(5) for 7: F < M, H, is a multiset of n integers such that for any M — M,
over M we have HT,(r)) = H,.
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IR = (M, S,{Qu(X)}, {ra}, {H,}) and R = (M', 8", {Q,(X)}, {r\}. {HL}) are
two compatible systems, then we write R =2 R’ if Q,(X) = Q. (X) for a set of
places v of Dirichlet density one. This implies that Q,(X) = Q) (X) for all v ¢
SUS’, and that ry = r) for all X\, and H. = H, for all 7.

We say that R is regular if for each 7 : F < M, the elements of H, are
pairwise distinct. We will call R strictly compatible if for each finite place v
of F there is a Weil-Deligne representation WD, (R) of Wg, over M such that
for each place A\ of M and every M-linear embedding ¢ : M < M, we have
¢WD,(R) = WD(T)\|GF1))F'SS.

We will call a strictly compatible system R pure of weight w if for each finite
place v of F' the Weil-Deligne representation WD, (R) is pure of weight w.

The following result is well-known (see for example [Fon94, Rem. 2.4.6]), but
as we do not know of a convenient reference for a proof, we briefly explain how it
follows from results in the literature.

Proposition 2.8.1. If A is an abelian variety over a number field F, then, for
each 0 < i < 2dim X, the l-adic cohomology groups Hi(Af, Q;) form a strictly
compatible system which is pure of weight i and which is defined over Q.

Proof. Since H (A,Q;) = AN'H'(A,Q,), it is enough to check the case i = 1.
The compatible system satisfies strict compatibility at the places not dividing [
by [Nool3l Cor. 2.7]. In the case that A has semistable reduction, it is fur-
thermore strictly compatible by [Nool7, Cor. 2.2]. One can deduce the general
case from this by a base change trick due to Saito [Sai97], which was exploited
in [Kis08, [Ski09, BLGGT14al. Indeed, as in the proof of [BLGGT14a, Thm. 2.1],
it suffices for each finite place v of F' to check that whenever g € Wy, maps to a
positive power of Frobenius in the absolute Galois group of the residue field, then
the trace of g on WD(H'(A,Q,)) is independent of I. One can choose an exten-
sion E/F (for example, the fixed field of the subgroup of Wg generated by g and
the kernel of the restriction to Ir of WD(H'(A,Q;)) for some [) and a place v|w
of E such that Ag is semistable and g € Wg,, and the claim then follows from the
independence of [ for Ag.

It remains to check purity. By [Ray94, Thm. 4.2.2], it is enough to check purity
for the Weil-Deligne representations associated to 1-motives with potentially good
reduction, which is [Ray94], Prop. 4.6.1, Prop. 4.7.4].

The above is of course not a historically accurate account of a proof; indeed,
the strict compatibility of the compatible system at places not dividing [ is stated
in [Del73, Ex. 8.10], and given Fontaine’s definition of the Weil-Deligne represen-
tation associated to a potentially semistable representation, the entire proposition
can be deduced from the results of [GRR72]. We omit the details, but we would
like to thank Brian Conrad for explaining them to us. (|

Definition 2.8.2. If A/F is an abelian surface, then we write pa,; for H'(Ax, Q)),
and R4 for the compatible system {p4;}. We can think of p4; as a representation
pas : Gp — GSpy(Q,;) with multiplier 5[1, and will frequently do so without
comment.

Remark 2.8.3. It will sometimes be convenient to say that a set of GSp,-valued
representations form a compatible system, by which we simply mean that the cor-
responding GL4-valued representations form a compatible system. In particular,
the representations pa; : Gr — GSp,(Q,) considered in Definition form a
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compatible system in this sense. (In general, one might wish to ask for a com-
patibility between the symplectic structures; such a compatibility always holds in
the cases that we consider, and in particular we will only consider representations
whose multiplier character is the inverse cyclotomic character, so we ignore this
point.)

We can define the L-function of R as follows:

L(R,s) = [[ LIWD4(R),s).
v /{/OO
Furthermore, if R comes from an abelian variety (or more generally, arises in a

geometric structure where the Hodge structure is apparent) then (as in [Ser70]) we
can define Gamma factors L, (R, s) for each place v|oo of F', and we set

(2.8.4) A(R,s) = L(R,s) [[ Lo(R.s).

v|oco
In particular, if R arises from an abelian surface over a totally real field F', then the
corresponding Gamma factor is given by L, (R, s) = I'c(s)? for all v|oo where I'c(s) =
(2m)~*T(s).

We also have a conductor N(R) which is a product of local factors depending only
on the WD, (R). Conjecturally, if R is a strictly compatible system, then A(R, s)
admits a meromorphic continuation to the entire complex plane and satisfies a
functional equation of the form

(2.8.5) A(R, s) = e(R)N(R)"*A(RY,1 — s)

for some factor £(R). (When R arises geometrically, there are natural definitions
of the epsilon factor €(R), but it is not immediately apparent how to read off £(R)
directly from the compatible system.)

In particular, if A/F is an abelian variety, then by Proposition m

Ai(A,s) = AH (A#,Q)), 5)
is well-defined, and we define the completed Hasse—Weil zeta function of A to be

2dim A _
AA,s) = [ M4 sV
=0

Note that if v is a finite place of F" at which A has good reduction with corresponding
reduction A, then the local L-factor

2dim A ‘
L,(A,s):= H L(WD(Hl(AﬁQl))aS)(_l)s

=0

can be written as
Lo(A,s) = exp (Z #%W#kwm)
m=1

where k(v) is the residue field of F, and k(v).,/k(v) is the extension of degree m.
We have the following conjectures for the A;(A, s), which we will prove for abelian
surfaces over totally real fields by showing that they are potentially automorphic.
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Conjecture 2.8.6 (|[Ser70], Conj. C9). For each i, A;(A,s) has a meromorphic
continuation to the entire complex plane, and satisfies a functional equation of the
form _

Ai(A,s) = wN' = Ay (Ai+1—s)
where w = 1 and N € Z>;.

Corollary 2.8.7. If Conjecture holds, then A(A, s) has a meromorphic con-
tinuation to the entire complex plane, and satisfies a functional equation of the form
A(A,s) =eN*A(A, 1+ dim A — s) wheree € R and N € Q.

Proof. This follows immediately from Conjecture 2.8.6] by Poincaré duality. O

2.9. Arthur’s classification. We now recall some consequences of Arthur’s clas-
sification [Art04] of discrete automorphic representations of GSp,. The analogous
classifications for Sp, and SOj5 are special cases of the very general results proved
in [Art13], and a proof of the classification announced in [Art04], making use of
the results and techniques of [Art13] is given in [GT19]. This reference establishes
the compatibility of Arthur’s classification with the local Langlands correspon-
dence recgT, which we use below without further comment.

We say that an automorphic representation 7 of GSp,(A r) is discrete if it occurs
in the discrete spectrum of the L2-automorphic forms (with fixed central charac-
ter w = wy,). Note in particular that all cuspidal automorphic representations are
discrete. Arthur’s classification divides the discrete spectrum into six families of
automorphic representations. We will not need the full details of this classification,
but rather just some consequences that we now recall.

If IT is a cuspidal automorphic representation of GL4(Ar), then we say that IT
is of symplectic type with multiplier x if the partial L-function L (s, II, /\2 @x 1)
has a pole at s = 1 (where S is any finite set of places of F'). Note that this implies
in particular that I = 11V ® x.

We say that a discrete automorphic representation 7 of GSp,(Ar) is of general
type in the sense of [Art04] if there is a cuspidal automorphic representation IT of
GL4(AF) of symplectic type with multiplier w, such that for each place v of F,
the L-parameter obtained from recgr(7,) by composing with the usual embedding
GSp, — GLy is rec(Il,). We say that II is the transfer of .

In practice, all of the automorphic representations 7 that we consider in our
main arguments will be of general type. We will often use the following lemma to
guarantee this. (For example, the lemma will be used to show that when we local-
ize a cohomology group at a non-Eisenstein maximal ideal, the only automorphic
representations that contribute are of general type.)

Lemma 2.9.1. Suppose that F is totally real, and that 7 is a discrete automorphic
representation of GSp,(Ar), and that at each place v|oco, m, has the same infinites-
imal character as the representations in the L-packet corresponding to p(2:k,—1,1,-2)
with ky, =1, (mod 2) and k, > 1, > 2. Suppose that 7 is not of general type.
Then there is a compatible system of reducible Galois representations pr, :

Grp — GSp4(Qp) such that for all but finitely many places v of F, we have
WD(prplas, ) = recarp(mo @ [v|72/2)%.
Proof. We follow the proof of [CG20, Thm. 7.11]. Since 7 is not of general type,

7 falls into one of the five classes (b)-(f) listed at the end of [Art04]. In cases (e)
and (f), we see that the Hecke parameters of 7 agree with those of a direct sum of 4
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idele class characters. By the hypothesis on the infinitesimal character, these char-
acters are algebraic, so we may take the direct sum of the corresponding compatible
systems of Galois representations.

In case (d), the Hecke parameters of m agree with those of an isobaric direct
sum of the form A| - |2 B \| - |~Y/2 B u, where X is an idele class character, and p
is a cuspidal automorphic representation of GLa(Af), satisfying w, = A? = w,.
Considering infinitesimal characters, we see that A is algebraic, so that A| - |'/2 B
Al -|~1/2 is regular algebraic. This implies that p is also regular algebraic, and thus
has an attached compatible system of Galois representations.

In case (b), the Hecke parameters of 7 agree with those of an isobaric direct
sum of the form uq B po, where 1 # po are cuspidal automorphic representations
of GLa(AFp) with central character p,. Since their central characters agree, it
follows easily that they both correspond to holomorphic Hilbert modular eigenforms
of paritious weight. Finally in case (c¢), the Hecke parameters of 7 agree with those
of an isobaric direct sum of the form gu| - ["/2 8 u| - |~%/2, where u is a cuspidal
automorphic representation of GLy(Ar) of orthogonal type; that is, it is induced
from a quadratic extension of F. Since p is certainly algebraic, we again have an
attached compatible system of reducible Galois representations, as required. (]

Remark 2.9.2. Suppose that 7 is of general type but otherwise satisfies the condi-
tions of Lemma Then the corresponding Galois representations constructed
in [Mok14] (see also Theorem give rise to a compatible system of Galois rep-
resentations which — in contrast to those occurring in Lemma[2.9.1]— are expected
to always be irreducible.

The following theorem summarizes the consequences that we need from Arthur’s
multiplicity formula.

Theorem 2.9.3. Suppose that F' is a totally real field, and that 11 is a cuspidal
automorphic representation of GL4(A ) of symplectic type with multiplier x. Then
there exists at least one discrete automorphic representation ™ of GSpy(Ar) with
central character x such that I1 is the transfer of .

More precisely, for each place v of F, let m, be an element of the L-packet
corresponding to (recy(Il,), xv). Then 7 := Q| m, is automorphic, and occurs with
multiplicity one in the discrete spectrum.

If, furthermore, 11 is algebraic, then 7 is cuspidal.

Proof. The statements of the first two paragraphs are immediate from the multi-
plicity formula of [Art04] as proved in [GT19] (note that since 7 is of general type
by definition, the group S, considered in [Art04] is trivial). Suppose then that II
is algebraic; then IT., is essentially tempered by [Clo90), Lem. 4.9], so that 7 is
also essentially tempered (as its L-parameter is essentially bounded), so that = is
cuspidal by [Wal84, Thm. 4.3]. O

2.10. Balanced modules. Let S be a Noetherian local ring with residue field k,
and let M be a finitely generated S-module. As in [CG18, §2.1], we define the
defect ds(M) to be

ds(M) := dimy, M/mgM — dimy, Torg (M, k).
Definition 2.10.1. We say that M is balanced if ds(M) > 0.
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Lemma 2.10.2. If M is balanced, then there is a presentation
St 81 5 M —0
with d = dimy, M /mgM.
Conversely if M admits a presentation
S"=S"=>M—=0
for some r > 0, then M is balanced.

Proof. Assume firstly that M is balanced, and choose a (possibly infinite) minimal
resolution
o= P= PP =>FP—-M=0

by finite free S-modules P; of rank r;. (Recall that a minimal resolution is one
whose differentials vanish modulo mg, and that such a resolution always exists.)
Tensoring this resolution with k over S, we see that r; = dimy, Tor’s (M, k), so that
in particular by our assumptions we have d = ry > r1, so that there is a presentation
of the form P; @ S®@—"1) — Py — M — 0, as required.

Conversely, if M admits a presentation S™ — S™ — M — 0, then let K be the
image of the map S” — S”. Then from the exact sequence

0 — Torg(M, k) — K/mgK — k" — M/mgM — 0
we see that
ds(M) =7 — dimk K/msK;
since K admits a surjection from S, it follows that dg(M) > 0, as required. O

2.11. Projectors. Let R be a complete local Noetherian ring with maximal ideal
mp and finite residue field. We let Mod“"'?(R) be the category of mg-adically com-
plete and separated R-modules. Let M € Ob(Mod®™P(R)) and T € Endg(M).

Definition 2.11.1. We say that T is locally finite on M if for all n > 0, M/m%, is
an inductive limit of finite type R-modules which are stable under the action of T

Lemma 2.11.2. If Ty, T commute and are both locally finite on M, then ThTs is
also locally finite on M.

Proof. By definition we can assume that M is m';-torsion for some n. If v € M
then since T} is locally finite, the R-submodule of M generated by the T}v is finitely
generated. Since Tj is locally finite, it follows that the R-submodule generated by
the TiT{v is also finitely generated, and since 77, T commute, this submodule is
stable under the action of T T5, as required. O

The following results from [Pil20] will be used to construct the ordinary projec-
tors associated to certain Hecke operators.

Lemma 2.11.3 (|Pil20, Lem. 2.1.2|). If M is an object of Mod®™P(R) and T is
an endomorphism of M, then T is locally finite on M if and only if it is locally
finite on M /mpg.

Lemma 2.11.4 (|Pil20, Lem. 2.1.3]). If T is locally finite on M, then lim,, o, T™
converges pointwise in the mg-adic topology to a projector e(T) on M.
The operators T and e(T) commute, and we have a T-stable decomposition

M =e(T)M @ (1 —e(T))M,
where T is bijective on e(T)M and topologically nilpotent on (1 — e(T))M.
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We call e(T) the ordinary projector attached to T. Let D(R) be the derived
category of R-modules, let D2*(R) be the full subcategory of D(R) generated by
bounded complexes of flat, mg-adically complete and separated R-modules and let
DPef(R) be the full subcategory of D(R) generated by bounded complexes of finite
free R-modules. Let M € Ob(D#(R)). We say that an operator 7 € End(M)
is locally finite if there is a bounded complex of flat modules N representing M
and an operator Ty € End(N) representing T which is degree-wise locally finite.
By [Pil20, Lem. 2.3.1], T is locally finite on M if and only if T is locally finite
on the cohomology groups H'(M ®% R/mpg) and there is a bounded complex of
flat modules N representing M and an operator T, € End(N) representing 7.
Given a choice of representatives (N,Ty € End(N)) for a locally finite operator
T, we get an associated idempotent e(Tp) € End(N). In general, we do not know
whether two choices of representatives (N, Ty € End(N)) give the same projector
in Endp(gy(M). But by [Pil20, Lem. 2.3.2], if we assume that for one choice of
representative e(Ty)M is an object of DP¢"/(R) then, for another choice of locally
finite representative (N’, 77 € End(N’)), e(T1)M is an object of DP"/(R) and
there is a canonical quasi-isomorphism e(To)M — e(T1)M. In the sequel, these
conditions will always be satisfied and we will write e(T") by abuse of notation.

3. SHIMURA VARIETIES

In this section, we discuss the Hilbert—Siegel Shimura varieties that we work
with, and some properties of their integral models. There are two closely related
algebraic groups here: G7 = Resp/qGSp, and its subgroup G of elements with
similitude factor in G, = Resp;qQ G-

The group G admits a standard PEL Shimura variety and there is a good moduli
interpretation, integral models, and a good theory of integral compactification.
Nonetheless, from an automorphic view point we must work with the group G;
which gives rise to a Shimura variety of abelian type.

Going back to the work of Deligne (see in particular [Del79, §2.7]), there is a
standard strategy for handling abelian type Shimura varieties by relating their con-
nected components to quotients of connected components of Hodge type Shimura
varieties by finite groups. As a particular instance of this strategy, the Shimura
varieties for G and G are closely related: the connected components of G1-Shimura
varieties are quotients of the connected components of G-Shimura varieties by finite
groups. We therefore study both of them at the same time.

For convenience, our main references for integral models of PEL Shimura varieties
and their compactifications are the papers [Lanl3l Lan16| Lani7|, although some of
the results we cite from there were proved in earlier papers, in particular [Kot92]; we
refer the reader to the references in [Lanl3] for a more detailed historical account.

3.1. Similitude groups. Let F be a totally real field. Let V = O% be a free Op-
module of rank 4. We equip V with the symplectic Op-linear form <,>1: VxV —
Op given by the matrix J. Welet <, >:= (Trp/qo <, >1) be the associated Z-linear
symplectic form.

Let G1 = Resp/qGSp, be the algebraic group of symplectic F-linear automor-
phisms of (Vq, <,>1), up to a similitude factor v in Resp/qGin.

Let G C G; be the algebraic group of symplectic F-linear automorphisms of
(Vq, <,>) up to a similitude factor in G,,; that is, G = G, X Resp)/qGm Gm-

m
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3.2. Shimura varieties over C. We firstly briefly discuss some Shimura varieties
over C. We caution the reader that in the bulk of the paper we will work with
Shimura varieties over Z,) which are not quite integral models of these Shimura
varieties, but whose geometrically connected components are the same as these; see
Proposition[3.3.9 below for a precise statement. We begin by recalling the definition
of a neat compact open subgroup from |[Lanl3 Defn. 1.4.1.8].

Definition 3.2.1. Write g = (g:1); € G1(A>), and for each [, write I'y, for the

subgroup of le generated by the eigenvalues of g; (under any faithful linear rep-
resentation of GG1). Then we say that g is neat if

m(éx N Fgl)tors =1

l

Similarly, if g € G1(A®P), then we say that g is neat if

n(@x N Fgl)tors =1

l#p
We say that a compact open subgroup K C G1(A*) (resp. KP C G1(A*P)) is
neat if all of its elements are neat.

We consider the Shimura variety associated to the group G; and a neat compact
open subgroup K C G1(A™):

S(C) = G1(Q)\(G1(R) x G1(A®)) /Z(R)° KL K

where Z(R)® ~ Rggm(RR) is the connected component of the centre in G1(R) =~
GSp, (R)Hem(FR) and KO is the connected component of the maximal compact
subgroup inside G1(R), so that K, is a product of copies of U(2). This Shimura
variety carries a natural structure of complex quasi-projective variety, as we have
G1(R)/Z(R)°KY = (HU —H)Hom(FR) where H is the Siegel half space of sym-
metric matrices M = A + iB € May2(C) with B positive definite.

Let G1(Q)T be the subgroup of G1(Q) equal to v=*(F*F), where F**F is the
subgroup of totally positive elements in F'*. Then by strong approximation,

Gi(A®) =[] G1(Q)TeK

where ¢ runs through a (finite) set of elements in G;(A°) such that v(c) are
representatives of the strict class group F*"T\(A>® ®q F)* /v(K).
One can then write

52(C) = [ Tule, )\ plom PR

where 'y (¢, K) = G1(Q)" NeKc™t.

This Shimura variety, although natural from the point of view of automorphic
forms, is not of PEL type. Therefore, it is also necessary to work with another
Shimura variety. We can consider the double quotient

S%(C) = GIQ\(G(R) x G1(A%)) /R0 KL K;

this is not strictly speaking a Shimura variety, and in particular we emphasise that
it is not the PEL Shimura variety associated to G! By strong approximation we
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may write

G1(A®) =[] G(QTeK

where ¢ runs through a set of elements of G (A°°) such that v(c) are representatives
of the infinite set Q™ T\(A>™ ®q F)*/v(K). For all ¢, we consider the group
I'(c, K) = G(Q)" NneKe™t, so that

SZ(C) = [ T(c, K)\HHomFER),

The inclusion G(R) < G1(R) induces a natural surjective map S%(C) —
Sgl (C). On connected components, it induces the natural map

Q\(A™ ®q F)* /v(K) = F*"\(A™ @q F)* /v(K).

For any ¢ € G1(A*) we have an associated surjective map on the connected
components corresponding to ¢, given by

T (e, K)\HImER) Ty (¢, K)\pHom R,

Let Z(T'1(c,K)) C T'1(c, K) be the centre. Then Z(I'y(c, K)) is a finite index
subgroup of O that we denote by O (K). Let

A(K) =Tu(e, K)/ (0% (K), T(e, K)).
This is a finite group, independent of ¢ and isomorphic to
v(Li(e, K))/v(OF(K)) = (05T Nv(K)) /v(OF(K)),
having noted the following:
Lemma 3.2.2. There is an equality v(T'1(c, K)) = O35 Nu(K).

Proof. Recall that by definition Ty (¢, K) = G1(Q)" NecKc™!, so certainly we have
an inclusion v(T'y (¢, K)) € O3 % Nny(K). Conversely, suppose that v(y) = = €
03T Nu(K) for some element v € cKe™t. Since z € O = v(G1(Q)*), we can
choose g € G1(Q)* with v(g) = 2. Then v(y~lg) = 1, so by strong approxima-
tion, we may find an h € G1(Q)" with trivial similitude character such that h is
arbitrarily close to gy~!, and in particular close enough that hyg~—! lies in cKc™!.
Then hy € G1(Q)* NcKc™! and has similitude character x, as required. ([l

We also have

Lemma 3.2.3. The map T'(c, K)\HT™ER) 5 Ty (¢, K)\HIom(ER) s finite étale
with group A(K).

Proof. The group T'y (¢, K) acts through its quotient T'; (¢, K) /O (K) on HHom(FR)
and since K is neat, this action is free. Il

3.3. Integral models of Shimura varieties. We now introduce the integral mod-
els of Shimura varieties that we will consider in the rest of the paper.
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3.3.1. Compact open subgroups at p. We let p be a prime that is totally split in F'.
Let v be a prime ideal in Op above p. Consider the following chain of Op, -sub
modules of F*:

Vo=-Vi=Vo=2Vs V)

where Vo = V ®0, Op, = &}_Op,e; and V; = (p~ley, -+ ,p~lej,eji1,  ,eq).
We can identify Vj and Vj through multiplication by p and sometimes think of the
indices as being in Z/4Z.

From the perfect pairing <,> on V} we obtain perfect pairings on V5 x V5 and
on V1 X ‘/3

We now recall the definitions of the parabolic subgroups that we use in terms of
flags; this description is well suited to the definitions of our integral models.
GSp4(OF,) = Aut(Vy) N GSpy(F,) (the hyperspecial subgroup),
Par(v) = Aut(V; — V3) N GSp,(F,) (the paramodular subgroup),
Si(v) = Aut(Vp — V2) N GSp,(F,) (the Siegel parahoric),
Kli(v) = Aut(Vy — Vi = Va3 — V) N GSp,(F,) (the Klingen parahoric),
Iw(v) = Aut(Vy - Vi — Vo — V3 — Vj) N GSpy(F,) (the Iwahori sub-
group).

3.3.2. The moduli problem. Let ALG/Z) be the category of Noetherian Z,)-
algebras and AFF/Z,y the opposite category. Let K C G1(A*) be a compact
open subgroup; we will also refer to such a compact open subgroup as a level struc-
ture.

Definition 3.3.3. We say that a level structure K = KPK, is reasonable if K? C
G(A*?) is neat, and if K, =[], Kv where for each v|p we have

K, € {GSp,(OF,),Par(v), Si(v), Kli(v), Iw(v)}.

Let K be a reasonable level structure. We consider the groupoid Y x over
AFF/Z ) whose fibre over S = Spec R € Ob(AFF/Z,)) is the category with
objects (A, ¢, A\,n,n,), where:

(1) A — SpecR is an abelian scheme,

(2) ¢: Op = End(G) ® Z(,) is an action,

(3) Lie(A) is a locally free O ®z R-module of rank 2,

(4) A: A — A'is a prime to p, Op-linear quasi-polarization such that for all
v|p, Ker(\ : Av™] — At[v>]) is trivial if K, # Par(v) and is an order p?
group scheme if K, = Par(v),

(5) nis a KP-level structure,

(6) mp is a Kj-level structure.

Here by a prime to p quasi-polarization X : A — A! we mean a Z (Xp)—polarization

in the sense of [Lanl3, Defn. 1.3.2.19]. By a K-level structure n,, we mean the
following list of data:
(1) For all v|p such that K, = Kli(v), H, C A[v] is an order p-group scheme,
(2) For all v|p such that K, = Si(v), L, C A[v] is an order p* group scheme
that is totally isotropic for the Weil pairing.
(3) For all v|p such that K, = Iw(v), H, C L, C A[v] are subgroups such that
H, is of order p, L, is of order p? and L, is totally isotropic for the Weil
pairing.



POTENTIAL MODULARITY OF ABELIAN SURFACES 45

Let us spell out the definition of KP-level structure. We may assume without
loss of generality that S is connected, and we fix S a geometric point of S. The
adelic Tate module H;(A|s, A®P) carries a symplectic Weil pairing

<,>x: Hi(Alz, A®P) x Hy(Alz, A®?) = Hy (G, |5, AP)
or equivalently an F-linear symplectic pairing:
<, >1’)\Z Hl(A|§7 Aoo,p) X Hl(A|§, Aoo,p) — Hl(Gm|§a Aoo,p) X F.
The level structure 7 is a KP-orbit of pairs of isomorphisms (71, 72), where (with V' =
O% the standard symplectic space defined above):
(1) An O ®7z A P-linear isomorphism of II; (S, 5)-modules 77 : V ®z AP ~
Hi(Als, A7),
(2) An Op ®z A P-linear isomorphism of IT; (S, 5)-modules 1, : F' ®z AP ~
F ®z Hy (Gm 5 Aoo,p).
We moreover impose that the following diagram is commutative:

71 XM

(334) V oz AP x V @z AP — T 1 (Alg, A%P) x Hi(Als, A®P)

l<,>1 J<,>1,>\

F @y A®P 2 F @z H1(Gopls, A%P)

The action of an element k € K? takes (n1,72) to (nik,v(k)ns).

Remark 3.3.5. The reader will observe that 7 is uniquely determined by 7;, but
we find it convenient to record it as part of the data for the sake of comparison to
the PEL setting in Proposition [3.3.9] below.

A map between quintuples (A,:,A,1,m,) and (A’,//, N, n',n,) is an Op-linear
prime to p quasi-isogeny (in the sense of [Lani3| Defn. 1.3.1.17]) f : A — A’ such
that

e f*X =r) for a locally constant function r : S — Z(Xp’)+,

* f(1p) =1y, and
o Hy(f)on=n"
This last condition means that 7’ is defined by Hy(f) on; = 1} and ny = r~1ns.

Also, we have denoted Z(Xp’)+ =QZyN Z(Xp).

Remark 3.3.6. Note that we are allowing the similitude factor in the level structure
to be in A®P @q F (1), but we only allow quasi-isogenies with similitude factor in
AP(1).

We denote by Z(Xp’)+ (AP @ F)* Ju(KP)(1) the set Z(Xp’)Jr\(Aoo’p ® F)* /v(KP)
equipped with the action of Gal(Q/Q) through the cyclotomic character Gal(Q/Q) —
[1rsp, Z; — (A°P)*. This action is unramified at p. It follows easily that

Z(Xp’)+ (AP @ F)* /u(KP)(1) is represented by an infinite disjoint union of finite

étale schemes over Spec Z,,).

Remark 3.3.7. The group Z(Xp’)+ acts freely on (AP ® F)* /v(KP).

Remark 3.3.8. When v(K?) = (Op ®z [[,, Z¢)*, then the above Galois action
is trivial and Z(Xp’)+ (AP @ F)* /u(KP)(1) is simply an infinite disjoint union of
copies of SpecZ,).
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There is a structural map Iy : Y — Z(Xp’)"’\(AOO’p ® F)* /v(KP)(1) which asso-
ciates to an object (A, ¢, A, 1,7m,) of Y the class of 72(1) (where we are identifying
Hq(Gpls, A®P) with A>P(1)).

As we mentioned at the beginning of the complex points of our integral
models are not precisely the double coset spaces considered in §3.2] because our
moduli problem only allows polarizations of degree prime to p. However, the differ-
ence amounts to throwing away some geometrically connected components, as the
following result explains.

Proposition 3.3.9. The groupoid Y g is representable by a quasi-projective scheme
Iy : Yk — Z(p) (AP F)* /u(KP)(1). The morphism Ily has geometrically con-
nected fibres. Let ¢ € ZX "\ (A®PQF)* /u(KP) and let ¢ : Spec C — ZX "\ (A®P
F)Y*Ju(KP)(1) be the assocmted morphism (for the usual choice of pmmztwe roots
of unity in C). Let Yi . be the fibre of Y over c. Then there is an isomorphism
of analytic spaces (Y .)®" = T'(c, K)\HHom(FR)

Proof. This follows from the usual description of integral models of PEL type
Shimura varieties; in the case of hyperspecial level this goes back to Kottwitz [Kot92],
but for convenience we follow the notation of [Lanl3|. To this end, we recall the
description of these integral models for the usual Shimura varieties for G. We
let K = K pK denote a compact open subgroup of G(A*), where KPisa compact
open subgroup of G(A>?), and Kp is of one of the parahoric subgroups considered
above.

Then we let YYKo' be the groupoid over AFF/Z, whose fibre over S €
Ob(AFF/Z,) is the category with objects (A, ¢, \,7,1,), where (A, ¢, \,n,) is as
in the definition of Y i above, but now 7 is given by a KP-orbit of pairs of isomor-
phisms (71, 7j2), consisting of:

(1) An O ® A P-linear isomorphism of IT; (S, 5)-modules 7; : V ®z AP ~
Hy(Als, A>P).

(2) An A°>P-linear isomorphism of II;(S,3)-modules 7 : AP ~ AP Ry
Hy (G, AP).

We moreover impose that the following diagram is commutative:
(3.3.10)
X
71X 71 )

V @z AP X V @z AP — N i (Al AP x Hy (Als, A

J{<,> J{<,>>\

AP e Hi (G ls, A>P)

A map between quintuples (A,:, A, 7,7,) and (A’,//, N, 7',n,) is an Op-linear
prime to p quasi-isogeny f : A — A’ such that

e f*X =r) for a locally constant function r : S — Z(Xp)+

o f(np) =m,, and
o Hi(f)on =1
It follows immediately from the definition that there is a natural isomorphism

~ G,Kott
YK - H Yng(;flﬂG(Aoo,p)7
gEG (A P)\G1(A>P)/KP
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given by the maps
YG Kott

gKPg—1NG(A>:P) - YK

which are defined by
(A7 L, >‘7 (ﬁla 772)3 np) = (Aﬂ Ly >‘a (7717 772 Kz OF).% np)'

(Indeed, one easily checks that this already gives a bijection of tuples before passing
to isogeny classes, and that this bijection is compatible with isogenies.) The result
now follows from [Kot92, §5, §8|. O

We now define an action of (O F) * (totally positive elements in F* which are
prime to p) on Yk, by scaling the polarlzatlon A. Since this scales the A\-Weil
pairing (,)1 x, we see from that it also scales 72. Explicitly, x € (OF)(p)
sends (A, ¢, A, (n1,m2),mp) to (A, ¢,z (m,2n2),mp). By definition, the subgroup
Z(X]D)+ acts trivially on Y.

The group ((’)F)(Xp’)+ acts on the set of connected components ITo(Yx). Since

the cyclotomic character surjects onto [], £p Z/, the stabilizer of each connected
component is

0F* (M) = | (0p) 5 N2t uEn) [[ 27 ) /205
LF#p

which we can and do naturally identify with

ot vk [] 2;-
L#p

Remark 3.3.11. If v(K?) = (Op @z ], Ze)*, then O3 (T1p) = O5 ™.

The subgroup 05" (v(K?)) := 05" Nu(KP) acts trivially on each connected
component of ITy(Yx). The quotient stack of connected components is

((OR)5 125 NET A @ F)* [u(KP)(1)].

It admits a coarse moduli space (OF)(XP’)+\(A°°”’ ® F)* /v(KP)(1) which is a finite
étale covering of Spec Z,).
We now take the quotient stack

Y = Vi /(O0) 5 /57
This is the “Shimura stack” associated to GG; and the level K.
Let us define
OFT(KP) = {2? |z € OF N KP},
where OF is thought of inside Gy (A(p )) as a subgroup of the scalar matrices.

The multiplier of the scalar matrix given by z is 22, and hence the multiplier
of 0" (K?) lands inside v(KP), and hence O}’ +(Kp) is a finite index subgroup
of O;’—"—(V(Kp)) and of O (Ily).

Lemma 3.3.12. The restriction of the action of ((’)F)(Xp’)+ on Yx to Op " (KP) is
trivial. More precisely, there is a canonical natural transformation going from the
action of O3 (KP) on Y to the trivial action of O™ (K?) on Y.
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Proof. Let 22 € O 1 (KP) for a unique z € O N KP. The action of 22 sends
(A, 1,2\, m,mp) to (A, ¢,2%X,n,m,) (note that since x € KP, and 7 is by definition a
KP-orbit, the action of 22 on 7 is trivial). On the other hand multiplication by
z7': A — A provides a map (4, ¢, \,n,n,) — (A, 1,22\, 1,7,) in the groupoid Y.
This provides the natural transformation from the action of 22 obtained from the
action of (OF)(XP’)Jr to the trivial action. O
Lemma 3.3.13. For any geometric point x € Yk, the stabilizer of x for the action
of (OF) (" is O (KP).

Proof. By Lemma [3.3.12) O3 (KP?) is contained in the stabilizer of any = =
(A, 0, A\, n). Let e € ((’)F)(Xp’)+ and assume that there is a morphism

. (A7 LA, (7717 772)7 np) - (Av Ly €A, (771, 6"72)7 7717)

in the groupoid Y. We need to show that f € OF N KP. Since f respects 7y, it
follows from [Lanl3l Lem. 1.3.5.2] that f is an automorphism of A (and not just a
quasi-isogeny).

The polarization A induces an involution z — = on F(f), and we consider the
automorphism o = ff~! of A. It stabilizes the polarization: a*\ = \aa@ = .
It also stabilizes the level structure: f acts like the adjoint of f on Hy(A, AP).
Since KP is neat, this implies that o = 1; indeed, all the eigenvalues of « are roots
of unity, because they are algebraic numbers all of whose conjugates have absolute
value 1. It follows that f = f, and f? = ff = e. Since f is an automorphism,
it follows that e € Of. Hence it suffices to show that f € F, since we then
have e € O (KP).

Assume first that A is simple, so that End(A)q is a division algebra and F(f) C
End(A)q is a commutative field on which the Rosati involution z — Z is complex
conjugation. Since f = f and f? = €, F(f) is a totally real extension of F of degree
at most 2. If F(f) = F, we are done. Otherwise F'(f) is a quadratic extension of F'.
The level structure n provides a KP-orbit of isomorphisms Hy (4, A>®P) ~ VRAP,
and the element f acts via some conjugate of

OO = O
oo o m
a O OO
o~ OO

and has eigenvalues in F: {\/¢, —/€} with multiplicity two. By neatness, no con-
jugate of this matrix is in KP, a contradiction.

We now assume that A is not simple. It is easy to see (using the Op-action)
that the only possibility is that A is isogenous to A; x As where A; and A, are
two abelian schemes of dimension [F' : Q] with F' C End(4;)q. If 4; and A,
are not isogenous, then End(A)q = End(4;)q x End(As)q. Moreover, F(f) is a
commutative subalgebra of End(A;)q x End(As)q and is therefore included in a
product of fields F; x Fy where F; is either F or a CM extension of F. Since f = f,
we see that f = (f1, f2) € F x F and that f2 = (f%, f7) = €. So either f; = fa, and
we are done, or f; = — fo; but this second case is again prohibited by neatness.

Lastly, we assume that A is isogenous to A?. Then End(A4)q ~ M>(End(A4;)q)
and F(f) is a commutative subalgebra, therefore included in Ms(E) where E is
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either F' or a CM extension of F. Writing f = (CCL Z

2
9 a’*+be bla+d) . .
e = f° = (c(a d) betd? ) If a +d = 0, the matrix of f has eigenvalues

{V/€, —v/€} and this is again impossible by neatness. We deduce that a + d # 0,
sothat b=c=0and a =d = /e or a = d = —/e. Since f = f and the Rosati
involution induces the complex conjugation on E, we deduce that /e € F and that

) € GLy(F), we have

f € F, as required. O
We write

(3.3.14) A= (Or) ) /O T (KP),

(3.3.15) A(lp) = O (Tly) /O T (KP),

(3.3.16) A(KP) = O (v(KP))JOST(KP).

These last two groups are finite groups. Let us set Yg ' = A\Yg. This last
quotient exists as a scheme. Indeed, A permutes the connected components of Yy
and the stabilizer of any connected component is a finite group A(Ily), while the
stabilizer of any geometrically connected component if A(K?). Moreover, the action
of A can be lifted to an action on an ample line bundle on Yy (for instance the
tensor product of the line bundles det(Q% A/C) /YK) where C' runs over all subgroups
C = H'u|p C, where for each v | p, C, is either 1 or whichever of H,, L, exist as
part of the level structure, see [Lanl6l §6]). The group A(Ily) acts without fixed
points by Lemma [3.3.13] The following proposition then follows immediately from

Proposition [3.:3.9| and Lemma [3.2.3]

Proposition 3.3.17. There is a canonical map YIC? — Ygl , and Ygl is the coarse
moduli onIC? . There is a quasi-projective morphism Il : Ygl — (OF)(XP’)+\(A°°’p®
F)*/u(KP)(1) with geometrically connected fibres. Moreover, the map Yix — Y2*

is €tale and surjective.

Let ¢ € Z[)"\(A>P @ F)* [u(K?) and let

¢:SpecC — Z(Xp’)+\(A°°’p ® F)* /v(KP)(1)
be the associated morphism (for the usual choice of primitive roots of unity in C).
Let Yk . be the fibre of Y over ¢ and let Yglc be the fibre of Ygl over c¢. Then

there is a commutative diagram of analytic spaces where the horizontal maps are
isomorphisms and the vertical maps are finite étale with groups A(KP) = A(K):

(YK,c)an N F(C, K)\HHom(F,R)

| |

(Y€1) —— Ty (e, K)\HHom(PR)

3.4. Local models. We now recall some basic results about local models for GSp,;
the cases that we need essentially go back to [dJ93]. Continue to let K be a
reasonable level structure. For each place v|p, we let M}?f be the moduli space
over OF, of chains of lattices corresponding to K,; so for example Mf;;cr(v) is the
moduli space of totally isotropic direct factors of Vi ®o, Op, of rank 2. We write



50 G. BOXER, F. CALEGARI, T. GEE, AND V. PILLONI

M}%‘j = xv‘pM}?f. Then by the results of [RZ96, §6], each geometric point of the
special fibre of YE has an étale neighbourhood which is isomorphic to an étale
neighbourhood of a geometric point in M}?; (The description of the local model
in [RZ96, §6] is in terms of chains of Or ® Z,-lattices, but this description can
be immediately rewritten in terms of products over the places v|p of chains of
Op,-lattices.)

Proposition 3.4.1. The scheme Y is flat over SpecZ,), normal, and a local
complete intersection (so in particular Cohen—Macaulay) of pure relative dimen-
sion 3[F : Q]. If K, = GSp,(Op,) for all v|p, then it is smooth, while in general it
18 smooth away from codimension 2.

Proof. Note that normality follows from being smooth away from codimension 2
and Cohen—Macaulay. The properties of being flat and a local complete intersection
over Spec Z,), and of being smooth, or smooth away from codimension 2, can all
be checked étale locally ([Stal3l |[Tag 03E7.Tag 04R3\Tag 06C3|). Furthermore,
these properties are all preserved by taking products. It therefore suffices to show
that they hold for the local models M}?[C This has already been carried out in the
literature: the case that K, = GSp,(Op, ) is trivial, and the cases that K, = Kli(v),
Si(v) or Iw(v) are covered in [Til06b] §2]. In the case K, = Par(v) see [Yulll Prop.
2.5, Thm. 2.11]. O

Corollary 3.4.2. The scheme Ygl is mormal, flat over SpecZ,, and a local
complete intersection.

Proof. Since Y — Yg ! is an étale surjection by Proposition |3.3.17} this is imme-
diate from Proposition [3.4.1] O

3.5. Compactifications. In this section, we state results on the existence of toroidal
compactifications. Toroidal compactifications depend on some combinatorial data
which we first explain. We will follow closely the presentation of [Pin90] and
[HLTT16], see in particular [HLTTI6, §5.2] (that this presentation is equivalent
to Lan’s presentation is explained in [HLTT16, App. B]).

In this section, we write Vg for V ®p, F. Let € be the set of totally isotropic
F-subspaces W C Vg. For all W € €, consider the F' ® R-module of Q-bilinear
forms

¢:Ve/WE xVp/Wt 5 R
which satisfy ¢(Az,y) = ¢(x, \y) for all X € F, z,y € Vp/WL. Let C(Vp/W1)
be the cone inside this R-vector space given by those forms which are positive
semidefinite and whose radical is defined over F. Let C be the conical complex
which is the quotient of [];;,ce C(Ve/W™) by the equivalence relation induced by
the inclusions C(Vp/W+) c C(Vp/Z*) for W C Z.

A non-degenerate rational polyhedral cone of C x G1(A) is a subset contained
in C(Vp/W+) x {v} for some (W, ) which is of the form Zle R qs; for elements
S; - VF/WJ‘ X VF/WJ‘ — Q

A rational polyhedral cone decomposition ¥ of C x G1(A™) is a partition C X G1(A>®) =
1, cs, o by non-degenerate rational polyhedral cones ¢ such that the closure of each
cone is a union of cones.

Let W € €. We let Py be the parabolic subgroup of G; which is the stabilizer
of W. Let us denote by My, the group of F-linear automorphisms of Vp/W+. We
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also denote by My, the group of symplectic similitudes of W= /W (so that this
group is isomorphic to Resp/QGSpy_s dimw, and in particular is non-trivial even
when dim W = 2). The group My = My, x My, is the Levi quotient of Py,. We
have a surjective map Py — My, and we denote by Py its kernel. There is a
surjective map Py, — M p,.

The group G1(Q)* acts on € and also on C. Let W € €, let v € G1(Q)" N Py
and ¢ € C(Vr/W). Let v, be the projection of v in Myy;. Then we set yé(z,y) =
v(y)e(v-x, n-y).-

The set C x G1(A®°) carries a diagonal left action of G1(Q) and left and right
actions of G1(A°) (by left and right multiplication on the second factor). For any
compact open subgroup K C G1(A), a rational polyhedral cone decomposition
¥ is K-equivariant if for all h € G1(Q),k € K and 0 € X, h.o.k € X.

For any compact open subgroup K C G1(A) we say that a rational polyhedral
cone decomposition ¥ of C x G1(A*) is K-admissible if:

(1) The decomposition is K-equivariant.

(2) For all 0 C C(Vp/WH) x {7}, and all p € Py, (A>), we have p.o € X.

(3) For all cones o, let W € € be such that 0 C C(Ve/W+) is in the interior
of C(Vg/W+). Then if there are p € Py, (A®), u € K and h € G1(Q)
satisfying o N hpou # 0, then in fact h € Py, (A>).

(4) G1(Q)\X/K is finite.

There exist K-admissible rational polyhedral cone decompositions. Any two
K-admissible rational polyhedral cone decompositions can be refined by a third
one.

If Ly C Homg(Sym%Ve/W, Q) is a lattice, then a cone

o C Homq(Symp,, Vi/W,Q)

is said to be smooth with respect to Ly if the s; can be taken to be part of a basis
of Ly . Assume that for all (W,v) € € x G1(A>) we have lattices

Lw,, C Homq(SymzVp/W™, Q).

We say that a rational polyhedral cone decomposition ¥ is smooth with respect to
these lattices if each cone o € ¥ is smooth.

We now assume that K = KPK, is a reasonable compact open subgroup. We
choose a lattice V' C Vi with the property that KP stabilizes V' ®z A°P and that
V'@ Op, =V ® Op, for all places v|p such that K, # Par(v) and V' ® O, = V3
for all places v such that K, = Par(v).

Then (Op,V’,(.)) defines an integral PEL datum and K C G (Z) where G} is
the group scheme over Spec Z of symplectic similitudes of V’.

The theory of toroidal compactification associates a lattice Ly i, C C(Ve /W)
to this integral PEL datum, compact open K, W € € and v € G1(A*°) (see [Lanl3l
§5.3] and [Lanl16l, §3]). The K-admissible rational polyhedral cone decompositions
which satisfy the following extra properties form a cofinal subset of the set of all
K-admissible rational polyhedral cone decompositions:

(1) The decomposition is projective (in the sense of [AMRT10]).
(2) The decomposition is smooth with respect to the lattices Ly, k .

In the rest of the paper, we will consider K-admissible rational polyhedral cone
decompositions which satisfy these extra properties unless explicitly stated.

Theorem 3.5.1.
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(1) Let ¥ be a K-admissible polyhedral cone decomposition which is projective.
There is a toroidal compactification Xg s of Yi. It has a stratification
indezed by (G(Q)T N K,)\X/K? = G(Q)*\X/K. The boundary is the re-
duced complement of Y in X 5. This is a relative Cartier divisor denoted
by DK72.

(2) The universal abelian scheme A — Yk extends to a semi-abelian scheme
A — XK,E-

(3) If ¥’ is a refinement of X, then there are projective maps wsy » : X s —
Xk,z, and (Rmsr 5).0x, o, = Oxp - Let Ix, . and Ix, ., be the invert-
ible sheaves of the boundary in Xi s and Xk 5. Then ﬂ'g,’zyIXKYE = IXK,E/
and (R v)«Ix, o = Ixyx-

(4) Suppose that K is reasonable (in the sense of Definition . Then the
toroidal compactification X s is flat over SpecZ,y, normal, and Cohen-
Macaulay. If ¥ is smooth, then Xy s — SpecZ, is further a local com-
plete intersection. Finally if K, = GSp,(Op,) for all vlp and X is smooth
then X 5, — Spec Z(p) is smooth.

Proof. This follows from [Lanl7, Thm. 6.1]. We simply need to specify the choices
we made to construct the toroidal compactification by normalization (see [Lanl6,
§2]). In the first case that K, = G1(Z,) (the nice case: no level at p, prime to
p polarization), the compactification is constructed in [LanI3]. In the second case
that K, = [[,, K, where K, € {GSp,(Op,),Par(v)}, the compactification can
be constructed as a closed subscheme of some toroidal compactification of a Siegel
modular variety with a prime to p polarization (Zarhin’s trick) (and possibly per-
forming again a blow up or a blow down at the boundary as explained in [Lan17]).
In the general case where we have a parahoric level structure, we consider all possi-
ble degeneration maps Y — HK},? Yirk, where K, — K, and K = H'U|p K with
K € {GSp4(Op,),Par(v)} and obtain the toroidal compactification as a closed
subscheme of the product of the toroidal compactifications of the Yi» K, (and pos-
sibly performing again a blow up or a blow down at the boundary as explained in
[Lan1t]).

Now, everything apart from is immediate, while follows from Proposi-
tion [3:5.4] together with the explicit description of the formal completions along
boundary strata given in [Lanl’7, Thm. 6.1 (4)]. O

We also need to consider the action of the group (9;’(; ) Recall that we defined
a quotient A of this group in (3.3.15)).
Lemma 3.5.2. The action of (’);’(';) on Yk extends to X s, and factors through A.

Proof. 1t is possible to prove this directly by looking at the construction of the
toroidal compactification and the boundary charts. We will instead give a simpler
indirect argument. Since Xk s is normal, it follows that X 5, is the normalization
of Y in Xg » x SpecC. It is therefore sufficient to show that the action extends
over C.

We can now use [AMRTT0]. Let c € G1(Ay). By Propositionm the analytifi-
cation of the component Y . C Y xSpec C corresponding to cis I'(c, K)\HHom(FR)
and we need to show that the group A(K) (which is the subgroup of A acting triv-
ially on the geometrically connected components) acts on the compactification of
[(c, K)\H"om(FR) By the main results of [AMRTI0], our choice of ¥ provides a
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partial compactification Hgom(F’R) which carries an action of I'(K, ¢). The compo-

nent of (Xx 5 X Spec C)*" corresponding to ¢ is isomorphic to I'(c, K)\'Hgom(F’R).
This space still carries an action of I'y (¢, K) /T'(¢, K), which is what we claimed. O

Lemma 3.5.3. The action of A on Xk 5 is free.

Proof. Over Y, this is the content of Lemma [3.3.13] We claim that the action
of A is free on the set of non-trivial strata in X 5. This set is simply GT(Q)\ (2
{0} x G(A>))/K. Let ¢ € G1(A®), I'(c,K) = G(Q)" NcKc™! and I'y (¢, K) =
G1(Q)T NeKe™l. Let X, be the restriction of X to C x {c}. We need to show that
the stabilizer of T'y (¢, K) acting on . \ {0} is included in T'(¢, K'). This will imply
that the group A(K) acts freely on I'(c, K)\(Z. \ {0}).

Let W € €\ {0}. We denote by I'yy (¢, K) and I'y w (¢, K) the intersections of
Py with I'(c, K) and T'y (¢, K) respectively. Let o C C(Ve/W=) x {c} in the inte-
rior. By our assumption on the cone decomposition, if an element v € I'1 w (¢, K)
stabilizes o, then its linear part ~; is trivial. We need to see that v(y) is trivial. It
is easy to see that we can find an element 7 € I'y (¢, K) and n € Z>( such that
v(y)"¢ = v'.¢ for all ¢ € C(Vp/W) (it follows from the very definition of the
action that the image of Ty (c, K) in the space of automorphisms of C(Vp/W)
contains a finite index subgroup of (9?“‘). We deduce that «' stabilizes o and
therefore 7] = 1, so that ()™ = 1 and v(y) = 1 since O " is torsion free. O

We form the quotient of Xg 5 by the action of (9;7’(; ) This quotient exists be-
cause, on a given connected component of Xk s, this is the quotient by a finite
group, and the component is projective because ¥ is a projective cone decomposi-
tion. We shall call such a quotient a toroidal compactification X%E of Yg 1. We
summarize our findings in the following proposition:

Proposition 3.5.4. The space XIG{Z has a stratification indezed by G1(Q)T\XL/K.

The map Xk s — XIC;IZ is €tale and surjective. If K is reasonable, then XIC?E s a
flat local complete intersection over Spec Z ), and is normal.

If not necessary, we drop the subscripts K or ¥ and simply write X. We denote
the boundary divisor by D.

3.6. Functorialities. We now briefly discuss some functorial maps between Shimura
varieties at different levels, which we will make use of when we discuss Hecke oper-
ators in All of the functorialities that we consider here extend to the toroidal
compactification for suitable choices of cone decompositions, so we confine our dis-
cussions to the interior.

3.6.1. Change of level away from p. Let K = KPK, and K' = (K?) K, be two
compact open subgroups of G;(A®°) such that K C K'. Then we have finite étale
maps Yx — Yk and Yg b Yg}, given by “forgetting the level structure”; that is,
by replacing the KP-orbit by the corresponding (K?)’-orbit.

3.6.2. Action of the group G1(A°P). Let g € G1(A°P). Then we can define an
isomorphism

[g] : YK — Yg—lKg
by sending an object (4,¢, A, n,m,) of Y to (A, ¢, A\, nog,n,), which is immediately
seen to be an object of Y -1x,.
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We deduce isomorphisms [g] : Yg v chill K"

3.6.3. Change of level at p: Klingen type correspondences. We now fix K? and a
place w above p. We let K}, = Hv|p K, C G1(Z,) be a reasonable compact open
such that K., = GSpy(OF,, ). Welet K, =[], _.,, Ko xKli(w) be another reasonable

level structure at p and let K}/ =[], ,, K, x Par(w). Set K = K¥K,,, K' = KK,
and K" = KPK).

Lemma 3.6.4. There are natural proper surjective, generically finite étale forgetful
maps p1 : Y — Yk and py : Yg,l — Ygl.

Proof. We simply forget the level structure H,, at w. O

We now choose once and for all an element z,, € F'*>* which is a uniformizing
element in F,, and a unit in F, for all v # w above p. This element is well defined

up to multiplication by an element of ((’)F)(Xp’)+.

Lemma 3.6.5. There is a proper, surjective, generically finite étale map ps : Y+ —
Y depending on x,, and sending A to AJH.-. It induces a canonical map ps :
Yo = YS.

Proof. This map is defined to take an object (A,¢, A\, n,7,) of Y/ to the object
(A", N0 my,) € Y defined as follows:

o A'=A/HL, where H: C A[w] is an order p3 group scheme, the orthogonal
complement of H,, for the Weil pairing. Write 7w : A — A’ for the natural
isogeny.

o /(x)=moulx)orm L,

e The quasi-polarization ) is obtained by descending the quasi-polarization
22 .\ from A to A’

e =mon.

e 7, is the data of level structures at places v # w above p deduced from 7,
by the isomorphisms 7 : A[v] — A’[v].

The ambiguity in the choice of z,, disappears when we pass to the quotient stacks
by the action of (O F)(xp,)+ and pass to the associated coarse moduli. (|

Remark 3.6.6. There is another map Y — Yx~ obtained by sending an abelian
surface A to A/H,,; however, we will not need to make use of this map.

3.6.7. Change of level at p: Siegel type correspondences. We now fix KP and a
place w above p. We let K, = H'U|p K, C G1(Z,) be a reasonable compact open
such that Ko, = GSpy(Op,) (resp. Kli(w)). We let K}, = [[,,, Kv x Si(w) be
another reasonable level structure at p (vesp. K}, = [],,, Kv X Iw(w)). Set K =
KPK,, K' = KPK,,

Remark 3.6.8 (Warning). Note that the use of K and K’ (and ps) in this section
( differs from that in the previous section (§3.6.3). Thus the reader should
be careful when these maps are used to note whether we are in the Klingen or
Siegel setting (we indicate in any ambiguous context by giving references to the
corresponding section). We made this choice since otherwise the number of required
subscripts would become excessively cumbersome.

Lemma 3.6.9. There are natural forgetful maps p1 : Y — Yi and py : Yg} —
Yg U which are surjective and generically finite.
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Proof. We simply forget the level structure L., at w. (]

Recall that we have chosen an element x,, € F>** which is a uniformizing
element in F,, and a unit in F,, for all v # w above p.

Lemma 3.6.10. There is a map p2 : Y — Yi depending on x,,. It induces a
canonical map po : Yg,l — Ygl.

Proof. We take an object (A,t,A,n,n,) of Y. We define (A',//, N, n',n)) € Yk
as follows:
o A'=A/L,, call m: A — A’ the isogeny.
o /() =mou(r)or L.
e The quasi-polarization )\ is obtained by descending the quasi-polarization
T from A to A'.
e =mon.
e 17, is a data of level structures at places v # w above p deduced from 7, by
the isomorphisms 7 : Afv] — A'[v].
e In the case K,, = Kli(w), we define H = H-/L,, C A'[w)].
The ambiguity in the choice of xz,, disappears when we pass to the quotient stacks

by the action of (OF) (Xp’;r and pass to the associated coarse moduli. ]

3.7. Automorphic vector bundles. We now work over Z,, and assume from
now on that p splits completely in F. We let S, be the set of places of F' above p.
We have a decomposition O ®z Z;, = [, |, Zp. We also denote by v : Op — Z,
the projection on the v-component.

3.7.1. The principal bundle. Over Yk we have a prime-to-p isogeny class of abelian
schemes and therefore we have a canonical Barsotti-Tate group scheme G. We
let wg be its conormal sheaf. The sheaf wg carries an action of Op. We have a
decomposition O ®z Z, = Hvl » Z,, and accordingly, the sheaf wg decomposes as a
product: wg = Hv‘p wg v where each wg , is a locally free sheaf of rank 2 over Y.

3.7.2. Weights for G and G,. By a dominant algebraic weight x for G we mean a
tuple (ky,l,)ves, of integers such that k, > [, for all v € S),. By a classical algebraic
weight we mean a dominant algebraic weight which furthermore satisfies ,, > 2 for
all v € S,. We will frequently write “weight” for “dominant algebraic weight” where
no confusion can result (note though that we will later also consider p-adic weights).
We associate a locally free sheaf w” on Yx to each weight x by

W = H Symk”_l“o.)gyv ® detl”wg’v.
v

By a weight x for G; we mean a tuple ((ky,ly)ves,,w) of integers with the
property that k, > [, and k, — [, = w (mod 2) for each v; again, we say that k is
classical algebraic if [, > 2 for all v € S},. In fact, we will insist that w is even, and
we will shortly fix the choice w = 2. We claim that given w, there is a canonical
descent datum on w” for the map Yx — Ygl.

For clarity, we describe this descent datum on the level of the groupoid Y . For
all z € (Op) (Xp ’)+, we define an isomorphism

K _ K K
WAe=Amm) T YA nm) T YA mmp)
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by multiplication by [], v(x)*=+=%)/2 (here the first identification is the tauto-
logical one, noting that the definition of w” does not depend on the polarization).

To check that this defines a descent datum, we have to show that it respects the
existing identifications from the action of O (K?). If z € O3 F(KP), then we
may write z = €2 for some € € 05 N KP, and we have an isomorphism ¢ : A — A
which induces an isomorphism in the groupoid Y g:

€ (A, N\ m,mp) = (A u e 2N, n,mp)

and an isomorphism

&*

WA e 2Amm,) = WlAuA )~ CAADD,)
which is multiplication by x(¢) (again, the first equality is the tautological one,
since w" does not depend on the polarization). Now, r(e) = [[, v(e)* v =
[T, v(e?)*etlom©)/2Np o () = [T, v(x)FeHe=w)/2 since Np/q(e)” = 1 by our
assumption that w is even, so this agrees with our the isomorphism defined above,
as required.

This defines a descent datum for the étale map Yx — Yg t. This descent da-
tum is effective. Indeed, after first identifying the sheaf w" on various connected
components of Yx we are reduced to a finite étale descent for the group A(IIy).

Although the descent datum depends on w, we will regard w as fixed (indeed,
in the main arguments of the paper, we always take w = 2), so we omit it from the
notation, and simply denote the resulting sheaf on Yg ! by w”.

Remark 3.7.3. We assume in this remark that we work over F, rather than Z,. We
denote by Yk 1 and Yfgll the fibres of Yx and Y¢* over SpecF,. Let r = (k,, Lo)wlp
be a weight for G. We further assume that k, = [, = 0 mod (p — 1). In this
case, we claim that we can define a canonical descent datum for the sheaf w”, from
Yk 1 to YI?, L. This rests on the observation that the character O3 — F given by

e 1, ,lv(e Yrotle mod p] is trivial. Therefore we can define a descent datum for

the action of z € (O p) , via the tautological isomorphism

K _ K
WALe= ) = WAL )

This remark will be applied to the various Hasse invariants we will construct later.

Finally we will need to consider the canonical extensions of these sheaves to
toroidal compactifications. The conormal sheaf wg/Yx has a canonical extension
to Xk v given by e*(2} AJXx , where A is the semi-abelian scheme of Theorem
(2) and e is its identity sectlon. This gives an extension of the sheaves w” to Xg »
and an extension of the sheaves w1 to XI%E. We will denote these extensions by
the same symbol.

3.8. Coherent cohomology and Hecke operators.

3.8.1. Basics. Let Kk =
RF(XK72, ) and RT’

(X
and RT(X {1, w"(—D)).

l,) be a weight. We will study the cohomologies

(Fo
IG( w™) as well as their cuspidal variants RT'(X g 5, w"(—D))

Lemma 3.8.2. The cohomologies RT'( Xk »,w"), RF(XIG(}27 w"), RT'( Xk, »,w"(—D))
and RF(XIG(}E,LU"(—D)) are independent of 3.
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Proof. This is immediate from Theorem 3. O

Because of this lemma, we often drop X from the notation. We now clarify the
relationship between RT'(X ¢, w™) and RD(X$!, w").

Proposition 3.8.3. The pull back maps
RIO(XE, w") — RT(X g, w"™)
and
RI(X ', w"(—D)) = RI(Xg,w"(—D))
split in the derived category of Z,-modules.

Remark 3.8.4. It is often easier to work over Xg rather than ch(l because the
former has a clear moduli interpretation. Proposition tells us that we can
easily transfer a good property of the cohomology over Xk to a property over Xgl.

Proof of Proposition[3.8.3 Attached to the weight « is a descent datum (see §3.7.2))
which takes the form of an action of ((’)F)X’)+ on the sheaf w” over Xx. Namely,

for all € € (OF) , there is an isomorphism € : €*w"” — w" satisfying the usual
cocycle relation. Thlb map induces a map on cohomology:

¢ : RI(Xg,w") = RT(Xk, €'w") = RI(X g, w")

and defines the group action.
Recall that there is a commutative diagram:

Xk XIG<1
lno lHUGl
Z35 (A7 @ F)* [u(KP)(1) — (Op) (5 \ (A7 © F)* [u(K?)(1)

Each Galois orbit ¢ € [ZE;)+ (AP @ F)*/u(KP)(1)]/Gal(Q/Q) determines

a connected component of ZE;;L (AP @ F)* /u(KP)(1), and its fibre is a con-
nected component Xg . of X » which is a proper bcheme over Spec Z,,. Obviously
RI'NXg,w") =[[,RI'(Xk,,w") and for all € € (OF) ) , we have an 1somorphlsm
€: RI'( Xk ec,w") = RI'( Xk e, w").

The subgroup that fixes a component X . is denoted by (9;’+(H0) and the
action of this group on Xk . and RI'(Xk ., w") actually factors through the finite
group A(Ily). Let m(c) be the image of ¢ in

[(OF) 5y \(AXP @ F)* /v(K?)(1)]/Gal(Q/Q).

This determines a connected component X¢ of Xgl and the map Xk . —

K 77((‘)

X Klﬂ(c) is a finite étale cover with group A(Ilp).
It follows from Lemma below that RI‘(XIG{1 (0¥ w") is split in RT'( Xk ¢, w"),

and therefore the map

RO(X G W) EBRF Xglﬂ(c), w") = [[RT (Xk e, ") = RT (X, w")

is split. ([
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Lemma 3.8.5. Let G be a finite group. Let I C Z[G] be the augmentation
ideal. Let f : T — S be a finite étale morphism with Galois group G. Then
f*OT = OS 53] IG ®Z[G] f*OT

Proof. There is an obvious map of coherent sheaves Ogs @ Ig ®z(q) f+Or — f«Or.
The sheaf f,Or is a locally free sheaf (for the étale topology) of Ox[G]-modules.
Therefore, the above map is an isomorphism as this can be checked locally for the
étale topology. O

3.8.6. Abstract Hecke algebras. Let H = CX(G1(A*®)//K,Z,) be the convolu-
tion algebra of locally constant, bi-K invariant, compactly supported functions
on G1(A) with coefficients in Z,,. (The Haar measure is a product of local Haar
measures, normalized by vol(K;) = 1 for all finite places ¢t of F.) If S is a finite set
of places of F, we let 15 be the subalgebra of # of functions whose restriction to
GSp,(Fs) is the characteristic function of K for all s € S. For all finite places s,
we let Hs be the local Hecke algebra C°(GSpy(Fy)//Ks, Zy), so that H = QL H,.

3.8.7. Cohomological correspondences — motivation. We begin by giving some brief
motivation for the way in which we define Hecke operators on coherent cohomology
(following [Pil20]).

As usual, the geometric interpretation of Hecke operators is via correspondences

C
N
X Y
(Giving an integral definition of the correspondence associated to a Hecke operator
at a place dividing p is in general difficult. This question will be addressed later in
the paper in some very special cases.)

Let F, G be coherent sheaves on X, Y. We assume that we have a map of sheaves
p5F — piG. When F and G are automorphic vector bundles (which will typically
be the case for us), this map is provided by the differential of the universal isogeny
over C.

One would like to use the correspondence to define a corresponding map on
cohomology RI'(X, F) — RI'(Y,G). This map could be defined by first taking the
pull back via ps : RI'(X, F) — RI'(C, p5F), then using the map p3F — piG to get
to RI'(C, p7G), and finally applying some trace map to RT'(Y,G). In other words,
the action of the correspondence on cohomology should take the form of a map
T : R(p1)«p3F — G. There are, however, at least two serious difficulties with
making such a definition in our context.

The first obvious difficulty is the existence of the trace map, because in general
one cannot assume that p; is finite flat. Nevertheless, in our cases the existence
of the trace map will follow from the machinery of duality in coherent cohomology
and the existence of certain fundamental classes, which can be constructed because
the schemes C, X, Y will have reasonable geometric properties over the base.

The second difficulty (which already arises for modular forms for GL, /Q) is that
the action of the correspondences defining the Hecke operators at places dividing p
is typically divisible by a positive power of p, so that one has to divide by this power
in order to define the correct operator mod p. It is hard to check this divisibility
at the level of the derived category.
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The solution to this introduced in [Pil20] (which we also employ here) is as
follows. By adjunction we can view T as a map T : p5F — p}G, and in favourable
circumstances p}G will be a sheaf (and not merely a complex). Furthermore it will
be sufficiently nice that we can check the condition that 7" is divisible by a power
of p after restricting to the complement of a codimension 2 locus, and define our
normalized Hecke operators.

3.8.8. Duality for coherent complexes. We let S be an affine Noetherian scheme.
We say that a morphism f : X — Y of S-schemes is embeddable if there is a
smooth S-scheme P such that f can be factored as a composite

X5 PxgY Y

where ¢ is finite and the second map is the natural projection. We say that f
is projectively embeddable if p can be taken to be a projective space over S. In
our applications of this material all of our maps will be obviously projectively
embeddable (essentially because our Shimura varieties are quasi-projective), and
we will not comment further upon this.

As usual we write Dgcon(Ox) for the derived category of O x-modules with quasi-
coherent cohomology sheaves, and D;rcoh((’) x ) for the bounded-below version. Then
if f: X — Y is an embeddable morphism of S-schemes, there is an exact functor

of triangulated categories

[ DY, (Oy) = Df, (Ox).

qcoh

If f is projectively embeddable, the functor f'is a right adjoint to Rf, and there
is a natural transformation Rf,f' = Id of endofunctors of Dz—;_coh(oy)’ which we
refer to as the trace map.

If X — S is a local complete intersection then we write Kx,g for the relative
canonical sheaf, which may be defined as the determinant of the corresponding
cotangent complex. The following is [Pil20, Cor. 4.1.3.1].

Lemma 3.8.9. Let f: X — Y be an embeddable morphism between two embeddable
S-schemes, such that X — S, Y — S are both local complete intersections of pure
relative dimension n. Then f'Oy = Kx/s ®ox f*K;/ls is an tnvertible sheaf.

We will make repeated use of the following lemma.

Lemma 3.8.10. Suppose that f : X — Y is an embeddable morphism of em-
beddable S-schemes, each of which is a local complete intersection of pure relative
dimension n over S. Let h be a section of a line bundle L over' Y, and suppose that
neither h nor f*h is a zero-divisor. Write Yn—o for the vanishing locus of h, and
Xp—qo for the vanishing locus of f*h.

Then for any locally free sheaf F on'Y , we have an equality of invertible sheaves

(fI‘F)|Xh:O = f!(fh’h:o)'
Proof. This follows from [Har66, Prop. II1.8.8]. More precisely, note that Oy, _,
is represented by the perfect complex of Oy-modules £7! KN Oy (here we use
that h is not a zero-divisor). In addition, by Lemma [3.8.9) f'F is a sheaf, and
it follows from the assumption that neither h nor f*h is a zero-divisor that the

derived tensor products in [Har66l, Prop. I11.8.8] are in our case given by the usual
tensor product ®. (I
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3.8.11. Fundamental classes. In two particular situations, we now construct a nat-
ural map
©:0x = f*Oy — 'Oy
which we call the fundamental class.
We firstly consider what we call the lci situation, which is the case that:

e X and Y are local complete intersections over S of the same relative di-
mension,
e X is normal, and
e there is an open V C X which is smooth over S, whose complement is of
codimension 2 in X, and an open U C Y which is smooth and such that
f(V)ycU.
In this situation, f'Oy is an invertible sheaf by Lemma so by the alge-
braic Hartogs’ lemma, it is enough to specify the fundamental class over V' (note
that X is normal by assumption). Again by Lemma we have f'Oyl|y =
det Q%,/S ® f*(det Q%]/S)_l, so over V, we can define the fundamental class to be
the determinant of the map

The other case we consider is the finite flat situation, in which f: X — Y is a
finite flat map, so that f, is exact, and

[ 'Oy = Homo,, (f.O0x, Oy).
We have the usual trace morphism try : f,Ox — Oy, and we define the fundamen-
tal class f.Ox — Homo, (f+Ox,Oy) by O(1) = try.
Note that if X — Y is a finite flat morphism and X,Y are both smooth over S,
then the morphism X — Y is automatically a local complete intersection. The
following compatibility between these definitions is [Pil20, Lem. 4.2.3.1].

Lemma 3.8.12. Suppose that X — Y is finite flat, and that X, Y are both smooth
over S. Then

~ d
Lx/y — [Qy/s ®o, Ox 4 Q% /sl
and the determinant det(df) € wx,y = f'Oy is the trace map try.

3.8.13. Base change for open immersions. Consider a Cartesian diagram

X x

lf ! lf
Y — Y
If 7 is an open immersion, and f is in either of the finite flat or lci situations, then

sois f’. Since i' = i* and j' = j*, we have j* f' = (f’)"i*, and if f has fundamental
class O, then j*© is the fundamental class of f.

3.8.14. Fundamental classes and divisors. We now briefly recall the results of [Pil20],
§4.2.4], which show that the correspondences we define below are suitably well
behaved on the boundaries of our compactified Shimura varieties.

Let Dx — X, Dy — Y be two effective reduced Cartier divisors with respect
to S, with the properties that f : X — Y restricts to a map f|p, : Dx — Dy, and
the induced map Dx — f~!(Dy) is an isomorphism of topological spaces. Write
X™ Y™ for the smooth loci of X,Y. The following is [Pil20, Lem. 4.2.4.1].
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Lemma 3.8.15. Suppose either that we are in the finite flat situation; or that we
are in the lci situation and that furthermore Dx N X*™ and Dy NY ™ are normal
crossings divisors.

Then the fundamental class © : Ox — f'Oy restricts to a morphism Ox(-Dx) —
f'Oy (—Dy).

3.8.16. Traces and restriction. In this paper we will have to study how Hecke oper-
ators behave with respect to restriction to subschemes of the Shimura variety. This
section contains some preliminary material. Consider the following setup:

e f: X — Y a finite flat map between smooth varieties over a field k.

e D CY is a smooth Cartier divisor.

e f~Y(D)=mnD’ for D' C X asmooth Cartier divisor.
In this setting we have the following;:

e Trace maps on canonical bundles

f«Kx — Ky
and
f+Kp — Kp.
e Adjunction isomorphisms
Kp ~ Ky(D)|p
and

KDI ~ Kx(D/)lpl.

If £ is a line bundle on Y, we can use the projection formula to get a map:
f+«(Kx ®oy L) - Ky ®o, L. We call such a map a twisted trace map. We
use a similar terminology over D. The goal of this section is to prove the following
compatibility between them.

Proposition 3.8.17. There is a commutative diagram

fo(Ex(=(n = 1)D")) ———— Ky

| |

f«(Kp ® Ox(—nD')|p') —— Kp ® Oy (—=D)|p

Here the vertical maps are restriction followed by adjunction, the top horizontal
map comes from the inclusion of Kx(—(n—1)D’) in Kx followed by the trace, and
the bottom horizontal arrow is the twisted trace for f : D' — D and the line bundle
Oy(—D)‘D (note that f*Oy(—D)|D = Ox(—’n,D)‘D/).

Proof. We write T = Oy (—D) for the ideal sheaf of D and 7' = Ox (—D’) for the
ideal sheaf of D’. First consider the following commutative diagram:

f*Iln_l HOmOY (OXa (I)Y)C—> f* HOmOY (OX7 OY) — OY

| |

f« Homo, ;1(Ox /T, Oy [T)—— f. Homo, ;7(Ox /IOx,Oy [T) —— Oy /T

where Homo, (Ox, Oy) is sheaf of Oy-homomorphisms from f.Ox to Oy, which
we view as a coherent sheaf of Ox-modules. By definition Home, (Ox,0y) =

f'Oy.
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Consider first the square on the right: the horizontal maps are evaluation at 1,
while the vertical maps are given by reduction modulo Z, and it is clear that this
square commutes.

Now we consider the left hand square: the horizontal maps are the obvious
inclusions so we must explain why the dotted arrow exists. But a local section s of
't Home, (Ox,Oy) will send Z' into Z (using that Z'" = ZOx) and hence the
reduction of s mod Z factors through Ox /7'

Finally we note that the square in the statement of the proposition tensored with
K;l may be identified with the outer rectangle of this diagram because we have
KX(X)K;l ’ZfIOy Z%moy(OX,Oy). O

3.9. Cohomological correspondences — definitions. Let S be a Noetherian
scheme. Let X, Y be two S-schemes.

Definition 3.9.1. A correspondence C over X and Y is a diagram of S-morphisms:

C
N
X Y
where X, Y, C have the same pure relative dimension over S and the morphisms
p1 and ps are projectively embeddable.

Let F be a coherent sheaf over X and G a coherent sheaf over Y.

Definition 3.9.2. A cohomological correspondence from F to G is the data of a
correspondence C over X and Y and a map T : R(p1)«p5F — G.

The map T can be seen, by adjunction, as a map p5F — piG. It gives rise to a
map still denoted by 7" on cohomology:

RI(X, F) 3 RD(C, p3F) = RT(Y, R(p1).p3F) 5 RI(Y, Q).

3.9.3. Hecke action away from p. Let K = KPK, be a reasonable compact open
subgroup of G1(Ay). Let H? = C°(G1(AP>°)//K?,Z,) be the Hecke algebra away
from p.

We claim that there is an action of H? on RI'(Xg »,w") and RF(XIC?}E, w"). To
this end, let g € G1(A°°P). We will define an endomorphism of RT'(X g, w") which
corresponds to the action of the double class [KPgKP].

We define (for suitable choices of cone decompositions omitted from the notation)
a correspondence:

)(KﬁgKg*1

% K
Xg Xy

where p; is the map induced from the inclusion KNgK¢g~! C K and the functoriality
of BT

The map p; is the composite of the map [g] : Xgrgrg-1 = Xkxng-1k4 (se€3.6.2)
and the natural map X xn,-1x, — Xk deduced from the inclusion KNgKg™ C K
and functoriality of §3.6.1]
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We have a canonical isomorphism piw” —— piw"”, because the construction of
the sheaf w” depends only on the p-divisible group. Moreover, because Xg and
Xkngkg-1 are lci and smooth outside codimension 2 (for a cofinal subset of the set of
all polyhedral cone decompositions), there is a fundamental class p;Ox, — p}Oxy,
extending the trace for the finite étale map p; on the interior, which we can tensor
with piw® to obtain a map pjw" — piw" = piOx, @ piw".

Composing the maps piw” — pijw® and piw® — p'w" we obtain a cohomo-
logical correspondence ©4 : pjw"™ — piw” which induces the operator [KgK] on
cohomology:

(€]
RF(XK7WH) — RF(XKﬂgKgflap;wn) # R’F(XKﬁgKgflap!lwn) g R’F(XKva)

where the last map is induced by the adjunction Tr : R(p;).piw" — w”.
We have a similar definition on cuspidal cohomology. Moreover, all these defini-

tions commute with the action of (O F)(Xp’)+ and therefore we also get an action on

the cohomology RT'(X$*,w") and RI(X$!,w*(—D)).

The characteristic functions of the double classes [KPgK?”] generate HP as a Z,-
module. In Proposition below we prove that when K, = [[,, GSp4(Z,) is
spherical, the actions we just defined of the [KPgKP| are compatible with products
in HP (the composite action of [KPg1KP] and [KPgyKP] is equal to the action of
[KPg1 KP][KPgo KP] decomposed into sum of elementary double classes) so that we
get an action of the Hecke algebra HP.

The difficulties come from the boundary. Away from the boundary, all the cor-
respondences are finite étale and one can follow the discussion of [FC90, Chap. VII,
§3], to show the compatibility. Following that reference, it should be possible to
show in a similar fashion that the action of the double class is compatible with prod-
uct in the Hecke algebra on the compactified Shimura variety, but giving all the
details would involve a delicate study of the composition of the correspondences
at the boundary. We instead give a different ad hoc proof by exhibiting special
complexes computing the cohomology. These complexes are Cousin complexes as-
sociated with the Ekhedal-Oort stratification on the Shimura variety. The action
of all double classes [KPgK?] on the cohomology is given by a canonical action on
the complex. Moreover, each term of the complex is the global sections of a certain
sheaf and the restriction of the sections of this sheaf to the interior of the Shimura
variety is an embedding. We are therefore able to prove that the action of the
double classes is compatible with products in the Hecke algebra because we know
this holds on the non-compact Shimura variety.

Remark 3.9.4. Over Q,, the property that the action of the double class is com-
patible with product in the Hecke algebra follows from [Har90b, Prop. 2.6]. The
strategy of that paper is to define an action of the group Gl(A?) after passing to
the limit over the level K? and then deduce an action of the Hecke algebra at a
finite level, but this strategy requires more work over Z, because at some points
one needs to control the cohomology of finite groups (which vanishes in character-
istic zero). Nevertheless, this is enough to prove that the Hecke algebra HP acts
on the 