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The method of steepest descent is used to study the integral kernel of a family of
normal random matrix ensembles with eigenvalue distribution PN (z1, · · · , zN ) =
Z−1

N e−N
∑N

i=1 Vα (zi )
∏

1≤i< j≤N

∣∣zi − z j
∣∣2 ,where Vα(z) = |z|α , z ∈ C and α ∈ ]0, ∞[.

Asymptotic formulas with error estimate on sectors are obtained. A corollary of
these expansions is a scaling limit for the n-point function in terms of the integral
kernel for the classical Segal–Bargmann space. C⃝ 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3688293]

I. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

The investigation of non–Hermitian random matrices, whose elements are independent complex
Gaussian variables without any constraint, began with the work of Ginibre.1 Applying the theory of
Haar measure to the group GL (N , C) of N × N complex matrices, the joint probability distribution
of the eigenvalues has shown to be given by (1.2) with V(z) = |z|2 and the eigenvalue density in the
complex plane, defined by

∫

A
ρN (z)d2z = 1

N
E (# {eigenvalues in A})

for any Borel set A ⊂ C, where E (·) is the expectation with respect to PN, has been shown to
converges to the so-called circular law

ρ(z) =

⎧
⎨

⎩

1
π

if |z| ≤ 1

0 otherwise
. (1.1)

Chau and Yue2 have subsequently introduced ensembles of random normal matrices in the
context of the quantum Hall problem of N electrons in a strong magnetic field, opening a new front of
research in the area of random matrices (see also Ref. 3 for further developments on related subjects).
Since normal matrices are unitarily equivalent to a diagonal matrix, the probability distribution of
eigenvalues for random normal ensembles can be achieved, exactly as in the Hermitian ensembles,
by choosing an appropriated coordinate system that factorizes the eigenvalues contribution from the
rest (see, respectively, Sec. 5.3 of Refs. 4 and 5 for the Hermitian and normal ensembles).

Normal ensembles differ from the Hermitian counterpart by the statistical dependence of matrix
elements even for Gaussian ensembles and, most importantly, by the fact that their eigenvalues are
generically complex. Among the usual questions concerning the statistics of their eigenvalues there

a)Electronic mail: alexei.veneziani@ufabc.edu.br.
b)Electronic mail: tiago.pereira@ufabc.edu.br.
c)Temporary address: Mathematics Department, The University of British Columbia, Vancouver, BC, Canada V6T 1Z2.

Electronic mail: marchett@math.ubc.ca.

0022-2488/2012/53(2)/023303/21/$30.00 C⃝2012 American Institute of Physics53, 023303-1



023303-2 Veneziani, Pereira, and Marchetti J. Math. Phys. 53, 023303 (2012)

are some related with universality that remain unresolved for the normal ensembles. According to
the theory of random matrices, the eigenvalue correlations in Hermitian, and normal ensembles as
well, are given by the determinant of an integral kernel whose asymptotic behavior for large N
governs their decay. The limit integral kernel is well known to be universal for standard models of
Hermitian ensembles (see Ref. 4 and references therein). The scenery for normal ensembles, despite
of certain efforts in this direction (see, e.g., Refs. 5–9, for recent progress towards a Riemann–Hilbert
approach), remains undisclosed.

The present work addresses the integral kernel of ensembles of normal matrices weighted by
e−NV with V depending only on the absolute value of eigenvalues. We apply the steepest descent
method to obtain scaling limits for the integral kernel, including the first error term in power of 1/N.
Our results, regarding the bulk universality in the strong (or maximal) non–Hermiticity regime, can
be extended for a large class of radial symmetric potentials V satisfying condition (1.3) but we shall
restrict ourselves to a sub class of potentials (1.7), for simplicity. Although the n–point correlation
functions are currently known to be asymptotic, in the bulk, to the Ginibre correlations for a rather
large class of models (see, e.g., Refs. 5,7, and 8 ), no asymptotic expansions in sectors for the integral
kernel have been provided until now for models with radial symmetry.

The eigenvalue probability distribution of the ensemble of random normal matrices is given by

PN (z1, · · · , zN ) = Z−1
N e−N

∑N
i=1 V (zi )

∏

1≤i< j≤N

∣∣zi − z j
∣∣2 (1.2)

with potentials V : C −→ R satisfying the properties: (i) V is continuous and (ii)

lim
|z|→∞

(
V (z)

2
− log z

)
=∞ (1.3)

to avoid the eigenvalues escape to infinity (see, e.g., Saff and Totik10). Equation (1.2) can be written
as

PN (z1, · · · , zN ) = 1
N !

det
(
KN

(
zi , z j

))N
i, j=1 (1.4)

with KN being the (Cristoffel–Darboux) integral kernel

KN (z, w) = e−
N
2 V (z)e−

N
2 V (w)

N∑

j=1

φ j (z)φ j (w), (1.5)

where
{
φ j
}N

j=1 is the set of the orthonormal polynomials with respect to the inner product (·, ·)νN

with weight

dνN (z) = e−N V (z)d2z,

absolutely continuous with respect to Lebesgue measure d2z on C ≈ R2, and the n-point correlation
function associated to PN can be written as

RN
n (z1, · · · , zn) = det

(
KN

(
zi , z j

))n
i, j=1 . (1.6)

The statistics of the eigenvalues are thus given by the asymptotic behavior of the integral kernel.
The main result of this paper is as follows.

Theorem 1.1: Let

Vα (z) = |z|α , α > 0 (1.7)

be a family of radially symmetric potentials,

S(τ, K ) =
{
ζ ∈ C : 0 < |ζ | < K , |arg ζ | <

τ

2

}

be a sectorial domain (on the Riemann surface of the logarithm) of opening τ and radius K and, for
each 0 < δ < 1, let γ = γ (α, δ) be such that

αγ + δ = 1.
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Let K α
N stand for the integral kernel (1.5) when V = Vα . Then

1
N δ+2γ

K α
N

(
Z

N γ
,

W
N γ

)
= α2

4π

(
Z W̄

) α
2−1 eN δ

(
(Z W̄)

α
2 − |Z |α

2 − |W |α
2

) (
1 + Eα,δN (Z W̄ )

)
(1.8)

holds with
∣∣∣Eα,δN (ζ )

∣∣∣ ≤ O
(
N−δ/2) (1.9)

whenever ζ ∈ S
(
θ/
√

N , (2/α)2/αN 2(1−δ)/α
)

for any θ ≥ 0 and large enough N.
In particular, taking δ ↗ 1 and, consequently, γ ↘ 0 we obtain

1
N

K α
N (Z , W ) = α2

4π

(
Z W̄

) α
2−1 eN

(
(Z W̄)

α
2 − |Z |α

2 − |W |α
2

) (
1 + Eα,1N (Z W̄ )

)
(1.10)

with O
(

1/
√

N
)

error for Z W̄ ∈ S
(
θ/
√

N , (2/α)2/α
)

.

Remark 1.2: The parameter δ < 1 has been introduced to ensure that the eigenvalues are
“sampling” in the bulk, out of any fixed compact domain containing the origin. The case of interest
for applications is the limit point δ = 1. The limit, as N goes to infinity, of any function involving
the asymptotic expression (1.10) is called bulk scaling limit of that function. The weight e−N Vα (x),
with α an even positive integer and x a real number, are called Freud weight in the literature on
Hermitian ensembles and corresponding orthogonal polynomials.

Remark 1.3: The restriction to a sector S(τ , K) of opening τ that shrinks with 1/
√

N is an
artifact of our method. Equation (1.8) is expected to hold for Z W̄ ∈ S(τ, K ), with K = K(τ ) > 0
for 0 ≤ τ < 4π /α, but our estimates on the error for replacing a sum by an integral, giving by the
Euler–Maclaurin sum formula, break down except for sectors S(θN−β , K) with θ ≥ 0 and β ≥ 1/2
(see (4.33) and following equations). Numerical calculations performed in Ref. 11 for α ≥ 2 indicate
that (1.8) might hold for Z W̄ ∈ S(4π/α, K ) with an error decaying faster than any power of N for
some K < 1 (see also the next remark for an improved and simple estimate for α = 2). There, a
different error

sup
|z|,|w|<(2/α)1/α ;|arg(zw̄)|<2π/α

∣∣∣∣
α2

4π
(zw̄)

α
2−1 eN δ

(
(zw̄)

α
2 − |z|α

2 −
|w|α

2

)

Eα,1N (zw̄)
∣∣∣∣

denoted by RαN , has been considered.

Remark 1.4: Taylor remainder formula can be used to estimate the difference between the
Taylor polynomial SN and the function fN, respectively defined by (3.3) with δ = 1 (see also (4.4))
and by the infinite sum with the same summand. For α = 2, fN(ζ ) = NζeNζ /π . By (3.2), together
with the Lagrange remainder, one gets (1.10) with the error estimator function satisfying |EN(ζ )|
= O(N− 1/2(e|ζ |)Ne−N(1 − a)Reζ ), for some 0 < a < 1 and large enough N (see calculations in
Appendix A). We observe that (1.10) with α = 2 holds with supζ∈S̄(τ,K ) |EN (ζ )| = O(1/

√
N ) for

ζ = Z W̄ in a sectorial domain S(τ , K) with K = K(τ , a) > 0 given by smallest solution of
Ke− (1 − a)Kcos (τ /2) + 1 = 1.

Remark 1.5: The asymptotic behavior (1.10) for α = 2, without the first error term, was
established in Ref. 6. See Lemma 1.2 of Ref. 8 and references therein for a local estimate on the
difference between the integral kernel and its scaling limit for real-analytic potentials V(z) in a
neighborhood of a point z0 inside the droplet (i.e., in the bulk).

It follows from Eqs. (1.10) and (1.6) that normal ensembles with the class of potentials Vα are
universal alike the Hermitian ensembles (see, e.g., Subsection 5.6.1 of Refs. 4 and 12, for recent
results):
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Corollary 1.6: Let r, z1, . . . , zn be n + 1 complex numbers and write

Zi = r + zi√
πK α

N (r, r )
. (1.11)

Then, the following scaling limit for the n–point function

lim
N→∞

1
πn K α

N (r, r )n
RN

n (Z1, . . . , Zn) = det
(
K
(
zi , z j

))n
i, j=1 (1.12)

holds uniformly for r in any compact set of the open set
{
z ∈ C : 0 < |z| < (2/α)1/α

}
, where

K(z, w) = 1
π

e
(

zw̄− |z|2
2 −

|w|2
2

)

(1.13)

is the integral kernel for the classical Segal–Bargmann space of entire functions. The bulk scaling
limit (1.12) is universal in the sense that it is independent of the family of potentials Va.

We shall address this and other issues related with the conformal invariance of the integral kernel
(1.5) in a forthcoming paper.13 Since the cancellations involved make the implication of (1.12) far
from being straightforward, a complete, although short, proof has been included in Appendix B.

For n = 2, (1.12) reads

lim
N→∞

1
π2 K α

N (r, r )2
RN

n (Z1, Z2) = (K(z1, z1)K(z2, z2)−K(z1, z2)K(z2, z1))

= 1
π2

(
1− e−|z1−z2|2

)
, (1.14)

a result already obtained for certain radial potentials (see Theorem 1 of Ref. 5) and for a large class of
potentials (see Theorem 1.1 of Ref. 7). For any n ∈ N, (1.12) has been established for real-analytic
potentials V (see Proposition 7.4 of Ref. 8).

Under the assumption that (1.10) can be extended to the sectorial domain S(4π /α, K) (this
actually holds for α = 2. See Appendix A), a change of variables in the integral Kernel by the
function ϕN (z) = (z/

√
N )2/α , which maps conformally {|z| < Kα/2N1/2} into S(4π /α, K), would

yields

lim
N→∞

ϕ′N (z) K α
N (ϕN (z) ,ϕN (w))ϕ′N (w) = K(z, w), (1.15)

where K(z, w) is the integral kernel given by (1.13). This notion of universality has been called
conformal universality in Ref. 11. The estimates in Appendix A establish the pointwise limit (1.15)
in C ×C for α = 2.

Theorem 1.1 will be proven in Sec. IV. Sections II and III contain preliminary materials. The
technical part of our result concerns with the error estimation of Euler–Maclaurin formula. Different
methods needs to be employed depending on the regions considered in the sum. Appendix A
estimates the Taylor remainder of (3.3) for δ = 1 and α = 2 and Appendix B proves Corollary 1.6.

II. ENSEMBLE OF RANDOM NORMAL MATRICES

We begin with the following:

Definition 2.1: By normal ensembles we mean a probability measure

P(MN )d MN = Z−1
N e−NTrV (MN )d MN (2.1)

on the set of N × N complex matrices MN supported on the variety
[
MN , M∗

N

]
= 0 and invariant

by unitary conjugation M̃N = U ∗
N MN UN :

P (MN ) d MN = P
(
M̃N

)
d M̃N . (2.2)

The elements mi j = m R
i j + im I

i j , 1 ≤ i ≤ j ≤ N of MN in the normal ensemble cannot be
picked independently according to any product measure, absolutely continuous with respect to the
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Lebesgue measure
∏

1≤i≤ j≤N dm R
i j dm I

i j in RN 2+N , even when the weight e−NTrV (MN ) is Gaussian,
in view of the constraint on elements mij with i > j.14 So, the elements of MN when sampling on
normal ensembles are always statistically dependent. Note that the set of normal matrices whose
eigenvalues have multiplicity 1 is open, dense in RN 2+N and has full measure (see Ref. 4 for a proof
in the Hermitian ensembles).

As MN is normal, MN is unitarily equivalent to a diagonal matrix of eigenvalues and there exist
UN satisfying U−1

N = U ∗
N and

MN = UN-N U ∗
N (2.3)

with-N = diag{z1, . . . , zN}, ordered according to their absolute value: |zi| ≤ |zj| if i < j. Following
Sec. 5.3 of Ref. 4 with few adjustments (see Refs. 5 and 17), the spectral decomposition (2.3)
considered as a change of variables MN

ϕ/−→
(
-N , UN mod T N

)
yields

P(MN )d MN = Z−1e−N
∑N

i=1 V (zi ) J (z, p)
∏

1≤i≤N

d2zi

∏

1≤ j≤l

d2 pk, (2.4)

where {pi }l
i=1 with 2l + N = N2, are variables associated with the eigenvectors of M, d2z denotes

the Lebesgue measure on C and

J (z, p) =
∏

1≤i< j≤N

∣∣zi − z j
∣∣2 f (p)

is the Jacobian of ϕ, with f a function depending only on the eigenvectors variables {pi }l
i=1. The

eigenvalue probability distribution (2.1) of this ensemble is obtained integrating (2.4) with respect
to {pi }l

i=1.

The n-point correlation function is defined by (see, e.g., Ref. 15)

RN
n (z1, · · · , zn) = N !

(N − n)!

∫
PN (z1, · · · , zN )

N∏

i=n+1

d2zi (2.5)

and it can be written as (1.6). Stochastic processes of this form are called random determinantal
point fields.16 The present work concerns with the asymptotic analysis of the integral kernel (1.5)
and its implications to the limit of the n-point correlation function. We have seen that the limit of the
2-point correlation (1.14) can be read directly from the asymptotic formula (1.10). The eigenvalue
density ρVα , associated with the normal ensemble defined by Vα , is by (1.10) given by

ρVα (z) = lim
N→∞

1
N

RN
1 (z) = lim

N→∞

1
N

K α
N (z, z) = α2

4π
|z|α−2 (2.6)

for |z| ≤ (2/α)1/α (see Remark 3.4, for more comment on this). This, together with Theorem 4.1 of
Ref. 17 and the uniqueness of the equilibrium measure, implies that ρVa (z)d2z and the equilibrium
or extremal measure dσ (z) (the infimum over all compactly supported Borel probability measures
µ on C of the energy I(µ) associated with a charge distribution µ, in the presence of an external
potential Vα) are the same,

dσ (z) = 1
π

(
/V̂α

)
(z)d2z = 1

π
(∂z∂z̄ Vα) (z)1|z|≤(2/α)1/α (z)d2z = α2

4π
|z|α−2 d2z,

where V̂α is the upper envelop of Vα by subharmonic functions f of (at most) logarithmic growth
at infinity, f(z) ≤ log+ |z|2 + C for some C < ∞, and the circular domain

{
|z| ≤ (2/α)1/α

}

=
{

V̂α(z) = Vα(z)
}

(see, e.g., the paragraph “the droplet” of Ref. 8 and references therein) is
determined by 2r− 1 = αrα − 1, i.e., the tangency point r* of 2log+ r + Cα and rα , r ≥ 0.

III. INTEGRAL KERNEL OF NORMAL ENSEMBLES DEFINED BY Vα

AND VARIOUS ESTIMATES

The present section is devoted to preliminary results on the integral kernel (1.5).
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Let L2 (C, ν) denote the Hilbert space of square-integrable complex-valued functions

∥ f ∥2
ν =

∫

C
| f (z)|2 dν(z) <∞

with respect to a positive finite Borel measure ν on C which, in order to ensure that all analytic
polynomials of Ref. 18 belong to the space is assumed to satisfy

∫

C
|z|2n dν(z) <∞ , n ∈ N .

If PN (C, ν) denotes the N-dimensional linear vector space of analytic polynomials of degree less
than or equal N − 1, endowed with the inner product

(p, q)ν =
∫

C
p(z)q(z)dν(z), (3.1)

we have

Proposition 3.1: For each N ∈ N, the monomials

φαj (z) =
√

α

2π1 (2 j/α)
N j/αz j−1

with j = 1, . . . , N, form an orthonormal set in PN
(
C, ναN

)
with respect to

dναN (z) = e−N |z|αd2z, α > 0.

The integral kernel (1.5) reads in this case

K α
N (z, w) = e−

N
2 |z|αe−

N
2 |w|α K̃ α

N (z, w) , (3.2)

where

K̃ α
N (z, w) = α

2π

N∑

j=1

N 2 j/α (zw) j−1

1 (2 j/α)
(3.3)

is a reproducing kernel on PN
(
C, ναN

)
.

Remark 3.2: For the Bergman space A2(2) of square-integrable single-valued analytic functions
on a compact domain 2, there always exist a complete set of orthonormal polynomials

{
φ j (z)

}∞
j=1

and the sum
N∑

j=1

φ j (z)φ j (w) converges, as N goes to infinity, to the integral kernel

K̃ (z, w) =
∞∑

j=1

φ j (z)φ j (w),

uniformly for z, w in 2.19 This is not necessarily the case for an unbounded domain but the same
properties hold for Segal–Bargmann spaces A2 (C; ν) of single–valued analytic functions in C,
square-integrable with respect to e−|z|2 d2z. We call the reader’s attention to the N dependence on
the inner product (3.1) and the fact that this dependence affects also (3.2). As one sees from (1.10),
together with

|z|α

2
+

|w|α

2
−ℜe (zw̄)α/2 = 1

2

∣∣zα/2 − wα/2
∣∣2 ≥ 0,

(equality if and only if z = w) and Eq. (2.6), K α
N (z, w) goes to 0 for z ̸= w and diverges for z = w,

as N→∞.
We shall use (3.3) to obtain an asymptotic expression as stated in Theorem 1.1.
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Proof of Proposition 3.1: We need to verify that the monomials are orthogonal with respect to
the inner product (3.1). Writing

φ j (z) = z j−1

√
2π I j

with z = reiθ , we have
(
φk (z) ,φ j (z)

)
ναN

= 1

2π
√

Ik I j

∫
zk−1z j−1e−N |z|α(z)d2z

= 1
√

Ik I j

∫ ∞

0
rk+ j−1e−Nrαdr

1
2π

∫ 2π

0
eiθ( j−k)dθ = δk, j ,

with the Kronecker delta function δk, j = 1 if k = j and 0 otherwise, provided

I j =
∫ ∞

0
r2 j−1e−Nrαdr = N−2 j/α

α
1

(
2 j
α

)
.

Consequently, any analytic polynomial p(z) in PN
(
C, ναN

)
can be written as

p(z) =
N∑

j=1

c jφ j (z) (3.4)

with Fourier coefficients

c j =
(
φ j , p

)
ναN

=
∫

C
φ j (w)p(w)e−N |w|αd2w. (3.5)

Inserting (3.5) into (3.4), gives p(z) =
(

K̃ α
N (z, ·), p

)

να
where

K̃ α
N (z, w) =

N∑

j=1

φ j (z)φ j (w) = α

2π

N∑

j=1

N 2 j/α (zw) j−1

1 (2 j/α)
. (3.6)

!

Looking for an asymptotic expansion of (3.2), a complex valued function is defined on the
positive real line R+ = (0,∞) coinciding with the summand of the integral kernel (3.6) on N. For
fixed numbers α > 0, 0 < δ < 1, ζ ∈ C\ {0} and N a positive integer, let gζ : R+ −→ C be given by

gζ (x) =

(
N

2δ
α ζ
)x

1 (2x/α)
, (3.7)

where ζ x = exlog ζ is determined by the logarithm log ζ = log r + iθ , ζ = reiθ , r ≥ 0 and −π < θ

< π , defined in the slit plane cut along the negative real axis from the origin to infinity. Note that
|gζ (x)| = g|ζ |(x).

Lemma 3.3: Under the above conditions on α, δ, ζ , and N, the real valued function g|ζ | : R+ −→
R has a global maximum

g|ζ |(x) ≤ max
x≥0

g|ζ |(x) = g|ζ |(x∗)

at x* = x*(α, δ, |ζ |, N) > 0. For N large enough so that N > N0,

N0 = max

((
k
|ζ |

) α
2δ

,
(α

2
|ζ | α2

) 1
1−δ

)

(3.8)

with k a large universal constant, the inequality

0 < x∗ < N
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holds and

g|ζ |(x∗) = 1√
2π

|ζ | α4 N
δ
2 exp

(
|ζ | α2 N δ

) (
1 + O

(
1

N δ

))
(3.9)

x∗ = α

2
|ζ | α2 N δ − α

4
+ O

(
1

N δ

)
(3.10)

Proof: Differentiating g|ζ |(x) with respect to x, we have

g′|ζ |(x) = g|ζ | (x)
(

log
(

N
2δ
α |ζ |

)
− 2
α
ψ

(
2
α

x
))

, (3.11)

where ψ(x) = 1′(x)/1(x) is the digamma function. Since g|ζ |(x) does not vanish and ψ(x) belongs to
a Pick class of functions that can be analytically continued through R+ (see, e.g., Ref. 20), as x varies
in the semi-line ψ(x) increases monotonously from −∞ to ∞ – alternatively, ψ(x) is monotone

increasing since the trigamma functionψ1(z) = ψ ′(z) =
∞∑

n=0

1/(z + n)2 is strictly positive (see, e.g.,

Ref. 21) – and the maximum of g|ζ | is attained at the unique solution x = x* of

log
(

N
2δ
α |ζ |

)
− 2
α
ψ

(
2
α

x
)

= 0. (3.12)

For N so large that the asymptotic expansion21

ψ (y) ∼ log y + 1
2y
−

∞∑

j=1

B2 j
1

2 j y2 j
(3.13)

of digamma function at y = N
2δ
α |ζ | can be applied (i.e., y > k, where k is the constant mention in

(3.8)), we have by (3.12)

log
(
N δ |ζ | α2

)
= log

2
α

x∗ + α

4x∗
+ O

(
1

x∗2

)

or equivalently,

αN δ |ζ | α2
2

= x∗ + α

4
+ O

(
1
x∗

)

which establishes (3.10). The coefficients B2j in (3.13) are the Bernoulli numbers:

t
et − 1

=
∞∑

n=0

Bn
tn

n!
.

For (3.8), it suffices to solve αN δ |ζ | α2 /2 ≤ N for N. For (3.9), we plug (3.10) into g|ζ |(x*). As
x* is order Nδ therefore is large enough for applying Stirling formula,

g|ζ |(x∗) =

(
N

2δ
α |ζ |

)x∗

1
( 2
α

x∗
)

=
√

x∗

απ

( αe
2x∗

) 2
α

x∗ (
|ζ | N

2δ
α

)x∗
(

1 + O
(

1
N δ

))

=
|ζ | α4√

2π
N

δ
2 eN δ |ζ |

α
2

(
1 + O

(
1

N δ

))
. (3.14)

!

Remark 3.4: Lemma 3.3 still holds for δ = 1 provided 0 < |ζ | ≤ (2/α)2/α . Note that x* = N −
α/4 + O(1/N) < N for |ζ | = (2/α)2/α , which defines the domain boundary of the equilibrium density
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(2.6) (by (3.2), (3.6), (3.7), and (1.8) ζ = Z W̄ with |Z|, |W| ≤ (2/α)1/α , and |ζ | is less or equal the
square of the this bound).

The limit limN→∞ K̃ α
N (z, w)/N calculated at zw̄ = ζ/N 2/α , given by the series

(α/2π )
∞∑

j=1

ζ j−1/1 (2 j/α) ,

converges uniformly in compact sets of C to an entire function of ζ of order α/2, whose maximum
is determined, essentially, by a single term of the series, the so-called central index j* = j*(|ζ |)
(see, e.g., Ref. 22). The next result estimates the range of indices j in (3.6) that contribute for its
asymptotic expansion for large N.

Lemma 3.5: Let x be a point that is at least N
δ
2 log N away from the global maximum (3.10) of

g|ζ |(x), that is,
∣∣x − x∗

∣∣ ≥ N
δ
2 log N . (3.15)

Then,

g|ζ | (x) ≤ max
(
g|ζ | (x+) , g|ζ | (x−)

)
, (3.16)

where x± = x∗ ± N
δ
2 log N and

g|ζ | (x±) = 1

N 2 log N/(α2|ζ |α/2)
g|ζ |

(
x∗
) (

1 + O
(

log3 N
N δ/2

))
. (3.17)

Proof: Equation (3.16) follows by uniqueness of the maximum value. For (3.17), we repeat the
estimates that led to (3.14) with x± in the place of x*:

g|ζ | (x±) =
√

x±

απ

(
eαN δ |ζ | α2

2x±

)2x±/α (
1 + O

(
1

N δ

))
. (3.18)

Plugging

x± = α

2
|ζ | α2 N δ ± N

δ
2 log N − α

4
+ O

(
1

N δ

)

into each term that appears in (3.18), yields

√
x±

απ
=

√
N δ |ζ | α2

2π

(
1 + O

(
log N

N
δ
2

))
,

eαN δ |ζ | α2
2x±

= e
(

1 ± 2

α |ζ |α/2

log N
N δ/2

− 1

2 |ζ |α/2

1
N δ

+ O
(

1
N 2δ

))−1

= exp
(

1∓ 2

α |ζ |α/2

log N
N δ/2

+ 2
α2 |ζ |α

log2 N
N δ

+ 1

2 |ζ |α/2

1
N δ

+ O
(

log N
N 3δ/2

))
,

where we have used

e
1 + κ

= exp (1− log(1 + κ)) = exp
(

1− κ + κ2

2
+ O

(
κ3)

)

and, therefore,
(

eαN δ |ζ | α2
2x±

)2x±/α

= exp
(

|ζ |α/2 N δ − 2

α2 |ζ |α/2 log2 N
)(

1 + O
(

log3 N
N δ/2

))
.

Replacing in (3.18), together with (3.9), results (3.17). !
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We need one more ingredient.

Lemma 3.6: Let f : [a, b] −→ R be a convex function:

f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y)

for any x, y ∈ [a, b] and 0 < λ < 1and let

P : a = x0 < · · · < xK = b

be the partition of [a, b] into K equally spacing subintervals of length /:

x j = a + j/, j ∈ {0, . . . , K } .

Define tj ∈ [xj, xj + 1] by the mean value theorem for integration,
∫ x j+1

x j

f (x) dx = f
(
t j
)
/. (3.19)

Then, the error in the trapezoidal approximation to the integral

6( f ; P) :=
K−1∑

j=0

(∫ x j+1

x j

f (x) dx − 1
2

(
f
(
x j
)
+ f

(
x j+1

))
/

)

(3.20)

is bounded by

0 ≥ 6( f ; P) ≥
(
− f (t0)

2
+ f (x1)

2
+ f (xK )

2
− f (tK )

2

)
/. (3.21)

Proof: Without loss of generality, we suppose that f is a positive convex function. Let
{
k j
}2K

j=0
be a numerical sequence defined by

k2 j =
∫ x j+1

x j

f (x) dx,

k2 j+1 = f
(
x j+1

)
/ (3.22)

for j ∈ {0, . . . , K − 1} and note that, by the mean value theorem (3.19),

k2 j = f
(
t j
)
/ (3.23)

for some tj ∈ [xj, xj + 1]. We shall prove, by a geometric argument together with the convexity of f,
that the following inequality:

ki ≤
ki+1 + ki−1

2
(3.24)

holds for each i ∈ {1, . . . , 2K − 1}.
Since f is convex, the inequality (3.24) for i = 2j:

∫ x j+1

x j

f (x) dx = k2 j ≤
k2 j+1 + k2 j−1

2
=

f
(
x j+1

)
+ f

(
x j
)

2
/

is verified comparing the area under the function f in the interval [xj, xj + 1] (left side of (3.24)) with
the area of a trapezoid formed by the points (xj, 0), (xj + 1, 0), (xj, f(xj)), and (xj + 1, f(xj + 1)) (right
side of (3.24) see Figure 1).

Once again, by convexity of f, the inequality (3.24) for i = 2j + 1:

f
(
x j+1

)
/ = k2 j+1 ≤

k2 j + k2 j+2

2
= 1

2

∫ x j+2

x j

f (t) dt (3.25)

can be verified comparing the area under the function f in the interval [xj, xj + 2] (2 × the right side
of (3.25)) with the area of a rectangle of base in the interval [xj, xj + 2] and height f(xj + 1) (2 × the
left side of (3.25) see Figure 1).
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xj tj xj+1 tj+1 xj+2

f(xj+2)

f(tj+1)

f(xj+1)

f(tj)

f(xj)

FIG. 1. Geometric representation of the argument leading to inequality (3.24).

The later assertion is facilitated if the rectangle is replaced by a trapezoid of same area obtained
by rotating the horizontal segment at the top around the point (xj + 1, f(xj + 1)) until it becomes
tangent to the graph of f at that point.

Now let us consider the sum

61 =
2K∑

j=0

(−1) j k j = k0 − k1 + · · ·− k2K−1 + k2K

= k0

2
−

K−1∑

j=0

(
k2 j+1 −

k2 j + k2 j+2

2

)
+ k2K

2
(3.26)

= k0 −
k1

2
+

K−1∑

j=1

(
k2 j −

k2 j−1 + k2 j+1

2

)
− k2K−1

2
+ k2K . (3.27)

From (3.24) and (3.26), we have

61 = k0

2
−

K−1∑

j=0

(
k2 j+1 −

k2 j + k2 j+2

2

)
+ k2K

2
≥ k0

2
+ k2K

2
(3.28)

and from (3.24) and (3.27), we have

61 = k0 −
k1

2
+

K−1∑

j=1

(
k2 j −

k2 j−1 + k2 j+1

2

)
− k2K−1

2
+ k2K ≤ k0 −

k1

2
− k2K−1

2
+ k2K . (3.29)

Since Eqs. (3.20) and (3.27) are related by the definition of
{
k j
}2K

j=0 as

61 = k0 −
k1

2
+6( f ; P)− k2K−1

2
+ k2K ,

the lower (3.28) and the upper (3.29) bounds yields

k0

2
+ k2K

2
≤ k0 −

k1

2
+6( f ; P)− k2K−1

2
+ k2K ≤ k0 −

k1

2
− k2K−1

2
+ k2K

or, equivalently,

−k0

2
+ k1

2
+ k2K−1

2
− k2K

2
≤ 6( f ; P) ≤ 0

which, in view of definitions (3.22) and (3.23), concludes the proof of lemma. !
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Remark 3.7: The ideas of this proof are based on an argument used to establish the phenomenon
of Fresnel diffraction (see, e.g., Ref. 24).

Corollary 3.8: Let f : [a, b] −→ R be a concave function:

f (λx + (1− λ)y) ≥ λ f (x) + (1− λ) f (y)

for all x, y ∈ [a, b] and 0 < λ < 1 and let P,
(
t j
)K

j=1 and 6(f; P) be as in the previous lemma. Then

0 ≤ 6( f ; P) ≤
(
− f (t0)

2
+ f (x1)

2
+ f (xK )

2
− f (tK )

2

)
/x .

We are now in position to prove Theorem 1.1. !

IV. PROOF OF THEOREM 1.1

We shall proceed the asymptotic analysis applying the steepest descent method to the integral
kernel (3.2). For this we assume N to be large in comparison to all other variables which, from now
on, are kept fixed.

It is convenient rewrite z, w and the difference of their argument using scale parameters γ and
β:

Z = zN γ ,

W = wN γ , γ > 0, (4.1)

and

θ = Nβ (arg z − arg w) , β > 0. (4.2)

Equation (1.5) can thus be written as

K α
N

(
Z

N γ
,

W
N γ

)
= α

2π
e−N 1−αγ |Z |α/2e−N 1−αγ |W |α/2 N 2γ

Z W
SN , (4.3)

where

SN :=
N∑

j=1

(
N 2(1−αγ )/αZ W̄

) j

1 (2 j/α)
. (4.4)

We introduce another auxiliary scale parameter δ satisfying 0 < δ < 1 and

αγ + δ = 1, (4.5)

in order to adjust the spacing in the label that indexes the sum. Note that γ and δ are not independent.
Equation (4.4) can be written as

SN =
N−1∑

j=0

(
N 2δ/αZ W̄

)y j N δ

1
(
2y j N δ/α

) , (4.6)

where

y j = N−δ + j N−δ , j = 0, . . . , N − 1. (4.7)

Given a function f of the class C(p) in [a, b], the Euler–Maclaurin sum formula (see, e.g.,
Ref. 21 with ω = 0 and p = 1),

N−1∑

j=0

f
(
y j
)

= 1
h

∫ b

a
f (x) dx + R1 + R2, (4.8)
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associated with the uniform partition P: a = y0 < y1 < . . . < yN = b,

y j = a + jh,

for j ∈ {0, . . . , N − 1}, can be employed to estimate the errors

R1 = 1
2

( f (b)− f (a)) ,

and

R2 = −h
∫ 1

0

(
1
2
− t

)⎛

⎝
N−1∑

j=0

f ′ (a + ( j + t) h)

⎞

⎠ dt

in replacing the Riemann sum of f by its integral.
We take

f (y) = gZ W

(
yN δ

)
=
(
N 2δ/αZ W̄

)yN δ

1
(
2yN δ/α

) , (4.9)

in (4.8) with gζ (x) defined by (3.7). The partition N− δ = y0 < y1 < . . . < yN − 1 = N1 − δ of [N− δ ,
N1 − δ] is chosen with the yj’s given by (4.7). In order to simplify the notation in (4.9), from now on
we fix ζ = Z W̄ = |ζ | eiθ/Nβ

.
Equation (4.4) can thus be written as

SN = N δ

∫ N 1−δ

N−δ
gζ
(
N δ y

)
dy + r1 + r2, (4.10)

where

r1 = 1
2

(
gζ (N )− gζ (1)

)
, (4.11)

and

r2 = −N−δ
∫ 1

0

(
1
2
− t

)⎛

⎝
N∑

j=1

f ′
(
N−δ + ( j + t) N−δ)

⎞

⎠ dt

= −
N∑

j=1

∫ 1

0

(
1
2
− t

)
d f

(
( j + t) N−δ)

= −
N∑

j=1

∫ 1

0

(
1
2
− t

)
dgζ ( j + t) . (4.12)

The proof now proceeds in two parts. The longest one, Part A, concerns with the estimates of r1

and r2. Part B applies the method of steepest descent to the integral term of the representation (4.8).

A. Estimate of r1 and r2

By the Stirling formula (see (3.14)),

gζ (N ) =
(
N 2δ/αζ

)N

1 (2N/α)
=
√

N
απ

( αe
2N

)2N/α (
N

2δ
α ζ
)N

(1 + O (1/N )) = O
(
N−k) ,

holds for any power k of 1/N, in view of 2N(1 − δ)/α > 0. Since

gζ (1) = N 2δ/αζ

1 (2/α)
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we conclude, by (4.11),

r1 = O
(
N 2δ/α) . (4.13)

According to the second mean value theorem (see, e.g., Ref. 23), for each j ∈ {0, . . . , N − 1}
there exists xj ∈ [0, 1] such that

∫ 1

0

(
1
2
− t

)
dgζ ( j + t) = 1

2

(
gζ
(

j + x j
)
− gζ ( j)

)
− 1

2

(
gζ ( j + 1)− gζ

(
j + x j

))
.

Taking this into consideration, (4.12) can thus be written as

r2 = −1
2

N∑

j=1

(
2gζ

(
j + x j

)
−
(
gζ ( j) + gζ ( j + 1)

))
. (4.14)

Some considerations about (4.14) are required. We have to avoid to take the absolute value
inside the sum since any estimate that disregards the change of sign in (4.14), leads r2 to be of the
leading order of the integral (4.8) given by O

(
N δeN δ |ζ |α/2

)
.25 This follows from (3.9) and the fact

that there are O(Nδ/2) terms contributing to the sum (4.14), in view of Lemma 3.5. One needs to be
careful and exploits the change of sign in a clever way in order to reduce the dependence on N of
the number of terms of this sum. Because the estimates involve exponential growth, it is convenient
to divide r2 by the maximum value of Nδ/2g|ζ |(x) (see (3.9)). We set

r̂i = ri

N δ/2g|ζ |(x∗)
(4.15)

for i = 1, 2, and note by (4.13) that r̂1 is exponentially small in Nδ .
Writing ζ = |ζ | eiθ/Nβ

with θ ∈ R, we have by definition (3.7)

gζ (x) = g|ζ | (x) cos
(
θN−βx

)
+ ig|ζ | (x) sin

(
θN−βx

)
. (4.16)

As r2 is a linear function of gζ , it suffices to estimate its real part Re(r2), since the estimate ofℑm(r2)
can be done in analogous manner.

The estimation of the real and imaginary parts of (4.16) depends on the period

p = 2π
|θ |

Nβ (4.17)

of oscillation of gζ (x). For this, let nN(θ ) be the cardinality of the set

AN (θ ) =
{

l ∈ N :
|θ |
π

N−β < l ≤
|θ |
π

N 1−β
}

. (4.18)

The number nN(θ ) counts how many oscillations between the maximum and minimum value of
cos θN−βx there are as x varies in the interval [1, N]. For pedagogical reason, we divide the estimate
in two cases (i) nN(θ ) = O(1) and (ii) nN(θ ) = O(Nε) for some 0 < ε ≤ 1 − β.26 The estimate for
the first case can be done with less effort. In the second case, which may also include the previous
one, the estimate is more subtle and leads to sharper result.

(i) If nN(θ ) = n = O(1), we write (4.14) as

r2 = r (1)
2 + r (2)

2 ,

where the real part of r (i)
2 , with i = 1, 2, is given by

ℜer (i)
2 = −

∑

j∈A(i)
N

(
ℜegζ

(
j + x j

)
−
(ℜegζ ( j) + ℜegζ ( j + 1)

2

))
(4.19)
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with A(i)
N being the set of points j ∈ {1, . . . , N} such that

ℜegζ ( j + 1)−ℜegζ
(

j + x j
)
{
≥ 0 if i = 1

< 0 if i = 2
.

Let ( jk)L
k=1 denote a sequence of points right before Regζ (j + 1) − Regζ (j + xj), as a function

of j ∈ {1, . . . , N}, changes its sign

A(1)
N = {1, . . . , j1} ∪ { j2 + 1, . . . , j3} ∪ · · · ∪ { jL−1 + 1, . . . , jL} ,

A(2)
N = { j1 + 1, . . . , j2} ∪ { j3 + 1, . . . , j4} ∪ · · · ∪ { jL + 1, . . . , N } .

Since 0 ≤ xj ≤ 1 and g|ζ |(x) is increasing in [1, x*) and decreasing in (x*, N], the points ( jk)L
k=1 are

essentially determined by the oscillations of the function cos θN−βx in Regζ (x) = g|ζ |(x)cos (θN−βx)
and L = O(nN(θ )) = O(1), by hypothesis.

By definition, we have

∣∣∣ℜer (1)
2

∣∣∣ ≤
1
2

∣∣∣∣∣∣

∑

j∈A(1)
N

(
ℜegζ ( j + 1)−ℜegζ ( j)

)
∣∣∣∣∣∣

= 1
2

∣∣ℜegζ ( j1 + 1)−ℜegζ (1) + · · · + ℜegζ ( jL + 1)−ℜegζ ( jL−1 + 1)
∣∣

and

∣∣∣ℜer (2)
2

∣∣∣ <
1
2

∣∣∣∣∣∣

∑

j∈A(2)
N

(
ℜe

(
gζ ( j)

)
−ℜe

(
gζ ( j + 1)

))
∣∣∣∣∣∣

= 1
2

∣∣ℜegζ ( j1 + 1)−ℜegζ ( j2 + 1) + · · · + ℜegζ ( jL + 1)−ℜegζ (N + 1)
∣∣

so that

|ℜer2| ≤
L∑

k=1

g|ζ | ( jk + 1) + g|ζ | (1) + g|ζ | (N + 1)
2

yields, together with (4.15) and (4.13), Lemma 3.3 and the fact that the same holds for ℑm(r2),

|r̂2| ≤ O
(

1
N δ/2

)
.

(ii) Let nN(θ ) = O(Nε) for some 0 < ε ≤ 1 − β. Integrating (4.12) by parts gives

r2 =
N∑

j=1

∫ 1

0

(
1
2
− t

)
dgζ ( j + t)

=
N∑

j=1

((
1
2
− t

)
gζ ( j + t)

∣∣∣∣
1

0
+
∫ 1

0
gζ ( j + t)dt

)

=
N∑

j=1

(∫ 1

0
gζ ( j + t)dt − 1

2

(
gζ ( j) + gζ ( j + 1)

))
. (4.20)

We now split the above sum into

r2 = r62 + r⊓2 , (4.21)
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where the real part of r6(⊓)
2 is given by

ℜer6(⊓)
2 =

∑

j∈A6(⊓)
N

(∫ 1

0
ℜegζ ( j + t) dt − 1

2

(
ℜegζ ( j) + ℜegζ ( j + 1)

))

with A6(⊓)
N being the set of points j ∈ {1, . . . , N} such that (Regζ )′′(j) ≥ 0 ( < 0).

Let us note that the function Regζ (x) = g|ζ |(x)cos (θx) always has a well defined concavity and
the cardinality of inflection points is of same order in N of the cardinality of critical points, since
the main function responsible for both, the number of oscillations and changes of concavity, is the
cosine.

Let (ki )L
i=1 denote a sequence of points in {1, . . . , N} right before (Regζ )′′(j) changes sign.

Analogously, we have

A⊓N = {1, . . . , k1} ∪ {k2 + 1, . . . , k3} ∪ · · · ∪ {kL−1 + 1, . . . , kL} ,

A6N = {k1 + 1, . . . , k2} ∪ {k3 + 1, . . . , k4} ∪ · · · ∪ {kL + 1, . . . , N } ,

where, by the same reason as in item (i), L = O(nN(θ )) = O(Nε) and, consequently,

ki+1 − ki = O
(
N 1−ε) (4.22)

holds for i = 1, . . . , L − 1. Note also that, by (4.17),

θ = O
(
N ε+β−1) . (4.23)

Applying Lemma 3.6 (and Corollary 3.8) to each interval Ii = {ki + 1, . . . , ki + 1}, i = 0, . . . ,
L (k0 ≡ 0 and kL + 1 = N) of size K = O(N1 − ε) with f(x) replaced by Regζ (x) and / = 1, yields

|ℜer2| ≤
L∑

i=1

∣∣∣∣ℜegζ (ti )−
ℜegζ (ki ) + ℜegζ (ki + 1)

2

∣∣∣∣+
∣∣ℜegζ (1)

∣∣+
∣∣ℜegζ (N + 1)

∣∣ , (4.24)

with tk defined by the mean value theoremℜegζ (ti ) =
∫ ki +1

ki

ℜegζ (x)dx . Note that the points (ki )L
i=1

are closed to the inflection points (xi )L
i=1 of Regζ (x) and, moreover, the value of Regζ (x) at these

points are small compared with the maximum value g|ζ |(x*). We shall estimate the order of Regζ (xi)
and use Lemma 3.5 to reduce the number of terms involved in the sum (4.21).

Taking the second derivative of the real part of (4.16), we obtain

(ℜeg)′′ (x) =
(
g′′|ζ | (x)− θ2 N−2βg|ζ | (x)

)
cos

(
θN−βx

)
− 2θN−βg′|ζ | (x) sin

(
θN−βx

)

Since derivatives of g|ζ |(x) increases its value by a logarithm of N factor (see equation (3.11)),
combined with (4.23), it gives

(ℜeg)′′ (x)
g|ζ | (x)

=
(
O(log2 N ) + O

(
N 2(ε−1))) cos

(
θN−βx

)
+ O

(
N ε−1 log N

)
sin

(
θN−βx

)
. (4.25)

But we have, on the other hand,

(ℜeg)′′ (xi ) =
(
g′′|ζ | (xi )− θ2 N−2βg|ζ | (xi )

)
cos

(
θN−βxi

)
− 2θN−βg′|ζ | (xi ) sin

(
θN−βxi

)
= 0

holds at each inflection point xi. This together with (4.25) implies that the inflection point xi must
be at O(1/log N) distance from the kth zero of cos θN−βx. Indeed, defining /i = O(1/log N) by

xi = (2i − 1)π
2 |θ | N−β +/i

we have

cos
(
θN−βxi

)
= cos

(
±(i − 1/2)π + θN−β/k

)
= ±(−1)i sin

(
θN−β/i

)
= O

(
N ε−1

log N

)
,

sin
(
θN−βxi

)
= sin

(
±(i − 1/2)π + θN−β/i

)
= ∓(−1)i cos

(
θN−β/i

)
= O (1) ,
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and, together with (4.25), one sees that (Reg)′′(xi) = 0 holds in the leading order. Since the points
ki, ti, and ki + 1 are not distant from the inflection point xi (gζ (x) varies slowly for each interval ki

≤ x ≤ ki + 1),
∣∣ℜegζ (x)

∣∣

g|ζ | (x)
=
∣∣cos

(
θN−βx

)∣∣ ≤ O
(
N−1+ε/ log N

)
(4.26)

holds for x at the values {ki , ti , ki + 1}L
i=1.

The number of terms that contribute to (4.21), as well as to the sum (4.24), can be estimated
using Lemma 3.5. Instead of an interval I of size N we shall consider an interval I′ containing x* with
O(Nδ/2log N) points. By (4.22), a number of order N δ/2 log N/N 1−ε of terms give an appreciable
contribution to (4.24) and, together with (4.26), the fact that the same estimate holds for ℑmgζ (x)
and (4.15), we conclude

|r̂2| = O
(
N−2(1−ε))

uniformly in every closed interval of 0 < ε ≤ 1 − β.

B. The method of steepest descent

Equation (4.10) can be written as

SN = N δ/2g|ζ |(x∗)

(

N δ/2
∫ N 1−δ

N−δ
f (y)dy + r̂1 + r̂2

)

, (4.27)

where, by the Stirling formula (see (3.14)),

f (y) =
gζ
(
N δ y

)

g|ζ |(x∗)
=
√

2y

α |ζ |α/2 eN δh(y)(1 + O
(
1/N δ

)
) (4.28)

with

h(y) = 2y
α

log
αeζ α/2

2y
− |ζ |α/2 . (4.29)

Note that Reh(y) ≤ 0 holds for all y > 0 and attains to its maximum Reh(y*) = 0 at y* = α|ζ |α/2/2
inside the domain of integration [N− δ , N1 − δ], by condition 0 < δ < 1 and N large enough.

We now use the steepest descent technique to estimate the integral that appears in (4.27). This
technique uses the Cauchy theorem to deform the interval of integration [N− δ , N1 − δ] into a curve
C:

I =

√
2N δ

α |ζ |α/2

∫ N 1−δ

N−δ

√
yeN δh(y)dy =

√
2N δ

α |ζ |α/2

∫

C

√
ηeN δh(η)dη, (4.30)

where h : R+ −→ C is extended analytically to the cut complex plane C\(−∞, 0], η = y + iw
and C is a smooth curve with extreme points η1 = N− δ and η2 = N1 − δ chosen in such a way that
(a) it passes by the saddle point η0 = αζα/2/2 (|η0| = y*) defined implicitly by

h′ (η0) = 2
α

log
αζα/2

2η0
= 0 (4.31)

and (b) it maximizes the function Reh(y, w) along a level curve

ℑmh (y, w) = c

in a neighborhood U0 of η0. If, in addition,

ℜeh (y, w) ≥ max{ℜeh
(
N−δ, 0

)
,ℜeh

(
N 1−δ, 0

)
} (4.32)

holds along C, then the main contribution to (4.30) will be given by the saddle point η0; if, on the
other hand, Eq. (4.32) cannot be satisfied by any such curve C, the main contribution to the integral
(4.30) will be given by the extreme points.
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At the extreme points, neither η1 nor η2 plays an important role, since both leave the integral
(4.30) exponentially small with N. So, the contribution to (4.30) is given by the vicinity of the saddle
point.

Expanding h in Taylor series about η0 = αζα/2/2 = α |ζ |α/2 eiαN−βθ/2/2, gives

h (η) = h (η0) + 1
2

h′′ (η0) (η − η0)2 + O
(
(η − η0)3)

= ζ α/2 − |ζ |α/2 − 2

α2 |ζ |α/2 ρ
2ei(2ϕ−αθN−β/2) + O

(
(η − η0)3)

with η − η0 = ρeiϕ ∈U0. We choose C so that 2ϕ − αθN−β /2 = 0 at the the saddle point. Applying
the steepest descent technique, the integral (4.30) can be approximate by a Gaussian integral in the
vicinity U0 of η0, resulting (see, e.g., Ref. 27, for details)

SN = N δ/2g|ζ |(x∗)

(

eN δ(ζ α/2−|ζ |α/2)
√

2N δ

α |ζ |α/2 · 2πη0

−N δh′′ (η0)

(
1 + O

(
1

N δ

))
+ r̂1 + r̂2

)

= N δ/2g|ζ |(x∗)

(

eN δ(ζ α/2−|ζ |α/2)
√

2π

|ζ |α/2 η0

(
1 + O

(
1

N δ

))
+ r̂1 + r̂2

)

. (4.33)

Now, since by (3.8) αNδ|ζ |α/2/2 < N,
∣∣exp

(
N δ(ζ α/2 − |ζ |α/2)

)∣∣ = exp
(
N δ |ζ |α/2 (cosαN−βθ/2− 1)

)

≥ exp
(
−αθ2 N 1−2β) (4.34)

and, provided β ≥ 1/2, it follows from the estimates of r1 and r2 in Sec. IV A that

SN = α

2
ζ α/2 N δ exp

(
ζ
α
2 N δ

) (
1 + Eα,δN (ζ )

)

with
∣∣∣Eα,δN (ζ )

∣∣∣ ≤ O
(
N−δ/2)

whenever ζ ∈ S(θN− 1/2, Kα, δ), where Kα, δ = (2N1 − δ/α)2/α . Therefore, we obtain from (4.3)

1
N δ+2γ

K α
N

(
Z

N γ
,

W
N γ

)
= α2

4π

(
Z W̄

) α
2−1 eN δ

(
(Z W̄)

α
2 − |Z |α

2 − |W |α
2

) (
1 + Eα,δN (Z W̄ )

)
, (4.35)

where we have used (4.5) with 0 < δ < 1. In particular, taking δ ↗ 1,

1
N

K α
N (Z , W ) = α2

4π

(
Z W̄

) α
2−1 eN

(
(Z W̄)

α
2 − |Z |α

2 − |W |α
2

) (
1 + Eα,1N (Z W̄ )

)
. (4.36)

!

Remark 4.1: Equation (4.34) prevents ζ = Z W̄ to be defined in a sector S(θN−β , Kα, δ) of open-
ing wider than O(N− 1/2). The introduction of the scale δ < 1 guarantees that the main contribution
to (4.30) comes from the saddle point for any ζ ∈ C fixed. Note that Kα, δ = O(N2(1 − δ)/α) and for δ
= 1 we need |ζ | ≤ Kα, 1 = (2/α)2/α (see Remark 3.11). As the calculation in the appendixes below
indicates, |ζ | may be even smaller than that, depending on the sector opening τ .
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APPENDIX A: TAYLOR REMAINDER

Let fN(ζ ) = NζeNζ be a function defined for ζ = |ζ | eiθ ∈ C and N a fixed natural number. Its

Taylor remainder with respect to the polynomial SN (ζ ) = Nζ + · · · + 1
(N − 1)!

(Nζ )N of order N

can be expressed by the Lagrange formula (see, e.g., Ref. 28)

RN (ζ ) = fN (ζ )− SN (ζ ) = 1
(N + 1)!

g(N+1)
N (a)

for some 0 < a < 1, where gN(x) = fN(xζ ), x ∈ [0, 1] , satisfies

g(r )
N (x) =

(
r Nr + Nr+1xζ

)
ζ r eN xζ (A1)

for every r ∈ N, by induction.
Writing

SN (ζ ) = fN (ζ )(1 + EN (ζ ))

the error estimator function EN(ζ ) = RN(ζ )/fN(ζ ) is estimated for ζ in a sectorial domain
S(τ, K ) = {ζ ∈ C : |arg(ζ )| < τ/2 , |ζ | < K } using (A1) together with the Stirling formula
r ! =

√
2πr (r/e)r (1 + O(1/r )):

|EN (ζ )| = 1√
2πN

|1 + aζ | eN |ζ |N e−N (1−a)|ζ | cos θ (1 + O(1/N ))

so supζ∈S(τ,K ) |EN (ζ )| = O
(

1/
√

N
)

where K = K(a, τ ) > 0 is given by the smallest solutions of

K e−(1−a)K cos(τ/2)+1 = 1, (A2)

which exists and is continuous for all 0 < a < 1 and τ ∈ [0, 2π ]. The implicit solutions of (A2) for
K = K(a, τ ) are depicted in Figure 2 for a = 1/4, 1/8, and 1/16.

APPENDIX B: PROOF OF COROLLARY 1.6

Assuming temporarily that (1.10) holds with Z = W = r, we observe that by (1.11)

Zi = r + 1√
N

2zi

α |r |α/2−1 + O(1/N )

= r exp
(

1√
N

2zi

αr |r |α/2−1 + O(1/N )
)

and

arg
(
Zi Z̄ j

)
< θ/

√
N ,
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FIG. 2. (Color online) Plot of K(a, τ ) as a function of τ for a = 1/4, 1/8, and 1/16.



023303-20 Veneziani, Pereira, and Marchetti J. Math. Phys. 53, 023303 (2012)

for some θ ≥ 0 and any i, j, if N is large enough, say N > N1. We take, in addition, N > N0 where N0

is given by (3.8) with 1/|ζ | and |ζ | replaced by 1/ mini, j
(∣∣Zi Z̄ j

∣∣) and maxi, j
(∣∣Zi Z̄ j

∣∣), respectively.
So, for N > max (N0, N1) Eq. (1.10) holds with (r, r) and (Zi, Zj), for any i, j, in the place of (Z, W).
From Eq. (1.9) and (1.11), it holds for r ∈ C with 0 < |r| < (2/α)1/α , whose closure is the support
of the eigenvalues density (see Eq. (2.6)).

Now, applying the Taylor expansion

(1 + w)α/2 = 1 + α

2
w + α

4

(α
2
− 1

)
w2 + O(w3)

to the exponent of K α
N

(
Zi , Z j

)
, yields

N
((

Zi Z̄ j
)α/2 − 1

2
|Zi |α −

1
2

∣∣Z j
∣∣α
)

= Ai j + i
√

N Bi j + O(1/
√

N ), (B1)

where

Ai j = zi z̄ j −
1
2

|zi |2 −
1
2

∣∣z j
∣∣2 ,

Bi j = λi − λ j

and

λi = |r |α/2+1 ℑm
zi

r
+ 1

2
√

N
|r |2

(
1− 2

α

)
ℑm

z2
i

r2

is a real number. Let CN and DN denote n × n matrices with respective entries (CN )i j

= 1
π

exp
(

Ai j + i
√

N Bi j

)
(1 + O(1/

√
N )) and Di j = 1

π
exp

(
Ai j

)
(1 + O(1/

√
N )) (=Cij with Bij

= 0). If we write-N = diag
(

exp(i
√

Nλi )
)

, then CN = -N DN -̄N , -N -̄N = I (-̄N and I are the
complex conjugate of -N and the identity matrix) and

det CN = det-N DN -̄N = det DN -̄N-N = det DN .

by the Cauchy-Binet formula. This concludes the proof since, by (1.6), (1.10), and (B1), the lhs of
(1.12) is the determinant of a matrix whose asymptotic expansion is given by CN and

lim
N→∞

det CN = lim
N→∞

det DN = det
(
K
(
zi , z j

))n
i, j=1

by continuity. !
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