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Abstract
We investigate the eigenvalue statistics of ensembles of normal random matrices
when their order N tends to infinite. In the model, the eigenvalues have uniform
density within a region determined by a simple analytic polynomial curve. We
study the conformal deformations of equilibrium measures of normal random
ensembles to the real line and give sufficient conditions for it to weakly converge
to a Wigner measure.
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1. Introduction and statement of results

Since the early fifties Hermitian random matrix theory plays an important role in the statistical
description of the spectra of complex systems [1, 2]. Recently, non-Hermitian random matrices
have been used to treat problems in superconductor physics with columnar defects [3, 4], in
quantum chaotic systems [5], and in quantum chromodynamics [6, 7]. Normal random matrix
ensembles have played a major role in several areas such as in the study of fractional quantum
Hall effect [8], quantum Hele–Shaw flows [9], integrable hierarchies [10] and integrable
structure of the Dirichlet boundary problem [11, 12].

The interplay between non-Hermitian and Hermitian random matrices has attracted a
great deal of attention [7, 13, 14]. Recent investigations consider matrix ensembles of the
form J = H − i!, subjected to the so-called weakly non-Hermicity condition: limN→∞ N

Tr !2/ Tr H 2 < ∞. These ensembles appear, for example, in the description of quantum
scattering in systems with chaotic dynamics and serve to describe resonance statistics. If H
and ! are independently sampled from Gaussian unitary ensembles, the eigenvalues of J have,
for large N, the same statistics as of the eigenvalues of a Hermitian ensemble (see [7] for a
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review of this and related results). The continuous behavior of the eigenvalue statistics of a
weakly non-Hermitian ensemble has motivated the present investigation.

We are interested in the equilibrium measure (i.e. the N → ∞ limit of the 1-point
function) of the non-Hermitian ensemble whose support is closed to the real line. We consider
ensembles of normal matrices whose eigenvalues have uniform density within a domain in
the complex plane. We give conditions on the random matrix ensemble under which the
corresponding equilibrium measure behaves continuously when its support collapses to a
segment of the real line. Under additional restrictions, the limiting measure is shown to satisfy
the Wigner semi-circular law.

We address the problem by using the so-called invariant ensemble model, characterized
by the probability of finding an N × N matrix M of a class within the ensemble given by

P(M) dM ∝ exp{−NTr[V (M)]} dM, (1)

with the trace Tr[V (M)] and the Riemann volume dM invariant under unitary transformations.
The corresponding eigenvalue density, in the limit N → ∞, depends on the particular form
of V (M). For the Wigner ensemble M is a Hermitian matrix whose entries are independent
and identically distributed Gaussian random variables with zero mean and variance σ 2/N .
The potential reads V (M) = 1

σ 2 M
∗M (M∗ is the Hermitian conjugate of M). The density of

eigenvalues follows the Wigner semi-circular law supported on [−2σ, 2σ ] [2]:

dµW(x) = 1
2πσ

√
4 − x2/σ 2χ[−2σ,2σ ] (x) dx, (2)

where χA(x) = 1 if x ∈ A and 0 otherwise.
A particularly interesting potential has been put forward by Wiegmann, Zabrodin, and

co-workers [10–12, 15] who established a connection between normal random matrices and
conformal mappings. They considered

V (M) = 1
t0

(M∗M − p(M) − p(M)∗), (3)

where

p(z) =
∑

j!1

tj z
j (4)

with t0 > 0 and tj ∈ C. As N → ∞, they showed, at the level of formal manipulations, that
(A) the density of eigenvalues is uniform within a simply connected domain D ⊂ C whose
boundary is given by a simple analytic curve γ , (B) the domain D is characterized by the fact
that its exterior harmonic moments

tj = 1
2π ij

∮

γ

z̄z−j dz, j ! 1, (5)

where π t0 stands for the area of D, are the coefficients of (4) and (C) the Riemann mapping
from the exterior of the unit disk onto the exterior of the domain D obeys, as a function of tj,
the equations of the integrable dispersionless Toda hierarchy.

Potentials of the form (3) give rise to two sorts of mathematical problems. Except in
the case of the polynomial p(z) of degree 2, where the domain D is bounded by an ellipse,
V (z) is not bounded from below and integrals with respect to (1) diverge. The other problem
concerns with the fact that D may not be uniquely determined by the moments (5). From the
point of view of equilibrium measures (see section 2), a relevant fraction of eigenvalues of M
may escape to infinity or to another Riemann surface.

Recently, the results (A) and (B) have been set in a rigorous frame by Elbau and Felder
[16]. To avoid the former problems, they consider the following restrictions.
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Elbau–Felder potential. If

p(z) = t1z + t2z
2 + · · · + tn+1z

n+1 (6)

is an analytic polynomial of degree n + 1 with t0 > 0 and t = (t1, . . . , tn+1) ∈ Cn+1 such that
t1 = 0, |t2| < 1/2, Elbau–Felder potential is a real-valued function on C given by

V (z) = 1
t0

(|z|2 − p(z) − p(z)). (7)

It can be shown by direct computations that V (z), under the above conditions, is positive
in a neighborhood of z = 0 and has a non-degenerate absolute minimum at z = 0. From
now on, V (z) shall stand for the Elbau–Felder potential. The problem of divergence of the
integrals is solved in a naı̈ve way—imposing that the eigenvalues of matrices within the normal
ensemble remain bounded.

Elbau–Felder ensemble. Let & ⊂ C be the closure of a bounded open set that contains the
origin and consider the following class of matrices:

NN(&) = {A ∈ MatC(N) : [A,A∗] = 0, σ (A) ⊂ &}, (8)

where σ (A) denotes the spectrum of A. An ensemble is said to be of Elbau–Felder type of
degree n + 1 if it fulfills conditions stated between (6) and (8).

A closed polynomial curve γ of degree n can be parameterized by

w )→ h(w) = rw +
n∑

j=0

ajw
−j , |w| = 1 (9)

for some r > 0 and aj ∈ C. Elbau and Felder have shown that, as long as |t2| < 1/2
and t0 is small enough, the problem of determining the exterior moments tj out of the curve
has a unique solution for simple closed analytic polynomial curves. Introducing ρ = r2 and
αj = aj/rj , they give a set of equations that defines an invertible map F : (ρ,α0, . . . , αn) −→
(t0, . . . , tn+1) from R × Cn+1 into itself about (0, 0, 2t̄2, . . . , (n + 1)t̄n+1) (t̄j stand for the
complex conjugate of tj). The eigenvalue density is then shown to be uniform in D by the
Euler–Lagrange variational equations. The parameter r is essential for these results since it
controls the smoothness of the curve γ , which looks like ellipses as r shrinks to zero. We refer
to theorem 2 for a precise statement.

In this work, we study conformal deformations of the equilibrium measures of Elbau–
Felder ensembles, which are subjected to changes on the potential V (z) through the parameters
(t0, t) = (t0, t1, . . . , tn+1). This is achieved by considering a family of polynomial curves of
degree n: w )→ h(w; s), with the aj (s) depending on a parameter s ∈ (0, 1]. This family
is chosen so that h(w; s0) ≡ h(w), for some s0 ∈ (0, 1], parameterizes the initial curve γ

whose interior domain D supports the eigenvalues. After the construction of h(w; s), the
support D (respectively the external harmonic moments tj) also depends on s under s )→ D(s)

(respectively t )→ tj (s)). We require, in addition, that the exterior domain D−(s) = C\D(s)

tends, as s goes to 0, to a slit domain C\[−2r, 2r] for some r > 0. By equation (9), the
polynomial curve which attains to this limit satisfies lims→0 a1(s) = r and lims→0 aj (s) = 0
for j ̸= 1. In terms of the external harmonic moments, it satisfies lims→0 t2(s) = 1/2 and
lims→0 tj (s) = 0 for j ̸= 2. Since in this limit t2 approaches 1/2, the Elbau–Felder conditions
will force r to 0 and lims→0 D−(s) becomes a punctuated instead of a slit domain (see
remark 2 below).

We have two main problems. First, we want to establish a one-to-one and onto relation
between the pair (t0, t(s)), with t(s) = (t1 = 0, t2(s), . . . , tn+1(s)) the external harmonic
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moments of a (simple) curve γ (s) and its parameterization by h(w; s), uniformly in (0, 1] .
The second problem concerns the behavior of the equilibrium measure under the deformation
process. The existence and uniqueness of the equilibrium measure are granted only for some
s0 (by hypothesis) and the question is whether it remains valid for every s ∈ (0, s0]. These
problems are addressed in the theorem below.

To state our result, we denote by τ = (τ1, . . . , τn+1) a vector on the affine space Z ⊂ Cn+1

with τ1 = 0 and |τ2| = 1 (note that τ2 = exp{i arg τ2}) and consider, for s ∈ (0, 1], the
following parameterization:

t1(s) = 0

t2(s) =
√

1 − s

2
exp(is*2 arg τ2) (10)

tj (s) = s*j τj for all 3 " j " n + 1

with *j ! 1. As long as s > 0 (i.e. |t2| < 1/2), theorem 2 of Elbau–Felder guarantees
existence of a unique invertible map from (ρ,α0, . . . , αn) to (t0, t1, . . . , tn+1), whose inverse
defines ρ = ρ(t0, t) and αj = αj (t0, t), for sufficiently small t0. We write h(w; t0, t) for
the parameterization of a simple polynomial curve γ whose external moments and the area
of its interior domain D are t = (t1, . . . , tn+1) and π t0. By the Elbau–Felder results, every
interior domain D of γ supports the equilibrium measure provided the parameter r is such that
r2 < ρ(δ, t) for some δ > 0. So, for a given (t0, t) with t0 < δ, there exist s0 and τ such that
tj = tj (s0) (with *j fixed) and we write h(w; s0, r, τ ) for the parameterization h(w; t0, t) of
the initial simple polynomial curve γ . Note that r is uniquely defined by (t0, t) and |t2| is
determined by the value of s0: |t2|2 = (1 − s0)/4. That is, our parameterization takes into
account all possible simple polynomial curve γ , whose interior domain D supports the density
of eigenvalues of the Elbau–Felder ensemble, as its initial condition. With this notation our
main result reads

Theorem 1. Consider a one-parameter family of the Elbau–Felder ensemble s )→ (t0, t(s)) ∈
R × Cn+1, with t0 > 0 and tj (s), for j ̸= 0 and each s ∈ (0, 1], satisfying (10). Then, there
exist s0 ∈ (0, 1], δ = δ(s0, τ ) > 0 and, consequently, r0 = r0(s0, τ ) > 0 such that for every
s ∈ (0, s0) and 0 < r < r0:

(1) there is a unique simple analytic closed polynomial curve γ = γ (s, r, τ ) of degree n,
parameterized by h(w; s, r, τ ), with external harmonic moments t(s) and area of interior
domain π t0 where t0, expressed in terms of s, r and τ , is monotonic in s and satisfies
0 < t0 < δ with lims→0 t0 = 0.

(2) The eigenvalue density is uniform within D, the interior domain of γ , for every 0 < r < r0

and s sufficiently small. Moreover, if *j > 1, then the equilibrium measure can be
conformally deformed, as s goes to 0, into a Wigner measure with support on [−2r, 2r].

Remark 1. As long as 0 < r < r0, h(w; s, r, τ ) = rw +
∑n

j=0 rjαjw
−j is a Riemann

mapping from the exterior of the unit disk onto the exterior domain D of γ and, as stated in
item (1), the area π t0 of the domain D remains positive for all s ∈ (0, s0).

Remark 2. The assumption |t2| < 1/2 in theorem 2 breaks down when the exterior domain
D−(s) = C\D(s) is deformed into the slit domain C\[−2r, 2r]. In section 4, we generalize
Elbau–Felder’s results using Crandall–Rabinowitz bifurcation theory from simple eigenvalues
(see e.g. [17]) to construct a parameterization that allows us to let t2 → 1/2 maintaining the
parameter r away from 0.
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Remark 3. The Crandall–Rabinowitz theory allows us to obtain, by using the implicity
function theorem, the leading order in s of αj = αj (s, τ ). If *j > 1 for 0 " j " n, then, as
s → 0, we have (see corollary 1)

(i) α0(s) = o(1),
(ii) α1(s) = 1 − s/2 + o(s),

(iii) αj (s) = o(s) for 2 " j " n.

This relation will be used to prove the second part of item (2) of theorem 1.

Remark 4. Note that the equilibrium measure completely characterizes the statistical
behavior of the matrix ensemble. Hedenmalm and Makarov [9] proved that k-point correlation
measure for normal random matrix ensembles in the limit N → ∞ weakly converges
to k products of the equilibrium measure. Therefore, the conformal deformation can
be extrapolated to the high-order correlation functions associated with the Elbau–Felder
ensemble.

This paper is organized as follows. Section 2 presents some preliminary results and
introduces the two ingredients, the balayage problem and the Schwarz function, required for
the proof of the second part of item (2) of theorem 1. In section 3 we prove two auxiliary
results, propositions 1 and 2. Section 4 uses Crandall–Rabinowitz bifurcation theory from
simple eigenvalues to solve the map (t0, t) = F(ρ,α) implicitly for α = (α0, . . . , αn), in a
neighborhood of (ρ, α) = (0, α∗) in R × Cn+1, α∗

j = (j + 1)t̄j+1 with t1 = 0 and t2 = 1/2, as
a function of (ρ, t0, τ ). Theorem 4 in section 5 gives an explicit expression of the balayage
measure for the potential V. Section 6 concludes the proof of theorem 1 based in lemma 1
and section 7 gives some examples. We present in section 8 our conclusions and lemma 2 is
proved in the appendix.

2. Basic setting

2.1. Eigenvalue distribution for normal ensembles

For normal unitarily invariant ensembles, we can write equation (1) in terms of the spectral
coordinates. The joint probability of the eigenvalues {zi}Ni=1 of M reads

PN(z1, . . . , zN) ∝ exp

⎧
⎨

⎩−

⎛

⎝2
∑

1"i<j"N

log |zi − zj |−1 + N

N∑

i=1

V (zi)

⎞

⎠

⎫
⎬

⎭ . (11)

Introducing the empirical measure of the eigenvalues

dµN(z) = N−1
N∑

i=1

δ(z − zi) d2z, (12)

(11) can be written as

PN(z1, . . . , zN) = Z−1
N e−N2IV (µN ),

where ZN is the normalization and

IV (µ) ≡
∫

(V (z) + Uµ(z)) dµ (z) (13)

is the total energy. The logarithmic potential associated with µ is given by

Uµ(z) ≡
∫

log |z − w|−1 dµ (w) . (14)

5
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The integrals with respect to (11) have, in the limit N → ∞, dominant contribution governed
by a variational problem:

EV ≡ inf
µ∈M(&)

I V (µ), (15)

where the infimum is taken over the set M(&) of Borel probability measures in & ⊂ C. If a
probability measure µV satisfying

EV = I (µV )

exists, it is called the equilibrium measure associated with V. The empirical measure (12) is
known to converge weakly to a unique equilibrium measure as N → ∞ (see [2] for Hermitian
ensembles and [9] for normal ensembles).

Theorem 2 (Elbau–Felder). Consider the Elbau–Felder ensemble of degree n. There is δ > 0
such that for all 0 < t0 < δ a unique equilibrium measure dµ exists and is uniform within a
domain D ⊂ & that contains the origin:

dµ = 1
π t0

χD (z) d2z; (16)

D is uniquely determined by the exterior harmonic moments (t1 = 0)

π t0 =
∫

D

d2z the area of D

tk = 1
2π ik

∮

γ

z̄z−k dz, if k = 2, . . . , n + 1, (17)

tk = 0 if k > n + 1

and its boundary γ is a simple closed analytic polynomial curve of degree n; if h(w) =
rw + a0 + a1/w + · · · + an/w

n, |w| = 1, parameterizes γ , then

t0 = r2 −
n∑

j=1

j |aj |2. (18)

There exist homogeneous universal polynomials Pjk ∈ Z[r, a0, . . . , ak−j ] of degree k − j + 1,
1 " j " k " n + 1 such that

j tj = āj−1r
−j+1 +

n∑

k=j

ākr
−kPjk(r, a0, . . . , ak−j ) (19)

is an invertible transformation from R × Cn into itself in a neighborhood of
(r2, a0, a1/r, . . . , an/rn) = (0, 0, 2t̄2, . . . , (n + 1)t̄n+1). For r sufficiently small, the function
h(w) is a Riemann mapping from the exterior of the unit disk onto the exterior of D.

The proof of existence of the equilibrium measure requires to verify Euler–Lagrange-type
equations. Let

E(z) = V (z) +
2

π t0

∫

D

log
∣∣∣∣
z

ζ
− 1

∣∣∣∣
−1

d2ζ (20)

be a function defined in & given by V plus the logarithmic potential (14) associated with the
uniform measure µ in D. Lemma 6.3 of [16] shows that E(z) = 0 holds for almost every
z ∈ D. According to corollary 3.5 of [16], µ is the unique equilibrium measure if

E(z) ! 0 for every z ∈ &\D. (21)

We extend Elbau–Felder’s proof to the near-slit domains in section 4.

6



J. Phys. A: Math. Theor. 44 (2011) 075202 A M Veneziani et al

2.2. Balayage problem

We tackle the problem of analyzing conformal deformations of the equilibrium measures by
balayage techniques [18]. This allows us to solve the problem focusing only on the behavior
of the boundary γ of D. Therefore, in our approach the balayage technique plays a major role.
Let G ⊂ C be an open set and ∂G its boundary.

Let ν be a probability measure on G (such that ν(C \G) = 0) and let the logarithmic
potential U ν (see equation (14)) be finite and continuous on G. The balayage problem (or
‘sweeping out’ problem) consists in finding a probability measure ν̂ with support on ∂G such
that

U ν = U ν̂ almost everywhere on ∂G. (22)

We call ν̂ the balayage measure associated with ν. Throughout this work, we consider the
following space of functions.

Definition 1. Let G ⊂ C be a bounded open set. We denote by H(G) the space of all
holomorphic functions on G and continuous on its closure G.

If G ⊂ C is a bounded open set and ν is a probability measure with compact support in G,
then ν̂ is the unique measure supported in ∂G satisfying (22) and such that U ν̂(z) is bounded
in ∂G. In addition, ν̂ possesses the following property (see theorem 4.1 of chapter II of [19]):

∫

G

f dν =
∫

∂G

f d̂ν (23)

holds for every f ∈ H(G).
We may choose G the interior Ḋ = D\γ of the compact support D of the equilibrium

measure µ associated with V. In this case, we write µ = µ|Ḋ + µ|γ and sweep out only the
part µ|Ḋ lying on G: µ̂ = µ̂|Ḋ +µ|γ . Since the equilibrium measure has no mass concentrated
in γ , we have µ|γ ≡ 0. The balayage measure associated with the equilibrium measure µ is
denoted simply by µ̂ and has support in γ .

2.3. Parametric curves and the Schwarz function

The following definitions will be important for the characterization of the curves appearing in
our main result. We start with the basic

Definition 2. A curve ! in C is said to be simple if there exists a parameterization t )→ h(t)

for t ∈ [a, b] such that h(t) is injective, i.e. if for all x, y ∈ [a, b] h(x) ̸= h(y) when x ̸= y.
If h(a) = h(b), in this case ! is said to be a simple closed curve. A curve ! in C is said to
be an analytic curve if there exists a parameterization t )→ h(t) for t ∈ [a, b] such that h is
analytic and h′(t) ̸= 0 for t ∈ [a, b].

Next we introduce the polynomial curves on the complex plane.

Definition 3. A curve ! in C is said to be a polynomial curve of degree n if it is parametrically
represented as

h(w) = rw + a0 + a1w
−1 + · · · + anw

−n, (24)

with r > 0, an ̸= 0 and |w| = 1.

We define the Schwarz function.
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Definition 4. Let ! in C be an analytic arc and let / be a strip-like neighborhood of !. The
Schwarz function S is the unique analytic function on / such that

S(z) = z̄, z ∈ !.

For a treatise on the Schwarz function with applications see [18, 20].

Remark 5. Hereafter, γ denotes a simple closed analytic polynomial curve. Moreover, S
stands for the Schwarz function of γ .

The Schwarz function S will play a major role in the conformal deformation of the
Elbau–Felder ensemble. We show that the balayage measure is proportional to the Schwarz
function S.

3. Riemann map

We prove some auxiliary results, which concern the behavior of the family h(w; s) as γ (s) is
deformed to the real line.

Proposition 1. For r > 0, let aj : (0, 1] → C, with 0 " j " n, be continuous functions such
that

ξ(s) := r −
n∑

j=1

j |aj (s)| > 0 (25)

holds for every s ∈ (0, 1]. Write h(w; s) = rw +
∑n

j=0 aj (s)w
−j and suppose that

γ (s0) = {h(w; s0), |w| = 1} is a simple closed polynomial curve of degree n for some
s0 ∈ (0, 1]. Then, for each s ∈ (0, 1], γ (s) remains a simple polynomial curve and h(w; s), as
a map from the exterior of the unit disk into the exterior of γ (s), is biholomorphic (a Riemann
map). Furthermore, for every s ∈ [δ, 1], 0 < δ < 1, t0(s) is bounded away from zero.

Proof. Let us begin with the estimation of t0. It follows from (25) that r > |aj (s)| holds for
every j . Multiplying ξ(s) by r yields that

0 < r2 −
n∑

j=1

j |aj (s)|r < r2 −
n∑

j=1

j |aj (s)|2 = t0(s)

is bounded away from zero for s ∈ [δ, 1], 0 < δ < 1. Equation (25) also implies that h(w; s)

is an analytic curve; that is, the derivative of h(w; s) with respect to w, denoted by h′(w; s),

is bounded away from zero:

∣∣h′(w; s)
∣∣ =

∣∣∣∣∣∣
r −

n∑

j=1

jaj (s)w
−(j+1)

∣∣∣∣∣∣
! r −

n∑

j=1

j |aj (s)||w|−(j+1),

where in the last passage we have used the triangular inequality. Since we are analyzing the
exterior of the unity circle |w| > 1, we have

|h′(w; s)| ! r −
n∑

j=1

j |aj (s)| > 0, ∀ s ∈ (0, 1], (26)

which also holds in a small neighborhood of |w| = 1.

8
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Now, for every w, z ∈ C with |w| = |z| = 1, by the triangular inequality,

|h(w; s) − h(z; s)| ! r |w − z| −
n∑

j=1

∣∣aj (s)
∣∣
∣∣∣∣

1
wj

− 1
zj

∣∣∣∣

= r |w − z| −
n∑

j=1

|aj (s)||wj − zj |

! ξ(s)|w − z| > 0 (27)

if w ̸= z. The last passage follows from
∣∣wj − zj

∣∣ " j |w − z| which can be shown using the
telescopic identity

wj − zj = wj−1(w − z) + wj−2(w − z)z + · · · + (w − z)zj−1

together with the triangular inequality. Equations (27) and (26) imply that the map
h(·; s) : S1 −→ C is an embedding, γ (s) is a simple curve and h(w; s) is a Riemann
map from the exterior of the unit circle onto the exterior of γ (s) for every s ∈ (0, 1], by
continuity. The polynomial curve γ (s) with 0 < s < 1 preserves all properties assumed for
γ (s0) = γ , concluding the proof of proposition 1. #

Remark 6. Proposition 1 has an intuitive appeal. If a polynomial curve γ (s) fails to be
simple, it must first develop a cusp singularity. However, when h(w,s) forms a cusp at wc,
we have h′(wc, s) = 0; this situation is prevented as long as ξ(s) > 0. Proposition 1 gives a
sufficient condition for h′(w, s) ̸= 0 and shows that (25) is also sufficient for γ (s) to remain
a simple curve.

The next result concerns conditions (i)–(iii) of remark 3 and the deformation of γ (s) to
the real line as s → 0.

Proposition 2. Consider a polynomial curve γ (s) of degree n parameterized by
h(w; s) = rw +

∑n
j=0 aj (s)w

−j with r > 0 and αj (s) = r−j aj (s) continuous and satisfying
conditions (i)–(iii) stated in remark 3. Then lims→0 h(w; s) maps the exterior of the unit disk
onto C\[−2r, 2r].

Proof. By conditions (i)–(iii) we have

a0(s) = α0(s) = o(1),

a1(s) = r + O(s),

aj (s) = o(s), 2 " j " n

which implies that (25) holds for some s1 ∈ (0, 1] small and γ (s) = {h(w, s), |w| = 1} is a
simple polynomial curve for every s ∈ (0, s1]. As h(w,s) is a Riemann map from the exterior
of the unit disk into the exterior of γ (s) for all s ∈ (0, s1] by proposition 1, it suffices to
show that lims→0 γ (s) = [−2r, 2r]. Indeed, since |w| = 1 we may choose w = eiθ with
θ ∈ [0, 2π ]. The Riemann map, under the hypotheses, reads

h(eiθ ; s) = r(eiθ + e−iθ ) + o(1),

implying that lims→0 h(eiθ , s) = 2r cos θ ∈ [−2r, 2r] for all θ ∈ [0, 2π ]. #

4. Exterior harmonic moments of near-to-slit domains

Let t = (t1, t2, . . . , tn+1) be the exterior harmonic moment of the domain D—containing the
origin and bounded by γ —and let π t0 be the area of D.

9
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When a given collection t of n + 1 complex numbers, together with t0 > 0, determines
a simple polynomial curve γ of degree n? We refer to theorem 5.3 of [16] for the solution
to this moment problem. If t1 = 0 and |t2| < 1/2, then every complex number t2, . . . , tn+1

determines a curve γ with these properties provided t0 < δ, for δ sufficiently small. We give
a proof of this result in a language more appropriated for the generalization needed.

The map (ρ, α) ∈ R+ ×Cn+1 )−→ (t0, t) ∈ R+ ×Cn+1 defined by (18) and by the contour
integral (5),

j tj = 1
2π i

∮

|w|=1
h̄(w−1)h′(w)h−j (w) dw

=
n∑

k=j−1

ᾱkRes

(

wk−j 1 −
∑n

l=1 lαlρ
l/wl+1

(
1 +

∑n
l=0 αlρ l/wl+1

)j
;∞

)

(28)

taking residues at infinity:

t0 = ρ −
∑n

j=1
j |αj |2ρj

tj = 1
j
ᾱj−1 − ᾱjα0 −

(
1 +

1
j

)
α1ᾱj+1ρ + O(ρ2), 1 " j " n + 1

(29)

with ρ = r2, αj = r−j aj , 0 " j " n and αj = 0 if j > n, has a smooth inverse in a
neighborhood of (0, 0, t2, . . . , tn+1) provided |t2| ̸= 1/2.

In this section, we show how the inverse function theorem is applied in this situation and
extend it for the case |t2| = 1/2. We also verify whether the inverse determines a simple
polynomial curve γ = ∂D and whether a measure µ, uniform in a near-to-slit domain D, is
the equilibrium measure of the Elbau–Felder ensemble.

4.1. Bifurcating curves

We observe that ρ∗ = α∗
0 = 0 and α∗

j = (j + 1)t̄j+1, j = 1, . . . , n, solve equations (29) for
(ρ,α0, . . . ,αn) and because it takes complex conjugation of tj+1, we consider (29) as a map
from R+ × Cn+1 × Cn+1 into itself

F : (ρ, α, ᾱ) )−→ (t0, t, t̄) (30)

and we write

0 = F(ρ, α∗ + ρϕ, ᾱ∗ + ρϕ̄) − (t0, t, t̄)

ρ

= l(ρ∗, ϕ, ϕ̄) + p(ρ, ϕ, ϕ̄) − (τ0, 0, 0) . (31)

Here, F has been expanded in Taylor series about (ρ∗, α∗, ᾱ∗) with remainder ρp(ρ, ϕ, ϕ̄) =
O

(
ρ2

)
, τ0 = t0/ρ = O(1) and l is the linear map

l(ρ∗, ϕ, ϕ̄) = L
[
ρ∗, α∗, ᾱ∗]

⎛

⎝
1
ϕ

ϕ̄

⎞

⎠ =

⎛

⎝
1 − 4 |t2|2 0T 0T

−v̄ −K̄ J−1

−v J−1 −K

⎞

⎠

⎛

⎝
1
ϕ

ϕ̄

⎞

⎠ (32)

where 0 is the null column vector in Cn+1, v̄j = 2 (1 + 1/j) (j + 2)t̄2tj+2 if 1 " j < n with
vn = vn+1 = 0, J = diag {j}n+1

j=1 and K is a (n + 1) × (n + 1) matrix with K̄i1 = (i + 1)ti+1 for
1 " i " n and 0 otherwise.

Since L is invertible for |t2| ̸= 1/2, (30) has a smooth inverse defined in a neighborhood
of (t0, t) = (0, 0, t2, . . . , tn+1). The implicit function theorem applied to (31) (with t ∈ Cn+1

10
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fixed) uniquely defines two smooth curves parameterized by ρ:

ϕ(ρ) = T v + Bv̄ + O(ρ)

τ0(ρ) = 1 − 4 |t2|2 + O(ρ)

on Cn+1 and R+, respectively, where B = (1 − 4 |t2|2)−1JK and T = J + 2t̄2B. We note that
the leading order in ρ of equation (31) can be written as

1 − 4|t2|2 = τ0(
−K̄ J−1

J−1 −K

)(
ϕ

ϕ̄

)
=

(
v̄
v

)
(33)

whose solution is given in the appendix.
The function t0 = ρτ0(ρ) is monotone increasing in ρ ∈ [0, a) for |t2| < 1/2 and

sufficiently small a, and its inverse, ρ(t0, t), is a well-defined function of t0 and t. The inverse
of (29) in R+ × Cn+1 thus reads

(t0, t) )−→ (ρ(t0, t), α∗ + ρ(t0, t)ϕ ◦ ρ(t0, t)). (34)

The above application of the implicit function theorem breaks down if the second harmonic
moment t2 tends to 1/2 and this is the case when the external domain of γ (s) tends, as s → 0,
to the slit domain C/ [−2r, 2r] (see proposition 2). We need, therefore, to extend theorem 5.3
of [16] to include this case. For this, we rescale all components of t, except t2 whose modulus
square will be denoted by λ = |t2|2, as3

t2 =
√

λτ2 =
√

λ ei arg τ2

tj = (1 − 4λ)τj , 2 < j " n + 1 (35)

and apply the constructive bifurcation theory from a simple eigenvalue developed by Crandall
and Rabinowitz (see e.g. [17]). The theory applied to equation (31) uses the implicit function
theorem with the role of ρ and λ exchanged. Instead of the two parametric curves ϕj = ϕj (ρ)

and τ0 = τ0(ρ), we consider ϕ̃j = ϕ̃j (ρ, λ) and τ̃0 = τ̃0(ρ, λ) as a function of λ for
(ρ, t) ∈ Cn+1 fixed, where τ = (τ1, τ2, . . . , τn+1) is a vector in the affine space of Cn+1 with
|τ2| = 1, denoted by Z.

We observe that (ρ∗, α∗) with |t2| = 1/2 is a bifurcation point for (29) since every
neighborhood of this point contains a solution which differs from (34). Note that the
tangent map of (29) at (ρ∗, α∗) with |t2| = 1/2 is singular, i.e. L is not invertible at
λ = |t2|2 = 1/4. Using bifurcation theory, we construct a pair of smooth curves for fixed
(ρ, τ ) ∈ Cn+1: ϕ̃j = ϕ̃j (λ) and τ̃0 = τ̃0(λ), λ ∈ (1/4 − b, 1/4] for some b > 0, such that
ϕ̃j (1/4) = ϕj (ρ = 0, |t2| = 1/2) and τ̃0(1/4) = τ0(ρ = 0, |t2| = 1/2).

Proposition 3. Given (ρ, τ ) ∈ R+ × Z ≃ Cn+1, there exist two uniquely defined smooth
curves, λ )→ ζ(ρ, λ, τ ) on Cn+1 and λ )→ τ̃0(ρ, λ, τ ) on R, defined by (41), such that the
solution of (29) for (ρ, α) in a neighborhood of (t0, ρ, τ ) = (0, 0, τ ) in R+ × R+ × Z can be
written as

(t0, ρ, τ ) )−→ (ρ, α∗ ◦ λ(t0, ρ, τ ) + ρ(cα0 + ζ) ◦ λ(t0, ρ, τ )) (36)

where λ(t0, ρ, τ ) is a function of t0, ρ and τ which is the unique solution for λ of
t0 = ρτ̃0(ρ, λ, τ ) in the domain 0 < λ " 1/4, ρ ∈ [0, r̂2] with r̂ = r̂(τ ) sufficiently
small and (cα0)1 = 12(τ̄2τ3 + τ̄3)/(τ2 + τ̄2) and (cα0)j = 0 otherwise. Moreover, there exists
r̄ = r̄(τ ) > 0 such that h(w), defined by (9) with aj = rjαj and r2 = ρ where (ρ, α) is given

3 We use concomitantly the notation s = 1 − 4λ adopted in the introduction (see equations (10)).
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by (36), parameterizes a simple polynomial curve of order n which can be deformed into the
segment [−2r + α0, 2r + α0], for every fixed r < r̄ , provided τ2 = 1.

Proof. It suffices, for the first statement, to verify the hypothesis of theorem 1 in section 3 of
[17]. For this, it is convenient to include in the linear map (32) higher order in ρ terms. So, let

l̃(ρ, ϕ, ϕ̄) = lim
ε→0

1
ε

(
F(ρ + ε, α∗ + εϕ, ᾱ∗ + εϕ̄) − F(ρ, α∗, ᾱ∗)

)

and write (31) as

l0(ρ, ϕ, ϕ̄) + (1 − 4λ)l1(ρ, ϕ, ϕ̄) + p̃(ρ, λ, ϕ, ϕ̄) − (τ̃0, 0, 0), (37)

where τ̃0 = t0/ρ, l0 and l1 are linear maps in R+ × Cn+1 × Cn+1, with l0 = l̃|λ=1/4 and
4l1 = −∂ l̃/∂λ|λ=1/4; hence,

l0(ρ, ϕ, ϕ̄) = L0

⎛

⎝
1
ϕ

ϕ̄

⎞

⎠ =

⎛

⎜⎝

0 v̄T
0 vT

0

0 −K̄0 J−1 + M̄0

0 J−1 + M0 −K0

⎞

⎟⎠

⎛

⎝
1
ϕ

ϕ̄

⎞

⎠ (38)

l1(ρ, ϕ, ϕ̄) = L1

⎛

⎝
1
ϕ

ϕ̄

⎞

⎠ =

⎛

⎝
1 0T 0T

−v̄1 −K̄1 O

−v1 O −K1

⎞

⎠

⎛

⎝
1
ϕ

ϕ̄

⎞

⎠ (39)

with v̄0 = O(ρ), (v̄1)j = (1 + 1/j)(j + 2)τj+2/τ2 + O(ρ), (K̄0)ij = τ2δi1δj1 , M0 = O(ρ)

and, given

w̄1 = (−τ2/2, 3τ3, . . . , (n + 1)τn+1, 0) ,

K̄1 is, up to the leading order in ρ, a (n + 1) × (n + 1) matrix with w̄1 in its first column and
0 everywhere else; O denotes the (n + 1) × (n + 1) null matrix. Moreover, p̃(ρ, λ, ϕ, ϕ̄) is a
smooth map from R+ × R+ × Cn+1 × Cn+1 to R+ × Cn+1 × Cn+1 which satisfies

p̃(ρ, 1/4, 0, 0) = ∂p̃

∂λ
(ρ, 1/4, 0, 0) = 0

and
∂2p̃

∂ϕ∂λ
(ρ, 1/4, 0, 0) = ∂2p̃

∂ϕ̄∂λ
(ρ, 1/4, 0, 0) = 0.

We observe that (31), and consequently (37), extends by continuity to ρ = 0. In this way, we
define

G(ρ, λ, ζ, ζ̄) = F(ρ, α∗ + ρ(cα0 + ζ), ᾱ∗ + ρ(cᾱ0 + ζ̄)) − (t0, t, t̄)

ρ
,

for (ρ, λ, ζ, ζ̄) ∈ [0, a)× (1/4 − b, 1/4] ×Cn+1 ×Cn+1, where α0 = (1/
√

2τ2, 0, . . . , 0) and
c is a constant to be properly chosen as we will discuss. We observe that e0 = (α0, ᾱ0) is an
eigenvector of

A0 =
(

−K̄0 J−1

J−1 −K0

)
,

the matrix L0 with the first line and column removed and the O(ρ) corrections omitted,
associated with the (simple) null eigenvalue. It can be shown by (29) and (28) that the O(ρ)

corrections do not affect the entry (K0)11 = τ̄2 and (J−1)11 = 1.4 So, the null eigenvalue and
its eigenvector e0 remain unaltered for ρ > 0.
4 The non-vanishing elements of v0 and M0 in (38) are, respectively, (v0)2 = τ2ρ and Mi,i+2 = −τ2(1 + 1/i)ρ/2
for 1 " i " n − 1.
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It follows by (37)–(39) that

G(ρ, λ, ζ, ζ̄) = l0(0, ζ, ζ̄) + (1 − 4λ)l1(1, cα0 + ζ, cᾱ0 + ζ̄) − (τ0, 0, 0) + p̂(λ, ρ, ζ, ζ̄)

with p̂(λ, ρ, ζ, ζ̄) = p̃(λ, ρ, cα0 +ζ, cᾱ0 + ζ̄), and the implicit function theory can be applied
to G = 0 provided the derivative of G(ρ, λ, ζ, ζ̄) about (λ, ζ, ζ̄) = (1/4, 0, 0) defined by the
linear map

(λ, ζ, ζ̄) )→ l0(ρ, ζ, ζ̄) − 4λl1(ρ, α0, ᾱ0)

=

⎛

⎝
−4 v̄T

0 vT
0

4(v̄1 + cw̄1/
√

2τ2) −K̄0 J−1 + M̄0

4(v1 + cw1
√

τ2/2) J−1 + M0 −K0

⎞

⎠

⎛

⎝
λ

ζ

ζ̄

⎞

⎠

is non-singular (see theorem 1 in section 3 of [17]). Since A0 is singular, the linear map
is invertible if and only if A−1

0 applies to vectors in Cn+1 × Cn+1 orthogonal to e0. For
this, we pick c so that v̄1 + cw̄1/

√
2τ2 is orthogonal (with respect to the inner product

u · v =
∑n+1

i=1(ūivi + uiv̄i)) to α0:

c = 12
√

2
√

τ̄2τ3 +
√

τ2τ̄3

τ2 + τ̄2
. (40)

With this choice, G = 0 (with ρ > 0 and τ ∈ Z fixed) uniquely defines two smooth
parametric curves:

ζ(λ) = (1 − 4λ)(J (v1 + cw1

√
τ2/2) + O(ρ)) + O((1 − 4λ)2)

τ̃0(λ) = 1 − 4λ + O((1 − 4λ)2)
(41)

on Cn+1 and on R+. As in the previous case, the leading order in s = 1 − 4λ of the equation
G = 0 reads

s = τ̃0(
−K̄0 − sK̄1 J−1

J−1 −K0 − sK1

) (
ζ

ζ̄

)
= s

(
v̄1 + cw̄1/

√
2τ2

v1 + cw1
√

τ2/2

)
(42)

from where (41) can be readily obtained using lemma 2.
The function t0 = ρτ̃0(ρ, λ) is monotone decreasing in λ, for 1/4 − b < λ " 1/4,

ρ ∈ (0, r̂2] with r̂ sufficiently small, and its inverse, λ(t0, ρ, τ ), is a well-defined function
of t0, ρ and τ . The solution of (29) for (ρ, α) in a neighborhood of (t0, ρ, τ ) = (0, 0, τ ) in
R+ × R+ × Z is thus given by (36). From the first equation of (29), together with (45) bellow
and (41), if r̂ = r̂(τ ) is sufficiently small,

t0 = sρ

⎛

⎝1 − s

n∑

j=2

j (j + 1)2|τj+1|2ρj−1 + O(s2, sρ2)

⎞

⎠

= sρ(1 − 18sρ + O(s2, sρ2)) (43)

is monotone in s provided s < 1
36r̂2 < 1

36ρ
so, the dependence of b on ρ is estimated by

b > 1
144r̂2 . We choose r̂ so that t0 becomes a monotone function of λ in the whole domain

(0, 1/4].
To conclude the proof, it remains to verify that

h(w) = rw + α0 + r
α1

w
+ · · · + rn αn

wn
, |w| = 1 (44)

with

αj = α∗
j ◦ λ(t0, ρ, τ ) + ρ(c (α0)j+1 + ζj+1 ◦ λ(t0, ρ, τ )) (45)

13



J. Phys. A: Math. Theor. 44 (2011) 075202 A M Veneziani et al

parameterizes a simple polynomial curve γ = γ (t0, ρ, τ ). For this, in order γ to approach a
segment I, as the area of its interior π t0 tends to 0, we let τ2, τ3 and ρ = r2 so that

α0 = ρ (c (α0)1 + ζ1) = 12
τ̄2τ3 + τ̄3

τ2 + τ̄2
r2 + O(t0/r2) (46)

remains closed to the origin5. Now, it is enough to verify the hypothesis (25) of
proposition 1. It follows immediately from (45) and (43) that

α1 = 1 − t0

2r2
+ O(t0)

αj = t0

r2
(j + 1)τ̄j+1 + O(t0), 2 " j " n

(47)

for every τ , and

ξ = r −
n∑

j=1

jrj |αj | = t0

r2

⎛

⎝ r

2
−

n∑

j=2

j (j + 1)rj |τj+1|

⎞

⎠ + O(t0) > 0 (48)

holds for r < r̄ where r̄ = r̄(τ ) is the largest value of r that still makes the above expression
positive, for t0 small enough. #

Remark 7. r0 in theorem 1 is thus given by min (r̄, r̂).

Corollary 1. If (35) is scaled with a different power of s = (1 − 4λ): tj = s*j τj , *j > 1
for each 2 < j " n + 1, then (45) behaves as α0(s) = o(1), α1(s) = 1 − s/2 + o(s) and
αj (s) = o(s), 2 " j " n, as s tends to 0.

Proof. Proposition 3 can be adapted for (35) scaled with different power of s = (1 − 4λ)

as follows. Replacing the τj in (41) by a o(1) function of s, every component ζj with j ̸= 1
becomes o(s). α∗ becomes o(s), likewise. By continuity, the claimed behavior of αj , with
1 " j " n, can be read directly from (19). α0 is o(1) by (46). #

Note that proposition 3 holds for simple closed analytic curves provided l, l0 and l1 are
Frechét derivatives of F with respect to an appropriate Banach space.

4.2. Equilibrium measure

Equation (21) is equivalent to

0 " E(w) := E(h(w)) = 1
t0

(
|h(w)|2 − |h(1)|2 + 2ℜ e

∫ w

1
h̄(ζ−1)h′(ζ ) dζ

)
(49)

for w ∈ h−1 (&) such that |w| ! 1 (see equation (16) of [16]), and it suffices to verify only
for |w| ! 1/R, where R = max{|w| : h′(w) = 0, w ∈ C} is the critical radius of γ , and r
sufficiently small.

Let h(0)(w) = rw + α0 + rα1/w be the parameterization of an ellipse that approximates γ

and let (t (0)
0 , t

(0)
2 ) denote the corresponding external harmonic moments. We denote by E (0)(w)

the function defined in (49) for the ellipse and note that, by subsection 6.2 of [16], t
(0)
0 E (0)(w)

5 For the parameterization (35), i.e. equation (10) with s = 1 − 4λ and the *j = 1, α0 does not necessarily go to 0
as the curve γ collapses to a segment of a line and α0 is real only for τ2 = 1. Note that, by (44), α0 = 0 makes a
symmetric (with respect to both, the real and imaginary axis) curve centered at the origin. If we accelerate the rate
under which tj in (35) goes to 0 (taking the *j > 1 in (10)), γ recovers its symmetry when it collapses to a segment
of the real line.
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remains bounded for w ∈ h−1 (&) such that |w| ! 1. For (1 − t0/r2)−1 " |w| < r−α ,
0 < α < 1/3, we have

1
t0

(h(w−1) − h(0)(w−1))h′(w) = 1
t0

r2α2

w−2
r + O(t0) = O(r1−2α)

1
t0

h(0)(w−1)(h′(w) − h(0)′(w)) = 1
t0

rα1w
−2r2α2

w3
+ O(t0) = O(r)

t0 − t
(0)
0

t2
0

= 1
t2
0

r4α2
2 + O(t0) = O(1)

t0E (0)(w) = O(r2−α)

uniformly in t0 as t0 → 0. Consequently,

|E(w)| ! 1
t0

|t0E (0)(w)| − |E(w) − E (0)(w)|

! 1
t0

∣∣t0E (0)(w)| − 1
t0

∣∣∣∣ |h(w)|2 − |h(0)(w)|2 − |h(1)|2 + |h(0)(1)|2
∣∣

− 2
t0

∣∣∣∣ℜe
∫ w

1
(h(ζ−1) − h(0)(ζ−1))h′(ζ ) dζ

∣∣∣∣

− 2
t0

∣∣∣∣ℜe
∫ w

1
h(ζ−1)(h′(ζ ) − h(0)′(ζ ))dζ

∣∣∣∣ −
∣∣∣∣∣
t0 − t

(0)
0

t2
0

t0E (0)(w)

∣∣∣∣∣

is strictly positive for t0 sufficiently small. For w ∈ h−1 (&) such that |w| ! r−α we may
proceed exactly as in [16].

5. Explicit balayage measures

To explicitly obtain the balayage measure in terms of the potentials we need an auxiliary result.

Theorem 3. If V : & → R is a potential defined in a compact set & ⊂ C with continuous
second partial derivatives in its interior, then the variational problem (15) is attained at a
unique equilibrium measure µV supported in a compact set D ⊂ & given by

dµV (z) = 1
4π

*V d2z, (50)

at almost every (with respect to the Lebesgue measure d2z) interior point of D, where
* = ∂2/∂x2 + ∂2/∂y2 is the Laplace operator.

By using the smoothness of V the result follows from theorems 1.3 of chapter I and 1.3
of chapter II, pages 27 and 28 respectively, of [19]. We derive an explicit equation for the
balayage measure in terms of the potential V. The result will be of fundamental importance to
establish the conformal deformation of the Elbau–Felder ensemble.

A direct application of this theorem to the potential V shows that the density of eigenvalues
is indeed uniform within D. The Elbau–Felder potential reads V (z) = (zz̄ − p(z) − ¯p(z))/t0,
remembering that * = 4∂z∂z̄ and p(z) is analytic (∂z̄p(z) = ∂zp(z) = 0); it follows that
dµ(z) = 1/(π t0)d2z within D. Moreover, we have the following result.

Theorem 4. Let V be an Elbau–Felder potential. The balayage measure µ̂ associated with
the equilibrium measure µV with support on γ = ∂D is

dµ̂(z) = 1
2π it0

S(z) dz, (51)

where dz is the measure of arc length on γ .
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Proof. The main ingredient is the Green theorem. Our hypotheses on V, D and ∂D guarantee
that the Green theorem is applicable. Using that * = 4∂zz̄ and f ∈ H(D), by (50) and
applying the Green theorem we have

∫

D

f (z) dµV (z) = 1
π

∫

D

∂z (f (z)∂zV (z)) d2z

= 1
2iπ

∫

∂D

f (z)∂zV (z) dz

and by the balayage measure property (equation (23)), we have that
∫

∂D

f (z) dµ̂V (z) = 1
2iπ

∫

∂D

f (z)∂zV (z) dz

holds for every continuous function on ∂D, from where it follows the continuity of the balayage
measure with respect to the Lebesgue measure. Next, we have that

dµ̂(z) = 1
2π i

∂zV (z) dz = 1
t0

(

z −
n+1∑

k=2

ktkz
k−1

)

dz

the term of the sum does not contribute to a contour integral with respect to µ̂ for test functions
f ∈ H(D) (by continuity and by the Cauchy theorem). Then, by using the definition z̄ = S(z),
z ∈ γ , of the Schwarz function we obtain equation (51), concluding the proof. #

Equation (51) relates the equilibrium measure with the Schwarz function of the boundary
of the support. We conclude, by applying the Cauchy theorem, that only the branch cut in
the interior domain D of the Schwarz function will contribute to the balayage measure. Thus,
questions concerning the equilibrium measure µ turn to the behavior of the Schwarz function.
It turns out that, unless γ is a line or a circle arc, the Schwarz function S always has a branch
cut [20]. Our next result draws some conclusions on the behavior of the branch cuts.

Proposition 4. If γ is a simple closed analytic curve, then the Schwarz function S associated
with γ must have branching points in its interior.

Proof. Take f ∈ H(D) such that
∫
D

f (z)dµ ̸= 0. By the property (23) of the balayage
measure with theorem 4, we have

∫

D

f (z) dµ(z) = 1
2π it0

∮

γ

f (z)S(z) dz.

Suppose now that S has no branch point in the interior of γ ; then by using the Cauchy theorem
we would then conclude, contrarily to the hypothesis, that

∫
D

f (z)dµ = 0. Therefore, we
must have an even number of branch points inside D. Another important result is that the
branch point never touches the curve γ . This can be proved by noting that γ is, by hypothesis,
a simple analytic polynomial curve and the Schwarz function S must be analytic on γ and
on its neighborhood (see [16, 20]), what excludes the branch point touching the curve γ ,
concluding the proof. #

6. Conformal deformation

In this section we conclude the proof of our main result, theorem 1 . Since the Riemann
map h(z; s) is conformal from the exterior of the unit disk onto the exterior of γ (s) it has a
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well-defined inverse from the exterior of γ (s) onto the exterior of the unit disk. We denote its
inverse by H(z; s):

h(H(z; s); s) = z (52)

for all z in the exterior of γ (s) and s ∈ (0, 1].
The Schwarz functions S can be related to the Riemann map h and its inverse H by the

following.

Proposition 5. Let γ be a polynomial curve parameterized by h. Then the Schwarz function
is a biholomorphic map in a neighborhood of γ and is given by

S(z) = h̄

(
1

H(z)

)
,

where h̄(w) = rw + ā0 + ā1w
−1 + · · · + ānw

−n.

The proof can be found in [16, 20].

Proposition 6. If h(z; s) = rz +
∑n

j=0 aj (s)z
−j with the αj (s) = r−j aj (s) satisfying

conditions (i)–(iii) of remark 3, then the inverse function H(z; s) of h(z; s) reads

H(z; s) = z − a0(s) +
√

(z − a0(s))
2 − 4ra1(s)

2r
+ o(s) (53)

for 0 < s < ε and ε small enough.

Proof. We have by equations (24) and (52)

h(H(z); s) = rH(z; s) +
n∑

j=0

aj (s)H(z; s)−j = z

which yields

rH 2(z; s) − (z − a0(s) + o(s))H(z; s) + a1(s) = 0. (54)

Solving the equation for H the result follows. Note that |H | = O(1) in the neighborhood
of γ (s). #

Remark 8. Equation (53) has branches, namely the minus square root, which can be directly
seen from equation (54). We do not consider the minus square root, because it does not yield
S(z) = z̄ on γ (s).

Lemma 1. Let dµ̂(z; s) be the balayage measure supported on γ (s) of the Elbau–Felder
ensemble. Assume that conditions (i)–(iii) of remark 3 hold. Then, given ε sufficiently small,
for 0 < s < ε and f ∈ H(D(s)), we have

∮

γ (s)

f (z) dµ̂(z; s) = 1
2πr2

∫ 2r

−2r

f (x)
√

4r2 − x2 dx + o(1). (55)

Proof. Given z in a neighborhood of γ (s) and ε > 0 sufficiently small, the Schwarz function
of γ (s) for 0 < s < ε by proposition 5 reads

S(z; s) = r
1

H(z; s)
+ ā0(s) + ā1(s)H(z; s) + · · · + ān(s)H

n(z; s)

which together with (53) yields

S(z; s) = E (z − a0(s)) + 5

√
(z − a0(s))

2 − 4ra1(s) + g(z; s) (56)
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where E = (r2 + |a2
1(s)|)/2ra1(s) and 5 = (|a2

1(s)| − r2)/2ra1(s), and g(z; s) is o(s).
Introducing

I (s) =
∮

γ (s)

f (z) dµ̂(z; s),

by (51), the contour integral will be performed taking into account (56). The constant and
linear term in (56) will give no contribution by Cauchy theorem. Now we need to estimate
term depending on g. Since g is analytic in a neighborhood of γ (s), we have the bound

1
2π t0(s)

∣∣∣∣

∮

γ (s)

g(z; s) dz

∣∣∣∣ " maxz∈γ (s) |g(z; s)|
2π t0(s)

∮

γ (s)

dz. (57)

Since the arc length
∮
γ (s)

dz is finite, maxz∈γ (s) |g(z; s)| = o(s), and by (18) and condition (ii)
of remark 3,

t0(s) = r2 − |a1(s)|2 + o(s2) = r2s + o(s),

we have that the rhs of (57) is o(s)/t0(s) = o(1). Hence, 5/t0(s) = −1/2r2 + O(s). Also,
for z ∈ γ (s),

√
4ra1(s) − (z − a0(s))

2

ra1(s)
=

√
4r2 − (z − a0(s))

2

r2
+ O(s).

Combining the estimates, we have

I (s) = −1
4π

∮

γ (s)

f (z)

√
4r2 − z2

r2
dz + o(1). (58)

By using proposition 2, γ (s) may be deformed until it coincides with the branch cut of the
square root. Because of the branch, the integrand around the cut will change its sign: for γ

running from 2r to −2r , the square root becomes
√

4r2 − x2, while running from −2r to 2r

the square root becomes −
√

4r2 − x2. This leads to

I (s) = 1
2πr2

∫ 2r

−2r

f (x)
√

4r2 − x2dx + o(1)

concluding the proof. #

6.1. Proof of theorem 1

We prove the item (1). From the initial ensemble with analytic polynomial curve γ , we have
constructed a one-parameter family of curves γ (s, r, τ ) parameterized by h(w; s, r, τ ) with
|w| = 1 and s ∈ (0, s0]. We have shown, in proposition 1, that under the hypothesis (25)
the family γ (s, r, τ ) is composed of simple closed analytic polynomial curves of degree n.
It follows from proposition 3 that for r sufficiently small the hypothesis (25) is fulfilled (see
equation (48) along with remark 7). Therefore, γ (s, r, τ ) is a simple analytic polynomial
curve for every s ∈ (0, s0]. Moreover, h(w; s, r, τ ) acts as the Riemann map from the exterior
of the unity circle onto the exterior of γ (s, r, τ ) for s ∈ (0, s0].

The uniqueness of the curve and the fact that the parameters of h(w; s, r, τ ) can be
uniquely determined by t0 and t(s) follows from the fact that the problem of determining the
exterior moments tj out of simple closed analytic polynomial curves has a unique solution
also when t2 tends to 1/2. The proof of this fact is presented in proposition 3. The first part
of item (2) is proven in subsection 4.2 for t0 small enough.

We prove the second part of item (2) with help of the balayage techniques. The
balayage enables us to sweep all the eigenvalues to the boundary γ (s, r, τ ) and to analyze
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the deformation only focusing on γ (s, r, τ ). In theorem 4, we deduce an explicit equation
relating the balayage measure with the potential V for the test function space H. It turns out
that the balayage measure is proportional to the Schwarz function.

In proposition 4, we show that the Schwarz function of every simple closed polynomial
curve must have a branch cut which lies in the interior of the curve and the branch points
never touch the curve itself. In lemma 1, we control the limit of the balayage measure µ̄(z; s),
as s → 0. In lemma 1, we control the convergence of the equilibrium measure as s → 0.
Here the converge rate *j > 1 plays a role in controlling the contributions to the Schwarz
function as the curve γ (s, r, τ ) collapses to the support [−2r, 2r]. Lemma 1 then shows that
the equilibrium measures weakly converge to the semicircle law. This concludes the proof.

7. Examples

7.1. Potential of degree 2

Taking n = 1 in (6), the potential V reads

V (z) = zz − t2z
2 − t2z

2

t0
.

Consider the one-parameter family for Riemann maps h(w; s) = rw + a1(s)w
−1 in

which, without loss of generality, r > 0 and a1(s) = r(1 − s) for s ∈ (0, 1]. Note
that this parameterization fulfills conditions (i)–(iii) by taking s )→ s/2. This yields
h(w; s) = r(w + (1 − s)w−1) t0 = r2(2s − s2) and 2t2 = 1 − s, by relations (18) and
(19). The support of the eigenvalues is then given by

D(s) =
{
x + iy ∈ C :

x2

r2(2 − s)2
+

y2

r2s2
" 1

}
,

with major and minor semi-axes given, respectively, by (2 − s) and s. For every s ∈ (0, 1] the
Elbau–Felder conditions are satisfied, namely t1(s) = 0 and |t2(s)| < 1/2. Condition (25):
ξ(s) = r − a2(s) = s > 0 for s ∈ (0, 1], holds and conditions (i)–(iii) are trivially satisfied.

The equilibrium measure associated with this potential is uniform within the support D(s)

and may be continuously deformed up to the limit lims→0 h(w; s) = 2ℜe(w) for |w| = 1, in
which its boundary becomes the line segment [−2r, 2r].

To show that the balayage measure converges to the Wigner measure, we consider the
Schwarz function, which can be computed using the formulas in [20] or using H(w; s) together
with proposition 5. By equation (51) and the Cauchy theorem, only the non-holomorphic part
of the Schwarz function gives a contribution to the integrals. For test functions f ∈ H(D(s))

and the properties of the balayage measure (23), we have
∫

D(s)

f (z)dµ(z; s) = 1
2πr2 (1 − s)

∫ 2r
√

1−s

−2r
√

1−s

f (x)
√

4r2(1 − s) − x2 dx.

7.2. Potentials of degree 3: breaking down the hypotheses

If we break conditions (i)–(iii) of remark 3 (*j > 1), then it is impossible to deform the
equilibrium measure keeping simultaneously the regularity of the polynomial curve and a
non-trivial support. We illustrate this scenario for n = 2 taking t1 = t2 = 0. The potential
then reads

V (z) = zz − t3z
3 − t3z

3

t0
.
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By (18) we have t0(s) = r2 − 2|a2(s)|2 and 3t3(s) = a2(s)/r2. The Riemann map is written
as h(w; s) = rw + a2(s)w

−2. Note that a1 = 0 violates condition (ii). Therefore, the
deformation of γ (s, r) to a segment of the real line is impossible. The regularity of γ (s, r),
which is guaranteed by condition (25), requires |a2| < r/2, while the positive area condition
on t0 requires |a2| < r/

√
2.

There is no parameterization that keeps the regularity of γ (s, r). When the area π t0 of
D(s,r) converges to zero (a2 → r/2), γ (s, r) develops cusps and is no longer regular. Keeping
the regularity of the curve, the limit t0 → 0 is possible only taking r → 0. Therefore, as the
area π t0 converges to zero, hence, γ (s, r) collapses to a point.

8. Conclusion

We study the conformal deformations of equilibrium measures of Elbau–Felder ensembles
to the real line. Special attention is paid to Wigner measures, for which the density of
eigenvalues follows the semicircular law. Two ingredients are used to prove the main result.
We use bifurcation theory from a single eigenvalue for extending the moment problem to near
slit domains, and the concept of balayage measure together with the Schwarz function for
assisting the convergence to Wigner measures.

Our approach to the problem considers a family of normal ensembles parameterized by
s. For each s ∈ (0, 1] fixed, the Elbau–Felder results guarantee that the probability of finding
eigenvalues outside the curve γ (s, r, τ ) decays is exponentially fast with N. The problem then
turns to whether convergence of the eigenvalue density to the equilibrium measure would be
uniform as a function s. The uniformity of the limit remains an open question.

The result presented in theorem 1 is in a way universal, in the sense that it does not depend
on the initial ensemble one starts with. It would be interesting to analyze the deformation of
the Elbau–Felder ensembles to the real line without the assumption on the convergence rate—
*j > 1 in item (3) of theorem 1. Here the resulting equilibrium measure, if well defined,
might deviate from the semicircular law, and it might also depend on the initial ensemble
under consideration.
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Appendix. Solution of (33)

Lemma 2. The linear system of equations (33) has a unique solution ϕ = T v + Bv̄ where
B = (1 − |k|2)−1JK with k = K11 and T = J + k̄B , provided |k| ̸= 1.

Proof. Equation (33) is solvable if and only if
(

B T

T̄ B̄

)(
−K̄ J−1

J−1 −K

)
=

(
I 0
0 I

)

holds for some (n + 1) × (n + 1) complex matrices B and T and this is equivalent to

−BK̄ + T J−1 = I

BJ−1 − T K = 0.
(A.1)
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Let us assume that B has its first column given by b and 0 everywhere else (so B has the same
form of K) and let T = J + k̄B. Note that KA = a11K (BA = a11B) holds for any matrix
A = [aij ], such that aij = 0 for j > 1. Substituting T in (A.1), we have

BJ−1 − T K = BJ−1 − (J + k̄B)K

= B − JK − |k|2 B = 0

which implies

B = 1

1 − |k|2
JK

T = J +
k̄

1 − |k|2
JK

and concludes the proof of the lemma. The uniqueness follows by linearity. #
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