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Abstract

Complicated (chaotic), global, expectations-driven business cycles in
two-dimensional models have been shown to involve non-trivial in-
tersections of stable and unstable manifolds of a (periodic) saddle
steady state. Whether similar phenomena may occur in other two-
dimensional dynamic economic models in discrete time is the object
of this paper. In fact, it will be shown that if the dynamics is de-
scribed by an invertible map of the first orthant of the plane, the
stable and unstable manifolds of a unique steady state cannot inter-
sect non-trivially.

Keywords: dynamic economic models, saddle steady states, Lef-
schetz index theorem for vector fields, (non-)intersecting stable and

unstable manifolds.

1 Introduction

Complicated expectations-driven business cycles may occur in various eco-
nomic models. For example, the general equilibrium models, suggested by
Benhabib and Day [2] and Grandmont [8], focused on simple one-dimensional
economies and required large income effects in order to get complicated cycli-
cal behaviour. By introducing productive capital into similar types of models,
which increases the dimension of the dynamics of the economy to two, one
can show that both local regular (e.g. Reichlin [21], Woodford [24], Grand-
mont, Pintus and de Vilder [9]) and global irregular (de Vilder [22], Pintus,
Sands and de Vilder [20]) cycles are compatible with dominant substitution
effects. The main mechanism that accounts for the occurrence of complicated
deterministic global fluctuations in the two-dimensional framework involves
intersections of stable and unstable manifolds of a (periodic) saddle equilib-
rium (see de Vilder [22], Pintus, Sands and de Vilder [20] and Brock and



Hommes [4], for example).

By contrast, a broad (widely known) class of two-dimensional dynamic eco-
nomic models, such as the ones studied by King, Plosser and Rebello [15] and
Kydland and Prescott [16], have a unique fixed point with a saddle struc-
ture. It is not clear from the mathematical literature on the subject (see,
for example, Guckenheimer and Holmes [11], Katok and Hasselblatt [14] or
Palis and Takens [19]), whether complicated deterministic structures associ-
ated with intersections of stable and unstable manifolds can also be present
in this widely used framework. More specifically, is it possible for the stable
and unstable manifolds of a unique fixed point of a two-dimensional C" in-
vertible map of the positive orthant of the plane to intersect non-trivially?
In this paper it is shown that chaos cannot arise from such intersections in
these models. That is, we show that a necessary condition for stable and
unstable manifolds of a saddle stationary state to intersect non-trivially is
that the map has, at least, one additional steady state with positive index;
we refer to this finding as the two-fized point lemma. We obtain this result
by exploiting the Lefschetz index theorem for vector fields [17]. So only in
models with multiple steady states (see for example Hornstein [13], Farmer
and Guo [6] and Boldrin and Rustichini [3]) this kind of chaos is possible.
The paper is organized as follows. In the next section we define the types of
dynamic economic models we have in mind. In that section we also introduce
the notion of stable and unstable manifolds as well as some related results.
In section 3 we present the two-fixed point lemma and provide a sketch of the
proof. In the section thereafter we give some concluding remarks. Finally,

the formal proof of the two-fixed point lemma can be found in the appendix.



2 The Framework

The results of this paper apply to any two-dimensional model of the plane

satisfying the axioms specified in the next subsection.

2.1 The dynamic economic model

In this paper we shall assume that the economic model satisfies the following

Standing Assumptions.

e The phase space is a simply connected open subset U of R2. For ex-
ample U can be the positive quadrant Ri without boundary points.
Moreover, we assume that time is discrete. We denote the state vari-
ables by (z,,y,) € U, n € Z.

e The dynamics of the economy is described by (n11, Ynt1) = f(@n, Yn)-
e We assume that fixed points of f are isolated.

e The map f:U — f(U) is C' and invertible.

The first three assumptions are extremely general, and are used in a broad
class of models. Models that we have in mind are, for example, King et al.
[15], Kydland et al. [16] and Weibull [23]. The fourth assumption is more
restrictive, because in some models f is not invertible. Whether one believes
that the equations of motion also allow for backward motion, is perhaps a

matter of taste.



2.2 Intersecting stable and unstable manifolds

We introduce the notion of stable and unstable manifolds of fixed points.
That is, let p € U be a hyperbolic fixed point of f, so f(p) = p and the
Jacobian D f has two real eigenvalues \; and A, such that [A\;] < 1 < |A,].

Then the stable and unstable manifolds of p are defined as follows.

Wé={xeU; ff(x) €U foralln >0 and lim f"(z) = p}.

n—o0

Since f(U) can be not equal to U, it is possible that W * has several connected

components. Similarly, let
Wt ={zxeU; f"(x) € U for all n <0 and lim f*(x) — p}.

If f(U) C U, the unstable manifold can only have one connected component,
but otherwise it is possible that it has many connected components. These
manifold are smooth curves passing through p, tangent to the stable and
unstable eigenspaces of Df(p), respectively. Contrary to a linear specified
model, in a nonlinear framework, the stable and unstable manifolds of p
may intersect outside the saddle; these points of intersection of stable and
unstable manifolds are known as homoclinic points. These are those points
x for which f"(x) — p as n — 400 and as n — —o0, see figure 1. If p is a
saddle fixed point and the stable and unstable manifolds of p intersect at a
point ¢ # p then ¢ is called a homoclinic point of p. The orbit of a homoclinic

point is called a homoclinic orbit; each point in it is homoclinic.

3 The Main Result

In this section we present the main result of this paper.

The two fixed-point lemma
Let f:U — f(U) be as in the standing assumption, and let p € U be a fized



Figure 1: W*" and W¥ of the saddle equilibrium p may intersect outside p. We
have schematically drawn the situation where W* intersects W# in a point q. The
point 7 in the figures is the additional fixed point that exists according to the

two-fixed point lemma in section 3.

hyperbolic saddle point of f with positive eigenvalues. Assume that the stable
and unstable manifolds of p have a point q # p of intersection and that there
are curves vs C W?* and v, C W? in U connecting q and p. Then f has
at least one additional fized point r of positive index in the interior of the

domain bounded by vs and 7,, see figure 1 for a graphical illustration.
The index of a fixed point is defined in the appendix.

Remark: If one assumes that f(U) C U then the statement of the lemma can
be simplified: there is then no need to assume the existence of the connecting
curves v, and v,. Indeed, in this case if the stable and unstable manifold
intersect in some point ¢ (# p), then there exists an integer n such that f"(q)
belongs to the local stable manifolds and there is a piece of this manifold
connecting p and f"(¢q). Moreover, the piece of the unstable manifold situated
between p and f"(q) is connected because the unstable manifold is connected
(here we use again f(U) C U).



We should also emphasize that we only consider fixed points in the open set
U (and not on the boundary). The additional fixed point of positive index
the lemma above asserts, is actually in the open set U. So if there are several
saddle fixed points (with positive eigenvalues), then since these have index
—1, the conclusion of the lemma still applies. If f(U) = U then one can use
an extension of a result of Brouwer, see the last lemma in [7]. In that case,
f has no recurrent behaviour: for each point x # p (where p is a fixed point)
there is a neighborhood O so that f™(O) N f™(O) = () for all n # m.

The proof of the lemma can be found in the appendix. Here we just give a
sketch. The main tool that we use to prove the two-fixed point lemma is the
Lefschetz index theorem! for vector fields [17]. Roughly speaking, the index
of a vector field V on the plane with respect to an oriented Jordan curve I' in
the plane (i.e. a continuous closed curve without self-intersections on which
direction is defined) is equal to the number of full turns the vector field
produces when T is traversed once (for a formal definition see the appendix).
However, the index of V' cannot be defined if it has a singularity on ['. The
index is always an integer and stays constant if one continuously deforms I'.
Provided this deformation does not create singularities for V' on the curve.
Assuming that these conditions are satisfied one can apply the Lefschetz

index theorem for vector fields, which says the following:

Lefschetz Index Theorem

Let T" be a Jordan curve and V' a continuous vector field defined on I' and
the set bounded by I'. Suppose that V has no singularities on ' and that
all singularities inside T' are isolated. Then the sum of the indices of the

singularities of V' inside I' is equal to the index of V on T.

As a vector field V' we shall use V' (x) = f(x) —x which implies that the index
of V' at a singularity s is equal to the index of s as a fixed point of f. The

'For other applications of this theorem to Economic Theory, see for example Balasko
[1], Guesnerie and Woodford [10] and Mas-Colell [18].



Figure 2: The closed curve I' consists of [ and the pieces W*(b, q) and W¥(c, q) of
stable and unstable manifolds. If the curve I' is traversed once, V makes one full

turn and so the index of V' with respect to I' is equal to +1.

index of a hyperbolic fixed point may be defined in terms of the eigenvalues

of the Jacobian matrix evaluated at the fixed point?, see Table 1.

To apply this theory to our map f, we shall define a curve I in the appendix
by using segments of the stable and unstable manifolds of the fixed point p.
Observe that the vector field V(z) = f(x) — z is defined on I' and its interior
D, see figure 2. The final step is the observation that V' restricted to [' makes
one full turn when the curve T is traversed once (to prove this, we shall use
a deformation argument in the appendix). This implies that the index of
the vector field V' with respect to I' is +1. Hence, from the Lefschetz Index
Theorem it follows that there must be at least one singularity of V' in the
interior of v of positive index. This singularity corresponds, by the definition
of the vector field, with a fixed point of the map f.

2 Although not generic we have to point out that one may construct fixed points with,
for example, index +2



Eigenvalues Index of fixed point Description
Tl Ml <1, |A < Indps(p) =1 contracting
20 M >1, A >1 Indps(p) =1 expanding
31 M= =1# N\ Indps(p) =1 elliptic
41 0< A <l<Ay Indp(p) = —1 hyperbolic saddle
51 M<—=1<X <0 Indps(p) =1 hyperbolic saddle with rotation

Table 1: The index (called Indps(p)) of a fixed point p of a map f may be
defined in terms of the eigenvalues of the Jacobian matrix D f evaluated at p. For
orientation preserving maps, generically, five different cases can be distinguished

for the index of a fixed point.

Remark: By taking the second iterate of the map f one can also account for
the orientation reversing cases as well as for the case where both eigenvalues
of the saddle are negative by considering the second iterate of f. In these
cases the statements will be different since a priori one cannot exclude the

presence of a period two orbit instead of an additional fixed point.

4 Conclusion

In this paper we have shown that stable and unstable manifolds of a sad-
dle equilibrium of an invertible two-dimensional dynamic economic model,
cannot intersect non-trivially if the model has no other steady states. This
means that the system cannot have homoclinic intersections causing chaotic
dynamics unless the map has a fixed point of positive index in the (open)
domain of definition. So behaviour as observed by Grandmont, Brock, de
Vilder and others for expectation driven business cycle models, cannot occur
in that case. In other words, only if the two-dimensional dynamic economic
model has multiple steady states or if the model does not satisfy the condi-

tions stated in standing assumptions, global analysis is required. Only then



one might have “unexpected” complicated deterministic structures.
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5 Appendix: The proof of the two-fixed point

lemma

We start by providing some useful definitions. First, we define the degree of a
circle map ¢ : S — S', where S! is equal to R modulo 1. We identify S' also

with the unit circle in R? which has the anti-clockwise orientation.

Definition 5.1 Let ¢ be a continuous map from the circle S' into itself. Let ®
be any lift of ¢ to R (so ¢(x) = ®(x) (mod 1) and P is continuous). The degree
of ¢ is ®(x + 1) — ®(z), where z € R is any point. The degree is independent of
the choice of ® and of x.

A Jordan curve is an injective map y: S' — R2. We shall write T' = y(S'). By
Jordan’s theorem (see any book on topology or for example page 730 of [14]) we
know that such a curve divides the plane into two components: one bounded and
one unbounded (if for example U is the positive quadrant, then the ‘unbounded
component’ is 6R_2|_). We shall only consider piecewise smooth curves, and say that
v:S' — R?2 is positively oriented if going forward along the curve, the unbounded
component is on the right hand side (so positive orientation is the anti-clockwise
orientation). In a similar fashion we can define the negative orientation of a curve.

Next we define the index of a vector field with respect to 7.

Definition 5.2 Let y:S' — R2 be a Jordan curve, I' = y(S') and V : ' — R?
be a vector field which nowhere takes the value 0 (has no singularities). Let I' be
parameterized by some map v : S — T which preserves orientation. The indez of

V' with respect to T' is equal to the degree of the circle map ¢ defined by

V(y(x))

P @)

Next we define the index of a singularity of a vector field.
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Definition 5.3 Let V' be a vector field defined on an open set U and let p € U
be an isolated singularity of V. Let I' be a Jordan curve surrounding p in U,
separating p from any other singularities of V.. The index of V at p is defined to

be the index of V on I'. This index is an integer, and is independent of the choice
of I.

We define the vector field V' by V(z) = f(x) — x. Then by definition, the index
of a fixed point p of f is equal to the index of the vector field V at p. In the
case that the Jacobian Df at p has no eigenvalues equal to 1 (the fixed point is
hyperbolic), the index can be defined as (—1)°@A>LAER) where ); (i = 1,2)
are the eigenvalues of Df evaluated at p. In table 1 (in the core of the text) we

have summarized the 5 generically occurring cases.
We are now ready to prove the two-fixed point lemma which we recall here:

The two fixed-point lemma

Let f:U — f(U) be as in the standing assumption, and let p € U be a fized
hyperbolic saddle point of f with positive eigenvalues. Assume that the stable
and unstable manifolds of p have a point ¢ # p of intersection and that there
are curves vs C W* and v, C W? in U connecting q and p. Then f has
at least one additional fized point r of positive index in the interior of the

domain bounded by s and ,, see figure 1 for a graphical illustration.

Proof of the two fized-point lemma: Let us introduce some notation that we
will use later on. If z,y are points on W* then W*(z,y) denotes a piece of

W™ bounded by the points x and y. The same notation is applied to W?.

Let W$ and WY be components of the stable and unstable manifolds of p
which intersect. Remember that W' is contained in U. We have the 2
curves v; and v, connecting p and ¢. Moreover, we can assume that these
curves intersect only in the points p and ¢. Indeed, if it is not the case,

then we can take the first point ¢’ of intersection of -, with ~, so that
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W (p, ¢ )Nys = {p,¢'}. Now, if we denote v/, = W¥(p, ¢') and v, = W*(p,q),

we obtain two curves intersecting only in p and ¢'.

Let us now define a closed Jordan curve I" and a domain D bounded by I'. Let
O be a neighborhood of p on which Hartman-Grobman linearization is possi-
ble (see Katok and Hasselblatt [[14], ch.6, p.260]) and so that W*(p, f(q))NO
and W*(p,q) N O have only one component. Take a straight line segment
[ = [b,c] close to p in O connecting ¢ € W with b € W, where the points
b and ¢ are very close to the origin and such that f(I) and W*(p, f~(b))
are also in O. The curve I' = W¥(c, q) U W*(q,b) U forms a closed Jordan
curve in the simply connected domain U and by Jordan’s theorem I" bounds
a simply connected region (i.e. a disc) D which is contained in U. We choose
on I' a positive orientation. The origin may or may not be in D, see figure 1

for the two possible cases.

Next we define a vector field V' on the closure of D by considering V' (z) =
f(z)—z. Any zero of V is a fixed point of f. By construction V" has no zeroes
on the boundary I' of D. This implies that the index indr (V') is well-defined,
where the index of a vector field is defined as in definition 5.2. Our aim is
to show that indp (V') is equal to +1. Using the Lefschetz index theorem for

vector fields (see the core of the text) this implies the following proposition

Proposition 5.1 There is a singularity of V' in the interior of D of positive
index corresponding to a fixed point r # p of f.

Proof: By the Lefschetz index theorem for vector fields the sum of the indices
of singularities of V' in the interior of D is equal to indr (V') which is equal to
+1 as we shall show below. By the definition of V' we have that a singularity
of V' corresponds to a fixed point of f. Hence, if p ¢ D then this gives the
result immediately. If p € D then since the index of the fixed point p is —1

(it is a saddle with positive eigenvalues, see table 1), we must have other
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fixed points in D in order to have that the sum of the indices equals +1. O

To prove that the index of V' w.r.t. the boundary of D is equal to +1 we will
continuously deform the vector field on the boundary without creating new

singularities. We first define the notion of a rotational vector field.

Definition 5.4 A vector field V defined on a Jordan curve I is called rotational
if it has no singularities on T and if for any x € T the point x + V(z) also
belongs to T.

Proposition 5.2 A rotational vector field has index +1.

Proof: By an isotopy of the curve (and a corresponding one of the vector
field) we may assume that I is a circle. Define a new vector field N which at
a base point x points to the center of the circle. Next consider a deformation
of the vector field defined by

Vi(z) = (1 = \)V(z) + AN(z),

where 0 < A < 1. Notice that Vy(z) = V(z) and that Vi(z) = N(z) and that
Vi(z) is not equal to 0 for 0 < A < 1 for all z € T". Indeed, if this would not
be true then (1 —A\)V(2)+AN(xz) = 0 and so V(z) = —A/(1 —=A)N(z) which
would mean that the vector field points outside the unit disc, a contradiction.
Since the index of a vector field V) is an integer and depends continuously
on the parameter, the index of V) is a constant. In particular, the indices of
Vo =V and V; = N are equal. Obviously the index of N is equal to +1, it
follows that the index of V' is also +1. O

To apply this proposition to the vector field V' we have to continuously deform

V' into a rotational vector field without creating singularities. To see why
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Figure 3: The curves T'; from proposition A.3 and the deformation of the vector
field V.

it fails to be rotational, notice that a point in I' N W73 close to ¢, is not
mapped into I'. Therefore we deform V| and subdivide I' in four segments
Wele, [71(g)), W~ (g), 0), W*(g, /(b)) and W*(f1(8), )L Obviously
V' is well defined on these segments and it has the rotational property on the
segments W*(c, f~1(¢q)) and W*(q, f~'(b)). It remains to be shown that V'
can be deformed such that it also has the rotational property on the remaining
two segments. We use the following proposition that is a standard result from
topology

Proposition 5.3 Take two Jordan curves (T'y and T'y) which have the same
orientation, suppose that these two curves have a common segment A and
moreover suppose that along this segment Iy and I'y are oriented in the same
way (see figure 8 Then there exists a homotopy from the curve Ty \ A to the

curve T'y \ A without creating intersections with the segment A.

Proof: Since we assume that ['; are piecewise smooth, there are curves I
near ['; homotopic to I'; which intersect transversally. Then proceed as in
chapter 8 of [12]. O
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Notice that ['y and I'; are allowed to intersect in some points which are not
in A.

We next apply this result to the curves I'y = W% (p,q) U W*(p,q), T'1 =
W (p, f(q)) UW?(f(q),p) and A = W*(f(q),p) UW"(p,q). Ty and 'y are
closed curves without self-intersection because of the choice of the point q.
Notice also that I’y = f(T'g). If we orient these curves in the direction of
the unstable manifold, then they will have the same orientation because f
is an orientation preserving. Moreover, these curves have the same orien-
tation along A. Thus we can apply the previous proposition and obtain a
homotopy from W*"(q, f(q)) to W#(q, f(¢q)) without crossing W*(p,q). Let
us denote this homotopy by ¥ : W¥(q, f(q)) — R2, X € [0,1], so ¢y = Id ,

vi(W*(q, [(q))) =W?*(q, [(q))-

Now we can define a deformation of the vector field V' on the segment
W (f~*(q),q) by
Va(z) = a(f(2)) -,

where x € W¥(f7'(¢q),q) and 0 < X\ < 1. Obviously, ¥, = V because
Yo = Id, V) is never singular because 1, (z) is never in W*(p,q) and 1}
satisfies the rotational property on the segment W*“(f(q),q) for the curve
' =0D.

Since in the small neighborhood O of p (the segments | = [b,¢|, f(I) and
W#(p, f~1(b)) are contained in O), f is almost a linear map, it is easy to
see that one can continuously deform the vector field V on [ UW?*(f~1(b),b)
without creating singularities in such a way that the vector field becomes

rotational: simply again use proposition A.3.

So, we have shown that V' can be continuously deformed on the curve I' = 0D
to a rotational vector field without creating singularities. Once again, since
the index depends continuously on the parameter this implies that the index

of V on I' is equal to the index of the rotational vector field which is +1.
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Together with proposition 5.1 this proofs the lemma. O
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