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Abstract
We study synchronization properties of networks of coupled dynamical systems
with interaction akin to diffusion. We assume that the isolated node dynamics
possesses a forward invariant set on which it has a bounded Jacobian, then
we characterize a class of coupling functions that allows for uniformly stable
synchronization in connected complex networks—in the sense that there is
an open neighbourhood of the initial conditions that is uniformly attracted
towards synchronization. Moreover, this stable synchronization persists under
perturbations to non-identical node dynamics. We illustrate the theory with
numerical examples and conclude with a discussion on embedding these results
in a more general framework of spectral dichotomies.
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1. Introduction

Network synchronization is observed to occur in a broad range of applications in physics [35],
neuroscience [6,12,20,31] and ecology [8]. During the last 50 years, empirical studies of real
complex systems have led to a deep understanding of the structure of networks [2,21], and the
interaction properties between oscillators, that is, the coupling function [18, 32, 36].
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The stability of network synchronization is a balance between the isolated dynamics and
the coupling function. Past research suggests that in networks of identical oscillators with
interaction akin to diffusion, under mild conditions on the isolated dynamics, the coupling
function dictates the synchronization properties of the network [19, 23–25, 36]. However, it
still remains an open problem to describe the class of coupling functions that lead the network
to persistent synchronization.

Our work contributes to the development of a general theory for coupling functions that
allow for persistent synchronization for a connected complex network. The coupling functions
under consideration appear in a variety of synchronization models on networks (such as the
Kuramoto model [18] and its extensions [1, 5, 27]).

More precisely, we consider the dynamics of a network of n identical elements with
interaction akin to diffusion, described by

ẋi = f (t, xi) + α

n∑

j=1

Wijh(xj − xi), (1)

where α is the overall coupling strength, and the matrix W = (Wij )i,j∈{1,...,n}
describes the interaction structure of the network, i.e. Wij measures the strength of interaction
between the nodes i and j . The function f : R × Rm → Rm describes the isolated node
dynamics, and the coupling function h : Rm → Rm describes the diffusion-like interaction
between nodes. We make the following two assumptions for these functions. Note that below
and throughout the manuscript D2 denotes the Jacobian with respect to the second argument.

Assumption A1. The function f is continuous, and there exists an inflowing invariant open
ball U ⊂ Rm such that f is continuously differentiable in U with

∥D2f (t, x)∥ ! ϱ for all t ∈ R and x ∈ U

for some ϱ > 0.

For instance, the Lorenz system has a bounded inflowing invariant ball, see section 3.2.
In general, smooth nonlinear systems with compact attractors satisfy assumption A1. This
assumption will be generalized in section 5 to also include noncompact sets U .

Assumption A2. The coupling function h is continuously differentiable with h(0) = 0. We
define # := Dh(0) and denote the (complex) eigenvalues of # by βi , i ∈ {1, . . . , m}.

The network structure plays a central role for the synchronization properties. We
consider the intensity of the ith node Vi =

∑n
j=1 Wij , and define the positive definite matrix

V := diag(V1, . . . , Vn). Then the so-called Laplacian reads as

L = V − W.

Let λi , i ∈ {1, . . . , n}, denote the eigenvalues of L. Note that λ1 = 0 is an eigenvalue with
eigenvector 1√

n
(1, . . . , 1). The multiplicity of this eigenvalue equals the number of connected

components of the network.
The following assumption incorporates the coupling and structural network properties.

Assumption A3. We suppose that

γ := min
2!i!n
1!j!m

Re(λiβj ) > 0,

where Re(z) denotes the real part of a complex number z.
This assumption plays a central role in the results. In particular, γ controls the exponential

decay to synchronization in theorem 1. See section 2.2 for a more detailed discussion.
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The dynamics of such a diffusive model can be intricate. Indeed, even if the isolated
dynamics possesses a globally stable fixed point, the diffusive coupling can lead to instability
of the fixed point and the system can exhibit oscillatory behaviour [28].

Note that due to the diffusive nature of the coupling, if all oscillators start with the same
initial condition, then the coupling term vanishes identically. This ensures that the globally
synchronized state x1(t) = x2(t) = · · · = xn(t) = s(t) is an invariant state for all coupling
strengths α and all choices of coupling functions h. That is, the diagonal manifold

M :=
{
xi ∈ Rm for i ∈ {1, · · · , n} : x1 = · · · = xn

}

is invariant, and we call the subset

S :=
{
xi ∈ U ⊂ Rm for i ∈ {1, · · · , n} : x1 = · · · = xn

}
⊂ M (2)

the synchronization manifold. The main result of this paper is a proof that under the general
conditions given above and α sufficiently large, the synchronization manifold S is uniformly
exponentially stable.

Theorem 1 (Synchronization). Consider the network of diffusively coupled equations (1)
satisfying A1–A3. Then there exists a ρ = ρ(f, #) such that for all coupling strengths

α >
ρ

γ
,

the network is locally uniformly synchronized. This means that there exist a δ > 0 and a
C = C(L, #) > 0 such that if xi(t0) ∈ U and ∥xi(t0) − xj (t0)∥ ! δ for any i, j ∈ {1, . . . , n},
then

∥xi(t) − xj (t)∥ ! Ce−(αγ−ρ)(t−t0)∥xi(t0) − xj (t0)∥ for all t " t0. (3)

Hence, the synchronization manifold is locally uniformly exponentially attractive. The
constant ρ depends on the bounds on the Jacobian D2f as set out in assumption A1 and on the
condition number κ(#) = ∥#∥∥#−1∥ of the matrix # (see (27) in the case # is diagonalizable).
In the case that the Laplacian L and # are diagonalizable, C depends on the condition number
of the similarity transformation that diagonalizes these matrices (see lemma 8 for details), so
loosely speaking, it depends on how well the eigenvectors of L and # are orthogonal. If L

and # are non-diagonalizable, then C is related to condition numbers as well, see the proof of
lemma 9 for details. The size of δ can be estimated explicitly if more concrete details about
the system are known, also see remark 15.

Our second main result shows that synchronization is persistent under perturbation of the
isolated nodes. Consider a network of non-identical nodes described by

ẋi = fi(t, xi) + α

n∑

j=1

Wijh(xj − xi), (4)

where fi(t, xi) = f (t, xi) + gi(t, xi). Note that, in this case, the synchronization manifold
S is no longer invariant. We show in this paper that for small perturbation functions gi ,
i ∈ {1, . . . , n}, the synchronization manifold is stable in the sense that orbits starting near the
synchronization manifold S remain in a neighbourhood of S.

Theorem 2 (Persistence). Consider the perturbed network (4) of diffusively coupled
equations fulfilling assumptions A1–A3, and suppose that

α >
ρ

γ
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as in theorem 1. Then there exist δ > 0, C > 0 and εg > 0 such that for all ε0-perturbations
satisfying

∥gi(t, x)∥ ! ε0 ! εg for all t ∈ R, x ∈ U and i ∈ {1, . . . , n} (5)

and initial conditions satisfying ∥xi(t0) − xj (t0)∥ ! δ for any i, j ∈ {1, . . . , n}, the estimate
∥∥xi(t) − xj (t)

∥∥ ! Ce−(αγ−ρ)(t−t0)
∥∥xi(t0) − xj (t0)

∥∥ +
Cε0

αγ − ρ
for all t " t0 (6)

holds.

Note that the additional term Cε0/(αγ − ρ) can be made small either by controlling the
perturbation size ε0 or by increasing αγ . This provides control of the network coherence in
terms of the network properties and coupling strength.

If the Laplacian L is symmetric (i.e. the systems are mutually coupled), its spectrum
is real and can be ordered as 0 = λ1 < λ2 ! λ3 ! . . . ! λn. Moreover, consider
β := mini∈{1,...,m} Reβi , and note that this implies

γ = βλ2.

The following corollary to the above persistence result then shows that the enhancement
of coherence in the network in terms of network connectivity depends on the spectral gap λ2.

Corollary 3 (Synchronization error). Consider the perturbed network (4) with symmetric
Laplacian L and the average synchronization error

es(t) = 1
n(n − 1)

n∑

i,j=1

∥xi(t) − xj (t)∥ for all t " t0,

where the initial conditions xi(t0), i ∈ {1, . . . , n}, are chosen as in theorem 2. Then whenever
αγ = αβλ2 > ρ, one has

lim sup
t→∞

es(t) ! K
ε0

αβλ2 − ρ
,

where K = K(#) is independent of the network size.

This corollary has excellent agreement with recent numerical simulations for
the synchronization transition in complex networks of mutually coupled non-identical
oscillators [26] and generalizes the case studied for nearly identical coupled systems [33].

The paper is organized as follows. In section 2, we discuss our assumptions, ideas of the
proofs as well as how our results relate to previous contributions. In section 3, we illustrate our
main synchronization result with a nonautonomous linear system and a coupled Lorenz system.
Section 4 provides fundamental results on nonautonomous linear differential equations. In
section 5, we provide auxiliary results to prove our main theorems in sections 6 and 7. Finally,
in section 8, we discuss how to generalize this theory using the dichotomy spectrum and normal
hyperbolicity.

Notation. We endow the vector space Rm with the Euclidean norm ∥x∥ =
√∑m

i=1 |xi |2 and
the associated Euclidean inner product. In addition, we equip the vector space (Rm)n = Rnm

with the norm

∥(x1, . . . , xn)∥ := max
i=1,...,n

∥xi∥ where xi ∈ Rm . (7)

Note that linear operators on the above spaces will be equipped with the induced operator norm.
For a given invertible matrix A ∈ Rd×d , the condition number is defined by κ(A) = ∥A∥∥A−1∥.
Note that the condition number depends on the underlying operator norm. Finally, the symbol
Id stands for the identity matrix in Rd .
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2. Discussion of the main results

This section is devoted to relating our results to the state of the art and to explaining the
assumptions and the central ideas of the proofs.

2.1. State of the art

Recent research on synchronization has focused on the role of the coupling function for the
stability of network synchronization. Notably, Pecora and collaborators have developed so-
called master stability functions, which typically use Lyapunov exponents corresponding to
the transversal directions of the synchronization manifold as a stability criterion [15, 24, 33].
In contrast to this approach, we estimate the contraction rate by dichotomy techniques. Our
results show that the synchronization state is locally stable and persistent, and thus stable under
small perturbations. This means that the phenomenon of bubbling [3, 30] and riddling [13]
(which leads to synchronization loss) will not be observed under our conditions, in contrast to
the maximum Lyapunov exponent.

Another aspect of our results is that the synchronization properties do not depend on
diagonalization properties of the Laplacian. Recently, the master stability function has
been extended to include non-diagonalizable Laplacians [22]. If one considers the master
stability function with the maximum Lyapunov exponent as a stability criterion, one cannot
guarantee that an open neighbourhood of the synchronization manifold will be attracted by
the synchronization manifold, nor does it imply persistence of the synchronization. In our
set-up, these properties follow naturally by means of persistence of exponential dichotomies,
which is relevant in applications that are subject to noise and external influences. Note that the
master stability function approach is applicable to a broader class of coupling functions than
the ones we consider, but our approach is constructive and making use of further dichotomy
techniques and normal hyperbolicity our results can be generalized further, as discussed later in
section 8.

In addition, Pogromsky and Nijmeijer [29] use control techniques to show that if the
coupling function is linear and given by a symmetric positive definite matrix, then the
synchronization manifold is globally asymptotically stable for connected networks. Likewise,
Belykh et al [4] develop a connection graph stability method to obtain global synchronization
for the network, by assuming the existence of a quadratic Lyapunov function associated with
the isolated system. In this paper, we tackle only local stability properties, but we consider
a more general class of coupling functions. However, under additional conditions on the
dynamics and coupling functions, it is possible to prove global stability with the techniques
we have developed by applying the mean value theorem instead of using Taylor expansions of
the vector field.

2.2. The assumptions

Assumption A1 concerns the existence of solutions and the boundedness of the Jacobian, this is
the case if the isolated dynamics is dissipative. Assumption A2 makes it possible to characterize
the stability of synchronization by the linearization of h. Assumption A3 guarantees that the
eigenvalues of the tensor (or Kronecker) product L ⊗ # have real part bounded away from
zero (except for the trivial eigenvalue).

These hypotheses basically imply that with a finite value of α, we are able to damp all
the instabilities of the vector field and obtain a stable synchronization state. If, for example,
assumption A3 is dropped, γ may become negative and synchronization may no longer be
possible.
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We illustrate the relevance of assumption A3 with the following example. Consider the
isolated dynamics f : R2 → R2 given by f (x) = −εx, for any ε > 0. Moreover, consider
three coupled systems

ẋ1 = f (x1) + 2α#(x2 − x1) + α#(x3 − x1),

ẋ2 = f (x2) + 2α#(x3 − x2)

ẋ3 = f (x3) + α#(x1 − x3)

with

# =
(

2 1
−17 0

)
and note that L =

⎛

⎝
3 −2 −1
0 2 −2

−1 0 1

⎞

⎠ .

The eigenvalues of L are λ1 = 0, λ2 = 3 + i and λ3 = 3 − i and the eigenvalues of # are
β1 = 1 + 4i and β2 = 1 − 4i. Hence,

γ = −1,

and although the isolated dynamics has a stable trivial fixed point, for any α > ε the origin is
unstable and there are trajectories of the coupled systems that escape any compact set. This
shows that breaking condition A3 can have severe effects on the dynamics of the coupled
systems.

Assumption A3 has not been considered in the literature to our best knowledge. In the
following, we rephrase this condition in the following two special cases.

(i) The spectrum of # is positive. If # has a spectrum consisting of only real, positive
eigenvalues, then A3 has a representation in terms of the Laplacian. In this case, this
condition reads as

Re(λi ) > 0 for all i ̸= 1,

since the Laplacian always has a zero eigenvalue. If the network is connected, this
eigenvalue is simple, and by virtue of the disc theorem, a sufficient condition for all
other eigenvalues to have positive real part is positive interaction strength, i.e. Wij > 0
whenever i is connected to j , and zero otherwise.

(ii) The Laplacian is symmetric. This is the most studied case in the literature. Assume that
the network is connected. Since the spectrum of the Laplacian is real, assumption A3
requires that the real part of the spectrum of # is positive and that the spectrum of the
Laplacian is positive apart from the single zero eigenvalue (or alternatively, that the spectra
of # and the Laplacian are both negative, but note that this is non-physical).

Note in general that the λiβj in assumption A3 describe the eigenvalues of L⊗# transverse
to the synchronization manifold. Since the transverse dynamics is governed by −L ⊗ #, we
precisely obtain synchronization if these have positive real part. It is not sufficient that both
the λi and the βj have positive real part, as their product may still lie left of the imaginary axis.

2.3. Ideas of the proofs

The proofs of our main results rely on identifying the synchronization problem with a
corresponding fixed point problem. We first concentrate on the case of diagonalizable
Laplacians, where diagonal dominance (proposition 6) can be used to show that the
synchronized state is uniformly asymptotically stable. To obtain the claim for general coupling
functions, we make use of the persistence property associated with the equilibrium point
(theorem 5). The main aspect here is to approximate the coupling function by a diagonalizable
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one while keeping control of the contraction rates. Finally, the proof for general Laplacians
follows from the fact that the set of diagonalizable Laplacians is dense in the space of
Laplacians. From these results and the persistence property the main claim follows.

3. Illustrations

Before proving the two main results of this paper, two examples are discussed.

3.1. Nonautonomous linear equations

Consider the nonautonomous linear equation

ẋ = A(t)x (8)

where

A(t) =
(

−1 − 9 cos2(6t) + 12 sin(6t) cos(6t) 12 cos2(6t) + 9 sin(6t) cos(6t)

−12 sin2(6t) + 9 sin(6t) cos(6t) −1 − 9 sin2(6t) − 12 sin(6t) cos(6t)

)
.

This is a prototypical example where the eigenvalues of the time-dependent matrices do not
characterize the stability of a nonautonomous linear system. Indeed, the eigenvalues of A(t)

are −1 and −10, independent of t ∈ R, and a direct computation shows that

x(t) =
(

e2t (cos(6t) + 2 sin(6t)) + 2e−13t (2 cos(6t) − sin(6t))

e2t (cos(6t) − 2 sin(6t)) + 2e−13t (2 cos(6t) − sin(6t))

)

is a solution of the system, which does not converge to 0 as t → ∞.
Consider now two diffusively coupled systems

ẋ1 = A(t)x1 + α#(x2 − x1),

ẋ2 = A(t)x2 + α#(x1 − x2),

where # is a real 2 × 2 matrix. Theorem 1 yields that it is possible to synchronize these two
systems for any coupling matrix with β(#) > 0. Consider the coupling matrix

# =
(

β 1
0 β

)
.

# is in its Jordan form and non-diagonalizable. The transformation y = x1 − x2 leads to

ẏ =
(
A(t) − 2α#

)
y. (9)

Our main result shows that the trivial solution of (9) is stable if α is large enough.
We have integrated (9) using a sixth order Runge–Kutta method with step size 0.001.

We have computed the critical coupling value αc as a function of β. Using a bisection
technique we estimate with precision 10−3 the critical value of αc such that the trivial solution
of equation (9) is stable. In figure 1 we plot the corresponding critical value ρc = βαc.
Hence, we are able to analyse the dependence of ρ on #. The behaviour of ρ appears to be
intricate. For large β, we obtain that ρ tends to a constant; however, as we decrease β, various
changes in the behaviour can be observed. Although the problem is linear, the critical coupling
strength depends nonlinearly on the parameter β. We analyse this dependence in more detail
in section 6.1
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0.01 0.1 1 10
1

100

ρ

Figure 1. ρ = ρ(f, #) as a function of β on a log–log scale for a fixed f given by
equation (8). For small β the slope is −1 in good approximation.

W = a
a

0 1 1
1 0

1 0

Figure 2. The network and its weight matrix. The matrix L = V − W is non-
diagonalizable for every a ̸= 1; here we choose a = 1

3 .

3.2. The Lorenz system

Using the notation x = (u, v, w), the Lorenz vector field is given by

f (x) =

⎛

⎝
σ (v − u)

u(r − w) − v

−bw + uv

⎞

⎠ ,

where we choose the classical parameter values σ = 10, r = 28 and b = 8
3 . All trajectories

of the Lorenz system eventually enter a compact set and therefore they exist for all positive
times. Moreover, the trajectories accumulate in the neighbourhood of a chaotic attractor [34].

Consider the network of three coupled Lorenz systems

ẋi = f (xi) + α

3∑

j=1

WijH(xj − xi), (10)

where the interaction matrix W is given as in figure 2.
We use two different nonlinear coupling functions; for the first, the associated matrix #

is positive definite, whereas for the second, # is a Jordan block. The specific forms of the
coupling functions can be seen in figure 3. We have integrated (10) using a sixth order Runge–
Kutta method with step size 0.0001 and computed the critical coupling αc as a function of β,
and then plotted the value ρc = αcβ (see figure 3). The behaviour of ρ depends in an essential
way on #. This behaviour is further discussed in section 6.1.
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1

100

1010,1
0

0,5

1

1,5

2

Γ =
β 0 0
0 β 0
0 0 β

Γ =
β 1 0
0 β 1
0 0 β

h(x) =

⎛

⎝
βu + v

β sin v + w
βw(1 − u)

⎞

⎠

ρρ

h(x) =
βu + w2

uv + β sin v
βw(1 − u)

Figure 3. Simulation results for ρ for the two coupling functions. For the first case, see
left side, # = βI is positive definite for β > 0, and the behaviour of ρ does not depend
significantly on β. For the second case, # is a Jordan block with eigenvalues equal to
β. In this situation, for large values of β, the critical coupling ρ appears independent
of β, as opposed to the small values of β. In that case, the critical coupling scales as
ρ ∝ β−1.

4. Nonautonomous linear differential equations

Consider the m-dimensional linear differential equation

ẋ = A(t)x, (11)

where x ∈ Rm and A : R → Rm×m is a bounded and continuous matrix function. Recall that
solutions of (11) can be written in terms of the evolution operator , : R × R → Rm×m; the
solution for the initial condition x(t0) = x0 is given by

t ,→ ,(t, t0)x0.

Definition 4 (Uniform exponential stability). Consider the linear system (11) with evolution
operator ,. System (11) is said to be uniformly exponentially stable if there exists K, µ > 0
such that

∥,(t, t0)∥ ! Ke−µ(t−t0) for all t " t0. (12)

The following persistence theorem guarantees that uniform exponential stability is
persistent under perturbations. A proof can be found in [7, lecture 4, proposition 1].

Theorem 5 (Persistence of exponential stability). Consider the linear system (11) and
assume that for K > 0 and µ ∈ R, the evolution operator , satisfies the exponential estimate

∥,(t, t0)∥ ! Ke−µ(t−t0) for all t " t0. (13)

Consider a continuous matrix function V : R → Rm×m such that

δ := sup
t∈R

∥V (t)∥ < ∞.

Then the evolution operator ,̂ of the perturbed equation

ẏ =
(
A(t) + V (t)

)
y
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satisfies the exponential estimate

∥,̂(t, t0)∥ ! Ke−µ̂(t−t0) for all t " t0,

where µ̂ := µ − δK .

There are various criteria to obtain conditions for uniform exponential stability. We shall
use the following criterion for diagonal dominant matrices, which can be found in [7, lecture 6,
proposition 3].

Proposition 6 (Diagonal dominance criterion). Consider the linear system (11) with
complex time-dependent coefficient matrices A(t) = (Aij (t))i,j=1,...,m, and suppose that there
exists a constant µ > 0 such that

Re(Aii(t)) +
m∑

j=1,
j ̸=i

|Aij (t)| ! −µ < 0 for all t ∈ R and i ∈ {1, . . . , m} . (14)

Then the evolution operator , of (11) satisfies

∥,(t, t0)∥ ! Ke−µ(t−t0) for all t " t0.

with K = K(m) " 1.

5. Auxiliary results

In this section, we obtain various exponential estimates for orbits near the synchronization
manifold S of (1). First, we introduce a convenient splitting of coordinates along the
synchronization manifold and complementary to it, and derive the equations with respect
to these coordinates. Then we prove linear stability of the synchronization manifold. Here
we distinguish between diagonalizable and non-diagonalizable Laplacians. The latter case
will follow from approximation results on diagonalizable Laplacians and persistence of the
exponential estimates. Finally, we introduce the concept of a tubular neighbourhood as a final
ingredient to tackle the general proof of nonlinear stability.

In order to treat noncompact absorbing sets U in assumption A1, we reformulate this
assumption as follows.

Assumption A1′. The function f is continuous in the first argument and continuously
differentiable in the second argument, and there exists an open simply connected set U ⊂ Rm

with C1-boundary that is ε-inflowing invariant for some ε > 0, i.e. for all x ∈ ∂U with
inward-pointing normal vector qx , we have

⟨qx, f (t, x)⟩ " ε for all t ∈ R and x ∈ ∂U. (15)

Moreover, there exists a . > 0 such that the Jacobian D2f is uniformly continuous and
bounded on B.(U) :=

⋃
x∈U {y ∈ Rm : ∥x − y∥ < .}, i.e. for some ϱ > 0, we have

∥D2f (t, x)∥ ! ϱ for all t ∈ R and x ∈ B.(U).

Note that if the closure Ū is compact, then uniformity of the inflowing invariance condition
as well as the uniform continuity of D2f and existence of a bound ϱ follow automatically. In
the noncompact case, we require uniform bounds on the .-enlarged neighbourhood B.(U)

for technical reasons.
We first obtain equations that govern the dynamics near the synchronization manifold.

Using a tensor representation, we can write the nm-dimensional system (1) equations by
means of a single equation. To this end, define

X := col(x1, . . . , xn),

510



Nonlinearity 27 (2014) 501 T Pereira et al

where col denotes the vector formed by stacking the column vectors xi into a single column
vector. Similarly, define

F(t, X) := col(f (t, x1), . . . , f (t, xn)).

We can analyse small perturbations away from the synchronization manifold in terms of the
tensor representation

X = 11 ⊗ s + ξ, (16)

where ⊗ is the tensor (or Kronecker) product and 11 = col(1, . . . , 1) ∈ Rn, which is the
eigenvector of L corresponding to the eigenvalue zero. Note that 11 ⊗ s defines the diagonal
manifold with s the state of each node in the synchronous state of the network. We view ξ as
a perturbation to the synchronized state.

The state space Rn ⊗ Rm can be canonically identified with Rnm, which we will use for
shorter notation. The coordinate splitting (16) is associated with a splitting of Rnm as the direct
sum of subspaces

Rnm = M ⊕ N

with associated projections

πM : Rnm → M, πN : Rnm → N.

The subspaces M, N ⊂ Rnm are determined by embeddings from Rm and R(n−1)m, respectively,
induced by the Laplacian L on Rn.

Let us for the moment use the simplifying assumption that L is diagonalizable with
eigenvectors 11, v2, . . . , vn. Then the subspaces M, N have natural representations in terms of
these eigenvectors as

M = span(11) ⊗ Rm, N = span(v2, . . . , vn) ⊗ Rm.

This means that we have ‘natural’ embeddings that induce coordinates on these subspaces:

ιM : Rm → M, s ,→ 11 ⊗ s = col(s, . . . , s),

ιN : R(n−1)m → N, (y2, . . . , yn) ,→
n∑

j=2

vj ⊗ yj .

If we drop the assumption that L is diagonalizable, then we lose the natural choice of an
embedding for N . Note, however, that N is still determined as the eigenspace of all non-zero
eigenvalues.

Note that the norm on Rnm we chose is the maximum over the Euclidean norm on Rm,
see (7). The norm ∥·∥ on Rnm can be restricted to the subspaces M, N and induces norms on
the ‘coordinate’ spaces Rm and R(n−1)m by pullback under the embeddings. Then the induced
norm on s ∈ Rm is given by

∥s∥ιM = ∥ιM(s)∥ = ∥11 ⊗ s∥, (17)

which is precisely the Euclidean norm. Similarly, ιM induces an inner product on M .
Henceforth, we shall identify s ∈ Rm with 11 ⊗ s ∈ M under the isometry ιM .

Using the representation (16) for X ∈ Rnm, given an initial condition X0 = (s0, ξ0),
the corresponding solution to (1) reads as X(t) = (s(t), ξ(t)). In the next result, we derive
differential equations for these two components in a neighbourhood of the synchronization
manifold.
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Proposition 7. The two components of the solution X(t) = (s(t), ξ(t)) satisfy the system of
equations

11 ⊗ ṡ = 11 ⊗ f (t, s) + Rs(s, ξ), (18)

ξ̇ = T (t, s)ξ + Rξ (s, ξ), (19)

where

T (t, s) = In ⊗ D2f (t, s) − α(L ⊗ #) (20)

and R∗ := Rs, Rξ are the remainder functions such that for any ε > 0, there is a δ > 0 such
that for all ∥ξ∥ ! δ, one has ∥R∗(s, ξ)∥ ! ε∥ξ∥.

Proof. By assumption A2, Taylor’s theorem implies that given ε > 0, there exists a δ > 0
such that

h(x) = # x + r(x) with ∥r(x)∥ ! ε∥x∥ whenever ∥x∥ ! δ.

Now we define

Rh(X)i =
n∑

j=1

Wij r(xi − xj ) =
n∑

j=1

Wij r
(
pi(11 ⊗ s + ξ) − pj (11 ⊗ s + ξ)

)

=
n∑

j=1

Wij r
(
pi(ξ) − pj (ξ)

)
,

where pi : Rnm → Rm maps canonically to the ith component of the argument, i ∈ {1, . . . , n}.
The vectors Rh(X)i ∈ Rm, i ∈ {1, . . . , n} define a vector in Rnm. Note that Rh(X) = Rh(ξ)

does not depend on s ∈ M and satisfies the estimate

∥Rh(ξ)∥ ! max
i=1,...,n

(
n∑

j=1

∣∣Wij

∣∣
)

ε 2∥ξ∥ whenever ∥ξ∥ ! δ

2
.

Recall that Lij = δijVi − Wij , so the coupling term can then be rewritten as
n∑

j=1

Wijh(xj − xi) = −
n∑

j=1

Lij# xj + Rh(ξ)i . (21)

The Taylor expansion of F(t, X) around 11 ⊗ s reads as

F(t, 11 ⊗ s + ξ) = F(t, 11 ⊗ s) + D2F(t, 11 ⊗ s)ξ + RF (t, s, ξ)

= 11 ⊗ f (t, s) + In ⊗ D2f (t, s)ξ + RF (t, s, ξ),

where ∥RF (t, s, ξ)∥ ! ε∥ξ∥ when ∥ξ∥ ! δ. An algebraic manipulation of (21) allows a
representation in coordinates (s, ξ) ∈ M ⊕ N of the n equations forming (1):

Ẋ = 11 ⊗ ṡ + ξ̇ = 11 ⊗ f (t, s) + In ⊗ D2f (t, s)ξ − α(L ⊗ #)ξ + RF (t, s, ξ) + αRh(ξ), (22)

where we used L 11 = 0. Hence, the term (L ⊗ #)(11 ⊗ s) vanishes.
Next, we project the differential equation (22) onto the spaces M and N to obtain

differential equations for s and ξ :

11 ⊗ ṡ = 11 ⊗ f (t, s) + πM(RF (t, s, ξ) + αRh(ξ)),

ξ̇ = T (t, s)ξ + πN(RF (t, s, ξ) + αRh(ξ)),

where

T (t, s) = In ⊗ D2f (t, s) − α(L ⊗ #).

Note that both In ⊗ D2f (t, s) and L ⊗ # preserve the subspaces M and N , since In and L

preserve both span(11) and span(v2, . . . , vn), so the projections can be dropped there. #
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5.1. Diagonalizable Laplacians

We now prove stability of the linear flow (20) for ξ ∈ N , along any curve s(t) ∈ S, that is, we
do not assume s(t) to be a solution curve. We first treat the diagonalizable case and then the
non-diagonalizable one. Then, in section 6, we use these results to prove stability of the fully
nonlinear problem.

Lemma 8 (Diagonalizable case). Consider the linearization of (19), given by

ξ̇ = T (t, s(t))ξ, ξ ∈ N (23)

with s(t) ∈ U , and the representations

L = P2P −1 and # = QBQ−1

with P ∈ Rn×n and Q ∈ Rm×m, such that 2 = diag(λ1, λ2, . . . , λn) and B =
diag(β1, . . . , βm). Then there exists a ρ > 0 such that for all coupling strengths

α >
ρ

γ
,

the evolution operator , of (23) satisfies the estimate

∥,(t, t0)∥ ! Kκ(P ⊗ Q) e−(αγ−ρ)(t−t0) for all t " t0,

with K " 1, and where κ(P ⊗ Q) denotes the condition number of P ⊗ Q.

Note that (23) is well-defined on N since T (t, s) preserves the splitting M ⊕ N .
Furthermore, for matrices P ∈ Rn×n and Q ∈ Rm×m, using the properties of induced norm,
we obtain3

∥P ⊗ Q∥ = ∥P ∥∞∥Q∥2 ,

which implies that κ(P ⊗ Q) = κ∞(P )κ2(Q).

Proof of lemma 8. Note that O := P ⊗ Q is an invertible matrix that diagonalizes L ⊗ #,
and the change of coordinates

T̃ (t) = O−1 T (t, s(t)) O = In ⊗ Q−1 D2f (t, s(t)) Q − α 2 ⊗ B (24)

reduces T (t) to m-block diagonal form. Thus, we have

T̃ (t) =
n⊕

i=1

T̃i(t) = diag
(
T̃1(t), . . . , T̃n(t)

)
,

where

T̃i(t) := Q−1 D2f (t, s(t)) Q︸ ︷︷ ︸
Ã(t):=

−α λi B for all t ∈ R.

Since for all t ∈ R, the matrix T̃ (t) is block diagonal, the dynamics given by Ẏ = T̃ (t)Y

preserves the splitting Rnm =
⊕n

i=1 Rm, and hence, its associated evolution operator ,̃ is also
of the form

,̃(t, t0) =
n⊕

i=1

,̃i (t, t0) for all t, t0 ∈ R, (25)

3 We have ∥(P ⊗ Q)X∥ = maxi ∥
∑

j Pij (Qxj )∥2
! ∥Q∥2(maxi

∑
j |Pij |)(maxj ∥xj∥2) = ∥Q∥2∥P ∥∞∥X∥,

from which ‘!’ follows. Equality is reached for X = ξ ⊗ x when ξ and x realize the operator norms for P and Q,
respectively.
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where each ,̃i is the evolution operator of ẏi = T̃i(t)yi . Note that restricting T to N

corresponds to restricting T̃ to the blocks i " 2. The dynamics in each block is determined by

ẏi = (Ã(t) − α λi B)yi . (26)

Now define

ρ̃ := sup
t∈R, s∈U

∥∥Ã(t)
∥∥.

Note that the matrix Ã(t) depends implicitly on s(t) ∈ U , so by assumption A1 we get the
estimate

ρ̃ ! κ(Q)ϱ. (27)

To apply proposition 6, we search for a condition on α such that

Re
(
Ãkk − αλiβk

)
+

∑

1!j!m
j ̸=k

∣∣Ãkj (t)
∣∣ < 0 for all k ∈ {1, . . . , m}. (28)

Since Re(Ãkk) ! |Ãkk|, it is therefore sufficient that

α >

∑m
j=1 |Ãkj |

Re(λiβk)

holds. Note that Re(λiβk) " γ , so if we define
m∑

j=1

|Ãij | ! cρ̃ =: ρ,

where c > 0 depends on the choice of the norm, then by the diagonal dominance criterion
(proposition 6), the evolution operator ,̃i satisfies

∥,̃i (t, t0)∥ ! Ke−(αγ−ρ)(t−t0) for all t " t0. (29)

Finally, using (25) and changing back to the original coordinates, we have

∥,(t, t0)∥ =
∥∥O

( ⊕
i!2 ,̃i (t, t0)

)
O−1

∥∥

! κ(O) maxi!2
∥∥,̃i (t, t0)

∥∥

! Kκ(O) e−(αγ−ρ)(t−t0) for all t " t0. (30)

Note that O−1 maps M and N onto the first and last n−1 of the m-tuples in Rnm, respectively,
so the restriction to N reduces to a direct sum over i " 2 after conjugation with O, while we
can simply estimate κ(O|O−1N) ! κ(O). #

5.2. Non-diagonalizable Laplacian

We now treat the case when the Laplacian is non-diagonalizable and # is diagonalizable. Note
that if # is non-diagonalizable, the results follow from the density of diagonalizable matrices
and the persistence property.

Lemma 9 (Non-diagonalizable Laplacian). Consider the situation of lemma 8 without the
condition that the Laplacian is diagonalizable. Then there exists a ρ̄ > 0 such that for all
coupling strengths

α >
ρ̄

γ
,

the evolution operator , of (23) satisfies the estimate

∥,(t, t0)∥ ! C̄e−(αγ−ρ̄)(t−t0) for all t " t0,

where C̄ = C̄(#, L) " 1.
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The proof of this lemma makes use of persistence of exponential dichotomies and the
density of diagonalizable Laplacians. We first establish the following auxiliary result.

Proposition 10. Let ε > 0 and J be a complex Jordan block of dimension m. Consider

J̃ = J + E,

where E = diag(0, ε, 2ε, . . . , (m − 1)ε). Then there exists an R ∈ Rm×m such that R−1J̃R is
diagonal and

∥R−1ER∥ = bε

with the constant b = b(m).

Proof. Note that J̃ is diagonalizable, since all the eigenvalues are distinct. All corresponding
transformations R are matrices of eigenvectors, upper triangular and can be computed
explicitly. We normalize the eigenvectors such that for ℓ, j ∈ {1, . . . , m}

Rℓj :=

⎧
⎨

⎩

(j − 1)!
(j − ℓ)!

εℓ−1 for all ℓ ! j,

0 otherwise.

It is easy to verify that the elements R−1
ik with i, k ∈ {1, . . . , m} of the inverse of R read as

R−1
ik =

⎧
⎨

⎩

(−1)i+k

(i − 1)!(k − i)!
ε−(k−1) for all i ! k,

0 otherwise.

We have

(R−1ER)ij =
∑

k,ℓ

R−1
ik EkℓRℓj = ε

(−1)i(j − 1)!
(i − 1)!

j∑

k=i

(−1)k(k − 1)

(j − k)!(k − i)!
.

Note that (R−1ER)ii = (i − 1)ε. Likewise, we have (R−1ER)i,i+1 = −iε. Moreover, if
j > i + 1 then (R−1ER)ij = 0, since

j∑

k=i

(−1)k(k − 1)

(j − k)!(k − i)!
= (−1)i

j−i∑

l=1

(−1)l

(l − 1)!(j − i − l)!
= 0.

Therefore, max1"i ̸=m

∑m
j=1 |(R−1ER)ij | = max{(2m − 3), m − 1}ε, and the result

follows. #

Now we are ready to prove our approximation result.

Proposition 11. Let L be a Laplacian with simple eigenvalue zero and 11 its associated
eigenvector. Then for any ε > 0, there exists a matrix L̃ with simple eigenvalue zero and
11 its associated eigenvector such that

(i) L̃ = P 2̃P −1 with a diagonal matrix 2̃ ∈ Rn×n and
(ii)

∥∥P −1(L̃ − L)P
∥∥ ! ε.

Proof. We only need to prove the statement if L is non-diagonalizable. We decompose L in
its complex Jordan canonical form

L = OJO−1,
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where J is a block diagonal matrix. The first block corresponds to the simple eigenvalue zero,
so the first row contains only zeros, that is, J = diag(0, J1, . . . , Jk), where Ji are Jordan
blocks corresponding to non-zero eigenvalues. Without loss of generality, we consider k = 1.

Define v := O−111. By hypothesis, we have L11 = 0, so

Jv = 0. (31)

As each Jordan block has its own invariant subspace, (31) implies v = (1, 0, . . . , 0).
Define E := diag(0, ε, 2ε, . . . , (n − 1)ε) and note that

Ev = 0. (32)

Consider the matrix

L̃ = O(J + E)O−1,

which is diagonalizable. Moreover, by (31) and (32), we obtain that L̃ has zero as a simple
eigenvalue with associated eigenvector 11. By proposition 10, we obtain

J + E = R2̃R−1,

and hence the matrix P = OR diagonalizes L̃. For this reason,

P −1(L̃ − L)P = P −1(OEO−1)P = R−1ER,

and the result follows by proposition 10. #

Proof of lemma 9. As in the diagonalizable case, we consider the linearized equation (23) for
ξ ∈ N along any curve s(t) ∈ U . By proposition 11, there is a diagonalizable matrix L̃ in an
arbitrary neighbourhood of the Laplacian L. We rewrite (23) as

ξ̇ =
[
In ⊗ D2f (t, s(t)) − αL̃ ⊗ #

]
ξ + α

[
(L̃ − L) ⊗ #

]
ξ . (33)

Note that this is a small perturbation of the same equation with diagonalizable Laplacian L̃,
so we can apply the results from section 5.1. Recall that # = QBQ−1 and L̃ = P 2̃P −1 (see
proposition 11). Moreover, consider the change of variables ζ = (P −1 ⊗ Q−1)ξ . We obtain

ζ̇ =
[
In ⊗ Q−1D2f (t, s(t))Q − α2̃ ⊗ B

]
ζ + α

[
P −1(L̃ − L)P ⊗ B

]
ζ. (34)

We treat α
(
P −1(L̃ − L)P ⊗ B

)
ζ as a perturbation of the equation

ζ̇ =
(
In ⊗ Q−1D2f (t, s(t))Q − α(2̃ ⊗ B)

)
ζ. (35)

It follows from the proof of lemma 8 (see (29) for details) that the evolution operator ,̃ of (35)
satisfies

∥,̃(t, t0)∥ ! Ke−(αγ−ρ)(t−t0),

where K does not depend on n as (35) is block diagonal. Theorem 5 (the persistence theorem)
implies that the condition

α∥P −1(L̃ − L)P ⊗ B∥ <
αγ − ρ

K
(36)

leads to an exponential stability estimate for the perturbed equation (33). By proposition 11
(ii), we can choose L̃ such that ∥P −1(L̃ − L)P ∥ ! ε/∥B∥, so (36) is satisfied if taking
ε < (αγ − ρ)/(αK). Hence, setting ρ̄ := ρ + αKε, then for all α > ρ̄/γ the linear flow
,(t, t0) for (33) satisfies

∥,(t, t0)∥ ! Kκ(P ⊗ Q)e−(αγ−ρ̄)(t−t0) for all t " t0,

where the condition number is due to transforming back to the original variables ξ . #
To analyse the solution curves (s(t), ξ(t)) of the nonlinear system (18), (19) we introduce

the concept of a tubular neighbourhood.
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η

Rm

Rm

Sη

∂cylSη

M

∂sideSη

Figure 4. Tubular neighbourhood Sη for n = 2.

Definition 12 (η-tubular neighbourhood). Let S = 11 ⊗ U ⊂ M be a subset of the diagonal
manifold. Then the set

Sη =
{
11 ⊗ s + ξ : s ∈ U and ξ ∈ N, where ∥ξ∥ < η

}
(37)

for a given η > 0 is called the η-tubular neighbourhood of S.

See figure 4 for a schematic illustration of this definition. Note that the directions along N in
which the tubular neighbourhood stretches out do not need to be orthogonal to M .

Assumption A1′ says that the single-node system has a uniformly inflowing invariant set
U ⊂ Rm. A similar result holds in a neighbourhood of the synchronization manifold S in
the coupled network, since the following lemma implies that if the solution curve (s(t), ξ(t))

leaves Sη, then it must do so by ∥ξ(t)∥ growing larger than η.

Lemma 13. Consider assumption A1′ with the ε-inflowing invariant set U ⊂ Rm. Let Ẋ =
F(t, X) describe the dynamics of n uncoupled copies of this system and let G : R×Rnm → Rnm

be a perturbation such that for some r > 0 and δ > 0, one has

sup
t∈R,X∈Sr

∥G(t, X)∥ ! δ <
ε

∥πM∥ .

Then there exists an η ∈ (0, r] such that solution curves (s(t), ξ(t)) of Ẋ = F(t, X)+G(t, X)

can only leave the tubular neighbourhood Sη through

∂cylSη := {11 ⊗ s + ξ : s ∈ U and ∥ξ∥ = η}.

Proof. Choose η such that 0 < η ! r . The boundary of Sη consists of two parts:

∂Sη = ∂cylSη ∪ ∂sideSη,

where ∂sideSη := {11 ⊗ s + ξ : ∥ξ∥ ! η and s ∈ ∂U}.
We consider the dynamics on ∂sideSη. Let q be the inward-pointing normal vector at

s ∈ ∂U . Locally we have ∂sideSη = ∂S ⊕ N , so F + G points inwards at 11 ⊗ q + ξ precisely if
its projection onto M along N has positive inner product with q. Note that we use the isometry
ιM from (17) to endow M with the inner product ⟨ · , · ⟩M induced from ⟨ · , · ⟩Rm , but no inner
product on Rnm is used (nor defined).
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If η is chosen sufficiently small, then Sη is contained within the product space B.(U)n

where we have uniform bounds ∥D2F∥ ! ϱ and ∥G∥ ! δ. It follows that

⟨ιM(q), πM [F(t, 11 ⊗ s + ξ) + G(t, 11 ⊗ s + ξ)]⟩M
= ⟨q, f (t, s)⟩Rm + ⟨q, ι−1

M ◦ πM [D2F(t, 11 ⊗ s + τ ξ)ξ + G(t, 11 ⊗ s + ξ)]⟩Rm

" ε − ∥πM∥(∥D2F∥∥ξ∥ + ∥G∥)
" ε − ∥πM∥(ϱη + δ),

where we applied the mean value theorem with τ ∈ (0, 1) as interpolation variable. Since
∥πM∥δ < ε, there exists an η > 0 such that F + G points inwards everywhere at ∂sideSη. #

Finally, we shall make use of the following lemma, which is a variant on Gronwall’s
lemma.

Lemma 14. Let x(t) ∈ R satisfy the integral inequality

x(t) ! Ce−µ(t−t0)x0 +
∫ t

t0

Ce−µ(t−τ )
(
αx(τ ) + β

)
dτ, (38)

with C, µ > 0 and x0, α, β " 0, whenever x ! δ.
If µ̃ := µ − Cα > 0 and x0 < 1

C

(
δ − β

µ̃

)
, then x(t) is bounded by

x(t) ! Ce−µ̃(t−t0)
(
x0 − β

µ̃

)
+

Cβ

µ̃
for all t " t0, (39)

and in particular x(t) < δ holds for all t " t0.

Proof. The integral inequality is equivalent to the differential inequality

ẋ(t) ! −µx(t) + C
(
αx(t) + β

)
, x(t0) = Cx0,

so by a standard application of Gronwall’s lemma we obtain (39), as long as the solution
satisfies x(t) ! δ. Now assume by contradiction that this assumption is violated. Then there
exists a t1 " t0 such that x(t) = δ for the first time at t = t1. However, the assumption x(t) ! δ

is true up to time t1, so by the previous estimates and the assumption that x0 < 1
C

(
δ − β

µ̃

)
it

follows that x(t1) < δ. This contradiction completes the proof. #

6. Synchronization

In the previous section we have established all auxiliary results to prove our main theorem on
synchronization (theorem 1), which will be restated for convenience.

Theorem (Synchronization). Consider the network of diffusively coupled equations (1)
satisfying A1–A3. Then there exists a ρ = ρ(f, #) such that for all coupling strengths

α >
ρ

γ
,

the network is locally uniformly synchronized. This means that there exist a δ > 0 and a
C = C(L, #) > 0 such that if xi(t0) ∈ U and ∥xi(t0) − xj (t0)∥ ! δ for any i, j ∈ {1, . . . , n},
then

∥xi(t) − xj (t)∥ ! Ce−(αγ−ρ)(t−t0)∥xi(t0) − xj (t0)∥ for all t " t0.

Proof. Set

X(t0) = 11 ⊗ s(t0) + ξ(t0) := col
(
x1(t0), · · · , xn(t0)

)
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where xi(t0) ∈ U and U ⊂ Rm is ε-inflowing invariant. Due to the uniformity assumptions in
A1′, there exists a slightly enlarged neighbourhood B./2(U) ⊃ U that is still ε/2-inflowing
invariant. We set S = 11 ⊗ B./2(U). If we choose the distance bound ∥xi(t0) − xj (t0)∥ ! δ

sufficiently small (depending on the angle between M and N ), then s(t0) ∈ S holds, while we
also have ∥ξ(t0)∥ ! ∥πN∥δ.

By lemma 13 there exists a tubular neighbourhood Sη of positive size η > 0 over S that
is inflowing invariant on the ‘side’ and contained within B.(U)n ⊂ Rnm, so the uniform
assumptions of A1′ hold.

Now lemmas 8 and 9 together imply that there exists a ρ > 0 such that for α > ρ
γ

, the
evolution operator ,(t, t0) for ξ satisfies an exponential estimate with decay rate −(αγ − ρ).
The nonlinear remainder of the flow of ξ can be bounded by an arbitrarily small linear term
when ∥ξ∥ is small, as controlled by η. By variation of constants, equation (19) for ξ is
equivalent to

ξ(t) = ,(t, t0)ξ(t0) +
∫ t

t0

,(t, τ )Rξ (s(τ ), ξ(τ )) dτ. (40)

Now we assume that ∥ξ(t)∥ ! η for all t " t0 and estimate

∥ξ(t)∥ ! Ce−(αγ−ρ)(t−t0)∥πN∥δ +
∫ t

t0

Ce−(αγ−ρ)(t−τ )ε(η) dτ.

Hence, when we choose δ < η
C∥πN ∥ and ε(η) sufficiently small, then we can apply lemma 14

with β = 0 and conclude that

∥ξ(t)∥ ! Ce−µ̃(t−t0)∥πN∥δ for all t " t0,

with µ̃ = αγ − ρ − Cε(η). Thus, if we choose ρ̃ = ρ + Cε(η), then for all α > ρ̃
γ

the
complete solution curve (s(t), ξ(t)) for the nonlinear system is contained in Sη for all t " t0
and converges to the synchronization manifold S with decay rate −(αγ − ρ̃). The explicit
estimate for ∥xi(t) − xj (t)∥ can be recovered from

∥∥xi(t) − xj (t)
∥∥ ! 2∥xi(t) − s(t)∥ ! 2∥ξ(t)∥

and the fact that δ can be chosen smaller to satisfy ∥xi(t) − xj (t)∥ < η for all t " t0. #

Remark 15. Explicit estimates for the size of δ in theorem 1 can be found when more details
of the system are known. For example, if the second derivative of f is bounded, i.e.

∥∥D2
2f (t, x)

∥∥ ! σ for all t ∈ R and x ∈ U,

and the coupling function is linear, i.e. h(x) = #x, then δ can be estimated as

δ = αγ − ρ

4σC∥πN∥ . (41)

Note that for convenience, we ignore effects on the size of δ introduced by estimates at the
boundary of the synchronization manifold. Under these assumptions the remainder Rξ in (40)
consists of RF , the nonlinearities of f , and can be estimated as ∥RF (t, s, ξ)∥ ! σ∥ξ∥2 using
mean value theorem arguments. To conclude the argument, fix δ = η/(2C∥πN∥) and follow
the proof of theorem 1.
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6.1. Behaviour of ρ as a function of #

Our approach is constructive and allows one to estimate the bounds for ρ = ρ(f, #)

whenever specific information on the function h is provided. By lemma 9, it is clear that
the diagonalization properties of the Laplacian have no effect on the bounds for ρ. In the
following, we only discuss symmetric Laplacians L. As an illustration, we look at two cases
for #.

(i) # is symmetric. There exists an orthogonal matrix Q such that # = QBQ−1. Note that
κ(Q) = 1 (i.e. the condition number with respect to the Euclidean norm). From (27), it
follows that

ρ ! c̃ϱ

for some c̃ > 0. The bound for ρ is independent of # for this reason. Note that this can
be observed in the left panel of figure 3.

(ii) # is non-diagonalizable. To treat the non-diagonalizable case, we employ the above
perturbation techniques we developed for the Laplacian, i.e. we approximate # by a
diagonalizable matrix #̃. Note that # can be represented in its Jordan form # = QJQ−1,
and without loss of generality we may assume that J is a single Jordan block. We can
write J̃ = J + E, where E is an ε-perturbation diagonal matrix as in proposition 10.
The approximation #̃ reads as #̃ = Q(J + E)Q−1, and as in proposition 10, if P

denotes the matrix that diagonalizes J + E (i.e. B̃ = P −1(J + E)P is diagonal), then
#̃ = QPB̃P −1Q−1. Hence,

ρ ! cϱκ(QP ) ! cϱκ(Q)κ(P ).

By proposition 10, it is easy to check that

κ(P ) = ∥P ∥∥P −1∥ ! d

εm−1
,

where d > 0 does not depend on ε. The aim is to minimize ρ, which means minimizing
κ(P ). The perturbation size ε should be of the same order as β, since the real parts of the
eigenvalues of J + E must be positive. This can be obtained, for instance, by choosing
ε = rβ for some fixed r ∈ (0, 1). This yields the following bound

ρ ! k

βm−1
,

where k is a constant.

Note the different behaviour for the bound as a function of β between the case when # is
symmetric and when # is non-diagonalizable. This helps to explain the nonlinear behaviour
observed in figure 1 and in the right panel of figure 3.

7. Persistence

As in the previous section, we make use of the auxiliary results from section 5 in order to prove
our main theorem on persistence (theorem 2), which will be restated for convenience.

Theorem (Persistence). Consider the perturbed network (4) of diffusively coupled equations
fulfilling assumptions A1–A3, and suppose that

α >
ρ

γ
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as in theorem 1. Then there exist δ > 0, C > 0 and εg > 0 such that for all ε0-perturbations
satisfying

∥gi(t, x)∥ ! ε0 ! εg for all t ∈ R , x ∈ U and i ∈ {1, . . . , n}
and initial conditions satisfying ∥xi(t0) − xj (t0)∥ ! δ for any i, j ∈ {1, . . . , n}, the estimate
∥∥xi(t) − xj (t)

∥∥ ! Ce−(αγ−ρ)(t−t0)
∥∥xi(t0) − xj (t0)

∥∥ +
Cε0

αγ − ρ
for all t " t0

holds.

Note that the proof of this theorem does not specifically depend on the fact that the
perturbations gi of the nodes are decoupled; the function G below can depend arbitrarily on
the total state X (or can be subject to random perturbations).

Proof of theorem 2. Denote by

G(t, X) = col(g1(t, x1), . . . , gn(t, xn))

the perturbation for the network and note that ∥G∥ ! ε0. As in the proof of theorem 1,
lemma 13 guarantees that there exists an η-tubular neighbourhood Sη such that solutions of
the complete system for (s, ξ) cannot escape along s, when εg, η are sufficiently small.

The perturbed network equation for X = (s, ξ) in Sη now reads as

Ẋ = F(t, X) − αL ⊗ #ξ + Rh(ξ) + G(t, X),

where Rh is the Taylor remainder associated with the coupling function h. Projecting this
equation onto the synchronization manifold yields an equation for the component s of X. On
the other hand, the differential equation for ξ is given by

ξ̇ = T (t, s(t))ξ + R(t, s(t), ξ) + πN(G(t, 11 ⊗ s + ξ)), (42)

see proposition 7. Let ε(η) denote a Lipschitz constant within Sη of R with respect to ξ , which
does not depend on t .

In the same way as in the proof of theorem 2, we obtain a variation of constants formula
for solutions of (42),

ξ(t) = ,(t, t0)ξ(t0) +
∫ t

t0

,(t, τ )
[
R(τ, s(τ ), ξ(τ )) + πN(G(τ, 11 ⊗ s(τ ) + ξ(τ )))

]
dτ.

With initial conditions ∥ξ(t0)∥ ! ∥πN∥δ, lemmas 8 and 9, and the assumption that

∥ξ(t)∥ ! δ1 < η for all t " t0,

this leads to the estimate

∥ξ(t)∥ ! Ce−µt∥πN∥δ +
∫ t

t0

Ce−µ(t−τ )(ε(δ1)∥ξ(τ )∥ + ∥πN∥ε0) dτ ,

where µ = αγ − ρ. We choose δ < η
C∥πN ∥ and δ1, εg sufficiently small and apply lemma 14

with α = ε(δ1), β = ∥πN∥ε0 to find that

∥ξ(t)∥ ! Ceµ̃(t−t0)∥πN∥
(
δ − ε0

Cµ̃

)
+

C∥πN∥ε0

µ̃
for all t " t0, (43)

where µ̃ = αγ −ρ −Cε(δ1). As in the proof of theorem 1, we choose ρ̃ = ρ +Cε(δ1) instead
of ρ and the estimate for ∥xi(t) − xj (t)∥ follows from (43) by adapting δ. #

In particular, note that asymptotically, the bound in (43) converges to C∥πN ∥ε0
αγ−ρ̃

.
Furthermore, it follows from the details of lemma 8 that the constantC depends on the Laplacian
L only through its condition number κ(P ).

521



Nonlinearity 27 (2014) 501 T Pereira et al

Finally, we can prove corollary 3 from the introduction.

Proof of corollary 3. This corollary is a direct consequence of our persistence result. For
simplicity, we now endow the space Rnm with the Euclidean norm

∥X∥2 =
( n∑

i=1

∥xi∥2
2

)1/2
for all X = col(x1, . . . , xn) ∈ Rnm.

Note that in view of (43), for large times, we obtain

∥ξ∥2 =
(

n∑

i=1

∥s − xi∥2
2

)1/2

! 2Kκ2(P ⊗ Q)∥G∥2

µ
(44)

where the contraction rate µ is given by µ = αγ − ρ. For simplicity, we omit the arguments
of the functions s, x, G and ξ .

Moreover, κ2(P ⊗ Q) ! κ2(P )κ2(Q), and since the Laplacian is symmetric, it can
be diagonalized by an orthogonal similarity transformation, which implies that κ2(P ) = 1
together with ∥πN∥2 = 1. Moreover, by the equivalence of norms we obtain

∥G∥2 !
√

n∥G∥ !
√

nε0,

Replacing this estimate in (44) we obtain
(

n∑

i=1

∥s − xi∥2
2

)1/2

! K̃
√

nε0

µ
, (45)

where K̃ = 2Kκ2(Q). We scale equation (45) to obtain
(

1
n

n∑

i=1

∥s − xi∥2
2

)1/2

! K̃ε0

µ
, (46)

and applying the sum of squares inequality

1
n

∑

i=1

ai !

√√√√1
n

n∑

i=1

a2
i

leads to

1
n

n∑

i=1

∥s − xi∥2 ! K̃ε0

µ
. (47)

Together with the triangle inequality we obtain

1
n(n − 1)

n∑

i,j=1

∥∥xj − xi

∥∥
2 ! 1

n(n − 1)

n∑

i,j=1,i ̸=j

(
∥∥s − xj

∥∥
2 + ∥s − xi∥2)

! 1
n(n − 1)

( n∑

j=1

∑

i ̸=j

∥∥s − xj

∥∥
2 +

n∑

i=1

∑

j ̸=i

∥s − xi∥2

)

= 2
n

n∑

i=1

∥s − xi∥2 ! 2K̃ε0

µ
.

This finishes the proof of this corollary. #
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8. Generalizations

Although our set-up is very general and includes nonautonomous systems and non-
diagonalizable Laplacians, the assumptions we make are only sufficient for synchronization,
but not necessary. For instance, let (u, v) = x ∈ R2 and consider as isolated dynamics
ẋ = f (x) with f (x) = (u, u − v), and

ẋ1 = f (x1) + α#(x2 − x1)

ẋ2 = f (x2) + α#(x1 − x2)
with # =

(
1 0
0 0

)
.

Note that in this situation # has an eigenvalue zero, so assumption A3 is violated. However,
this coupled system synchronizes for α > 1/2. This happens as all instabilities occur due to
the first variable, and the coupling # acts solely on this variable. For a numerical example of
a chaotic system displaying synchronization with only one variable coupled, see [24].

The boundedness of the Jacobian D2f in assumption A1′ and assumption A3 are used in
lemma 8 to obtain uniform exponential stability of the linear system (23). For this purpose,
we use the diagonal dominance criterion, see (28) in the proof of lemma 8. It is clear that
one could get uniform exponential stability without the two above-mentioned assumptions.
Note that under reasonable assumptions, a necessary and sufficient condition for uniform
exponential stability (and thus persistent synchronization) is that the dichotomy spectrum of
(23) is contained in the negative half line [17] (see [11] for a comparative study of numerical
methods to approximate the dichotomy spectrum).

For persistent synchronization, we thus only require a dichotomy spectrum in the directions
transverse to the synchronization manifold. Instead we can impose the stricter condition of
normal hyperbolicity (see [10,14] and e.g. [16] in the context of synchronization of networks).
That is, we also require that any exponential contraction tangent to the synchronization
manifold is weaker than in the transverse directions. In other words, the spectra in the normal
and tangential directions must be disjoint and the normal spectrum must be strictly below the
tangential one. In our explicit set-up, this so-called spectral gap condition translates to

ρ − αγ < −r ρ with r " 1.

Under these assumptions we find a stronger form of persistence. Under arbitrary C1-
small perturbations, solutions not only converge into a neighbourhood of the synchronization
manifold but an invariant manifold4

S̃ = {xi = hi(s), s ∈ U ⊂ Rm, 1 ! i ! n}
close to S persists to which these solutions converge. Moreover, a stronger ‘shadowing’ or
‘isochrony’ property holds that any solution curve X(t) that converges to S̃, actually converges
at exponential rate µ̃ to a unique solution curve XS̃(t) on S̃ in the sense that there exists a C

such that for all t " 0
∥∥X(t) − XS̃(t)

∥∥ ! Ce−µt ,

with µ close to αγ − ρ.
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