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Basin of Attraction Determines Hysteresis in Explosive Synchronization
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Spontaneous explosive emergent behavior takes place in heterogeneous networks when the frequencies of
the nodes are positively correlated to the node degree. A central feature of such explosive transitions is a
hysteretic behavior at the transition to synchronization.We unravel the underlying mechanisms and show that
the dynamical origin of the hysteresis is a change of basin ofattraction of the synchronization state. Our
findings hold for heterogeneous networks with star graph motifs such as scale free networks, and hence reveal
how microscopic network parameters such as node degree and frequency affect the global network properties
and can be used for network design and control.

PACS numbers: 05.45.Xt, 89.75.Hc, 05.45.Ac

Emerging abrupt transitions are ubiquitous in complex sys-
tems, and play a crucial role in human society and a wide
variety of fields [1]. In particular, abrupt transitions to syn-
chronization in networks with heterogenous degree distribu-
tion have attracted much attention. Previous works suggest
that such transitions are due to a positive correlation between
the frequency and degree of the node [2–9]. Abrupt transition
has been observed in scale-free (SF) networks [2], electronic
circuits [10], time delayed systems [11], and a second order
Kuramoto model [12].

A central feature of these emerging abrupt transitions is a
hysteretic behavior at the onset of synchronization. As the
interaction strength is increased adiabatically, the network ex-
periences a fast explosive jump from an incoherent state to a
coherent one. Moreover, there is a sudden drop from the co-
herent state to the incoherent one when the coupling strength
is progressively decreased in the backward direction. These
two curves (called forward and backward continuation below,
respectively) do not overlap, instead, showing a hysteretic be-
havior. The hystereris in abrupt transitions is due to the net-
work interaction and hence opens new paradigms for network
control as coherence and incoherence coexist in the hysteresis
loop. Despite this great interest, hysteresis at the transition to
synchronization remains elusive. In particular, it is unclear on
a microscopic level how network parameters affect the critical
coupling thresholds (the hysteresis loop) and what the dynam-
ical origins are for the hysteresis associated with explosive
synchronization.

In this Letter, we investigate hysteresis associated with the
explosive transition scenario first in networks with a star graph
motif, and then in generic SF networks. Our results reveal
that correlation in frequency-degree leads to the existence of
a phase locking state and that the hysteretic behavior is at-
tributed to the basin of attraction of phase locking. The phase
locking state ceases to exist at a critical parameterλb

c, cor-
responding to synchronization loss coming from a coherent
state. Starting from an incoherent state and moving toward

coherence, our analysis suggests that the locking manifold
changes its basin of attraction at a critical parameterλf

c and
the locking manifold becomes globally attractive. We find that
whereas the backward coupling thresholdλb

c tends to a con-
stant value for large networks, the forward criticalλf

c scales
with the system size.

In a heterogeneous network such as SF networks, hubs play
a dominant role for both structural organization [13] and dy-
namical processes [14], e.g., providing substantial resilience
for preventing cascading failures [15–17]. Hubs are modeled
as star motifs. A star is composed ofK (K ≥ 2) peripheral
nodes (or leaves) connected to the hub. Let us start by keeping
the same setting for the frequency-degree correlation as ini-
tially explained in [2]. The hub has a frequencyωK+1 = Kω,
while all the leaves have the same frequencyωj = ω for
1 ≤ j ≤ K. Later on, we will generalize to non-identical
leaf nodes. The equations of motion are

φ̇K+1 = Kω + λ

K
∑

j=1

sin(φj − φK+1), (1)

φ̇j = ω + λ sin(φK+1 − φj), for 1 ≤ j ≤ K, (2)

whereφK+1,j are phase dynamics of the hub and leaf nodes,
respectively,λ is the coupling strength. The Kuramoto order
parameterR(t) is defined asR(t)eiΨ(t) =

∑K+1
j=1 eiφj/(K+1).

We quantify coherence byr = 〈R(t)〉T , where〈·〉T denotes
a time average withT ≫ 1. Small values of the parameter
r indicate incoherent behavior. In contrast, asr → 1 we en-
counter a highly coherent state.

Main Results:The backward critical couplingλb
c and the

forward critical couplingλf
c are determined by respectively

local and global attractivity properties of a locking manifold
Ma. Hence, the basin of attraction ofMa governs onset of
hysteresis. Moreover, the scaling relationships of the coupling
thresholds on the degreeK are respectively given byλb

c → ω,
andλf

c ∝ K1/2ω, for K ≫ 1. Our results are based on
the theory of invariant manifolds, and the recent new findings
about persistence of synchronization [18, 19], together with
the attractivity and basin of attraction [20].
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Backward Continuation – From Coherence to Incoherence:
We start from a coherent state where the nodes are phase
locked and decrease the coupling until we obtain a loss of
coherence. We perform a local stability analysis to explain
this scenario. The state space of Eqs. (1,2) is theK + 1 di-
mensional torusTK+1. ConsiderΦ = (φ1, . . . , φK+1), and
Ωk = (ω, . . . , ω,Kω). Moreover, considerH : TK+1 →
T
K+1 defined byH(Φ) = (sin(φK+1 − φ1), sin(φK+1 −

φ2), . . . , sin(φK+1−φK),
∑K

j=1 sin(φj −φK+1)). With this
notation the equations of motion Eqs. (1,2) are rewritten inthe
compact formΦ̇ = Ωk + λH(Φ). The locking manifold is
defined by

Ma := {Φ ∈ T
K+1 : φ1 = · · · = φK andφK+1 − φ1 = a}.

Notice that the non-zero value ofa determines the locking
between the hub and the leaves. We show the existence con-
ditions forMa.

Solution curves inMa read asΦ̇ = Ωk − λH(a), with
a = c(1, . . . , 1)+(0, . . . , 0, a), wherec is a real number. The
solutions areΦ(t) =

[

Ωk−λH(a)
]

t+Φ0, whereΦ0 ∈ Ma,
and satisfy the conditionφK+1 − φ1 = a, which yields the
equation

− (K − 1)ω + λ(K + 1) sina = 0. (3)

Sinceω, K and λ are positive, a solution exists if[(K −
1)ω]/[(K + 1)λ] ≤ 1, which further leads to0 < a ≤ π/2
[23]. The equality determines the critical coupling strength
for the existence of the locking manifold, which yields the
critical coupling for the backward continuation curve as

λb
c =

(K − 1)ω

K + 1
. (4)

It turns out that wheneverMa exists it is locally attractive.
To see this, we study the tangent dynamics toMa. Consider
Φ = Ψ + ξ, whereΨ is a solution curve inMa. The equa-
tion associated withξ reads aṡξ = λcos aLsξ+R(ξ), where
Ls is the Laplacian matrix of the star graph, andR is a non-
linear term satisfyingR(ξ) ≤ A‖ξ‖2, for some constantA.
The solution of the linear part can be represented asξ(t) =
exp{λ cos aLs(t − τ)}ξ(τ). Notice thatξ 6∈ span(1, . . . , 1),
otherwise it could be absorbed inΨ. As the Laplacian is pos-
itive semi-definite with smallest non-zero eigenvalue equal to
1, we get‖ξ(t)‖ ≤ C exp{−λ cos a(t− τ)}‖ξ(τ)‖ for some
constantC > 1. This implies that whenever the manifold
Ma exists it is locally stable. Moreover, since the bound is
uniformτ and exponential, the stability will persist under the
nonlinearities [19].

If λ > λb
c and initial conditions are given close to the lock-

ing manifoldMa, the local attractivity ofMa allows us to
compute the order parameter explicitly, which reads

r2 =
K2 + 1

(K + 1)2
+

2K

(K + 1)2

√

1−
(

(K − 1)ω

(K + 1)λ

)2

. (5)

Now note that as the locking manifold ceases to exist atλ =
λb
c, the order parameterr assumes a critical value

rbc =

√
K2 + 1

K + 1
. (6)
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FIG. 1: (Color online) Order parameterr as a function of the cou-
pling λ for various sizes. The thick lines are theoretical curves ob-
tained by Eq. (5). (A) (K1 = 5, K2 = 40), and (B) comparison
between with and without noise (K = 10). r is an arithmetic mean
value of [Rmin(t),Rmax(t)] over 100 random realizations. PartII
without noise, while for partsI, III there is a random frequency
mismatchωj = ω + ζj whereζj ∈ [−0.05, 0.05] for leaf nodes.

The above analysis explicitly determines the behavior ofr in
the backward direction. The loss of coherence occurs at the
point(λb

c, r
b
c) [24].

Figure 1A shows the order parameterr when the coupling
is decreased in the backward direction and starting from a co-
herent state. The numerical results for various network sizes
show precise agreement with the theoretical curve given by
Eq. (5). We obtain the critical points(λb

c, r
b
c) as predicted (de-

noted by coordinates in Fig. 1A ). In the regime ofλ < λb
c,

theK star network is reduced to two groups: the hub and the
set of leaves, evolving asynchronously.

In the next case, we consider frequency mismatches for
leaves

φ′

j = ω + ζj + λ sin(φK+1 − φj), for 1 ≤ j ≤ K, (7)

whereζj is a random variable uniformly distributed in[−ε, ε].
Notice that ifε is small and the locking manifold is exponen-
tially and uniformly attractive, these perturbations do not de-
stroy the locking manifold (partI in Fig. 1B). There exists
another stable locking manifold in the neighborhood ofMa

for λ > λb
c. Whenλ < λb

c the locking manifold no longer
exists, and as the leaves rotate at distinct frequencies, a drop
in the order parameter is observed (partIII in Fig. 1B). In
comparison, when no noise is introduced in Eq. (7), we find
the absence of the sudden drop inr which takes place as all
leaves are identical (shown by partII in Fig. 1B).

Forward Continuation – From Incoherence to Coherence:
Starting from an incoherent state (r close to zero) and in-
creasing the coupling strength leads to a transition towards
coherence at a coupling thresholdλf

c > λb
c. Our numerical

investigations reveal that this behavior is related to the basin
of attraction of the locking manifoldMa. At the first stage
the locking manifoldMa is only locally attractive, i.e., for
λ ∈ (λb

c, λ
f
c ). Then forλ > λf

c the locking manifold is
globally attractive, which means that starting from an inco-
herent state forλ > λf

c the network dynamics are attracted
to Ma. In other words, forλ > λf

c the phase difference is
φK+1 − φj = a, wherea = a(λ) given by Eq. (3). We reveal
that this is indeed the case, as shown in Fig. 2A for distinct
network sizes.
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FIG. 2: (Color online) (A) Phase differencesin a = sin(φK+1−φ1)
between the hub and the first leaf as a function ofλ for λ > λf

c . Both
circles and triangles represent the numerical simulation and the thick
lines are theoretical prediction provided by Eq. (3). Network size:
K = 5(◦), K = 10(△). (B) Order parameterr on the parameter
space of(K,λ) for the forward continuation. The (red) thick line
is from fitting the scaling relation provided by Eq. (8), where the
parameter1/B = 0.6989.
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FIG. 3: (Color online) Order parameterr on the parameter space
(δ, λ) for the forward continuation (K = 100). Initial conditions
are randomly drawn from an interval[−δ, δ]. The horizontal dashed
lines are critical couplingsλb

c andλf
c from the theory. (A) without

noise effect, (B) with frequency mismatches for leaf nodes,namely,
ωj = ω + ζj where the random valueζj ∈ [−0.01, 0.01].

To analyze the basin of attraction we draw initial conditions
randomly from an interval[−δ, δ] with δ ≤ π. Hence, ifδ
is close toπ the oscillators start from an incoherent state, in
contrast, ifδ is close to zero all oscillators start at a coherent
state. Hence, the value ofδ enables us to capture the basin of
attraction ofMa. For each pair(δ, λ) we compute the order
parameterr and the result is shown in Fig. 3. Note that for
λ < λb

c and small values ofδ (e.g.,δ = 0), the order parameter
is close to one (shown by the bright area in Fig. 3), as all
leaves are synchronized forming a group against the hub. In
this regime,r ≈ (sin δ)/δ [25], explaining why high values
of r is observed for smallδ.

Forλ > λf
c andδ = π, the oscillators start at an incoherent

state and then tend to the locking manifoldMa leadingr to
be close to1. This scenario is not affected by the presence of
mismatches in the oscillator frequencies as shown by Fig. 3B.

While the valueλb
c tends to a constant, the critical for-

ward couplingλf
c scales roughly asK1/2. Hence, for large

K the difference between the forward and backward coupling
thresholds becomes severe. Note that our results below corre-
spond toδ = π, namely, the initial conditions are randomly
chosen from[−π, π]. We calculate the order parameterr for

various network sizes,K ∈ [3, 300] for each coupling strength
λ, yielding a color coded parameter space of(K,λ) as shown
in Fig. 2B, where we observe an abrupt transition from an in-
coherent to a coherent state.

To obtain an analytical understanding of this scaling prop-
erty forλf

c , we use the theory recently developed in Ref. [18].
To this end we write this phase locking problem between the
hub and leaves as a perturbation of an identical synchroniza-
tion problem. Hence, the isolated dynamics of the hub reads
as φ̇K+1 = ω + gK+1. Representing Eqs. (1,2) in block
form yields the perturbationG = (0, . . . , 0, (K − 1)ω). The
block equation then readṡΦ = Ω + H(Φ) + G, where
Ω = (ω, · · · , ω). After an involved algebraic manipulation
following Refs. [18, 19], we obtain(

∑

j |φK+1 − φj |2)1/2 ≤
(σ‖G‖)/λ, where‖ · ‖ denotes the Euclidean norm, andσ is
a constant.

Hence, starting from an incoherent state to obtain a coher-
ent one if the trajectories enter the neighborhood of a fully
synchronized stateφ1 = · · · = φK+1. This neighborhood
contains the locking manifoldMa asa tends to zero. Using
the above bounds for the phase difference we obtain the scal-
ing behavior of the coupling parameter. Indeed, notice that
‖G‖ = (K − 1)ω and using that the oscillators start from a
incoherent state|φK+1 − φj | < 2π, we obtain(

∑

j |φK+1 −
φj |2)1/2 ≤ 2π

√
K. Manipulating this equation, we obtain

that the coupling strength scalesλ ∝ [(K − 1)ω]/
√
K. This

coupling corresponds to the necessary to get coherence start-
ing from an incoherent state. However, this is precisely the
forward coupling strengthλf

c . Hence, trajectories will ap-
proach the locking manifold with the coupling strength

λf
c ≈

(K − 1√
K

1

B

)

ω (8)

whereB is a constant parameter [26]. Our numerical result
in Fig. 2B shows an excellent agreement with this theoretical
analysis.

Scale-Free Networks:The results above for star graphs can
be straightforwardly applied to explain the recent findingsof
hysteresis in SF networks when the mean degree is small, due
to the role of hubs. If the average degree of the network is
small, then the network can be seen as a collection of star
graphs. In particular this can be seen to be the case forran-
dompower-law graphs as the exponentγ → 3 [13]. More
generally, the role of hubs in scale free networks is certainly
dominant, and it is only for low values ofγ (i.e. γ < 2.5) that
one will expect graphs with more links than a tree and hence
exhibiting an excess of loops and significant deviation froma
composition of hubs [13]. Of course, experimentally observed
SF networks are very rarely trees — nonetheless, they remain
defined by their high degree hubs.

In such networks, each hub and its corresponding neighbor-
ing nodes of low degrees will have a locking manifold, and
the connections between low degree nodes of distinct hubs
act as small perturbations. Therefore, the investigation of the
hysteresis-like behavior on a SF network can be greatly ex-
plained by a star graph with frequency mismatches for leaf
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FIG. 4: (Color online) (A) Local order parameterri versus coupling
strength for two chosen hubs (K1 = 39 red, K2 = 24 blue;λf

c,1 =

4.64, λf
c,2 = 3.63). (B) Critical coupling

〈

λf
c

〉

vs. sizes of SF
networks (dashed line is the theoretical curve predicted byEq. (9),
where〈·〉 is an ensemble average over50 network realizations.

nodes (i.e., Eq. (7)). In combination with the global order pa-
rameterr, it is convenient to compute the local order parame-
ter ri for the i-th hub. Parameterri is obtained by averaging
only over nodes connected to thei-th hub. The local order pa-
rameters play a role in the SF network as hubs are connected
to a different number of nodesKi.

We generate a SF network by means of the Barabási-Albert
model withm0 = 1 [21][27]. We analyze the hubs by the lo-
cal order parameterri. As predicted by Eq. (4), the backward
continuation for various hubs of different sizes convergesto
the critical valueλb

c → ω,K ≫ 1 (size independent shown
by the backward curves of the two largest hubs in Fig. 4A).
In contrast, since hubs often do not have the same degrees,
the local order parameterri will present forward transitions
at distinct coupling values, but still governed by Eq. (8). In
Fig. 4A, we show the forward curves for the two largest hubs
of a network with 2000 nodes with degreesK1 = 39 and
K2 = 24. Denoteλf

c,1 the critical value of the largest hub,

andλf
c,2 for the second largest. Our results predict thatλf

c,1/

λf
c,2 =

√

K1/K2 = 1.275, which is in an excellent agree-

ment with our simulations yieldingλf
c,1/ λf

c,2 = 1.278. This
result on the dominant role of hubs holds for networks of var-
ious sizes and random realizations.

We calculate the forward critical couplingλf
c for various

network sizes. For one network of sizeN , we numerically
estimate the thresholdλf

c by fixing a level of coherence over
hubs (sayr = 0.5 over the top 20 hubs). In addition we con-
sider the expectation of〈λf

c 〉 with respect to the network en-
semble. The dependence of the expected coupling〈λf

c 〉 on
the system size follows: Note that the expected degree of the
largest hubKmax scales asN1/(γ−1) [22], which means that
on average the hubs are star motifs withN1/(γ−1) leaves. Our
previous considerations show that

〈λf
c 〉 ∝ N

1
2(γ−1) . (9)

This is in agreement with our numerical experiments on the
SF network whereγ = 3, as shown in Fig. 4B.

Nonetheless, if the mean degree is high enough (for large
m0), the leaves of the hubs will strongly interact. So the mod-
eling of a SF network as a collection of stars is no longer

useful. In such situations mean field approaches may capture
the behavior of the leaves [2, 11]. An interesting question is
when the crossover between our approach and the mean field
scheme takes place. Judd [14] provides strong indication that
even when the approximation is not precise, modelling of a
SF network as a collection of stars may still be useful — and
indicates that SF networks which are collections of stars are
actually quite common[13].

In summary, we have shown that the abrupt transition in
the Kuramoto model in both star motifs and SF networks is
associated with a locking manifold and its local and global
attractivity properties. The critical coupling associated with
loss of coherence is determined by the existence of a locking
manifold, whereas the critical coupling responsible for attain-
ing coherence starting from an incoherent state is related to
a change in the basin of attraction of the locking manifold.
We have uncovered the distinct dependence of both coupling
thresholds on the network size, revealing that the hysteresis is
stronger in large networks. Our findings provide methods to
control the transition and hysteresis in terms of microscopic
network parameters.
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