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1 Replicator Dynamics for One Population

1.1 Nash equilibrium of one population

Exercise 1.1:
1) Let K represent the density of the population of Koalas in Kangaroo Island in
South Australia. On one hand, whenever koalas live in areas with an abundance
of Eucalyptus leaves (areas of type A) they reproduce at a rate x, whereas they
die at a rate y in every other part of the island (areas of type B). The Nash
equilibrium of this ”game” is simply given by always choosing to live in areas
of type A.

2) Consider the matrix

A =

Ñ
0 1 0
0 0 1
1 0 0

é
and suppose we want to study the Nash Equilibria for a game encoded by A.
We will do this by looking at the best response function for A. Notice that the
matrix A is a permutation matrix, therefore instead of working with entries of
(Ax) we can focus on the entries of x directly. Firstly, we compute it for vectors
x ∈ ∆ for which one of the components is bigger than the other two.

Consider x = (x1, x2, x3) where x1 > x2 and x1 > x3, then

BR(x) = arg max
y∈∆

y ·Ax

= arg max
y∈∆

(y1, y2, y3) · (x2, x3, x1)

= arg max
y∈∆

y1x2 + y2x3 + y3x1 = {e3}.

We can proceed similarly for vectors with x2 > x1, x3, and x3 > x1, x2.

Figure 1: Diagram of
BR(x)

The next case we want to consider is the spe-
cial vector for which all entries are equal, namely
x = (1/3, 1/3, 1/3). In this case

BR((1/3, 1/3, 1/3)) = arg max
y∈∆

1/3(y1 + y2 + y3) = ∆.

Finally, we can consider the case where two of
the entries of our vectors are equal, and the third
one does not dominate (otherwise we go back to
the first case we analysed). Essentially we want to
study the lines Zij = {x ∈ ∆|(Ax)i = (Ax)j} =
{x = (x1, x2, x3) ∈ ∆|xi+1 = xj+1} for i, j ∈
Z/3Z. Suppose we want to find the best response
along the segment Z1,2 ∩ {x1 < 1/3} = {x2 =
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x3} ∩ {x1 < 1/3}, then we would have to maximise y · Ax for y ∈ ∆, and
assuming that x = (1− a, a/2, a/2) and a ∈ (2/3, 1). Clearly

y ·Ax = y1x2 + y2x3 + y3x1 = a(y1 + y2) + (1− a)y3,

which is maximised whenever y1+y2 = 1 and y3 = 0, or y ∈ 〈e1, e2〉. Proceeding
with a similar reasoning we obtain

BR(Z1,2 ∩ {x1 < 1/3}) = 〈e1, e2〉
BR(Z2,3 ∩ {x2 < 1/3}) = 〈e2, e3〉
BR(Z1,3 ∩ {x3 < 1/3}) = 〈e1, e3〉.

This means that if we look at the best response over all of ∆ we obtain the
following

BR(x) =



{e3} if x1 > x2, x3

{e1} if x2 > x1, x3

{e2} if x3 > x1, x2

〈e1, e2〉 if x ∈ Z1,2 ∩ {x1 < 1/3}
〈e2, e3〉 if x ∈ Z2,3 ∩ {x2 < 1/3}
〈e1, e3〉 if x ∈ Z1,3 ∩ {x3 < 1/3}
∆ if x1 = x2 = x3.

Now recall that x̂ is a Nash Equilibrium if and only if x̂ ∈ BR(x̂). Figure
1 summarises all the information contained in the function above, except for
the behaviour on the boundary of every region. It tells us that if there were
to Nash Equilbria they would have to belong to either ∂∆ or (Z1,2 ∩ {x1 <
1/3}) ∪ (Z2,3 ∩ {x2 < 1/3}) ∪ (Z1,3 ∩ {x3 < 1/3}).No vectors in 〈ei, ej〉 are
contained in Zi,j ∩ {xi < 3}, where i < j (mod 3). However, we do have that
(1/3, 1/3, 1/3) ∈ ∆ = BR((1/3, 1/3, 1/3)), hence the vector (1/3, 1/3, 1/3) is the
only Nash Equilibrium for A in ∆. It is important to notice that (1/3, 1/3, 1/3)
is the meeting point of the three indifference lines Z1,2, Z2,3, and Z1,3.

1.2 Evolutionary stable strategies

Exercise 1.2:
1) We want to determine the Nash Equilibria for

A =

Ñ
0 2 −1
−1 0 2
2 −1 0

é
It is quite immediate to see that the point x̂ = (1/3, 1/3, 1/3) is a Nash Equi-
librium:

BR(x̂) = arg max
y∈∆

y ·Ax̂ = arg max
y∈∆

y · (1/3, 1/3, 1/3) = ∆ 3 x̂.

4



Notice that Ax̂ = x̂ = (1/3, 1/3, 1/3) in accordance with Lemma 1.2 (here
c = 1/3). We now want to show x̂ is an Evolutionary Stable Strategy, and in
order to do that we are going to use the second part of Lemma 1.3 in the notes.
For any y ∈ ∆ we have

y ·Ay =

Ñ
y1

y2

y3

é
·

Ñ
2y2 − y3

−y1 + 2y3

2y1 − y2

é
= y1y2 + y2y3 + y1y3

x̂ ·Ay =
2

3
y2 −

1

3
y3 −

1

3
y1 +

2

3
y3 +

2

3
y1 −

1

3
y2 =

1

3

We now want to show that the function f(y1, y2, y3) = y1y2 + y2y3 + y1y3 is
maximised at (1/3, 1/3, 1/3) in ∆. In order to do so we will work with Lagrange
multipliers. The only constraint we have is that we want to maximum to be
in ∆, so the constraint function we will work with is given by g(y1, y2, y3) =
y1+y2+y3−1. Now we can consider the following L(y1, y2, y3, λ) = f(y1, y2, y3)−
λg(y1, y2, y3) = y1y2 + y2y3 + y1y3 − λy1 − λy2 − λy3 + λ for λ ∈ R. Therefore,
the point of maximum (ỹ1, ỹ2, ỹ3) is found by solving the following

∇L(ỹ1, ỹ2, ỹ3, λ̃) =

Ü
ỹ2 + ỹ3 − λ̃
ỹ1 + ỹ3 − λ̃
ỹ1 + ỹ2 − λ̃

−ỹ1 − ỹ2 − ỹ3 + 1

ê
= 0 =⇒

Ü
ỹ1

ỹ2

ỹ3

λ̃

ê
=

Ü
1/3
1/3
1/3
2/3

ê
Therefore we know that the maximum of f(y1, y2, y3) in ∆ is achieved at x̂, and
it is precisely 1/3. So we can conclude that x̂ is and ESS, since y ·Ay < x̂ ·Ay
for all y ∈ ∆ \ {x̂}. Since x̂ ∈ int ∆ is an ESS we can conclude there are no
other Nash Equilibria.

Finally x̂ is not a strict Nash Equilibrium since for any y ∈ ∆ \ {x̂}

1

3
= y ·Ax̂ = x̂ ·Ax̂ =

1

3.

If there was a strict Nash Equilibrium then such a point would be automat-
ically a Nash Equilibrium, contradicting Lemma 1.2.

2) We want to show that e1, e2 and e3 are ESS for

A =

Ñ
1 0 0
0 1 0
0 0 1

é
.

Define the regions

Ξi := {x ∈ ∆ |xi > xi+1 and xi > xi+2}

for i ∈ Z/3Z. Notice that these regions are the same as the ones over which the
Best Response function is single-valued (look at the particular shape of A. . . ).
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Since Ξi represents a set of points close to ei, in order to prove that ei is an
ESS we will show that for all y ∈ Ξi \ {ei} the following holds

y ·Ay < ei ·Ay.

Fix i ∈ Z/3Z. There are two main observation to make here: if y ∈ Ξi then
yi > 0 and yi+1

yi
< 1 and yi+2

yi
< 1. With this in mind we now have for all

y ∈ Ξi \ {ei}

y ·Ay = |y|2 = y2
1 + y2

2 + y2
3

= yi(yi +
yi+1

yi
yi+1 +

yi+2

yi
yi+2)

< yi(yi + yi+1 + yi+2)

= yi = ei ·Ay,

as we wanted. We can conclude that e1, e2, and e3 are all ESS.

1.3 Replicator dynamics

Exercise 1.3:
1) We want to study the replicator dynamics described by the matrix

A =

Ñ
0 10 1
10 0 1
1 1 1

é
.

To start with, let us compute the lines

Zi,j = {x ∈ ∆|(Ax)i = (Ax)j}

for i, j ∈ {1, 2, 3}:

Z1,2 = {10x2 + x3 = 10x1 + x3}
= {x1 = x2}

Z2,3 = {9x1 = x2}
Z1,3 = {9x2 = x1}.

See Figure 2 for a representation of such indifference lines in ∆. In order to
establish the ESS for this system, we will firstly understand its Nash Equilbria,
given that every ESS is a NE.

Recall that the intersection of all the indifference lines is a Nash Equilibrium.
Given Figure 2 we can see that e3 is a NE, and that there are no other equilibria
in the interior of ∆ (since these lines intersect only once).

Analysing the boundary is slightly more delicate. Computing the best re-
sponse at the corners of the simplex would immediately tell us if such corners
are NE or not. The shaded regions in Figure 2 tell us that the best response near
e1 is given by e2, and that the best response near e2 is e1, therefore implying
that neither e1, or e2 are NE.
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Figure 2: Indifference lines
and best response for A.

Recall that Nash Equilibria along sides are
given by intersection with indifference lines. If
we consider a side 〈ei, ej〉 then we only need to
consider the correspondent indifference line Zi,j ,
and analyse the best response at the intersection
point.

In our case all the indifference lines intersect
the side 〈e1, e2〉, so we automatically know we will
not find Nash Equilibria on 〈e2, e3〉 and 〈e1, e3〉,
and that we need to focus on the point ( 1

2 ,
1
2 , 0) =

Z1,2∩〈e1, e2〉. Such a point is a Nash Equilibrium
given that the best response along Z1,2 is given by
〈e1, e2〉 (except at e3 where it is given by ∆).

The only two NE are given by e3 and ( 1
2 ,

1
2 , 0). Is e3 an ESS? In order for

e3 to be an ESS we need that for all x ∈ ∆ \ {e3} and for ε > 0 small enough

x ·A(εx+ (1− ε)e3) < e3 ·A(εx+ (1− ε)e3).

Notice that x ·Ae3 = 1 for all x ∈ ∆, hence the above claim reduces to showing

x ·Ax < e3 ·Ax

for all x ∈ ∆ \ {e3}. Now

x ·Ax =

Ñ
x1

x2

x3

é
·

Ñ
10x2 + x3

10x1 + x3

1

é
= 20x1x2 + (1 + x1 + x2)x3

e3 ·Ax = 1

Consider the vector x̃ =

Å
1/2
1/2
0

ã
∈ ∆ \ {e3}, but then this gives us that x̃ ·Ax̃ =

5 > 1 = e3 ·Ax̃. Therefore, e3 is NOT an ESS.
Is x̃ = ( 1

2 ,
1
2 , 0) an ESS? For x̃ to be an ESS point we need that

y ·Ay < x̃ ·Ay (1)

holds for y 6= x̃ sufficiently close to x̃. Let y = ( 1
2 + δ1,

1
2 + δ2,−δ1 − δ2) where

we need to remember that δ1 + δ2 ≤ 0, and where δ1 and δ2 are assumed not to
be zero simultaneously. Then

y ·Ay = (
1

2
+ δ1)(5 + 10δ2 − δ1 − δ2) + (

1

2
+ δ2)(5 + 10δ1 − δ1 − δ2)− δ1 − δ2.

= (
1

2
+ δ1)(5 + 9δ2 − δ1) + (

1

2
+ δ2)(5 + 9δ1 − δ2)− δ1 − δ2

= 5 + 8δ1 + 8δ2 + 18δ1δ2 − δ2
1 − δ2

2

Similarly
x̃ ·Ay = 5 + 5δ1 + 5δ2 − δ1 − δ2 = 5 + 4(δ1 + δ2).
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So (1) is equivalent to

4(δ1 + δ2) + 18δ1δ2 − δ2
1 − δ2

2 < 0. (2)

Without loss of generality, we may assume that |δ2| ≤ |δ1| and δ2 = λδ1
with |λ| ≤ 1. Now of course we need to remember that δ1 + δ2 ≤ 0 (and
(δ1, δ2) 6= (0, 0)) so (λ+ 1)δ1 ≤ 0 and therefore either δ1 < 0 and λ ∈ (−1, 1] or
δ1 > 0 and λ = −1. So (2) becomes

4(λ+ 1)δ1 + 18λδ2
1 − (λ2 + 1)δ2

1 < 0 (3)

with δ1 < 0 and λ ∈ (−1, 1], or δ1 > 0 and λ = −1. If δ1 < 0 and λ ∈ (−1, 1]
then (3) is equivalent to

4(λ+ 1) + 18λδ1 − (λ2 + 1)δ1 > 0

which obviously holds for |δ1| small. If δ1 > 0 and λ = −1 then (3) is equivalent
to

−18δ1 − 2δ1 < 0

which again holds. It follows that x̃ is an ESS.
The last thing left to check is the presence of flow singularities. Recall that

the replicator dynamics equation is

ẋi = xi((Ax)i − x ·Ax)

for i ∈ {1, 2, 3}, which impliesÅ
xi
xj

ã′
=
xi
xj

((Ax)i − (Ax)j)

for i, j ∈ {1, 2, 3}. Using the second formulation and for x ∈ ∆ we haveÅ
x1

x2

ã′
=
x1

x2
(10x2 + x3 − 10x1 − x3) = 10

x1

x2
(x2 − x1)Å

x3

x1

ã′
=
x3

x1
(x1 − 9x2)Å

x3

x2

ã′
=
x3

x2
(x2 − 9x1).

(4)

If we were to have singularities in the interior of ∆ then there would exist
x ∈ int∆ (notice all its components are in (0, 1)) for which

Ä
x3

x1

ä′
= 0Ä

x3

x2

ä′
= 0

=⇒
®
x1 − 9x2 = 0

x2 − 9x1 = 0
.

Clearly this will never happen for x1, x2 > 0. Hence the singularities, if they
exist, are on ∂∆. The corners of ∆ are all singularity points given the structure
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of the replicator dynamics ODE: at a corner ei we have that ẋj = 0 if j 6= i
since xj = 0, and ẋi = 0 since (Aei)i = ei · Aei. If we look at Equation 4, the
only other point at which all equations are zero simultaneously is x̃ = ( 1

2 ,
1
2 , 0),

which is the only other singularity on ∂∆.

2) We now want to investigate how the replicator dynamics for a matrix A

changes if we add to its first column the vector
Ä 1

1
1

ä
. Let

B = A+

Ñ
1 0 0
1 0 0
1 0 0

é
and consider the replicator dynamics associated with B

ẋi = xi((Bx)i)− x ·Bx)

= xi

ÑÑ
Ax+

Ñ
1 0 0
1 0 0
1 0 0

é
x

é
i

− x ·Ax− x ·

Ñ
1 0 0
1 0 0
1 0 0

é
x

é
= xi

ÑÑ
Ax+

Ñ
x1

x1

x1

éé
i

− x ·Ax− x1(x1 + x2 + x3)

é
= xi((Axi) + x1 − x ·Ax− x1)

= xi((Ax)i − x ·Ax).

The replicator dynamics of B is the same as the replicator dynamics of A.

3) The RHS of the replicator dynamics equation is C∞-regular in every entry,
therefore we can apply the local Picard–Lindelöf Theorem and obtain that for
any starting point x(0) ∈ ∆ we have a unique local solution. Notice that the
solution can never leave the simplex, hence its norm is always bounded. This
implies that the solution cannot blow up in finite time, therefore the unique
local solution we have precedently established exists for all times.

1.4 ESS points are asymptotically stable for the replicator
system

Exercise 1.4:
Consider the matrix A = Id3, the 3 × 3 identity matrix. For x̂ = ej and
j ∈ {1, 2, 3}, consider the function

P (x) =

3∏
i=1

xx̂ii =

3∏
i=1

x
(ej)i
i = xj

9



where x ∈ ∆. We will show that the flow tends to ej for each j ∈ {1, 2, 3}. In
order to simplify the calculations let x̂ = e1, so that P (x) = x1. Then

Ṗ

P
(x) = x̂ ·Ax− x · x

= e1 · Id3x− x · Id3x

= e1 · x− |x|2 = x1 − x2
1 − x2

2 − x2
3

If now let x be near e1, then we can write it as x =
(

1−ε
δ
τ

)
for ε, δ, τ ∈ (0, 1),

and δ + τ = ε so that

Ṗ

P
(x) = 1− ε− (1− ε)2 − δ2 − τ2

= ε− ε2 − δ2 − τ2

> ε− ε2 − ε2 since δ2 + τ2 < ε2

= ε(1− 2ε) > 0 since ε > 0 (and small).

Therefore, Ṗ (x) > 0 for x ∈ ∆ \ {e1} close to e1, so e1 attracts nearby points.
Similar computations, where we take x̂ = e2 or e3 in the definition of P , show
that the vertices of ∆ attract nearby points.

Next, we turn our attention to the boundary of ∆. So thanks to the replicator
dynamics equation Å

xi
xj

ã′
=
xi
xj

(xi − xj)

where i, j ∈ {1, 2, 3}. For example along 〈e1, e2〉 we have that the sign of
Ä
x1

x2

ä′
changes at

(
1
2 ,

1
2 , 0
)
. Similarly, we have a sign change at

(
1
2 , 0,

1
2

)
and

(
0, 1

2 ,
1
2

)
.

These same equations tell us that along the indifference line Zi,j the deriva-

tive
Ä
xi
xj

ä′
is equal to 0, and the direction of the flow is completely described

by the derivative in the third component. Let us make an example. Suppose

we want to consider the flow along Z1,2, then we know that
Ä
x1

x2

ä′
= 0, so we

consider ẋ3. Any x ∈ Z1,2 can be written as x =

Ç
1−x3

2
1−x3

2
x3

å
, and the replicator

equation gives us

ẋ3 = x3((Id3x)3 − x · Id3x)

= x3(x3 − |x|2)

= x3(x3 − 2

Å
1− x3

2

ã2

− x2
3)

= −1

2
x3(3x2

3 − 4x3 + 1) = −1

2
x3(x3 − 1)(x3 −

1

3
).

We can conclude that ẋ3 < 0 whenever x3 ∈
(
0, 1

3

)
, and that ẋ3 > 0 for

x3 ∈
(

1
3 , 1
)
. The same computations show identical behaviour along Z1,3 and

Z2,3.
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Consider now the Nash Equilibrium x̂ = (1/3, 1/3, 1/3). How does the flow
behave around it? From the previous analysis we have carried out for the flow
along Zi,j we expect the flow to be repelled by x̂ (star node). In order to see
if our hunch is correct we will linearise the RHS of the replicator equation at
x̂. There are different equivalent ways to do so, for example see Example 1.8 in
the notes. We will take a more direct approach.

Figure 3: Linearisation around x̂. Figure 4: Flow in ∆ for A = Id3.

Let h ∈ R3 be a vector whose entries sum up to 0, i.e.
∑3
i=1 hi = 0, and

consider the perturbed vector p = x̂+ h. Now let i, j, k ∈ 1, 2, 3 be distinct

ḣi = ṗi = pi((Id3p)i − p · Id3p)

= (
1

3
+ hi)(

1

3
+ hi −

3∑
l=1

(
1

3
+ hl)

2)

= (1/3 + hi)(
1

3
hi −

2

3
hj −

2

3
hk +O(h2))

= (
1

3
+ hi)(hi +O(h2)) since hi = −hj − hk

=
1

3
hi +O(h2).

Therefore, the linearisation yields the matrix

L =

Å
1
3 0
0 1

3

ã
with repeated eigenvalues λ1 = λ2 = 1

3 and associated eigenvectors v1 = ( 1
0 ),

and v2 = ( 0
1 ). As we suspected, the point x̂ is a star node. See Figure 3 for a

representation of the flow near x̂ and Figure 4 for the flow in ∆.

11



1.5 Further examples

Exercise 1.5:
We want to establish the phase portrait for the replicator equation where

A =

Ñ
0 10 1
10 0 1
1 1 1

é
.

We already know, thanks to Exercise 1.3 that this system has two Nash
Equilibria, namely e3, and x̃ = ( 1

2 ,
1
2 , 0), and flow singularities at each vertex of

∆ and at x̃.
Let us study what happens along the boundary of ∆. Let x ∈ 〈e1, e3〉, so

that x =
( x1

0
x3

)
where x1 = 1− x3 for x3 ∈ (0, 1). Along such a side we haveÅ

x3

x1

ã′
=

Å
x3

x1

ã
(x1 − 9x2)

=
x3

x1
x1 = x3 > 0

which means that the flows goes from e1 towards e3. Along 〈e2, e3〉 we see thatÄ
x3

x2

ä′
> 0, therefore the solution flows from e2 towards e3.

The last side contains a singularity, hence we expect a more interesting

behaviour. For x =
Ä x1
x2
0

ä
∈ 〈e1, e2〉, where x1 = 1−x2 for x2 ∈ (0, 1), we obtainÅ

x1

x2

ã′
= 10

x1

x2
(x2 − x1) = 10

(1− x2)(2x2 − 1)

x2
.

Such a function is negative between 0 and 1
2 , zero at 1

2 (as we expected by flow
singularities), and positive between 1

2 and 1, so the flows is attracted by
(

1
2 ,

1
2 , 0
)

from e1 and e2. See Figure 5 for more details.

Figure 5: Graph of (x1

x2
)′ along 〈e1, e2〉.

Along Z2,3 Along Z1,2 Along Z1,3Ä
x3

x1

ä′
< 0

Ä
x3

x1

ä′
< 0

Ä
x3

x1

ä′
= 0Ä

x3

x2

ä′
= 0

Ä
x3

x2

ä′
< 0

Ä
x3

x2

ä′
< 0Ä

x1

x2

ä′
> 0

Ä
x1

x2

ä′
= 0

Ä
x1

x2

ä′
< 0

Table 1: Flow along indifference lines.

A similar analysis can be carried out along the indifference lines Z1,2, Z2,3, Z1,3

as summarised in Table 1. Therefore, the flow along the indifference lines leaves
e3 and goes towards 〈e1, e2〉.

As we have proved in Exercise 1.3 part 1, the point x̃ is an ESS, therefore it is
asymptotically stable (as the flow analysis we have just carried would suggest).
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1.6 Rock–Paper–Scissors replicator game

Exercise 1.6:
1) We want to model the game of Rock–Paper–Scissors. In such game we have
three strategies R, P, S. The rules are quite easy R beats S, which beats P,
which beats R, and any strategy played against itself resolves to a draw. See
Figure 6.

Rock Paper Scissors

Rock 0 +1 -b
Paper -b 0 1
Scissors 1 -b 0

Table 2: Payoff table. Figure 6: A schematics of the
interactions between the various
strategies.

The payoff for winning is +1, for losing −b, where b > 0, and for drawing 0. If
we write all such data into a table we obtain Table 2. From this, we can read
off the payoff matrix

A =

Ñ
0 +1 −b
−b 0 1
1 −b 0

é
.

2) Consider the three vectors

A1 =
1

1 + b+ b2
(1, b2, b)T

A2 =
1

1 + b+ b2
(b, 1, b2)T

A3 =
1

1 + b+ b2
(b2, b, 1)T

from Lemma 1.5. We claim that Ai, Ai+1, and ei+1 are collinear (where the
indexes are to be taken in Z/Z3). We will only show the computations for
A3, A1, e1, but every other case is identical. Recall that three vectors a,b, c are

13



collinear if and only if a− c, and b− c are parallel. Therefore

A3 − e1 =
1

1 + b+ b2

Ñ
−1− b
b
1

é
A1 − e1 =

b

1 + b+ b2

Ñ
−1− b
b
1

é
which means that A1 − e1 = b(A3 − e1), so A3, A1, e1 are collinear.

3) At the beginning of the proof of Lemma 1.5 we say that

1

T

∫ T

0

x(t) ·Ax(t)dt→ 0 as T → +∞, (5)

let us show why this is true. Recall that

A =

Ñ
0 1 −b
−b 0 1
1 −b 0

é
where b > 1. The reasons why this happens are sketched in the proof, and they
are basically two

1. The payoff x ·Ax tends to 0 as the flows x(t) gets closer and closer to any
vertex of ∆;

2. x(t) spends most of the time close to the vertices of ∆.

To deal with 1) consider a point

x =

Ñ
1− ε
δ
τ

é
in ∆ close to e1, where 0 < δ, τ ≤ ε < 1. Now

|x ·Ax| =

∣∣∣∣∣∣
Ñ

1− ε
δ
τ

é
·

Ñ
0 1 −b
−b 0 1
1 −b 0

é
.

Ñ
1− ε
δ
τ

é∣∣∣∣∣∣ =

= |−bε(1− ε) + (1− b)δ(1− δ)|
≤ bε(1− ε) + (1− b)δ(1− δ)
< bε+ (b− 1)ε

= ε(2b− 1)

14



which means that x · Ax → 0 as ε → 0. So the closer we are to the vertices of
∆, the closer to zero the payoff is.

Next, we want to show that the speed of the flow is almost zero near the
vertices of ∆, and maximal away from them. Consider the side of ∆ between
e1 and e2, and let x = x1e1 + (1−x1)e2 be a point on it, where x1 ∈ [0, 1]. Now

Ax =

Ñ
1− x1

−bx1

x1 − b(1− x1)

é
x ·Ax = x1(1− x1)(1− b)

so we have, thanks to the replicator equation

|ẋ|2 = x2
1((1− x1)− x1(1− x1)(1− b))2 + (1− x1)2(−bx1 − x1(1− x1)(1− b))2

= x2
1(1− x1)2[(1− x1(1− b))2 + (b+ (1− x1)(1− b))2].

Figure 7: Graph of |ẋ|2 for b = 1.5. Figure 8: Graph of |ẋ|2 for b = 3.

Thanks to continuity of the solution of ODEs, we can expect the velocity of
the flow in int ∆ close to the boundary to behave like |ẋ| (as computed above).
This function has a (local) maximum in (0,1) and tends to zero as x1 approaches
0 or 1, i.e. the flow has maximal velocity away from the corners of ∆ and gets
smaller as it gets closer to them (see Figure 7 and 8 to get an idea of what this
function looks like along on of the sides of ∆).

We have just established that the payoff of this game gets small near the
corners of ∆, and that in these areas the flow has low speed, meaning that it
spends most of the time there. Intuitively this is why the limit 5 converges to
0, but in order to give a rigorous proof of this we have to estimate how much
time we spend in the corners (at least for T big enough).
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We will now assume that ∆ is our ambient space, and we equip it with the
subset topology coming from the Euclidean topology of R3, i.e. all the neigh-
bourhoods we will consider from now on are neighbourhoods in ∆. Consider
the neighbourhood

Ω =

3⋃
i=1

Ωi =

3⋃
i=1

Bε(ei)

of the vertices of ∆, where Bε(ei) is the ball of radius ε around ei. Similarly,
consider the ε2-tubular neighbourhood of ∂∆ given by

Ξ = Bε2(∂∆) \ Ω =
⋃
x∈∂∆

Bε2(x) \ Ω.

Notice that ε > 0 can be taken small enough so that we can apply the Hart-
man–Grobman theorem to Bε(ei) for i = 1, 2, 3, and such that the payoff |x ·Ax|
is bounded above by ε over Ω.

As we wrote before Ω is made up by 3 components Ωi = Bε(ei), and simi-
larly Ξ is made up by 3 components. We will call Ξi the components in which
the flows travels from Ωi−1 to Ωi, where all the indexes have to be take mod 3.
Notice that Ξ is compact, and the flow over this set has always non-zero deriva-
tive since it is away from e1, e2, e3. We can define C := minΞ|ẋ| which tells
us that maxTΞi = 1−2ε

C = K, for TΞi being the time it takes the flow to
get through Ξi. In order to estimate maxTΞi we have used small angle ap-
proximations, linearised estimates of the flow, and we maximised the equation
Time=Displacement/Speed. As time T →∞ we can see that maxTΞi remains
constant (= K), meaning that the maximal time for the flow to get through Ξi
is constant, and does not depend on how close the flow gets to ∂∆.

If we denote by TN the amount of time that the flow takes to complete a
full loop then we can break this down as

TN = TNΩ1
+ TNΞ2

+ TNΩ2
+ TNΞ3

+ TNΩ3
+ TNΞ1

≤ TNΩ1
+ TNΩ2

+ TNΩ3
+ 3K = TNΩ + 3K

where TNΩi , and TNΞi , represent the time needed to get through Ωi, Ξi respectively
during the loop N . We now will proceed to show that

lim
N→∞

TN+1

TN
= lim
N→∞

TN+1
Ω

TNΩ
<∞.

In order to compute such a limit we want estimate the time it takes the
flow to traverse Ωi. Let us start by considering Ω1. By applying the Hartman-
Grobman theorem to Ω1 we have that the flow generated by the replicator
equation is C1 conjugated to the linearised flow given byÅ

ẋ(t)
ẏ(t)

ã
=

Å
1 1 + b
0 −b

ãÅ
x(t)
y(t)

ã
. (6)

Notice that the eigenvalues of the matrix are λ1 = 1 and λ2 = −b with associated
eigenvectors v1 = ( 1

0 ), and v2 =
(

1
−1

)
, respectively.
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Remark. The Hartman-Grobman theorem states that an equilibrium of a sys-
tem of ODEs is locally linearisable as long as the linearisation matrix L is
hyperbolic (all its eigenvalues have non-zero real part). If the flow is 2 dimen-
sional then the conjugacy between the flow given by the original system and the
one given by ẋ = Lx is C1 regular. For more general flows then the conjugacy
is only α-Hölder continuous, where α depends on the eigenvalues of L.

Let X,Y be two subsets of Euclidean spaces, and r ∈ N. We say two flows ϕ :
X → X, and ψ : Y → Y are Cr conjugated if there exists a Cr diffeomorphism
h : X → Y such that h ◦ ϕ = ψ ◦ h. If the last equality only holds over a subset
of X then we say that ϕ and ψ are locally Cr conjugated.

By making a simple change of basis transformation we can (smoothly) con-
jugate the flow given by Equation 6 toÅ

ẋ(t)
ẏ(t)

ã
=

Å
−b 0
0 1

ãÅ
x(t)
y(t)

ã
. (7)

It is immediate to see that the eigenvalues of the matrix are given by λ1 = −b,
and λ2 = 1, but now the associated eigenvectors are v1 = ( 1

0 ), and v2 = ( 0
1 )

respectively. The solution to this system of ODEs for
Ä
x(0)
y(0)

ä
= ( x0

y0 ) is given byÅ
x(t)
y(t)

ã
=

Å
x0e
−bt

y0e
t

ã
.

As we have anticipated we want to understand how long it takes our original
flow to cross Ω1, and while doing so we will see how quickly the flow tends to
∂∆ in terms of distance from it. Let ( x0

y0 ) = ( ρτ ) for ρ, τ > 0 arbitrarily small.

We want to establish how long it takes to get to
Ä
τ ′

ρ

ä
, and what is the size of

τ ′ compared to τ . This is done by solvingÅ
τ ′

ρ

ã
=

Å
ρe−bt

τet

ã
which gives us t = ln ρ

τ and τ ′ = ρ1−bτ b = C1τ
b. If we fix ρ and we let t→∞ we

get τ → 0 which tells us that the flow tends to ∂∆, as we know. This estimates
have been computed for System 7, which is C1 conjugated to the replicator
dynamics, so thanks to the regularity of the conjugacy we know that the same
asymptotics hold for the original flow. This means that for N big enough, and
if d ≤ ε2 denotes the distance between the flow entering Ω1 to start the N th

loop then the time to exit Ω1 is ∼ ln ε
d , and that time the flow will be ∼ db

away from ∂∆. These asymptotic estimates only depend on the eigenvalues of
the linearisation of the flow at e1, by proceeding similarly one can show that the
situation in Ω2, and Ω2 is identical. We will assume that the distance flow-∂∆
when entering Ωi+1 is approximately the same as when leaving Ωi. The time to
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complete the loop is approximately given by

TN ∼ TNΩ = TNΩ1
+ TNΩ2

+ TNΩ3

∼ ln
ε

d
+ ln

ε

db
+ ln

ε

db2

= ln
ε3

d1+b+b2
.

Note that when the flow comes back to Ω1 its distance to ∂∆ is ∼ db
3

, hence
TN+1 ∼ ln ε

db3+b4+b5
. Since we have expressed TN in terms of d then taking a

limit as N →∞ is the same as d→ 0. Therefore,

lim
N→∞

TN+1

TN
= lim
d→0

ln ε3

db3+b4+b5

ln ε3

d1+b+b2

= lim
d→0

ln 1
db3+b4+b5

ln 1
d1+b+b2

= b3

So for N large enough TN+1 ∼ b3TN , where b > 1.
If we assume that T is big enough, we have that T can be approximately

written as the sum of the times it takes to do N loops, or equivalently

T =

N−1∑
i=0

T i ∼ T 0
N−1∑
i=0

b3i = T 0 1− b3N

1− b3
.

This approximation allows us to compute how many loops we expect to have
completed in a fixed (large) time T

N =
ln
ÄÄ

b3−1
T0

ä
T + 1

ä
3 ln b

which immediately gives us that

lim
T→∞

N

T
= 0.

We can finally prove the limit in Equation 5. Therefore

lim
T→∞

| 1
T

∫ T

0

x ·Axdt| ≤ lim
T→∞

1

T

∫ T

0

|x ·Ax|dt

= lim
T→∞

1

T

Ç∫
∑N
j=0 T

j
Ω

|x ·Ax|dt+

∫
∑N
j=0 TΞ

|x ·Ax|dt
å

≤ lim
T→∞

∑N
j=0 T

j
Ω

T
ε+

N

T
max

Ξ
|x ·Ax| ≤ ε

since
∑N
j=0 T

j
Ω

T ∼
∑N
j=0 T

j

T → 1 and N
T → 0. Since ε can be taken arbitrarily

small we are done.
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1.7 Hypercycle equation and permanence

Exercise 1.7:
We want to show that γk =

∑n−1
j=0 cjλ

jk, where k = 0, 1, . . . , n and λ = e
2πi
n ,

are the eigenvalues of

C =

á
c0 c1 c2 · · · cn−1

cn−1 c0 c1 · · · cn−2

...
...

...
. . .

...
c1 c2 c3 · · · c0

ë
.

We know, by the proof of Lemma 1.6, that the corresponding eigenvector to γk
is

vk =

á
1
λk

...
λ(n−1)k

ë
.

It is just a matter of multiplying C and vk, and show that the product equals
γkvk. For k = 0, 1, . . . , n− 1 we have

Cvk =

á
c0 c1 c2 · · · cn−1

cn−1 c0 c1 · · · cn−2

...
...

...
. . .

...
c1 c2 c3 · · · c0

ëá
1
λk

...
λ(n−1)k

ë
=

á
c0 + c1λ

k + . . .+ cn−1λ
(n−1)k

λk(cn−1λ
(n−1)k + c0 + . . .+ cn−2λ

(n−2)k)
...

λ(n−1)k(c1λ
k + c2λ

2k + . . .+ c0)

ë
=

n−1∑
j=0

cjλ
jk

á
1
λk

...
λ(n−1)k

ë
= γkvk.

1.8 Existence and the number of Nash Equilibria

Exercise 1.8
1) We want to check the Poincaré-Hopf formula holds for simple flows X on
some surface M . Recall that the formula states∑

x∈M
X(x)=0

iX(x) = χ(M)

where iX(x) is the index of X at x and χ(M) is the Euler characteristic of M .
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Figure 9: North-South flow on S2. Figure 10: A triangulation of S2.

Let M = S2 be the two dimensional sphere, and consider the north-south
flow X on it. As we can see from Figure 9 this flow has to singularities at N
(the north pole) and S (the south pole). N is a source, whereas S is a sink,
which means that iX(N) = iX(S) = +1.

Recall that the Euler characteristic of a surface M can be computed as

χ(M) = V − E + F

where V is the number of vertices, E the number of edges, and F the number
of faces of a triangulation of M . The Euler characteristic is independent from
the choice of triangulation (as long as you are not collapsing triangles). For
more information about Euler characteristic and triangulations look up CW-
complexes or simplicial complexes.

The triangulation of S2 in Figure 10 tells us that χ(S2) = 6− 12 + 8 = +2.
Now if we put everything together∑

x∈S2

X(x)=0

iX(x) = iX(N) + iX(S) = 1 + 1 = 2 = χ(S2).

Let us consider a different surface. Let M be the two dimensional torus T2,
and let X be the north-south flow as in Figure 11.

The flow X has now 4 singularities, namely a source N , a sink S and two
saddle points N ′, S′. Their indexes are

iX(N) = +1;

iX(S′) = −1;

iX(N ′) = −1;

iX(S) = +1.

The Euler characteristic of T2 is readily computed thanks to the triangula-
tion shown in Figure 12

χ(T2) = 9− 27 + 18 = 0.
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Figure 11: North-South flow on T2. Figure 12: A triangulation of T2.

Now let us put everything together as before we have∑
x∈T2

X(x)=0

iX(x) = iX(N) + iX(S′) + iX(N ′) + iX(S) = 1− 1− 1 + 1 = 0 = χ(T2).

2) See Example 1.19 in the notes.

3) Consider, for ε > 0, the perturbed flow

ẋi = xi((Ax)i − x ·Ax) + ε

and assume that the original flow only presents regular singularities (the lin-
earisation matrix at the singularity is invertible). We claim that under this
assumption all the Nash Equilibria of the original flow on the boundary move
towards the interior of the simplex under the perturbed flow, and the other
singularities of the system move outwards.

Let us assume that ∆ is a 3 dimensional simplex in order to simplify the
discussion. It is important to notice that the singularity of the original replicator
equation remain the same under the perturbed flow and they move smoothly
as ε varies. The assumption that every singularity is regular implies that there
are only finitely many singularities, and that they are all isolated.

Assume that x̂ is a Nash Equilibrium on ∂∆ for the original game. Hence
there exists i ∈ {1, 2, 3} for which ˙̂xi = 0. As was shown in the proof of Theorem
1.4, the i-th component of the vector field Xε(x) takes the form xizi + ε+ h.o.t.
(higher order terms) where zi = (Ax̂)i − x̂ · Ax̂. Since zi < 0 when x̂ is a Nash
equilibrium, the singularity x̂ε for Xε(x) near x̂ has a positive i-th component
(and so moves to the interior of ∆). Similarly, if x̂ is not a Nash Equilibrium
then zi ≥ 0, but since we have assumed that the vector field is regular, we have
zi > 0. It follows that in this case x̂ moves to outside ∆.
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2 Two Players Games

2.1 Two conventions for the payoff matrices

Exercise 2.1:
1) Consider the two players game given by the matrix

G =

Å
(1,−1) (0, 0)
(0, 0) (−1, 1)

ã
where we have adopted the 2nd convention (see the notes). From G we can read
off the two matrices determining this game

A =

Å
1 0
0 −1

ã
B =

Å
−1 0
0 1

ã
and we can use them to compute the best response for both players. Recall that
(x̂, ŷ) is a Nash Equilibrium if and only if x̂ ∈ BRA(ŷ) and ŷ ∈ BRB(x̂). For
x, y ∈ ∆ = 〈e1, e2〉

BRA(y) = arg max
x∈〈e1,e2〉

x ·
Å

1 0
0 −1

ã
y

= arg max
x∈〈e1,e2〉

x1y1 − x2y2 = {e1}

BRB(x) = arg max
y∈〈e1,e2〉

x ·
Å
−1 0
0 1

ã
y

= arg max
x∈〈e1,e2〉

−x1y1 + x2y2 = {e2}

Hence we can immediately see that e1 ∈ BRA(e2) and e2 ∈ BRB(e1), so (e1, e2)
is the only Nash Equilibrium for G.

2) Consider a two-person game (A,B), and denote by ∆A×∆B its phase space.
Let (x̂, ŷ) ∈ int ∆A×∆B be a Nash Equilibrium for the game (A,B). If we work
with the second notation then we know that x̂ maximises the product x ·Aŷ for
x ∈ ∆A, and that ŷ maximises the product x̂ · By for y ∈ ∆B . Therefore, for
any i, j we have

ei ·Aŷ ≤ x̂ ·Aŷ x̂ ·Bej ≤ x̂ ·Bŷ.
The two vectors x̂, ŷ can be written as the linear combinations x̂ =

∑
i λiei,

and ŷ =
∑
j ρjej , where λi, ρj > 0 for all i, j since we have assumed that the

Nash Equilibrium is contained in the interior of our phase space, and
∑
i λi =∑

j ρj = 1 since we are working with probability vectors. Then if we sum over
the two previous inequalities we obtain

x̂ ·Aŷ =
∑
i

λiei ·Aŷ ≤
∑
i

λix̂ ·Aŷ = x̂ ·Aŷ

x̂ ·Bŷ =
∑
j

ρj x̂ ·Bej ≤
∑
j

ρj x̂ ·Bŷ = x̂ ·Bŷ.
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In order to get a strict inequality in the previous derivation we would need at
least one i and/or j such that ei ·Aŷ < x̂ ·Aŷ, and/or x̂ ·Bej < x̂ ·Bŷ, but both
these conditions are clearly impossible. Therefore we can conclude that for all
i and all j

(Aŷ)i = ei ·Aŷ = x̂ ·Aŷ = c (x̂TB)j = x̂ ·Bej = x̂ ·Bŷ = c̃

where c, c̃ ∈ R are constants.

Remark. We have just showed an equivalent statement to Lemma 1.2 in the
lecture notes, but for the specific case of a Nash Equilibrium point contained in
the interior of the state space. We can do better. If a Nash Equilibrium (x̂, ŷ)
is NOT in the interior of ∆A ×∆B then from the above proof we can conclude
that ®

(Aŷ)i = c whenever x̂i 6= 0

(x̂TB)j = c̃ whenever ŷj 6= 0

where c, c̃ ∈ R are constants. This gives us a complete reformulation of Lemma
1.2 for 2 player games.

3) Consider the two player game encoded by the matrices

A =

Å
2 1
2 2

ã
B =

Å
2 2
1 2

ã
,

and let us choose to follow the second convention for 2 players games. We will
firstly compute the Nash Equilibria of these matrices and then we will check if
they are ESS. The Best Response maps are

BRA(y) = arg max
x∈∆

x ·Ay = arg max
x∈∆

2− (1− y1)x1 =

®
{e2} if y 6= e1

∆ if y = e1

BRB(x) = arg max
y∈∆

x ·By = arg max
y∈∆

2− x2y1 =

®
{e2} if x 6= e1

∆ if x = e1

from which we can read that (e1, e1) and (e2, e2) are Nash Equilibria: e1 ∈ ∆ =
BRA(e1) and e1 ∈ ∆ = BRB(e1) and also e2 ∈ BRA(e2) and e2 ∈ BRB(e2).
Note that (e2, e1) is an NE for this game as well. Since e1 corresponds to
strategy i, and e2 to strategy ii, we can conclude that the strategies (i, i) and
(ii, ii) are NE.

Next we want to see if such strategies are Evolutionary Stable. Recall the
definition: (x̂, ŷ) is an ESS if for all ε > 0 and all (x, y) ∈ (∆A\{x̂})×(∆B \{ŷ})
then

x ·A(εy + (1− ε)ŷ) < x̂ ·A(εy + (1− ε)ŷ)

(εx+ (1− ε)x̂) ·By < (εx+ (1− ε)x̂) ·Bŷ.
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Firstly we will show that (x̂, ŷ) = (e1, e1) is NOT an ESS. Fix ε > 0, and

take the point
((

1
2
1
2

)
,
(

1
2
1
2

))
then this choice yields

x ·A(εy + (1− ε)ŷ) =

Å
1
2
1
2

ã
·
Å

2 1
2 2

ãÅ
1− ε

2
ε
2

ã
=

Å
1
2
1
2

ã
·
Å

2− ε
2

2

ã
= 2− ε

4
> 2− ε

2

=

Å
1
0

ã
·
Å

2− ε
2

2

ã
=

Å
1
0

ã
·
Å

2 1
2 2

ãÅ
1− ε

2
ε
2

ã
= x̂ ·A(εy + (1− ε)ŷ)

which means that (e1, e1) is not an ESS.
On the other hand, the Nash Equilibrium (x̂, ŷ) = (e2, e2) is an ESS. Let

ε ∈ (0, 1), and take any (x, y) ∈ (∆A \ {e2})× (∆B \ {e2}) then

x ·A(εy + (1− ε)ŷ) =

Å
x1

1− x1

ã
·
Å

2 1
2 2

ãÅ
εy1

1− εy1

ã
=

Å
x1

x2

ã
·
Å

1 + εy1

2

ã
= x1(1 + εy1) + 2(1− x1)

< 2x1 + 2(1− x1) = 2

=

Å
0
1

ã
·
Å

1 + εy1

2

ã
=

Å
0
1

ã
·
Å

2 1
2 2

ãÅ
εy1

1− εy1

ã
= x̂ ·A(εy + (1− ε)ŷ)

and

(εx+ (1− ε)x̂) ·By =

Å
εx1

1− εx1

ã
·
Å

2 2
1 2

ãÅ
y1

1− y1

ã
= 2εx1 + (2− y1)(1− εx1)

< 2εx1 + 2(1− εx1) = 2

=

Å
εx1

1− εx1

ã
·
Å

2 2
1 2

ãÅ
0
1

ã
= ŷ ·B(εx+ (1− ε)x̂)

which confirms that (e2, e2), or (ii, ii) is an ESS.

24



2.2 Two players replicator dynamics

Exercise 2.2:
Consider the two players game given by the matrix

G =

Å
(1,−1) (0, 0)
(0, 0) (−1, 1)

ã
then, as we have done in the previous question, we can retrieve the two matrices
defining this game

A =

Å
1 0
0 −1

ã
B =

Å
−1 0
0 1

ã
.

Using Equations (17) from Section 2.2 of the notes we can write down the
replicator equations of this game as

ẋi = xi((Ay)i − x ·Ay)

= xi((−1)i+1yi − x1y1 + x2y2)

ẏj = yj((x
TB)j − x ·By)

= yj((−1)jxj + x1y1 − x2y2)

where x, y ∈ ∆ = 〈e1, e2〉, and i, j ∈ {1, 2}. Because of the specific shape of our
phase space ∆ we can rewrite these two equations using the fact that x2 = 1−x1

and y2 = 1− y1 for x1, y1 ∈ [0, 1]

ẋ1 = x1(1− x1)

ẏ1 = −y1(1− y1).

Figure 13: Flow for the
game determined by G

We can then proceed with the usual phase
diagram analysis, as for any system of ODEs.
The phase space of this system is the unit square
I2 = [0, 1]×[0, 1] ⊂ R2. From now on we will drop
the indexes in the equations. The derivative of x
is zero along {x = 0} and {x = 1}, whereas ẏ is
zero along {y = 0} and {y = 1}. The four vertices
of I2 are singularities for the flow (ẋ = ẏ = 0).
Along {0}× (0, 1) and {1}× (0, 1) we have ẏ < 0,
and along (0, 1) × {0} and (0, 1) × {1}, we have
ẋ > 0. We can therefore conclude that (0, 1) is a
sink (in black in the figure), (0, 0) and (1, 1) are
saddles (in red in the figure), and (1, 0) is a sink
(in white in the figure). The flow flows travels
from close to (0, 1) towards (1, 0) without ever touching the boundary of the
unit square. See Figure 13 for a sketch of the flow.
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2.3 Symmetric games

Exercise 2.3:
Consider a symmetric 2×2 game with payoff (square) matrices A and B, where
A = BT. Suppose that x(0) = y(0). We are going to show that if Player 1 plays
strategy x against strategy y then that is equal to Player 2 playing x against
y. We are going to work with the 2nd convention for the replicator equation.
Recall that if A,B are square matrices then (AB)T = BTAT. Therefore

ẋi = xi((Ay)i − x ·Ay) = xi((B
Ty)i − x ·BTy)

= xi((y
TB)i − xTBTy) = xi((y

TB)i − yTBx)

= xi((y
TB)i − y ·Bx) = ẏi.

Under the assumption x(0) = y(0) we can conclude that, by uniqueness of
solutions of ODEs, that x(t) = y(t) for all times. Recall that we have showed in
part 3 of Exercise 1.3 that a solution always exist to every initial value problem
(starting in ∆) and that such a solution exists for all times.

This question can be approached from a more geometric perspective. Con-
sider the product space ∆×∆ and more specifically its diagonal

D := {(x, y) ∈ ∆×∆ |x = y}.

We want to show that the space D is invariant under the action of ẋ− ẏ. Using
Equations (18) from the lecture notes we can write

ẋ− ẏ = xi((Ay)i − x ·Ay)− yi((Ax)i − x ·Ay)

= (xi − yi)((A(x+ y))i − x ·Ay)− (xi(Ax)i − yi(Ay)i)

which tells us that ẋ− ẏ|D= 0. This means that the vector field ẋ− ẏ is tangent
to D at every point, hence there is no normal component pointing outwards
from D. Therefore, D is invariant under ẋ − ẏ, and so if the flow (x(t), y(t))
starts on D, i.e. x(0) = y(0), then (x(t), y(t)) is in D for all times t.

2.4 The 2× 2 case

Exercise 2.4:
1) Consider the system of ODEs given by Equations (19) in Section 2.4 of the
notes

ẋ = x(1− x)(α1 − y(α1 + α2))

ẏ = y(1− y)(β1 − x(β1 + β2)).
(8)

We want to understand all the different (non-degenerate) phase portraits
that can arise from this system. Our state space is the usual unit square
I2 = [0, 1] × [0, 1] in R2, endowed with the subspace topology. Firstly, no-
tice that along the boundary ∂I2 at least one of the two derivatives is zero.
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{x=0} β1 > 0⇒ ẏ > 0
{y=0} α1 > 0⇒ ẋ > 0
{x=1} β2 > 0⇒ ẏ < 0
{y=1} α2 > 0⇒ ẋ < 0

Table 3: Behaviour of Equa-
tion 8 along ∂I2.

Table 3 summarises the behaviour of the flow
restricted on the boundary. If we now look at
the interior of the unit square we have two other
lines along which one of the equations in 8 equals
zero, namely {x = β1

β1+β2
} along which ẏ = 0,

and {y = α1

α1+α2
} along which ẋ = 0. Notice

that the point θ = ( β1

β1+β2
, α1

α1+α2
) is an equi-

librium point for the system. For now we will
assume that θ is in int I2: this is equivalent to

α1α2 > 0, and β1β2 > 0. In Figure 14 we have reported the direction of
the flow when intersecting the nullclines {x = β1

β1+β2
} (in red on the left) and

{y = α1

α1+α2
} (in blue on the right).

θ

β1β2 > 0

θ

β1β2 < 0

θ

α1α2 > 0 α1α2 < 0

θ

α1 + α2 > 0

θ

β1β2 < 0

θ

β1β2 > 0

α1 + α2 < 0

β1 + β2 > 0

θ

α1α2 < 0α1α2 > 0

θ

β1 + β2 < 0

Figure 14: Possible flow directions along the nullclines in int I2.

We can clearly see that the direction of the flow when crossing the nullclines
only depends on α1α2 and β1β2. All the possible phase portraits that Equation
8 are described in Proposition 2.1 in the lecture notes. Given the assumption
θ ∈ int I2 we have made before, we are interested for now in understanding
the portraits associated with case (i) and (iii). Set β1 > 0 therefore fixing the
direction of our flow (one gets the same portraits but with the flow direction
reversed for β1 < 0, as suggested in Figure 14). From Table 3 we know that if
α1β1 > 0 then the points (0, 0), and (1, 1) are sources, whilst (0, 1), and (1, 0) are
sinks. On the other hand, α1β1 < 0, translates to the flow travelling clockwise
around ∂I2. We can conclude that the left phase portrait in Figure 13 in the
lecture notes corresponds to case (i), whereas the right one corresponds to (iii).
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In Figure 16 you can see the direction of the derivatives in the various quadrants
for the cases we have just discussed (under the underlying assumption β1 > 0.

Figure 15: Dominated Strategy

What happens if θ 6∈ int I2? If either
α1α2 < 0 or β1β2 < 0 we obtain a dominated
strategy type of system, case (ii) in Proposi-
tion 2.1. Assume, for the sake of discussion,
that α1 < 0, and α2 > −α2, β1 > 0, and
β2 > 0 (every other case is either similar or
simpler). Then we have α1α2 < 0, β1β2 > 0,
the nullcline {x = β1

β1+β2
} is still in int I2, so

we obtain a phase diagram as in Figure 15.
The yellow dot in the top right corner rep-
resents the dominating strategy, whereas the
red dotted line is {x = β1

β1+β2
}. Picking dif-

ferent values for the α’s and β’s will surely
change the dominating strategy, the direction of the flow, and the presence of
nullclines, but the overall shape of the phase diagram will always be the same.

A full explanation of the terminology can be found in Hofbauer, Sigmund
– Evolutionary games and population dynamics. The term dominated strategy
is illustrated in Section 8.3, whereas battle of the sexes or coordination game is
explained in Section 10.2. The term zero-sum case includes not only zero-sum
games, but all games in which the total payoff between players is zero, i.e. the
net change of global wealth is zero.

θ

NW

NE
SE

SW

Cooperation Game

θ

SW

NW

NE

SE

Zero-Sum Case

Figure 16: Direction of the flow for case (i) and (iii) assuming β1 > 0.

We will now analyse some specific examples of games for every type of phase
portrait described in Proposition 2.1. Please note we will adopt the second
convention from now, and we will denote by ∆A×∆B the total phase space (I2

is a reparameterisation of such space). Let

A =

Å
4 1
3 2

ã
B =

Å
4 3
1 2

ã
be the matrices describing the stag hunt game. Then

α1 = −1 α2 = −1, β1 = −1, β2 = −1
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hence α1α2 > 0, β1β2 > 0, α1β1 > 0: this is a coordination game. We have two
pure dominating strategies, and a Mixed Nash Equilibrium in the interior of I2.

The Mixed Nash Equilibrium in I2 is given by θ =
Ä

β1

β1+β2
, α1

α1+α2

ä
which cor-

responds to
ÄÄ

β1

β1+β2
, β2

β1+β2

ä
,
Ä

α1

α1+α2
, α2

α1+α2

ää
=
((

1
2 ,

1
2

)
,
(

1
2 ,

1
2

))
. The other

Pure Nash Equilibria can be computed by looking at the best responses

BRA(e1) = arg max
x∈∆

x ·A( 1
0 ) = arg max

x∈∆
4x1 + 3x2 = {e1}

BRA(e2) = arg max
x∈∆

x ·A( 0
1 ) = arg max

x∈∆
x1 + 2x2 = {e2}

BRB(e1) = arg max
y∈∆

( 1
0 ) ·By = arg max

y∈∆
4y1 + 3y2 = {e1}

BRB(e2) = arg max
y∈∆

( 0
1 ) ·By = arg max

y∈∆
y1 + 2y2 = {e2}

so (e1, e1) and (e2, e2) are the equilibria we were looking for, which corresponds
to the strategies (C,C), and (D,D).

Another coordination game example is given by the battle of sexes game
described by

A =

Å
3 0
0 2

ã
B =

Å
2 0
0 3

ã
.

The coefficients for this game are given by

α1 = −2, α2 = −3, β1 = −3, β2 = −2

which confirms that this is a coordination game since α1α2 > 0, β1β2 > 0, and
α1β1 > 0. As before we have a Mixed Nash Strategy given by

((
3
5 ,

2
5

)
,
(

2
5 ,

3
5

))
.

The two Pure Nash Strategies are given again by (e1, e1) and (e2, e2).
Consider the classic Prisoner’s Dilemma game described by the matrices

A =

Å
2 0
3 1

ã
B =

Å
2 3
0 1

ã
given in Example 0.3 in the lecture notes. For this game we have that

α1 = −1, α2 = 1, β1 = −1, β2 = 1

which implies α1α2 = −1 < 0 and β1β2 = −1 < 0. The Prisoner’s Dilemma
falls under the dominated strategy category, therefore there is one dominating
pure strategy given by the Nash Equilibrium (e2, e2). As a sanity check

BRA(e2) = arg max
y∈∆

y ·Ae2 = arg max
y∈∆

y2 = {e2}

BRB(e2) = arg max
x∈∆

e2 ·Bx = arg max
x∈∆

x2 = {e2}

as we claimed.
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Finally, let us look at zero sum type of games. The first we want to look at
is described by

A =

Å
1 0
0 −1

ã
B =

Å
−1 0
0 1

ã
which give us coefficients

α1 = 1, α2 = −1, β1 = −1, β2 = 1.

Since α1α2 < 0, and β1β2 < 0 then we have a dominated strategy type of game.
As before, we only have one Pure Nash Equilibrium

BRA(e2) = arg max
y∈∆

y ·Ae2 = arg max
y∈∆

−y2 = {e1}

BRB(e1) = arg max
x∈∆

e1 ·Bx = arg max
x∈∆

−x1 = {e2}

given by (e1, e2).
The last game we want to analyse is described by

A =

Å
1 0
0 1

ã
B =

Å
−1 0
0 −1

ã
which give us coefficients

α1 = −1, α2 = −1, β1 = 1, β2 = 1.

Since α1α2 > 0, β1β2 > 0, and α1β1 < 0 then we have a zero sum game with inte-

rior Nash Equilibrium, given once again by
ÄÄ

β1

β1+β2
, β2

β1+β2

ä
,
Ä

α1

α1+α2
, α2

α1+α2

ää
=((

1
2 ,

1
2

)
,
(

1
2 ,

1
2

))
. We will see in the next section that for this game the solution

to this specific type of game is described by simple close periodic orbits (topo-
logical circles). This means that θ is not asymptotically stable (only Lyapunov
stable).

2) Recall that we proved in part 2 of Exercise 1.3 that adding constant column
vectors to a matrix does not change its replicator dynamics. Therefore, it is
possible that two different matrices induce a phase portrait belonging to the
category of zero sum games.

3) As hinted in the question, we will firstly linearise our system around the equi-

librium θ =
Ä

β1

β1+β2
, α1

α1+α2

ä
. Consider the perturbed point θ̃ =

Ä
β1

β1+β2
+ ε1,

α1

α1+α2
+ ε2

ä
for ε1, ε2 > 0 small, then the equations for the replicator dynamics will give us

ε̇1 = −β1β2(α1 + α2)

(β1 + β2)2
ε2 +O(ε2)

ε̇2 = −α1α2(β1 + β2)

(α1 + α2)2
ε1 +O(ε2)
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TrA

detA
∆=0 detA= 1

4 (TrA)2

saddle

centreuniform
motion

sink source

line of stable fixed points line of unstable fixed points

spiral sink spiral source

degenerate sink degenerate source

Figure 17: Classification of Phase Portraits in the (detA,TrA)-plane 1

which leads us to the linearisation matrix at θ

L =

(
0 −β1β2(α1+α2)

(β1+β2)2

−α1α2(β1+β2)
(α1+α2)2 0

)
.

This matrix has a very special shape since its trace, TrL, is always zero, which
severely restricts the possible flow behaviour near θ.

By looking at the Poincaré Diagram in Figure 17 we see that there are only
two possibilities for the flow close to θ (excluding the degenerate case): either
detL is positive and we have that the flow generates concentric ellipses (purely
imaginary eigenvalues), or detL is negative and θ is a saddle point (the real
parts of the two eigenvalues have opposite sign).

To start with, the determinant of L is given by

detL = − α1α2β1β2

(α1 + α2)(β1 + β2)

therefore the conditions of Proposition 2.1 will uniquely determine the positivity
of it.

For zero sum case with interior Nash Equilibrium α1α2 > 0, β1β2 > 0, and
α1β1 > 0, which means that either α1, α2 are both positive, and β1, β2 are
negative, or vice-versa. In both cases detL is positive (beware of the minus sign

1Adapted from: https://tex.stackexchange.com/questions/347201/
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in front of it), and so θ is the centre of concentric ellipses (the ratio between
the sizes of minor and major axes of the ellipses depends on the ration of the
modulus of the imaginary eigenvalues).

For coordination games we know that α1α2 > 0, β1β2 > 0, and α1β1 > 0,
which means that α1, α2, β1, β2 have all the same sign. This is sufficient to show
that detL is negative and hence θ is a saddle point.

We will now directly show that the orbits of the replicator dynamics circle
around θ. Consider the Lyapunov function

P (x, y) = x−β1(1− x)−β2yα1(1− y)α2 ,

and we claim that this function is constant along the solutions of the replicator
dynamics whenever α1α2 > 0, β1β2 > 0, and α1β1 > 0. Notice that P is always
positive in I2, and vanishes on its boundary. If we compute the time logarithmic
derivative of P

Ṗ

P
(x, y) = ˙logP =

d

dt
(−β1 log x− β2 log(1− x) + α1 log y + α2 log(1− y))

= − β1
ẋ

x
+ β2

ẋ

1− x
+ α1

ẏ

y
− α2

ẏ

1− y
= − (α1 − y(α1 + α2))(β1 − β1x− β2x) + (β1 − x(β1 + β2))(α1 − α1y − α2y)

= − (α1 − y(α1 + α2))(β1 − x(β1 + β2)) + (α1 − y(α1 + α2))(β1 − y(β1 + β2))

= 0

we see that Ṗ = 0 along the orbits of the solution to Equation 8.
This means that P is constant along orbits, therefore the orbits of Equation

8 are level sets of P .

Figure 18: 3D and contour plot of the function P for α1 = 1
3 , α2 = 1

6 , β1 =
− 1

2 , β2 = − 1
3 .

In Figure 18 we can see a contour plot for the function P for some arbitrarily
chosen values of α1, α2, β1, and β2. We can see that the level sets of P are closed
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simple lines, or topological circles. Those represent the shape of the orbits of
the flow induced by Equation 8 in I2.

4) All the hard work is now done. We have showed, by computing the lineariza-
tion matrix at θ that the equilibrium point can only either be a saddle (unstable)
or orbits cycle around it as in Figure 18 (Lyapunov stable). As we proved in
1.1 in the lecture notes, Evolutionary Stable Strategy are asymptotically stable
equilibria for the replicator dynamics, but since θ in our case is either unstable
or Lyapunov stable (this is weaker than asymptotically stable), then we can
conclude that these games admit no ESS in the interior of I2.

2.5 A 3× 3 replicator dynamics systems with chaos

Exercise 2.5:
1) Fix ε ∈ (0, 1) (in order to simplify the calculations), and the two matrices

A =

Ñ
ε −1 1
1 ε −1
−1 1 ε

é
B =

Ñ
−ε −1 1
1 −ε −1
−1 1 −ε

é
which describe a 3 × 3 game with two players. We wish to compute the Nash
Equilibria of such a game. In order to maintain consistency with the lecture
notes we will adopt the first convention. The state space will be denoted by
∆A×∆B . As usual, we will firstly show that we have only one Nash Equilibrium
in the interior of ∆A×∆B , and then we will move to the boundary. Please note
that we will freely use the letters i, j, k to denote indices, these have to be
understood as all different elements of Z/3Z.

Let us consider the indifference lines in ∆A

ZA1,2 = {(Ay)1 = (Ay)2} = {(3− ε)y1 + (3 + ε)y2 = 2}
ZA2,3 = {(Ay)2 = (Ay)3} = {(3− ε)y2 + (3 + ε)y3 = 2}
ZA1,3 = {(Ay)1 = (Ay)3} = {(3 + ε)y1 + (3− ε)y3 = 2}

and in the simplex ∆B

ZB1,2 = {(Bx)1 = (Bx)2} = {(3 + ε)x1 + (3− ε)x2 = 2}
ZB2,3 = {(Bx)2 = (Bx)3} = {(3 + ε)x2 + (3− ε)x3 = 2}
ZB1,3 = {(Ax)1 = (Ax)3} = {(3− ε)x1 + (3 + ε)x3 = 2}.

In Figure 19 we reported all the indifference lines we have just computed,
together with the best response for every convex region. To estimate the best
response in each of these region it is enough to compute the best response at
each corner which accounts to

BRA(ei) = {ei+1}
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Figure 19: Indifference lines and best response in ∆A (left), and in ∆B (right).

and
BRB(ei) = {ei+1}.

Along every indifference line ZAi,j there is a portion along which (Ay)k ≤
(Ay)i = (Ay)j (denoted by a black segment), and a portion along which the
opposite inequality holds (denoted by a light grey segment). The same notation
has been adopted in ∆B . Henceforth, when we will say ”indifference line” will
refer to the black segment of that indifferent line, i.e. we abuse notation and
redefine ZAi,j := ZAi,j ∩ {(Ay)k ≤ (Ay)i = (Ay)j}, and ZBi,j := ZBi,j ∩ {(Bx)k ≤
(Bx)i = (Ay)j}. As you will see in Chapter 4, the indifference lines are dis-
continuity lines for the best response map, hence why we only worried about
computing the best response at each corner.

The indifference lines, in both simplices, meet at the point ( 1
3 ,

1
3 ,

1
3 ). This

means that the point (( 1
3 ,

1
3 ,

1
3 ), ( 1

3 ,
1
3 ,

1
3 )) is an interior Nash Equilibrium for this

system. This clearly is the only internal Nash Equilibrium, since the indifference
lines do not intersect again.

The last thing we are left with is to check for Nash Equilibria along the
boundary of our space. These points can only appear as intersections of indif-
ference lines and a side. Notice that ZAi,j intersects the side 〈ei−1, ej−1〉, and

the best response at the intersection point is given by BRA(ZAi,j∩〈ei−1, ej−1〉) =

〈ei, ej〉. We find an identical picture in ∆B , meaning that BRB(ZBi,j∩〈ei−1, ej−1〉) =
〈ei, ej〉. Therefore

BRA(ZAi,j ∩ 〈ei−1, ej−1〉) = 〈ei, ej〉
BRB(ZBi+1,j+1 ∩ 〈ei, ej〉) = 〈ei+1, ej+1〉

but since the intersection between indifference lines and sides does not happen at
the corners of the simplices (remember ε ∈ (0, 1)), we can conclude we have no
Nash Equilibria on the boundary of the state space. The only Nash Equilibrium
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for this game is given by ÇÇ 1
3
1
3
1
3

å
,

Ç 1
3
1
3
1
3

åå
.

2) We now want to understand the flow described by the replicator dynamics
induced by the matrices A and B. More specifically, we want to study the
direction of the flow along the edges connecting the vertices of the space ∆A ×
∆B , and show that it corresponds to the one represented in Figure 14 in the
Lecture Notes. Firstly, recall that we are considering the system of differential
equations

ẋi = xi((Ay)i − x ·Ay)

ẏj = yj((Bx)j − y ·Bx)

and in order to understand the direction of the flow we want to look at the
following ratios Å

xi
xj

ã′
=
ẋixj − xiẋj

x2
j

=
xi
xj

[(Ay)i − (Ay)j ]Å
yi
yj

ã′
=
ẏiyj − yiẏj

y2
j

=
yi
yj

[(Bx)i − (Bx)j ]

where x will always denote an element from ∆A, and y an element from ∆B ,
and i 6= j. We will now proceed to calculate a few of these ratios. Recall that
we have that R is associated to e1, P to e2, and S to e3. Let us say that we want
to understand the direction of the flow between the points (P, P ) = (e2, e2) and
(P, S) = (e2, e3), then this means that we are interested in the sign of (y2/y3)′

along the constraint x = e2 (notice sign (y2/y3)′ = −sign (y3/y2)′). Hence for
y ∈ 〈e2, e3〉 \ {e2, e3}Å

y2

y3

ã′∣∣∣∣
x=e2

=
y2

y3
((Be2)2 − (Be2)3) = −(1 + ε)

y2

y3
< 0

which translates to the flow moving from (e2, e2) towards (e2, e3) in ∆A ×∆B .
This means that the flow goes from (P, P ) to (P, S).

Similarly we can show that the flow goes from (R,P ) to (P, P ). In order to
see this let us compute for x ∈ 〈e1, e2〉 \ {e1, e2}, and y = e2Å

x1

x2

ã′∣∣∣∣
y=e2

=
x1

x2
[(Ae2)1 − (Ae2)2] = −(1 + ε)

x1

x2
< 0

which confirms that the flow goes from (R,P ) to (P, P ). Similar calculations
give us the direction of the flow along all the edges of the graph in Figure 14.

3) The space ∆A ×∆B is 6 dimensional, and it can be reduced to 4 dimensions
using the definition of simplex, for example by discarding the 3rd component of
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the vectors x ∈ ∆A, and y ∈ ∆B since x3 = 1− x1 − x2, and y3 = 1− y1 − y2.
Even if we reduce ∆A × ∆B to a 4 dimensional object, in order to represent
it on a sheet of paper we need to project it into R2 or R3. One of the ways
to represent ∆A × ∆B in R2 can be seen in Figure 14 in the Lecture Notes.
In order to replicate such a graph we need to find the right projection matrix.
Recall that Rock corresponds to e1, Paper to e2, and Scissors to e3. Henceforth,

we will work under the identification
ÄÄ x1

x2
x3

ä
,
Ä y1
y2
y3

ää
= (x1, x2, x3, y1, y2, y3)T.

The matrix

X =

Å
1 0 0 0 0 0
0 1 0 0 0 0

ã
induces a linear map from R6 to R2. The projection induced by X is too
restrictive since we loose too much information: consider (R,P ) = (1, 0, 0, 0, 1, 0)
and (R,S) = (1, 0, 0, 0, 0, 1), then

X(R,P ) = X(R,S) =

Å
1
0

ã
.

More specifically, X(R, ·) = ( 1
0 ), X(P, ·) = ( 0

1 ), and X(S, ·) = ( 0
0 ), indepen-

dently from the last three entries of the vectors, i.e. independently from the
component coming from ∆B .

In order to obtain a more useful and meaningful projection of ∆A ×∆B we
aim at a matrix similar toX, but under which the nine points (R,R), (R,P ), (R,S),
(P,R), (P, P ), (P, S), (S,R), (S, P ), (S, S) have all distinct images. For example,
consider

X =

Å
3.65 −1.35 1.35 5.35 1.35 1.45
0.40 0.40 4.60 1.90 −0.40 4.40

ã
then this give us exactly what we want

X(R,R) = (9.00, 2.30) X(R,P ) = (5.00, 0.00) X(R,S) = (5.10, 4.80)

X(P,R) = (4.00, 2.30) X(P, P ) = (0.00, 0.00) X(P, S) = (0.10, 4.80)

X(S,R) = (6.70, 6.50) X(S, P ) = (2.70, 4.20) X(S, S) = (2.80, 9.00).

Notice this matrix was computed to generate the diagram in Figure 14 in
the Lecture notes.

4) See the appendix of the lecture notes.
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3 Iterated Prisoner Dilemma (IRP) and the Role
of Reciprocity

3.1 Repeated games with unknown time length

Exercise 3.1:
Recall that the bimatrix for the Prisoner’s Dilemma is given byÅ

(−1,−1) (−3, 0)
(0,−3) (−2,−2)

ã
where (−2,−2) is the payoff if both prisoners defect. As we have seen in the
notes the Nash Equilibrium of this game, given by both parties always defecting,
is rather sub-optimal since it leads to a fairly poor payoff. We will now inves-
tigate how playing different strategies (namely how cooperating) can usually
increase the total payoff if a game is played for a long time (as t→∞).

Figure 20: Probability square
for (p, q)

Now suppose that Player 1 defects with
probability p ∈ [0, 1] and Player 2 with prob-
ability q ∈ [0, 1]. All the computations will be
carried out for Player 1, but given the symmetry
of the game the whole discussion immediately
extends to Player 2. The payoff at round n is
given by

An =(−2)pq + (−1)(1− p)(1− q) + (−3)(1− p)q+
+ (0)p(1− q) = p− 2q − 1.

Therefore the total payoff, as explained in the
notes, is given by

A(ω) =

∞∑
i=1

Aiω
i−1 =

p− 2q − 1

1− ω

where ω ∈ (0, 1) is the chance of play the following turn. The expected payoff
is therefore given by

E(PayoffA) =
A(ω)

1
1−ω

= p− 2q − 1.

For p = 1, and q = 1 we have that E(PayoffA) = −2, which precisely
corresponds to the expected payoff if both Players always defect. In Figure 20
we have the probability unit square I2 = [0, 1]× [0, 1] with p along the x–axis,
and q along the y–axis. The red shaded region represents all the tuples (p, q)
which give an expected payoff to Player 1 greater than −2. The shaded region
accounts for 3/4 of the total area, meaning that if they choose to sometime
cooperate (p < 1) then it is likely that they will get a higher payoff (in the long
run) that playing always defect.
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3.2 The three strategies AllC, AllD, TFT

Exercise 3.2:
Consider the standard donation game. In Section 3.1 we have analysed the
various payoffs corresponding to the strategies always defect (AllD), always
cooperate (allC), tit for tat (TFT). Let us consider a new strategy TFTT: a
player defects only when the other player defects twice. We want to establish a
payoff matrix as Matrix (21) in Section 3.2. As before, ω ∈ (0, 1) represents the
probability of playing a new round. We will assume that for TFT, and TFTT
strategy the player will start by cooperating.

If Player 1 plays TFTT then whenever Player 2 plays AllC, TFT, or TFTT
Player 1’s payoff is given by b−c

1−ω , since both players are constantly cooperating.
The interesting case is whenever Player 2 plays AllD. In this case we have that
Player 1’s payoff is given by

A1 = −c, A2 = −c An = 0, for n ≥ 3

so that A(ω) = −c(1 + ω).
Symmetrically if Player 1 plays AllD against TFTT, then we have that their

payoff is given by

A1 = b, A2 = b, An = 0 for n ≥ 3

so that A(ω) = b(1 + ω).
The payoff matrix is given by

1

1− ω

Ü
b− c −c b− c b− c
b 0 b(1− ω) b 1+ω

1−ω
b− c −c(1− ω) b− c b− c
b− c −c 1+ω

1−ω b− c b− c

ê
where the fourth row represents Player 1 playing TFTT, and the fourth column
represents Player 2 playing TFTT.

3.3 The replicator dynamics associated to a repeated game
with the AllC, AllD, TFT strategies

Exercise 3.3:
We want to calculate the Evolutionary Stable Strategies and Nash Equilibria of
the matrix

A =

Ñ
−c −c bω − c
0 0 0
−c −c(1− ω) bω − c

é
.

We will assume that ω ∈ (0, 1). Notice that the matrix we just wrote has
the same Evolutionary Stable Strategies and Nash Equilibria as Matrix (21) in
Section 3.1.
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There are two cases we have to consider. Firstly assume bω < c. When
calculating the best response to a strategy x ∈ ∆ we have

BR(x) = arg max
y∈∆

y ·Ax = arg max
y∈∆

(bωx3 − c)y1 + (bωx3 − c+ ωcx2)y3.

Thanks to the assumptions bω < c and ω < 1 it follows that

• bωx3 − c < cx3 − c = −c(1− x3) ≤ 0;

• bωx3 − c+ ωcx2 < cx3 − c+ cx2 = −c(1− x1 − x2) ≤ 0

which means that both the coefficients we are trying to minimise are negative,
therefore

BR(x) = {e2} for all x ∈ ∆.

The only Nash Equilibrium in this case is e2, but it actually is a strict Nash
Equilibrium

x ·Ae2 = −cx1 + (ωc− c)x3 < −cx1 ≤ 0 = e2 ·Ae2

where x ∈ ∆ \ {e2}. Therefore, if bω < c and ω < 1 then e2 is a strict Nash
Equilibrium, therefore an ESS and Nash Equilibrium.

Now we will assume bω > c. As we have seen before we have for x ∈ ∆

Ax =

Ñ
bωx3 − c

0
bωx3 − c+ cωx2

é
=

Ñ
(Ax)1

0
(Ax)1 + cωx2

é
.

We can compute the indifference lines

Z1,2 = {x3 =
c

bω
}

Z2,3 = {cx2 + bx3 =
c

ω
}

Z1,3 = {x2 = 0} = 〈e1, e3〉,

which intersect at the point q̃ =
(
bω−c
bω , 0, c

bω

)
, which is automatically a Nash

Equilibrium. Clearly, there are no NE in the interior of ∆.
Let us compute the best response at the various corners of the simplex. We

obtain

BR(e1) = arg max
y∈∆

y ·Ae1

= arg max
y∈∆

−c(y1 + y3) = {e2}

BR(e2) = arg max
y∈∆

y ·Ae2

= arg max
y∈∆

−cy1 − c(1− ω)y3 = {e2} since ω < 1

BR(e3) = arg max
y∈∆

y ·Ae3

= arg max
y∈∆

(bω − c)(y1 + y3) = 〈e1, e3〉 since bω − c > 0
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which tell us that e2, e3 are Nash Equilibria.

Figure 21: Indifference lines and
BR when bω > c > 0.

Similar calculations tell us the best re-
sponse along the indifference lines, which we
have reported in Figure 21. From it we
can read off the remaining Nash Equilib-
ria. If x ∈ Z1,3 = 〈e1, e3〉, and x3 > c

bω ,
then the best response is given by 〈e1, e3〉,
which implies we have a line of NE, be-
tween q̃, and e3 (included). The last can-
didate as a Nash Equilibrium is given by

q =
Ä
0, bω−c

ω(b−c) ,
c(1−ω)
ω(b−c)

ä
, which corresponds

to the intersection between Z2,3 and the side
〈e2, e3〉. Along the indifference line Z2,3 the
Best Response is 〈e2, e3〉 (except at q̃, hence
q is a NE.

The Nash Equilibria of this system, de-
noted NE, are

NE =


Ñ

0
1
0

é
,

Ö
0

bω−c
(b−c)ω
c(1−ω)
(b−c)ω

è ∪Ñ1− p3

0
p3

é
p3∈[ cbω ,1]

,

and in order to simplify notation we will refer to the last family of vectors as Γ,
so that NE = {e1, q} ∪ Γ.

We are left with showing which of these points are ESS. As before, e2 is an
ESS since by Lemma 1.3 in the notes, we need to show that for y close to e2 we
have that y ·Ay < e2 ·Ay = 0. So if we let 0 ≤ δ, τ and 0 < ε, where δ + τ = ε,

and y =
Ä

δ
1−ε
τ

ä
then

y ·Ay =

Ñ
δ

1− ε
τ

é
·

Ñ
bωτ − c

0
bωτ − c+ cω − cωε

é
=

= −cδ − cτ + cωτ +O(ε2)

≤ −cε(1− ω) +O(ε2) < 0 = e2 ·Ay

where the last inequality follows by taking ε small enough. Next, we will show
that any point in Γ\{e3} is not an ESS. Recall that a point x̂ is an Evolutionary
Stable Strategy if for all x ∈ ∆ \ {x̂} one has for ε > 0 small enough that

x ·A(εx+ (1− ε)x̂) < x̂ ·A(εx+ (1− ε)x̂).
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Fix ε > 0, let x̂ =
(

1−p3

0
p3

)
= p where p3 ∈ [ cbω , 1), and let x = e3 then

e3 ·A(εe3 + (1− ε)p) =

Ñ
0
0
1

é
·A

Ñ
(1− ε)(1− p3)

0
ε+ (1− ε)p3

é
= −c+ bω(ε+ (1− ε)p3)

p ·A(εe3 + (1− ε)p) =

Ñ
1− p3

0
p3

é
·A

Ñ
(1− ε)(1− p3)

0
ε+ (1− ε)p3

é
= −c+ bω(ε+ (1− ε)p3).

So it follows that no point in Γ \ {e3} is an ESS. Similarly, we can show that e3

is not an ESS either. Let
( y1

0
1−y1

)
= y ∈ 〈e1, e3〉 \ {e3}, then we have

y ·Ay = y1(bωy1 − c) + (1− y1)(bωy1 − c) = bωy1 − c = e3 ·Ay

which immediately tells us that e3 is not an ESS either.
Finally, we will show that q is not an Evolutionary Stable Strategy. Recall

that by Theorem 1.1 in the lecture notes any ESS is an asymptotically stable
equilibrium for the replicator dynamics. This is not the case for q. Consider a

point
(

0
x2

1−x2

)
= x ∈ 〈e2, e3〉, then we have by the replicator equation

ẋ2 = x2(0− (1− x2)(bω(1− x2)− c+ cωx2))

= x2(1− x2)(ω(b− c)x2 − (c− bω)).

Therefore, ẋ2 is negative over (0, bω−c
(b−c)ω ), and positive over ( bω−c

(b−c)ω , 1) which is

equivalent to saying that q repels points on 〈e1, e3〉. Since q is not asymptotically
stable along 〈e1, e3〉, then it cannot be an ESS.

We can conclude that the only Evolutionary Stable Strategy of this game is
e2.

Since we are still assuming bω > c, we can see in Figure 14 of the Lecture
Notes that the simplex ∆ is partitioned into two invariant subsets. This fig-

ure represents the replicator dynamics for 1
1−ω

Å
b−c −c b−c
b 0 b(1−ω)
b−c −c(1−ω) b−c

ã
, which is

obtained through adding or removing multiples of the vector 1 from A. As we
have seen in Exercise 1.3 part 2., the replicator dynamics of these two matrices
are identical. We will denote the two sets in the partition as

Ξd :=
¶
x ∈ ∆ |x3 <

c(1−ω)
(b−c)ω

©
Ξu :=

¶
x ∈ ∆ |x3 >

c(1−ω)
(b−c)ω

©
.

In order to simplify notation we will denote c(1−ω)
(b−c)ω by x̂3. We will now quickly
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show that the line {x3 = x̂3} is invariant under the replicator dynamics

(Ax)3 − x ·Ax3 = (Ax)1 + cωx2 − (Ax)1(x1 + x3)− cωx2x3

= (Ax)1(1− x1 − x3) + cωx2(1− x3)

= x2((Ax)1 + cω(1− x3))

= x2(bωx3 − c+ cω − cωx3)

= x2(x3(ω(b− c))− c(1− ω))

=
x2

ω(b− c)
(x3 − x̂3).

Since ẋ3 = x3((Ax)3− x ·Ax) = x2x3

ω(b−c) (x3− x̂3) then we see that on {x3 = x̂3}
the derivative ẋ3 is zero, which means that the flow is constrained along the
line. Both Ξd and Ξu are invariant.

In Ξd we have only one Nash Equilibrium e2, which is also an Evolutionary
Stable Strategy. Therefore e2 is an asymptotically stable equilibrium for the
flow starting in Ξd. The point e2 in the simplex corresponds to the strategy
allD, hence the most optimal (and stable) strategy to play in Ξd is to always
defect.

The situation is slightly more delicate in Ξu. Here we have a line of Nash
Equilibria along 〈e1, e3〉 ∩ Ξu, namely Γ. Every point in Γ is an equilibrium for
the replicator dynamics, and attracts point in the interior of ∆, as showed by
the vector field in the left diagram in Figure 15 in the lecture notes. Therefore,
depending on the Initial Value Problem the flow in Ξu can end up reaching a
different point in Γ, meaning that the recommended strategy depends on the
initial conditions one chooses, and it is a mixed strategy (between allC and
TFT). The only time we can get a pure strategy is if one starts in 〈e2, e3〉 ∩Ξu,
then the flow tends to e3, or TFT.

Exercise 3.4:
1) Consider the replicator dynamics defined by the matrix

A =

Ñ
0 −1 δσ
1 0 −κσ
δ −κ 0

é
where δ = ωε, κ = 1− ω + ωkε, σ = bθ−c

c−cθ , and θ = ω(1− (k + 1)ε) are positive
constants. The replicator equations associated with A are

ẋ1 = x1(−x2 + δσx3 − x3(1 + σ)(δx1 − κx2))

ẋ2 = x2(x1 − κσx3 − x3(1 + σ)(δx1 − κx2))

ẋ3 = x3(1− x3(1 + σ))(δx1 − κx2).

Consider the Lyapunov function P (x1, x2, x3) = xA1 x
B
2 x

C
3 (1 − (1 + σ)x3),

where A = κ
θ , B = δ

θ , and C = − 1
θ . We claim that P is constant along the
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orbits of the solution of the previous system of ODEs. In order to prove this we
will show that the (logarithmic) derivative of P is zero. Hence,

Ṗ

P
(x1, x2, x3) = ˙logP =

d

dt
(A log x1 +B log x2 + C log x3 + log(1− (1 + σ)x3))

= A
ẋ1

x1
+B

ẋ2

x2
+ C

ẋ3

x3
− (1 + σ)ẋ3

1− (1 + σ)x3

= − [1 +A+B + C](x3(1 + σ)(δx1 − κx2))+

+ [−Ax2 + δσAx3 +Bx1 − κσBx3 + δCx1 − κCx2]

= 0

where we get zero in the last equality since

1 +A+B + C =1 +
κ

θ
+
δ

θ
− 1

θ

=
1− ω + ωkε+ ωε− 1 + ω − ωkε− ωε

θ
= 0

and

−Ax2 + δσAx3 +Bx1−κσBx3 + δCx1 − κCx2

=− κ

θ
x2 +

δσκ

θ
x3 +

δ

θ
x1 −

κσδ

θ
x3 −

δ

θ
x1 +

κ

θ
x2 = 0.

We can conclude that P is constant along the orbits of the system we wrote
down at the beginning of this solution. Therefore, the level sets of the function
P describe the shape of the flow in ∆.
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4 The Best Response Dynamics

4.1 Rock-Scissor-Paper game and some other examples

Exercise 4.1:
a) Consider the matrix

A =

Ñ
0 6 −4
−3 0 5
−1 3 0

é
and the Lyapunov function V (x) = maxi(Ax)i. As illustrated in Example 4.2 in
the Lecture Notes, the simplex ∆ can be divided into three regions over which
the Best Response is single-valued

Ξ1 = {x ∈ ∆ | BR(x) = {e1}} \ (Z1,2 ∪ Z1,3)

Ξ2 = {x ∈ ∆ | BR(x) = {e2}} \ (Z1,2 ∪ Z2,3)

Ξ3 = {x ∈ ∆ | BR(x) = {e3}} \ (Z1,3 ∪ Z2,3).

Figure 22 in the Lecture Notes reports the level set {x | V (x) = 0} which is
given by the union of three segments (in light blue, in the right simplex of Figure
22). We will now show that those light blue segment are segments of lines in ∆.
The blue segments are given by imposing V (x) = 0 in the three regions Ξ1,Ξ2,
and Ξ3. Indeed, in Ξ1 we have that V |Ξ1

(x) = (Ax)1 = 6x2 − 4x3, hence the
blue segment is given by

L1 = {6x2 − 4x3 = 0} ∩ Ξ1,

where {6x2 − 4x3 = 0} can be see as a plane in R3 intersecting the simplex ∆.
Note that e1 ∈ {6x2 − 4x3 = 0}. Following the same reasoning we get that in
Ξ2 the blue segment is given by

L2 = {−3x1 + 5x3 = 0} ∩ Ξ2;

whereas in Ξ3 it is given by

L3 = {−x1 + 3x2 = 0} ∩ Ξ3.

Once again notice that e2 ∈ {−3x1 + 5x3 = 0}, and e3 ∈ {−x1 + 3x2 = 0}.
We can see L1, L2, and L3 as three lines in ∆ going through e1, e2, and e3

respectively, restricted to the appropriate regions where BR is single-valued.

b) The next step is to show that L1, L2, and L3 are invariant under the flow
in Ξ1,Ξ2, and Ξ3, respectively. In order to see this we will show that the flow
ẋ restricted to Li has the same direction as the line Li. For example in Ξ1 we
have

ẋ|L1
= BR(x)− x|L1

=

Ñ
1
0
0

é
−

Ñ
1− 5

2x2

x2
3
2x2

é
=

Ñ
5
2x2

−x2

− 3
2x2

é
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and the normal vector to the plane {6x2− 4x3 = 0} is given by n̂1 =
(

0
6
−4

)
. By

taking the dot product we see that

ẋ|L1 · n̂1 = −6x2 + 4
3

2
x2 = 0

which means that the flow ẋ along L1 has no normal component to L1, therefore
L1 is invariant under the flow in Ξ1. We can carry out similar calculations in
Ξ2, and Ξ3. Indeed,

ẋ|L2= BR(x)− x|L2=

Ñ
0
1
0

é
−

Ñ
x1

1− 8
5x1

3
5x1

é
=

Ñ
−x1
8
5x1

− 3
5x1

é
and the normal to the plane {−3x1 + 5x3 = 0} is given by

n̂2 =

Ñ
−3
0
5

é
.

As before, the dot product between these two vectors is zero

ẋ|L2
· n̂2 = 3x1 − 5

3

5
x1 = 0.

Finally, in Ξ3 we have

ẋ|L3 = BR(x)− x|L3=

Ñ
0
0
1

é
−

Ñ
3x2

x2

1− 4x2

é
=

Ñ
−3x2

−x2

4x2

é
and the normal to the plane {−x1 + 3x2 = 0} is given by

n̂3 =

Ñ
−1
3
0

é
.

As before, the dot product between these two vectors is zero

ẋ|L3
· n̂3 = 3x2 − 3x2 = 0.

We can conclude that the segment Li in Ξi is invariant under the Best Response
dynamics.

c) We will now turn our attention to the derivative of the function V . Let x ∈ Ξi
then we have that BR(x) = {ei} hence

V̇ (x) = ei ·Aẋ = ei · (BR(x)− x) = ei ·Aei − ei ·Ax = Aii − V (x) = −V (x)

since Aii = 0. Hence V̇ = −V in the regions where the Best Response is
single-valued and constant.
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4)The ODE we have just computed V̇ (x) = −V (x), only holds for x ∈
⋃
i Ξ.

This equation, together with IVP V (x(0)) = V (x0) for x0 ∈ Ξi tells that V (x) =
V (x0)e−t, as long as x ∈

⋃
i Ξi, which seems to suggest that the solution to this

ODE tends to zero exponentially fast. Unfortunately the solutions will have
to cross the indifference, and along such lines the equality V̇ = −V will not
hold. For example, along Z2,3 we have that V̇ (x) = d

dt maxiAxi = e2 · Aẋ =
e2 ·A(BR(x)− x) since (Ax)2 = (Ax3) and they are maximal. We immediately
see that now V̇ is multi-valued, and therefore we cannot have V̇ = −V .

In conclusion V decays to 0 exponentially fast, as long as it does not hit
an indifference line. Unfortunately, V tends to 0 as t tends to infinity, and a
crossing of an indifference line is unavoidable.

4.2 Two player best response dynamics

Exercise 4.2:
We are now interested in the Best Response dynamics for two players. We
consider the matrices

A =

Å
−1 0
0 −1

ã
B =

Å
1 0
0 1

ã
and the system of (possibly multivalued) ODEs

ẋ = BRA(y)− x
ẏ = BRB(x)− y.

In Example 4.3 we proved that this system has a unique NE in the interior of

∆, namely E = (EA, EB) =
((

1
2
1
2

)
,
(

1
2
1
2

))
, and that the Lyapunov function

V (x, y) = BRA(y) · Ay + x · BBRB(x) is such that V (x, y) ≥ V (EA, EB) = 0.
Let us adopt the second convention. By a simple computation we can see that

BRA(y) =


{e2} if y1 > y2

∆ if y1 = y2 = 1
2

{e1} if y1 < y2

BRB(x) =


{e1} if x1 > x2

∆ if x1 = x2 = 1
2

{e2} if x1 < x2

which immediately tells us that E is the only NE in general. Notice that
V (x, y) = 0 if and only if (x, y) is a NE for (A,B). We know that if we supple-
ment the ODE V̇ = −V with the initial condition (x(0), y(0)) = (x0, y0), we get
the solution V (x(t), y(t)) = e−tV (x0, y0). Assuming that our initial condition is
not E, then V (x0, y0) > 0, which means that V (x(t), y(t)) reaches 0 as t→∞.

In Example 4.1, we find ourselves in a similar situation as we just described.
Again, we have that V (x) > V (E) for x ∈ ∆ \ {E}, and that V̇ = −V , hence
V (x(t)) = e−tV (x0). The main difference is that now V (E) = a−b

3 , so if we
assume that a > b then V (E) > 0. This means that if we assume x0 6= E, our

solution starting at x0 reaches E in finite time t = ln
Ä
V (x0)
V (E)

ä
< ∞. If a = b
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(e1, e2) (e1, e1)

(e2, e2) (e2, e1)

x = e2 x = e1

x1

y1

y = e2

y = e1

Figure 22: In the left square we reported the direction of the flow, and the
values of the Best Response map in the regions where it is constant. Notice we
plotted x1 on the horizontal axis, against y1 on the vertical one. In the right
square we plotted the flow converging to the equilibrium ( 1

2 ,
1
2 ).

then the solution converges to E as time tends to infinity. If a < b we have
the appearance of the Shapley triangle to which our solution converges to, as
explained in Example 4.1.

As we have just seen, the flow associated to the Best Response dynamic for
the game described by A and B tends towards to (( 1

2 ,
1
2 ), ( 1

2 ,
1
2 ) as showed in

Figure 22. The velocity of the flow does not go to zero! We will denote the four
regions in the squares in Figure 22 using cardinal directions: starting from the
top right region, and moving anticlockwise we have North-West (NW), South-
West (SW), South-East (SE), and North-East (NE). Consider the NW region
[0, 1

2 ]×[ 1
2 , 1], here the Best Response function is single valued and equals (e2, e2)

which leads to the system

ẋ =

Å
−x1

1− x2

ã
=

Å
−x1

x1

ã
ẏ =

Å
−y1

1− y2

ã
=

Å
−y1

y1

ã
.

Hence the velocity vNW in this quadrant is given by

|vNW|2 = |ẋ|2 + |ẏ|2= 2x2
1 + 2y2

1

which tends to 1 as the flow tends to its equilibrium. This velocity is always
strictly positive in this quadrant.

Similar we obtain the velocities

vSW = 2x2
2 + 2y2

1

vSE = 2x2
2 + 2y2

2

vNE = 2x2
1 + 2y2

2

which are always strictly greater than zero if our flow starts in the interior of
the phases space, and all tend to 1 as the solution tends to its equilibrium.
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4.3 Convergence and non-convergence to Nash Equilib-
rium for Best Response Dynamics

Exercise 4.3:
1) Let A be 3× 3 matrix, let α, β, γ ∈ R, and c > 0. We will show that for any
y ∈ ∆, then BRA′(y) = BRA(y) where

A′ := cA+

Ñ
α β γ
α β γ
α β γ

é
.

This statement can be proved through a direct calculation

BRA′(y) = arg max
x∈∆

x ·A′y = arg max
x∈∆

x ·

Ñ
cA+

Ñ
α β γ
α β γ
α β γ

éé
y

= arg max
x∈∆

x · (cA)y + x ·

Ñ
α β γ
α β γ
α β γ

é
y


= arg max[c(x ·Ay) + (αy1 + βy2 + γy3)(x1 + x2 + x3)]

= c arg max
x∈∆

(x ·Ay) + αy1 + βy2 + γy3

= BRA(y),

as we claimed.

2) Consider the two matrices

A =

Ñ
1 0 β
β 1 0
0 β 1

é
B =

Ñ
−β 1 0
0 −β 1
1 0 −β

é
we will show that we for β = φ =

√
5−1
2 , the reciprocal of the golden ratio,

the matrix B can be rescaled to give a zero-sum game. A quick remark on the
chosen value for β

φ2 =
6− 2

√
5

4
= 1 +

1−
√

5

2
= 1− φ. (9)

Consider the matrix

B̃ = φ

Ñ
B −

Ñ
1 1 1
1 1 1
1 1 1

éé
=

Ñ
−φ(β + 1) 0 −φ
−φ −φ(β + 1) 0
0 −φ −φ(β + 1)

é
which by the first part of this question we know yields the same Best Response
(and therefore Best Response dynamics) as B. Clearly we have

A+ B̃ =

Ñ
1− φ(β + 1) 0 β − φ

β − φ 1− φ(β + 1) 0
0 β − φ 1− φ(β + 1)

é
=

Ñ
0 0 0
0 0 0
0 0 0

é
,
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since β = φ, and 1− φ(1 + β) = 1− φ− φ2 = 0 by Equation 9.

3) This solution is adapted from the lecture notes. Take the Shapley periodic
orbit γ : R → ∆ × ∆ ⊂ R6 of the Best Response dynamics associated to
the two player Rock–Paper–Scissors game corresponding to β = 0. Note that
BRA(ei) = ei and BRB(ei) = ei+1 (note that we using the 2nd notation for
the matrices). Let πA, πB be the projections of ∆A × ∆B ⊂ R6 onto the two
triangles shown in Figure 23. The blue triangles drawn in this figure correspond

 ̀= 0

YA simplex YB simplex

3 3

I
3

ts by
m O

ft
ta be a

•
*

'

£33
00dB .

fo '•

tf
•

to
p

t • t
,

t
,

a

1
°

2 2 42 3
2 II 2

Figure 23: The projection of the Shapley’s periodic orbit γ onto the two sim-
plices ∆A and ∆B . The numbers inside the triangle ∆A denote to corner to
which player B will be heading, and the number inside the triangle ∆B where
player A is heading.

to the projections πA(γ) and πB(γ) of γ. Let T be the period of γ and let
0 = t0 < t1 < · · · < t5 < t6 = T be the times when πA(γ(t)) or πB(γ(t)) are
contained in one of the indifference lines. When πA(γ(t)) lies in an indifference
line at t = t′, then t 7→ πB(γ(t)) changes from moving towards one corner for
t < t′ close to t′ to moving towards another corner for t > t′ close to t′. In
fact, for each t we have that γ(t) intersects at most one of the indifference lines.
The points πA(γ(ti)) and πB(γ(ti)) are indicated in the figure, and note that
the points move anti-clockwise in the triangles and head towards ei in ∆A when
γ(t) is in the region in ∆B marked with i (and vice versa). The curve γ is a
solution of the piece-wise smooth ODE:

γ̇(t) =

Å
ei
ej

ã
− γ(t) for t ∈ (ti, ti+1).

Here ( eiej ) are best response choices. i.e., ei = BRA(πB(γ(t)) and ej = BRB(πA(γ(t)).
The solution of this ODE is

γ(t) = (1− e−t)
Å
ei
ej

ã
+ e−tγ(0) for t ∈ (ti, ti+1). (10)
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So (ti, ti+1) 3 t 7→ γ(t) is a straight line in R6 (which is contained in ∆A×∆B).
Let us take a closer look at what these lines: the best response choices depend
on time in the following way

Å
ei
ej

ã
=



(e2, e2)T if t ∈ (t0, t1)

(e3, e2)T if t ∈ (t1, t2)

(e3, e3)T if t ∈ (t2, t3)

(e1, e3)T if t ∈ (t3, t4)

(e1, e1)T if t ∈ (t4, t5)

(e2, e1)T if t ∈ (t5, t0).

We will now see that all these vectors describe a regular hexagon. First of all
we know that γ is composed of six sides and that the length of the first two
sides is given by

γ(t1)− γ(t0) = λ((e2, e2)− γ(t0))

and
γ(t2)− γ(t1) = λ((e3, e2)− γ(t1)),

where λ is as in the notes. Hence, using the formulas for γ(ti)

||γ(t1)− γ(t0)|| = λ||(e2, e2)− γ(t0)|| = λC||(θ3, θ3 − C, θ, θ4, 1− C, θ2)||

and

||γ(t2)− γ(t1)|| = λ||(e3, e2)− γ(t1)|| = λC||(θ2, θ4, 1− C, θ3, θ3 − C, θ)||

and this implies that

||γ(t1)− γ(t0)|| = ||γ(t2)− γ(t1)||

and therefore by symmetry

||γ(ti+1)− γ(ti)|| = ||γ(t1)− γ(t0)||

for all i.
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5 Fictitious Play: a Learning Model

5.1 Best response and fictitious play

Exercise 5.1:
1) Consider the fictitious play dynamics

ṗ(s) =
1

s
(BRA(q(s))− p(s))

q̇(s) =
1

s
(BRB(p(s))− q(s))

where the quantities p, and q depend on the previously played strategies, as
explained in the lecture notes. This is a non-autonomous systems of ODEs
(notice the factor 1

s in the RHS!), but this can be reduced to an autonomous
system if we substitute s = et. Indeed, if we define p̃(t) = p(et), and q̃(t) = q(et)
then by imposing s = et we get the following system of ODEs

˙̃p(t) = etṗ(et) = et
1

et
(BRA(q(et))− p(et)) = BRA(q̃(t))− p̃(t)

˙̃q(t) = etq̇(et) = et
1

et
(BRB(p(et))− q(et)) = BRB(p̃(t))− q̃(t)

which describes the Best Response dynamics. If we consider the Shapley dynam-
ics of Example 4.5 then we have that the orbits of the fictitious play (p(t), q(t))
are the same as the orbits of the best response (p̃(t), q̃(t)), since we have only
smoothly reparameterised time.

2) For β = 0 we know that the Shapley Best Response dynamics shows the
presence of closed periodic orbits, i.e.

(p̃(t), q̃(t)) = (p̃(t+ T ), q̃(t+ T )) (11)

where T represents the period, or the amount of time needed to complete a full
lap of the periodic orbit. Since the fictitious play can be seen as a reparam-
eterisation of the Best Response dynamics then the system present the same
closed periodic orbit, but its characterisation is slightly different. The speed
along such orbit decreases, which means that it will take us longer, and longer
to complete a full lap of the orbit. Indeed, instead of having a characterisation
like in Equation 11, we have

(p̃(t), q̃(t)) = (p̃(t+ T ), q̃(t+ T ))

⇐⇒ (p(et), q(et)) = (p(et+T ), q(et+T ))

⇐⇒ (p(s), q(s)) = (p(eT s), q(eT s))

which exactly tells us that it will take us exponentially longer to complete a full
lap compared to the precedent lap.
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5.2 The no–regret set

Exercise 5.2:
Try to understand how to the CCE set from Chapter 5 and the CE set from
Chapter 7 are related. Why do we say that CCE ⊆ CE? What probability
distribution would you be more inclined to follow and why?

5.3 Fictitious play converges to the no–regret set CCE

Exercise 5.3:
Open ended question.

5.4 FP orbits often give better payoff than Nash

Exercise 5.4:
1) Consider the two matrices

A = A0 =

Ñ
1 0 0
0 1 0
0 0 1

é
B = B0 =

Ñ
0 1 0
0 0 1
1 0 0

é
giving rise to the Shapley system for the Best Response dynamics. As we have
seen in Exercise 5.1, the periodic orbit (or Shapley triangles) under the BR
dynamics that was analysed in Example 4.5 in the lecture notes corresponds
to a closed orbit γ for the FP dynamics (note that γ is periodic under the
BR dynamics). By the very own definition of closed orbit, if the initial condi-
tion for our FP dynamics is along such an orbit, then the flow is constrained
there. Therefore the limits of the points γ(t) lie in Shapley’s periodic orbit. By
Theorem 5.1, the probability distribution

pij(t) =
1

t

∫ t

0

xi(s)yj(s)ds

converges to the CCE set.
From previous analyses, we know that the point (p̂, q̂) =

((
1
3 ,

1
3 ,

1
3

)
,
(

1
3 ,

1
3 ,

1
3

))
is a Nash Equilibrium for the system. By Lemma 5.1 we know that the every
element in the set of Nash Equilibria corresponds an element in the CCE set.
Therefore, the CCE set for the Shapley system with β = 0 is composed of at
least two elements.

The last thing we are left to check is that, indeed, these two probability
matrices are different. The element in the CCE set given by the NE equilibrium
(p̂, q̂) is simply

P̂ =

Ñ
1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9 .

é
We will now show that some of the entries of the probability matrix P (t) as-
sociated to the Shapley orbit of the FP dynamics have value different from 1

9 .
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We will use the same notation and some of the results in part 3 of Exercise
4.3. Let γ(t) = (p(t), q(t)) be the Shapley periodic orbit, and suppose that to
complete a lap of this periodic orbit takes eT time, i.e. γ(t0) = (p(t0), q(t0)) =
(p(eT t0), q(eT t0)) = γ(eT t0).

One approach to this is to analyse the strategies played in terms of the FP
dynamics. Recall that we the strategies played under the FP dynamics are given
by

x(t) ∈ BRA(q(t))

y(t) ∈ BRB(p(t)

and notice that since we are restricting our attention to a flow over the closed
orbit γ then we have that the Best Response function is piece-wise constant
outside of 6 points on γ (the corners of the hexagon) and it is equal to

Å
x(t)
y(t)

ã
=



(e2, e2)T if t ∈ (t0, t1)

(e3, e2)T if t ∈ (t1, t2)

(e3, e3)T if t ∈ (t2, t3)

(e1, e3)T if t ∈ (t3, t4)

(e1, e1)T if t ∈ (t4, t5)

(e2, e1)T if t ∈ (t5, t0)

.

We are now seeing the orbit γ as a closed periodic orbit of period T . If we now
want to compute the entry p1,3 of the CCE distribution P given by γ we have

p1,2(T ) =
1

T

∫ T

0

x1(t)y2(t) dt = 0

since there exists no time where both the 1st entry of x(t) and the 2nd entry of
y(t) are simultaneously non-zero. This comes from the very specific form of the
Best Response function along the periodic orbit: if x(t) = ei then y(t) can only
be equal to ei or ei−1, and never ei+1 (the indexes are to be take mod 3).

Another approach is to note that from

pij(t) =
1

t

∫ t

0

xi(s)yj(s)ds

it follows that
∑
j pij(t) = 1

t

∫ t
0
xi(s) = p(t) and

∑
i pij(t) = 1

t

∫ t
0
yj(s) = q(t)

where p(t) and q(t) are so that γ(t) = (p(t), q(t)). It follows that the marginals
of the probability matrix P (t) do not converge as t→∞.

2) Suppose that our solution for the FP dynamics associated to the Shapley
system is bound to the periodic orbit we precedently discussed. By Proposition
5.1 we know that

lim
t→∞

ûA(T )−max
p∈∆

p ·Aq(T ) = 0

lim
t→∞

ûB(T )−max
q∈∆

p(T ) ·Bq = 0.
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The orbit (p(s), q(s)) is constrained along the Shapley triangle, and from Exer-
cise 5.1 we know that (p(s), q(s)) = (p(eKs), q(eKs)), for K > 0. This means
that the quantities maxp∈∆ p ·Aq(T ) and maxq∈∆ p(T ) ·Bq just need to be com-
puted over one lap of the flow along the Shapley periodic orbit instead for all
times. Therefore

lim
T→∞

max
p∈∆

p ·Aq(T ) = max
T∈[t0,eKt0]

max
p∈∆

p ·Aq(T ) = cA

lim
T→∞

max
q∈∆

p(T ) ·Bq = max
T∈[t0,eKt0]

max
q∈∆

p(T ) ·Bq = cB

by compactness. We can conclude that the average payoffs for FP dynamics
flows along the Shapley periodic orbit converge

lim
t→∞

ûA = cA lim
t→∞

ûB = cB .

5.5 Discrete fictitious dynamics

Exercise 5.5:
Try to adapt the algorithms in Appendix B for the discrete FP dynamics of the
Shapley system.
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6 Reinforcement Learning

6.1 Set-up of reinforcement learning

Exercise 6.1:
1) As explained in the exercise let a doctor be prescribing either a Placebo or
a Medicine to patients of type I or II. Suppose that the matrix describing this
scenario is given by

I II
M
P

Å
10 0
5 5

ã
.

Let q be the probability of a patient being of type I and 1 − q of type II.
Then assuming that the doctor prescribes M with probability p and P with
probability 1− p the payoff isÅ

p
1− p

ã
·
Å

10 0
5 5

ãÅ
q

1− q

ã
=

Å
p

1− p

ã
·
Å

10q
5

ã
So if q < 1/2 then taking p = 0 (i.e. prescribing a placebo) gives the best payoff
whereas if q > 1/2 then taking p = 1 (i.e. prescribing the medicine) gives the
best payoff.

2) The Python code and graphs indicating what outcomes to expect when
the doctor uses the Erev-Roth model to determine which medication to prescribe
can be found in the appendix of the lecture notes.

6.2 The Arthur model in the 2× 2 setting

Exercise 6.2:
1) Let us start with the coordination game first. We wish to show that the set of
singularities S = {(0, 0), (0, 1), (1, 0), (1, 1), (θ1, θ2)} ⊂ [0, 1]× [0, 1] is internally
chain recurrent. The dynamics in this case is given by the system of replicator
equations

ẋ = x(1− x)[α1 − y(α1 + α2)]

ẏ = y(1− y)[β1 − x(β1 + β2)]

and the point θ = (θ1, θ2) =
Ä

β1

β1+β2
, α1

α1+α2

ä
is an internal Nash Equilibrium.

Let us denote by φt = (x(t), y(t)) the flow for this system. Notice that for any
point s ∈ S we have that ẋ|s= ẏ|s= 0. This means that the set S is composed
of fixed points, i.e. φt(s) = s for all t ≥ 0. Notice this makes S automatically
invariant.

We will now show that if s is a fixed point, then s is chain recurrent. This
means that for all δ, T > 0 there exists a (δ, T )-pseudo orbit of φt connecting s
to itself. Fix δ, T > 0 then let x0 = s and t0 = T + 1 then we simply have that
φt0(x0) = φT+1(s) = s, hence

t0 > T and d(φt0(x0), x0) = 0 < δ,
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as we wanted. Thus, every point in S is chain recurrent, making S internally
chain recurrent.

Let us now move to the second case. We will now generalise what we have
just showed. In the classification of 2 × 2 games this second system we are
considering is a zero sum case with an internal Nash Equilibrium. In this case
we are asked to show that the entire phase space M = [0, 1]× [0, 1] is internally
chain recurrent. The main observation that has to be made here is that the phase
space is foliated by periodic orbits of φt: for any x ∈M there exists a time t(x),
called period, such that φt(x)(x) = x. We will denote the periodic orbit passing
through x as γx = φ[0,t(x)](x). If x ∈ ∂([0, 1]× [0, 1]) then γx = ∂([0, 1]× [0, 1]).
Notice that the existence of these periodic orbits is given by the last part of
section 3 of Exercise 2.4.

We will now show that any point belonging to a periodic orbit is chain
recurrent. Let x ∈ M , and fix δ, T > 0. We will now define x0 = x and if
t(x) < T then we will let t0 = T + (t(x) − k) where k = T mod t(x) (clearly
k, T, t(x) ∈ R≥0), otherwise t0 = 2t(x): in both cases t0 > T , and t(x) divides
t0. Therefore we have that

t0 ≥ T and d(φt0(x0, x0) = d(φlt(x)(x), x) = d(x, x) = 0 < δ

where l = T
t(x) ∈ Z. We can conclude that every point in M is chain recurrent,

and therefore M is internally chain recurrent.

2) Recall the assumption of Proposition 6.1: aij , bi1j>C>0 for all i, j. First of
all we want to show that there exists α, α′ > 1 such that

1− α

t
< 1− a1j

Ct+ a1j
< 1− α′

t

for t big enough. We can rewrite the two inequalities as

α′

t
<

a1j

Ct+ a1j
<
α

t
.

We will prove them in order, left to right.
By assumption we know that aij > C for all i, j, hence define ε := mini,j aij−

C > 0. For any δ ∈ (0, ε) notice the following

a1j

C + δ
>

a1j

C + ε
=

a1j

mini,j ai,j
≥ 1,

for any j. Now fix a positive δ smaller than ε, then there exists a time t0 such
that

maxi,j aij
t ≤ δ for all t ≥ t0. Therefore

a1j

Ct+ a1j
=

Å
a1j

C + a1j/t

ã
1

t
≥
Å

a1j

C + maxi,j ai,j/t

ã
1

t
≥
Å

a1j

C + δ

ã
1

t
≥
Å

mini,j aij
C + δ

ã
1

t
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for t ≥ t0, and if we define α′ :=
mini,j ai,j
C+δ > 1 we can conclude that

a1j

Ct+ a1j
≥ α′

t
.

Notice that we could tweak the denominator in the definition of α′ in order to
get a sharp inequality above.

For the second inequality it is enough to remember that a1j > 0, and that
aij
C > 1 for all i, j. Indeed if we let α =

maxi,j aij
C > 1 we obtain

a1j

Ct+ a1j
<
a1j

Ct
≤
(maxi,j aij

C

) 1

t
=
α

t
.

We can therefore conclude that for t ≥ t0

1− α

t
< 1− a1j

Ct+ a1j
<
α′

t
,

as we wanted. Recall that we define the sequence (dt)t as dt+1 =
Ä

a1j

Ct+a1j

ä
dt,

we will now mimic this construction. Define the sequence (d̃t)t as

d̃1 := d1

d̃t+1 :=

Å
1− α′

t

ã
d̃t for all t.

Clearly
dt+1

dt
= 1− a1j

Ct+ a1j
< 1− α′

t
=
d̃t+1

d̃t
(12)

for all t ≥ t0. Similarly we can compare the two sequences: if dt0 ≤ d̃t0 then we
automatically have that dt ≤ d̃t for all t ≥ t0, if, on the other hand, dt0 > d̃t0

then there exists a time τ ≥ t0 for which dt ≤ d̃t for all t ≥ τ thanks to
Inequality 12. Therefore, if we can show that the series

∑∞
t=1 d̃

t converges, then
this will give us control over the two series tails

∑∞
t=t0

dt and
∑∞
t=τ d

t which

will tell us that
∑∞
t=1 d

t converges.
In order to show that

∑∞
t=1 d

t converges we will use the Raabe test. In order
for such test to work we need to check its two conditions.

1. limt→∞

∣∣∣ d̃t

d̃t+1

∣∣∣ = limt→∞
1

1−α′t
= 1, as we need;

2. limt→∞ t
(∣∣∣ d̃t

d̃t+1

∣∣∣) = limt→∞
α′t
t−α′ = α′ > 1;

since the second limit tends to a finite value bigger than 1 we can conclude that
by the Raabe test the series

∑∞
t=1 d̃

t converges. Therefore, the series
∑∞
t=1 d

t

converges, and this concludes our proof.
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6.3 The Erev-Roth model

Exercise 6.3:
1) Consider the system of differential equations

ṗi =
pi
a(t)

[(Aq)i − p ·Aq]

q̇j =
qj
b(t)

[(Bq)j − q ·Bp]

ȧ = −a+ p ·Aq
ḃ = −b+ q ·Bp

and we wish to study the singularities of it. Assume that p and q are n dimen-
sional probability vectors. Firstly notice that in order to have a singularity we
need

a = p ·Aq
b = q ·Bp

where a, b are constant (since ȧ = ḃ = 0 for all times). In order to avoid
complicated behaviours which will requite a much more in depth analysis we
will assume that a and b are nonzero. The other 2n ODEs are always zero
whenever

ṗi = 0⇐⇒
®
pi = 0

(Ap)i = p ·Aq if pi 6= 0

q̇j = 0⇐⇒
®
qj = 0

(Aq)j = q ·Bp if qj 6= 0

for all i, j = 1, 2, . . . , n. Since p and q are probability vectors, there exists at
least one entry pi and one entry qj which are nonzero, meaning that at least for
those indexes (Ap)i = p ·Aq = a and (Bq)j = q ·Bp = b.

To conclude the singularities of the aforementioned system of ODEs are given
by the simultaneous system of equations

(Ap)i = p ·Aq
(Bq)j = q ·Bp

a = p ·Aq
b = q ·Bp.

for all i such that pi 6= 0 and for all j such that qj 6= 0. Unfortunately we are not
able to produce anything more insightful about the location of the singularities
for such a general system.

2) As we have seen before, approaching this problem from a purely theoretical
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point of view will not take us far. A computational approach to this type of
problems is usually preferred. Try to play around with different matrices and
see how different singularities can arise in different places. If you use 3 × 3
matrices you can use the visualisation code you developed in Exercise 2.5 to
understand where the singularities lie in the phase space ∆.

6.6 Q-Learning with softmax

Exercise 6.4:
For some more background on how these picture have been obtained we wish to
redirect you to the paper Frequency Adjusted Multi-agent Q-learning by Michael
Kaisers and Karl Tuyls (In Proc. of 9th Intl. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2010), pp.309–315).
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7 No Regret Learning

7.1 The correlated equilibrium (CE) set

Exercise 7.1:
1) Let (p, q) be a Nash Equilibrium for a game determined by the matrices
(A,B). If we define our probability distribution matrix S = (sij) = piqj , then
in order to check if this is a Correlated Equilibrium it is just a matter of working
through the definition of CE, that we will now rewrite in vector form. In order
to check if S is a CE we would need to show∑

k

ai′ksik =
∑
k

ai′kpiqk = pi(Aq)i′ ≤ pi(Aq)i =
∑
k

aikpiqk =
∑
k

aiksik∑
k

bkj′skj =
∑
k

bkj′pkqj = qj(p
TB)j′ ≤ qj(pTB)j =

∑
k

bkjpkqj =
∑
k

bkjskj

From the remark in the solution of Exercise 2.1.2 we know that for a Nash
Equilibrium (p, q) and constants c, c′ ∈ R we have (Aq)i = c for all i such that
pi 6= 0, and symmetrically (pTB)j = c′ for all j for which qj 6= 0. Notice that
p · (Aq) = c and that q · (pTB) = c′ since p, q are probability vectors, and by the
aforementioned property.

Now if pi = 0 then we trivially have pi(Aq)i′ = 0 = pi(Aq)i, and similarly
for qj = 0. Hence assume that pi, qj 6= 0. Then

pi(Aq)i′ = pi(ei′ ·Aq) ≤ pi(p ·Aq) = pic = pi(Aq)i

by the definition of (p, q) being a Nash Equilibrium. Similarly

qj(p
TB)j′ = qj(B

Tp · ej′) = qj(p ·Bej′) ≤ qj(p ·Bq) = qjc
′ = qj(p

TB)j

as we claimed, where the inequality follows again by (p, q) is a Nash Equilibrium.

2) Consider the battle of the sexes game (coordination game) with bimatrixÅ
(2, 1) (0, 0)
(0, 0) (1, 2)

ã
.

Recall that in Exercise 2.4 we analysed all the possible phase diagrams for 2×2
replicator games. Using the same notation as in Exercise 2.4 we know that

α1 = −1 α2 = −2 β1 = −2 β2 = −1

which does confirm that we are considering a coordination game since α1α2 > 0,
β1β2 > 0, and α1β1 > 0. The Mixed Nash Equilibrium is represented on I2 =

[0, 1]× [0, 1] by θ =
Ä

β1

β1+β2
, α1

α1+α2

ä
=
(

2
3 ,

1
3

)
, hence in the phase space ∆A×∆B

it corresponds to (pA, pB) =
((

2
3 ,

1
3

)
,
(

1
3 ,

2
3

))
. The same question immediately

tells us that the other two (Pure) Nash Equilibria are given by ((0, 1), (0, 1)) =
(F, F ), which corresponds to payoff (1, 2), and by ((1, 0), (1, 0)) = (T, T ) which
corresponds to the payoff (2, 1).
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Let us break down the precedent bimatrix into two matrices

A =

Å
2 0
0 1

ã
B =

Å
1 0
0 2

ã
,

and let P be a joint distribution. Therefore, we have

2p21 = a11p21 + a12p22 =
∑
k

a1kp2k ≤
∑
k

a2kp2k = a21p21 + a22p22 = p22

p12 = a21p11 + a22p12 =
∑
k

a2kp1k ≤
∑
k

a1kp1k = a11p11 + a12p12 = 2p11

2p21 = b12p11 + b22p21 =
∑
k

bk2pk1 ≤
∑
k

bk1pk1 = b11p11 + b21p21 = p11

p12 = b11p12 + b21p22 =
∑
k

bk1pk2 ≤
∑
k

bk2pk2 = b12p12 + b22p22 = 2p22.

Since 2p21 ≤ p22 and 2p21 ≤ p11 if follows that p21 ≤ 1
2 min(p11, p22), and

similarly since p12 ≤ 2p11 and p12 ≤ 2p22, it follows that p12 ≤ 2 min(p11, p22).
Suppose that the joint distribution P is induced by one of the Nash Equilib-

ria, then we want to numerically show that P is a Correlated Equilibrium. For
example if we consider (pA, pB) then we have p11 = pA1 p

B
1 = 2

9 , p12 = pA1 p
B
2 =

4
9 , p21 = pA2 p

B
1 = 1

9 , p22 = pA2 p
B
2 = 2

9 . Clearly all the inequalities are respected

1

9
= p21 ≤

1

2
min(p11, p22) =

1

2

2

9
=

1

9
4

9
= p12 ≤ 2 min(p11, p22) = 2

2

9
=

4

9

hence the distribution induced by (pA, pB) is a CE.
If we now consider the Nash Equilibrium (T, T ) = ((1, 0), (1, 0)), we have

p11 = 1, p12 = 0, p21 = 0, p22 = 0

which means that since min(p11, p22) = p22 = 0, and 0 = p12 = p21 ≤
1
2 min(p11, p22) = 0 the probability distribution P induced by this Nash Equi-
librium is a CE.

Finally, the last Nash Equilibrium we are left to check is (F, F ) = ((0, 1), (0, 1))
which gives us the following entries for P

p11 = 0, p12 = 0, p21 = 0, p22 = 1.

Following the same argument as for (T, T ) we have that the probability distri-
bution induced by (F, F ) is a CE, as we expected.

Therefore all the three probability distributions corresponding to the Nash
Equilibria for this game are in the CE set. If we denote by P1 = ( 1 0

0 0 ) the
distribution induced by the NE (T, T ) and by P2( 0 0

0 1 ) the one induced by the
NE (F, F ) then we can see that for any σ ∈ [0, 1] the matrix

P̃ = σP1 + (1− σ)P2 =

Å
σ 0
0 1− σ

ã
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is in the CE set, by simply checking the inequalities we have derived before.

We can conclude that the CE set is infinite. Clearly if σ = 1
2 then

(
1
2 0

0 1
2

)
an

element of the CE set.
Consider the joint probability distribution described by P̃ =

(
1
2 0

0 1
2

)
. The

expected payoff for the first player is given by summing up all the possible
payoffs multiplied by the probability that such payoffs are achieved. Therefore

E(PayoffA|P̃ ) = 2
1

2
+ 0 + 0 + 1

1

2
=

3

2

since ((1, 0), (1, 0)) is played with probability 1
2 and it has payoff 2, whereas

((0, 1), (0, 1)) is played with probability 1
2 with payoff 1. A similar computa-

tion gives us that E(PayoffB |P̃ ) = 11
2 + 2 1

2 = 3
2 . The expected payoff for the

distribution P̃ is ( 3
2 ,

3
2 ).

The expected payoff for the Mixed Nash Equilibrium θ which induces a

probability distribution Pθ =
(

2
9

4
9

1
9

2
9

)
is given by

E(PayoffA|Pθ) = 2
2

9
+ 0

4

9
+ 0

1

9
+ 1

2

9
=

2

3

E(PayoffB |Pθ) = 1
2

9
+ 0

4

9
+ 0

1

9
+ 2

2

9
=

2

3

so this Nash Equilibrium is outperformed by P̃ .
Since a12 = a21 = b12 = b21 = 0, in order to maximise the expected payoff

we need to look at probability distributions with shape Q =
(
σ 0
0 1−σ

)
where σ ∈

[0, 1]. If σ = 1 then E(PayoffA|Q) = E(PayoffA|P1) is maximised (and the total
expected payoff is (2, 1)), whereas for σ = 0 then E(PayoffB |Q) = E(PayoffB |P2)
is maximised (and the expected payoff is (1, 2)). In general, the expected payoff
is given by (2σ+(1−σ), σ+2(1−σ)) = (σ+1, 2−σ), which means that every σ
gives a Pareto optimal expected payoff: any improvement to one of the player’s
payoff will negatively affect the other player payoff.

Next we want to show that playing the mixed Nash Equilibrium truly leads
to the worst payoff. Consider a probability matrix of the form

P̂ =

Å
2
9 + ε1

4
9 + ε2

1
9 + ε3

2
9 + ε4

ã
where

∑
i εi = 0 and

−4

9
≤ ε2 ≤ 2 min(ε1, ε4)

−1

9
≤ ε3 ≤

1

2
min(ε1, ε4)

since we want P̂ to be a CE. Notice that ε1 and ε4 cannot be both negative,
or that would imply that ε2 and ε3 are negative as well, contradicting the
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assumption that
∑
i εi = 0. If we turn our attention to the expected payoffs

given P̂ we will see that these amount to

E(PayoffA|P̂ ) =
2

3
+ 2ε1 + ε4

E(PayoffA|P̂ ) =
2

3
+ ε1 + 2ε4.

If both ε1, ε4 are positive then the expected payoff given P̂ is higher than the one
expected given Pθ. If we instead assume that ε1 is positive, and ε4 is negative
then ε1 = −ε2 − ε2 − ε3 > 0 and

E(PayoffA|P̂ ) =
2

3
+ 2ε1 + ε4 =

2

3
− 2ε1 − 2ε2 − ε4 >

2

3

E(PayoffA|P̂ ) =
2

3
+ ε1 + 2ε4 =

2

3
− ε1 − ε2 + ε4 >

2

3
− 2ε4 −

1

2
ε4 + ε4 >

2

3
,

which confirms that this would give a better payoff than playing according to Pθ.
Notice that assuming ε1 negative, and ε4 positive leads to the same result given
the symmetry in the coefficients of ε1 and ε4 in the functions E(PayoffA|P̂ ), and
E(PayoffA|P̂ . We can conclude that playing according to Pθ is always leading
to the worse payoff.

Given the Pareto optimality for P̃ and the payoffs for P̂ , we can conclude
that whenever the intermediator recommends playing according to a distribution
P in the CE set for which p12 and p21 are not simultaneously zero, then the
payoffs are not maximised. Indeed, if the intermediator recommends strategies
such as (T, F ) or (F, T ) then no players will see any benefit in terms of payoff
to such strategy. On the other hand, if they recommend to play according to
matrices like P̃ then is clear that the intermediator in this game will always
favour one particular player over the other (unless σ = 1

2 then both players will
be treated in the same way and get the same payoff).

3) Consider the game of chicken described by a bimatrixÅ
(6, 6) (2, 7)
(7, 2) (0, 0)

ã
which can be decomposed into

A =

Å
6 2
7 0

ã
B =

Å
6 7
2 0

ã
.

As we did for the previous exercise, we can determine the phase portrait
of this two players 2 × 2 game by looking at the coefficients α, β as defined in
Exercise 2.4. If we adopt the second convention, we have

α1 = 2, α2 = 1, β1 = 2, β2 = 1

which translates to α1α2 > 0, β1β2 > 0, and α1β1 > 0. Therefore, the game
of chicken is a coordination game. We have three Nash Equilibria: two pure,
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and one mixed. The mixed Nash Equilibria is given by θ =
((

2
3 ,

1
3

)
,
(

2
3 ,

1
3

))
,

whereas the two Pure Nash Equilibria (D,C) = ((0, 1) , (1, 0)), and (C,D) =
((1, 0) , (0, 1)).

As before we want to show some CE inequalities. These are obtain through
the following computations

6p21 + 2p22 =
∑
k

a1kp2k ≤
∑
k

a2kp2k = 7p21

7p11 =
∑
k

a2kp1k ≤
∑
k

a1kp1k = 6p11 + 2p12

6p12 + 2p22 =
∑

bk1pk2 ≤
∑
k

bk2pk2 = 7p12

7p11 =
∑
k

bk2pk1 ≤
∑
k

bk1pk1 = 6p11 + 2p21.

These inequalities can be rewritten as

p22 ≤
1

2
min(p12, p21) p11 ≤ 2 min(p12, p21).

If we consider the probability distribution P =
(

1
3

1
3

1
3 0

)
then we immediately

see that

0 = p22 <
1

2
min(p12, p21) =

1

6
1

3
= p11 < 2 min(p12, p21) =

2

3

so P is in the Correlated Equilibrium set. The expected payoff when playing

P =
(

1
3

1
3

1
3 0

)
is given by

E(PayoffA|P ) =
1

3
6 +

1

3
2 +

1

3
7 = 5

E(PayoffB |P ) =
1

3
7 +

1

3
2 +

1

3
6 = 5.

On the other hand, the probability distribution induced by the Nash Equi-
librium (D,C) = ((0, 1), (1, 0)) is given by P1 = ( 0 0

1 0 ) with payoff (7, 2), and
similarly the probability distribution induced by the Nash Equilibrium (C,D) =
((1, 0), (0, 1)) is given by P2 = ( 0 1

0 0 ) with payoff (2, 7). The Mixed Nash Equi-

librium θ =
((

2
3 ,

1
3

)
,
(

2
3 ,

1
3

))
induces a probability distribution Pθ =

(
4
9

2
9

2
9

1
9

)
with payoff

(
14
3 ,

14
3

)
. Playing according to P allows for a higher payoff for both

players than playing Pθ, and this Correlated Equilibrium does not advantage a
player over the other.

Indeed, when playing P the trusted intermediator is recommending both
players to play strategies that generate positive payoff with equal probabilities.
The intermediator is not siding with any player (the expected payoff is the same
for both parties) and they are only strongly discouraging the two players to play
(D,D) given its (0, 0) payoff.
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7.2 Hart and Mas-Colell’s regret matching

Exercise 7.2:
Consider the battle of the sexes game with bimatrixÅ

(2, 1) (0, 0)
(0, 0) (1, 2)

ã
where the first action corresponds to watching Football, and the second one to
watching Tennis. Figure 15 in the notes represents the behaviour of the four
functions DIFFtA(F, T ),DIFFtA(T, F ),REGRETtA(F, T ), and REGRETtA(T, F )
With f t reported along the x-axis, and the values of the functions along the y-
axis . All these functions intersect at f t = 2

3 (and they are all zero at that point).

Recall that f t = f tB(T ), so we have that
(
ftB(F )

ftB(T )

)
=
(

1
3
2
3

)
. This corresponds to

the second component of the the interior Nash Equilibrium of this game, namely((
2
3 ,

1
3

)
,
(

1
3 ,

2
3

))
. Whenever Player 2 chooses to play a mixed strategy where

the proportion of times they play T or F is determined by the internal Nash
Equilibrium of B, then player 1 has no preferred way of replying to the strategies
of player 2, since REGRETtA(F, T ) = 0, and REGRET(T, F )tA(T, F ) = 0. This
is in accordance with the idea that the Nash Equilibrium is somewhat optimal
for player 2.

We now want to show that for t ≥ 1 we have |f t+1 − f t| < 1
t . By definition

we see that

f t+1 =
1

t+ 1
#{1 ≤ i ≤ t+ 1 | yi = T}

≤ 1

t+ 1
(#{1 ≤ i ≤ t | yi = T}+ 1) =

t

t+ 1
f t +

1

t+ 1

and similarly

f t+1 =
1

t+ 1
#{1 ≤ i ≤ t+ 1 | yi = T}

≥ 1

t+ 1
#{1 ≤ i ≤ t | yi = T} =

t

t+ 1
f t

therefore

f t+1 − f t ≤ t

t+ 1
f t +

1

t+ 1
− f t =

1

t+ 1
− 1

t+ 1
f t ≤ 1

t+ 1

and

f t+1 − f t ≥ t

t+ 1
f t − f t = − f t

t+ 1
≥ − 1

t+ 1

since f t ∈ [0, 1]. We can rewrite the last inequalities more compactly as∣∣f t+1 − f t
∣∣ ≤ 1

t+ 1
<

1

t
.
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Notice this condition is too weak: it does not allow us to say that the se-
quence of frequencies (f t)t tend to any limit. Indeed, it can happen that the
frequency arbitrarily oscillates between 0 and 1. This has an impact on no-regret
algorithm. Such algorithm is based on looking at the probabilities pt+1

j and pt+1
j∗

in order to make a decide on what is the best move to play, and in our case we
can see that these probabilities depend on the frequencies f t (REGRET depends
on f t). Since (f t)t does not need to converge, neither do the sequences (ptj)t and
(ptj∗)t. This means that we do not have to reach a point in our game where play-
ing one specific strategy will be the answer to minimising regret. This situation
might appear seem quite bleak, but there is an upside to this whole situation.

Figure 24: Player A regret when
Player B chooses strategy T at
prime times (11 time steps).

By Hart and Mas-Colell Theorem (The-
orem 7.1 in the Lecture Notes) we know
that if a player follows the no-regret al-
gorithm, then they will (almost surely)
asymptotically get zero regret for their
moves, this means that even if the proba-
bilities pt+1

j and pt+1
j∗ can vary depending

on the how the second player decides to
play, if one sticks to what they recom-
mend, then it is (almost) always possible
to get very little regret on the long run.
One can think of this algorithm as dy-
namically adapting itself with respect to
the second player choice of strategies.

Let us take a look at a more numerical
examples, hoping that it will make the
whole discussion clearer. Suppose that
player B plays strategy T at prime times

then the first few rounds of this game will look something like

Time t 1 2 3 4 5 6 7 8 9 10 11 . . .
StrategyB F T T F T F T F F F T . . .
Frequency f t 0 1

2
2
3

1
2

3
5

1
2

4
7

1
2

4
9

2
5

5
11 . . .

Recom. strategyA F F T/F F F F F F F F F . . .

Table 4: No-Regret algorithm for when player B plays T at prime times.

What is happening in this case is that player B always plays F , and occasionally
they play strategy T , at random (since it is not possible to predict when the
next prime number will appear, for time large enough). The no-regret algorithm
does not get thrown off from this sporadic appearance of strategy T from player
B, but instead it immediately updates the probabilities pt+1

j∗ and pt+1
j so that

player A can minimise regret after what could be considered an unexpected
action.

We have just analysed what happens when player B mostly sticks to one
strategy, and plays the other one at random times. We can similarly look at
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the case where player B sticks for a long time to playing one strategy, and at
some random time switches to the other strategy, and keeps playing it for an
even longer amount of time. One way to model this is to consider an increasing
sequence of real numbers (ni)i tending to infinity such that ni+1 ≥ n2

i , and then
letting player B play strategy F (resp. T ) when i is even (resp. odd) for times
eni , . . . , eni+1−1. Notice that

lim
n→∞

eni+1 − eni
eni

= lim
n→∞

eni+1−ni − 1 ≥ lim
n→∞

en
2
i−ni − 1 = +∞

which roughly tells us that the amount of times B will play a different strategy
from before is quite considerable (strategies are not sporadically play as before).
The same argument as before holds even in this case: the no-regret algorithm
adapts so that the regret is going to tend to zero almost surely.

As a final remark, please notice that the Hart and Mas-Colell algorithm does
not take into account the payoff for the second player, it is only interested in the
payoff of the player following the algorithm. As explained before, following this
algorithm will almost surely minimise the regret connected your to choices, this
algorithm does not try to minimise the payoff of your opponent, or to maximise
their regret.

7.3 Min-max solutions and zero-sum games

Exercise 7.2:
1) Consider the zero-sum game described by the bimatrix

G =

Å
(4,−4) (−2, 2)
(−5, 5) (6,−6)

ã
.

and in order to simplify notation, we will denote the first strategy by T and
the second one by F . The expected payoffs for Alice (player 1) against Bob
(player 2) whenever she plays a random strategy with probability (p, 1 − p) is

Figure 25: Expected Payoff for Alice playing against Bob 1st strategy (in red)
and and 2nd strategy (in blue).
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given by E(PayoffA | Bob plays strategy 1) = E(PayoffA | (·, T )) = 9p − 5 and
E(PayoffA | Bob plays strategy 2) = E(PayoffA | (·, F )) = 6 − 8p. These two
functions are represented in Figure 25, and we have that they meet at the point
p = 11

17 , where Alice would expect a payoff of 14
17 against Bob. This payoff is

independent from Bob’s choice of strategy. We can repeat the same analysis for
Bob. Suppose that Bob plays strategy 1 with probability q, and strategy 2 with
probability 1 − q then their expected payoffs are given by E(PayoffB |(T, ·)) =
−4q+2(1−q) = 2−6q if Alice plays T , and E(PayoffB |(F, ·)) = 5q+−6(1−q) =
11q − 6 if Alice plays F . The two expected payoffs are given by two lines
meeting at q = 8

17 . As before, if q = 8
17 , then Bob can expect a payoff of − 14

17 ,
independently from Alice’s strategy.

2) Consider the zero-sum game associated to the matrix

A =

Ñ
4 1 −4
3 2 5
0 1 7

é
where we assume the second convention. As explained in the text of the exercise,
the entry a22 = 2 is a saddle-point of the game since it is the biggest entry in
its column, and the smallest in its row. This property implies that the pure
strategy (e2, e2) is a Nash Equilibrium.

Recall that in the Lecture Notes you studied that a point (x̂, ŷ) is a Nash
Equilibrium for a zero sum game defined by a matrix A if

min
y
x̂ ·Ay = v = max

x
x ·Aŷ.

Given a saddle point aij then the product ei · Ay is equal to (eT
i A)y and eT

i A
corresponds to the ith row of A, and similarly if we look at the product x ·Aej
then Aej corresponds to the jth column of A. Since we have assumed that aij
is the smallest element in its row, then miny e

T
i Ay = aij , and given that we

assumed that it was also the biggest entry in its column then maxx x ·Ay = aij ,
which by the result we recalled from the lecture notes exactly means that (ei, ej)
is a Nash Equilibrium.

Let us look at a more concrete example. For the matrix A reported above
we have

min
y
e2 ·Ay = min

y

(
3, 2, 5

)Ñy1

y2

y3

é
= 2

max
x

x ·Ae2 = max
x

Ñ
x1

x2

x3

é
·

Ñ
1
2
1

é
= 2

which confirms that (e2, e2) is a Nash Equilibrium for the zero-sum two player
games given by the matrices (A,−A).
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7.4 Another way of thinking of the min-max theorem

Exercise 7.4:
1) We wish to prove the following proposition.

Proposition 7.1. Given a function A : ∆×∆→ R then minp maxq A(p, q) =
maxq minpA(p, q) if and only if for any v in the image of A

i) ∃p, ∀q such that A(p, q) ≤ v

ii) ∀q, ∃p such that A(p, q) ≤ v.

We will prove the two directions of the ”if and only if” implication.

⇐=) In order to reach a contradiction, suppose that the min-max equality
minp maxq A(p, q) = maxq minpA(p, q) does not hold, whilst i) and ii) are equiv-
alent (either both true or both false). Notice that

min
p(q)

A(p, q) ≤ A(p, q) ≤ max
q(p)

A(p, q)

where the LHS is independent of p (and the RHS is independent of q). By
minimising p throughout the inequality we get

min
p(q)

A(p, q) ≤ min
p

max
q(p)

A(p, q)

and if we now maximise q we have

max
q

min
p(q)

A(p, q) ≤ min
p

max
q(p)

A(p, q).

Since we have assumed that the min-max equality does not hold, we have the
strict inequality

max
q

min
p(q)

A(p, q) < min
p

max
q(p)

A(p, q).

and therefore there exists v ∈ R so that

max
q

min
p(q)

A(p, q) < v < min
p

max
q(p)

A(p, q). (13)

Since maxq minp(q)A(p, q) < v, this means that for all q, there exists p so
that A(p, q) < v. Since p, q are taken from a compact domain, there exists
v′ < v (v′ := maxq minp(q)A(p, q)) such that for all q there exists a p for which
A(p, q) ≤ v′. At the beginning of this proof we assumed that i) and ii) are
equivalent, and we have just showed that ii) holds, therefore i) has to hold as
well: there exists a p such that A(p, q) ≤ v′ for all q. This last statement is
equivalent to minp maxq(p)A(p, q) ≤ v′ < v, which contradicts inequality 13.

=⇒) This implication is reached by noticing that minimisation corresponds to
the existential quantifier and maximisation corresponds to the universal quan-
tifier.
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We now want to show that if we assume minp maxq A(p, q) = maxq minpA(p, q)
then both conditions i) and ii) are either both true or both false, i.e. they
are equivalent. In order to reach a contradiction, suppose there exists v ∈
R so that i) holds, and ii) does not. The first condition being true yields
minp maxq(p)A(p, q) ≤ v. On the other hand, we have (by negating ii)): ∃q∗
such that ∀p we have A(p, q∗) > v. Hence minpA(p, q∗) > v, which implies

max
q

min
p(q)

A(p, q) ≥ min
p
A(p, q∗) > v.

By applying the min-max equality we end up with

v ≥ min
p

max
q(p)

A(p, q) = max
q

min
p(q)

A(p, q) > v

which is a contradiction.
Let us now assume there exists v ∈ R so that ii) holds and that i) does

not. Now ii) yields maxq minp(q)A(p, q) ≤ v. The negation of i) translates to
∀p then ∃q∗ such that A(p, q∗) > v, which means that maxq(p)A(p, q) > v for
any p, and in particular minp maxq(p)A(p, q) > v. As before, this leads to a
contradiction.

We can conclude that if the min-max equality holds then either i) and ii)
are either both true or both false.

2) Consider the function

A : [0, 1]× [0, 1]→ [0, 1]

(p, q) 7→ pq

and we want to show maxq minpA(p, q) = minp maxq A(p, q). For such a simple
function this is quite straightforwards: the minimum of pq for either p or q is al-
ways 0, independently from the value of the other variable (this is only true since
we work over [0, 1]× [0, 1]. Therefore maxq minpA(p, q) = minp maxq A(p, q) =
0.

We wish to show that the equivalent statement of the min-max theorem
stated at the beginning of this question holds for this toy model. Since A maps
onto [0, 1] then choosing v < 0 makes no sense. Fix v ≥ 0, then fix p ≤ v then
we have that for all q ∈ [0, 1]

A(p, q) = pq ≤ p ≤ v since q ≤ 1, and p ≤ v

therefore i) holds. Similarly, for v ≥ 0 fixed and any q ∈ [0, 1] then choose p ≥ v
then

A(p, q) = pq ≤ p ≤ v since q ≤ 1, and p ≤ v

hence ii) holds as well, as we expected.
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3) Consider now the function

A : [0, 1]× [0, 1]→ R

(p, q) 7→
®
p+ q if p+ q ≤ 1

2− (p+ q) otherwise.

Firstly we can see that

A(p, q) ≤
®

1 if p+ q ≤ 1

2− 1 if p+ q ≥ 1
= 1.

hence maxq A(p, q) = 1 (equality is reached, for example, when q = 1 − p for
any p ∈ [0, 1]).

Similarly, if we try to minimise A(p, q) for p we get

A(p, q) ≥
®

0 + q if 0 + q ≤ 1

2− (1 + q) if 1 + q ≥ 1
=

®
q if q ≤ 1

1− q if q > 0

where the first function is minimised for p = 0, and the second one for p = 1.
Therefore, we can write more compactly minpA(p, q) = min(q, 1− q). Now the
minmax theorem does not hold anymore since

min
p

max
q
A(p, q) = min

p
(1) = 1

max
q

min
p
A(p, q) = max

q
min(q, 1− q) =

1

2
.

Some convexity and concavity properties on the function A(p, q) are required
in order for the minmax theorem to hold. Let M , and N be two subsets of a
topological vector spaces U, and V (these are just vector spaces equipped with
a topology so that vector addition and scalar multiplication are continuous with
respect to the chosen topology). Assume the scalar field to be either R or C
equipped with the Euclidean (or Standard) topology.

Definition 7.1. A function f onM×N is quasi-concave in N if {y | f(x, y) ≥ c}
is a convex set for any x ∈ M and c ∈ R. Similarly, a function f on M ×N is
quasi-convex in M if {x | f(x, y) ≤ c} is a convex set for any y ∈ N and c ∈ R.

Theorem 7.1 (Sion’s Minmax Theorem 2). Let M be a compact convex subset
of U, and let N be a subset of V. If f is a real-valued function on M ×N with

• f(x, ·) upper semicontinuous and quasi-concave on N , ∀x ∈M ;

• f(·, y) lower semicontinuous and quasi-convex on M , ∀y ∈ N ;

then
min
M

sup
N
f(x, y) = sup

N
min
M

f(x, y).

2Sion, M. (1958) On general Minmax Theorems. Pacific Journal of Mathematics. 8(1),
171-176.
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7.5 A vectored valued payoff game

Exercise 7.5: 1) Let ∆ represent our canonical simplex and consider a function

A : ∆×∆→ Rk.

Let C be a convex subset of Rk, such that for each q ∈ ∆ there exists a p ∈ ∆
such that A(p, q) ∈ C. In the question we are asked if we can infer that there
exists a p ∈ ∆ such that for all q ∈ ∆ we have A(p, q) ∈ C. As the hint suggests,
this is not true if the range has dimension greater or equal to 2. Let us provide
a counterexample.

Let ∆ = [0, 1], consider the function

A : ∆×∆→ [0, 1]2 ⊂ R2

(p, q) 7→ (p, q)

and let C be the diagonal of [0, 1]2, i.e. C := {(x, x) | x ∈ [0, 1]}. Since C
is an interval it is automatically convex. In this case, for any q ∈ [0, 1] set
p := q ∈ [0, 1] then A(p, q) = (p, q) = (q, q) ∈ C. Unfortunately, there exists no
p for which A(p, q) ∈ C for all q. Suppose such a p existed, then take q = p+ 1

4
mod 1. In this situation A(p, q) = (p, q) = (p, p+ 1

4 mod 1) which is clearly not
contained in C. You can think of our choice of q as a vertical translation of C
by 1

4 in the two dimensional torus T2 = R2/Z2.

2) Now, let ∆ = [0, 1] and consider the function

A : ∆×∆→ R
(p, q) 7→ pq.

We will say that a convex set C is acceptable if for all q there exists a p such
that A(p, q) ∈ C. For this particular choice of A, we have that C is acceptable if
and only if it contains the point 0.

Since the set C is a convex subset of R, this restricts its shape. Indeed C can
only be a singleton, the whole real line R, or (potentially unbounded) interval.
Notice that Im A = [0, 1], hence if C ∩ Im A = ∅ then C is automatically not
acceptable. In order to reach a contradiction let us assume that Im A ∩ C 6= ∅,
but 0 6∈ C. Let a = min C > 0, then if we take q = 0 for example, there are no
p ∈ [0, 1] for which A(p, q) = pq = 0 could possible be greater than the positive
number a. This means that for C to be acceptable it must contain 0.

Let us show that this is actually sufficient. If 0 ∈ C then for any q let p = 0,
and then A(p, q) = pq = 0 ∈ C, as we claimed. A similar proof now gives us
that if C is an acceptable set, then there exists p ∈ ∆ such that for all q ∈ ∆,
we have that A(p, q) ∈ C. If we fix p = 0, then for all q ∈ ∆ we have that
A(p, q) = pq = 0 ∈ C, since C is acceptable.

7.6 Blackwell approachability theorem

Exercise 7.6:
1) In Figure 26 we have a diagram illustrating all the various vectors, sets, and
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Figure 26: Schematic of the proof of the Blackwell Approachability Theorem

hyperplanes involved in the proof of Blackwell approachability theorem. Note
that we only drew a part of the boundary of the convex set C in Figure 26.

We will now write down an algorithm on how to find pt.

1. Consider the projection π(at) on the convex set C, where at is a vector
representing the time average of the vector-valued payoff A(p, q) up to
time t;

2. Compute the vector nt = at − π(at), normal to C, starting at πat and
pointing towards at;

3. Define the half space Ht := {a | a · nt ≤ π(at) · nt} which contains C.
Notice that {a · nt = π(at) · nt} is a (hyper)plane passing though π(at),
perpendicular to nt;

4. Rewrite A(p, q) · nt as p ·Atq, where At is a matrix depending on t;

5. By the approachability of Ht we have that the min-max theorem holds for
A(p, q) · nt, hence there exists a pt such that A(pt, q) · nt ≤ π(at) · nt for
all q.

This algorithm does not give you a way to explicitly compute vt, but there exist
plenty of packages in Python/Julia/Matlab which have been developed for to
optimise the construction of such vector.

2) Assume that

at =
1

t

t∑
i=1

A(pi, qi)

belongs to the convex set C. As we have seen in the proof of the Blackwell
Approachability Theorem

at+1 =
t

t+ 1
at +

1

t+ 1
A(pt+1, qt+1).
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Note that at+1 is the convex combination of the vectors at and A(pt+1, qt+1).
Clearly, if A(pt+1, qt+1) ∈ C, we have by convexity of C that at+1 is in C.
Unfortunately this is not always the case. Consider the point m := ∂C ∩
〈at, A(pt+1, qt+1)〉, and assume that

|A(pt+1, qt+1)−m| > t

t+ 1
|A(pt+1, qt+1)− at|.

Under this assumption we can conclude that at+1 ∈ 〈m,A(pt+1, qt+1)〉, and
therefore outside of C. This counterexample is quite abstract. Try to come up
with your own counterexample (maybe let C be a point. . . ).

7.7 Regret minimisation

Exercise 7.7:
1) Let us look at a specific game to discuss this question. Consider the ”battle
of the sexes” game given by

M =

Å
(2, 1) (0, 0)
(0, 0) (1, 2)

ã
and suppose that player 2 decides their play after having seen the strategy chosen
by player 1. Let T , and F denote the two strategies for this game, respectively
e1 and e2. Furthermore, suppose that player 2 holds a grudge against player 1
and so they always play the opposite strategy to 1, i.e. if player 1 plays T , then
player 2 replies with F , and vice-versa. This leads to payoff 0 for both players
at all times. In particular this leads to at least one of the regrets for player 1
being always strictly positive, which is clearly contradicting the first Hart and
Mas-Colell Theorem (Theorem 7.1 in the lecture notes).

Similarly we can show how Theorem 7.2 in the notes will not holds in this
situation. Let us disregard the fact that player 2 is definitely not following
the no-regret algorithm, and let us focus on what the matrix of frequencies the
conjoint actions of player 1 and 2 looks like. Given the choice of strategies from
player 2 our probability distributions keeping track of the frequency of actions
up to time t will only have weights on the off-diagonal terms

Pt =

Å
0 1− f t
f t 0

ã
where f t = f tB(T ) the frequency at which player 2 plays T , the first of the
available strategies. From Exercise 7.1 we have that Pt does not belong to the
CE set for this game, for any t, as we claimed.
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