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1 Introduction

When using methods from network science to study real-world complex systems,
one is faced with the choice of constructing either a structural or functional network
that describes the relationship between the interacting components of the system.
Sometimes it is more achievable or desirable to measure the dynamics of compo-
nents and posit that if two components display similar activity, they are in some
way dynamically linked. This gives rise to data-driven functional networks [1]. Con-
versely, in other situations, we may have access to structural networks representing
known physical links between components. The focus of much research in complex
network theory is towards gaining a greater understanding of how functional and
structural networks relate to each other [2].

To this end, much analysis has been conducted into network architecture and
organisation. Recent results have shown that both functional and structural network
representations of real world systems typically display a modular architecture [3,
4, 5, 6, 7, 13, 23]. A network with a modular organization could be described as
a network consisting predominantly of highly connected sub-graphs which have
comparatively fewer connections to nodes outside the module. We are particularly
interested in how functional modules relate to the structural modules of a network.

Synchronisation is a typical paradigm of dynamical network function. Such
group collective behaviour appears with ubiquity in nature. Human hearts beat
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rhythmically because thousands of cells synchronise their activity [8], and the col-
lective behaviour of neurons in the brain has been shown to be linked to Parkinson’s
disease [9] and epileptic seizures [10]. However, synchronisation does not have to
be global, and can occur in particular subgroups or modules.

Over recent decades, synchronisation analysis has benefited from methods in the
fields of graph theory and dynamical systems, and theories for global synchroni-
sation have been established in terms of the network structure [19, 24, 25, 26]. Of
particular interest is the stability of the synchronised state. If global synchronisa-
tion can be maintained, this amounts to a coherent state, while if the synchronised
state becomes unstable it can serve to predict a transition in the organisation of the
complex system [11, 27, 28, 29, 19, 30].

In this chapter, we will study cluster synchronisation within modular networks of
diffusively coupled oscillators. We predict the onset of stable and unstable module
synchronisation by obtaining stability conditions within a densely connected mod-
ule. Our model is based on the following assumptions:

• The network has a modular structure such that nodes in one module have
few connections to nodes outside the module.

• Within modules, nodes have a high mean degree and share many common
neighbours.

Under these assumptions, we can perform a stability analysis independently for
each module, thereby avoiding a spectral decomposition of the network adjacency
matrix which poses a significant challenge for large networks. Typically, we would
have to analyse as many equations as the number of nodes in a module, but because
nodes within modules have a large number of common neighbours, we are able to
reduce the analysis to a single equation describing the synchronisation of each mod-
ule by bounding the dynamics of the external modules. Hence our analysis allows
us to tackle the stability of each module independently, yet taking into account their
influence on each other.

From our study of the local stability of synchronisation, we establish conditions
for the persistence of stability under non-linear and linear perturbations. The stabil-
ity of module synchronisation is determined as a function of: (i) the module mean
degree and matching index (defined in Section 2.2), and (ii) the isolated dynamics
and coupling function. This analysis allows us to predict the formation and disinte-
gration of functional modules depending upon the nature of the diffusive coupling
between the components of the network. Our results reveal that:

• The mean degree of the module dictates the onset of synchronisation.
• Functional modules may not reflect fully the structural modules of a net-

work.
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As a consequence, the functional representation of a network can sometimes
drastically differ from the underlying topological structure. Through the use of sim-
ulations we validate our analytical results and conclude with a discussion on how
the functional network representation of a modular network relates to the underly-
ing topological structure. The remainder of this chapter is organised as follows. Our
model assumptions are formalised in Section 2. Both our analytical and numerical
results are presented in Section 3. The derivation of our analytical results is then
presented in Section 4. Finally we provide a conclusion and discussion in Section 5.

2 The Model

In this section we formalise our model setup. Initially we formalise some basic
graph definitions we make use of as well as describing the network class we intend
to study. We then present the dynamical model describing the interaction between
the components of the network. See Section 2.1 for remarks regarding notation we
adopt throughout the chapter.

2.1 Notation

The Jacobian matrix of a function f : Rm→Rm at the point x is denoted by Df(x).
When discussing synchronisation in this chapter, we imply a δ -synchronisation;

that is, given two trajectories x(t) and y(t) we say that they are δ -synchronised if
the difference in their state vectors are within a neighbourhood of radius δ � 1 at
all large times t

‖x(t)−y(t)‖ ≤ δ ∀ t > T (δ ).

The small parameter δ measures the quality of synchronisation, and depends on
both the isolated dynamics and coupling function as well as the network structure.
This is particularly evident in the numerical simulations. To simplify the notation,
we will omit the symbol δ when discussing δ -synchronisation.

We use the small ‘o’ and big ‘O’ notation to describe asymptotic behaviour. We
write f (x) = o(x) if f (x)/x goes to zero as x tends to infinity, and we write f (x) =
O(x) if | f (x)/x| is bounded by a positive constant as x tends to infinity.
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2.2 Graphs: Basic Definitions

A graph G is a set of N nodes (or vertices) connected by a set of E edges. Here, we
will only consider simple, unweighted and undirected graphs; that is, graphs with no
loops and where there is no order associated with the two vertices of each edge. We
will also use the words ‘graph’ and ‘network’ interchangeably although a network
commonly denotes a graph structure where some form of dynamics takes place on
the nodes.

The adjacency matrixA encodes the topology of the graph, with Ai j = 1 if i and j
are connected and 0 otherwise. Clearly, A=AT for undirected graphs. The degree
of node i is the number of connections it receives, that is

ki =
N

∑
j

Ai j.

The mean degree for a set of nodes S with cardinality |S|= n is then:

〈k〉S =
1
n ∑

j∈S
k j.

We now define the matching index of a graph [7], which will play an important
part in our analysis. The neighbourhood of node i is the set of nodes it shares an
edge with: Γ (i) = { j|Ai j = 1}. Clearly, for simple graphs |Γ (i)|= ki. The matching
index of nodes i and l is the overlap of their neighbourhoods:

Iil = |Γ (i)∩Γ (l)|= Ail +
N

∑
n,m=1

AinAml = (A+A2)il .

The normalised matching index is then:

Îil =
|Γ (i)∩Γ (l)|
|Γ (i)∪Γ (l)| =

|Γ (i)∩Γ (l)|
|Γ (i)|+ |Γ (l)|− |Γ (i)∩Γ (l)| ==

(A+A2)il

ki + kl− (A+A2)il
. (1)

It follows that Îil = 1 if and only if i and l are connected to exactly the same nodes,
i.e., Γ (i) = Γ (l); whereas Îil = 0 if nodes i and l have no common neighbours [7].
The mean matching index for a set of nodes S with |S|= n is then:

〈Î〉S =
1

n(n−1) ∑
i, j∈S
i 6= j

Îi j.

Figure 1 shows graphs with different mean degrees and matching indices.
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Fig. 1 Here we display four graphs, G1, G2, G3 and G4 with decreasing matching index and mean
degree.

2.3 The Modular Network

A subgraph C of a graph G is a set of nodes and edges of G that connect any two
nodes in C. A structural module (or cluster) is rather loosely defined as a highly
connected sub-graph with comparatively fewer connections to nodes outside the
module [23]. Conversely, by taking a dynamical perspective, popularised within the
community detection literature, a module (or community) corresponds to a set of
nodes and edges were a random walker is likely to become transiently trapped for a
longer period of time than that expected at random [12, 31, 32, 13]. A prototypical
example of a module would be a complete graph (or clique), where every node
is connected to every other node, which is only weakly connected to other nodes.
Figure 2 provides an example of such a modular network.

To make this notion more precise, we consider the mismatch index between a
pair of nodes i and l, which corresponds to the complement of the matching index
defined in Eq. (1):

µil = |Γ (i)∪Γ (l)|− |Γ (i)∩Γ (l)|= |Γ (i)∪Γ (l)|− Iil (2)

While the matching index counts all nodes that i and l share, the mismatch index
counts all nodes that i and l do not share. Hence the normalised mismatch index is:

µ̂il =
|Γ (i)∪Γ (l)|− |Γ (i)∩Γ (l)|

|Γ (i)∪Γ (l)| = 1− Îil .

Clearly µ̂il = 0 if nodes i and l share exactly the same neighbours (as well as po-
tentially being linked themselves), and µ̂il = 1 if nodes i and l share no common
neighbours.
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Fig. 2 Example of a modular network with modules denoted by dotted grey lines.

The theory we present in this chapter holds for all modules C of a network G
such that

µil

〈k〉C
= O

(
1
〈k〉C

)
, ∀i, l ∈C (3)

along with the homogeneity condition

ki ≈ 〈k〉C, ∀i ∈C. (4)

This final relation also implies that
∣∣ki− kl

∣∣
〈k〉C

= O
(

1
〈k〉C

)
, ∀i, l ∈C.

Therefore from our first relation (Eq. (3)), a module will have a high matching
index, that is, nodes within a module will have a large number of common neigh-
bours. Our second relation (Eq. (4)), allows us to approximate the degree of each
node in C by the module mean degree and, certainly for small networks, excludes
the possibility of any hubs (highly connected nodes) occurring in a module. As a
consequence, module C can be described by the number of nodes it contains q and
its mean degree: C =C(q,〈k〉C).

We note that the matching index does not distinguish between a lack of common
neighbours within the module and additional (unshared) links to nodes outside the
module. Therefore, a high matching index not only guarantees that nodes within a
module share similar neighbours but that they also have a comparatively low number
of links to nodes outside the module. In [14], the edges of a graph were decomposed
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into inter-module and intra-module edges. They showed that this classification of
edges distinguishes the formation of functional modules.

2.4 The Dynamical Model: Network of Diffusively-Coupled
Bounded Systems

We now introduce some dynamics on each node of the graph. The dynamics of each
node is governed by m-dimensional dynamics:

dx
dt

= f(x), (5)

where f : Rm→ Rm is a smooth vector field, and we also assume that the solutions
of this isolated system are bounded, i.e., for all t there exists a K such that ||x(t)||<
K. The boundedness of the dynamics of the nodes encompasses a wide variety of
stationary and oscillatory (periodic and chaotic) systems [33].

The influence that neighbour j exerts on the dynamics of node i is assumed to
depend on the difference of their state vectors: x j(t)−xi(t). This type of coupling
tries to equalise all states of the nodes and it is in this sense that it is called a diffusive
coupling. The model accounts for the influence of all neighbours in a network G
with adjacency matrix A, which is assumed to be given. The dynamics of node i in
a network of N diffusively coupled elements is then given by:

dxi

dt
= f(xi)+α

N

∑
j=1

Ai j [H(x j)−H(xi)], i = 1, . . . ,N (6)

where α ∈ R is the overall coupling strength and H : Rm → Rm is the coupling
function. Hence the coupling between elements is given in terms of the adjacency
matrix and α modulates the influence between connected nodes. Note that we as-
sume identical elements, i.e., in our model, the dynamics f and coupling H are
identical for all nodes.

3 Results

In this section, we first state briefly our main analytical results, which are derived
in detail in Section 4. We then provide extensive numerical simulations to illustrate
our findings.
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3.1 Summary of Analytical Results

Firstly, we state our assumptions regarding the dynamics of the system.

A1 : The coupled node dynamics in Eq. (6) are bounded: there is a constant Kx
such that

‖xi(t)‖< Kx, ∀i.
A2 : The variational equation

ξ̇ = [Df(s(t))−σDH(s(t))]ξ, (7)

where s(t) is the trajectory of any node, admits a uniformly asymptotic trivial
solution for σ ∈ (λ ,Λ), where the both the upper and lower bounds depend on
the dynamics and coupling functions: λ = λ (f ,H) and Λ = Λ(f ,H) 1 . That
is, the solution of the variational equation is a contraction:

ξ(t) = T (t,s)ξ(s) for t ≥ s

with
‖T (t,s)‖ ≤ Ke−η(t−s)

where η = η(σ)> 0 uniformly and K ∈ R.

Assumption A1 is natural in applications. In particular, if a Lyapunov function
exists for the isolated dynamics (5) with an absorbing domain, it is possible to show
that the network solution satisfies A1 [15]. Assumption A2 is similar to the master
stability function approach [16]. The main difference is that in the master stability
function, the trajectory s(t) corresponds to the a modified (perturbed) solution of
the uncoupled dynamics, whereas here it corresponds to the trajectory of a coupled
node. Depending on the structure of the coupling function this difference is immate-
rial [17]. Our numerical analysis shows that the values of λ and Λ from the master
stability function provide a good approximation.

Remark 1 If the coupling function H is a positive definite matrix, then the results
of Ref. [17] demonstrate that λ = λ (f ,H) and Λ → ∞. Moreover, the contraction
exponent is given by

η = βσ −λ

where β is the smallest eigenvalue ofH .

Using these two assumptions in combination with the modular structure of the
network, we derive, in Section 4, a stability condition for the synchronisation of
modules which does not require a spectral analysis of the network adjacency matrix.
This is a consequence of the high matching index within modules. Our results enable

1 We see the equation as a parametric equation in the same spirit as the master stability function
approach [25, 16, 18], hence we omit the subindex that explicitly shows the dependence on the
node.
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the prediction of functional module formation and disintegration depending on the
structural properties of the module and the dynamical properties of the nodes.

Our main finding is the following:

Consider the modular network G containing a module C = C(q,〈k〉C) with
q� 1 nodes and mean degree 〈k〉C. Assume that A1 and A2 hold, such that the
system in Eq. 7 is a contraction for (λ ,Λ). If the matching index of the module
〈Î〉C is high, then the critical coupling strengths αs

C for synchronisation and
αd

C for desynchronisation are given by

α
s
C =

λ

〈k〉C
(1+ εs) and α

d
C =

Λ

〈k〉C
(1+ εd), (8)

where εs,d = O(1/〈k〉C). Hence, for α ∈ (αs
C,α

d
C), ∃T ∈ R such that ∀t > T ,

the nodes in C exhibit stable synchronised dynamics

‖xi(t)−xl(t)‖ ≤ O
(

1
〈k〉C

)
,∀i, l ∈C. (9)

This result shows that, under these assumptions, the average degree of the module
has an effect on the coupling interval that guarantees synchronisation in the module:
only if the coupling α is such that αs

C < α < αd
C the functional and structural mod-

ules coincide. If the coupling strength is too large (α > αd
C) or too small (α < αs

C),
the functional module disintegrates and no longer reflects the structural module. We
call this change the bifurcation between functional and structural modules. Impor-
tantly, the intervals in which synchronisation is stable will be different for different
modules, depending on their mean degree.

Remark 2 If the coupling function H is a positive definite matrix, then αd
C → ∞.

Therefore for this class of coupling function and large enough values of the coupling
α > max{αs

C}, the functional modules mirror all the structural modules in the net-
work. On the other hand, if α < min{αs

C} no functional modules will be apparent.
In between those two limits, only some of the structural modules will be reflected as
functional modules. This is the case of the coupling H = I.

Note also that the solutions xi under cluster synchronisation may not be similar
to the solutions of the invariant synchronisation manifold S of the whole network

S = {xi(t) = s(t) where ṡ= f(s),∀i = 1, ...,N}.

Therefore the dynamics of nodes in different modules can be very different to each
other and, in particular, to the global synchronous dynamics of the network. In our
analysis, we effectively decompose a modular network into individual modules with
low inter-module connectivity and predict the onset of stable synchronisation based
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upon the mean degree within a module. For the derivation of our analytical results,
see Section 4.

3.2 Numerical Simulations

To illustrate our analytical results we consider numerical simulations of the paradig-
matic example of a network of diffusively coupled identical Rössler oscillators. The
isolated dynamics of each oscillator i is described by the system of differential equa-
tions

ẋi = (ẋi, ẏi, żi)
T = f(xi) =



−(yi + zi)
xi +ayi

b+ zi(xi− c)


 ,

with the standard parameter values a = 0.2,b = 0.2 and c = 9. For these values, we
know the system exhibits a chaotic attractor and that all trajectories eventually enter
a compact set, thereby satisfying our assumptions regarding f from Section 2.4.

For a network of N diffusively coupled Rössler oscillators, the dynamics of a
node i are governed by the diffusive model (Eq.(6)), repeated here for clarity

dxi

dt
= f(xi)+α

N

∑
j=1

Ai j [H(x j)−H(xi)] , i = 1, . . . ,N, (10)

where α ∈R is the global coupling strength,H ∈R3×3 is the inner coupling matrix,
andA ∈ RN×N encodes the graph topology.

To numerically determine the stability of synchronisation for a system of coupled
oscillators, we construct a correlation matrix ρ(α)∈RN×N for a particular coupling
strength α . This correlation matrix describes the pairwise similarity between the
dynamics of all oscillators in the system averaged over some large time T

ρ(α) = I−R(α)

R̂
,

where the elements of the matrixR(α) are defined as:

Ri j(α) =
1
T

T

∑
t=0
‖xi(t)−x j(t)‖,

for nodes i and j and
R̂ = max

i, j,α
Ri j(α).

Using this notation, we also define the mean correlation between the dynamics of a
set S of n nodes

〈ρ〉S = ∑
i, j∈S
i 6= j

ρi j

n(n−1)
.
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We integrated Eq. (10) using an Adams-Bashforth multi-step scheme together
with an intial fourth order Runge-Kutta algorithm using a step size of 0.001. The
initial states of the oscillators were randomised between 0 and 0.05.

We calculated the correlation matrix ρ for a network with a modular structure,
varying coupling strengths α and for two coupling schemes: H = I and H = E,
where

E =




1 0 0
0 0 0
0 0 0


 .

The case H = I corresponds to each variable x,y and z being coupled to the same
variable of all its neighbours, whileH =E corresponds to only the x variable being
coupled to its neighbouring nodes.

3.2.1 Dynamics within a modular network

We first present the numerical results of the simulations of the modular network G1
shown in Fig. 3. The network has two modules C1 and C2 generated according to an
Erdös-Rényi architecture: C1 contains 60 nodes with 〈Î〉C1

= 0.95 and 〈k〉C1
= 58;

C2 contains 40 nodes with 〈Î〉C2
= 0.6 and 〈k〉C2

= 30. The inter-module connec-
tions are low compared with the intra-module links, as implied by the high module
matching indices. In these simulations, we use the x-coupling: H =E. The results
of the functional analysis are presented in Figure 4.

Fig. 3 Adjacency matrix (spy(A)) and graph visualisation of the network G1 which contains two
weakly connected Erdös-Rényi modules C1 (blue) and C2 (red) with 60 and 40 nodes respectively.

Figures 4a to 4e display heat map representations of the correlation matrix ρ for
increasing coupling strengths α . Darker regions correspond to higher correlation
between node dynamics. From the analysis of the master stability function of the
Rössler system with these parameters and x-coupling, it has been found that the
region of stable synchronisation are bounded by λ = 0.186 and Λ = 4.164 [19]. We
can then use these numbers to approximate the regions of stable synchronisation for



12 Stroud, Barahona, Pereira

Fig. 4a α = 0

 

 

Fig. 4b α = 3.5×10−3

 

 

Fig. 4c α = 2×10−2

 

 

Fig. 4d α = 1×10−1

 

 

Fig. 4e α = 1.8×10−1

 

 

(b) (c) (a) (d) (e) 

α
0

αs
C1

αd
C1

αd
C2

αs
C2

Fig. 4e Figures 4a to 4e display the functional correlation matrix ρ for increasing coupling
strengths α of the network G1 when only the x component of the dynamics is coupled (H =E).
Darker coloured areas correspond to regions of synchronisation. The inset illustrates the different
synchronisation regions for modules C1 and C2 as expected from our analysis. The letter labellings
correspond to those in Figures 4a to 4e. Note that αs

C1
≈ 3.2×10−3 < αs

C2
≈ 6.2×10−3 < αd

C1
≈

7.2×10−2 < αd
C2
≈ 1.39×10−1, thus giving rise to distinct regions for the functional network.

modules C1 and C2: αs
C1
≈ 0.186/58= 3.2×10−3 and αd

C1
≈ 4.164/58= 7.2×10−2

for C1; whereas αs
C2
≈ 6.2×10−3 and αd

C2
≈ 1.39×10−1 for C2. These regions are

indicated by the illustration inset in Figure 4.
Our numerics show that when α = 0 there is no correlation between the dy-

namics of the nodes. This is expected since there is no interaction between the
oscillators. For α = 3.5× 10−3, C1 has synchronised and some nodes in C2 are
beginning to show cohesive dynamics. This is expected since the coupling strength
has entered the predicted stable synchronisation region for C1 but not for C2. For
α = 2×10−2, both modules have synchronised, but the dynamics of the two mod-
ules are uncorrelated as indicated by the pale off-diagonal regions. This is a result
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of the low inter-module connectivity2. For α = 1×10−1 (Figure 4d), module C1 has
already desynchronised, while C2 remains synchronised. As the coupling strength is
increased further, C2 also desynchronises.

The dynamical behaviour of the clusters is perhaps expressed more clearly when
analysing the time evolution of the oscillators. Figure 5 displays the evolution of
the x variable of two oscillators in module C1 for increasing coupling strengths.
In Figure 5a, where α = 0, we observe, as expected, that the dynamics of the two
oscillators are uncorrelated. For α = 3.5× 10−3 in Figure 5b, the two oscillators
synchronise. The inset in this figure demonstrates that the two oscillators have dif-
fering but close initial conditions and due to the coupling strength, soon achieve
stable synchronisation. Finally, for α = 1× 10−1 (Figure 5c), the oscillators ini-
tially synchronise before diverging after a short time and then remain uncorrelated
thereafter.

3.2.2 Relation between the critical coupling strength and the module mean
degree

We now examine how the critical coupling strength required for stable synchroni-
sation within a module depends upon its mean degree. To this end we simulated a
network G2 of 100 nodes for varying matching indices between 0.7 and 1 which
will act as a paradigmatic example of a module with no inter-module links, thereby
removing any external perturbations from other modules. We then determined the
coupling strength α such that 〈ρ〉G2

= 0.99 for both H = I and H = E. We re-
peated simulations 5 times for varying network adjacency matrices.

Along with the simulations, we indicate the predicted critical coupling strength
which depends inversely upon the mean degree of the module as determined by our
methodology. We demonstrate this by fitting the simulation results to an expression
of the form

α
s
C,α

d
C =

a
〈k〉+b

, (11)

where a and b are fitting parameters.

2 Under certain conditions, it is possible for two modules to synchronise and this is explored
elsewhere such as [20].
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Fig. 5a α = 0
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Fig. 5b α = 3.5×10−3
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Fig. 5c α = 1×10−1
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Fig. 5 Time evolution of the x component of the dynamics for two oscillators in module C1 over the
time window 125 to 200. For α = 0, the dynamics of the two oscillators are uncorrelated. When
the coupling strength is increased to 3.5× 10−3, the two oscillators enter a stable synchronised
state. As the coupling strength is increased further to 1×10−1, the oscillators initially synchronise
for small times before their trajectories diverge and then remain uncorrelated thereafter.
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Remark 3 The precise bounds for the critical coupling strength depends on the ac-
tual node degrees and not only the mean degree (see the derivation of the results
in Section 4 for details). However, since node degrees are close to the mean de-
gree we can approximate ki = 〈k〉+ b, where b is treated as a free parameter. The
parameter b effectively allows for inhomogeneities within the module structure to
produce a small perturbation to the critical coupling strength required for stable
synchronisation, details on these perturbations can be found in Section 4.4.

Figure 6 displays the results when coupling all components of the dynamics with
H = I . As expected, all nodes in the module will synchronise given a strong enough
coupling strength and the module will remain synchronised as the coupling strength
is increased thereafter. The simulations follow an inverse dependence upon the mean
degree of the module (Eq. (11)), as expected from our results.

Figure 7 displays the results when coupling only the x component of the dynam-
ics, corresponding toH =E. We see that for a module with a high matching index,
all nodes will synchronise above a coupling strength and will then desynchronise as
the coupling strength is increased further. Again, from the fitted curves, the critical
coupling strengths required for synchronisation and desynchronisation display an
inverse dependence upon the module mean degree in line with our results.

Remark 4 When setting b = 0 in the curve fitting (corresponding to perfectly ho-
mogeneous node degrees), we can directly compare our results with those obtained
in the literature from analysing the master stability function, which have shown
λ = 0.186 and Λ = 4.614 for this system [19]. From our fits, allowing for a sta-
ble synchronisation region to be given by 〈ρ〉G2

> 0.99, we obtain αs
C〈k〉 = 0.202

and αd
C〈k〉= 4.750 in close agreement with the master stability function bounds, as

expected from our analytical results.
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Fig. 6 Critical coupling strength required for stable synchronisation for a module of 100 nodes
with a varying high matching index plotted against the module mean degree. Simulations were
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4 Derivation of our Analytical Results

Before detailing the derivation of our results below, we briefly outline our strategy.
Starting from Eq. (6), we define

z(t) = xi(t)−xl(t), for any i, l ∈C, (12)

where C is a module, and analyse the dynamics of z. To this end, we take the fol-
lowing four steps.

1. First, for z sufficiently small, we obtain the linearised equation for z(t):

dz
dt

= h(α, t)z(t)+αg(t), (13)

where g and h are to be determined and depend on both the node dynamics and
network structure. By Taylor’s Theorem, the remainder is O(||z(t)||2) and it can
be dealt with in step 2.

2. We then analyse the associated homogeneous equation

dy
dt

= h(α, t)y,

and, by Eq. (7), represent y(t) in terms of its associated evolution operator

y(t) = T (t,s)y(s).

Our assumption A2 guarantees that the trivial solution of the above equation is
uniformly asymptotically stable, that is, for some η > 0,

‖y(t)‖ ≤ Ke−η(t−s)‖y(s)‖, for t ≥ s.

3. We then solve Eq. (13) using the method of variation of parameters

z(t) = T (t,s)z(s)+α

∫ t

s
T (t,u)g(u)du,

and by defining ‖g‖= supu ‖g(u)‖, from the triangle inequality we obtain

‖z(t)‖ ≤ Ke−η(t−s)‖z(s)‖+ Kα‖g‖
η

.
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4. Then for large times and using Eq. (12), we obtain

‖xi−xl‖ ≤
K̃α‖g‖

η
,

where

K̃ = K

(
ηe−η(t−s)||z(s)||

α||g|| +1

)
.

Under our network assumptions, Eq. (3) and Eq. (4), we can obtain bounds for
‖g‖ as

‖g‖
〈k〉C

= O
(

1
〈k〉C

)
.

We now explain these steps in more detail.

4.1 Obtaining the Variational Equation

To obtain the first variational equation for z(t) = xi(t)−xl(t) we write

ż = ẋi− ẋl

= f(z+xl)−f(xl)+α

{
∑

j
(Ai j−Al j)H(x j)+∑

j
[Al jH(xl)−Ai jH(xi)]

}
,

by Eq. (6).
For some t such that ‖z(t)‖ is sufficiently small, we can expand as a Taylor

series, and after some manipulations we obtain

ż = Df(xl)z−αAilDH(z)+α

{
klH(xl)− kiH(xi)+ ∑

j 6=i,l
(Ai j−Al j)H(x j)

}

where ki is the degree of node i as given in Section 2.2. Without loss of generality,
we assume kl ≥ ki and set k̄i = ki +Ail to obtain

ż(t) = h(α, t)z+αg(t), (14)

where
h(α, t) = Df(xl(t))−α k̄iDH (15)

and
g(t) = (kl− ki)H(xl(t))+ ∑

j 6=i,l
(Ai j−Al j)H(x j(t)). (16)
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This is the first variational equation. Note, we truncated our Taylor expansion
in z up to first order and by Taylor’s Theorem we know the remainder satisfies
‖R(z(t))‖= O(‖z(t)‖2).

4.2 The Homogeneous Equation

We now consider the homogeneous part of Eq. (14)

ẏ = h(α, t)y. (17)

Notice the rescaling α k̄i = σ brings the above equation (Eq. (17)) to Eq. (7). There-
fore, if

λ < α k̄i < Λ ,

Eq. (17) has an evolution operator satisfying

‖T (t,s)‖ ≤ Ke−η(t−s). (18)

Now, since modules will have a large number connections and nodes will share
many common neighbours, k̄i will be close to the mean degree 〈k〉C (see our network
assumptions Eq. (3) and Eq. (4)). This means that in leading order in 〈k〉C, the
stability condition is given by

λ < α (〈k〉C +δ )< Λ ,

where |δ | = o(〈k〉C) takes into account the fluctuation between ki and the mean
degree 〈k〉C. After some rearrangements we obtain

λ

〈k〉C

(
1− δ

〈k〉C

)
< α <

Λ

〈k〉C

(
1− δ

〈k〉C

)
. (19)

Then for 〈k〉C large we see that Eq. (19) resembles Eq. (8). Furthermore, according
to Remark 1, ifH is positive definite, we obtain Λ → ∞ and

η = αβ (〈k〉C +δ )−λ . (20)

Then for α satisfying η > 0 in Eq. (20), we obtain a uniform contraction. It remains
to show that the perturbations will not destroy the synchronisation property.

4.3 The Perturbed Equation

We now turn our attention to the inhomogeneous Eq. (14). Using the method of
variation of parameters we obtain
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z(t) = T (t,s)z(s)+α

∫ t

s
T (t,u)g(u)du,

and by virtue of the triangle inequality we find

‖z(t)‖ ≤ ‖T (t,s)‖‖z(s)‖+α

∫ t

s
‖T (t,u)‖‖g(u)‖du.

Then, using the bounds for the evolution operator from Eq. (18) we obtain

‖z(t)‖ ≤ Ke−η(t−s)‖z(s)‖+α

∫ t

s
Ke−η(t−u)‖g‖du

= Ke−η(t−s)‖z(s)‖+αK‖g‖
[

1− e−η(t−s)

η

]
.

For t large we obtain

‖z(t)‖ ≤ K̃α‖g‖
η

,

where

K̃ = K

(
ηe−η(t−s)||z(s)||

α||g|| +1

)

= K +o(1).

Now, under the stability condition Eq. (19) for α , we obtain

‖z(t)‖ ≤ K̃Λ‖g‖
〈k〉Cη

. (21)

IfH is positive definite then from Remark 1

‖z(t)‖ ≤ K̃α‖g‖
αβ 〈k〉C−λ

. (22)

We must now analyse the bounds for g within a module.

4.4 Bounds for the Perturbation

We give the argument for Eq. (21). The argument for Eq. (22) is similar. We first
recall the mismatch index Eq. (2):

µil =
N

∑
j=1
|Ai j−Al j|−2Ail .
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Then since since the trajectories are bounded and the coupling function is smooth,
we can bound

‖H(xi)‖ ≤ Kh,

for a positive constant Kh, and since

g(t) = (kl− ki)H(xl(t))+ ∑
j 6=i,l

(Ai j−Al j)H(x j(t)),

from Eq. (16), we obtain

‖g(t)‖
〈k〉C

≤ 1
〈k〉C

Kh(kl− ki +µil). (23)

Then, motivated by the matching index notation in Eq. 1, we can introduce

K1 =
Kh

〈k〉C
(ki + kl− (A+A2)il)

to obtain
‖g(t)‖
〈k〉C

≤ |kl− ki|
〈k〉C

Kh +(1− Îil)K1. (24)

Therefore, for the perturbation to be small, we require:

• The difference in node degrees within a module to be low.
• Nodes to share many common neighbours within a module.
• Nodes to have comparatively fewer connections to nodes outside the module.

The final two requirements emerge via the matching index in Eq. (24) since Îil pe-
nalises for not only a lack of shared nodes within a module but also for additional
(unshared) connections to nodes outside the module. Then, from our network as-
sumptions (Eq. (3) and Eq. (4)) along with α statisfying the stability condition Eq.
(19), by Eq. (21) and Eq. (23), we obtain

‖z(t)‖ ≤ O
(

1
〈k〉C

)
.

Therefore the stability of module synchronisation depends upon the module
mean degree and the extent to which synchronisation can be achieved depends upon
the matching index within a module. These conditions will clearly vary between
modules and our conditions only guarantee individual modules to synchronise inde-
pendently as opposed to global network synchronisation.
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5 Conclusion and Discussion

We have shown that the stability of module synchronisation in complex modular
networks can be predicted based upon the module mean degree given certain as-
sumptions on the component dynamics and network structure. Our key assumption
on the modular structure is that nodes within modules share many common neigh-
bours and inter-module connections are weak in comparison.

Our analysis revealed two basic scenarios for module synchronisation. If the cou-
pling function is linear and positive definite, we showed that the functional modules
reflect the structural modules. In this case, as the coupling strength is increased, the
module with the largest mean degree synchronizes first, then more and more mod-
ules achieve synchronisation. In this case, the dynamics of the network mirror the
structural properties of the network.

However, for more general couplings, typically our stability criterion A2 is sat-
isfied, see Ref. [19]. In this case, we observe interesting dynamical behaviour as
the coupling parameter is increased where, in a first stage, modules of synchronised
nodes can form and reflect the structural organization, but for large couplings the
synchronisation becomes unstable and functional modules disintegrate. This sce-
nario corresponds to bifurcations between the functional and structural properties.

Our assumptions on the structure of the modules allowed for an analytical treat-
ment of these scenarios and enabled us to determine the critical coupling strengths
for synchronisation and desynchronisation. Additionally, we showed that the mod-
ule matching index dictates the quality of synchronisation. Moreover, our present
approach can be used to explain the synchronised dynamics of groups of nodes
not necessarily forming modules such as hub synchronization [21, 22], since their
matching index may be high and the degrees similar.

These results can be of importance for functional network analysis and enhance
our understanding of the relation between the functional and structural network.
Indeed, even though a module may possess the structural properties required for
synchronisation, the functional modules may not reflect the structural modules of a
network.

References

1. D.S. Bassett, M. Lynall, Network Methods to Characterize Brain Structure and Function,
Cognitive Neurosciences: The Biology of the Mind (Fifth Edition).

2. C.J. Honey, O. Sporns, L. Cammoun, X. Gigandet, J.P. Thiran, R. Meuli, P. Hagmann, Pre-
dicting human resting-state functional connectivity from structural connectivity, Proc Natl
Acad Sci USA 106: 2035-40, 2009

3. D.S. Bassett, N.F. Wymbs, M.A. Porter, P.J. Mucha, J.M. Carlson, S.T. Grafton, Dynamic
reconfiguration of human brain networks during learning, PNAS 108, 7641 (2011).

4. D. Meunier, R. Lambiotte, E.T. Bullmore, Modular and hierarchically modular organisation
of brain networks Front. Neurosci. 4, 200 (2010).

5. N. Mishra, R. Schreiber, I. Stanton, R.E. Tarjan, Clustering Social Networks, Algorithms and
Models for the Web-Graph, Springer (2007).



Cluster Formation in Modular Networks 23

6. S. Wang, C. Zhou, Hierarchical modular structure enhances the robustness of self-organized
criticality in neural networks, New Journal of Physics 14, 023005 (2012)

7. G. Zamora-Lopez, C. Zhou, J. Kurths, Cortical hubs form a module for multisensory integra-
tion on top of the hierarchy of cortical networks, Font. Neuroinform. 4, 1 (2010).

8. S. Strogatz, Synch: The Emerging Science of Spontaneous Order, Hyperion, New York
(2003).

9. P. Tass, M.G. Rosenblum, J.Weule, J. Kurths, A. Pikovsky, J. Volkmann, A. Schnitzler, H.J.
Freud, Phys.Rev.Lett. 81, 3291, 1998

10. J. Milton, P. Jung (Ed), Epilepsy as a Dynamic Disease, Springer (2010).
11. L.M. Pecora, M. Barahona, Synchronisation of Oscillators in Complex Networks, Chaos and

Complexity Letters 1, 61 (2005).
12. H. Zhou, Network landscape from a Brownian particle’s perspective, Phy. Rev Phys. Rev. E

67, 041908 (2003).
13. J-C. Delvenne, M.T. Schaub, S.N. Yaliraki, M. Barahona, The stability of a graph partition:

A dynamics-based framework for community detection, Springer (2013).
14. W. Lu, B. Liu, T. Chen, Cluster synchronisation in networks of coupled non-identical dynam-

ical systems, Chaos 20, 013120 (2010).
15. T. Pereira, Stability of Synchronized motion in complex networks, arXiv:1112.2297 (2012).
16. L.M. Pecora, T.L. Carrol, Master Stability Functions for Synchronized Coupled Systems,

Phys. Rev. Lett. 80, 2109, 1998
17. T. Pereira, J. Eldering, M. Rasmussen, A. Veneziani, Towards a theory for diffusive coupling

functions allowing persistent synchronization, Nonlinearity 27, 501, 2014
18. T. Pereira, D. Eroglu, G. Bagci, U. Tirnakli, and H.J. Jensen, Connectivity-Driven Coherence

in Complex Networks, Phys. Rev. Lett. 110, 234103 (2013)
19. L. Huang, Q. Chen, Y-C. Lai, L. Pecora, Generic behaviour of master-stability functions in

coupled nonlinear dynamical systems, Physical Review E, 80, 036204 (2009).
20. W. Jian-She, J. Li-Cheng, C. Guan-Rong, Cluster Synchronisation in a network of non-

identical dynamic systems, Chin. Phys. B 20, 060503 (2011).
21. M.S. Batista, et al., Collective Almost Synchronisation in Complex Networks, PLoS ONE

7(11): e48118 (2012).
22. T. Pereira, Hub Synchronization in Scale Free Networks Phys. Rev. E 82, 036201 (2010).
23. S. Fortunato, Community detection in graphs, Physics Reports 486(3-5), 75 (2010).
24. J.F. Heagy, L.M. Pecora, T.L. Carroll, Short-Wavelength bifurcation and size instabilities in

coupled oscillator-systems, Physical review letters 74(21), 4185 (1995).
25. M. Barahona, L.M. Pecora, Synchronization in Small-World Systems, Phys. Rev. Lett. 89,

054101 (2002).
26. A. Arenas, A. Dı́az-Guilera, J. Kurths, Y. Moreno, C. Zhou, Synchronization in complex net-

works, Physics Reports 469(3), 93 (2008).
27. V.N. Belykh, I.V. Belykh, M. Hasler, Connection graph stability method for synchronized

coupled chaotic systems, Physica D: nonlinear phenomena 195(1), 159 (2004).
28. C.W. Wu, Synchronization in networks of nonlinear dynamical systems coupled via a directed

graph, Nonlinearity 18(3), 1057 (2005).
29. E. August, M. Barahona, Obtaining certificates for complete synchronisation of coupled os-

cillators, Physica D: Nonlinear Phenomena 240(8), 795 (2011).
30. N. O’Clery, Y. Yuan, G.B. Stan, M. Barahona, Observability and coarse-graining of con-

sensus dynamics through the External Equitable Partition, Physical Review E 88(4), 042805
(2013).

31. J.C. Delvenne, S.N. Yaliraki, M. Barahona, Stability of graph communities across time scales,
Proceedings of the National Academy of Sciences 107(29), 12755 (2010).

32. M.T. Schaub, J.C. Delvenne, S.N. Yaliraki, M. Barahona, Markov dynamics as a zooming
lens for multiscale community detection: non clique-like communities and the field-of-view
limit, PLoS ONE 7(2), e32210 (2012).

33. G. Teschl, Ordinary differential equations and Dynamical Systems, Volume 140, Amer. Math.
Soc., Providence, 2012


	Dynamics of Cluster Synchronisation in Modular Networks: Implications for Structural and Functional Networks
	Jake Stroud, Mauricio Barahona and Tiago Pereira
	Introduction
	The Model
	Notation
	Graphs: Basic Definitions
	The Modular Network
	The Dynamical Model: Network of Diffusively-Coupled Bounded Systems

	Results
	Summary of Analytical Results
	Numerical Simulations

	Derivation of our Analytical Results
	Obtaining the Variational Equation
	The Homogeneous Equation
	The Perturbed Equation
	Bounds for the Perturbation

	Conclusion and Discussion
	References



