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Chapter 1

Introduction : an approach of
universality and
renormalization

The full renormalization horseshoe for unimodal maps is a complicated result
that first needs to be clearly understood before studying its proof. The renor-
malization is a general concept used in dynamical systems which is based on the
repetition of the essential form of a non-linear map at infinitely many scales.
Actually, renormalization explains the phenomenon of universal period doubling
for unimodal one-dimensional map. We will see later what these maps are, but
we will begin with simple facts about the well known logistic maps family to
introduce the concept of renormalization.

1.1 The behaviour of the logistic family

Recall that the logistic map is defined on [0, 1] by

fu(x) = :U“T(l - x)

Here we will consider 0 < g < 4 so that the unit interval is mapped into itself.
We can easily compute the fixed points and study their behaviour (attracting,
repelling) as p grows. A complete study can be found in [*]. It leads to the
famous bifurcation diagramm of the logistic family :

e 0 < p<1:0isthe only fixed point and is attracting.

e 1 < p < 3: 0 becomes repelling and z;, = 1 — i, which is no longer
negative, is attracting.

e 3 < < 1++6: both fixed points are repelling, but two period two
points appear, ie points such that f?(x) = x. Both are attracting.



e 1> 14 +/6 : period two points become repelling and attracting period
four points appear, and then for u a little bit larger, period four points
become repelling and attracting period eight points appear etc... All these
points seem to accumulate to some oo =~ 3.56995.

® Lo < it < 3.83 : the maps moves from chaos to periodic windows many
times.

e then, an attractive period three cycle appears at p ~ 3.83. If we zoom in
one of the three stable branches, a copy of the whole bifurcation diagram
appears for u > 3.83.

03—

oo 0s 10 15 20 25 30 35 | ‘ 40

Figure 1.1: Bifurcation diagramm of the logistic family : com-
mons.wikimedia.org

Study of the period doubling window So now we should discuss the period
doubling behaviour for 4 < poo. Thanks to Newton’s method, we could compute
each value of y for which the diagramm bifurcates, call them puq, po, ...y iy, ---
and compute the Feigenbaum’s constant :

. MHn — Un—1
(S = hm _—
nN—=0 Unt1 — HUn

We find 6 = 4.669201609. This constant scales the length of the sequence of
bifurcation, as it can be seen on the bifurcation diagramm.

What happens when p > 3.837 If we try to solve fi’(x) = z for p very
close to 3.83, we got 8 solutions. 2 of them are solutions of f,(xz) = x and are



unstable. 3 of the 6 remaining are unstable. So we get a period three cycle as
mentioned above just after p ~ 3.83. We could then continue our study, but as
the miniature of the bifurcation diagram appears, we know this is just another
period doubling phenomenon. So after this period three cycle, we are going to
have a period 3 x 2 cycle, and then a period 3 x 22 cycle... The same mechanism
of period doubling appears but now we get 3 x 2" period cycles.

1.2 Universality

So far we have seen that a particular family of mappings have a period doubling
behaviour scaled by a certain constant §. In fact, a much more important class
of functions (unimodal maps) has the same property of period doubling scaled
by Feigenbaum’s constant J.

To see this, let’s take a family of regular functions that has the same proper-
ties that the logistic one (by properties we mean the same overall shape). Define
on [0,1]

gu(x) = psin(ra)

for p € [0,1] so that the unit interval is mapped into itself. Using Matlab,
one can plothe bifurcation diagram of the family g,. The code used to plot it
is in the apendix.



Figure 1.2: Bifurcation diagramm of a random family

Using this diagramm, we can try to approximate the number

3 = lim Hn = Hn—1
n=00 Un41 — Hn

and compare it to the Feigenbaum’s constant for the logistic family. To get
an idea of the value of §’, we can compute the first terms of the sequence

5/ _ Hn — Hn—1
" Hn+1 — Hn
We find

) =4.29 ; 0% = 4.55 ; 0, = 4.61 ;

We could be more accurate and compute the next terms, but this is not
really the point here. It seems that §/, converges to the Feigenbaum’s constant
6 = 4.669201609. In fact, a larger class of maps have the same behaviour, with
the same scaling constant §. In 1975, Mitch Feigenbaum found that, no matter



what unimodal map is used, the same convergence scaling constant appears.
This is why we are speaking of universality.

Note. Note not only the map needs to be unimodal, but we also require a strictly
quadratic mazimum (it will be defined in the next section) ; for instance, the
maps x — pu(1—cx?) on [—1,1] will have a different behaviour because f"(0) = 0
(we don’t have f"(0) <0).

1.3 Renormalization

Now that we have remarked a universal behaviour, we would like to explain it
using the concept of renormalization. By universality, we mean the maps that
exhibit the same period-doubling behaviour remarked in the two last sections.
These maps have the same overall shape as the logistic family. Let us introduce
a mathematical setting. We will consider maps from the interval I = [—1,1]
that are regular on I, unimodal and with a quadratic maximum ; we will denote
this set of maps U (I).

e By unimodal we mean a continuous map f defined on I that is increasing
to the left of an interior point x,,,,; of I and decreasing to the right of

‘r’H'L(J/.'L'

e By a quadratic maximum we mean that f”(z;q.) <0

This setting will be redefined accurately later, but or the moment we just
need a main idea of the kind of functions we are dealing with. To ilustrate the
processus of renormalization, let us introduce a simple map f

Vo €I, fo(z) =1 — 1.522
The graph of this map is as follows



Figure 1.3: fy, example of a unimodal map

Now, consider a general map f € U(I) (fo will be used as an example). We
set a = —f(1) (ap = 0.5) and I, = [—a,a]. Then we look at f7 which is f2
restricted to the interval I,. For fj, fIQ0 turns out to be almost — f modulo some
rescaling. To see it, let us see the graph of f¢ and its behaviour on the interval
[0.5,0.5] : in the red window, f? has clearly the same behaviour as —f, but
we need some rescaling.

In fact, this is not difficult to see that if we applied the change of variable
x — —axr and then multiply the function f2 by —1 we get the good rescaling.

a
Then we define a renormalization operator R acting on function in /(1) :

VieU(),Veel

Rf(r) =~ f(~az)

It is important to remark that denoting b = f(a), we need 0 < a < b < 1
and f(b) < a for f € U(I) to be in the domain of R. Note also that for such f,
Rf eU().

In our example,

Rfo(z) = —2f%(—0.5z)

We can plot the graph of R fy to make sure we get a shape very close to the
one of f on I.
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Figure 1.5: Renormalized f,
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So far we have only considered a particular case, ie the period-doubling case
applied to a particular interval I. The aim of this project is to prove that this
renormalization is possible for a much larger class of functions.

For the moment we only have applied the renormalization operator to some
functions which define themselves some dynamical systems (ie for f € U(I) and
xo € I, we study the discrete dynamical system z,1 = f(z,)). Now, we are
going to study the dynamics of R acting on U(I). Thus the phase space is now
an infinite dimensional space U of functions and we want to study the orbits of
the points f € U under the action of the renormalization operator R.

Feigenbaum, Coullet and Tresser made some conjectures about this infinite-
dimensional dynamical system.

e There exists a Banach space B € U(I) such that Rz has a unique fixed
point f* € B

e The fixed point f* is hyperbolic, meaning that the derivative of R at f*,
denoted Dy, has no eigenvalue of modulus one.

e All the eigenvalues of D lie in the open unit disk, except one equal to §
(the Feigenbaum’s constant). We can then conjecture the existence of an
unstable manifold WY of dimension 1 related to the eigenspace relative
to § and a stable manifold W9 of codimension 1 related to the stable
eigenvectors.

e For n € N*, we denote X, the set of superstable maps in B with period 2™
superstable cycle. Then all the ¥,, intersect WY transversally and are of
codimension 1. Denoting £ the intersection of ¥,, with WY the sequence
(fF)n>1 converges to f* geometrically, with rate §. All these things are
summed up in the following figure.

11



wv (fu)

) \

Figure 1.6: General behaviour of the dynamical system related to the renormal-
ization operator

So far we have only considered maps that are "twice" renormalizable, mean-
ing that Rf ~ f o f. But there exists maps that are n-renormalizable or even
infinitely many times renormalizable. Roughly speaking, if we are able to de-
fined a function space where functions are 2.3,...,d renormalizable, then it can
be shown that the renormalization operator R is topologically conjugated to
the full shift map oq, on bi-infinite sequences Q5 with d symbols. The aim of
this paper is to study the proof of this result (we state it rigorously in the next
section).

12



Chapter 2

Statement of the main result

So now, we are going to state the result we want to prove with the proper tools
(the good space of functions, the mathematical notions related to chaos and dy-
namical systems...) and in a generalized way. Remember, Feigenbaum made a
conjecture saying that the renormalization process is hyperbolic, given a proper
functional space of infinite dimension.

We will consider the space of real unicritical and polynomial-like maps of an
arbitrary even degree d > 2 ; we will denote it Cuﬂf and study the behaviour of
the renormalization operator R on this space. The main point here is that d
is arbitrary, as hyperbolicity has been proven for simple cases where d is not
arbitrary. Actually, R has an invariant horseshoe A and is exponentially con-
tracting on the corresponding hybrid laminations : this will be the keypoint to
prove :

Theorem (Main result). R has an invariant precompact set A C I, called the
renormalization horseshoe and R4 is topologically conjugate to the two-sided
shift in infinitely many symbols. Any germ f € T®) is attracted to some orbit
of A at a uniformly exponential rate. Note that we need a proper metric here,
this will be the Caratheodory metric.

In this theorem, Z® is the space of real infinitely renormalizable polynomial-
like germs and ZM®) is the space of polynomial-like germs that are hybrid equiv-
alent to the real ones. Note that to state this result, we introduced new notions.
The mathematical background needed to understand these notions will be pre-
sented in the next chapter.

13



Chapter 3

Basic tools

3.1 Quick reminder on complex analysis

In this section we will especially focus on the complex functions of a complex
variable, to make things clear for our further developments. In what follows, z
will be a complex variable, naturally decomposed z = = + iy, =,y € R.

3.1.1 Analytic functions
Recall that the derivative of a function f at a point a is given (if the limit exists)

by

P O

za zZ—a

(3.1)

Definition 1. In order to define the notion of analytic function, we need to be
accurate on the nature of the set where it is defined

o A complex function f of a complex variable z is said to be analytic or
holomorphic in the region Q (non-empty connected open set) if [ is
defined in Q) and possesses a derivative at each point of €.

e A complex function f of a complex variable z is said to be analytic or
holomorphic in the set A C C if it is analytic in some region containing

A.

In the end of this paragraph, we will consider that f is analytic on the whole
plane C.

f'(a) must have the same value regardless of the way z — a. This leads us
to

of  af

14



Writing f(z) = u(z) +iv(z), with u, v real functions of the complex variable
z, this leads to the famous Cauchy-Rieamnn differential equations

ou B ov (3.3)
or Oy '
ou ov
- - _Z 4
Jy Or (34)
Note that
oudv  Ouodv
_ | 2__ "7 77"
I= I @P = S - (3.5)

is the Jacobian of u and v with respect to x and y.
Writing f(z) = f(z,y) as a function of two real variables, one can easily find

that
of 1(of oOf
9z 2 (656 - 8y> (3.6)

af 1(0f .Of

0
Analytic functions can be characterized by 55 = 0.
z

Note.

3.1.2 Conformal mappings

Let us a consider a function f which is analytic in a region Q. Now, introduce
an arc 7 : z(t) for ¢t € [, 8] and suppose v C Q. Let us call 7' : w(t) = f(2(¢))
the image of v through f. We easily find that

w'(t) = f'(2(£)2'(¢) (3.8)
So if we choose a point zp = z(tg) such that f'(z9) # 0 and 2’(¢9) # 0, we
will have w’ () # 0, meaning that 4" has a tangent at wg = f(zp) with direction

arg(f'(z0)) + arg(2'(to))

But arg(z’(tg)) is the direction of the tangent to v at zp, so arg(f’(z9)) is the
angle between the tangent to v at zo and the tangent to 7/ at wg and it is
independent of . So if we take two curves which are tangent to each other at
zp, they are mapped through f onto tangent curves at wy. More generally, two
curves which form an angle at zg will be mapped through f onto curves forming
the same angle at wy. This is why we are speaking of conformal mapping for f.
The above justifies the next definition, and a similar study can be done for the
anticonformal case.

15



Definition 2. e A function which is analytic in a region Q with f'(z) # 0
everywhere in Q is a conformal mapping.

o A function f for which f is analytic in a region Q with f'(z) # 0 ev-
erywhere in Q is an anticonformal mapping. It reverses the sense of
angles

3.2 Quasiconformal mappings

So far we have considered conformal mappings, but to prove our main result, we
need to define the notion of quasiconformal mappings. Roughly speaking, they
are a generalization of conformal mappings, and a lot of theorems related to
conformal mappings can be extended to quasiconformal mappings. Moreover, a
q.c. mapping is easier to use as a tool.

3.2.1 Definition of Grotzsch

The notion of q.c. mappings appeared when Grotzsch tried to find a conformal
mapping from a square ) on a rectangle R (not a square) mapping vertices
on vertices. There is not such conformal mapping, but Grétzsch built a qg.c.
mapping to solve this problem.

Let us take the same notation than above, related to a C'-homeomorphism
w = f(z) from one region to another. Then, at a point zg, one can write

ou Ju
v v

This represents an affine transformation frome the (dz,dy) plane to the
(du,dv) plane. Note that we can write it in another way :
_of of

Remember that the Jacobian was given by (3.5) and together with (3.6) and
(3.7) , we are given

2 2

of
9z

of
52 (3.12)

e for sense-preserving mappings, we will have J > 0.

e for sense-reversing mappings, we will have J < 0.

16



Note. This makes sense with our above study of conformal mappings, as % =0
for a conformal mapping.

this gives

So considering sense-preserving, we have ‘ﬂ‘ < ‘%‘ Together with (3.11),
0
fD |dz| < dw < (

0z
of
( - |5 ) |dz| (3.13)

The ratio of the major to the minor axis, called the dilatation at z is then
given by

ory 191
5‘2‘—’— 0z

of of
d oz
D= 1o Tar] 2 (8.14)
Oz 0z
It is sometimes more convenient to consider
of| |of
=22/ |2 (3.15)
These two ratios are linked by the fllowing equations
1+ df
Dy = 3.16
! 1 d, (3.16)
Dy—1
df = 3.17
f Dy+1 ( )
Note. A mapping is conformal at z if and only if Dy =1 or dy = 0.
We can also introduce the complex dilatation
of of
==/ 3.18
re=25-15, (3.18)

We remark that |pf| = dy.

Definition 3. A C'-mapping f is quasiconformal (q.c.) if Dy is bounded.
We will say that f is K-quasiconformal (with K > 1) if Dy < K. It is

walent to d <K_1
equivailen 0 f_K—|—]_

Note. As seen above, a 1-q.c. mapping is conformal.

Proposition 1. o If fis Ki-q.c. and g is Ko-q.c., then fog and go f are
KlKQ—q.C.

e The inverse of a K-q.c. homeomorphism is K-q.c.

This point of view should be adequate for our further development, but
it could be convenient to have the other definitions that Ahlfors gave in his
lectures.

17



3.2.2 The geometric definition

We are given a homeomorphism f from a region € to a region ' which is sense-
preserving. We introduce the notion of generalized quadrilaterals, which are
defined by 4 disctinct points in €, linked together by 4 closed and discjoint arcs
in . Let Q(z1, 22, 23, 24) C § be such a generalized quadrilateral. By Riemann
mapping theorem, we know that there exists a conformal mapping which maps
Q onto a rectangle R. Let choose this conformal mapping ¢ such that ¢(z1) = 0,
P(z2) =1, ¢(z3) = 1 +iM and ¢(z4) = iM. Then M is called the modulus
(denoted m(Q)) of Q.

Definition 4. f is said to be K-q.c. if the modula of quadrilateras in 2 are
K -quasi-invariant, meaning that, given a quadrilateral @,

m(f(Q)) < Km(Q)

Note. if f is C', this definition agrees with the previous one. We also have the
results of Proposition 1 and that a 1-q.c. mapping is conformal.

3.2.3 The analytic definition

This definition is very close to the definition of Grétzsch, but remember that
for the latter, we need a C'-homeomorphism. We are going to replace this
constraint by a weaker one.

Definition 5. we say that a function f is absolutely continuous on lines
(ACL) in a region Q if, given any closed rectangle R C Q with sides parallel
to the x-axis and y-axis, f is absolutely continuous on almost every horizontal
and vertical lines of R.

Note that the partial derivatives % and % exist whenever f is ACL.

Definition 6. We say that a mapping f : Q — C (Q is a region) is a K-q.c.
mapping (K > 1) if

o fis ACL in Q
o |ugl=ds < % almost everywhere
Thi definition is equivalent to the geometric one.

Note. o If fis qg.c. and if % =0, then [ is conformal.

o In this configuration, for all K > 1, the set {f|f is a K-q.c. homeomorphism}
is compact in the space of ACL functions in Q. It was not the case in the
definition of Gritzsch, as we only considered C'-homeomorphism.

18



3.3 Holomorphic motions

Let C stand for the Riemann sphere, consisting of C together with a point at
0.

Definition 7. Suppose we are given a connected manifold X and let zo be a
basepoint in X. Let E C C be a set. We define a holomorphic motion of £
over X as a family of injections
hy : E— C
such that
e for all fized e € E, x — h,(e) is holomorphic in x
o hy, =1id

There are some basic results about holomorphic motions that are very useful.
In particular, the A-lemma says that every holomorphic motion of F over X can
be extended to a holomorphic motion of E over X. The extended A-lemma is
even more powerful as it extends any holomorphic motion of F over X to a
holomorphic motion of the whole complex plane over X. One can note that
in this definition, we don’t know how regular the maps h, : E — C are.These
lemmas will also give us an idea of the regularity of these maps.

Theorem 1 (Mlemma). Given a holomorphic motion (hy)zex of E over X,
(he)zex admits an extension to a holomorphic motion (hy)zcx of E over X.
For everyx € X, h, : E — C is quasiconformal. Moreover, (hy)zex is jointly

continuous in x and ine € E.
Going further, we obtain the extended A-lemma :

Theorem 2 (extended A-lemma). Given a holomorphic motion (hy)zex of
E over X, (h:)zecx admits an extension to a holomorphic motion (hy;).cx of

C over X. For every x € X, hy : C — Cis quasiconformal of dilatation

D, <K, = if}:l So we have K -q.c. mappings here. Moreover, (hy).cx 18

jointly continuous in x and in e € C.

3.4 Julia set

The material that follows is very useful for the study of dynamical systems, and
we may need it later.

We define a Riemann surface S as a connected complex analytic manifold of
complex dimension one.

Definition 8. Let U be a complex manifold and F be a family of holomorphic
maps from U to C. F is said to be a normal family if every sequence of elements
of F has a subsequence converging locally uniformly on compact subsets of U to
a limit (which is a holomorphic map).

19



In what follows, U is a Riemann surface and f : U — U is a holomorphic
map and we denote by f" its n-iterate. Let zo € U. There are two cases :

e there exists a neighbourhood Ny of 2z such that the family ( fﬁvg) of iterates
restricted to Ny forms a normal family. We say that zg is regular.

e there is no such neighbourhood.

Definition 9. With this, we can define the notions of Fatou an Julia sets :
e The set of reqular points in U is the Fatou set of f, denoted Q(f).
e The Julia set is the complement of the Fatou set in U, denoted J(f).

Note that the Julia and Fatou sets are invariant under f. The components
of the Fatou set are preperiodic, meaning that if C' is a component of Q(f), then
there exist i > j > 0 such that fi(C) = f/(C). We can classify the periodic
component of Q(f).

Theorem 3. Suppose C' is a p-periodic component of the Fatou set. Then C is
of one of the following types :

1. there is an attracting periodic point z* in C' such that, for all z € C :

: np %
A =2

C is called an attracting basin.

2. there is a parabolic periodic point (by parabolic, we mean that the multiplier
is equal to 1) Z € OC such that, for all z € C :

s
g fE) =

C' is called an parabolic basin.

3. C is a disk, and f acts as an irrational rotation on it. C is called a Siegel
disk

4. C is an annulus, and f acts as an irrational rotation on it. C is called an
Herman ring

Definition 10. The complement of the attracting basin of infinity is called
the filled Julia set, denoted K(f). The Julia set is the boundary of K(f) :

J(f) = OK(f).
The corresponding Julia set is J(f) = 0K (f).

20



3.5 The modulus of an annulus

3.5.1 Facts about Riemann surfaces

Suppose we are given two Riemann surfaces S and S’ ; we say that they are con-
formally isomorphic if there exists a holomorphic homeomorphism between
them, with holomorphic inverse. The next result states that simply connected
Riemann surfaces can be sorted in three main classes.

Theorem 4. If we are given any simply connected Riemann surface S, then S
is conformally isomorphic either to

1. the whole plane C.
2. the unit disc D.
3. the Riemann sphere C.

It could be useful to link any arbitrary Riemann surface to a simply con-
nected one, as the latter can be studied as one of the three cases of the above
theorem. In fact, it can be shown that any arbitrary Riemann surface S is
conformally isomorphic to a quotient S /G. S is a simply connected Riemann
surface, called the universal covering of S, wich is thus conformally isomorphic
to C, D or C. Gisa group of conformal automorphisms of S. Except the
identity element, the elements of G do not have fixed points in S. G can be
identified with the fundamenatl group of S, denoted 7 (S)

Note. The punctured disc D\ {0}, the punctured plane C\ {0} and any annulus
Ar = {z:1<|2| < R} have a fundamental group m = Z. Every Riemann
surface S with 7w (S) = Z is isomopric either to D\ {0}, C\ {0} or A =
{z:1< |2| < R} for some R > 1.

3.5.2 definition of the modulus for a doubly-connected
Riemann surface

Given a Riemann surface S with 1 (S) = Z and which is also isomorphic to Ag
for some R > 1, we define the modulus of S as follows :

log(R)

mod (S) = 5
T

(3.19)

3.6 Polynomial-like maps

3.6.1 Definition

Polynomial-like maps of even degree are the mappings that interest us for the
main result, but we need to introduce some background to define and under-
stand what they are.
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Note that if we consider a normalized polynomial P of degree d > 1, then
when the modulus of z is large, P(z) ~ z%. So if we choose a large enough disc
U, and denote its preimage U’ = P~1(U), the compact closure of U’ will lie in
U : U’ C U. Polynomial-like maps generalize this concept.

First we are going to define what is the degree for a continuous map between
two manifolds U and U’ in C. Roughly speaking, the degree is the number of
time that U wraps around U’ under the continuous map.

Definition 11. Let f : U — V be a map between two discs. If f is holomorphic
and if for all compact set K C V we have that f~1(K) is compact, then f is
said to be a proper map. Then for all x € V, f~(x) is a finite set and we
define the degree of f to be the cardinal of this set, counting multiplicity.

Definition 12. Let U and U’ be open sets isomorphic to discs and U’ be rela-
tively compact in U. A polynomial-like map of degree d is a proper analytic
map [ : U — U of degree d.

e The filled Julia set of a polynomial-like map is defined to be

K(f)y=()+"O) (3.20)

n>1

e Given a p.l-map f: U — V, V' \ U is called the fundamental annulus
of f.

Unicritical polynomial-like maps In the proof we study, we only consider
unciritical p.l.-maps. We will say that a p.l.-map f of degree d is unicritical
if it has a unique critical point of local degree d. Note that we can normalize
unicritical p.l.-maps so that 0 is the unique critical point and f(z) = 2% + ¢ +
O(z%*1) in a neighbourhood of 0.

3.6.2 Connected filled Julia set

The following theorem was first observed and proved for polynomial maps. It
was then generalized for p.l.-maps.

Theorem 5. Given a p.l.-map f, its filled Julia set K(f) is connected if and
only if all the critical points of f belong to K(f). If there is no critical points
in K(f), K(f) is a Cantor set.

Remember that 0 is the unique critical point in our case. This gives the
following :

Corollary 1. Given an unicritical p.l.-map f with O for unique critical point,
its filled Julia set K(f) is connected if and only if 0 € K(f). Otherwise, K(f)
is a Cantor set.
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We then have a dichotomy between the p.l.-maps with connected filled Julia
set and those for which the filled Julia set is a Cantor set. In what follows, we
assume that p.l.-maps are unicritical with critical point 0.

3.6.3 Polynomial-like germs

We are going to gather the p.l.-maps with the same connected filled Julia set
and the same behaviour near 0 in a same class. That is why we introduce the
notion of germs.

Definition 13. Given a p.l.-map [ with connected filled Julia set K(f), the
equivalence class of p.l.-maps g such that K(f) = K(g) and f = g in a neigh-
bourhood of 0 is a polynomial-like germ (associated to f, denoted [f]). We
will denote by C the set of all polynomial-like germs. The associated modulus of
[f] is given by
mod [f] = sup mod (V\U) (3.21)
g€lf]

where the supremum is taken over all p.l.-mappings g : U — V in [f].

Note that the unicritical polynomial P. : z — 2%+ c is such that [P.] belongs
to C if and only if ¢ belongs to the Multibrot set M where

M= {c € C: sup |PI(0)] < oo} (3.22)
neN*

We will denote by C® the set of germs in C that preserves the real line R.
Note that such germs are such that U and U’ are R-symmetric in the definition
of p.l-maps above (ie the x-axis is an axis of symmetry for U and U’ in the
complex plane)

3.6.4 Hybrid classes

Definition 14. e We say that two p.l.-maps f : U — U’ andg: V — V' are
topologically equivalent or conjugate if there exists a homeomorphism
h: N(K(f)) = N(K(g)) (where N(A) denotes a niegbourhood of A) such
that ho f =goh.

e If h is quasiconformal, we say that f and g are quasi-conformally
equivalent.

e If h is quasiconformal and such that % =0 on K(f), we say that f and
g are hybrid equivalent.

o We say that two p.l.-germs [f] and [g] are hybrid equivalent if f and g
are hybrid equivalent.

The following theorem states that every p.l.-map is hybrid equivalent to a
polynomial map (the result follows for the corresponding germs).
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Theorem (Straightening theorem). 1. Every p.l.-map [ : U — U’ of degree
d is hybrid equivalent to a polynomial map P of degree d. P is unique (up
to conjugation by an affine map) if K(f) is connected.

2. Every p.l.-germ [f] € C is hybrid equivalent to some polynomial germ [P.]
with ¢ € M.

In what follows, we will denote by H. the hybrid class of [P.], ie all the
p.l.-germs that are hybrid equivalent to [P,].

3.7 Teichmiiller spaces

3.7.1 Elementary homotopy theory

Let X and Y be two topological spaces and f: X — Y and g : X — Y be two
continuous maps.

Definition 15. o We say that f and g are homotopic if there exists a
continouwous map F : X x[0,1] = Y such that F(.,0) = f and F(.,1) = g.

e We say that f is null-homotopic if it is homotopic to some constant func-
tion ¢ : X = {yo}.

To define Teichmiiller spaces we only need the notion of homotopic maps.
But later we will have to use the notion of contractible spaces. That is why we
go further in our theory of homotopy here.

Definition 16. Two topological spaces X and Y are called homotopic if there
exist f: X =Y and g: Y — X such that

e fog is homotopic to idy
e go f is homotopic to idx

Evidently, the homotopy-relation is an equivalence relation. Now let us have
a look at the simplest objects of homotopy theory.

Definition 17. We say that a topological space X is contractible if it is ho-
motopic to a point (singleton space). Equivalently, X is contractible if idx is
null-homotopic.

Proposition 2. Any convez subspace of a topological space is contractible.

Proof : let X’ be a convex subspace of a topological space X. Let zj, € X'.
Define

hoo X' x[0,1] = X (3.23)
h(z';t) = tzi+ (1 —t)(a — ) (3.24)
h is a well defined homotopy of X’ onto X’ (by convexity of X’) such that

h(.,0) = idx, and h(.,1) = ¢o where ¢g is the constant map (mapping every
x’ € X’ to x()), meaning that idx is null-homotopic.
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3.7.2 Definition

Definition 18. Given a Riemann surface S of finite type (ie conformally equiv-
alent to a compact Riemann surface minus a finite number of punctured points)
and two q.c.-mappings f : S — S1 and g : S — Sa, we say that f and g are
equivalent (S, f) ~ (Sa,9)) in the sense of Teichmiiller if fog~' is homotopic
to a conformal mapping between Sy and Si. The equivalence classes are the
points of the Teichmiiller space, denoted T(.S).

Remember that every Riemann surface S is isomorphic to a quotient S /G.
Suppose S is conformally isomorphic to the upper half plane H. We can then
define an analytic projection

p:HoH/G=S (3.25)

Now consider the subgroups that are conjugated to G, for instance G’ =
BGB~! where B belongs to the group of conformal automorphisms of H. Then
B is a one-to-one conformal mapping of S = H/G’ on S = H/G. Obviously we
can define some p’ just like above. We can study the converse problem. Consider
a mapping g : 8 — S. It induces a mapping g : S’ — S. ¢ will naturally satisfy

pog=goyp (3.26)
If g is given conformal, g is also conformal and g = B and G’ = BGB™!.
Now if we are given g which is not conformal, for B’ € G’, we still have that
B =goB'og!is an element of G. Keeping the notations of Ahlfors, g defines
an isomorphism 6 such that
(B )=goB og! (3.27)

This isomorphism is not unique, g can be replaced by Ao go A’ for some
A€ Gand A’ € G'. Tt then defines another isomophism 6 which is equivalent
to 6. Ahlfors proves the following lemma in his lectures :

Lemma 1. Given two mappings, they determine equivalent isomorphisms if
and only if they are homotopic.

Two isomorphisms will correspond to the same Teichmiiller point if and only
if they are conjugated, ie they differ by an inner automorphism.

3.7.3 Beltrami differentials

Going back to our definition of Teichmiiller spaces, if we are given a sense-
preserving q.c.-mapping f : S — Sp, it induces a q.c.-mapping f : H — H and
thus an isomorphism 6. f satisfies

foB'=Bof (3.28)
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Obviously, every such map ]?also induces a map f: S — Sy. Let us derive
(3.28) :

(%oB’)dB’ — (dBo f)% (3.29)
O poo o OF
(5 oBdB'" = (dBofY) 93 (3.30)

Remember we introduced the notion of complex dilatation (3.18). Clearly
with (3.29) and (3.30) we get
ps = (pyoB)dB'/dB’' (3.31)

More generally, if we are given a measurable and essentially bounded function
w satisfying, for all B’ € G/,

Sy

/(Z
B'(z
we say that y is a Beltrami differential.

~—

u(B'z) = p(z) (3.32)

~—

Note. By essentially bounded, we mean that there exists a constant C > 0
for which the set |p(z)| > C is of measure zero.

The above definition is due to Ahlfors. For more simplicity, we will use
the following notations : given a quasiconformal map f, one can associate its
Bletrami differential defined by

_ofdz
b= 5fdz
with the property that the norm of u; is no more than 1: ||uf|lec < 1. More

generally, we will identify the Beltrami differential of f : C — C with the
function 2Z

ar-
Note. This coincides with our definition of the complex dilatation that we in-
troduced in the definition of quasiconformal maps. The coefficient

pit, — Lt sl
=gl

also coincides with the definition of quasiconformal mappings : if Dily < K, f
is K-quasiconformal.

3.7.4 Beltrami equation

Now, consider the inverse problem : given a Beltrami differential p with ||u||s <
1, is there a quasiconformal map f such that

af

=57 (3.33)
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This equation is called a Beltrami equation and in fact, the following powerful
result ensures that (3.33) has a unique (up to the choice of three fixed points in

C) quasiconformal solution :

Theorem 6 (Measurable Riemann mapping theorem). Given a Beltrami dif-
ferential p defined on C with ||p||leo < 1, there ezists a quasiconformal map
f: C — C solving the Beltrami equation

_of

i

f is unique up to the choice of three fized points in C for f and depends holo-
morphically on p.

This is natural to compose a quasiconformal homeomorphism and a holo-
morphic map to get more general maps. Such maps are called quasiregular.
We can compose Beltrami differential with these class of function. Given a
quasiregular function g and a Beltrami differential p, we denote by (g).u their
composition (in fact, this is the Beltrami differential of f o g where f is the

solution of the Beltrami equation p = g—}l). 1t is said to be f-invariant if

(f)sp = p ace.

3.8 Beltrami paths, hybrid leaves

3.8.1 Beltrami paths

Definition 19. If we are given a path of p.l.-germs [f\] € C with A € D and a
holomorphic motion (hy)xep of C over D for which A\g = 0 is the basepoint, both
of them such that [fo] and [f\] are hybrid equivalent through the conjugacy hy
near the filled-Julia set K(fy), then we say that [fx] € C, A € D is a Beltrami
path. The pair ([fa], hy) is called a guided Beltrami path.

There is an important equivalence between Beltrami paths and Beltrami
differentials. Namely, the guided Beltrami paths with a fixed initial point, say
fo, are in a one-to-one correspondance with particular families of holomorphic
Beltrami differentials py on C. These families are such that

® =0
e the differentials p) vanish on K(fy).

e the differentials p are fo-invariant near K(fp).

In what follows, we might use both of these points of view.
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3.8.2 Hybrid leaves

Note. The polynoms P. and P.. with ¢ = eXpiQT7r are affinely equivalent, so
they belong to the same hybrid class : ¢ is not uniquely defined when the degree
d is larger than 2. The multibrot set M is then symmetric up to a rotation of
order d — 1.

The hybrid class H. is the union of its path connected components. They
are called hybrid leaves and denoted H.. H. is in fact the union of the hybrid
leaves H . for 0 <k <d—1.

3.9 Contractibility of the set of expanding circle
maps

3.9.1 Definitons and notations
We will denote by T the unit circle. Consider a real analytic map g: T — T

Definition 20. We say that g is expanding if for all z € T, |Df°"(z)| > 1 for
some n > 1 (where Df is the derivative of f). We will denote by &4 the space
of real analytic expanding maps of degree d with g(1) = 1.

This is quite obvious that every g € £; can be extended to a holomorphic
map U — V of degree d where T C U C V are annuli ; all these extensions
will be called annuli representatives of g. For more simplicity, we will keep
the same notation for the extensions of g. We can define the modulus of g as
follows :

mod (g) =sup mod (V\ (UUD)) (3.34)

the supremum is taken over all annuli representatives of g. We will say that the
sequence g,, € £ converges to some g € &, if there exists a neighbourhood X of
T such that every g, ca n be extended to a holomorphic map on X with g, — ¢
uniformly on X.

Remember that we can lift every g € £; to R. The corresponding lift g is
such that

7 : RoR (3.35)
g(x) = dx+¢(x) (3.36)

Evidently, ¢ is an analytic 1-periodic function with ¢(0) = 0. In our further
developments, £ = &g ( we assume we are dealing with p.l.-maps of degree d) and
Er will denote the subspace of maps g in € such that g(z) = g(z) (R-symmetric
maps). The following result will be important in order to prove that Beau
bounds for real maps implies Beau bounds for complex maps in our particular
situation.

Theorem 7. The space £ and its subspace Er are both contractible.
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3.9.2 Proof of contractibility

As suggested above, the proof will be done with the lifts g : R — R and denote
by &€ the corresponding space. We let &, stand for the set of of functions g e g
such that for all z € R, |¢'(z)] > 1.

Lemma 2. & is a convezx set.

Proof. take A € [0,1] and ¢1,92 € &. Define h = \gy + (1 = X)ga. Then, for all
rz eR, _
()] < Ag1(@)| + (1 = N[ga(z)| <A1+ (1-A).1=1

Then h € 6~1 and 51 is convex. O

It is well known that a map g : R — R is said to preserve the Lebesgue
measure if, denoting the latest by A., we have that for any measurable set
ACR:

A(G7H(A)) = A(4)

But denoting E. the space of maps preserving the Lebesgue measure, we have
& C &. But now, by convexity of £ and by Proposition 2, & is con-
tractible, ie homotopic to a point g* € 51 and one can choose ¢g* such that
G €& Letr,: & — &, t € [0,1] be an homotopy such that ro = Id and
r1 = constant = g*. Then restricting this homotopy to S*, &, becomes itself
contractible.

Now we are going to build a projection II : & — &.. We assume that any
g € &£ has an absolutely continuous invariant measure, that we will denote
du = pdf. p(@) > 01is a real analytic density. Now, consider a real analytic
circle diffeomorphism h(t fo 0)df such that h(dp) = df. Then the map
G =TI(j) = hogoh™! preserves the Lebesgue measure because G(df) = df. So
G € E.. We have built the desired projection. Moreover, the space of densities
p is easily a convex space (take Ap; + (1 — A)pa...) so it is contractible. But
the space H of diffeomorphism h constructed above is identified with this space
of densities, so it is also contractible. it follows that we can build a continuous
map B B

F:&x[0,1] =&
such that, for all g € & and gt e EN*,

F(g,0)=g,, F(g,1) € & and F(§".t) = §"

One way to construct such a F' is to choose, for each g € g, the homotopty
: H — H such that sg = Id and s; = hg, where hj is the diffeomorphism
such that G = II(§) = hzogo h§ preserves the Lebesgue measure. Then we
take
F(g,t) = s(Id) o go (sy(Id))™"
Such a F'is called a deformation retraction. It follows that &, is a deforma-

tion retract for 5 so & is itself contractible. The result follows for £ and thus
for 5]]{.
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3.10 External map

3.10.1 externally equivalence, external map

Douady and Hubbard defined the notion of external map for a p.l.-mapping in
their work on the dynamics of p.l.-mappings. We will begin with the externally
equivalence between two p.l.-mappings.

Definition 21. Given two p.l.-mappings f : U — U’ and g : V — V', with
K(f) and K(g) connected, we say that f and g are externally equivalent
(f ~ext g) if there exists open sets Uy, UL, Vo and Vg such that

K(fycUy c UlcU (3.37)
K(gycVy, c VycV’ (3.38)
with
o) = (3.39)
g 'V = W (3.40)

together with the exzistence of an analytic isomorphism ¢ : U] \ K(f) —
Vi \ K(g) such that ¢o f = go ¢.

Now, for a given p.l.-mapping f : U — U’ of degree d ([f] € C), there ex-
ists a unique, up to conjugation by a rotation, expanding circle endomorphism
hy : T — T of degree d which is externally equivalent to f. We can normalize
it so that hy € £. hy is called the external map of f and we can define a
projection m : C — £ which associates to each germ [f] € C its external map
hy. We also have mod [f] = mod [hf]. Douady and Hubbard show how to
construct the external map for a connected K(f) and in the general case. Here
is a proof in the case of a connected filled Julia set.

Proof: Let logR = mod (U'\ K(f)) and , = {2z :1 < |2] < R}. We
denote by p the reflection with respect to the unit circle : for all z € C, p(2) =
71 Let Q. = p(Q,) and @ =, UQ_ UID.

Now let
o UNK(f) = 2,

be an isomorphism such that for every sequence {z,},,>o with
nl;ngo d(zn, K(f)) =0,
we have :
lim |p(z,)| =1
n—oo

Define Q4 = p(U\K(f)), Q- = p(Q4) and Q = Q4 UQ_UID. We construc
a map
h+ : Q+ — Q/_,'_
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such that
1

hy =¢ofop™
Thanks to the Schwarz reflection principle stated in the appendix, Ay can be
extended to a holomorphic map h: Q — Q. If we denote by hy the restriction
of h to T, we get the external map of f. Indeed, denoting by h:Q— Q the lift
to the universal coverings we see that h is an isomorphism and using Schwarz
lemma_on h~', A1 is striclty contracting for the hyperbolic metric because
Q C  ; thus h is expanding. Moreover, mod [f] = mod [h], for the
mapping ¢ establishes a one-to-one correspondence between the fundamental
annuli of f and hy.

3.10.2 Matings

Her we would like to construct a mating between any ¢c € M and g € €. It
would consist of a map M x & — C continuous both in ¢ and g. Note that the
inverse would be a map (7, x) : C — £ x M giving the external map of a [f] € C
and its straightening x(f) € M.

Construction of the mating Suppose we are given ¢ € M and the corre-
sponding polynomial P, and an expanding map g € €.

e First, we easily see that the set of non escaping points for Py = 2% is D.
Thus K(P)) = D. Given any ¢ € M, we can construct a holomorphic
one-to-one function on the complement of K (FP) :

(& :C\D—C\K(P)

such that
chPO:PcOEC

and that &, is tangent to the identity at co.

e Now, define gy : z — 2% We link g, to g with a continious path g,

for t € [0,1] (g1 = g). We assume that we can construct continuous
quasiconformal maps h; : C\ D — C\ D that conjugate any g; to go near
the unit circle T, ie

hiogo = gioh

Suppose the h; have continuously depending Beltrami differentials. In
that case, we can define the Beltrami differentials of the functions h,o& 1.
We will call p; the extension of these Beltrami differentials to the whole
complex plane C such that u; = 0 on K(P.). ; is easily invariant under
P, on a Jordan disc containing K (P,).

e Now, denote by ¢; the solution of the Beltrami equation

g, '
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Define
ft:¢toPco¢;1

By invariance of u, f; is a holomorphic map in a neighbourhood of K(f;)
(because K (f;) = ¢+(K(P.))). We would like f = f; to define a germ
[f] € H,, that is why we require t — ¢; to be continuous with ¢y = Id.

e We have construct [f] € H, starting from ¢ € M and g € £. But we used
a particular construction. We have to show that [f] does not depend on
this construction, but only on ¢ and g. We also need to check that g is
indeed the external map of [f].

Lemma 3. For every t € [0,1], the map g: is an external map of fi.

Proof : Construct an external map for f; as in the previous section : we set

to be the family of holomorphic one-to-one mappings normalized such that 1y =
¢. and

Gr=1; "o froty

As in the construction of the external map for any p.l.-mapping, we can extend
g: analytically accross T by use of the Schwarz reflection principle. Note that
we require g; to be such that g;(1) = 1 in order to be an external map for f;.
Now, set

¢:C\D—>C\D

to be the quasiconformal map such that
G=v; ' ogiol

Then
(rogo=1; ' ogioeogo
and because f; o ¢y = ¢ o P, and . 0 Py = P, o &,

GioGi=1; o frothop; ool =9 ogoP.ol =1 og 0l 0g0

So (; is conjugating go to g; and its Beltrami differential coincides with the one
of hy. Then oy = (; 0 ht_1 is a rotation that conjugates g; with g, :

0t 0gt = gt ©0¢

But g; € £ so g¢+(1) = 1, and using the previous equality, this gives g; o 0¢(1) =
o+(1). As oo = Id, by continuity we get o+(1) = 1. But oy is a rotation fixing 1
so 0; = Id and in the end,

gt = gt

So g; is an external map for f;.
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The mating [f] does not depend on the above construction First,
suppose that the path g¢; is chosen. We will begin by showing that with g;
given, f; does not depend on the choice of the family of conjugacies h;. To
prove this, let h; ba another family of continuous quasiconformal conjugacies
with p; = h; ! o b} commuting with gy near T :

Pt © 90 = go © Pt
Now let us have a look at o; = £. 0 p; 0 £, 1. Then
Pogy = Pcofcoptofgl :fcopooﬂtofgl :fcoptopoofgl :fcoptofglopc

Thus P.o g = o o P.. Next, we extend g; to the whole plane C setting o; = Id
on K(P,). It can be shown, using the pullback argument, that g, is a quasicon-
formal homeomorphism. We will assume it for the end of the proof.

Now, if we denote by (g).us the Beltrami differential of f o g (where py is
the Beltrami differential of f- this the notation introduced in the section where
we defined Beltrami differentials), we can build u; as the Beltrami differential
of h} o & and extend to the whole plane setting p; = 0 on K(P.), as it was
done in our construction of the mating. But denoting by v; the Beltrami differ-
entials of h}, this also gives u; = (&.)«v; and as v, is the Beltrami differential
of h} = hy o pt, we get v, = (pt)«V4, where v is the Beltrami differential of h.
Putting everything together,

1y = (&)« ((pe)rt) = (Ec0 pr 0 €71 )i = (00)spte

But as ¢; solves the Beltrami equation for p;, we get that p} is the Beltrami
differential of ¢, = ¢ o g;. Then defining the family of mappings f/ = ¢} o P. o

7!, as it was done in our initial construction, we get that [f'] = [f] is the
mating of P, and g; with quasiconformal conjugacies h;. As g; is commuting

with P, near K(P,), we get that
fi = ¢roPeod ! = progroPeogy oy | = groPeogioy oy = groPeody | = fy

This proves that the mating does not depend on the family of conjugacies h;.

Now, it remains to show that the endpoint of the family f;, ie f = f1, does
not depend on the path that links go to g. Suppose that g; is another path
connecting go to g. Then, as the space £ is simply connected, we can choose an
homotopy g¢; for s € [0,1] connecting g? = ¢; to g} = g; for all t € [0,1]. We
can then construct, for every fixed s € [0, 1], the mating of P. and the path ¢;,
denoted [ff] € C. But we can choose the corresponding hybrid conjugacies ¢;
(so that f7 = ¢ o P.o(¢;)~1) in such a way that they depend continuously on
t and s. Then for every s, g is an external map for f7. If we denote by

¥*: C\D — C\ K(f7)
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to be the holomorphic one-to-one mapping conjugating f7 to g, we can choose
these conjugacies 9® so that (¢*) is a continuous family. Now define ¢* : C — C
such that
0" = (¥°) todi) o (%) ogl)

outside K(P.) and ¢°* = Id on K(P.). Then after some computation, ¢° com-
mutes with P.in anouter neighborhood of K(P.). Using again an argument of
pullback, we can show that ¢® is a quasiconformal homeomorphism. The hybrid
conjugacy between f and f; then takes the form

= ¢io0% o (¢)
We see that
T8 =¢f0(¢5) oo ()T oglo(¢f) Tt = o (v°) !

But the ¢° are holomorphic and one-to-one, which means that tau® is an analytic
conformal mapping outside K(f{). Thus 7% is a hybrid conjugacy and it is
conformal outside K (f?), so it is affine. Moreover, 70 = Id. The germs [f{] are
normalized such that 7° is tangent to z — €>™*/(=1) for some k € Z/(d — 1)Z.
But if k£ # 0 for some s, it contradicts the continuity of s +— 7°. Then 7° = Id
for all s € [0,1]. In particular, the initial and final points coincide : f{ = fi.
We conclude by saying that we have construct a well defined mapping (called
the inter mating) £ x M — C. We will denote the mating of P, for ¢ € M and
ge&by f=ilg) eC

The intern mating is a homeomorphism Here we are going to give an
outline of the proof of the following : the intern mating

{ ExM—=C
(9,¢) = ic(g)

is a continuous and bijective.

e We begin with the continuity ; the continuity with respect to g, uniformly
with respect to c¢ is directly given by the construction of the mating. So
we just need to show that for a given g € &€, ¢ — i.(g) is continuous. We
take a sequence ¢,, € M such that ¢, — ¢, as in the initial construction,
we connect gy to g with a path g;. In that way, we build a sequence of
paths f;, =1, (g:) and it is reasonable to say that taking a subsequence,
(ft,n) converges uniformly to a path f;. Then the path f; lies into H..,
this means that f; and P. are hybrid conjugate. The proof is a little bit
technical. Now, if we let

¢im : C\D — C\ K(fin)

be the map that conjugates each f;, to its external map g; and taking the
limit as n — oo, we define a ¢; and g, is the external map of f; through
the conjugacy ¢y, ie fi = i.(g:). We conclude by saying that
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which is the definition of the continuity of ¢ — i.(g).

e Now we look at the bijectivity as follows : we remark that a polynomial
P, has a single preimage (P, c) through the mating. Now if we connect
P, to any map f € 7—76 with a path, since i;1(P.) = P, each i. : & — 7-76
is a bijection. But in that case, H,. contains a single polynomial (P,) and
all the hybrid leaves are distinct. Thus we have a bijective mating because
C is the union of these hybrid leaves.

e we conclude by saying that the mating is a homeomorphism & x M — C.

The inverse of the mating will be denoted (7, x) : C — & x M. =7(f) will give
the canonical external map in £ of any [f] € C and x(f) € M will give the
canonical straightening of [f].

Note. 1. A function f is said to be equivariant with respect to complex con-
jugation if we have f o Id = f o Id. The construction of the mating is
equivariant with repect to complex conjugation, ie the external map, the
straightening and the mating are equivariant with respect to complex con-
Jugation.

2. ic, oi_ transforms Beltrami paths in ’ﬁcQ into Beltrami paths in ﬁcl
So now we can regroup the above proofs into a final result :

Theorem 8. The inverse of the mating constructed above gives a canonical
choice of the straightening x(f) € M and the external map 7(f) € £ associated
to every germ [f] € C. Moreover

o (m,x):C— & x M is a homeomorphism.

e Given ¢ € M, the associated hybrid leave H,. is the preimage of the
straightening ¢ : H. = x"1(c). Then 7 restrict to a homeomorphism

71'02,}:[\0—>5

We denote by i. its inverse and we get the canonical mating.
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Chapter 4

Carathéodory metric and
Schwarz lemma

4.1 Schwarz lemma and hyperbolic metric

4.1.1 Schwarz lemma

We now state the famous Schwarz lemma, saying that a holomorphic map of D
either contracts D or is a rotation.

Theorem 9 (Schwarz lemma). Given a holomorphic map f : D — D with
f(0) =0, we have that |f'(0)] < 1. Then we have two cases :

o if the equality holds, ie |f'(0)] = 1, then f(z) = az with |a] = 1, meaning
that f is a rotation about the origin.

o if the inequality is strict, ie |f'(0)] < 1, then |f(2)| < |z| for all z € D*.

Proof : The proof is based on the maximum modulus principle. We define

oo =] s 0
f0)ifz=0

Then g : D — C defines a holomorphic function.

e Note that if |2| = r for some r < 1, then |g(z)| < 1. By the maximum
modulus principle, we have that, for all z € D(0,r), |g(z)| < % Taking
the limit as r — 1, we get |g(z)| <1 for all z € D.

e The case of equality is equivalent to |g(z)] = 1 for some z € D. By the
maximum modulus principle, g is constant. So ¢g(z) = a for some |a| =1
: f(2) = az is a rotation.
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e If we exclude the previous case, we have that ’@

[F'0)] <1,

< 1for all z # 0 and

4.1.2 Hyperbolic metric on D

In what follows, we will denote by |dz| the common norm in C. Let S be any
Riemann surface.

Definition 22. Given a positive and smooth function p defined on S, we define
a conformal metric p|dz| on S. We will also denote the metric p.

We then define the Poincaré/hyperbolic metric on D :
Definition 23 (Hyperbolic metric on D). The conformal metric with pp(z) =

17”2 on D is defined to be the hyperbolic metric on D.
— |z

This hyperbolic metric induces a distance in D : let z,w € D, and join z and
w with a smooth path v in D. We define the hyperbolic length of v by

I(y) = / pp(2)]dz] (4.1)

We can then define the hyperbolic distance between z and w by taking
the infinimum over all paths « joining z and w and lying in D.

dp(z, w) = infi(y) (4.2)

Definition 24. Here we define the notion of isometry, which is important be-
cause we will see soon that it is linked to automorphisms of the disk.

o We say that a holomorphic map f : D — D is an isometry with respect
to the hyperbolic metric if for all z € D,

po(f()If'(2)] = pp(2) (4.3)

e we say that [ is an isometry with respect to the hyperbolic distance if for
all z,w € D,

dp(f(2), f(w)) = dp(z, w) (4.4)

We let Aut(S) stand for the group of all conformal automorphisms of a given
Riemann surface S. It can be shown that Aut(D) consists of M6bius maps of
the form

67;0 zZ—a

Z (4.5)

1—az
for some 0 € R and a € . In fact, the group of automorphisms and the
group of isometries coincide.
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Theorem 10. Given a holomorphic map f : D — D, the following statements
are equivalent :

1. f € Aut(D)
2. f is an isometry w.r.t. the hyperbolic metric.
3. f is an isometry w.r.t. the hyperbolic distance.

For more simplicity, in the two last cases we will just say that f is an isometry.

Proof :
L, Z—a
e 1. implies 2. because f(z) = 6191 — for some § € Rand ¢ € D. In
—az
particular,
1—|af?
f'(z) = a2 (4.6)
Thus we have
!/ 2 ! 2
po(f(2)|f'(2)| = W\f ()| = W: pn(2) (4.7)

e We now show that 2. implies 1. Given an isometry f of the hyperbolic
metric, we can choose g € Aut(D) such that g(f(0)) = 0. Consider h =
go f. Then by assumption we have that

po(R(0)) | (0)] = 21 (0)] = pp(0) =2

Thus |k/(0)] = 1 and h(0) = 0 ; by Schwarz lemma, h is a rotation that
fixes 0, meaning that h € Aut(D). Then f = g~' o h € Aut(D) by group
properties.

e To prove that 1. implies 3., we take f € Aut(D) - so f is also an isometry
with respect to the hyperbolic metric- and we look at I(f o~y) for any path
v lying in D :

uwwzéomwwM=/m0@wvwm=m>

Consequently, for all z,w € D, we have that dp(f(2), f(w)) < dp(z,w).
But f € Aut(D) so we can apply the same argument for f~!, leading
to dp(z,w) < dp(f(z), f(w)), ie f is an isometry with respect to the
hyperbolic distance.
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e Finally, we show that 3. implies 1. Let f be a holomorphic isometry with
respect to the hyperbolic distance. We choose g € Aut(D) such that
g9(f(0)) = 0. We consider h = go f. h is a holomorphic isometry such
that ~(0) = 0 and using the assumption,

dp(h(0), h(z)) = dp(0, h(2)) = dp(0, z)

This means that |h(z)| = |z| ; by Schwarz lemma, h is a rotation about
the origin so h € Aut(D) and f =g~ ! oh € Aut(D )

We have an explicit expression for the hyperbolic metric, but it could be
useful to have an explicit form for the hyperbolic distance too. The next result
will not be proved.

Theorem 11. Given z,w € D, the explicit form of the hyperbolic distance is

dp(z,w) = 2tanh™! i (4.8)

— ZW

Another useful result on the hyperbolic metric is that it is the only Rieman-
nian metric that is invariant under the action of Aut(D), up to a constant. This
enables us to give a stronger form of the Schwarz lemma. Note that we can also
define a distance dp such that
z—w expdp(z,w) —1
~ expdp(z,w) +1

op(z,w) = (4.9)

1—zw

Op induces the unique invariant metric under Aut(D) such that 6p(0, z) = |z|.
We call dp the pseudo-hyperbolic distance. We will now state the stronger
form of the Schwarz lemma with respect to these two metrics.

Theorem 12 (The Schwarz-Pick lemma). Suppose we are given some holomor-
phic function f: 1D — D. Then either

e f contracts the hyperbolic distance and the pseudo-hyperbolic distance : for

all z,weD
dp(f(2), f(w)) < dp(z,w) (4.10)
po(f()If(2)] < pp(2) (4.11)
(f(Z),f(w)) < Op(z, w) (4.12)

e [ is an isometry : f € Aut(D) and for all z,w € D,

dp(f(2), f(w)) = dp(z,w) (4.13)
po(f()If'(2)] = pp(2) (4.14)
on(f(2), f(w)) = dp(z, w) (4.15)



Proof : for the case of an isometry, this is the same result than theorem 10.
Suppose f is not an isometry and take z,w € D. Choose g,h € Aut(D) such
that g(z) = 0 and h(f(z)) = 0. Consider u = ho fog~!. Then u is holomorphic
and fixes 0 ; it is not an isometry (as g and h are isometries, if © was an isometry,
then f would be an isometry too, but we supposed the contrary). By Schwarz
lemma, for all z € D

dp(0,u(z)) < dp(0, 2), dp(0,u(z)) < dp(0,2) and |u'(0)] < 1

But ug = hf, and as g, h are ismoetries, we have :

dp(f(2), f(w)) = dp(hof(z), ho f(w)) = dp(ueg(2), uog(w)) = dp(0, ucg(w)) < dp(0, g(w))
But

dp(0, g(w)) = dp(g(2), g(w)) = dp(z,w)
Finally,

dp(f(2), f(w)) < dp(z,w)

Obviously, we can do the same for dp. To obtain the "metric" inequality, we
only need to derive the equality ug = hf.

4.2 Hyperbloic Riemann surfaces

Remember our brief study of Riemann surfaces : every Riemann surface S is
conformally isomorphic to a quotient S/G, S being a simply connected Riemann
surface called the universal covering of S. By uniformization theorem, it is
conformally isomorphic either to C, C or D.

Definition 25. We say that a Riemann surface S is hyperbolic if its universal

covering is conformally isomorphic to D, or, equivalently, to the upper half plane
H.

As we have done for the unit disk, we can define a hyperbolic metric pgs on
any hyperbolic Riemann surface and build its corresponding hyperbolic distance
ds. Here we are going to extend the Schwarz lemma in a natural way : instead
of considering holomorphic maps f : D — D we will consider f : S — T where
S and T are two hyperbolic Riemann surfaces.

Theorem 13 (Schwarz-Pick). Given a holomorphic map f : S — T between two
hyperbolic Riemann surfaces S and T, then f contracts the hyperbolic distance
: for z,w € S, we have that

dr(f(z), f(w)) < ds(z,w) (4.16)

If equality holds for some z # w, then f is a conformal isomorphism between S
and T.
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4.3 Path holomorphic structure and Carathéodory
pseudo-metric

4.3.1 Path holomorphic maps

Arthur Avila and Mikhail Lyubich state the Schwarz lemma in a different way
than the previous section. They introduce path holomorphic configurations. If
we are given a space X, and a family H(X) of maps v : D — X, we say that
H(X) is a path holomorphic structure if the following stands :

e H(X) contains the constant maps
e for all v € H(X) and holomorphic map ¢ : D = D, yo¢ € H(X)

The elements of H(X) are called holomorphic paths, and X is a path holo-
morphic space.

Now we are interested in maps between two path holomorphic spaces. Our
goal is to state the Schwarz lemma for such a configuration. Given two path
holomorphic spaces X, Y, we say that a map ¢ : X — Y is path holomorphic
if for every holomorphic path v : D — X, the composition ¢po~y : D — Y is itself
a holomorphic path (with respect to V). We will denote by H(X,Y") the space
of path holomorphic maps from X to Y.

Note. o A simple example of a path holomorphic space is a complex Ba-
nach manifold. In this configuration, path holomorphic is just the same
as holomorphic in the usual sense.

e If Y C X is a subset of a path holomorphic space X, Y can be viewed as a
path holomorphic space : if we denote by I 1Y — X the natural inclusion
of Y into X, theny:D—-Y e HY) if loy € H(X).

4.3.2 Carathéodory pseudo-metric

Given a path holomorphic space X, we define the fllowing pseudo-metric, called
the Carathéodory pseudo-metric : given any z,y € X,

ox(z,y) = sup Op(p(x), d(y)) (4.17)
PEH (X,D)
where dp is the distance defined in (4.9). A path holomorphic space X is
called Carathéodory hyperbolic if the pseudo-metric d x is a metric. This is
true if and only if bounded path holomorphic maps on X separate points (for
x # x' in X, there is at least a bounded path holomorphic map ¢ such that
o(z) # o(y))-
All this background enables us to state a first (weak) form of the Schwarz
lemma, :
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Theorem 14 (weak form of the Schwarz lemma). Given a path holomorphic
map ¢ : X — Y between two Carathéodory hyperbolic spaces X and Y, ¢ is
weakly contracting : for any z,z’ € X,

dy (¢(x), ¢(a)) < dx (x,2") (4.18)

In particular, using the Schwarz lemma, any subset Y C X of a Carathéodory
hyperbolic space is itself Carathéodory hyperbolic.

Lemma 4. Suppose we are given a complex banach space denoted B. Let B
stand for the unit ball of B. Then

o 3y is Carathéodory hyperbolic with dp, (x,0) = ||z|| for every x € By.

e A path olomorphic space X is Carathéodory hyperbolic if and only if there
exists a holomorphic injection X — By for some Banach ball ;.

IfY C X is asubset of a path holomorphic space X, we denote by diam x (V)
the diameter of Y with respect to the pseudo-metric in X. We say that the
subset Y is small if diamx(Y) < 1. The next result intuitively says that
smaller is the subset in X, stronger the Carathéodory defined on it will be.

Lemma 5. If we are given a small Y C X where X is a path holomorphic
space, then for all z,y € Y,

Ox(z,y) < diamx (Y)dy (z,y) (4.19)

Proof :

Take r > diamx(Y), then for all ¢ € H(X,D) normalized so that there
exists some xg with ¢(z9) = 0, we have that ¢(Y) C D(0,r). Now for all such
¢, consider ¢ = %d)ly. Obviously, v € H(Y,D). Then for all z,y € Y, as the
set of such functions % is included in H (Y, D), we have

Sy(y,y') = sup dp(¢(2),¢'(y)) = sup dp(yh(x),P(y)) =

'€ H(Y,D) ¢ H(X,D)
But
1 1
sup  Op(P(z),¥(y) = = sup  p(Py(z),dy(y) == sup dn(d(z),d(y))
GEH(X,D) T peH(X,D) T peH(X,D)

And supye pr(x,p) 00 (9(2), p(y)) = dx (2,y), so finally we get

1
oy (y,y') > ~0x (z,y)

Now take r — diamx (Y, this gives the result :
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Ox(z,y) < diamx (Y).0y (x,y)

This enables us to give a much stronger form of the Schwarz lemma, in the
sense that the contraction becomes a diamx (Y)-Lipschitz function. This will
obviously be a key-point for the proof of the exponential contraction.

Theorem 15 (strong form of the Schwarz lemma). Suppose we are given a path
holomorphic map ¢ : X — Y where ¢(X) is small in the sense defined above.
Then ¢ is strongly contracting : for all z,z' € X,

dy (¢(x), ¢(2)) < diamy (¢(X)).0x (z, ') (4.20)

Proof :
We have that ¢(X) C Y, so we can consider ¢g = ¢ : X — ¢(X). If we
apply the weak form of the Schwarz lemma to ¢g, we get, for all z,2’ € X :

d(x)(Po(x), ¢o(z")) < dx (x,z") (4.21)
But applying the previous lemma to ¢(X) C Y, with ¢(X) small, we have :

Oy (¢(x), ¢(2")) < diamy ($(X)).0p(x)(do(), do(a")) (4.22)
Putting (4.21) and (4.22) together, we get the result :

dy (¢(x), ¢(2')) < diamy ($(X)).0x (x,2")

4.4 Link with the Hybrid leaves configuration

Here we are going to use the theoretical things introduced above to our situation
in the previous chapter. Remember the notion of hybrid leaves H, : they are
the connected components of H., the hybrid class of the polynomial P, with
c € M. We would like to have a path holomorphic structure on H, to apply
the Schwarz lemma stated above.

Definition 26. Suppose we are given a continuous family of germs (fx : Uy —
V) € H. where A € D and a holomorphic motion (hy)xep of C over D with
basepoint 0, both of them such that :

e ha(K(fo)) = K(fx)
e Ohy =0 a.e. on K(fo).

L] h)\OfO:f)\Oh/\ on K(fo)

Then (fx: Uy — V) € ﬁc is said to be a holomorphic path in ﬁc.
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Recall the definition of a Beltrami paths : in particular, they are holomor-
phic paths but the two notions coincide locally. Now, remember that when we

constructed the mating
{ ExM—=C

(g,¢) > ic(g)
in the end we said that given ¢i,c2 € M, 4., © ic_zl transforms Beltrami paths in
7—702 into Beltrami paths in ”;qcl. With this statement and the above definition
of holomorphic path, given a holomorphic path (fy : Uy — VA) € ’ch, ie, O 1
will take (fy : Uy — Vi) € He, into a holomorphic path into 7., -
Thus ”;Qc inherits a path holomorphic structure. The next step is to get a

Carathéodory hyperbolic space in order to use the Schwarz lemma as in the
theoretical way of the last section. We have the following :

Theorem 16. Let ¢ € M. Then the hybrid leaf H,. is Carathédory hyperbolic.

Proof By th previous discussion, if we prove the Carath6dory hyperbohc prop-
erty for a hybrid leaf H.. for some ¢ € M, every other leaf "HC/ for some ¢’ € M
with ¢ # c is also Carath6édory hyperbolic because i o i_ ! will take any holo-
morphic path in 7—70 to a holomorphic path in 7—76/ and thus transfers the Carathé-
dory hyperbolicity structure. So if the hybrid leaf H, is Carathodory hyperbolic,
the result follows. To prove that H, is Carathéodory hyperbolic, we can use
lemmad4 ; this means proving that #y holomorphically injects in a Banach ball.
To achieve this, we need two results of complex analysis. We won’t prove these
results.

The first result is the Bottcher theorem. Suppose we are given a germ [f]
(any germ, not necessarily [f] € C) such that its representatives f : C — C fix
0 (0 is a superattracting fixed point) and can be written

f(2) = az? + Oz
Denote by fo : z — az”.

Theorem 17 (Bottcher theorem). If a germ [f] is as above, there exists a germ
of analytic maps ¢ : C — C fixing 0, tangent to the identity map at 0 such that
¢o f= foo¢ in some neighborhood of 0 :

$(f(2)) = a((2))*
¢ is called the Béttcher coordinate of [f].
In our case, f € ’}-A[O So its representatives can be written
f(z) = 24+ Oz

and the Botcher theorem gives the existence of a germ [¢] of analytic maps
tangent to the identity at 0 such that

#(f(2)) = (¢(2))
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in a neighborhood of 0. Note that in particular, D$(0) = 1 and fy = Fy. One
can restrict this ¢ to an analytic one-to-one map (we keep the same notations)
from intK(f) and onto intK(Py) =D :

¢ intK(f) > D
Here, we need a second result called the Kéebe-1/4 theorem :

Theorem 18 (Ko6ebe-1/4 theorem). Let f be an univalent map on D, that is a
one-to-one and analytic function ; Suppose f(0) = 0 and f'(0) = 1. Then the
disc D(0,1/4) centred at the origin and of radius 1/4 is contained in the image
of D, f(D):

D(0,1/4) =Dy/4 C f(D)

Note that our map ¢ is one to one and onto, so we can apply the Kéebe-1/4
theorem to ¢! : D — K(f) : indeed, ¢~ 1(0) = 0 and (¢~1)'(0) = 1 ; The
Koebe-1/4 theorem applied to ¢! gives

D(0,1/4) C ¢~ (D) = K(f)

Now, we have the necesarry ingredients to prove that ’;‘EO holomorphically injects
in a Banach ball. In fact, we are going to prove that Hy holomorphically injects
into Bp, for some 0 < r < 1/4, where By stands for the Banach space of
holomorphic functions in U and continuous in U. By the principle of analytic
continuation, the restiction operator

Ir:ﬁo — B]D)T
= fo,

is injective. Omne can also show that it is a bounded operator, ie for f € ’;Qo,
fip,. can be bounded in terms of . This proves that there exists a Banach ball
By, (r) such that I,(Ho) C Bp, (r). The most important thing to prove is that
I, is path holomorphic. If we are given a holomorphic path in ﬁo, we need
to prove that its image through I, is still a holomorphic path in Bp,. But a
holomorphic path (f)) C Bp, is just a family of maps such that

DxD, — C
(Az) = falz)

is holomorphic in (A, z) € D x D,.. So if we prove the following lemma, we are
done

Lemma 6. If (f\) is a holomorphic path in ’;qo, then

DxD, — C
(A 2) = fa(z)

is holomorphic in (X, z) € D x Dy 4.
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Proof. Take a holomorphic path (fy) in 7:20. By definition, there exists a holo-
morphic motion hy : C — C, with A € D and 0 as basepoint, such that
ha(K(fo)) = K(fx), hao fo = faohx on K(fy) and holomophic on intK (fo)
(because Ohy = 0 on intK(fo)). Then

D x intK(fo) —= Uxep ({A} x intK(fy))
()‘72) = ()‘7h>\(z))

is easily holomorphic on D x intK(fp). But then

(A ha(2)) = fa(z) = hao foo hi'(2)
is also holomorphic. So
(A 2) A fia(z)

is holomorphic on (D x D(0,1/4)) C D x intK(fo). O

We conclude that 7/{\0 holomorphically injects in a Banach ball. Then it
is carathdédory hyperbolic, and as the Carathéodory hyperbolicity of one hy-
brid leaf implies the Carathéodory hyperbolicity of any other hybrid leaf, every
hybrid leaf . is carathédory hyperbolic.
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Chapter 5

Renormalization and bounds

Now, we are going to introduce the renormalization operator R. Remember
that our goal is to prove exponential contraction of this operator along hybrid
leaves.

5.1 Renormalizable maps, renormalization oper-
ator

Mac Mullen defined the notion of renormalizable quadratic-like maps (ie p.l.-
maps with d = 2) as follows ; given a quadratic-like map f, we say that f is
renormalizable if there exists n > 2 and two open topological discs U,V C C
such that f* : U — V is itself a quadratic-like map with connected Julia set.
Mac Mullen calls (U, V') a choice of the renormalization.

Then Mac Mullen proves that two renormalizations of f will have the same
filled Julia set. Suppose we denote by K, (f) this filled Julia set. Then for j =
1,...,n we defined the little filled Julia sets as the images KJ = f/(K,(f)). We
have the following result, which will be important in our further developments :

Theorem 19. The little filled Julia sets do not touch, except at a repelling fixed
point of f™.

This result can be generalized in the case p.l.-maps. Now, let us define the
notion of renormalizable p.l.-maps :

Definition 27. Let f : U — V be unicritical p.l.-map of degree d. f is called
renormalizable with period p > 1 if the following three conditions hold :

1. There exists a topological disc W C C with 0 € W such that the restriction
g = fﬁ/v W — W' is a p.d.-map of degree d. g is called the pre-
renormalization of f.

2. The little filled Julia set K(g) is connected.
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3. K(g) does not touch the other little Julia sets K;(g) = f1(K(g)) for j =
1,...,p — 1, except perhaps at one of its B-fized points.

We will say that a p.l.-germ [f] € C is renormalizable if it has a renormalizable
representative g € [f].

Now we can define the renormalization operator R. Given a renormalizable
f, take a pre-renormalization g with the smaller possible period. We normalize
g so that g behaves near 0 like the p.l.-maps we define before :

Rf(Z) = Aflg()\z) — ,d Yo+ O(ZdJrl)

We are suppose to work with R along the hybrid leaves, so we need to check if
R maps hybrid leaves into hybrid leaves.

Lemma 7. R takes Beltrami paths to Beltrami paths.

Proof : let ([fa], ha) be a Beltrami path in some renormalizable hybrid leaf.
For [fo], we let fo : Uy — V; be a representative of the p.l.-germ [fo]. We assume
that Vp will be small enough so that fy let the Beltrami differentials uy of hy
invariant for all A € D. Suppose go = f : Wy — W] is a pre-renormalization
of fo. Then all puy are invariant through go. But then gy = hy o gg o h;\l is a
pre-renormalization for fy. If we denote by a, the affine map that normalize
g, it is in fact such that gy o ay = a) o Rf), ie it conjugates gy and R fy. But
then the pair (Rfy,ax o hy o a/(l) becomes a Beltrami path.

Proposition 3. R maps hybrid leaves into hybrid leaves

Proof. Using the above lemma, as the hybrid leaves are the connected compo-
nent of the hybrid class, the result follows. O

So it enables the renormalization orperator to be applied more than one time
on a given map. This is why a map can be n times renormalizable : in fact,
it is renormalized a first time with a period p; say. But then we renormalize
Rf with a period p, ; we get R?f that we can renormalize again etc... until we
reach R" f wich can’t be renormalized if the map is only n time renormalizable.
It is natural to generalize this concept to infinitely many times renormalizable
maps. In that case, we get a sequence of periods (p,)n>1. In particular, if
(Pn)n>1 is a bounded sequence, f is said to have a bounded combinatorics.
The notion of infinitely renormalizable germ then follows ; it means that
the germ possesses an infinitely renormalizable representative.

For our further developments, we will use the following notations ; Z C C is
the subspace of infinitely renormalizable germs. C®) will denote the space of
p.l.-germs that are hybrid equivalent to real p.l.-germs in C®. We can then de-
note by Z® = ZNC®) the set of infinitely renormlizable germs that are hybrid
equivalent to the real ones.
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5.2 A priori bounds

In our further developments, given any ¢ > 0, we will denote by C(e) the set of
all [f] € C with mod [f] > e. More generally, for a set A C C, we will denote
by A(e) the subset of germs in A such that mod [f] > e. Mac Mullen has
shown that C(e) is compact, proving that any sequence f, : U, — V,, so that
the euclidean diameter of K(f,) is one has a convergent subsequence. We also
have that for any compact subset X C C, K is contained in C(¢) for some & > 0.

Definition 28 (a priori bounds). An infinitely renormalizable germ f € C is
said to have a priori bounds if for some ¢ > 0, its renormalizations R™ f,
n=1,2,... are such that

mod R"f > ¢

meaning that R"f € C(e) forn =1,2,....

Now we are going to state a result that gives an idea of the size of the little
Julia sets for an infinitely renormalizable map with a priori bounds. Remember,
it g is the pre-renormalization of f with period ¢, we denoted by K;(g) =
f7(K(g)) the little Julia sets for j = 0, ...,q — 1. In fact, if we denote by (fn)n>1
the sequence of pre-renormalizations and (¢, )n>1 the sequence of total periods,
the diameters of these little Julia sets exponentially decay with n :

Proposition 4. Given f € C an infinitely renormalizable p.l.-map that has a
priori bounds, we denote by (fn)n>1 its sequence of pre-renormalizations and
(gn)n>1 the corresponding sequence of total periods. Then there exist real con-
stants C' > 0 and A < 1 such that

max diamK,,(f,) < CA\" 5.1
. (fn) (5.1)

C and X\ only depend on the a priori bounds.

Avila and Lyubich prove this result showing the existence of a 6 > 0 only
depending on the a priori bounds such that for all ny < ny and my € Z/q,,Z,
mo € Z/qn,Z with K, (fn,) C Km, (fn,) the Carathéodory distance between
Ky (fn,) and K, (fr,) is at least d.diam (K, (fn,)). But repeating this a
second time for a certain ng > ny with ms € Z/qn,Z such that K,,,(fn,) C
Ky (fny), we will find that the Carathéodory distance between K, (fn,) and
Ky, (fns) is at least d.diam(Kp,(fn,)).- Repeating this a certain amount of
time, we clearly get the existence of an integer k > 0 such that for all n’ > n+k,

diam(Km/ (fn/)) < %-diam(Km(fn))

k depends only on the a priori bounds and is bounded ; the exponential decay
follows, with X ~ (1/2)/%,
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5.3 Beau bounds

5.3.1 Definition

Definition 29. We say that a family of infinitely renormalizable maps F with
a priori bounds has beau bounds if there exists €9 such that for any 6 > 0,
there exists an integer ng such that for oll f € F with mod f >4, and n > ng

mod R"f > ¢ (5.2)

Why is it stronger than a priori bounds? A priori bounds for a a family
F of infinitely renormalizable maps provides for every f € F a constant ¢ > 0
such that mod R™f > e. ¢ depends on the infinitely renormalizable germ.
Beau bounds gives a uniform bound &g for every maps in the family, provided
the pre-renormalization f,, are such that n > ns, where ns depends only on the
constant ¢, that is to say only on the family of maps (because mod f > § in
this family) and not on every map of this family.

Kahn and Lyubich have proves that a certain class of p.l.-maps have beau
bounds, using a theory of "decorations" and "molecules". However, beau bounds
for general complex maps is a very difficult result to prove. Though, this gives
the exponential contraction that we need.

5.3.2 (C,¢)-closeness between germs in C

Here we are going to state a notion that will be useful to prove intermediate
results.

Definition 30. Suppose we are given two p.l.-germs [f1], [f2] € C and two real
constants C > 1 and € > 0. Then [f1] and [f2] are said to be (C,e)-close if
they have p.l.-representatives, f1 : Uy — Vi and fy : Us — Vo respectively, such
that

e mod (V1 \U)>e and mod (Vo \Us) > e.
e there exists a quasiconformal homeomorphism
h:C\U; = C\ U,
such that Dilp, < C and ho f; = fooh on 0U;y

Here are some results about this property between germs. The first result
states that the quasiconformal homeomorphism A can be extended to a hybrid
conjugacy in the case where the germs are hybrid equivalent.

Proposition 5. Suppose that two given germs [f1], [f2] € C are (C,¢)-close with
quasiconformal homeomorphism h such that Dil;, < C. Moreover, suppose that
[f1] and [f2] are hybrid equivalent. Then h can be extended to a hybrid conjugacy

h between [f1] and [f2]. The dilatation Dil; is also bounded by C.
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The proof of this result is based on the pull-back argument. The next result
links the compact set C(g) to the notion of (C,e)-closeness.

Proposition 6. Suppose €9 > 0 and take two germs [f1],[f2] € C(eo). Then
for every e such that 0 < £ < &g, there exists a constant C > 1 such that [f1]
and [f2] are (C,e)-close.

The next result is a stronger form of the previous one. It states that if we
take two close germs, the constant C' can be taken closer to 1. Thus, in order to
state it, this is more convenient to take two sequences of germs ([f1]n)n>1 and
([f2]n)n>1 converging to the same limit : roughly speaking, as n grows, [f1]n
and [f2], will be closer and closer.

Proposition 7. Given two converging sequences of p.l.-germs ([fi]n)n>1, ([f2ln)n>1 €
CN, both converging to the same limit, there exists ¢ > 0 and a sequence of real
numbers (Cp)n>1, Cp, > 1, such that

o lim, .. C, =1

o [filn and [f2]n are (Cp,e)-close (for n sufficiently large)

5.3.3 Beau bounds imply exponential contraction

As we have proved that ’;qc is Carathédory hyperbolic for any ¢ € M, we
would like to use the Schwarz lemma along hybrid leaves to prove exponential
contraction. But we need to make the assumption of beau bounds to prove
this result. We will begin with a lemma stating that the diameter of the set of
functions in H, with mod f > & with respect to the pseudo metric in 7, (5)
for some 0 < § < ¢ is less than one.

Lemma 8. Given some € > 0, there exist two constants (depending on €) 6,
0<d<eand~vy <1 such that :

~

Ve e M, diamg ©) He(e) <

Proof. e Suppose ¢ € M. If we take [f1],[f2] € ’rqc(z-:), then by proposition
6, for all &’ < ¢ there exists C' > 1 such that [f1] and [f2] are (C, €’)-close.
But we can take ¢’ = ¢/2 for instance. So [f1] and [f2] are (C,e/2)-close
and we can denote h the quasiconformal homeomorphism of the definition
of (C,e)-closeness.

But as [f1],[f2] € 'rqc(s), they are hybrid conjugate : by proposition 5,
we can extend h to a hybrid conjugacy h : C — C with Dil, < C. Dealing
with the beltrami differential p = %, this is equivalent to the existence
of a constant r = r(e) < 1 such that ||p||c < 7(e).
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e Now, consider a Beltrami path

D, — ﬁlc
DA = fa=hyofioh;,

Oh
where h,, is the solution of the Beltrami equation e Apand p = %

Note that p > 1 and ¢(0) = fia=o = f1 and ¢(1) = fa=1 = f2. So hy,
hybrid conjugates fi and fy. In particular, if hy, has a dilatation Dil,,, <
K, the fundamental annulus of fy will have modulus mod f;/K > ¢/2K
(because mod f; > &/2). Tt is enough to show that K is a function of r.

In particular,
1+r

ulloo = [ALlplloo < por =

1+z
Thus, because x +— T

is non decreasing for x > 0,
T+ [ Mulloe _ 14+4" 347

Y e

Dily,, = K

Thus, denoting by § = /2K, we have mod fy > & and because hy,,
hybrid conjugates f; € H. to fau, we have that fr, € ﬁc(é) ; but the
beltrami path is a path holomorphic map, so by the weak form of the
Schwarz lemma we have that

510, o) (f1s f2) = 575 (®(0), B(1)) < b, (0,1) = p~* =5 < 1
We conclude with

diamﬁcw)ﬁc(s) <y<l1
O

Now, consider a family F € C of infinitely renormalizable maps, which is
forward invariant with R (ie R(F) = F) with beau bounds. We set g9 > 0 to
be the beau bound for F : for all § > 0, there exists an integer ngs such that,
for all f € F with mod f > § and for all n > ny,

mod (R"f) > &g

We shall also assume that F is a union of hybrid leaves ; remember that R maps
hybrid leaves into hybrid leaves, so it makes sense to consider such an union.

~

We will denote by c¢,, the straightening of R"™(#..) for every integer n.

By lemma 8, one can choose dg < ¢ such that for all ¢ € M,

diamﬁc(go)HC(EO) <7y
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for some v < 1. Set A =~/™0. For all f1, fs € 7—76 C F and all integer n,
St (RM1 R f2) < 0550y (R™ 1. R™ fo) (5.3)

(5.3) is true because H,., (69) C H., and by lemma 5, subsets have stronger
Carathéodory metric. Now applying the weeak form of the Schwarz lemma to
R™: He(6) = He,, we get

05, (R"f1,R"f2) < 0g 5 (1, f2) (5.4)
But combined together, (5.3) and (5.4) give
dg. (R, R" f>) < min {57; oy (RPFL R f2), 6775, (1, f2)} (5.5)
Now, we are going to bound the term 5?:[%(50)(R"f1, R"™f2) ;
e For n > ng, by definition of complex bound, we have that
R™(H(8)) C He, (20)
Now, applying the strong form of the Schwarz lemma to

R : Ho(6) = He, (20)

together with the fact that diamg_; (ﬁcn (50)) < Ao, we obtain :
051, (60)(R" 1, R" f2) (5.6)
< diamg, 5 AR F0)} 055 (1. f2) (5.7)
< diamﬁcn (80) (ﬁcn (60)) ’57:Zc(5)(f1’f2) (5.8)

e Now, for n > ns + ns,, one can do exactly the same as above, but this
time applied to

R0 : H (80) = He, (20)

Cnfnso

together with R R
R™0(He, s, (90)) € He, (€0)

this gives, with the strong form of the Schwarz lemma :

57 oy (R f1. R" f2) (5.10)

< dmmﬁcn (80) {Rnéo (ﬁCn—n(;o (50))} '6',1.76”77%0 (o) (Rninéo f17 R™ "o f2)
< diamg (s (H (50)> "572%%50 (50) (R0 f1, R0 f)
< Ao gy (R0 f1, R0 f,) (5.11)

Cn—néo (60)
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Now, suppose n is large enough ; denoting k the first integer such that n—k.n;s, <
ns + ng, and combining (5.5), (5.9) and (5.11), we obtain :
0. (R f1,R" f2) < XN%0.C(8).65_ 5 (f1, f2) (5.12)

n

Where C(9) depends only on §. But for a large n, k ~ L%J Eventually,
0

bq. (R™F1,R"f2) < X".C(8).05 (5 (f1. f2) (5.13)

For more simplicity, defining C' = C((S).(Sﬁc(é)(fl,fg), we get the exponential
contraction :
0. (R"f1,R"fa) < CA" (5.14)

n

The following result sums up the conclusions of the above proof :

Theorem 20. Suppose we are given a family F C C of infinitely renormalizable
maps with beau bounds. Moreover, suppose that F is a forward invariant union
of hybrid leaves. Then there exists A < 1 such that for all f1, fo € H. C F (we
need to start in the same leaf),

57;% (R™f1,R"fa) < C\" (5.15)
C > 0 only depends on mod fi; and mod f5.

Note. Here the exponential contraction of the renormalization operator along
hybrid leaves has been proved. However, the beau bounds for complex maps are
assumed, but this is a difficult result to prove. Awvila and Lyubich based their
proof on beau bounds for real maps, which is a more reasonable result to prove.

5.4 Beau bounds for real maps

The next result was proved by Levin and Van Strien and also by Lyubich and
Yampolsky. It is much more easier to prove than beau bounds for complex
maps. Remember that we denoted by C® the p.l.-germs of maps preserving the
real line.

Theorem 21 (Beau bounds for real maps). Maps in germs of C¥ have beau
bounds ; namely, there exists g > 0 such that : for all § > 0, there exist €(§) > 0
and N(3) such that, for all representative f of [f] € C¥, we have :

o for everyn >0, R"f € C(e(9)).
e for everyn > N(§), R"f € C(eo).

This result is not sufficient to provel contraction just like the way we did
with beau bounds for complex maps. Avila and Lyubich introduced some tools
that bring this result to thel contraction. In the next chapter, we are going to
study these tools and show how they give the contraction. Concerning the space
of infinitely renormalizable maps hybrid equivalent to real p.l.-maps such that
mod f > §, denoted Z(®)(§) we have the following result :
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Theorem 22. For all § > 0, there exists €(5) > 0 such that if [f] € T®)(5),
then for alln >0 :
R"f €Cle)

Proof. Given [f] € Z®)(6), let ¢ = x(f) be the straightening. Then f is hybrid
equivalent to g = P, : z — 2% 4+ ¢. Let g, be the n-th pre-renormalization of g
and g, the corrseponding periods.

But [f] € C(d) and [g] € C(J) so by proposition 6, there exists a constant
C > 1 such that [f] and [g] are (C,d/2)-close. But then, by definition of
(C,e)-closeness, there exist p.l.-representatives f : U — V and g : U — V'
with mod f > ¢/2 and mod g > §/2 and a quasiconformal homeomorphism
h:C\U — C\ U’ with Dil, < C such that ho f = goh on OU. But be-
cause ¢ = x(f), [f] and [g] are in the same hybrid leaf H, and then are hybrid
equivalent. By proposition 5, we can extend h to a hybrid conjugacy h: C — C
between f and g, with ho f =gohin U.

Then, using the a priori bound for real maps on g (ie the existence of n > 0 such
that for all n > 0, mod g, > 7), Avila and Lyubich show that each germ [g,]
has a p.l.-representative g,, : U,, — V,, with mod g,, > 7’ and that ¢*(U,,) Cc U’
for all 0 < k < g, — 1. Consequently,

h~tog,oh:h YU, = h (V)

is a representative of the n-th pre-renormalization of f (perhaps not normalized).
Bu remember, h has a diliatation bounded by C. In the end, we obtain

mod (Rt og,oh) = mod (R~ Y(V,)\ h 1 (U,)) > 7n'/C = &())

that is to say mod (R™f) > &(d) or R™f € C(e(9)) for all n > 0. O
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Chapter 6

Proof of contraction with
Beau bounds for real maps

6.1 Cocycles

6.1.1 Definitions
Here is a brief background on cocycles which is an algebraic notion.

Definition 31. We say that a pair (S,*), where S is a non-empty set and
% : SXS — S an intern operation on S (denoted *(a,b) = axb), is a semigroup
if * is associative, ie for all a,b,c € S :

(axb)yxc=ax(bxc)

We will denote by @ the set of pairs of positive integers (m,n) such that

n>m:
Q= {(m,n) EN*:n>m}

Definition 32. Given a semigroup (S,x*), a S-cocycle is a map

G:Q — S
(,'n7 n) — G(m,n)

with the following property : for alll <m < mn,
Gmm y glbm) = gl (6.1)
Take m < n. Then if m + 1 < n, by (6.1), we can write

G(m,n) _ G(m+1,n) % G(m,m+1)

if m + 2 < n, we can continue this transformation :

G(m,n) — G(m+2,n) % G(7n+1,m+2) * G(m,m.Jrl)
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By induction, this gives, denoting F,, = G+ .
G = F %, . xF, (6.2)

Now, if we take a sequence (F),>0 € SV, we can define a cocycle G’ using the
formula (6.2). This gives a correspondence between any sequence in S and a
S-cocycle.

6.1.2 Cocycle setting for our configuration

Our goal is to reduce the proof of contraction to the contraction in a setting
with cocycles. In order to do this, we need to choose a semigroup and to explain
our reduction.

Proposition 8. Consider the set of path holomorphic maps f@mﬁo to ’;qo,
denoted H(Ho,Ho), paired with the composition o. Then (H(Ho,Ho),0) is a

~

semigroup. (HR(ﬁo,ﬁo),O) is a sub-semigroup (maps f in H(?QO,’HO) such
that f(HE) C HE where H is the subset of real p.l.-germs in Hy).

Proof. e First, we need to check that o is an intern operation in H(’;qo, ﬁo).
Indeed, given a holomorphic path v € H(Hg) and fi, fo € H(Ho, Ho), as

~

f2 is path holomorphic, we have that fyo+v is a holomorphic path in H(H).
But f; is also path holomorphic so f; o (f2 o) is again a holomorphic
path in H(H,). Thus

ot H(Ho, Ho) x H(Ho, Ho) — H(Ho, Ho)
is a well defined intern operation in H (SQO, ﬁo).

e The composition is associative, so the associativity is obvious.

e For (H®(Ho,Hy),0), the proof follows from the definition of H®(Ho, Ho).
O

Now, suppose that [f] € C. Rememnber that we defined the mating i. :
& x M — C between a circle map in £ and a straightening in M. We also
defined the inverse of this mating. In particular, 7(f) = g gives the external
map of [f]. Then we can defined a map

II:¢ — ﬁo
[ = dgon(f)
It naturally restricts to a path holomorphic homeomorphism II. : 7—76 — 7-70
for every ¢ € M, also preserving the modulus. This map enables us to build a

cocycle adapted to the semigroup H(#Ho, Ho) : for all ¢ € M such that the hybrid
leaf H. is renormalizable, we defined this cocycle as follows, for all (m,n) € Q :

Ge: (myn) = GU(IL(f)) = L(R™™(R™ f))
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The property of cocycles is easily checked. We will denote by G this family of
cocycles restricted to real symmetric hybrid leaves. Now, we are going to prove
that this setting satisfies two strong hypothesis.

We know that [PO] € CR so the corresponding hybrid leaf #, is such that
7—[0 c ¢®, But 7—[0 is also infinitely renormalizable so 'Ho C Z. In the end,
for 6 > 0, we get 7—[0( ) € Z®)(§). Thus the theorem 22 can be applied to our
configuration and we obtain the following :

(H1) : for every ¢ > 0, there exists (d) > 0 such that : if f € Ho(5), then for
every G € G and (m,n) € Q, GU™™(f) € Ho(e(6)).

For the second hypothesis, we need an intermediate result. It will not be proved,
but Lyubich and Avila provide a proof in their paper.

Lemma 9. Given two sequences (f1 n)n>0, (fo.n)n>0 € IN with the same straight-
ening X(f1.n) = X(f2,n) and converging to the same limit f. Suppose (ky)n>1 €
NN is a sequence of integers such that lim,,_,~ k, = co. Then we have :

lim inf mod (R* f1.,) = lim inf mod (RE™ fo.n)

n—oo

To prove this result, Avila and Lyubich show that for every ¢ > 0, if

11_>m inf mod (RF" fy ,) >
then
lim inf mod (R*" fy,,) >

n—oo

Let us show that it is indeed equivalent ; the only difficult implication in
what we are just written above implying the equality of the limits. Then sup-
pose the two limits are differents : lim, ., inf mod (RF~ fin) < limy_,o0 inf
mod (Rk" fa.n). Then we can choose & such that

lim inf mod (R*"f1,) <&y < lim inf mod (R* fs,,)

n—oo n—oo
Then it invalidates that for all € > 0 if a limit is bigger than ¢, the other must
too. Avila and Lyubich then use proposition 7 and proposition 4 to prove this
lemma. Now, let us state the second hypothesis :

H2 : there exists gq such that for all 6 > 0 there exist an integer N(d) and a pos-
itive real () such that if [f1] € H&(5) and [f2] € Ho(d) with d77,(f1, f2) < n(d)
then for all G € G and (m,n) € Q with n —m > N(8), G (f,) € H(zso)

Now, suppose this second hypothesis is not satisfied by our cocycles setting.
Let € be the beau bound for real maps. Suppose H2 is wrong for ¢/2. Then
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there exists 6 > 0 such that, for all integer N and positive real number 7 such
that if fi € Hg(6) and fo € Ho(6) with g (f1,fo) < 7 thereis a G € G
and (n,m) € Q with n —m > N such that GO (f,) ¢ Hy(eo). But as it is
true for all N and 7, we can construct two sequences (f1 ,)n>1 € (HE(6))N and
(fon)n>1 € (Ho(8))N such that lim,_,e 67, (f1ns fo,n) = 0 and a sequence of
integers (ky)n>1 € N such that

RF o n & Holeo/2)

Using subsequences, we can assume that these two sequences converge to the
same limit. But by lemma 9, we must have
lim inf mod (R*" fin) = lim inf mod (RFn fan)
n—00 n—00
Giving
lim inf mod (Rk"an) <eg/2

n—oo

This last inequality contradicts the beau bounds for real maps because we must
have
lim inf mod (T\’,kfln) >eo

n—oo

The main purpose is now to prove that H1 and H2 imply contraction and Beau
bounds for complex maps in the real hybrid class.

6.2 Retractions and Banach setting

6.2.1 Background on functional analysis

Roughly speaking, a retraction is a continuous map from a space X onto a
subset Y C X leaving each point of Y fixed. Here is a more accurate definition

Definition 33. Given a topological space X and closed subspace Y C X, we say
that a continuous map P : X — Y is a retraction if for ally €Y, P(y) =y
(Py = 1Id and P(X) CY). Y is called a retract for X.

Proposition 9. If P: X — Y is a retraction, then P? = P.

Proof. Take x € X. Then P(z) € Y. But Py = Id so P(P(z)) = P*(z) =
P(x). O

Some notions of functional analysis are also needed to continue our proof.
Remember that a subset in a topological space is said to be precompact if its
closure is compact.

Definition 34. Let B and B’ be two Banach spaces and T : Hi — Hy be an
operator.
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e T is said to be compact if it maps bounded sets into precompact sets :
T(B1) is a compact set, where By is the unit ball in B. Equivalently, T is
compact if for all bounded sequence (x,)n>1 € BY, (Txy)n>1 has a con-
vergent subsequence in B'. Denote IC(B) the space of compact operators.

e T is said to be of finite-rank if dimT(B) < oo. In that case, v =
dimT'(B) is the rank of the operator and K,.(B) denotes the space of
operators of rank v and K(B) = Uy>o(K,(B)) the space of all finite-rank
operators.

It is well known that every finite-rank operator is compact and that K(B) =
K(B) in the case where B is a Hilbert space. In particular, every compact
operator is the limit of a sequence of finite-rank operators. The study of the
spectrum of a compact set shows that for all non-zero eigenvalue of T° where
T is compact, the corresponding eigenspace is finite dimensional. Now suppose
that we have a compact operator T : B — B such that T2 =T.

Proposition 10. Given T above, T(B) is finite dimensional. It follows that T
is fo finite rank.

Proof. X? — X annihilates T, so 0 and 1 are potential eignenvalues for T. But
by the previous discussion, as 7' is compact, the eigenspace corresponding to
the eigenvalue 1 must be finite dimensional. It clearly follows that T'(B) is finite
dimensional. Its dimension is given by Tr(T). O

All this material is required to state and prove the following result :

Theorem 23. Given a complex Banach space B and a holomorphic map P :
U — B where U is an open set of B such that P(0) = 0, we assume that the
derivative of P at 0 is a compact operator and that P> = P near 0. Then for
any open ball B of B around 0 (sufficiently small), P(B) is a complex finite
dimensional manifold. We have the same result for a "real” configuration.

Proof. e The derivative of P at 0, DP(0), is of finite rank : it is a compact
operator and because P? = P near 0, we have that DP(0)? = DP(0).
DP(0) satisfies the assumptions of proposition 10, and then it is finite
rank.

e Next, we show that f = Id — DP(0) — P is a diffeomorphism near 0.
Indeed,

Id — DP(0)2 — DP(0) = Id — 2DP(0)

£(0)
)? (Id —2DP(0)) o (Id — 2DP(0)) = Id

D
Df(0

e Moreover, we have

foP=P—-DP(0)oP—P?=DP(0)oP
DP(0)o f = DP(0) — DP(0)> — DP(0)o P = DP(0)o P
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this gives f o P = DP(0) o f ; with this last equality, we get
P(B) = f~1(DP(0)(h(B)))

But because DP(0) is of finite rank and f a diffeomorphism, P(B) is an
open subset of a finite dimensional space.
O

As precised above, a Banach structure is required to use this result. That is
why Avila and Lyubich introduce the notion of Banach slices.

6.2.2 Banach slices

Definition 35. If f € ﬁo, an open quasidisk W is said to be f-admissible if
the two following properties hold :

e The filled Julia set is a subset of W : K(f) C W
e f extends holomorphically to W, and continuously to OW.

Remember that By, stands for the Banach space of holomorphic functions
in W. By, will stand for the Banach space of functions w € By such that :

e w(z) = O(z%*1) near 0
e w extends continuously to OW.

Using the metric of Byy, the definition of balls in By, is straightforward. By,
will stand for the ball in By, centred at w = 0 of radius . Now, given a p.l.-map
fe 7?[0(5), a f-admissible quasidisk W and a radius rg, we would like to build
a map from By, .~ to ﬁo giving, for w € By, ~the function f + w. Such a
constrcution will work be cause of the topology in Ho -

For every ¢ > 0, f € ﬁoe, sufficiently small quasidisk that is f-admissible and
r > 0, one can find a neighborhood A of f in Ho(g) such that, for all f € N,

e W is f-admissible.
e The map f — fbelongs to By ..

This follows that given f and a f-admissible quasidisk W, one can find g5 > 0
and ro such that for all w € By, ., f+ w can be restricted to a p.l.-map

f:U =V with mod f > e (ie f € 7—70(50)). The map

Ttwro * Biyny, = Ho
w — f=f+w

is then well defined, continuous and injective.
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Theorem 24. Given f, a sufficiently small quasidisk W that is f-admissible
and ro constructed as above and a continuous map

D — By,
A = wx

the two following statements are equivalent :
e \— wy is holomorphic

o (fa)rep = (Tf,wre (Wa))rep s @ holomorphic path in 7/-20.

Proof. e we begin with the first inclusion. Suppose that A — w) is holo-
morphic. As wy € By, T wor(wy) is well defined and as Jyw,r, is
continious, it follows that A — fy is continuous. Now take a radius R
such that 0 < R < 1/4. We have already seen that if f € Ho, then
Dy/4 C K(f). Tt is now natural to consider the restriction operator

IR:B?}V — B]D)R

[ = f|]D>R

which is holomorphic. But for fy, we have Ir(fy) = Ir(f+wy) = Ir(f)+
Ig(wy). A= Ig(f) is a constant and A — Ig(wy) is holomorphic as the
composition of two holomorphic functions, A — wy and /r. By lemma 33
(see appendix C), (fx)xep is a holomorphic path in Hg.

e Now, assume that (f\)rep is a holomorphic path in Ho. To prove holo-
morphicity of A — w,, we will prove the "weak" holomorphicity of w.
Actually they are equivalent thanks to the following result, which is well
known in complex analysis :

Theorem 25. Suppose that F': U — B is map from an open set of C to
a Banach space B. The two following statements are equivalent :

— For every bounded linear functional L : B — C, z — L(F(z2)) is
holomorphic in U. (weak holomorphicity)

— F is holomorphic in U.

In our case, the result to prove is that for every bounded linear functional
L: By, — C, A\ = L(w,) is holomorphic. As (fx)xep is a holomorphic
path and by Kéebe-1/4 theorem (just like the way we did for Carathéodory
hyperbolicity of hybrid leaves, (X, z) — fx(z) is holomorphic in D x Dy /4.
It follows that (A, z) — wx(z) = fa(z) — f(2) is holomorphic in D x
Dy/4. But as z + wx(z) is holomorphic in W for all fixed A, Hartog’s
theorem (theorem 34) gives that (A, z) — wy(2) is holomorphic in D x W.
Remember that wy € By means also that wy is continuous on 0W. Then
for a fixed z € W, the function A — f\(z) is holomorphic. The Riesz
representation theorem gives the final argument of this proof ;
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Theorem 26 (Riesz representation theorem). For every bounded linear
functional L : By, there exists a finite complex measure i, supported on
W, such that, for every w € By,

Lw) = | w2

w

But as X — wy(z) is holomorphic for every fixed z € W, [mrwx(2)dpuL(2)
is also holomorphic in A, ie A — L(w)) is holomorphic for every bounded
linear functional L. It follows, from theorem 25, that A — w) is holomor-
phic.

O

6.2.3 A result on retractions of HR(”;QO, ﬁo)

Using the Banach slices setting which adapt our configuration to theorem 23,
we will prove the following :

Theorem 27. Given a retraction P € HR(’}:ZO,’I/-ZO) and assuming that : there
exists a compact subset K of ﬁo such that if (fn)n>1 € 7-ALON 1S a converging
sequence with limit f € 7—A[D§ then the sequence (P(fn))n>n, € KN for ng large
enough;

then the retraction P is constant.

In order to prove this result, let PE be the restriction of P to HE and
ZR = I'm(PR). By the assumption (existence of the compact set K), Z® C K.
It gives PR(2ZR) = Z® c PR(K), thus ZF = PR(K). But P(K), as the image of
a compact through a continuous function, is compact so Z¥ is compact too.

Lemma 10. 2R is finite dimensional manifold.

Proof. We take ¢ > 0 such that K C 7:[\0(6). Suppose f € Z® and consider
a neighborhood U of f in ﬁ(e/Q) . we choose U such that for all f € U, f is
defined on some f-admissible quasidisk W. In particular, U belongs to a certain
ball centred in f with some radius r > 0. The corresponding ball in By, is By, ..
This inclusion can be seen as a map

J:U — By,
fo= f=fw

U, as a closed subset of the compact set ’;qo(s/Z), is itself compact. As J is

continuous, J () is compact too. By the assumption, one can take a p > 0 such
that for w € By ,, P(Jfw,p(w)) € K ; in particular, mod w > e. But then,

by continuity of P (and because U C Ho(2/2)), we cant take p even smaller in
order to have P(J¢w,,(w)) € U. If we denote by

Pr=JoPoJrw,: By, — By,
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Py is easily a retraction (we have PJ% = Py and P¢(0) = 0). By compacity of
J(U), it is easily a compact operator. Considering its "real" part P}Q : B;{,}i —
B;(,Ii, PJ]ER is a real analytic and compact retraction : applying theorem 23 to it,
one gets that I m(P}{) ia a real analytic finite dimensional manifold (submanifold
of By ,)- ZR® is compact and has the same topology as Im(PJIB), thus it is also

a finite dimensional manifold near f. But the choice of f € Z® was completely
arbitrary, so Z® is finite dimensional. O

Lemma 11. 2R is a single point.

Proof. By homeomorphicity of the mating i, : £ — ﬁc, ﬁ{? is homeomorph
to EF through ip. But by theorem 7, £F is contractible. It follows that HE
is contractible. But Z® = Im(Pgz) is clearly a retract of HE, so it is also
contractible. Indeed, take any homotopy

hi 1 % [0,1] = {fo}
contracting HE to a point fo of Z®. Then
Poh:Z®x[0,1] = {fo}

is an homotopy that contracts Z® to one of its points f;. We assume that a
contractible finite-dimensional manifold that is compact is a point (otherwise, we
would need to introduce basic theory about homotopy groups, which is not our
purpose here). This argument concludes the proof : Z® is compact, contractible,
and finite dimensional by lemma 10 ; thus it reduces to a single point. O

Lemma 12. Z = Im(P) is a single point.

Proof. We are going to prove that Z has an isolated point. Indeed, ?—Aio is
connected (connected component of the hybrid class), and Z is the image of
H, through the (continuous) retraction P. Then, as the image of a connected
set through a continuous map, Z is connected. But a connected set with an
isolated point is obviously only composed of this isolated point. We will take
the same notations as in the proof of lemma 10.

By lemma 11, considering that f is the only point in Z¥, Pf(B;’,]i) =J{f} =
0. But by analytic continuity, as Py is holomorphic, P; reduces to the constant
function w — 0 on By, , : Pr(Byy ) = 0.

Now, consider a small neighborhood N of f € Z¥ in Z such that J(N) C Bjy, -

Then N C U. Suppose this is wrong : as AN is chosen small, f € Z\U.
Then we can choose a sequence (f,)n>1 in Z\ U converging to f (in particular,
P(fn) = fn)- But by the assumption of the theorem, (f,)n>1 converges to an

element of 'rqﬂok, so for n sufficienlty large, P(f,) = fn € K C ﬁo(s) C 7:20(6/2).
So mod f, > /2 and the maps f,, belongs to Ho(¢/2) and thus are in #. In
the end, N' CU C By, and N' = P(N) because N C ImZ so

JN) = J(P(N)) C Py(Byy,) = {0}
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But J : N — {0} is injective, meaning that N consists only of f. f is indeed
an isolated point, and then Z consists only of this single point. O

proof of theorem 27. By lemma 12, Im(P) is a single point, so P is a constant
function. 0

6.3 Tame spaces

6.3.1 Definitions and results

Avila and Lyubich introduce the term "tame spaces" in their work in order to
use the almost periodic cocycles and, in the end, prove contraction in the case
of beau bounds for real maps. To present this notion, let us consider very basic
objects. Let X be a topological space. X is assumed to be sequential, meaning
that the limit of sequences is well defined ; continuity, compactness, etc are then
defined sequentially. Suppose there exists a continuous metric on X

0: X xX >Ry

The two following definitions are two basics topological notions that are required
to define tame spaces.

Definition 36. A set O in a topological space X is said to be relatively open
with respect to a subset K C X if ON K is open in K for the relative topology
on K.

Definition 37. A filtration on X is a family of sets (X;)icr such that X; C X
and X; C X;41 forallie 1.

Definition 38. Let X be a topological space as above. Suppose
o there is a filtration of compact sets (X;)icr such that U;er X; = X
e cvery compact set in X is in fact contained in a X; for some i € I.

e a set O is open in X if and only if it is relatively open with respect to any
compact subset K of X.

Then X is a tame space.

Now, consider families of functions between two tame spaces : let X1, X5 be
two tame spaces with respective metrics §; and d2 and (F,),cx be a family of
maps F, : X7 = Xo.

Definition 39. 1. If for all compact subset K1 of X1, there exists another
compact subset Ko of Xo such that, for all 0 € X, F,(K;) C Ko, then
(Fy)oex is called equicompact

2. Let (F),)n>1 be a sequence of maps from X1 to Xo. Suppose
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e (F)n>1 is equicompact

e there exists a continuous map F from X, to Xo such that, for all
compact set K1 in X,

lim sup do(Fy(e1), Fla1)) = 0

n—oo €K,

then (Fp)n>1 is said to be uniformly converging to F' on compact
sets.

3. Let (Gy)oex be a family of cocycles. Suppose that for all compact subset
Ky of X1 and any v > 0, there exist a compact subset Ko of Xo and an
integer N (vy) such that, for all o € ¥ and (n,m) € Q with n —m > N(v),

G((Tm,n) (Kl) Cc Ky (63)
diam(G™™ (K)) < v (6.4)

Then (G, )sex is said to be uniformly contracting on compact sets

Proposition 11. If X is a tame space, the set Sx of all continuous weak
contractions of X is a topological semigroup (with respect to the composition).
The idempotent elements of Sx are the retractions of X.

Proof. The composition is associative. Moreover, the composition of two con-
tinuous functions is continuous and the composition of two contractions is again
a contraction. This proves that (Sx, o) is indeed a semigroup. Retractions are
obviously idempotent elements. If an element P € Sx is idempotent, then
P2 = P and P is continuous, which is the definition of a retraction. O

We will assume the following result (the material concerning almost periodic
cocycles is required to prove it, see appendix).

Lemma 13. Suppose we are given a tame space X. Considering the correspond-
ing semigroup Sx defined above, let G = (Gy)ocx be a family of Sx-cocycles.
Suppose that G is uniformly almost periodic (see appendiz). Then if all the idem-
potent elments of w(G) (ie retractions) are constants, G is uniformly contracting
on compact sets.

6.3.2 H, as a tame space, consequences

ﬁo is equipped with the continuous Carathéodory metric. We know that for
every € > 0, Ho() is compact and that for £; > €2, Ho(e1) C Ho(e2). Then
defining X; = ’;Qo(l/Zi), we have, for all i € N, X; C ﬁo, X; is compact and
X, C X;+1. Moreover, U;enX; = ’;QO : there exists a filtration of compact sets
for 7—70. Consequently, ﬁo satisfies the first property of tame spaces. More-
over, remember that for every compact set K C C, there exists a € > 0 such
that L C C(e). Restricting to the case of Ho, this gives that any compact set
K € H, is contained in Hy(e) for some & > 0. But choosing i such that 1/2¢ < ¢,
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K C X;. This proves that 7—70 satisfies the second property of tame spaces. The
third property of tame spaces follows because of the induced topology on com-
pact sets of Hg. Therefore Hg is a tame space.

Remember that in our first study of cocycles, we considered cocycles taking
values in the semigroup of path holomorphic maps H(Hg, Hp). In fact, this
semigroup is a sub-semigroup of the semigroup of continuous weak contractions
Sﬁu' Indeed, Hy equipped with its Carathéodory metric is Carathéodory hy-
perbolic and path holomorphic maps from Carathédory hyperbolic spaces are
weakly contracting, thanks to the weak form of the Schwarz lemma. This proves
that H(Ho, Ho) C Sz, -

The following lemma will be useful to prove that,if our cocycle setting satis-
fies the property H1, then macroscopic contraction follows along hybrid leaves.

Lemma 14. The sub-semigroup H(’;qo, ’;qo) is closed in the sense of the uniform
convergence on compact sets : if (fn)n>1 € (H(Ho,Ho))" is a sequence that
converges uniformly on compact sets to f, then f € H(Ho, Ho)-

Proof. Suppose v : D — 7:20 is a holomorphic path. Then, as f, € H(?T[o,ﬁo)
for all n > 1, f,, o is also a holomorphic path. Take 0 < R < 1/4. Our purpose
is to use lemma 33 : proving that (Ir(f o~) is a holomorphic path in By, gives
that f o is holomorphic path in ”;QO by lemma 33. Thus, the only thing to
prove is that (Ir(f o+) is indeed a holomorphic path in Bp,,.

Define I'), = Igr o f,, oy. Then (I'y)n>1, by uniform convergence of (f,)n>1 on
compact sets to f, is itself uniformly converging on compact sets to I' = Igo fory.
But f,, o is a holomorphic path in Hg by assumption, so using the other sense
of the equivalence in lemma 33, we get that Ir o f, o~y is a holomorphic path
in Bp,. But path holomorphicity in Bp, is equivalent to holomorphicity in
the usual sense in Bp,. Consequently, as the limit of a uniformly converging
sequence of holomorphic maps on compact sets is itself holomorphic, I is holo-
morphic in Bp, and is then a holomorphic path in Bp,. Consequently, Ir o f
is path holomorphic and by lemma 33, f is also path holomorphic. O

6.4 Proof of Beau bounds and macroscopic con-
traction fro complex maps in the real hybrid
classes

Remember that our cocycle setting (the family G defined in the section of co-
cycles) satisfies the properties H1 and H2. The aim of this section is to prove

that H1 and H2 lead to the two following conclusions :

C1 : for every 6 > 0 and v > 0, there exists an integer N(J,7) such that,
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for f1,fo € 7—70(5) and for every G € G and (m,n) € Q with n —m > N(4,7)
we have macroscopic contraction :

077, (G (f1), GUM (f2)) <y

C2 : for every § > 0, there exists an integer N(8) such that, for f € Ho(6)
and for every G € G and (m,n) € Q with n —m > N(9),

mod G (f) > &

or, equivalently, G(™™(f) € Ho(o) (g0 is the Beau bound for real maps).

6.4.1 Proof of an intermediate result

Suppose that G is a family of cocycles in H('zqo,'rqo) that satisfies H1 but not
Cl1. By H1, as for f € Ho(5), GU™™(f) is in Ho(e(d)) for all G € G and
(m,n) € Q, G is precompact and then G is uniformly almost periodic with
values in the semigroup Sﬁo' If C1 is wrong, there exists 6 > 0 and v > 0,
a cocycle G € G and two functions fi, fo € ’;%(6) such that for all N, there
exists (m,n) € Q with n —m > N such that 5ﬁ0(G(m7”)(f1),G(mvn)(fg)) > 7.
This means that G is not uniformly contracting on the compact set ﬁg(d) and
consequently not uniformly sontracting on compact sets. Taking the converse
of lemma 13, there exist a non constant idempotent in w(G), ie there exists
a sequence (Gy)r>1 € GV and two sequences of integers (my)r>1 and (ng)r>1
with nj; — my — oo as k — oo such that (G;Cm"””’“))kzl converges uniformly on
compact sets to a non constant retraction P € Sﬁo‘ By lemma 14, H(Ho, Ho)
is closed so P € H (ﬁo,ﬁo). The following result sums up what has just been
proved :

Theorem 28. If G is a family of cocycles taking values in H(ﬁo,ﬁo) and
satisfying H1 but not C1, then one can build sequences (Gy)i>1 € Gy, (mi)k>1

and (ng)k>1 with ng —my — 00 as k — oo such that for every f € Ho,
G () = PS)
where P is a non constant retraction in H(ﬁo,ﬁo).

6.4.2 Proof of C1 and C2

Suppose G is a cocycle amily taking values in the sub-semigroup H R(?-A[O,G’-Alo)
and satisfies H1 and H2. Now, suppose C1 does not hold. thanks to the
last paragraph (theorem 28), there exist sequences (Gy)r>1 € GV, (m)k>1 and
(ng)r>1 with ny —my — co as k — oo such that

G (f) = P(f)
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where P is a non constant retraction in H(ﬁo, Ho). But Gém"””’“) € HR®(H,, ﬁo),
so taking the limit, this gives P € HR(ﬁo,ﬁo). Now, H2 gives that for every
0>0, f1 € ﬁ(ﬂ}(é) and fo € 7—70(5) there exist an integer N(6) and 7(4) > 0
such that, if 57 (f1, f2) <n(d), then

G (f2) € Ho(e)

for ny, —my, > N(8). Taking the limit, this gives P(f2) € Ho(co). In that sense,
this is clear that P € HR(ﬁo, ﬁo) satisfies the assumption of theorem 27 : tak-
ing K = Ho(go/2), for all sequence (fn)n>1 converging to f € 7:1\]10%, P(fn) € K
for n sufficiently large. Thus we can apply theorem 27 to P : P is constant,
which gives the contradiction. Thus C1 holds.

Now, for some § > 0, take f, € HE(6) and f, € Ho(8). Take some arbi-
trary v > 0 ; by C1, there exists an integer N; such that, for every G € G and
(n,m) € Q with n —m > Ny,

85, (G (1), G (f2)) < v

As gamma is completely arbitrary, we can choose it so that H2 holds for
G (f1) and GU™™(fy). Then there exists some integer Ny such that, for all
G' € G and (n',m') € Q with n’ —m/ > Ns,

GG (o)) € Ho (o)

Taking G = G’ and m/ = n, we get G™")(fy) € Ho(go) for ' —m > N =
N1 + N2 : C2 holds.

6.4.3 General statement, without cocycle setting

The last thing to check is that the above result (adapted to the reduction of
our main system to the cocycle setting) is indeed equivalent to the macroscopic
contraction and beau bounds for real maps in the real hybrid class. In fact, this
is obvious : we defined R
Im:¢c — Ho
[ = dgon(f)

which restricts to a path holomorphic homeomorphism II.. : ﬁc — 7—70 for every
¢ € M. Moreover, we have seen that the family of cocycles

Ge : (m,n) = G (ILe(f)) = (R (R™ )

satisfies H1 and H2, so C1 and C2 hold, considering a real-symmetric hybrid
leaf. Thus this reduction is equivalent to the macroscopic contraction along one
hybrid leaf (Hg), but using II, this is equivalent to the macroscopic contraction
along every real-symmetric hybrid leaf. This enables to state a more general
result :
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Theorem 29. There exists €9 > 0 such that, for any § > 0 and v > 0, there
exists an integer N(8,7) such that for every f1, foa € C(d) that belong to the same
real-symmetric hybrid leaf HX and for all n > N(4,7),

e R"f1 and R™f, belong to He, (c0) C Clco), where ¢, = x(R"f1) =
X(R™f2). (Beau bounds for complex maps)

e 67 (R"f1,R"f2) < (macroscopic contraction)

n
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Appendix A

Maximum modulus principle

A.1 Cauchy integral formula

We recall here the well-known Cauchy formula. Suppose we are given an open
and simply connected set U in C, a holomorphic function f : U — C and a
closed path v in U. Now suppose z € U is inside the domain formed by . Then
we have the following formula

6= 5 | J€) e (A1)

T 2mi E—z

A.2 Statement of the principle

Suppose U is a connected and open subset in C ; we are given a holomorphic map
f: U — C. If there exists any a € U such that, for all z € U, |f(a)| > |f(2)],
then f is constant. Equivalently, the modulus | f| of a non-constant holomorphic
map [ : U — C cannot have a maximum in U.

A.3 Proof

Suppose that |f(a)] > |f(z)] for all z € U. We want to show that f is constant.

1. We choose some § > 0 such that D(a,d) C U, where D(a,0) is the open
disc centred in a and of radius §. Then we can use the Cauchy integral
formula for v = C(a,r) with r < § where C(a,r) is the circle centred in a
and of radius r :

@) = 50 [ e (A2)

2. This is obvious to use the following parametrisation, for 6 € [0, 27] :
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& = a+re? (A.3)

de = ire'ds (A.4)
It gives
1 fla+re)y ., 1 ‘0
= — —_— v = — v A
f(a) 277 Joaw T ire'’do 5 /{072#] fla+re®)dd (A.5)

Taking the modulus and using that |f(a)| > |f(2)| for all z € U, we get :

1

f@ls g [ s o [ i@ =1s@) 40

Then we must have equality in the previous inequality. As 6 — |f(a+rei?)]
is a continuous and positive function, by a classical result in integration
theory, we have that |f(a + 7€¢?)| = |f(a)| for 0 € [0,2n]. Note that we
can do it for every r < ¢, meaning that |f| is constant on D(a,d).

. We know that | f| is constant on D(a,d), so is | f|?. But writing f(z+iy) =
u(z,y) + iv(x,y), this gives, for some constant K >0 :

u(z,y)? +v(z,y)? = K (A7)

We derive (A.7) with respect to z and y :

ou v

If we susbtitute, using the Cauchy-Riemann equations (3.3) and (3.4), we
get :

ou ou
ou ou

The matrix form is
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U —v uz \ (0
() 0e)-(0) (a1
The determinant of this system is u? +v? = K. If K = 0, then v = 0 and

v=0,ie f(z) =0in D(a,0). If K > 0, using the system we clearly have
Uy = uy = 0. But

f(2) = 7= =i =uy —iuy, =0 (A.13)

So f is constant on D(a,?).

4. f coincides with a constant function on a non-empty open set D(a,?d), so
by analytic continuation, f is constant on U itself.

Theorem 30 (Stronger version). The modulus of a non-constant analytic func-
tion defined on a connected open set U cannot have a local mazimum in U.

Proof : The deifference with the former result is that the maximum is local
here : |f(a)| > |f(2)] for all z in some D(a,d) C U (not all U).By the previous
result, f must be constant on D(a, d) and by analytic continuation, it is constant
on U itself.

Corollary 2. Suppose U is a bounded connected and open subset in C ; we are
given a holomorphic map f : U — C. Moreover we suppose that f is continuous
on OU. Then the mazimum of the modulus |f]| is attained on the boundary of
U, oU :

sup [f(2)| = sup [f(2)| (A.14)
2€U z€edU

Proof : Since U is bounded, U is closed and bounded, and thus compact. |f]|
is a continuous and positive function on a compact set U, so sup, i |f(2)] < oo.
If the maximum is attained on U, then by the maximum modulus principle, f
is constant, and thus the maximum is also attained on OU. Otherwise the max-
imum is attained on QU and only on QU (by the maximum modulus principle)
: (A.14) is true in the two cases.
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Appendix B

Schwarz reflection principle

Here we state the Schwarz reflection principle, which enables to extend a holo-
morphic function defined on a domain of the upper half plane to the symmetric
of this domain. Of course we need some hypothesis on the domain and the
function.

Theorem 31 (Schwarz reflection principle). Let L be a segment on the real azis
of the complex plane and Q. C H a region in the upper half plane. Suppose that
for every x € L, there exists some v > 0 such that the open disc D(x,r) has its
upper part into Q4 , ie D(x,r) NH C Q.. We denote by Q_ the symmetric of
Q. with respect to the real azis : Q_ ={z:z € Q4 }.
Now let f be a holomorphic function in Q4 such that for every sequence {2z, }n>0
converging to a point of L, we have
lim S(f(2,)) =0 (B.1)
n—oo
Denote Q= Q ULUSQ_. Then there exists an extension F of f, holomorphic
in Q such that F = f in Q4 and for all z € Q,

F(z)=F(2) (B.2)

A proof is given by Rudin in Real and Complex Analysis. Here is another
version of this principle, but the symmetry is done with respect to the unit
circle.

Theorem 32. Let L be an arc on 0D and 2, C C\D a region in the exterior of
the unit circle. Suppose that for every p € L, there exists some r > 0 such that
the open disc D(p,r) has its exterior part into 0y, ie D(p,7) N (C\ D) C Q.
We denote by Q_ the symmetric of Q4 with respect to the unit circle : Q_ =
{Z : 271 S QJ’_}
Now let f be a holomorphic function in Q4 such that for every sequence {2y, }n>0
converging to a point of L, we have

lm |f(z,)] =1 (B.3)

n—oo

74



Denote Q= Q ULUSQ_. Then there exists an extension F of f, holomorphic
in Q such that F = f in Q4 and for all z € Q,

F(z")=F(z) | (B.4)
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Appendix C

A theorem for path
holomorphic structures

Theorem 33. Suppose that

D
A

foclie !

_)
'_)
is continuous. Let R be a radius 0 < R < 1/4. The following statements are
equivalent :

o (fA)aep is a holomorphic path in ﬁo.

o (Ir(f\))xep is a holomorphic path in Bp,,, where

IR:/;:ZO — BIDJR

[ = f\]DR

is the restriction operator.

Proof. 1t has already been shown that Iy is path holomorphic in the proof of
the Carathéodory hyperbolicity of the hybrid leaves. Thus the only remain-
ing thing to prove is that if (Ir(fx))rep is a holomorphic path in Bp,,, then

~

(fx)aep is a holomorphic path in Hy. Remember that a holomorphic path in
7/-20 is a continuous family (fy : Uy — V) € ﬁo for A € D such that there exists
a holomorphic motion (hy) : C — C of C over D with basepoint 0 such that
h)\(K(f())) = K(f)\), 5]1)\ =0 a.e. on K(f()) and h)\ o fO = f)\ o h)\ on K(fo)

Our goal here is to construct such a holomorphic motion.
First it should be constructed from intK(fy) to intK(fy) but by the extended

A-lemma, (theorem 2), we can assume that hy : C — C. By the Béttcher the-
orem (see theorem 17), one can find a holomorphic one-to-one map (which is
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also onto) ¢y : intK(fy) — D such that ¢y o f\ = Py o ¢y where Py : z + 29,
Now, define hy = ¢;\1 o ¢p. Then, on K(fy) :

hyo fo=¢5" o¢oo fo =05 oPyogy

and
frohy=fropy ogy =)' oPyo o

proving that hy conjugates fy and fy. Moreover, by analyticity and bijectivity
of ¢y, hy is holomorphic and injective.

The remaining thing to prove is that

DxD — intK(f)
(2,0 = 63 (2)

is holomorphic. By assumption, Ir(fy) is holomorphic in (A, z) € D x Dg.
Consequently, (A, z) — fx(z) is holomorphic in D x Dg. We would like to
construct a sequence of holomorphic (both in A and z) maps (éxn)n>1 such
that ¢x,, — ¢x. To achieve this, we need to adapt the Koebe-1/4 theorem : let
f satisfy the assumption of the Kéebe-1/4 theorem. Then for 0 < R < 1/4 and
alln>1:
Dgots C f(Dgr)

In our proof of the Carathéodory hyperbolocity of the hybrid leaves, we have
already seen that the inverse of the Bottcher coordinate satisfies the assumptions

of the Kéebe-1/4 theorem when f € Ho. Applying the above form of the Kéebe-
1/4 theorem to ¢! and n = 2 gives

Dps C ¢, ' (Dge)

Or, equivalently,
(b,\ (DR3 ) C DRZ

As the degree d is more than 2, we then have that for z € Dgs, (¢x(2))% € Dpa.
But as we now see ¢, as a dunction from Dgs to Dg2, we can also apply the
Ko6ebe-1/4 theorem to it :

Dpse C ¢)\(]DR3)
This gives, for all z € Dgs, ¢5 ' ((¢x(2))%) = fa(2) € Drs. By iteration, we
easily get that for all n > 1 and z € Dgs, f¥(2) € Dgs. As (A, 2) = fa(z)

is holomorphic in D x Dg, we conclude that (), z) — f{(2) is holomorphic in
D x ]D)RB.

Now, defining ¢y, : intK(fy) — C such that ¢¢ = f{ with a derivative
at 0 equal to 1, we see that ¢ , uniformly convergeé to ¢, on compacts sets of
intK(fy). But as (X, z) — f7(z) is holomorphic in D X Dgs, (A, 2) = ¢ n(z) is
holomorphic and by uniform convergence, (A, z) — ¢x(z) is also holomorphic.
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Now, use Koebe-1/4 theorem to ¢y : Dgs — C. This gives

Dgra C @y (]D)Rs)
Equivalently,
3" (Dr1) C Dps
it follows that (), 2) = ¢, '(2) is holomorphic in D x Dgs. To conclude, we need

to state Hartog’s theorem :

Theorem 34. If f : U — C where U is an open set of C* such that f is
holomorphic in everyone of the n variables while the others are fixed, then f is
a holomorphic function of all the n variables.

But for each A € D, qb;l : D — D is holomorphic and one-to-one. By
holomorphicity in D x Dgs and in D when X is fixed, applying the Hartog’s
theorem, we obtain the holomorphicity of (), 2) = ¢ '(2) in D x D. O
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Appendix D

Convegence of cocycles,
almost periodic cocycles

Here is a background that Avila and Lyubich put in their proof. The almost pe-
riodic cocycles play a key role in the proof, but this notion and its developments
are topological. Then we choose to present it, just the way Avila and Lyubich
did but without proving anything.

Definition 40 (convergence, w-limit set). Suppose we are given a semigroup S
and an S-cocycle G.

e if for all m € N, the limit lim,,_, o G"™) ezists (we will denote this limit
G™>) for more simplicity), we say that the cocycle G converges.

e if limy,_,00 G exists, we say that the cocycle G double converges
and we denote by G(°>) the corresponding limit.

o the w-limit set of a cocycle G, w(QG), consists of the set of existing limits

hmm—>oo,n—m—>oo G,

Note. The property of cocycles still hold for G™>) and G(°>°) (when these
limits exist) : for all (m,n) € Q, G™>) = G>) o G(™n)  for all m € N,
G(m,oo) _ G(oo,oo) ° G(m,oo)

In particular putting m = oo gives that (G(°°))2 = G(°®) it is an idem-
potent.

Definition 41 (almost periodic cocycle). If the family {G("“”)}(m meq 18 pres

compact in the semigroup S, then the cocycle G is said to be almost periodic.

In particular, the w-limit set of an almost periodic cocycle is compact as a
closed subset of a precompact set. We naturally define a subcocycle as the
restriction of a cocycle to a subsequence (ky)n>1 € NN ¢ (GFmokn)) 6.

Proposition 12. Given an almost periodic cocycle G, there exists a subsequence
(kn)n>1 € NN such that the subcocycle (G(km’k"))(n)m)eQ is double converging.
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It has the following consequence

Corollary 3. Given an almost periodic cocycle G, its w-limit set w(G) contains
an idempotent element.

Definition 42 (convergence in the space of cocycles). A sequence of cocycles
(Gp)n>1 is said to be convergent to a cocycle G (G, — G as k — o) if, for
all (m,n) € Q

lim G = GO

k—o0
Definition 43. Suppose p: S — R is a positive function. A cocycle G is said
to be uniformly p-contracting if for any v > 0, there exists an integer N(7)
such that for all (m,n) € Q with n —m > N(v),

p(GU) <y

Definition 44 (Lyapunov pair). Given two positive functions p1 : S — Ry
and py : S = Ry such that ps > p1 and a cocycle G, we say that (p1,p2) is a
Lyapunov pair adapted to the cocycle G if for any integers | < m < n,

p1(G) < p (GO7) (.1)
p1(G) < pa(G )

]
o

Now, we will consider a family G = (Gs)sex of cocycles.

Definition 45 (uniform almost periodicity). Given a family G as above, if the
family (G((,m’"))(mm)eQJeg is precompact in S, then G is said to be uniformly
almost converging.

e The w-limit set of a family G, denoted w(G), consists of the limits of the
converging sequences (G,(,T’“"n"'))kzl € SN where (my, ng, o) € (N? x L)N
is such that ny — my — o0 as k — oo.

e G is uniformly p-contracting for a positive p : S — Ry if, for any
v > 0, there exists an integer N(v) such that, for all s € ¥ and (n,m) € Q
with n —m > N(v),

p(GM) <y

Lemma 15. Suppose we are given a uniformly almost periodic family of cocy-

cles G and a Lyapunov pair (p1, p2) adapted to every cocycle in G. If for all
idempotent E € w(G), p2(E) = 0, then the family G is uniformly p1 -contracting.
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