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Our course consists of five introductory lectures on probabilistic aspects of dynami-
cal systems, known as ergodic theory. In simple terms, ergodic theory studies dynamics
systems that preserve a probability measure. Let us first discuss some definitions and a
motivation for the study.

Dynamical Systems: There are various definitions for a dynamical system, some quite
general. Loosely speaking, a dynamical system is a rule for time evolution on a state
space. Throughout these lecture we will focus on two models. Most of our time we will
be concerned with discrete time dynamical systems, That is, transformations f : M →M
on a metric or topological space.

Heuristically, we think of f as mapping a state x ∈ M to another state f(x). Then we
can follow the iterates or in other words the evolution of the state

M 3 x 7→ f(x) 7→ f(f(x)) = f 2(x).

We say that the sequence {fn(x)} is the trajectory of x. Our goal is to describe the be-
haviour of the trajectory as n→∞.

Another model are flows, which continuous time dynamical systems. A flow in M is a
family of diffeomorphisms f t : M →M with t ∈ R of transformation satisfying

f 0 = identity and f t ◦ f s = f t+s for every t, s ∈ R

Flow appear in the context of differential equations with complete flows. Take as f t

the transformation that associate to each point x the value of the solution of the equation
at the time t.

∗These notes are based on some Lectures given by Marcelo Viana in 2003
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Why Invariant Measures? Many natural phenomena are model as dynamical systems
that preserve an invariant measure. Historically, the most important example is Hamilto-
nian systems that describe the evolution of conservative systems in Newtonian mechanics.
These systems preserve the Liouville measure. It is very difficult to understand and predict
the behavior of orbits of a dynamical systems Surprisingly, the study of invariant measures
can give detailed and non-trivial information about the statistical behavior of the system.

Invariant Measure
Measure theory is a mature discipline and lies at the heart of ergodic theory. Instead of
providing a review on measure theory, we will discuss the necessary results as we need
them. Consider the space M endowed with a σ−algebra B. Lets also consider a measure
µ : B → R. The new concept we want to introduce here is the invariant measure. Assume
that our transformation f : M → M is measurable. The centerpiece of this lecture is the
following

Definition 1. We say that f preserves µ or, equivalently, µ is said to be f -invariant, if

µ(f−1(B)) = µ(B)

for any B ∈ B.

At first it may seem strange to have in the definition the pre-image f−1 instead of f .
There are deep reasons for this definition. And the theory only works with this definition.
Lets first discuss a simple reasoning for this choice. First because if the transformation
is measurable then for all B ∈ B its pre-image is also measurable f−1(B) ∈ B, hence
the definition is well defined. The same is not true if we consider f . It may happen that
measurable sets are mapped into non-measurable sets.

Lets now discuss an example which will give other hints of why this definition is
appropriate. Consider

f : [0, 1]→ [0, 1], x 7→ 2x mod 1

For this transformation we have

Proposition 1. The Lebesgue measure on [0, 1] is invariant under f

To prove this proposition we need to consider all measurable setsB ∈ B and check that
definition applies. There is only one problem. There are too many measurable sets! More-
over, we don’t have a nice formula for measurable sets, so even writing them explicitly is
a problem. But we can check the invariant for nice sets, that is, for intervals (a, b) ⊂ [0, 1].
For intervals checking that invariance is quite easy as f−1(a, b) consists of two intervals
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of length |b − a|/2. So, we can easily prove the claim for intervals. Now, notice that had
we defined the notion of invariance with respect to f , the Lebesgue measure would not be
invariant. The image of the interval (a, b) is an interval two as large.

So, the invariance works for intervals. But the proof for intervals actually will imply
that the invariance follows for any measurable sets. To see this consider the case where B
is a finite union of disjoint intervals

B = B1 ∪B2 ∪ · · · ∪Bk

Now µ(B) =
∑

i µ(Bi) and f−1(B) = ∪if−1(Bi). So, we also verify the invariance
for finite union of pairwise disjoint sets. Lets introduce the set

A := { all finite union of intervals }

Now we need the following observations: i) A is an algebra, and ii) A generates the
σ-algebra B. The next lemma is very useful as it will spare us quite a bit of bureaucratic
work.

Lemma 1. Assume that µ(M) <∞. If µ(B) = µ(f−1(B)) for any setB in the generating
algebra, then µ is invariant under f .

Using this Lemma, we can then prove the Proposition with the remarks we have up to
now. To this end, we just need to notice that any union of elements of A can be written as
a disjoint union elements of A. For example, given A1, A2 ∈ A we can write

A1 ∪ A2 = A1 ∪ (A2\A1),

now define B1 = A1 and B2 = A2\A1, so the union is write as a disjoint union.

Invariant measure in terms of functions
From the notion of invariance in terms of measures µ(f−1(B)) = µ(B), we can construct
a dictionary in terms of functions. First notice that

µ(B) =

∫
χBdµ (1)

where χB is the characteristic function of the set B

χB(x) =

{
1 if x ∈ B
0 otherwise .

Moreover, we notice the following
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Exercise 1. Show that

µ(f−1(B)) =

∫
χf−1(B)dµ =

∫
χB ◦ fdµ (2)

Therefore, from the definition of invariant together with Eqs. (1) and (2)∫
χBdµ =

∫
χB ◦ fdµ

Now using the linearity of the integral we can immediately extend the previous prop-
erties to a simple function

ψ =
∑
i

ciχBi
.

Then by linearity ∫
ψdµ =

∫
ψ ◦ fdµ.

Next, consider a positive measurable function ψ : M → [0,+∞). Then, there exists
a sequence of simple functions ψn converging monotonously to ψ. So by the Lebesgue
monotone convergence theorem∫

ψdµ =

∫
lim
n
ψndµ = lim

n

∫
ψn ◦ fdµ =

∫
ψ ◦ fdµ.

Next, let ψ : M → R be any measurable function, then it can be represented as a
difference of two positive functions

ψ = ψ+ − ψ−
where ψ+ = max(ψ, 0) and ψ− = max(−ψ, 0). Then by linearity∫

ψ ◦ fdµ =

∫
ψdµ,

whenever the integrals make sense. That is, when the functions are integrable. The space
of integrable functions is defined to be

L1(M,B, µ) = {ψ : M → R|ψ is measurable and
∫
|ψ|dµ <∞}

The dictionary for invariance in terms of functions. Bringing together the results we
have proved the following
Lemma 2. The following are equivalent

(i) µ is f−invariant;

(ii) for each ψ ∈ L1(M,B, µ), we have∫
ψdµ =

∫
ψ ◦ fdµ
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More examples
Measures supported on periodic points: Suppose that x is a periodic point for the map
f , that is, there exists n ≥ 1 such that x = fn(x). Then consider the probability measure

µ =
1

n

n−1∑
j=0

δfj(x)

We claim that this measure is f -invariant. Indeed, using our last Lemma it suffices to
check (ii) of Lemma 2.∫

ψ ◦ fdµ =
1

n
(ψ(f(x)) + · · ·+ ψ(fn(x)))

=
1

n

(
ψ(x) + · · ·+ ψ(fn−1(x))

)
=

∫
ψdµ

where we used that fn(x) = x.

This has a deep consequence for dynamics. A typical dynamical systems has many
period orbits. Our previous example f(x) = 2x mod1 has infinitely many periodic orbits.
This means that typical dynamical systems will preserve many invariant measures. There-
fore, typically one looks for some restriction on the measure in order to capture interesting
behavior. For example, we may only look for invariant measure that are absolutely contin-
uous with respect to the Lebesgue measure. To fix idea lets us discuss some concepts.

Suppose that µ1 and µ2 are two measures on (M,B). We say that µ1 is absolutely
continuous with respect to µ2, and we write µ1 � µ2, if

µ2(B) = 0⇒ µ1(B) = 0.

We say that the measures are equivalent if µ1 � µ2 and µ2 � µ1. That is, these measure
have the same zero measure sets.

Another approach is to consider the natural measure. Let ν(C, x0, T ) be the fraction
of time that the orbit {fn(x0)}Tn=0 spends in the set C and consider the limit

ν(C, x0) = lim
T→∞

ν(C, x0, T ),

if it exists. This measure is the ”histogram”, we will show in the following lectures that
depending on f this limit exists and is independent of the point (ν almost surely).
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Degree k map: Let f : R/Z → R/Z be the map f(x) = kx, where k ∈ N. Proof that
the Lebesgue measure is f -invariant. (The proof is the same as in the case k = 2.) Show
that this map has kn periodic points for period n. Construct the invariant measure for the
periodic points.

Gauss Transformation: Consider the map f : (0, 1]→ [0, 1] given map

f(x) =
1

x
− [1/x],

where [1/x] is the integer part of 1/x. This map preserves the Gauss measure

µ(B) =
1

log 2

∫
B

1

1 + x
dx.

Notice that if x ∈ (1/(k+ 1), 1/k) for some k ∈ N then the integer part of 1/x equals
k so

f(x) = 1/x− k
Notice that f(1/k) = 0 hence f 2(1/k) is not defined (the third iterate is not defined

on its pre-image and so on). This means that rigorously f is not a dynamical systems in
the sense we defined earlier. But this imposes no problem, because all iterates of f are
well defined on the set of irrational numbers. For us it is enough to treat properties that are
defined almost everywhere.

Notice that
m(E)/2 ≤ µ(E) ≤ m(E)

so µ is equivalent to the Lebesgue measure.
There are many ways to prove that µ is f -invariant we will use the following

Exercise 2. Let f : U → U be a local C1 diffeomorphism, and let ρ be a continuous
function. Show that f preserves the measure µ = ρm if and only if∑

x∈f−1(y)

ρ(x)

|detDf(x)|
= ρ(y)

Lets use this exercise to prove the invariant. Hence, we have to show that∑
x∈f−1(y)

ρ(x)

|f ′(x)|
= ρ(y) where ρ(x) = c/(1 + x)
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Lets start by observing that each y has exactly one pre-image in each interval (1/(1 +
k), 1/k] given by

f(xk) =
1

xk
− k = y ⇔ xk =

1

y + k

Moreover, notice that f ′(x) = −1/x2. Hence, using the exercise

∞∑
k=1

cx2k
1 + xk

⇔
∞∑
k=1

1

(y + k)(y + k + 1)
=

c

1 + y

To check this we observe

1

(y + k)(y + k + 1)
=

1

y + k
− 1

y + k + 1

So the sum can be written as a telescopic sum: all terms, except for the first, will appear
twice but with different signs, which concludes the proof.

Rotations: Let M = R\Z, and consider the rigid rotation of the circle f : M →M with

fθ(x) = x+ θ.

The Lebesgue measure is fθ−invariant. To see this, let ψ : M → R.∫ 1

0

(ψ ◦ fθ)(x)dx =

∫ 1

0

ψ(x+ θ)dx =

∫ 1

0

ψ(x)dx

Exercise 3. Prove that if f : M → M preserves a probability µ, then for any k ≥ 2 fk

preserves µ. Is the reciprocal true?

Exercise 4. Let f : U → U be a diffeomorphism and U ⊂ Rd an open set. Show that the
Lebesgue measure m is f−invariant if and only if |detDf | = 1

Exercise 5. Let f, g : M → M be two transformations. We say that f is conjugated to g
if there exists a continuous one-to-one transformation (change of coordinates) h such that

h ◦ f = g ◦ h.

i) Show that h ◦ fn = gn ◦ h, for every n ≥ 1.
Next, consider the tent map

g(x) =

{
2x for x < 1/2

2− 2x for x ≥ 1/2
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ii) Show that the Lebesgue measure is g−invariant.
The logistic map f(x) = 4x(1− x) and the tent map are conjugated by

h(x) = (1− cosπx)/2.

iii) Use this fact to show that the measure µ = ϕm is f−invariant with

ϕ(x) =
1

π

1√
x(1− x)
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Recurrence
Now we will study the Poincaré recurrence theorem. The theorem says that given any
finite f−invariant measure µ−almost every point of any measurable set E will return
to E infinitely often. This results has profound implies for mechanics, in particular, for
statistical physics.

Theorem 1. Let f : M → M be a measurable transformation and µ a f−invariant
measure satisfying µ(M) < ∞. Let E ⊂ M be a measurable set with µ(E) > 0. Then,
µ−almost every point x ∈ E there exists n ≥ 1 such that fn(x) ∈ E. Moreover, there are
infinitely many values of n such that fn(x) belongs to E

Proof. Let E0 be the set of points x ∈ E that never return to E. We wish to show that E0

has zero measure. First, lets notice that the pre-images f−n(E0) are disjoint

f−n(E0)
⋂

f−m(E0) = ∅ for all m 6= n ≥ 1

Suppose that there are m > n ≥ 1 such that the f−m(E0) intersections f−n(E0). Let
x be a point in the intersection. Let y = fn(x), then clearly

y ∈ E0 and fm−n(y) = fm(x) ∈ E0

this means that y returns to E0 contradicting the definition of E0. This proves that the
pre-images are pairwise disjoint.

Now recall that the measure is invariant µ(f−n(E0)) = µ(E0) for all n, hence we
conclude that

µ

(
∞⋃
i=1

f−n(E0)

)
=
∞∑
i=1

µ(f−n(E0)) =
∞∑
i=1

µ(E0)

But we assumed that the measure is finite, hence the expression in the left side is finite.
In the other hand, the in the right side we have infinitely many terms all equal. The only
way this sum is finite is that µ(E0) = 0 as we promised.

Now let F be the set of points x ∈ E that return to E only a finite number of times.
By direct consequence of the definition, every point x ∈ F has some iterate fk(x) ∈ E0.
That is,

F ⊂
∞⋃
k=0

f−k(E0)

Then

µ(F ) ≤ µ

(
∞⋃
k=0

f−k(E0)

)
≤

∞∑
k=0

µ
(
f−k(E0)

)
=
∞∑
k=0

(E0) = 0.

Hence, µ(F ) = 0.
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Example 1. Consider f : R→ R be the translation by one

f(x) = x+ 1.

Then the Lebesgue measure is invariant. Notice however, that the measure in this case
is not finite. Clearly, there is no recurrent point under f . On the other hand, by the
recurrence theorem, f does preserve any finite measure.

Kac Lemma
Assume that the system of many interacting particles (molecules in a room) has a fixed
(finite) total energy. Then the dynamics takes place in bounded subsets of the phase space.
Roughly speaking, the second law of thermodynamics claims that the system will evolve
that the mess increases, that is, the system tries to occupy the maximum number of states.
The recurrence theorem shows that the system will eventually return arbitrarily close to its
initial state. In statistical mechanics this is the so-called recurrence paradox in statistical
mechanics. Kac Lemma gives the average return time of almost every point to the set.

Let again f : M → M be a measurable transformation and µ a f−invariant finite
measure. Let E ⊂ M be any measurable set with µ(E). Consider the function called first
return time ρE : E → N ∪ {∞} defined by

ρE(x) = min{n ≥ 1 : fn(x) ∈ E}

whenever the set in the right-hand side is non-empty, otherwise ρE(x) =∞
Now we will show that this function ρE is integrable. To this end, we introduce

E0 = {x ∈ E : fn(x) 6∈ E for all n ≥ 1} and (3)
E∗0 = {x ∈M : fn(x) 6∈ E for all n ≥ 0} (4)

that is, E0 is the set of points of E that never return to E, and E∗0 is the set of points of M
that never enter in E. Note that µ(E0) = 0, by the Poincaré recurrence theorem.

Theorem 2 (Kac). Let f : M → M be a measurable transformation, µ a finite
f−invariant measure and E ⊂ M a subset of positive measure. Then, the function ρE
is integrable and ∫

E

ρEdµ = µ(M)− µ(E∗0).
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Proof. For each n ≥ 1 let us define

En = {x ∈ E : f(x) 6∈ E, . . . , fn−1(x) 6∈ E but fn(x) ∈ E} and (5)
E∗n = {x ∈M : x 6∈ E . . . , fn−1(x) 6∈ E but fn(x) ∈ E} (6)

This means that En is the set of points of E that return to E for the first time precisely
at the moment n,

En = {x ∈ E : ρE(x) = n},

and E∗n is the set of points that is not in E and enter in E for the first time at the moment
n. These sets are measurable and so the function ρE is measurable. Moreover, for n ≥ 1
the sets En and E∗n are pairwise disjoint and the union is the whole space M . Hence,

µ(M) =
∞∑
n=0

[µ(En) + µ(E∗n)] = µ(E∗0) +
∞∑
n=1

[µ(En) + µ(E∗n)] (7)

Notice that
f−1(E∗n) = E∗n+1

⋃
En+1 for all n. (8)

In fact, f(y) ∈ E∗n means that the first iterate of f(y) to land in E is fn(f(y)) =
fn+1(y), but this happens if and only if y ∈ E∗n+1 or y ∈ En+1. This proves (8). Hence,
using that the measure is invariant

µ(E∗n) = µ(f−1(E∗n)) = µ(E∗n+1) + µ(En+1) for all n.

Applying this relation multiple times, we obtain

µ(E∗n) = µ(E∗m) +
m∑

i=n+1

µ(Ei) for all m > n. (9)

Equation (7) implies that µ(E∗m)→ 0 as m→∞. Therefore, taking the limit m→∞ in
(9) we obtain

µ(E∗n) =
∞∑

i=n+1

µ(Ei) (10)

Replacing (10) in (7) we obtain

µ(M)− µ(E∗0) =
∞∑
n=1

(
∞∑
i=n

µ(Ei)

)
=
∞∑
n=1

nµ(En) =

∫
E

ρEdµ

concluding the proof.
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If the system (f, µ) is ergodic (we will study this property later) the set E∗0 has zero
measure. Moreover, if measures is actually a probability then µ(M) = 1. Hence the
conclusion of Kac Lemma

1

µ(E)

∫
E

ρEdµ =
1

µ(E)

for every measurable set E. In the left-hand side we have the mean return time to E.
Hence, the equality means that the mean return time is inversely proportional to the mea-
sure of E.

Topological Flavours
Assume that M is a topological space endowed with the Borel σ−algebra.

Definition 2. We say that a point x ∈ M is recurrent for the transformation f : M → M
if there is a sequence nj →∞ such that fnj(x)→ x

Our next goal is to prove the following

Theorem 3. Let f : M → M be a continuous transformation in a compact metric space
M . Then, there exists some point x ∈M recurrent for f .

Proof. Consider the family I of all closed non-empty sets X ⊂ M that are invariant
f(X) ⊂ X . This family is non-empty since M ∈ I. We say that an element X ∈ I is
minimal for the inclusion relation if and only if the orbit of the point x ∈ X is dense em
X .

Indeed, since X is closed and invariant then X contains the closure of the orbits.
Hence, X is minimal if it coincides with any of the orbits closures. Likewise, if X co-
incides with its closure of the orbit of any of its points then it coincides with any close
invariant subset, that is, X is minimal. This proves our claim. In particular, any point x in
a minimal set is recurrent. Hence, to prove to theorem it suffices to show that there exists
a minimal set.

Now we claim that a ordered set {Xα} ⊂ I admits a lower bound. Indeed, consider
X =

⋂
Xα. Notice that X is non-empty since Xα are compact and the family is ordered.

Clearly X is closed and invariant under f and it is also a lower bound for the set {Xα}.
This proves our claim. Now we apply Zorn Lemma to conclude that I really contains
minimal elements.

Exercise 6 (Numerics). Estimate the mean return time to the set E = [0.2, 0.3] for f(x) =
10x mod 1.

Exercise 7 (Numerics). Consider the transformation f(x) = 3x mod1. Consider the set
A = [0.1, 0.11], and a point x ∈ A. What is the typical distribution of first return times?
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Exercise 8. Consider the map f : [0, 1] → [0, 1] given by x 7→ 10x mod1. Show that
almost every number x ∈ [0, 1] whose decimal expansion starts with the digit 7 will have
infinitely many digits equal to 7.

Exercise 9. Let f be the Gauss map. Show that a number x ∈ (0, 1) is rational if and only
if, there is n ≥ 1 such that fn(x) = 0.
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Ergodic Theorems
In the past lecture we introduce the concept of natural measure which concerns the time an
orbit spends in a set. In many cases, the time the orbit spends in the set equals to measure
of the set. That is, the orbit spends as much time as the importance the invariant measure
attributes to that set. This idea is called ergodicity.

Statement and Discussion
Lets recall the definition of the time an orbit spend in a set. Let x ∈ M and E ⊂ M be a
measurable set, and consider

τn(E, x) =
1

n
#{j = 0, 1, · · · , n− 1 : f j(x) ∈ E},

and notice that

τn(E, x) =
1

n

n−1∑
j=0

χE(f j(x)),

where again χE is the characteristic function of the set E. Taking n → ∞, if the limit
exists we introduce E

τ(E, x) = lim
n
τn(E, x),

the time of orbit spends in the set E. This in principle depends on the starting point x.
However, along the orbit the function τ(E, x) is constant. Indeed, first lets us notice that

τ(E, x) = τ(E, f(x))

Hence, if the limit exist for x ∈M , it will also exist for its iterates. To see this notice that

τ(E, f(x)) = lim
n→∞

1

n

n∑
j=1

χE(f(x))

= lim
n→∞

1

n

n−1∑
j=0

χE(f(x)) +
1

n
[χE(f(x))− χE(x)]

= τ(E, x) + lim
n→∞

1

n
[χE(f(x))− χE(x)]

It is not obvious that this limit exist as the following example shows
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Exercise 10. Consider the transformation f : M →M , with f(x) = 10 mod1. And take

x = 0.33553333555555553333333333333335 . . . ,

that is, x consists of blocks of 3’s and 5’s with the block size twice as large as the previous
(except the second). Consider E = [0.3, 0.4]. Show that

τ2(E, x) = 1, τ8(E, x) =
3

4
, · · · τ22k−1(E, x)→ 2

3
while

τ4(E, x) =
1

2
, τ16(E, x) =

3

8
, · · · τ22k(E, x)→ 1

3
Hence, the time the orbit of x spends in E does not exist.

However, the ergodic theorem states that the above case is atypical, and the limit exits
for almost every point.
Theorem 4 (Birkhoff). Let f : M → M be a measurable transformation and µ a
f−invariant probability. Given any measurable set E ⊂M the mean visit time

τ(E, x) = lim
n

1

n
#{j = 0, 1, · · · , n− 1 : f j(x) ∈ E}

exists for µ almost every point x ∈M . Moreover,∫
τ(E, x)dµ(x) = µ(E).

This is a particular case of the ergodic theorem, but bears precisely the idea we had just dis-
cussed. Soon we will show that τ(E, x) is constant almost everywhere point with respect
to µ. And hence,

τ(E) = µ(E) for µ− almost every point.

A more general claim is the following
Theorem 5. Let f : M → M be a measurable transformation and µ a f−invariant
probability. Then given a integrable function ϕ : M → R the limit

ϕ̃(x) = lim
n→∞

1

n

n−1∑
j=0

ϕ(f j(x))

exists for µ almost every point x ∈M . Moreover, the function ϕ̃ is integrable and∫
ϕ̃(x)dµ(x) =

∫
ϕ(x)dµ(x)
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The proof of the last statement can be obtained from the first. So, we will focus on the
first statement

Proof. Theorem 4. Let E ⊂M be a measurable set. For each x ∈M we introduce

τ̄(E, x) = lim sup τn(E, x) and τ(E, x) = lim inf τn(E, x).

The main idea is the show that

τ̄(E, x) = τ(E, x) for almost every x ∈M,

this of course implies that the limit exists. The strategy is the following: By definition of
lim sup and lim inf we have τ(E, x) is always smaller than τ̄(E, x), so if we show that∫

τ̄(E, x)dµ(x) ≤ µ(E) ≤
∫
τ(E, x)dµ(x)

the statement will follow.
We start with the first inequality. Let ε > 0 be given, then we definition of lim sup for

any x ∈M there is a sequence of nk such that

1

nk
# {j ∈ {0, . . . , nk − 1}} ≥ τ̄(E, x)− ε

Let t(x) be the smallest integer with this property.
We first consider a particular case where

x 7→ t(x) is bounded ∃T ∈ N such that t(x) < T

Given x ∈ M and n > 0 we define a sequence x0, x1, . . . , xs of points of M and a
sequence t0, t1, . . . , ts of natural numbers. The sequence is defined iteratively as follows

1. First, take x0 = x.

2. Assume that xi was defined, we take ti = t(xi) and xi+1 = f ti(xi).

3. We finish the process when we find xs such that t0 + · · ·+ ts > n.

Hence, every xi is an iterate of x: xi = f t0+···+ti−1(x). Notice that because our defini-
tion of ti, from the first ti iterates of xi at least

ti(τ̄(E, xi)− ε) = ti(τ̄(E, x)− ε)

are in the set E. This observation holds for every i = 0, . . . , s− 1, so at least

(t0 + · · · ts−1)(τ̄(E, x)− ε)
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are in E. Moreover, using the last rule of the iterative process that defines ti we have

t0 + · · · ts−1 ≥ n− ts ≥ n− T.

So we just showed that at least (n− T )(τ̄(E, x)− ε) out of the first n iterates of x are in
E. That is,

n−1∑
j=0

χE(f j(x)) ≥ (n− T )(τ̄(E, x)− ε)

for all x ∈M and n ≥ 1. Integrating we obtain

n−1∑
j=0

∫
(χE ◦ f j)(x)dµ(x) ≥ (n− T )

∫
(τ̄(E, x)− ε)dµ(x)

Next, we use that the measure is invariant, so every term in the sum in the left-hand side
equals µ(E). So,

nµ(E) ≥ (n− T )

∫
τ̄(E, x)dµ(x)− (n− T )ε.

Now dividing by n and taking the limit n→∞ we obtain

µ(E) ≥
∫
τ̄(E, x)dµ(x)− ε.

Notice that since ε is arbitrary we have just obtained the first inequality.
The second inequality can be obtained from this one by noticing that

µ(E) = 1− µ(Ec) and τ(E, x) = 1− τ̄(Ec, x)

where Ec is the complement of the set E.
The general Case: Given ε > 0 we fix T > 1 such that the measure of the set

B := {y ∈M : t(y) > T}

is smaller than ε.

Exercise 11. Why the above statement on µ(B) ≤ ε is true?

Then, we update the rule 2 by

2a If t(xi) < T , we take ti = t(xi) and xi+1 = f ti(xi),

2b If t(xi) > T , we take ti = 1 and xi+1 = f(xi).
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Then we obtain
ti−1∑
j=0

χE(f j(x)) ≥ ti(τ̄(E, x)− ε)

This implies that

ti−1∑
j=0

χE(f j(x)) ≥ ti(τ̄(E, x)− ε)−
ti−1∑
j=0

χB(f j(x))

Now this last inequality is valid for all values of i. This yields

ti−1∑
j=0

χE(f j(x)) ≥ (n− T )(τ̄(E, x)− ε)−
ti−1∑
j=0

χB(f j(x))

where we have used the in the complement of B the function ti is bounded. Integrating
we obtain

nµ(E) ≥ (n− T )

∫
τ̄(E, x)dµ(x)− (n− T )ε− nµ(B).

Dividing by n and taking the limit (also recalling that µ(B) ≤ ε) we obtain

µ(E) ≥
∫
τ̄(E, x)dµ(x)− 2ε.

since ε is arbitrary the claim follows.
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Ergodicity
We say that the system (f, µ) is ergodic if given any measurable set E if

lim
n→∞

1

n

n−1∑
j=0

ϕ(f j(x)) =

∫
ϕdµ, (11)

for every ϕ ∈ L1(M,B, µ). That is, if the temporal averages coincides almost everywhere
with the spacial averages. In particular, if

τ(E, x) = µ(E) for µ almost every point x ∈M

We want to show that this implies that the system is dynamically indivisible, that is, any
invariant has either full measure or zero measure. We say that a set A ⊂ M is invariant if
f−1(A) = A.

Definition 3. A measurable function g : M → R is called invariant with respect to f if

g ◦ f = g almost everywhere

The next theorem rephrases the ergodic theorem in terms of the invariant sets and
invariant functions

Proposition 2. Let f : M →M be a measurable transformation and µ be a f−invariant
probability. The following statements are equivalent.

1. The system (f, µ) is ergodic.

2. For every invariant set A ⊂M we have that either µ(A) = 1 or µ(A) = 0.

3. Every invariant function is constant almost everywhere, that is, in a set of full mea-
sure.

Proof. First we show that (1) implies (2): Consider ϕ = χA from (11) we obtain

ϕ̃ =

∫
ϕdµ = µ(A)

for almost every x ∈M . Since A is invariant x ∈ A if and only if f(x) ∈ A. Hence,

lim
n→∞

1

n

n−1∑
j=0

χA(f j(x)) = χA(x) = µ(A).
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Therefore, either µ(A) = 1 if x ∈ A or µ(A) = 0 if χA(x) = 0.
Next, we show that (2) implies (3): Let ψ be any invariant function ψ ◦ f = ψ, and

define
Bt = {x ∈M : ψ(x) > t} for all t ∈ R

Now notice that all sets Bt are invariant

f−1(Bt) = {x ∈M : f(x) ∈ Bt}
= {x ∈M : ψ(f(x)) > t}
= {x ∈M : ψ(x) > t} = Bt

where in the last line we used the invariant of ψ. Hence, (2) shows that either µ(Bt) = 1 or
µ(Bt) = 0. If ψ is not constant almost everywhere then we can find t0 such µ(Bt0) ∈ (0, 1)
which contradicts (2). Therefore, the function ψ must to constant almost everywhere.

(3) implies (1): Let ψ be any integrable function. Notice that the time average ψ̃ is an
invariant function. Hypothesis (3) implies that this function is constant almost everywhere,
so applying the ergodic theorem

ψ̃(x) =

∫
ψ̃dµ =

∫
ψdµ almost everywhere.

Exercise 12. Consider the rotation by a angle α

Rα : S1 → S1, Rα(z) = eαiz

Show that

1. The Lebesgue measure m is invariant for every value of α.

Hint: Show that
∫
ψ ◦Rαdm =

∫
ψdm.

2. Rα is rational (every point is periodic) if and only if eαi is a root of the unit.

3. If Rα is rational then Rα is not ergodic for m.

4. If Rα is irrational then Rα is ergodic for m.

Hint: Show that invariant functions are constant. You can write any measurable
function as ϕ =

∑
ckz

k. Conclude that if α is irrational and ϕ invariant then
ϕ(z) = c0
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