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Preface

One-dimensional dynamics has developed in the last decades into a subject
in its own right. Yet, many recent results are inaccessible and have never been
brought together. For this reason, we have tried to give a unified account of the
subject and complete proofs of many results. To show what results one might
expect, the first chapter deals with the theory of circle di↵eomorphisms. The
remainder of the book is an attempt to develop the analogous theory in the
non-invertible case, despite the intrinsic additional di�culties. In this way, we
have tried to show that there is a unified theory in one-dimensional dynamics.
By reading one or more of the chapters, the reader can quickly reach the frontier
of research.

Let us quickly summarize the book. The first chapter deals with circle
di↵eomorphisms and contains a complete proof of the theorem on the smooth
linearizability of circle di↵eomorphisms due to M. Herman, J.-C. Yoccoz and
others. Chapter II treats the kneading theory of Milnor and Thurston; also
included are an exposition on Hofbauer’s tower construction and a result on full
multimodal families (this last result solves a question posed by J. Milnor). In
the third chapter we analyze structural stability and hyperbolic properties of
one-dimensional systems with a simplified proof of a result of R. Mañé. This
chapter has a section describing the ideas that are used in the theory of rational
maps on the Riemann sphere corresponding to those which are used here; it also
serves as an introduction to the last chapter. The fourth chapter shows that
Denjoy’s result for circle di↵eomorphisms also holds for non-invertible maps and
that the period of the attractors of these maps is bounded. The first part of this
result extends work of J. Guckenheimer, J.-C. Yoccoz, A.M. Blokh and M.Yu.
Lyubich. The first three sections of Chapter IV give all the distortion tools
necessary for the remaining chapters.

From Chapter V onwards, we confine ourselves to unimodal maps. The fifth
chapter gives an account of the state-of-the-art concerning ergodicity, Cantor
attractors and invariant measures. We shall give a unified treatment of results of
A.M. Blokh, P. Collet, J.-P. Eckmann, J. Guckenheimer, S.D. Johnson, M.Yu.
Lyubich, G. Keller, M. Martens, M. Misiurewicz, T. Nowicki, S. van Strien and
partly of the results of Jakobson and Świa̧tek. Also we give a complete account
of the proof of M. Benedicks and L. Carleson of Jakobson’s result on invariant
measures in families of maps. In the final chapter, a complete proof is given
of D. Sullivan’s recent results on the universal structures of one-dimensional
systems coming from renormalization. This chapter uses ideas from complex
analysis, in particular Teichmüller theory. The necessary background for this
book is treated in an appendix.

This has resulted in a lengthy volume. However, the reader should not
be discouraged by this. The book is organized in such a way that each of
the chapters is essentially independent of the others. For this reason, we have
defined some concepts twice or more. (For example the notion of wandering



interval is defined in both Chapter I and II.)

We have used Chapter II of this text for an introductory course at first year
graduate level on the combinatorial properties of piecewise monotone maps.
Viviane Baladi used Chapter I and the first part of Chapter II for an 8 week
introductory graduate course in dynamical systems. Sections IV.1-IV-3 and
V.1-V.6 were used for another course on the metric theory of unimodal maps.
A more advanced graduate course on the theory of renormalizations included
Sections III.1, IV.1-IV.3 and Chapter VI. Most exercises include substantial
hints (some of these hints are even complete proofs).

We should emphasize that we have not tried to give a complete account of all
developments in one-dimensional dynamics. Most notably we have only given a
short introduction to the combinatorial theory of one-dimensional systems; for
more references on this see Section II.11 and recent monographs by Sarkovskii et
al. (1989), Alsedà et al. (1990), Block and Coppel (1992) and by Misiurwicz and
Nitecki (1991). We have not touched on thermodynamical theory, singularity
spectra, decay of correlations and such matters, though some references to these
subjects are given.

This book grew from notes written by the first author which were distributed
during a course organized by the Brazilian Mathematical Society. The first part
of this book retains the same structure as those notes but has been very much
expanded. Moreover, the last two chapters are new. In these chapters results
are given on ergodic properties of one-dimensional dynamical systems and also
a complete account is given of Dennis Sullivan’s proof of the renormalization
conjectures of Feigenbaum, Coullet and Tresser. Exercises have been added.

We wish to thank Klaas Pieter Hart and Lucio Rodŕıgues for their help with
making TEX-macros and Tineke Mulder, Kitty Cijfer and Ruud Schotting for
their practical help. We also wish to thank Viviane Baladi, Thierry Barbot,
Christian Bonatti, Karen Brucks, Henk Bruin, Robbert Fokking, Jean-Marc
Gambaudo, Ernst Hansen, Toby Hall, Gerhard Keller, Bernd Krauskopf, Ri-
cardo Mañé, Hilary Marland, Marco Martens, Gilza de Melo, Pedro Mendes,
Jack Milnor, Tomasz Nowicki, Hiroe Oka, Paulo Sad, Atsuro Sannami, Mitsu
Shishikura, Charles Tresser, Masato Tsujii, and Edson Vargas for reading parts
of the manuscript. Their comments, in particular those of Viviane Baladi,
Henk Bruin, Bernd Krauskopf and Tomasz Nowicki, have helped us to elim-
inate many mistakes. Duncan Sands’ comments on a previous version of the
proof of Benedicks and Carleson’s result (Section V.6) have been very useful.
Conversations with Michael Lyubich were very helpful for us in completing the
proof of the Grötzsch Inequality in the proof of Proposition VI.7.1. Frederick
Gardiner’s comments on the proof of the Coiling Lemma, see Theorem VI.8.2,
were also very valuable. We would like to thank Dennis Sullivan for many in-
spiring discussions and in particular spending many hours with us explaining
his renormalization results. The first author would like to thank IHES and the
Technical University of Delft for the hospitality during several visits that were
essential for the preparation of this book.
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Chapter 0.

Introduction

This book is about real one-dimensional discrete dynamical systems. We
consider continuous maps f : N ! N where N is an interval or a circle and –
if this leads to better results – we shall often assume that f is smooth. Typical
examples we will encounter are maps of the form

f : [0, 1]! [0, 1] defined by f(x) = ax(1� x)

or
f : R/Z! R/Z defined by f(x) = x + a sin(2⇡x) + ↵mod1.

We will consider iterates fn of f . These are inductively defined by f0(x) = x
and fn(x) = f(fn�1(x)) for n = 1, 2, . . . . Our aim is to describe the orbits
x, f(x), f2(x), . . . of points x and to describe how these are distributed. Even
for the simple maps mentioned above this turns out to be highly non-trivial and
also extremely interesting, both from a mathematical and an applied point of
view. There are many motivations for studying such dynamical systems. Let
us mention a few.

1. Historical. Iterating one-dimensional maps has a very long history. After
all, to construct an accurate calendar, the Babylonians had to consider – in
our terminology – a rotation of the circle and give a precise estimate for its
angle ↵ of rotation based on a piece of its orbit. For this they – and later
the Greeks – considered the line (t, t↵) in the plane and developed a continued
fraction algorithm to estimate its slope ↵. For references on this we refer to
Fowler (1987) and Series (1983). Ever since, continued fractions have played
an important role in mathematics and in particular in number theory. It was
Poincaré, in the 1880s, who generalized this point of view by considering the
dynamics of more general maps of the circle. A detailed understanding of the
dynamics of these maps leads to small-divisor problems and plays an important
role in the modern theory on celestial mechanics.

Of course, since the 18th century one has another important one-dimensional
dynamical system: the iteration scheme to determine the zeros of a function.
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These are now referred to as the Newton-Raphson method – for a debate on
this attribution see Kollerstrom (1992). Because one may have several zeros
it is obvious that something interesting is occuring. Surprisingly, only at the
beginning of this century was a more systematic analysis made of this algorithm
in the complex plane by Julia and Fatou and more general non-linear iteration
problems were considered.

2. Mathematical beauty. As we hope to show in this book, the theory of
one-dimensional dynamical systems has a very beautiful structure. It is built-
up in several layers: the first one is based on the order structure on an interval
or a circle and the Intermediate Value Theorem for continuous maps. This
already leads to a surprisingly rich ‘combinatorial’ theory. The second layer is
connected to the a�ne structure and based on the fact that in one-dimensional
space the size (i.e., volume) and the diameter of a connected set are the same:
an example of a tool of this type is the Mean Value Theorem. Thirdly, one
has the projective group acting on the real line which will lead to the Koebe
Principle. These three structures allow the study of the orbit of a configuration
of respectively two, three and four points. Finally, an interval or a circle can
be embedded in the complex plane where one has the notion of conformal and
quasiconformal maps. This leads to ways to define ‘geodesic arcs’ between such
dynamical systems.

Because one has such a good mathematical framework, the general theory
of one-dimensional dynamical systems is very well developed. For example, we
can completely describe the dynamics which can occur in these systems in a
topological sense. This dynamics can be extremely complicated (for example
infinitely many periodic points can coexist in a far more complicated way than in
the usual horseshoe maps) and yet is completely understood. In a metric sense,
the orbit structure is also increasingly understood. Surprisingly, one often has
rigidity (or universality as physicists choose to call it): the metric structure of
orbits is completely determined by the topological one.

Moreover, the mathematical tools that are used in this theory come from
di↵erent and beautiful branches of mathematics – number theory, topology,
ergodic theory, complex analysis, real analysis, general dynamical systems and
foliation theory to name a few.

3. Displays many features of higher-dimensional dynamics. Since New-
ton it has been common to model ‘real life’ by ordinary di↵erential equations.
Of course, for theoretical and practical reasons these are often discretized. How-
ever, there is a deeper relationship between flows and discrete systems: from the
beginning of this century it was realized that discrete systems also arise from
flows with periodic orbits as the first return map to some codimension-one sec-
tion. In this way a flow in a three-dimensional space is related to an invertible
discrete system in a two-dimensional space. For example, the Hénon map

(x, y) 7! (1� ax2 + y, bx)
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is considered to be a natural model for the first return map of a three-dimensional
flow. If the flow is dissipative then the corresponding invertible system is area
contracting. Intuitively, this should mean that the essential dynamics is con-
fined to a one-dimensional subspace; so if the flow can be reasonably modelled
by the Hénon map then one may expect that the three-dimensional flow has
essential features of the dynamics of the interval map f(x) = 1� ax2.

Indeed, there is increasing evidence that higher-dimensional dynamical sys-
tems can often be ‘reduced’ to one-dimensional systems. In some cases nothing
is lost in this reduction. For example, Smale’s solenoidal di↵eomorphism (1967)
on a full torus D2 ⇥ S1 can be completely reduced to a degree two map of the
circle. Another example is of course the geometric model of the Lorenz equa-
tions. The chaotic dynamics of these equations became only understood after
it was realized that some first return map is essentially one-dimensional, see
Guckenheimer (1976). Similarly, especially through the work of M. Morse it
is known that geodesic flow on a hyperbolic surface are very closely related to
one-dimensional dynamical systems, see for example the papers in Bedford et
al. (1991).

In some other cases, the relationship is less clear but partial results can still
be proved. For example, the bifurcation structure of higher-dimensional systems
can be understood from the bifurcations of one-dimensional maps, see for exam-
ple Collet et al. (1980), Levi (1981), Van Strien (1981) and Holmes and Whit-
ley (1984). Another example is Sarkovskii’s beautiful theorem (1964) on the
periodic orbits of continuous interval maps (which was rediscovered by Li and
Yorke (1975) who popularized it under the name ‘period three implies chaos’).
This result also has two-dimensional analogues, see Boyland (1987), (1988) and
Gambaudo et al. (1990). Moreover, dynamical properties of the Hénon maps
(x, y) 7! (1 � ax2 + y, bx) can sometimes be completely reduced to those of
one-dimensional maps. In Gambaudo et al. (1989) it is shown there are Hénon
maps with an infinite number of periodic points which are ‘⌦-conjugate’ to the
Feigenbaum quadratic interval map. Furthermore, a deep result of Benedicks
and Carleson (1991) shows that Hénon maps can have ‘strange attractors’. Their
method of proof is to extend one-dimensional ideas.

Finally, as is not surprising, many results and techniques are very similar to
those developed for iterations of rational maps on the Riemann sphere.

4. Relations with other areas of mathematics. As mentioned before, the
theory of dynamical systems brings together many ideas from di↵erent branches
of mathematics. However, dynamical systems also gives something in return!
For example, much in di↵erential topology is linked to dynamical systems. To
give just a few examples, the work of Smale on the Poincaré Conjecture is based
on gradient flows. Several questions in the foliations are related to dynamical
systems, see for example Sacksteder (1965). Thurston’s work on isotopy classes
on surfaces uses a dynamical approach: by iterating closed curves, he constructs
maps on branched one-dimensional manifolds and his pseudo-Anosov maps, see
for example Casson and Bleiler (1988) and Fathi et al. (1979). We should



4 CHAPTER . INTRODUCTION

also mention the theory of Fuchsian groups, see for example Sullivan (1980)
(and other essays in this memorial volume). There is also a strong link with
statistical mechanics (via symbolic dynamics, Perron-Frobenius-type operators
a.s.o.).

Altogether we may conclude that the theory of dynamical systems plays a
central role in mathematics!
5. They model ‘real’ applications. In some cases, one-dimensional dynam-
ical systems accurately model ‘real’ applications. For example, many ‘real life’
problems can be modeled by Hamiltonian dynamical systems. Often, because
of symmetries, these have many first integrals which implies that the flow takes
place on tori. Many of these tori even persist if one perturbes the system because
of K.A.M. results. In this way circle di↵eomorphisms can arise naturally as a
first return map to a smooth flow without singularities on a two-dimensional
torus (this happens for example in a forced pendulum or in electrical networks).

Another application is to biological systems. The simplest growth model is
that the number of animals x

n+1 at time n + 1 only depends on x
n

. This leads
to studying iterates of one-dimensional maps.

In some other cases, one can empirically see that something should be mod-
eled by a one-dimensional dynamical system. For example, there are chemical
reactions (e.g. the Belousov-Zhabotinskii reaction) whose data hints to inter-
val dynamics: measuring some quantity at discrete times n 2 N one gets a
sequence x

n

of real numbers; one seems to have that x
n+1 is a continuous, but

not an invertible function of x
n

, for references see for example Schuster (1989),
Cvitanović (1989), or Jackson (1989/1990).
6. They ‘explain’ experimental patterns. Since Hénon maps are natural
models for first return maps of three-dimensional flows, many experimentally ob-
served features are familiar to those who have studied one-dimensional systems.
In several fluid experiments, for example the Rayleigh-Bénard experiment, bi-
furcations are observed which have many similarities with the bifurcations of
the quadratic family f

a

(x) = ax(1�x), see for example the papers in Cvitanović
(1989). In Figure 0.1 we have drawn the well-known bifurcation diagram of the
quadratic family.

The bifurcation diagram of the quadratic family is not only qualitatively
but also quantitatively ubiquitous. Indeed, let a

n

be the smallest parameter
for which f

a

n

has a periodic orbit of period 2n. Then one can show that a
n

converges to some number a1 as n!1 and that

lim
n!1

a
n+1 � a

n

a
n+2 � a

n+1

tends to some number � = 4.6692016091029 . . . . This limit is the same for any
smooth unimodal family of maps f̃

a

, provided each of these maps also has a
non-zero second derivative at its extremum. In fact it is even the same for maps
from the Hénon family. So � is a universal number! Moreover, in experiments
one often find similar bifurcation diagrams with the same rate � of convergence
of period doubling.
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Fig. 1: The bifurcation diagram of f
a

(x) = ax(1� x)

Similarly, one can prove that the limit

�(a, x) = lim
n!1

1
n

log |Dfn

a

(x)|

exists and is equal to some constant �(a) for Lebesgue almost all x. This num-
ber �(a) is called the Liapounov number. Experimentally measured Liapounov
numbers often also have the same kind of parameter dependence as those in the
quadratic family, see for example the papers in Cvitanović (1989).

7. It is fun!

Fig. 0.2. The Liapounov number of f
a

(x) = ax(1� x) as a function of a.

In this book we will study one-dimensional dynamics from a mathematical
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point of view. Questions about one-dimensional dynamics fit into four cate-
gories: combinatorial, topological, ergodic and smooth. Let us first describe
these briefly.

1. Combinatorial. The main distinguishing feature of real one-dimensional
dynamics is that an interval or a circle has a natural ordering. This allows
the development of a ‘combinatorial theory’ which describes properties of
orbits related to this ordering. Examples of results in this combinato-
rial theory are Sarkovskii’s hierarchy of periodic orbits and the theory of
kneading invariants (or rotation numbers).

2. Topological. In the topological theory we want to describe the dynamics of
these maps from a topological viewpoint. What are the attractors, which
maps are conjugate and which are structurally stable?

3. Ergodic. In the ergodic theory we want to know the behaviour of typical
orbits: to which sets are randomly chosen points attracted?

4. Smooth. Finally, one would like to establish smoothness properties of
conjugacies between two systems. Surprisingly, two conjugate maps are
sometimes ‘smoothly’ conjugate, simply because they satisfy some suitable
combinatorial and topological conditions.

Now we will discuss and survey these theories in more detail.

1.1. The combinatorial theory

One of the main questions in the field of dynamical systems is whether two
systems have ‘the same behaviour’. Often one says that x

n+1 = f(x
n

) and
y

n+1 = g(y
n

) are ‘the same’ if they are identical up to a coordinate change. This
means that there is a homeomorphism h : N ! N such that h�f = g�h. In this
case h(fn(x)) = gn(h(x)) so h maps orbits of f onto orbits of g and we say that
f and g are topologically equivalent or conjugate. However, in one-dimensional
dynamics it turns out to be useful to first study a weaker notion of equivalence.
Therefore, we say that f, g : N ! N are combinatorially equivalent if, roughly
speaking, there exists an order-preserving surjective ‘map’ h : N ! N with the
property that the image of a point is either again a unique point or a single
closed interval such that h � g = f � h. So h may collapse some intervals to
points or blow-up some points to intervals. (A precise definition will be given in
Section II.3.) For those who are familiar with kneading theory we should remark
that two maps without periodic attractors and without wandering intervals are
combinatorially equivalent if and only if they have same kneading invariants. As
we will see, in Sections I.2 and II.6, maps from a very large class are conjugate
if and only if they are combinatorially equivalent.

Poincaré (1880) realized that any circle homeomorphism without periodic
points is combinatorially equivalent to a rotation. Moreover, two such homeo-
morphisms are combinatorially equivalent if and only if their rotation numbers
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are the same. The corresponding statements for continuous piecewise mono-
tone interval maps were shown much later. Parry (1964) showed that interval
maps are combinatorially equivalent (or, in fact, semi-conjugate) to piecewise
linear maps. Also in 1964, Sarkovskii’s proved his remarkable theorem that a
periodic point of period three implies the existence of periodic points of any
period. Later, Metropolis, Stein and Stein (1973) and – in their well-known
handwritten notes – Milnor and Thurston (1977) proved that two piecewise
monotone continuous interval maps are combinatorially equivalent if and only
if the orbits of their turning points are ordered in the same way. Moreover,
Milnor and Thurston showed that any such map is combinatorially equivalent
to a polynomial map and that the topological entropy depends continuously on
the map.

In Section I.1 the combinatorial theory in the case of circle homeomorphisms
will be discussed. For these maps one can define a ‘rotation number’. This is
usually done by using some limit related to a real valued lift or, alternatively,
by some counting argument. However, this cannot be done in the non-invertible
case. So instead we associate to a circle di↵eomorphism a symbolic coding of
orbits and also a sequence of first return maps. These first return maps define
return times p

n

, q
n

and a
n

. Two maps are combinatorially equivalent if and
only if the corresponding numbers coincide. As one would expect one can also
define the rotation number of the map in terms of these numbers. Indeed, the
ratios p

n

/q
n

are the best approximants of some number ⇢(f) and the integers
a

n

are the coe�cients in the continued fraction expansion of ⇢(f). As we will
show, this definition of ⇢(f) coincides with the usual definition of the rotation
number of f .

There is another reason for defining the rotation number in this combina-
torial way. As we will see, throughout the whole book first return maps and
disjointness properties of iterates of intervals play a vital role. So we would like
to stress these notions here. And indeed, it turns out that all the well-known
properties of these approximants follow simply from the dynamics of these first
return maps (and so are proved dynamically rather than using the less intuitive
algebraic manipulations). For example, the property that p

n

/q
n

is the best ap-
proximation of ⇢(f) is a trivial consequence of the fact that q

n

is the return
time of some first return map.

As it turns out, for piecewise monotone interval maps a completely similar
coding can be made. Moreover, in each reasonable family f

µ

of smooth maps
we can find a map f

µ0 which is combinatorially equivalent to a given topological
piecewise monotone map g. However, interval maps can have a more compli-
cated dynamics. For example, such maps can periodically permute smaller and
smaller intervals whose orbits shrink down to an invariant Cantor set; such maps
are called infinitely renormalizable. Feigenbaum maps are one of the many maps
with this property.

This and the theorems mentioned above are proved in Chapter II. These
results will also explain why the bifurcations of such interval families are ordered
in such a universal way.
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1.2. The topological theory

Suppose two maps are combinatorially equivalent. When are they also topolog-
ically equivalent, i.e., conjugate? As we shall see this question is very closely
related to the existence of wandering intervals and periodic attractors. Here an
interval is said to be wandering if all its forward iterates are disjoint and if these
iterates do not tend to a periodic orbit. Similarly, a closed forward invariant
set A is said to be attracting if its basin B(A) = {x ; fn(x) ! A as n ! 1}
satisfies the following two properties: i) the closure of B(A) contains intervals,
ii) each closed forward invariant proper subset A0 of A has a smaller basin of
attraction, i.e., cl (B(A))\ cl (B(A0)) contains intervals. As it turns out, a topo-
logical description of the dynamics of maps is possible once we can show that
they have no wandering intervals and that the period of periodic attractors is
bounded.

Although the non-existence of wandering intervals is a topological property
of a map, it can be shown that these intervals cannot exist for a very large
class of smooth maps. Therefore we restrict our attention to maps f with some
smoothness properties. The first result in this direction is for smooth circle
di↵eomorphisms and is due to Denjoy (1932). This proof is given in Section I.2.
If f has critical points (i.e., points x where f 0(x) = 0) then the situation is more
involved. During the last ten years, contributions to the general result were
made by Guckenheimer, Yoccoz, de Melo and Van Strien, Blokh and Lyubich
and finally Martens, de Melo and Van Strien. Initially, these results assumed
that the map f satisfies some magic condition:

Sf =
f 000

f 0
� 3

2



f 00

f 0

�2

< 0

which is usually called the negative Schwarzian condition. However, later it was
shown that this assumption is superfluous and not so mysterious after all. In-
deed, as we shall see in Chapter IV, the situation is now completely understood:
one-dimensional maps which satisfy some smoothness properties and also have
no flat critical points have no wandering intervals. The proof uses a mixture
of combinatorial and distortion techniques. The combinatorial techniques are
essentially based on the following considerations:

1. closest returns and first return maps;

2. disjointness of certain orbits of intervals;

The aim of the distortion techniques is to give ‘bounds on the shape’ of high iter-
ates of f . Of course if f has critical points then f is certainly not almost linear.
After all, even |Df(x)|/|Df(y)| is then unbounded. Instead these distortion
results give

3. bounded distortion in the absence of critical points;

4. the Koebe Principle bounding the distortion ‘away from the critical val-
ues’.
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These distortion results will turn out to be closely related to similar distortion
results from complex analysis.

As already mentioned, the non-existence of wandering intervals is closely
related to a topological description of the dynamics. For example, let ⌦(f) be
the non-wandering set of f . This is the set of points x such that for any neigh-
bourhood U of x there exists n > 0 with fn(U)\U 6= ; and so arbitrarily close
to these points are points which come back nearby. (Of course, the notions of
‘wandering interval’ and ‘wandering set’ are quite di↵erent.) The non-existence
of wandering intervals immediately gives that the non-wandering set of a C2

circle di↵eomorphism consists of periodic orbits (all of the same period) or is
equal to the circle. In the last case the di↵eomorphism is conjugate to a rota-
tion. In the case of interval maps the situation is more complicated. In this case
one can often decompose or renormalize a map in the sense that there exists an
interval I such that some iterate fn maps I into itself, so that I, . . . , fn�1(I)
are disjoint. So if a map is renormalizable then either points always stay outside
the orbit of I or they enter eventually. For points which enter eventually, it is
more convenient to study the restriction of fn to I, i.e., to use a ‘microscope’.
Sometimes this map fn is again renormalizable. In this way we will prove in
Chapter III that interval maps can have three types of topological attractors:

1. a periodic attractor;

2. an invariant solenoidal Cantor set (this means that f acts as an adding
machine on this set and that f is infinitely often renormalizable);

3. a finite union of intervals containing a dense orbit;

In Chapter III this result will be stated more precisely.
Another aspect of the topological theory deals with the structural stability

of maps. As usual we say that a map is structurally stable if any nearby map
is conjugate to it. As is easy to see, no map is structurally stable in the C0

topology. Therefore one usually considers Cr maps with the Cr topology where
r is at least 1 (and often r � 2). Circle di↵eomorphisms are Cr structurally
stable if and only if they are Morse-Smale. This means that each recurrent
point is periodic and each periodic point is hyperbolic, i.e., if fn(p) = p then
|Dfn(p)| 6= 1. For non-invertible maps the situation is more interesting. These
can be structurally stable even if many recurrent points are non-periodic. It
turns out that in order to study structural stability one has to introduce a
more general notion of hyperbolicity. A forward invariant set K is hyperbolic
if there exists C > 0 and � > 1 such that |Dfn(x)| � C�n for each x 2 K
and each n 2 N. Furthermore, a map is called Axiom A if the set of points
which are not contained in the basin of a periodic attractor is hyperbolic. It
turns out that any Axiom A map, for which the orbits of the critical points
are disjoint, is structurally stable. This result is of course the analogue of the
higher-dimensional result. In higher dimensions, Axiom A occurs rarely while
in one-dimensional dynamics it is rather common. Indeed, as Mañé (1985) has
shown, any C2 map for which each critical point is attracted to a periodic orbit
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and for which each periodic point is hyperbolic, satisfies the Axiom A property.
So a non-uniform condition on each periodic orbit su�ces to get hyperbolicity.
Even so, it is unknown whether hyperbolicity of the non-wandering set holds for
generic maps. These results are proved and discussed in Chapter III including
an elementary proof of Mañé’s result.

In fact, even if some of the critical points do not tend to a periodic orbit but
nonetheless never enter a neighbourhood of the critical points, something similar
holds. Such maps are said to have the Misiurewicz property and Misiurewicz
(1981) and Van Strien (1990) have shown that one has a kind of non-uniform
hyperbolicity for these maps. In the discussion of ergodic properties of maps
this will play an important role.

1.3. The ergodic theory

What points have ‘typical’ orbits? This vague question is related to the er-
godicity of the map f . A map is ergodic if for any two measurable forward
invariant sets X and Y whose intersection has Lebesgue measure zero, either
X or Y has zero Lebesgue measure. So this means that one cannot decompose
the space into ‘visible’ forward invariant sets. It is not hard to show that C2

circle di↵eomorphisms without periodic orbits are ergodic. In Blokh and Lyu-
bich (1986), (1989c) and Lyubich (1990) the corresponding result is shown for
interval maps. However, even if many orbits are dense it could still be the case
that the forward limits of almost all points are contained in a set with zero
Lebesgue measure. To study such questions, we say, following Milnor (1985),
that a closed forward invariant set A is a metric attractor if the basin B(A) of
A, i.e., B(A) = {x ; fn(x)! A as n!1} satisfies

1. the measure of B(A) is positive;

2. each closed forward invariant subset A0 which is strictly contained in A
has a smaller basin of attraction: B(A) \ B(A0) has positive Lebesgue
measure.

Blokh and Lyubich (1986) have shown that interval maps with negative Schwar-
zian derivative can only have finitely many attractors. From this and Gucken-
heimer (1979) it follows that, for unimodal maps, the attractor is either a Cantor
set, a finite union of intervals or a periodic orbit. If it is a Cantor set then it
is equal to !(c) and Martens (1990) showed that this last set either contains
intervals or has Lebesgue measure zero. Related results were obtained by Guck-
enheimer and Johnson (1990) and Keller (1990a). Lyubich and Milnor (1991)
and Lyubich (1992) completed the classification of these attractors, by showing
that an attractor of a smooth unimodal map with a quadratic critical point
which is a Cantor set is necessarily solenoidal (and therefore map is infinitely
often renormalizable). For these results we refer to Section V.1.

Moreover, one would like to know how orbits are distributed. One way to
analyze this is through invariant measures. So suppose that a map f has a prob-
ability measure µ which is invariant: µ(A) = µ(f�1(A)) for each measurable
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set A. If f is ergodic and µ is absolutely continuous then Birkho↵’s Ergodic
Theorem gives us the asymptotic distribution of orbits: for each open set U with
a non-empty intersection with the support of µ one has for Lebesgue almost all
x,

lim
N!1

#{i ; 0  i < N, f i(x) 2 U}
N

= µ(U) > 0.

To give an example, let f be a circle di↵eomorphisms without periodic points
and U an open interval in S1. Then

lim
N!1

#{i ; 0  i < N, f i(x) 2 U}
N

exists and is independent of x. Hence there is an invariant probability measure
µ on S1 such that this limit is equal to µ(U). For example, if R is a rotation
without periodic points then this measure is simply the Lebesgue measure. So,
under a rotation, iterates of x are uniformly distributed. An equivalent way to
express this is to denote the Dirac measure in a point z 2 S1 by �

z

and to say

that
1
n

P

n�1
i=0 �Ri(x) tends to the Lebesgue measure on S1 in the weak topology.

However, orbits under non-linear circle di↵eomorphisms are in general far
from evenly distributed. Indeed, even though the orbit of any point is dense
there exists a di↵eomorphism f as above and a set K ⇢ S1 of full Lebesgue
measure such that

lim
N!1

#{i ; 0  i < N, f i(x) 2 K}
N

= 0.

Constructions of such maps were given by Finzi (1950) and Arnol’d (1961). As
will become clear in Sections I.4 and I.5, it is no great surprise that something
like this happens. After all, consider the family of di↵eomorphisms f(x) =
x + a sin(2⇡x) + ↵mod1 and suppose that for a certain parameter (a,↵) the
map f has no periodic orbits but still there exists a point p which is ‘almost
periodic’ (of, say, period n). Then of course orbits linger for an extremely long
time near {p, . . . , fn�1(p)}. So orbits are already far from evenly distributed.
The examples of Arnol’d are constructed by repeating this infinitely often. On
the other hand, Arnol’d (1961) and, in a more general context, Herman (1979),
have shown that the invariant probability measure of a circle di↵eomorphism
whose rotation number is su�ciently irrational is absolutely continuous.

For interval maps the situation is similar: Johnson (1987) has given examples
of quadratic maps with similar features to those of Arnol’d mentioned above.
Moreover, Hofbauer and Keller (1990a) have even given examples of quadratic

maps for which
1
n

P

n�1
i=0 �fi(x) tends to the Dirac measure of a repelling fixed

point for almost all x. In other words, most orbits spend most of their time
near a repelling point and this repelling fixed point is, from a statistical point
of view, an attractor! We will prove this in Section V.5.

On the other hand, many quadratic maps x 7! ax(1 � x) have invariant
probability measures which are absolutely continuous. Misiurewicz (1981), Col-
let and Eckmann (1983), Keller (1990) and Nowicki and Van Strien (1991a) have
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given conditions under which such invariant measures exist. All these conditions
require some non-uniform type of hyperbolicity. We shall prove these results in
Sections V.2-V.4. These conditions are satisfied for a large set of parameters.
Indeed, Jakobson (1981) and also Benedicks and Carleson (1991) have shown
that these measures exist for a set of parameters of positive Lebesgue measure.
This result is proved in Section V.1. Here we will follow Benedicks and Carleson
(1991). The ideas used in the proof of this last result also indicate that there
might exist weak topological conditions which su�ce for the existence of such
absolutely continuous invariant measures.

1.4. The smooth theory

If we want to relate two conjugate maps f and g in detail then it would be
very useful if they were smoothly conjugate. Surprisingly, there are several
theorems stating that if two conjugate maps satisfy some suitable combinato-
rial and topological conditions – given by their kneading invariants – then the
conjugacy between them is necessarily smooth.

The first result in this direction is for the circle. Provided a circle di↵eomor-
phism has a rotation number which is su�ciently irrational then it is smoothly
conjugate to a rotation. This result was first proved by Arnol’d (1961) for ana-
lytic di↵eomorphisms which are close to a rotation. Moser (1966) and Herman
(1979) greatly extended these results to smooth circle di↵eomorphisms. We will
prove this result in Chapter I using the version of Yoccoz (1984a). The basic
tool in Herman’s result is a sophisticated version of the distortion results used
in Denjoy’s theory and requires additional smoothness. In fact, any C3 circle
di↵eomorphism f without periodic points is almost linear in the sense that there
exists a sequence of iterates q

n

! 1 such that ||Dfq

n � 1|| ! 0. This already
shows that the rotation is a good model for circle di↵eomorphisms. Under suit-
able additional conditions on the rotation number, one gets that ||Dfk � 1|| is
bounded for all k 2 Z and that f is C1 conjugate to a rotation. There is a very
well developed theory in which necessary and su�cient conditions are given in
terms of the smoothness and its rotation number for a circle di↵eomorphism to
be Ck conjugate to a rotation.

Later, a similar result was discovered for infinitely renormalizable non-invertible
maps. Feigenbaum (1979) and Coullet-Tresser (1978) found numerically that
the map at the limit of period doubling has the following property: for each
such map f with a quadratic critical point the ratios

|f2n+1
(c)� c|

|f2n(c)� c|

tend to the same number (namely 0.3995 . . . ). Later, computer assisted proofs
were given by Lanford (1984), see also Eckmann and Wittwer (1979), Cam-
panino, Epstein and Ruelle (1981) and others. This discovery was the first in-
dication of the existence of metric rigidity of the critical orbit. Let us formulate
this notion more precisely. Two maps are said to have the same combinatorial
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type if their critical orbits are ordered in the same way. This order structure
we refer to as the combinatorial critical orbit type. We say that a combinatorial
critical orbit type implies rigidity if any two ‘su�ciently regular’ maps whose
critical orbits have this combinatorial type are smoothly equivalent in the sense
that there exists a smooth di↵eomorphism of the real line that maps one crit-
ical orbit onto the other conjugating the maps along these orbits. In Chapter
VI we shall prove a recent rigidity result, due to Sullivan (1992). In this re-
sult he considers critical orbit types which come from infinitely renormalizable
maps of bounded type as will be defined in Section VI.1. For these maps the
closure of the critical orbit is a Cantor set. For the proof of this result one
defines an operator, called the renormalization operator, on some subset of the
space of unimodal interval maps. This operator defines a dynamical system
on an infinite-dimensional space and the rigidity theorems follow from a com-
plete description of its dynamics: it has precisely the same dynamics as Smale’s
horseshoe. The well-known Feigenbaum map (which is the fixed point under
the usually studied period doubling operator) corresponds to one of the fixed
points of Smale’s horseshoe.

One of the main di↵erences between the circle di↵eomorphism case and the
non-invertible case, is that in the former the rotation is clearly the right ‘model’
map. In the latter, no well-understood model can be easily given. It is for this
reason that Sullivan had to use complexifications of the maps and tools from
Teichmüller theory to obtain the model by a contraction argument. We shall
explain these ideas at length in the last chapter.

Recently, it was shown by Lyubich and Milnor that some other, non-renormalizable
maps have universal structures, see Section VI.10. A smooth theory like the
one which already exists for circle di↵eomorphisms seems to emerge for non-
invertible maps. One-dimensional dynamics is becoming a mature subject!



Chapter I.

Circle Di↵eomorphisms

This chapter is devoted to the study of invertible one-dimensional dynamical
systems. In the later chapters we shall see that, although the non-invertible
case is quite di↵erent, many techniques and theorems for analyzing these non-
invertible systems find their roots in the invertible case. One of our aims in this
book is to emphasize these similarities.

The circle S1 is defined to be the quotient space of the real line R by the
group of translations by integers: S1 = R/Z. Let ⇡ : R! S1 be some covering
map. Notice that ⇡(x) = ⇡(y) if and only if x � y 2 Z and ⇡ maps the open
interval (0, 1) di↵eomorphically onto S1 \ {⇡(0)}. A map f : S1 ! S1 is said to
be a Cr, r � 0, di↵eomorphism if and only if there exists a Cr di↵eomorphism
f̂ : R! R such that ⇡ � f̂ = f � ⇡. We say that f̂ is a lift of f . Notice that if ĝ
is another lift of the same homeomorphism f then there exists an integer n 2 Z
such that f̂(x)� ĝ(x) = n for all x 2 R. A homeomorphism f̂ : R! R is a lift of
some circle homeomorphism if and only if f̂(x + n) = f̂(x)± n for every x 2 R.
Hence, if f̂ preserves orientation then f̂ = Id + � where Id is the identity map
and � is periodic of period 1. In particular each translation T

↵

(x) = x + ↵ is a
lift of a rotation R

↵

of the circle.
In Section 1 the dynamics of circle homeomorphisms will be studied from a

combinatorial point of view. Here the only structure to be considered is the cir-
cular order of S1. This theory goes back to Poincaré (1885), who introduced the
important dynamical invariant called the rotation number. He proved that the
rotation number of a homeomorphism is irrational if and only if it has no periodic
points and moreover that a homeomorphism with an irrational rotation number
is combinatorially equivalent to a rotation with the same rotation number. By
that we mean that each orbit of the homeomorphism lies in the circle in the same
order as an orbit of the corresponding rotation. More precisely, if f : S1 ! S1

is a homeomorphism without periodic points then there exists a rotation R
such that the mapping h : O

f

(x)! O
R

(x) defined by h(fn(x)) = Rn(x) for all
n 2 N is order preserving. (Here O

g

(x) is the forward orbit of x under the map
g : S1 ! S1.)

From Poincaré’s theorem it follows, because h is order preserving and O
R

(x)

14
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is dense in S1, that h extends continuously to a monotone map of the circle
satisfying h � f = R � h. Since h is monotone, the inverse image of each point
is either a point or a closed interval, and it maps orbits of f onto orbits of R.
Moreover, h is strictly monotone if and only if O

f

(x) is dense. If h is not strictly
monotone (and we will see in Section 2 that this can happen even if f is a C1

di↵eomorphism) we say that h is a semi-conjugacy between f and R.
The proof we present of the above theorem di↵ers slightly from the usual one.

We use the technique of symbolic dynamics, because in this way the treatment
of the combinatorial aspects of invertible and non-invertible one-dimensional
dynamical systems becomes more unified. Moreover it contains an introduction
to the techniques of renormalization that will be discussed in Chapter VI. The
use of coding for analyzing the dynamics of circle homeomorphisms and related
problems has a long history, see Siegel et al. (1992) and Series (1985).

In Section 2 we will develop the theory of Denjoy (circa 1930) which describes
the dynamics of di↵eomorphisms from a topological point of view. We will
need more smoothness and the main theorem states that a C2 di↵eomorphism
without periodic points is in fact topologically conjugate to a rotation. The main
ingredient is the control of the distortion of iterates of the original map when
restricted to certain intervals of the circle. The distortion of a map, as defined
in Section 2, is a measure of its non-linearity. We prove, following Denjoy, that
all iterates of the original map, when restricted to some special intervals have
bounded distortion. This technique will also play an important role later on in
Chapter IV when the results of this chapter are generalized to non-invertible
one-dimensional dynamical systems.

In Section 3 we will discuss the dynamics of circle di↵eomorphisms under a
more quantitative point of view. The main result states that a C3 di↵eomorph-
ism whose rotation number satisfies some arithmetic condition, is C1 conjugate
to a rotation. The proof is based on a much finer control of the distortion of the
iterates and for that a new technical tool is needed: the Schwarzian derivative.
The above theorem is an important instance of a rigidity result: requiring that
two di↵eomorphisms be topologically conjugate, implies, under some arithmeti-
cal conditions, that the conjugacies have some smoothness properties. As we
will see in Section 3, this is also related to ergodic properties of the di↵eomorph-
ism. A topological hypothesis, a condition on the rotation number, implies the
existence of a nice invariant measure for the di↵eomorphism. This is related to
certain situations which occur for non-invertible dynamical systems and which
will be discussed in later chapters.

In Section 4 one parameter families of circle di↵eomorphisms will be dis-
cussed. It will be shown that for many families the rotation number is locally
constant (as a function of the parameter) precisely when it is rational. This
is called frequency locking and the regions in the parameter space which cor-
respond to rational rotation numbers are called Arnol’d tongues. Using these
families, it will be shown in Section 5 that the conjugacy between analytic cir-
cle di↵eomorphisms is often not even absolutely continuous. This shows that
one cannot drop the conditions on the rotation numbers which were imposed in
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Section 3. Finally, in Section 6 it will be shown that for these families of dif-
feomorphisms, although there are many parameters for which one cannot hope
to get smooth conjugacies with rotations, the set of parameters for which one
does have smooth conjugacies has large measure.

1 The Combinatorial Theory of Poincaré

We consider the circle S1 as the quotient space of the real line by the group
of translations by integers: S1 = R/Z and we consider the circular ordering on
S1. Let ⇡ : R ! S1 be the quotient map. In S1 we consider the metric and
the orientation induced from the metric and orientation of the real line via ⇡
(hence the distance between any two points is at most 1

2 ). We are interested
in analyzing the dynamics of homeomorphisms f : S1 ! S1. The simplest
homeomorphisms are rotations: those are the orientation preserving isometries
of the circle. If x is a periodic point of period n of a rotation f then any other
point y is also a periodic point of the same period. Indeed, the length of the
positively oriented arc of S1 from x to y is equal to the length of the positively
oriented arc between fn(x) = x and fn(y). Hence fn(y) = y.

If a rotation f does not have a periodic point then the orbit O
f

(x) =
{fn(x) ; n 2 Z} is dense in the circle. Let us prove this: if F denotes the
closure of O

f

(x) then F is a closed invariant set, i.e., f(F ) = F = f�1(F ) (the
closure of an invariant set is invariant). Its complement, A = S1 \ F , is open
and also invariant (the complement of an invariant set is also invariant). If A
is not empty and A0 is a connected component of A then, for each n, fn(A0)
is also a connected component of A. The intervals {fn(A0) ; n 2 Z} cannot all
be disjoint because they all have the same length. Consequently, there exists
m 2 Z such that fm maps one of the intervals fn(A0) homeomorphically onto
itself. But this implies that fm has a fixed point in the closure of fn(A0). Since
f does not have periodic points, this contradiction proves that A = ; and that
all orbits are dense in the circle.

In this section we will discuss a result of Poincaré which distinguishes two
cases.

1. If f : S1 ! S1 is a homeomorphism which has a periodic point then its
dynamics turns out to be trivial: any orbit is asymptotic to a periodic
orbit and (if f preserves orientation) any two periodic orbits have the
same period.

2. If f does not have a periodic point then Poincaré’s result asserts that there
exists a rotation g : S1 ! S1 such that any orbit of f has the same order
as any orbit of g. More precisely, the map h : O

f

(x) ! O
g

(y) defined
by h(fn(x)) = gn(y), n 2 Z is monotone: if u, v, w 2 O

f

(x) and v lies
between u and w in the positive orientation of the circle then h(v) lies
between h(u) and h(w). From this fact it follows easily, since any orbit of
g is dense in the circle, that h extends continuously to a monotone map
h : S1 ! S1 satisfying the equation: h � f = g � h. We say that h is a
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semi-conjugacy between f and g. From the above equation it follows that
h � fn = gn � h, that is, h sends orbits of f into orbits of g. In general
h is not a conjugacy because the inverse image of some point may be an
interval.

We start with a very simple observation on the dynamics of an invertible con-
tinuous map of an interval. Let J be a closed interval and f : J ! J be a
continuous injective map. If f is orientation preserving (i.e., monotone increas-
ing) then any orbit of f is asymptotic to a fixed point. In order to prove
this, take x 2 J and let us first consider the case that f(x) > x. Then
f2(x) = f(f(x)) > f(x) since f is monotone increasing. By induction we
get fn(x) = f(fn�1(x)) > fn�1(x). Hence the sequence fn(x) is monotone
increasing and converges to y = sup{fn(x)}. By the continuity of f , we get
f(y) = f(lim

n!1 fn(x)) = lim
n!1 fn+1(x) = y. Therefore the !-limit set of

the orbit of x is the fixed point y. Similarly, if f(x) < x then the sequence fn(x)
is decreasing and also converges to a fixed point of f . If f(J) = J we can apply
the argument above to f�1 instead of f , and conclude that the ↵-limit set of
any orbit of f is also a fixed point.

If f is orientation reversing (i.e., monotone decreasing), then the second
iterate f2 = f � f is monotone increasing. Hence, using the previous argument
for f2, we get that any orbit of f is asymptotic to either the fixed point of f or
to a periodic point of period two.

Let us now consider circle homeomorphisms. If a homeomorphism f : S1 !
S1 has a periodic point y of period k then y is a fixed point for the homeomor-
phism fk. If f preserves orientation then fk, restricted to the invariant interval
J = S1 \ {y} is a monotone increasing map. Hence, as before, the !-limit set
of any orbit of f is a periodic orbit of period k because, under iteration by fk,
any point goes to a fixed point of fk.

So consider the case that f reverses orientation. We claim that f has in
this case precisely two fixed points. Let us prove this claim. Take x such
that f(x) 6= x. Then take two open arcs A = (p, x) and B = (x, q) in S1

starting at x and going in opposite directions; choose A and B maximal such
that f(A) \ A = ; and f(B) \ B = ;. Since f is orientation reversing, f(A)
and A are contained in one component of S1 \ {x, f(x)} and f(B) and B in the
other one. Moreover, by maximality f(p) = p and f(q) = q. From this the claim
easily follows. Since f2 preserves orientation, we get as before that any point is
asymptotic to one of the fixed points or to a periodic point of period two. Thus
we have a complete description of the dynamics of a homeomorphism if it has
a periodic point.

To describe the dynamics of a circle homeomorphism without periodic points
(which are necessarily orientation preserving) we are going to introduce a power-
ful topological invariant called the rotation number which was defined for the
first time by Poincaré (1881-1886). One way to define this number would be
to take a point c 2 S1 and to take the positively oriented (half-open) arc
L = [c, f(c)) connecting c to f(c). One can show that for each x 2 S1 the
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Fig. 1.1: The typical dynamics of a homeomorphism f : S1

! S1 with periodic

points: !(x) is a periodic orbit for each x 2 S1. On the left an orientation preserving

homeomorphism with two periodic points p and q of period three. On the right the

dynamics of an orientation reversing homeomorphism with two fixed points r and s

and a periodic point z of period two.

fraction #{i ; f i(x) 2 L, 0  i  n�1}/n has a limit as n tends to infinity, and
that this limit does not depend on c and x; we have taken L half-open because
otherwise this statement is for example false if f is a rotation f(x) = x+↵mod1
when ↵ rational. This limit is called the rotation number of f . However, this
approach will not be feasible in the non-invertible case and therefore, in order
to unify the treatment in the invertible and the non-invertible case, we will in-
troduce the rotation number in a more combinatorial and somewhat indirect
way. In this way, we will also immediately get much more precise information
about the orbit of points. Furthermore, using the idea of first return maps we
will see in an extremely natural way that certain orbits of intervals are disjoint
and cover the circle, see Statement (1.6) below. This kind of disjointness will
play a crucial role throughout this book. As the reader will notice, we shall
derive the usual algebraic properties about continued fraction expansions from
dynamical properties rather than from algebraic considerations.

More precisely, just as we will do in the non-invertible case later on, we will
code orbits of a circle homeomorphism f using symbolic dynamics: to each point
x 2 S1 we will associate a sequence of symbols {L, c,R}. This sequence will be
called the itinerary i

f

(x) of x. It will turn out that the itinerary of one point
completely determines the combinatorial type of the homeomorphism. Because
the maps we will deal with in the remainder of this chapter are orientation
preserving it is quite easy to get much more information about these itineraries.
In fact, these itineraries will turn out to be determined by a sequence of integers
a1, a2, a3, . . . . This sequence of integers will be defined as follows. Suppose that
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f has no fixed points. Take a point c 2 S1 and let J 0 = (c, f(c)) be the
positively oriented open arc in S1 connecting c to f(c). Now define a(f) � 0
to be the smallest integer such that J 0 \ fa(f)+1(J 0) 6= ;. Then the closure of
J 0[f(J 0)[· · ·[f i(J 0) is connected and f i�1(J 0) and f i(J 0) are adjacent for each
i = 1, . . . , a(f)+1; the closures of the intervals J, . . . , fa(f)+1(J 0) together cover
S1. If fa(f)+1(J 0) = J 0 then f has a periodic point of period a(f) + 1 and the
procedure stops. If fa(f)+1(J 0) 6= J 0 then we define J1 = fa(f)+1(J 0)[J 0 and we
let f1 : J1 ! J1 be the first return map of f to J1 (this return map is defined by
f1(x) = fk(x)(x) where k(x) � 1 is the minimal integer such that fk(x)(x) 2 J1).
If a(f) � 1 then J1 is an interval and we will see below that f1 : J1 ! J1 can
again be considered as a circle map by identifying the boundary points of J1.
Therefore we can apply a similar procedure again to f1 : J1 ! J1 (except now
we will let J 01 be the clockwise oriented arc connecting c to a boundary point of
J1). If f has no periodic points then, as we will show below, we get in this way
a nested sequence of intervals J

n

⇢ S1 containing c, a sequence of return maps
f

n

: J
n

! J
n

, and a sequence of integers a(f
n

) 2 N for n = 1, . . . . If f does has
a periodic point then this procedure stops; even in this case we shall be able
to use the finite sequence of integers a(f

n

). This (possibly finite) sequence of
integers a(f

n

) will then determine a
n

and the continued fraction expansion of
the rotation number of f .

One advantage of this procedure is that it also allows us to get detailed
insight into the orbits of these intervals J

n

under the original homeomorphism
f . Throughout the remainder of this chapter, this will turn out to be one of the
main ingredients for most results.

If we take an interval J of S1 then the first return map of f to J is in general
not continuous. However, in some cases this return map can be regarded as a
circle homeomorphism again. To make this precise we will now show how to
identify a homeomorphism g : S1 ! S1 with an interval map f : [0, 1] ! [0, 1].
Fix the orientation and the metric in the circle induced from the real line by the
quotient map ⇡ : R! S1 = R/Z. Let g : S1 ! S1 be an orientation preserving
homeomorphism without fixed points. Let ĝ : R! R be a lift of g. Since g has
no fixed points, there is a unique point c 2 (0, 1) for which ĝ(c) 2 Z. So there
is a unique map f : [0, 1]! [0, 1] defined by

f(x) =

(

ĝ(x)mod 1 for x 2 [0, 1] \ {c}
0 for x = c.

(we could equally well have defined f(c) = 1). Since ⇡�fn = gn�⇡, orbits of f are
mapped by ⇡ onto orbits of g. Clearly, f is a continuous map except at the point
c = c(f). In fact, lim

t"c f(t) = 1 and lim
t#c f(t) = 0, see Figure 1.2. Moreover,

f(0) = f(1). For simplicity we will write f(c�) for lim
t"c f(t) and f(c+) for

lim
t#c f(t). Conversely, any map of f : [0, 1] ! [0, 1] such that f(0) = f(1)

for which there exists a unique point c 2 (0, 1) such that f is continuous and
monotone increasing on [0, c) and on (c, 1] and such that f(c�) = 1, f(c+) = 0,
defines a homeomorphism of the circle. Hence the space of orientation preserving
homeomorphisms of the circle without fixed points can be identified with the
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space S(J) of maps f : J ! J (where J is a closed interval) without fixed points
satisfying the following properties:

1. f has a unique point of discontinuity c(f), this point belongs to the interior
of J and lim

x#c(f) f(x) = f(c(f)) is equal to the left endpoint of J and
lim

x"c(f) f(x) is equal to the right endpoint of J ;

2. f is monotone increasing in each component of J \ {c(f)};

3. f maps both boundary points of J to a single point in the interior of J .

In this identification, the set of rotations of the circle corresponds to the set
I(J) of maps in S(J) which are piecewise linear with slope equal to one. From
now on we shall treat maps f 2 S(J) as if they were circle maps by identifying
both endpoints of J . After this identification the image under f of c simply
becomes one point (and f becomes again a homeomorphism on the circle). We
will also show that the return maps to certain intervals J are maps in S(J), and
therefore can again be considered as circle homeomorphisms.

Let us introduce the symbolic dynamics associated to f . Let ⌃ = {L, c,R}N,
namely, an element of ⌃ is a sequence x = (x0, x1, . . . , xn

, . . . ) where each
x

n

2 {L, c,R}. Let � : ⌃! ⌃ be the shift map �x = y where y
i

= x
i+1.

Definition. Let f 2 S(J) and x 2 J . The itinerary of x with respect to f is the
sequence i

f

(x) = (i0(x), i1(x), . . . ) where i
j

(x) = L if f j(x) < c(f), i
j

(x) = R
if f j(x) > c(f) and i

j

(x) = c if f j(x) = c(f). Furthermore, we consider the
following (lexicographical) ordering in the space ⌃: if x, y 2 ⌃ then x � y if and
only if there exists an integer k such that x

i

= y
i

for i < k and x
k

< y
k

. Here
we consider the symbols L, c,R ordered as L < c < R. In ⌃ we consider the
topology defined by the metric d(x, y) =

P1
i=0

1
2i

d(x
i

, y
i

) where d(x
i

, y
i

) = 1
if x

i

6= y
i

and d(x
i

, x
i

) = 0. This topology corresponds to the one induced by
the ordering �. With this topology ⌃ is a compact totally disconnected metric
space and the shift transformation � : ⌃! ⌃,

�(x0, x1, x2, . . . ) = (x1, x2, . . . )

is continuous.

Lemma 1.1. Let f 2 S(J). Then:

1. if x < y then i
f

(x) � i
f

(y);

2. if i
f

(x) � i
f

(y) then x < y;

3. i
f

(f i(x)) = �i(i
f

(x)) for all i � 1.

Proof. Assume x < y, suppose i
f

(x) 6= i
f

(y) and let k be such that i
j

(x) =
i
j

(y) for all j = 0, 1, . . . , k � 1 and i
k

(x) 6= i
k

(y). Then f j(x) and f j(y) cannot
be in distinct components of J \ {c} for j = 0, 1, . . . , k � 1. Hence the map fk
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is continuous in the interval (x, y) and, consequently, it is monotone increas-
ing. Therefore fk(x) < fk(y). This proves Statement 1. The easy proofs of
Statements 2 and 3 are left to the reader.

For convenience we shall use the following notation: letting x = (x0, x1, . . . ),
y = (y0, y1, . . . ) 2 ⌃ we define x

n

= (x0, x1, . . . , xn�1),

x
n

· y
m

= (x0, x1, . . . , xn�1, y0, y1, . . . , ym�1)

and
x

n

· y = (x0, x1, . . . , xn�1, y0, y1, . . . ).

If f 2 S(J), we define K+(f), K�(f) 2 ⌃ to be

K+(f) = lim
x#c

i
f

(x)

and
K�(f) = lim

x"c
i
f

(x).

By Lemma 1.1, these limits exist and if c is non-periodic then

K+(f) = (R,L) · i
f

(f2(c)) and K�(f) = (L, R) · i
f

(f2(c)).

Definition. We say that f, f̃ 2 S(J) are combinatorially equivalent if the orbit
of c(f) by f has the same order as the orbit of c(f̃) by f̃ , namely, the map
h(fn(c(f))) = f̃n(c(f̃)) for n 2 Z, is strictly order preserving. (We impose that
h is strictly order preserving to make sure that this notion is an equivalence
relation.)

Now we will prove that two maps f and f̃ in S(J) without periodic points
are combinatorially equivalent if and only if K+(f) = K+(f̃). This result
implies that the sequence K+(g) is also well defined for a circle homeomorphism
g : S1 ! S1 without periodic points: although g corresponds to many interval
maps, the sequence K+ we obtain will not depend on this choice. Indeed, for
any x, y 2 S1, the map h defined by h(gn(x)) = gn(y) for all n 2 Z strictly
respects the circular order on S1. It follows that any two interval maps f and
f̃ in S(J) corresponding to g : S1 ! S1 are combinatorially equivalent. Hence,
from the next lemma, K+(f) = K+(f̃). So K+(g) is well-defined.

Proposition 1.1. Let f, f̃ 2 S(J) and assume that these maps have no periodic
orbits. Then f and f̃ are combinatorially equivalent if and only if K+(f) =
K+(f̃).

Proof. If f and f̃ are combinatorially equivalent then clearly K+(f) = K+(f̃).
So assume that K+(f) = K+(f̃). Write c = c(f) and c̃ = c(f̃). Then define
h(x) = sup{y ; i

f̃

(y) � i
f

(x)}.
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Since K+(f) = K+(f̃) and since the maps f, f̃ have no periodic orbits, the
formula above the previous definition implies that i

f

(c) = i
f̃

(c̃). Moreover, if
the sequences i

f

(x) and i
f̃

(y) in ⌃ start with the symbol c then x = c and
y = c̃. Combining all this gives h(c) = c̃. It follows from this and the previous
lemma that h is order preserving and that h � f = f̃ � h. Moreover, h(fn(c)) =
f̃n(h(c)) = f̃n(c̃) for n 2 Z. Since f̃ has no periodic points, this equation
implies that h injective on the full orbit of c. This completes the proof of the
lemma.

Everything we have done so far will also work in the non-invertible case.
We will now relate K+(f) to an inductively defined sequence of integers a

n

: we
will describe the dynamics of f 2 S(J) via the first return maps to a sequence
of intervals around the discontinuity point c = c(f). To each of these return
maps an integer a

n

will be associated. K+(f) will turn out to be determined
by these integers. In this way we will be able to tell which sequences {L, c,R}N

are of the form K+(f) for some f 2 S(J). More precisely, if I ⇢ J is a closed
interval such that the forward f -orbit through any point of I intersects I, we
define the first return map R(f) : I ! I of f to I as R(f)(x) = fk(x) where
k = k(x) = min{i > 0 ; f i(x) 2 I}. Notice that if J � I1 � I2, r1 : I1 ! I1 is
the first return map of f to I1 and r2 : I2 ! I2 is the first return map of r1 to
I2 then r2 is also the first return map of f to I2.

So let f 2 S(J) and denote the interiors of the components of J\{c(f)} by J 0

and J 00. From the conditions above it follows easily that one of the components,
say J 0, is mapped into the other component J 00 and that f(J 00) contains J 0.
(It is possible that f(J 0) = J 00 but in this case f permutes J 0 and J 00 and
f has a periodic point of period 2. This situation happens for example when
f(x) = x + 1/2 mod 1.)

Lemma 1.2. Let f 2 S(J) have no fixed points and let c = c(f), J 0 and J 00 be
as above. Let a(f) be the smallest integer such that J 0 and fa(f)+1(J 0) have a
point in common and let J(f) be the closure of fa(f)+1(J 0) [ J 0. Then

1. a(f) is the smallest integer such that the closure of J 0[f(J 0)[· · ·[fa(f)+1(J 0)
covers the circle;

2. if fa(f)(J 0) contains c in its closure then fa(f)+1(J 0) = J 0 = J(f) and
fa(f)+1(c) = c; in this case the first return map R(f) to J(f) is equal to fa(f)+1

and has fixed points in @J(f).

3. otherwise, J(f) strictly contains J 0 and the first return map R(f) of f to
J(f) is contained in S(J(f)); furthermore, R(f) maps the non-empty interval
J 00 \ J(f) into J 0 = J 0 \ J(f); tis return map coincides with (f |J 00)a(f) � (f |J 0)
in J 0 and with f |J 00 in J 00 \ J(f);

Proof. Since f does not have a fixed point and f is monotone increasing on
J 00,

a0(f) = max{k 2 N ; f i(J 0) ⇢ J 00 for all i = 1, . . . , k}
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Fig. 1.2: a(f), J
1

and the map �
1

: J
1

! J
1

from below when J 0 is to the left

respectively to the right of J 00.

is finite, see Figure 1.2. Moreover, f(J 0) has a common endpoint with J 00,
the intervals f(J 0), . . . , fa

0(f)+1(J 0) lie ordered, each of these intervals has one
common boundary point with the next one, and fa

0(f)+1(J 0) has a non-empty
intersection with J 0. From this description it follows that a(f) = a0(f) and
that J(f) = fa(f)+1(J 0) [ J 0 is an interval. If c is contained in the closure
of fa(f)(J 0) then c is an end point of this interval and fa(f)+1 maps J 0 onto
itself and fa(f)+1(c) = c. If c is not contained in the closure of fa(f)(J 0) then
fa(f)+1(J 0) contains c in its interior. From the previous description a(f) + 1 is
the smallest integer such that fa(f)+1(x) 2 J(f) for each x 2 J 0 = J 0 \ J(f).
Now consider J 00 \ J(f). In order to be more explicit we assume that J 00 is to
the left of J 0; if J 00 is to the right of J 0 then simply interchange the words left
and right in what follows. In this case, the image of J 00 \ J(f) under f is equal
to J 0 \ fa(f)+1(J 0), see Figure 1.2. It follows that f maps J 00 \ J(f) into J 0

and that its image contains the right endpoint of J 0. Therefore the return map
R(f) has all stated properties.

In the next example we will explicitly determineR(R
↵

) when R
↵

is a rotation
of the circle.

Example. Let R
↵

: [0, 1] ! [0, 1] be the rotation defined by R
↵

(x) = x +
↵mod1. This is the simplest type of map in I(J) ⇢ S(J). Let us first consider
the case that ↵ 2 (0, 1/2]. Then one has c = 1 � ↵, J 0 = (1 � ↵, 1), J 00 =
(0, 1� ↵), J(R

↵

) = [(n� 1)↵, 1] where n is the largest integer with n↵  1 and
a(R

↵

) = n � 1. If we denote by [x] the largest integer which is less than or
equal to x this gives a(R

↵

) =
⇥

1
↵

⇤

� 1 when ↵ 2 (0, 1/2]. Furthermore, R(R
↵

)
is equal to x + n↵ for x 2 [1�↵, 1] and equal to x +↵ for x 2 [(n� 1)↵, 1�↵).
Taking an orientation preserving linear scaling h : [0, 1] ! J(R

↵

) gives that
h�1 �R(R

↵

)�h = R
↵

0 where ↵0 = ↵

1�n↵+↵ = ↵

1�a(R
↵

)↵ . Since ↵  1�n↵+↵ <
2↵ we have that ↵0 2 (1/2, 1] (note that R1 is of course equal to R0 = id). So
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if we let G : (0, 1]! [0, 1) be the Gauss map defined by

G(x) =
1
x
�


1
x

�

then

R(R
↵

) = R
↵

0 where ↵0 =
1

1 + G(↵)
2 (1/2, 1],

a(f) =


1
↵

�

� 1
when ↵ 2 (0, 1/2].

Similarly, when ↵ 2 (1/2, 1), J(R
↵

) = [0, 1�n(1�↵)] where a(R
↵

) = n�1 and
therefore a(R

↵

) =
h

1
1�↵

i

�1. Scaling the return map gives h�1�R(R
↵

)�h = R
↵

0

where ↵0 = 1�n(1�↵)
1�↵+1�n(1�↵) 2 (0, 1/2). In other words, we get

R(R
↵

) = R
↵

0 where ↵0 =
G(1� ↵)

1 + G(1� ↵)
2 (0, 1/2),

a(f) =


1
1� ↵

�

� 1
for ↵ 2 (1/2, 1).

Note that if ↵ 2 (0, 1/2] then ↵0 2 (1/2, 1] and if ↵ 2 (1/2, 1) then ↵0 2 (0, 1/2).
Moreover, if ↵0 = 1 = 0mod 1, then R(R

↵

) : J(R
↵

) ! J(R
↵

) has fixed points
and we cannot apply the previous lemma again (↵0 = 1 happens precisely when
↵ = 1

n

for some integer n � 2).

Let us now repeat the procedure from Lemma 1.2 inductively. So define
J0 = J , �0 : J0 ! J0, �0 = f , we let a1 =1 if f has fixed points and otherwise
we define

a1 =

(

a(f) + 1 if J 0 is to the right of J 00

1 if J 0 is to the left of J 00,

J1 =

(

J(�0) if J 0 is to the right of J 00

J if J 0 is to the left of J 00,

and

�1 =

(

R(f) if J 0 is to the right of J 00

f if J 0 is to the left of J 00.

(The reason we distinguish between these two cases is in order to make sure that
�1 always maps the left component of J1 \ {c} into the right component. Fur-
thermore, the definition of a1 is slightly di↵erent from the formulas for a2, a3, . . .
below because later we will show that these numbers determine the continued
fraction expansion of the ‘rotation number’ of f . If we defined a1 = a(f) we
would not get the rotation number but only a closely related number.)

Now suppose that n � 2 and that J1, . . . , Jn�1, �1, . . . ,�n�1 are defined,
and that �

n�1 : J
n�1 ! J

n�1 has no fixed points. Then define the interval J
n

,
the return map �

n

to J
n

, and the integer a
n

inductively by

J
n

= J(�
n�1), �

n

= R(�
n�1) : J

n

! J
n

,
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a
n

= a(�
n�1).

On the other hand, if �
n�1 : J

n�1 ! J
n�1 has fixed points then we let a

n

=1
and we stop the inductive definition. In other words, if J 0 is to the right of J 00

we have

(1.1)
a1 = a(f) + 1, �1 = R(f),

a
n

= a(Rn�1(f)), �
n

= Rn(f) for all n = 2, 3, . . .

and, otherwise,

(1.2)
a1 = 1, �1 = f,

a
n

= a(Rn�2(f)), �
n

= Rn�1(f) for all n = 2, 3, . . . .

In Chapter VI we shall call a similarly defined map the n-th renormalization of
f .

Of course, �
n

is the first return map of f to J
n

. In particular, if f has no
periodic points then �

n

has no fixed points for each integer n and therefore the
construction never stops. If J 0 is to the left of J 00 then a1 = 1, J1 = J . It follows
that �1 always maps the left component of J1 \ {c} into the right component.
Let J 0

n

be the interior of the left component of J
n

\{c} if n is odd and of the right
component if n is even. Denote the interior of the other component of J

n

\ {c}
by J 00

n

. From the previous lemma, the role of the right and left component of
J

n

\ {c} is interchanged in each step of the induction. More precisely,

(1.3) J 0
n

= J 00
n�1 \ J

n

and J 00
n

= J 0
n�1 \ J

n

= J 0
n�1.

Consequently, we get by induction that �
n

maps J 0
n

into J 00
n

for all n � 1 for
which �

n

is defined. Also, �1|J 01 = f and �1|J 001 = fa1 . From (1.3) and the
previous lemma one has that

�
n

|J 00
n

= (�
n�1|J 00

n�1)
a(�

n�1) � (�
n�1|J 0

n�1)

and
�

n

|J 0
n

= �
n�1|J 00

n�1.

Therefore we get by induction that

�
n

|J 0
n

= fq

n�1 and �
n

|J 00
n

= fq

n

where q
n

is defined inductively by

(1.4)
q0 = 1 , q1 = a1

q
n+1 = q

n�1 + a
n+1qn

for n � 1.

From the fact that �
n

is a first return map and from Lemma 1.2 it follows that
if f has a periodic point of period N > 1 then �

n

: J
n

! J
n

has a periodic point
of period < N . (At least one point and not all of the points of the periodic
orbit are contained in the domain of the return map.) In particular, if f has a



26 CHAPTER I. CIRCLE DIFFEOMORPHISMS

periodic point there exists some finite n 2 N for which �
n

will have fixed points:
the process stops and a

n

=1.
Since �

n

: J
n

! J
n

is a map in S(J
n

), we get that J
n

= [fq

n�1(c), fq

n(c)]
(and this interval contains c) and that J 0

n

= (c, fq

n(c)) and J 00
n

= (fq

n�1(c), c).
Here and also in the remainder of this book we use the convention that (a, b)
is the smallest open interval containing a and b in its boundary irrespective of
whether a < b or b < a. Similarly, [a, b] is the corresponding closed interval.
Furthermore, we get for n � 1, 0  j  q

n+1 that

(1.5) f j(c) 2 J
n

if and only if j = q
n�1 + iq

n

for some i 2 {0, . . . , a
n+1}. So in this sense the iterates fq

n(c) are closest returns
to c and it makes sense to call the intervals J 0

n

and J 00
n

closest return intervals.
These closest returns are drawn in Figure 1.3. We claim that

(1.6) the union of
q

n�1�1
[

i=0

f i(J 0
n

) and
q

n

�1
[

i=0

f i(J 00
n

) “tiles” the interval.

More precisely, the closure of this set covers the interval (or circle) and all the
intervals in the union are disjoint. As we will see this result is fundamental for all
metric results on circle di↵eomorphisms. The proof of this result is surprisingly
natural in our setting: this is because first return maps usually give a lot of
disjointness. So let us prove (1.6). The disjointness can be seen as follows.
The first return map of J 0

n

[ J 00
n

to itself is equal to fq

n�1 on J 0
n

and equal to
fq

n on J 00
n

. Furthermore, the images of the two intervals J 0
n

and J 00
n

under this
first return map are disjoint. But then the orbits of these intervals up to the
return time must also be disjoint. The fact that the closure of the union of
these intervals cover the circle is also easy to see. Indeed, take x 2 J and let
k � 0 be minimal so that f�k(x) is contained in the closure of J 0

n

[ J 00
n

. Such
an integer k certainly exists because the union of J 0

n

, . . . , fq

n+1(J 0
n

) covers the
interval. So there are two possibilities: if f�k(x) is in the closure of J 0

n

then
because J 0

n

returns within time q
n�1 to the closure of J 0

n

[ J 00
n

one has k < q
n�1

and therefore x is in the closure of fk(J 0
n

); in the other case, x is in the closure
of fk(J 00

n

) for some k < q
n

. So in both cases the result follows.
Because some corollaries of (1.6) are fundamental in future sections of this

chapter we will state them in a lemma.

Lemma 1.3. Let f 2 S(J), x 2 J , I
n�1(x) = (x, fq

n�1(x)) and Î
n�1(x) =

I
n�1(f�q

n�1(x)) [ I
n�1(x) [ {x} = (f�q

n�1(x), fq

n�1(x)). Then Î
n�1 is an

interval and the intervals

I
n�1(x), f(I

n�1(x)), . . . , fq

n

�1(I
n�1(x))

are pairwise disjoint. Furthermore, the intervals

Î
n�1(x), f(Î

n�1(x)), . . . , fq

n

�1(Î
n�1(x))

cover J and each point is contained in at most two of these intervals.
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Proof. Let y = f�q

n(x). Of course, the choice of c is arbitrary. So (1.6) holds
if we replace J 0

n

and J 00
n

by I
n

(x) = (x, fq

n(x)) and I
n�1(x) = (fq

n�1(x), x) or,
alternatively, by I

n

(y) = (y, fq

n(y)) and I
n�1(y) = (fq

n�1(y), y). Hence,

J 0
n

[ J 00
n

⇢ Î
n

(x) ⇢ I
n�1(x) [ I

n�1(y).

The lemma follows from this: by (1.6) the first q(n) iterates of J 0
n

[J 00
n

certainly
cover J ; moreover, again by (1.6), the first q(n) iterates of I

n�1(x) and also of
I
n�1(y) are disjoint.

fq

n(c) fq

n

+q

n+1(c) fq

n

+a

n+2q

n+1(c) c fq

n+1(c)

Fig. 1.3: The position of fq

n(c), fq

n+1(c), fq

n

+iq

n+1(c) for i = 0, . . . , a
n+2

.

Of course, Statements (1.5), (1.6) and Lemma 1.3 also hold for the original
circle homeomorphism g : S1 ! S1. In this case I

n�1(x) is the segment in S1

bounded by x and gq

n�1(x) which does not contain g(x).
If f is equal to a rotation R

↵

then one can make more quantitative state-
ments. We shall do this in the next example.

Example. Let us consider a rotation R = R
↵

. We shall give an algorithm to
determine ↵ and show that ↵ is necessarily irrational if a

n

< 1 for all n. Let
✓0 = ↵, i.e., the length of the interval (c, R(c�)) = (c, 1) and let ✓

n

be the length
of J 0

n

= (c, Rq

n(c+)) for n � 1. Since Rn(c) = c + n↵mod1, this gives

✓
n

= inf
p2Z

|q
n

↵� p|.

From the previous description J 0
n+1 is equal to J 00

n

\ [�
n

(J 0
n

) [ · · · [ �a

n+1
n

(J 0
n

)]
where J 0

n�1 = J 00
n

and the union is disjoint. It follows that

(1.7)
1 = a1✓0 + ✓1,

✓
n�1 = a

n+1✓n

+ ✓
n+1, n � 1

and ✓
n

# 0 as n!1. From (1.6) the two collections

J 0
n

, R(J 0
n

), . . . , Rq

n�1�1(J 0
n

)

and
J 00

n

, R(J 00
n

), . . . , Rq

n

�1(J 00
n

)

together ‘tile’ the interval (or circle). Since the intervals from the first and
second collection have length respectively ✓

n

and ✓
n�1, this gives

(1.8) q
n�1✓n

+ q
n

✓
n�1 = 1 for each n � 1.
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Now let p0, p1, p2, . . . be the sequence of integers so that

(1.9) q
n

↵� p
n

= (�1)n✓
n

(since ✓
n

= inf
p2Z |qn

↵� p| and J 0
n+1 and J 0

n

are on opposite sides of c, this is
possible). Then p0 = 0, p1 = 1 and since ✓

n�1 = a
n+1✓n

+ ✓
n+1 and q

n+1 =
a

n+1qn

+ q
n�1,

(1.10)

p
n+1 = q

n+1↵� (�1)n+1✓
n+1

= [a
n+1qn

+ q
n�1]↵� (�1)n+1[✓

n�1 � a
n+1✓n

]

= a
n+1pn

+ p
n�1

for all n � 1. From the ‘tiling equation’ q
n+1✓n

+ q
n

✓
n+1 = 1,

(1.11)

q
n+1pn

� q
n

p
n+1

= q
n+1[qn

↵� (�1)n✓
n

]� q
n

[q
n+1↵� (�1)n+1✓

n+1]

= (�1)n+1[q
n+1✓n

+ q
n

✓
n+1] = (�1)n+1.

In particular, p
n

and q
n

are coprime as long as p
n

and q
n

are not both one, but
then n = 1. Moreover, |pn

q

n

� p

n+1
q

n+1
| = 1

q

n

q

n+1
,

(1.12)
p2

q2
<

p4

q4
<

p6

q6
< · · · < p7

q7
<

p5

q5
<

p3

q3
<

p1

q1

and p

n

q

n

converges. This limit is equal to ↵ because p

n

q

n

= ↵ + (�1)n+1 ✓
n

q

n

and
q
n

!1. Furthermore, 0 < |↵� p

n

q

n

| < |pn+1
q

n+1
� p

n

q

n

| = 1
q

n

q

n+1
< 1

q

2
n

. The angle of
rotation ↵ is irrational because otherwise ↵ = k/l where k and l are integers and
then the last inequality would imply that |q

n

k � p
n

l| < l/q
n

and therefore for
n su�ciently large we would have |q

n

k� p
n

l| < 1. Since q
n

k� p
n

l is an integer
and p

n

and q
n

are coprime, this is impossible. Since |Rq

n�1(c)�c| > |Rq

n(c)�c|
and Rj(c) 2 J

n

= (Rq

n�1(c), Rq

n(c)] for j > 0 implies j � q
n

, it follows that if
j > 0 and |Rj(c)� c|  |Rq

n(c)� c| then j � q
n

. Hence

(1.13) |↵� p

q
| > |↵� p

n

q
n

| for all p, q 2 N with 0 < q < q
n

(therefore the ratios p

n

q

n

are said to be the best rational approximations for the
irrational number ↵).

Let us now give a formula for a
n

. Rescaling J
n

in an orientation preserving
way to [0, 1], one gets that �

n

(R
↵

) : J
n

! J
n

becomes equal to some rotation
R
↵(n). When ↵ 2 (1/2, 1), then by definition a1(↵) = 1 =

⇥

1
↵

⇤

, J1 = J and
�1 = f and therefore ↵(1) = ↵ which turns out be equal to 1

1+G(↵) in this case
(so we do not need to use the calculations from the previous example for ↵0 in
this case). If ↵ 2 (0, 1/2] then a1(↵) = a(R

↵

) + 1 =
⇥

1
↵

⇤

and from the previous
example, ↵(1) = 1

1+G(↵) 2 (1/2, 1]. Note that in both cases the formulas for
a1(↵) and ↵(1) become the same (this is the reason we defined J1 = J when
J 0 is to the left of J 00). If this last number is equal to 1 then �1 : J1 ! J1 has
fixed points and the procedure stops. If the procedure can be repeated then we
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have in both cases ↵(1) 2 (1/2, 1) and we can determine ↵(n) inductively. As
we remarked at the end of the previous example, because of ↵(1) 2 (1/2, 1), we
get ↵(n) 2 (0, 1/2) for n even and ↵(n) 2 (1/2, 1) for n odd (as long as ↵(k) 6= 1
for k = 1, . . . , n). From the previous example we therefore get the following
recursive formulas for ↵: ↵(n + 1) is equal to G(1�↵(n))

1+G(1�↵(n)) when n is odd and
equal to 1

1+G(↵(n)) when n is even. As we will see in Exercise 1.1 below, from
this one gets that ↵(n) is equal to 1

1+G

n(↵) 2 (1/2, 1) when n is odd and equal

to G

n(↵)
1+G

n(↵) 2 (0, 1/2) when n is even, as long as Gk(↵) 6= 0 for k = 1, . . . , n.
From this it follows quite easily, see Exercise 1.1, that

(1.14) a
n

(↵) =


1
Gn�1(↵)

�

.

Note also that if b1, b2, . . . is an arbitrary sequence of positive integers then
there exists a rotation R

↵

such that a
n

(↵) = b
n

for all n 2 N. Indeed, the set
of ↵ for which a1(↵) = [1/↵] is equal to b1 is an interval E

b1 = ( 1
b1+1 , 1

b1
] and

the Gauss map G : (0, 1] ! [0, 1) sends this interval onto [0, 1). It follows that
for n � 2,

{Gn�1(↵) ; ↵ 2 (0, 1)} = {Gn�1(↵) ; ↵ 2 E
b1}

and so

{a
n

(↵) ; ↵ 2 (0, 1)} = {a
n

(↵) ; ↵ 2 E
b1}.

So fixing a1 does not restrict the choice one has for a
n

for n � 2. By induction
one gets a nested sequence of intervals E

b1 � E
b1,b2 � E

b1,...,b

n

such that a
i

(↵) =
b
i

for i  n and ↵ 2 E
b1,...,b

n

. Hence for ↵ 2 \
n�0Eb1,...,b

n

one has a
n

(↵) = b
n

for all n � 1. As we have seen, ↵ is necessarily irrational.
As we shall show now, these numbers a

n

are in fact what is called the
coe�cients of the continued fraction expansion of ↵. Indeed, let a1, a2, . . . , an

be a sequence of finite integers a
n

� 1 and define the rational number

[0; a1, a2, . . . , an

] =
1

a1 +
1

a2 +
1

a3 +
1

. . . +
1

a
n

.

Then for n � 1,

(1.15)
p

n

q
n

= [0; a1, a2, . . . , an

].

This can be seen by first showing by induction that

(1.16) [0; a1, a2, . . . , an

, x] =
xp

n

+ p
n�1

xq
n

+ q
n�1
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for each positive real number x. For n = 1 this is trivial. Furthermore, if (1.16)
holds for n then using p

n+1 = a
n+1pn

+ p
n�1, q

n+1 = a
n+1qn

+ q
n�1 we find

[0; a1, a2, . . . , an

, a
n+1, x] = [0; a1, a2, . . . , an

, a
n+1 +

1
x

]

=
(a

n+1 + 1/x) p
n

+ p
n�1

(a
n+1 + 1/x) q

n

+ q
n�1

=
xp

n+1 + p
n

xq
n+1 + q

n

.

So (1.16) and therefore (1.15) follows by induction. It follows that

↵ = lim
n!1[0; a1, a2, . . . an

] = [0; a1, a2, a3, . . . ]

=
1

a1 +
1

a2 +
1

a3 +
1
. . .

.

The numbers p

n

q

n

are called the convergents of ↵. Similarly, if a
n

= 1 then
↵ = [0; a1, . . . , an�1].

One can also reverse this construction. Rather than associating a sequence
of integers a

n

to a circle homeomorphism we can also do the opposite: as we
have shown above, for each sequence of integers a

n

� 1, there exists an irrational
rotation R

↵

with a
n

(↵) = a
n

. The rational numbers p
n

/q
n

= [0; a1, a2, . . . , an

]
converge to ↵ in the way described above.

Usually one defines coe�cients a
n

of the continued fraction expansion of a
number ↵ by the expression (1.14). Because continued fraction expansion and
rotations of the circle are so closely connected it seems in this book more natural
to define a

n

dynamically.

Exercise 1.1. Give a proof of the formulas for ↵(n) and a
n

in the previous example.

(Hint: use induction, G( x

1+x

) = G(x) and [x + 1] = [x] + 1; furthermore, distinguish

between n even and n odd or in other words between ↵
n

2 (0, 1/2) and ↵
n

/2 (0, 1/2).

Finally use the result of the first example that for n � 2, a
n

=
h

1

↵

n�1

i
� 1 when n is

even and a
n

=
h

1

1�↵

n�1

i
� 1 when n is odd.)

From all this it follows that the itineraries K+ and K� of f are of a very
special form. As before we will use the following notation related to sequences
x = (x0, x1, . . . ), y = (y0, y1, . . . ) 2 ⌃. Let x

n

= (x0, x1, . . . , xn�1) and

x
n

· y
m

= (x0, x1, . . . , xn�1, y0, y1, . . . , ym�1).

Similarly define x1
n

= x
n

and by induction for m � 1, xm

n

= x
n

· xm�1
n

.
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Lemma 1.4. Let f 2 S(J) and assume that f has no periodic points. Then for
n � 1,

K+
q2n+2

= K+
q2n

· (K+
q2n+1

)a2n+2

K+
q2n+1

= K+
q2n�1

· (K�
q2n

)a2n+1

The first equality also holds for n = 0 but then one has to replace the first two
symbols RR by RL.

Proof. In order to prove the first equality it su�ces to prove that

i
f

(fq2n

+i·q2n+1(c))
q2n+1 = K+

q2n+1
,

for each i = 0, . . . , a2n+2 � 1. From the description in the previous lemma,
f i(c), f i(fq2n(c)) /2 (fq2n+1(c), fq2n(c)) for i = 0, . . . , q2n+1 � 1 and therefore
f i(c, fq2n(c)] \ (fq2n+1(c), fq2n(c)) = ; for all i = 0, . . . , q2n+1 � 1. In partic-
ular, c /2 f i (c, fq2n(c)) for i = 0, . . . , q2n+1 � 1. Since fq2n(c) > c, it follows
that (i

f

(x))
q2n+1 = K+

q2n+1
for all x 2 (c, fq2n(c)]. Because fq2n

+i·q2n+1(c+) 2
(c, fq2n(c)] for i = 0, . . . , a2n+2, the first equality follows except when q2n

= 1
and i = 0 because then f(c) is ambiguous. This can only hold if n = 0 and
then the modified equality easily follows. The second equality follows similarly
because (i

f

(x))
q2n

= K�
q2n

for all x 2 [fq2n�1(x), c). (More on the sequences
K±(f) can be found in Gambaudo (1987) and Gambaudo et al. (1984).)

Remark. From this lemma it follows that one can construct itineraries K+ and K�

which correspond to a circle homeomorphism by using certain substitution rules, see

e.g. Gambaudo (1987). From this lemma it also follows that each periodic orbit of a

circle homeomorphism has ‘a finite degree of complexity’. Here we say that the periodic

point p has the first degree of complexity if i
f

(p) = (Ln

·R)1 or i
f

(p) = (Rn

·L)1. It

has the second degree of complexity if it is of the form i
f

(p) = ((Ln±1

·R)m

·(Ln

·R))1 or

i
f

(p) = ((Rn±1

·L)m

·(Rn

·L))1. In the same way one can define in general the degree

of complexity of a periodic orbit. The rotation numbers corresponding to periodic

orbits of the same degree of complexity are on the same level in the Farey tree. (The

Farey tree orders all rational numbers in [0, 1] with increasing denominators. At the

top level are the numbers 0/1 and 1/1 and on the second level 1/2. All other rationals

can be generated from these in a unique way by using that the largest rational between

p/q and p0/q0 is (p+q)/(p0+q0). So this also determines the level of a rational number

in the tree.) More on this can be found in Gambaudo (1987), Gambaudo et al. (1984),

see also Mira (1986).

Proposition 1.2. If f and f̃ have no periodic points then K+(f) = K+(f̃) if
and only if a

i

(f) = a
i

(f̃) for all i � 0.

Proof. If a
i

(f) = a
i

(f̃) for all i � 0, then, by Lemma 1.4, we have that
K+(f) = K+(f̃). The converse is also easy to verify.

We can now state and prove the main result of this section easily from the
results we obtained so far.
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Theorem 1.1. (Poincaré) If f 2 S(J) does not have periodic points then there
exist a unique rotation R 2 I([0, 1]) and a continuous and surjective monotone
map h : J ! [0, 1] such that

h � f = R � h.

So h is a semi-conjugacy between f and R. Writing R(x) = x + ↵mod1 then
↵ is irrational and equal to the rotation number of f .

Proof. Since f has no periodic points, K+(f) = (a
i

(f)) is defined for all i � 0.
From the previous example, there exists a rotation R such that a

i

(f) = a
i

(R) for
all i � 0. From Proposition 1.2 we have that K+(f) = K+(R). For convenience
write c

f

= c(f) and c
R

= c(R). By Proposition 1.1, the map h : O(c
f

)! O(c
R

)
defined by h(fn(c

f

)) = Rn(c
R

) for all n 2 Z is monotone strictly increasing.
R has no periodic points because otherwise Rn(c

R

) and therefore fn(c
f

) would
tend to some set consisting of finitely many points. This would imply that f
has a periodic point, a contradiction. Hence R has no periodic points, and as
we have seen in the beginning of this section this implies that O(c

R

) is dense
in [0, 1]. It follows that h extends continuously to the closure F of O+(c

f

).
Let I = (x, y) be a connected component of J \ F . Since h is monotone on
F , we have h(x)  h(y). We claim that h(x) = h(y). Indeed, if h(x) < h(y)
then, since the forward orbit of c

R

is dense in [0, 1], there exists an integer
n such that h(x) < Rn(x) < h(y). On the other hand, we must have either
fn(c

f

)  x or fn(c
f

) � y because I \F = ;. Since h(fn(c
f

)) = Rn(c
R

), we get
a contradiction because h is monotone. This proves that h(x) = h(y). Therefore
we can extend h continuously to I by setting h(z) = h(x) for all z 2 I. Hence h
extends continuously to a monotone map from J to [0, 1] which clearly satisfies
the condition of the theorem.

Now we will give the definition of the rotation number of a circle homeomor-
phism.

Definition. Let g 2 S(J). Then let a
n

be defined as in (1.1) and (1.2). The
rotation number of g is the real number defined by the continued fraction

⇢(g) = [0; a1, a2, . . . , an�1, . . . ]

if all integers a
n

� 1 are finite and

⇢(g) = [0; a1, a2, . . . , an�1]

if a
n

=1 (this can only occur if g has periodic points; if a1 =1 then g has a
fixed point and then we define ⇢(g) = 0).

Lemma 1.5. ⇢(g) is rational if and only if g has periodic points. Moreover,
the map S(J) 3 g 7! ⇢(g) is continuous.
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Proof. If g has no periodic points then the integers a
n

defined below Lemma
1.2 always exist for each n � 1 and as we have seen this implies that ⇢(g) =
[0, a1, a2, . . . ] is irrational. Also we have seen that if g has periodic points
then a

n

= 1 for some n and then ⇢(g) is rational. Furthermore, it follows
immediately from the definitions that for each N < 1 the numbers a

n

(g) and
a

n

(g̃) corresponding to g, g̃ 2 S(J) agree for n = 1, . . . , N provided g and g̃ are
su�ciently nearby in the C0 topology. In particular, the map S(J) 3 g 7! ⇢(g)
is continuous.

Let us relate the above construction with the classical definition of rotation
number. If g : S1 ! S1 is a continuous map we consider a lift of g to the
universal cover, namely, a map ĝ : R ! R such that ⇡ � ĝ = g � ⇡. Notice that
there exists a unique lift ĝ such that ĝ(0) 2 [0, 1). If g is a rotation, then its lift
ĝ is just the translation T

↵

(x) = x + ↵ where ↵ 2 [0, 1) is the rotation number.
If ĥ : R! R is the lift of the semi-conjugacy h : S1 ! S1 of Theorem 1.1, then
clearly ĥ � ĝ = T

↵

� ĥ. Therefore ĥ � ĝn = Tn

↵

� ĥ. Since ĥ is the lift of h, we
must have ĥ = Id +� where Id is the identity map and � is a periodic function
of period 1. Thus ĝn(x) + �(ĝn(x)) = x + �(x) + n↵. Since � is bounded, we

get from the last equation that the limit of
ĝn(x)� x

n
as n ! 1 exists and is

equal to ↵ for every x 2 S1. Therefore an alternative (and more conventional)
definition of the rotation number of g is

⇢(g) = lim
n!1

ĝn(x)� x

n
.

A comparison between di↵erent numerical algorithms for determining the rota-
tion number of a circle di↵eomorphism is made in Bruin (1992a).

Let us finish this section by showing that a homeomorphism of S1 without
periodic points has a unique minimal set. (A minimal set is a non-empty com-
pact invariant set which has no non-empty, compact, invariant proper subset.)
Indeed,

Proposition 1.3. If g : S1 ! S1 has no periodic points then there exists a set
K such that ↵(z) = !(z) = K for each z 2 S1. If K has interior points then
K = S1. If K has no interior points then K is perfect and totally disconnected,
i.e., K is a Cantor set.

Proof. Take z 2 S1 and let K = !(z). Since S1 is compact, K is non-empty,
compact and completely invariant. Take y 2 S1 \K. The orbit of y has at most
one point in each connected component of S1\K; otherwise one of the connected
components of S1 \ K would be mapped by some iterate of g into itself, and
g would have a periodic point. It follows that !(y),↵(y) ⇢ !(z) = K for each
y 2 S1 and similarly !(y),↵(y) ⇢ ↵(z). Since this holds for any y, z 2 S1

one gets that !(y) does not depend on y 2 S1 and that ↵(y) = !(y) = K.
In particular, K does not contain any smaller non-empty closed invariant sets.
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Since g is invertible and from the definition of !(x), no point of K is isolated.
Moreover, if K has an interior point then each point of K is an interior point.

Note that each orbit of an irrational rotation is dense in S1. Therefore g is
conjugate to an irrational rotation if and only if its minimal set K is equal to
S1. If g is conjugate to an irrational rotation there is no interval J such that all
of its iterates gi(J), i � 0 are disjoint. Moreover, if g is not conjugate to such a
rotation then K 6= S1 and for each connected component J of S1\K the iterates
{gi(J)}

i2N are pairwise disjoint. So g is conjugate to a rotation if and only if
there exists no interval J such that J, g(J), g2(J), . . . are pairwise disjoint. The
existence of such intervals will be the main topic of the next section.

Exercise 1.2. Prove that for each homeomorphism g : S1

! S1 there exists a prob-

ability measure µ on S1 which is invariant under g, i.e., for which µ(g�1(A)) = µ(A)

for any measurable set A. (Hint: take the Lebesgue measure � on S1 and define

�
n

=
�+ g⇤�+ · · · + gn�1

⇤ �
n

,

where g⇤µ is the measure defined by g⇤µ(A) = µ(g�1(A)). Using the compactness of

the space of probability measures on S1, show that a subsequence of �
n

has a limit

and that this limit measure is invariant.)

Exercise 1.3. Let g : S1

! S1 be a homeomorphism without periodic points. Show

that the support of any invariant probability measure µ of g is equal to the minimal

set of g. Moreover, show that there exists at most one (and therefore precisely one)

such invariant measure. (Hint: show that for each interval I and each x 2 S1, µ(I) =

lim
n!1#{0  i  n�1 ; gi(x) 2 I}/n.) Furthermore, let L be the clockwise oriented

arc connecting x to g(x): show that

⇢(g) = µ(L).

Exercise 1.4. Let g : S1

! S1 be a homeomorphism with irrational rotation number

⇢(g). Using the invariant measure from the previous exercise show that there is a

continuous monotone map h : S1

! S1 of degree one such that h � g = R
⇢

� h. (Hint:

let µ be the invariant measure of g, take a point x and choose h(x) arbitrary. Then

define h so that the Lebesgue measure of the segment (h(x), h(y)) is equal to µ(x, y).)

Exercise 1.5. Let g : S1

! S1 be a non-invertible continuous map of the circle of

degree one. In this exercise we shall see that one can apply some of the previous ideas

to these non-invertible maps. Let ĝ : R ! R be a lift of g. Show that the set of limits

of
ĝn(x)� x

n
where n !1 and x 2 S1 is a closed interval. This set is called the rotation interval of

g. (Hint: associate to g a family of continuous order preserving circle maps g
t

: S1

! S1

of degree one such that i) for each t 2 [0, 1], g
t

is constant on some interval, ii) g
t

coincides with g outside the regions where it is locally constant, and iii) for the lift ĝ
t

of g
t

one has ĝ
0

(x)  ĝ(x)  ĝ
1

(x) for all x 2 R, see Figure 1.4. Usually ĝ
0

is called

the lower map and ĝ
1

the upper map. Since these maps g
t

are monotone, one gets as

for circle homeomorphisms that ⇢(g
t

) exists. Show that t 7! ⇢(g
t

) is increasing and

that
ĝn

0

(x)� x
n



ĝn(x)� x
n



ĝn

1

(x)� x
n

.
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Fig. 1.4: The maps f, f
t

: [0, 1] ! [0, 1] corresponding to g, g
t

: S1

! S1 from Exercise

1.5.

In particular, the set of limits of ĝ

n

(x)�x

n

is contained in the interval [⇢(g
0

), ⇢(g
1

)].

Moreover, for each ⇢ in this interval, there exists t 2 [0, 1] such that ⇢(g
t

) = ⇢. Show

that one can choose x 2 R so that for all n 2 N, gn

t

(x) is outside the region where

g
t

is locally constant. From this it follows that gn(x) = gn

t

(x) and therefore that
ĝ

n

(x)�x

n

converges to ⇢.) Next show that for each ⇢ in the rotation interval there exists

a point x 2 S1 such that its g-iterates are ordered in the circle in the same way as

its R
⇢

iterates, i.e., the map defined by h(gn(x)) = Rn

⇢

(x) is injective and preserves

the ordering of S1. In particular, g has infinitely many periodic points if its rotation

interval is non-trivial. (Hint: use the maps g
t

defined above.)

2 The Topological Theory of Denjoy

In this section we are going to discuss a theorem proved by Denjoy (1932),
stating that any C2 circle di↵eomorphism without periodic points is topolog-
ically equivalent to a rotation. More precisely, Poincaré’s theorem from the
previous section states that any homeomorphism of the circle without periodic
points is semi-conjugate to a rotation; Denjoy’s theorem strengthens this result
by asserting that this semi-conjugacy is in fact a conjugacy provided both the
homeomorphism and its inverse are su�ciently smooth. The main analytical
ingredient of the proof is the control of the distortion on the restriction of iter-
ates of the map to some intervals. Furthermore, examples in this section will be
given which show that some such smoothness conditions are really necessary.

We will present two proofs for this theorem. The first one, which is the
original proof of Denjoy, uses even weaker hypotheses: f is a C1 di↵eomorphism
whose derivative is a function of bounded variation. The second proof was
obtained by Schwartz (1963), which, although it requires a stronger smoothness
hypothesis, uses almost no dynamical properties of circle di↵eomorphisms and,
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consequently, can be used in more general situations as we will see.
In Section 1, we proved that if f is a circle di↵eomorphism without periodic

points then there exists a semi-conjugacy h between f and a rotation g. If h is
not a conjugacy, then there exists a point x of the circle whose inverse image by
h is an interval J . Since h�f = g �h, we have that h(fn(J)) = gn(x). It follows
that the intervals J, f(J), f2(J), . . . are pairwise disjoint. (As we pointed out
below the proof of Lemma 1.2, such an interval J exists if and only if the unique
minimal set K of f is not equal to S1.) This disjointness motivates the following
definition.

Definition. We say that J is a wandering interval of the map f if:

• 1. the intervals J, f(J), . . . are pairwise disjoint;

• 2. the !-limit set of J is not equal to a single periodic orbit.

A homeomorphism f : S1 ! S1 with periodic points does not have wandering
intervals. Indeed, if J would be a wandering interval then the forward iterates
of J were all disjoint. Therefore J could not contain any periodic point and it
would follow as in the previous section that all points in J are asymptotic to
one single periodic orbit; this would contradict condition 2) of the definition of
a wandering interval. Moreover, it follows from the theorem of Poincaré, proved
in Section 1, that a homeomorphism f without periodic points is conjugate to
a rotation if and only if f does not have a wandering interval. It therefore
su�ces to prove that a C1 di↵eomorphism which has no periodic points and
whose derivative is a function of bounded variation does not have a wandering
interval. For that we will need some analytical tools.

Definition. Let g : N ! N be a C1 map where N is either the circle S1 or the
interval [0, 1]. If T ⇢ N is an interval such that Dg(x) 6= 0 for every x 2 T , we
define the distortion of g in T as:

Dist (g, T ) = sup
x,y2T

log
|Dg(x)|
|Dg(y)|

Here |Dg(x)| denotes the norm or absolute value of the derivative of g in x.

Notice that an a�ne map has distortion equal to zero. Given an interval J
we shall denote its length by |J |.

Lemma 2.1. Let f : N ! N and T be an interval such that the restriction of
fn to T is a C1 di↵eomorphism. Then

(2.1) Dist (fn, T ) 
n�1
X

i=0

Dist (f, f i(T )).
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Proof. By the chain rule,

log
|Dfn(x)|
|Dfn(y)| =

n�1
X

i=0

log
|Df(f i(x))|
|Df(f i(y))| .

Since f i(x), f i(y) 2 f i(T ), we have that

log
|Dfn(x)|
|Dfn(y)| 

n�1
X

i=0

Dist (f, f i(T ))

and this proves the lemma.

Corollary 2.1. Let f : N ! N be a C1 map such that Df(x) 6= 0 for all x 2 N
and such that x 7! log |Df(x)| has Lipschitz constant C. Then for any interval
T ⇢ N ,

Dist (fn, T )  C
n�1
X

i=0

|f i(T )|.

In particular, if the intervals T, f(T ), . . . , fn�1(T ) are pairwise disjoint, then

Dist (fn, T )  C diam(N).

Proof. Proof The distortion of f on an interval J is bounded by C · |J |. There-
fore Dist (fn, T ) 

P

n�1
i=0 Dist (f, f i(T ))  C

P

n�1
i=0 |f i(T )|.

Corollary 2.2. Let f : N ! N be a C1 map such that the map x 7! log |Df(x)|
has a variation which is bounded by C. Then there for any interval T ⇢ N such
that T, f(T ), . . . , fn�1(T ) are pairwise disjoint intervals,

Dist (fn, T )  C diam(N).

Proof. The distortion of a map f on an interval J is bounded by the variation
of x 7! log |Df(x)| on this interval. Hence, as the intervals are disjoint, the
distortion of fn on the interval T is bounded by the total variation of x 7!
log |Df(x)|.

Corollary 2 gives us a control of the distortion of the restriction of the n-th
iterate to some intervals whenever we have disjointness of the first n iterates
of this interval. As we have seen in Lemma 1.3 of the previous section such
disjointness often holds for circle di↵eomorphisms f which have no periodic
points. Indeed, let q

n

be the n-th convergent of the rotation number of f then
for any point x the first q

n

iterates of the interval [x, f�q

n(x)] are all disjoint.
If J is a wandering interval then all iterates of J are disjoint and it follows that
the first q

n

iterates T, f(T ), . . . , fq

n

�1(T ) of T = [J, f�q

n(J)] are all disjoint.
Here T is the smallest subinterval of S1 \fq

n(J) which contains J and f�q

n(J).
From this we get the following
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Theorem 2.1. (Denjoy) If f : S1 ! S1 is a C1 di↵eomorphism and its
derivative is a function of bounded variation then f does not have a wandering
interval.

Proof. Let V be the total variation of log |Df | on S1. Suppose, by contradic-
tion, that there exists a wandering interval J . Since

P1
n=�1 |fn(J)|  1, the

length of the iterates of J tends to zero. Let q
n

be as in the previous section
and as in Lemma 1.3 let T = [f�q

n(J), J ] be the smallest interval containing
J and f�q

n(J) which does not contain f(J). The distortion of fq

n in T is, as
we have already seen, bounded by the sum of the variations of log |Df | in the
q
n

first iterates of T . Since, as we have seen in Lemma 1.3, these intervals are
disjoint, we have that the distortion of fq

n restricted to T is bounded by V .
On the other hand, by the Mean Value Theorem, there exist points x 2 J and
y 2 f�q

n(J) such that |Dfq

n(x)| = |fq

n (J)|
|J| and |Dfq

n(y)| = |J|
|f�q

n (J)| . Thus
|J||J|

|fq

n (J)||f�q

n (J)|  exp(Dist (fq

n , T ))  exp(V ). This is not possible for n large
because |fk(J)|! 0 as |k|!1.

Remark. Note that the previous results do not apply to C1 homeomorphisms
f : S1 ! S1 with a critical point c (this is a point such that Df(c) = 0). Indeed,
in this case log Df is unbounded. Later on, in Chapter IV, we will develop tools
which also apply to maps with critical points. The proof is, however, much
more elaborate. The proof above uses that Df exists almost everywhere, that
the Mean Value Theorem can be applied, and that log |Df | can be extended
to a map with bounded variation. In particular, Denjoy’s theorem is valid for
homeomorphisms of S1 which are piecewise linear. Later on, in Chapter IV we
shall see that this theorem also holds under slightly di↵erent conditions (that
log Df satisfies the Zygmund condition).

The next theorem shows that the non-existence of wandering intervals also
holds for piecewise monotone maps f : N ! N as long as one requires more
smoothness of f . We should emphasize that by definition a piecewise monotone
map has a finite number of turning points.

Theorem 2.2. (Schwartz) Let N be a compact interval and f : N ! N
be a continuous mapping satisfying the following conditions: i) f is piecewise
monotone and piecewise C1 and ii) the mapping x 7! log |Df(x)| extends to a
Lipschitz function on N . Then f does not have wandering intervals.

Proof. It follows from (ii) that there exists a constant C > 0 such that
Dist (f, T ) < C|T | for every interval T ⇢ N . Hence, by Lemma 2.1, we have
that for all intervals T and all integers n,

Dist (fn, T ) 
n�1
X

i=0

C|f i(T )|.

Suppose, by contradiction, that f has a wandering interval J . Let J0 � J
be a maximal wandering interval containing J , in the sense that there is no
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wandering interval that properly contains J0. Inductively, we define J
n

as a
maximal wandering interval that contains the interior of f(J

n�1). We claim
that the intervals we have defined are pairwise disjoint. Indeed, suppose, by
contradiction, that there exist integers 0  n < m such that J

n

\ J
m

6= ;.
Since J

m

contains the interior of fm�n(J
n

), it follows that fm�n(J
m

) \ J
m

�
fm�n(J

m

\ J
n

) 6= ;. This is a contradiction since J
m

is a wandering interval
and therefore the claim is proved. By definition, f has at most a finite number,
say n0, of turning points (i.e, local maxima and minima). Hence, there exists
n1 such that if n � n1 then fn(J0) does not contain a turning point of f . In
particular, fk is a homeomorphism in J

n1 for every k > 0. Hence, if m > n � n1

then fm�n(J
n

) = J
m

. Since the intervals {J
n

}
n�0 are pairwise disjoint, there

exists n2 > n1 such that
P

j�0 |f j(J
n2)|  1. Take 0 < � < (1/2) exp(�2C)

and let I = J
n2 . Now choose an interval T which strictly contains I such

that |T |  (1 + �)|I|. Let us prove by induction that |f i(T )|  2|f i(I)| for
i = 0, 1, . . . , n � 1. For n = 1 this statement is obvious. So assume it holds for
some n > 1. As we have seen in Corollary 1, the induction assumption implies
that the distortion of fn in T is bounded by 2C. Moreover, since the restriction
of fn to I is a di↵eomorphism, there exists by the Mean Value Theorem a point
x

n

2 I such that Dfn(x
n

) = |fn(I)|
|I| . Therefore |Dfn(y)|  exp(2C) |f

n(I)|
|I| for

every y 2 T . Hence,

|fn(T )|  |fn(I)|+ exp(2C)
|fn(I)|
|I| |T \ I|  (1 + � exp(2C))|fn(I)|  2|fn(I)|.

This completes the induction step. It follows that lim
n!1 |fn(T )| = 0.

We claim that if T is an interval such that inf
n!1 |fn(T )| = 0 then T is

either a wandering interval or !(T ) is a periodic orbit. This statement is called
the Contraction Principle. Clearly, because |fn(T )| ! 0 it su�ces to prove
this principle: since I is a maximal wandering interval and T strictly contains
I neither of these possibilities can hold. This contradicts the existence of a
wandering interval and completes the proof of the theorem.

So let us prove the claim. Let I = [
n�0fn(int (T )). Clearly I is forward

invariant. First suppose that there exists a component U of I and s > 0 such
that fs(U) \ U 6= ;. Since I is forward invariant this implies fs(U) ⇢ U . If
U is an interval which contains a fixed point p of fs : U ! U in its interior,
then some iterate of T contains this fixed point of fs in its closure and since
inf

k�0 |fk(T )| = 0 this fixed point of fs attracts T . So we are finished in this
case. Otherwise, cl (U) contains in its boundary an attracting fixed point p of
fs : cl (U)! cl (U). If fs(U) 6= U then for every x 2 cl (U) one gets fks(x)! p
as k !1. If fs(U) = U then the boundary point {q} = @U \ {p} is a repelling
periodic point and inf

k�0 |fk(T )| = 0 implies that no iterate of T contains q in
its closure. Since every point in int (U) is asymptotic to p under iterates of fs

this implies that fks(x)! p for x 2 T as k !1. Again the result follows.
Now assume that for every component U of I one has fs(U) \ U = ; for

all s � 1. Since I is forward invariant and this holds for each component, this
implies that fn(U) \ fm(U) = ; for all n > m � 0. It follows that U and
therefore I is a wandering interval (or asymptotic to a periodic orbit).
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Remark. We should emphasize that this proof also shows the following more
abstract statement: suppose that the Lipschitz constant of log |Df | is bounded
by C <1. Then there exists � > 0 so that if for some n 2 N and some interval
J , fn|J is a di↵eomorphism and

P

n�1
i=0 |f i(J)|  1 then for any interval T � J

with |T |  (1 + �)|J | one has

|f i(T )|  2 · |f i(J)|, for all i = 1, . . . , n� 1,

exp(�2C)
|fn(J)|
|J |  |Dfn(x)|  exp(2C)

|fn(J)|
|J | ,

for all x 2 T . So if one has a bound on
P

n�1
i=0 |f i(J)| one gets an estimate on

the non-linearity of fn on an interval T which is definitely larger than J . Note
the di↵erence with Corollaries 1 and 2 above: there bounds on

P

n�1
i=0 |f i(T )|

or disjointness of T, . . . , fn�1(T ) are required (so assumptions on f i(T ) rather
than on f i(J) are made).

Let us show that this result of Schwartz can be applied to non-invertible
maps, and can be used to obtain results about flows on surfaces.

Corollary 2.3. Let f : S1 ! S1 be a C2 mapping such that Df(x) 6= 0 for
every x 2 S1. Then f does not have a wandering interval.

Proof. Since the derivative of f is not zero in every point, we have that f is a
covering map of degree d, |d| � 1 (and can be homotopied in R/Z to a map of
the form z ! d · z mod1; this means that there is a family f

t

of covering maps
depending continuously on t such that f0 = f and f1(z) = d · z). Suppose that
f has a wandering interval J . Let x 2 interior(J) and � : S1 \{x}! (0, 1) be an
isometry. Then the mapping g which is defined by ��f ���1 in (0, 1) and g(0) =
g(1) = �(f(x)) is C2 in [0, 1] \ �(f�1(x)). Since gn(�(f(J))) = �(fn(f(J))),
we have that I = �(f(J)) is a wandering interval for g and [

k�0gk(I) does not
intersect the |d| intervals U = �(f�1(J)) � �(f�1(x)). Therefore we can modify
g in U , in order to obtain a mapping h : [0, 1] ! [0, 1] which coincides with g
outside of U and satisfies the conditions i) and ii) of the previous theorem, see
Figure 2.1. Hence, I is a wandering interval of h and this is a contradiction.

Corollary 2.4. Let f : N ! N be a C2 map with a finite number of critical
points where N is either the circle or a compact interval. If f has a wandering
interval J then the !-limit set of J contains a critical point.

Proof. If f has a wandering interval which does not accumulate at critical
points, we can, as in the proof of the previous corollary, modify f in order to
get a mapping which satisfies the conditions of Theorem 2.2 and which has a
wandering interval.

Both Denjoy and Schwartz had vector fields on surfaces in mind when they
proved their results. Denjoy used his theorem to prove the following result for
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Fig. 2.1: This modification of the map f : S1

! S1 makes it into an interval map

with ‘sharp’ turning points.

C2 vector fields on a torus, S1⇥S1. If such a vector field has no singularities and
no periodic orbits then each orbit of this vector field is dense in the torus. This
is done by showing that such a vector field has a global cross section; the first
return map to this cross section defines a C2 circle di↵eomorphisms. Schwartz
generalized this last result to general compact manifolds:

Corollary 2.5. (Schwartz) Let X be a C2 vector field in a two-dimensional
compact manifold M . Then every minimal set K of X is trivial. More precisely,
there are only three possibilities:

• 1. K is a singularity;

• 2. K a periodic orbit;

• 3. K is equal to M and M is the torus.

Proof. By contradiction let K be a non trivial minimal set of X, i.e., K is a
closed, invariant subset, K does not contain a closed invariant proper subset,
and K is not the torus, a closed orbit or a singularity of X. In particular, K is
equal to the orbit closure of each of its points. Take a point of K and a circle
⌃ through this point transversal to the vector field X. (For a proof that such
a curve exists see, for example, Palis and de Melo (1982, pp.144). Let D ⇢ ⌃
be the domain of definition of the first return map � : D ! ⌃. We have that D
is a union of open intervals. Since D contains K \⌃ and K is compact, only a
finite number of connected components of D cover K. Therefore we can modify
� in the complement of these connected components in order to obtain a C2

circle map g : ⌃ ! ⌃ which satisfies the conditions of Theorem 2.2 and which
coincides with � in a neighbourhood of V of K \ ⌃. We may assume that V
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consists of a finite union of intervals and therefore that there exists at most a
finite number of connected components of ⌃ \ K which are not contained in
V . It follows that we can take a connected component J of ⌃ \ K such that
gn(J) ⇢ V and therefore gn|J = �n|J for all n � 0. Since �n is invertible,
both endpoints of �n(J) are contained in K and because these endpoints are
not periodic, it follows that the intervals {�n(J)}

n�0 are pairwise disjoint and
no point of J is asymptotic to a periodic orbit. Hence, J is a wandering interval
of � and therefore of g. This is in contradiction with Theorem 2.2.

The theorem below, also due to Denjoy (1932), shows that it is definitely not
enough to assume that f is C1 in order to get the non-existence of wandering
intervals. In other words, this result states that there exists a C1 di↵eomorphism
of the circle which has no periodic points and whose orbits are non-dense in the
circle. In fact, similar counter-examples were first constructed by Bohl in 1911,
see the paper by Rosenberg in Denjoy (1975).

Theorem 2.3. For every irrational number ↵, there exists a C1 di↵eomorphism
f with rotation number equal to ↵ which has a wandering interval.

Proof. For each integer n 2 Z, choose a positive number �
n

such that

(2.2)
1
X

�1
�

n

= 1 and

(2.3)
�

n+1

�
n

! 1 as |n|!1.

Let R be the rotation with rotation number equal to ↵ and let x 2 S1, x
n

=
Rn(x) for n 2 Z. We claim that there exists a family {I

n

; n 2 Z} of dis-
joint open intervals in S1 which are ordered in the same way in S1 as {x

n

=
Rn(x) ; n 2 Z}, such that |I

n

| = �
n

, for all n 2 Z and such that [1
n=�1I

n

is dense in S1. For this we shall use a diagonal argument. Indeed, because
P

n

j=�n

�
j

< 1, there exists for each n 2 N disjoint closed intervals T
n,j

where
|j|  n which have the same order in the circle as x

j

, |j|  n such that |T
n,j

| = �
j

for |j|  n and such that each of the components of S1 \ [|j|n

T
n,j

has equal
length. Next, since S1 is compact, for each N 2 N we can take a sequence
n1(N), n2(N), n3(N), . . . with n

i

(N)!1 as i!1 such that for each |j|  N ,
T

n

i

(N),j converges to an interval TN

j

as i ! 1. Of course for each N 2 N, we
can choose the sequence n1(N), n2(N), n3(N), . . . to be a subsequence of the
sequence n1(N � 1), n2(N � 1), n3(N � 1), . . . . If we do this, then for fixed j
the intervals TN

j

are all the same for N � |j| and so if we define I
j

= T j

j

we
obtain a family {I

j

; j 2 Z} satisfying the claim. Let A = [1
n=�1I

n

. From the
claim and (2.2) we have that A is an open, dense subset of the circle and has
full measure.

From (2.3), there exists, for each n 2 Z, a C1 di↵eomorphism f
n

: I
n

! I
n+1

such that the derivative of f
n

is equal to one in the boundary of I
n

and both the
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maximum and the minimum of the derivative of f
n

tend to 1 as |n| ! 1. Let
f : A ! A be defined by f(x) = f

n

(x) if x 2 I
n

and h : A ! S1, h(I
n

) = x
n

.
Clearly h � f = R � h and both f and h are monotone maps. Therefore, as
both A and O

R

(x) are dense in the circle, h and f extend continuously to the
circle and h is a semi-conjugacy between f and R. In particular, f has rotation
number ↵.

It remains to prove that f is a C1 di↵eomorphism. For that, it is clearly
enough to prove that f is di↵erentiable at each point y 2 S1 \ A and that its
derivative at y is equal to one. Let y and z be nearby points and let [y, z] denote
the smallest arc of the circle connecting y to z. To prove that f is di↵erentiable
at y and its derivative is equal to one we have to show that

(2.4) lim
z#y

|f([y, z])|
|[y, z]| = 1

and similarly that the corresponding left-sided limit is equal to one. Since
the derivative of f

n

|@I
n

is equal to one, (2.4) holds whenever a right-sided
neighbourhood of y is completely contained in one of the intervals I

n

. Therefore
we may assume that each right-sided neighbourhood of y intersects an infinite
number of the intervals I

n

. The length of [y, z] can be estimated from above
and from below by summing all intervals I

n

entirely contained in [y, z] plus (for
the estimate from above) a piece of the interval I

n

that contains z, if any. More
precisely, let J(z) = {n ; I

n

\ (y, z) 6= ;} and J 0(z) = {n ; I
n

⇢ (y, z)}. Because
[I

n

has full measure in S1,
X

n2J

0(z)

�
n

 |[y, z]| 
X

n2J(z)

�
n

.

For the same reason, because I
n

is contained in [y, z] if and only if I
n+1 is

contained in f([y, z]),
X

n2J

0(z)

�
n+1  |f([y, z])| 

X

n2J(z)

�
n+1.

Hence,

(2.5)

P

n2J

0(z) �n+1
P

n2J(z) �n

 |f([y, z])|
|[y, z]| 

P

n2J(z) �n+1
P

n2J

0(z) �n

.

By construction J 0(z) ⇢ J(z) and #(J(z) \ J 0(z))  2 and inf{|n| ; n 2
J(z)}, inf{|n| ; n 2 J 0(z)} ! 1 as z ! y. Therefore, because �

n

! 0 and
�

n+1/�n

! 1 as n ! 1, the outer terms in (2.5) tend to one as z # y. This
proves (2.4) and completes the proof of this theorem.

Remarks.

1. It is not hard to find di↵eomorphisms f
n

: I
n

! I
n+1 as in the proof of Theo-

rem 2.3 such that ||Df
n

�1||  2�n+1
�

n

. It follows that ||Df�1||  2 sup
n2Z

�

n+1
�

n

.
In particular, in every C1 neighbourhood of R

↵

there exists a C1 di↵eomorphism



44 CHAPTER I. CIRCLE DIFFEOMORPHISMS

f with a wandering interval. In Section X of Herman (1979) this statement is
generalized as follows: for each irrational number ↵ there exists a dense subset
R in the space of C1 di↵eomorphisms of the circle with rotation number ↵ such
that each di↵eomorphism in R has a wandering interval.

2. We should also note that even if ✏ > 0 is small and f is a C2�✏ di↵eomorph-
ism, log |Df | need not have bounded variation. Here f is said to be C2�✏ if Df
satisfies the Hölder condition that

sup
x6=y

|Df(x)�Df(y)|
|x� y|1�✏ <1.

In particular, a C2�✏ di↵eomorphism need not satisfy the conditions of Theorem
2.1. And indeed, in Section X of Herman (1979) there are examples of C2�✏

di↵eomorphisms with (an arbitrary) irrational rotation number and having a
wandering interval.

3. For any Cantor set K of the circle it is easy to construct a homeomorphism
f of the circle such that the minimal set of f coincides with K. It is not so clear
what restrictions one has to take on the Cantor set K in order for there to be
a di↵eomorphism with a certain smoothness which has K as a minimal set, see
however McDu↵ (1981).

4. As we noted before we shall generalize the theorem of Denjoy to smooth maps
satisfying some weak regularity conditions. Now if we study flows on surfaces
one gets return maps which can have discontinuities (due to the presence of
saddles). From Levitt (1983), see Exercise 2.2 below, it is known that in general
such maps can have wandering intervals. For special piecewise continuous maps
one can sometimes exclude the existence of wandering intervals, see Berry and
Mestel (1991).

Exercise 2.1. Show that the di↵eomorphism from the previous theorem can also be

chosen so that its minimal set K has positive Lebesgue measure. (Hint: Choose the

numbers �
n

> 0 so that ⇢�1 :=
P1
�1 �

n

< 1. Furthermore, choose the gaps in the

construction of the intervals T
n,j

, |j|  n so that the component of S1

\ [|j|n

T
n,j

to the right of T
n,j

has length equal to ⇢ · �
n

. Then A = [I
n

has Lebesgue measure

equal to ⇢�1 < 1 and X

n2J

0
(z)

⇢�
n

 |[y, z]| 
X

n2J(z)

⇢�
n

.

From this it follows as before that the map f is a C1 di↵eomorphism.)

Exercise 2.2. In this exercise we shall show that there exists a piecewise a�ne interval

exchange transformation on [0, 1] which has wandering intervals. This result is due

to G. Levitt (1983) and is based on the uniqueness of ergodic measures for interval

exchange transformations, see Sataev (1975), Keynes and Newton (1976) and Keanes

(1977) and also Cornfield et al. (1982). More precisely, f : [0, 1] ! [0, 1] is called an

interval exchange transformation if [0, 1] is the union of a finite number of intervals

I
1

, . . . , I
r

such that f acts as a translation on each of these intervals and such that the

closure of f(I
1

)[ · · ·[f(I
r

) together covers [0, 1] again. The results we just mentioned



2. THE TOPOLOGICAL THEORY OF DENJOY 45

state that there are interval exchange transformations f which are transitive (so all

orbits are dense) and with two di↵erent ergodic probability measures µ and ⌫ (notice

that the Lebesgue measure is certainly invariant under f). It is easy to see that this

implies that µ(I
i

) and ⌫(I
i

) cannot be equal for all i. In particular, we may assume

that

µ(I
1

) > ⌫(I
1

) and ⌫(I
2

) > µ(I
2

).

The construction goes in a few steps. 1) Assume that µ
1

> ⌫
1

> 0 and ⌫
2

> µ
2

> 0.

Show that there exists positive numbers a, b such that

aµ1bµ2 < 1 < a⌫1b⌫2 .

(Hint: choose for example t so that µ2
µ1

< �t < ⌫2
⌫1

and let a = et and b = e.) 2) Let x

be a typical point with respect to µ for f and similarly let y be typical for ⌫ and f�1.

By this we mean that

#{0  k  n� 1 ; fk(x) 2 I
i

}

n
! µ(I

i

),

(⇤)
#{�n + 1  k  0 ; fk(y) 2 I

i

}

n
! ⌫(I

i

)

as n ! 1 for i = 1, . . . , r. That this is possible follows from the Birkho↵ ergodic

theorem, see the Appendix. Now we replace (glue) in the position of the point fk(x),

k � 0 an interval J
k

whose length is defined as follows. Choose the length of J
0

arbitrarily and let for k � 0

|J
k+1

| =

8
>><

>>:

a · |J
k

| if fk(x) 2 I
1

b · |J
k

| if fk(x) 2 I
2

|J
k

| otherwise,

where a and b are defined as in step 1 of this exercise. Similarly, define for k � 0 an

intervals J 0�k

such that J 0�k

is glued in the position of f�k(y) whose length is defined

as follows. The intervals J 0
0

and J
0

have equal length and, furthermore,

|J 0�k

| =

8
>><

>>:

a�1

· |J 0�k+1

| if f�k(y) 2 I
1

b�1

· |J 0�k+1

| if f�k(y) 2 I
2

|J 0�k+1

| otherwise.

Show that
P

k�0

|J
k

| + |J 0�k

| is bounded. This implies that the new interval Î with

these intervals [
k�0

J
k

[ J 0�k

glued in is again compact interval. (Hint: use (⇤) and

the definition of a and b.) 3) Let Î be the interval from above and define f̂ : Î ! Î

so that for k > 0 f̂ is an a�ne map from J
k

onto J
k+1

and from J 0�k

onto J 0�k+1

.

Moreover, make sure that f̂ maps J 0
0

a�nely onto J
0

. Check that f̂ is piecewise a�ne

and exchanges r+4 intervals. (Hint: since the points fk(x), f�k(y), k � 0 are dense, it

follows that f̂ is well defined, Moreover, it is continuous on the intervals corresponding

to the original intervals I
i

except on the boundary of the intervals J 0
0

and J
0

. So the

resulting map g has four more discontinuities. From the definition of the length of J
k

one has that

Df̂(z) =

8
>><

>>:

a if z 2 I
1

b if z 2 I
2

1 otherwise,



46 CHAPTER I. CIRCLE DIFFEOMORPHISMS

At least if z /2 J
0

[ J 0
0

; in that case the formula is slightly di↵erent. Hence, f̂ is

piecewise a�ne.) 4) All iterates of J
0

under f̂ are disjoint by construction and, since

f has no periodic points, f̂ has no periodic points either.

2.1 The Denjoy Inequality

Let p

n

q

n

be the convergents of ↵ 2 (0, 1) as in Section 1. In this section we shall
show that if log Df has bounded variation then ||Dfq

n || is bounded from below
and from above.

Theorem 2.4. (Denjoy Inequality) Assume that f : S1 ! S1 is a C1 di↵eo-
morphism and that x ! log |Df(x)| has bounded variation. Then || log Dfq

n ||
is bounded.

In other words, the derivative of the n-th renormalization Rn(f) of f from
Section 1 is uniformly bounded and bounded away from zero for all n 2 N. In
the next section – in Lemma 3.4 – we will see that one can find improved bounds
provided f is C3. In order to show that | log Dfq

n | is bounded we will use the
tools of the first part of this section for bounding the non-linearity of fq

n . This
gives estimates for the non-linearity of f i on an interval T provided f is C2 and
the first q

n

iterates of the interval T are disjoint. In Section 1 it is shown how
we can choose T : let I

n

= [x, fq

n(x)] be the interval bounded by x and fq

n(x)
which does not contain f(x). Similarly define J

n

(x) = [f�q

n(x), fq

n(x)] =
I
n

(f�q

n(x)) [ I
n

(x) in S1 \ {f(x)}. Then Lemma 1.3 states that the intervals
I
n

(x), f(I
n

(x)), . . . , fq

n+1�1(I
n

(x)) are pairwise disjoint and that the intervals
J

n

(x), f(J
n

(x)), . . . , fq

n+1�1(J
n

(x)) cover the circle.

Proof of the Denjoy inequality. First we claim that there exists a constant
C which is independent of n such that

1
C

<
|[x, fq

n(x)]|
|[f�q

n(x), x]| =
|I

n

(x)|
|I

n

(f�q

n(x))| < C

for every x 2 S1. In order to see this let K0 = I
n

(f�q

n(x)) = [f�q

n(x), x],
K1 = I

n

(x) = fq

n(K0) and K2 = I
n

(fq

n(x)) = fq

n(K1). These intervals have
disjoint interiors. We must find a uniform upper and lower bound for |K1|

|K0| . Since
the iterates of K

j

up to q
n+1 � 1 are pairwise disjoint, we have that:

q

n+1�1
X

i=0

|f i(K0 [K1 [K2)| < 3.

From Lemma 2.1, we get a constant C > 1 such that

(2.6)
1
C

<
|Dfk(t)|
|Dfk(y)| < C
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for all t, y 2 K0 [ K1 [ K2, and for all 0  k < q
n+1. As fq

n(K0) = K1 and
fq

n(K1) = K2 we have, by (2.6) that

1
C

|K2|
|K1|

<
|K1|
|K0|

< C
|K2|
|K1|

.

Thus let A := |K1|
|K0| . Then |K2|

|K1| > 1
C

A and therefore

|K0|+ |K1| =
1
A
|K1|+ |K1| < (

1
A

+ 1)
C

A
|K2|.

From the above inequality and (2.6) we have that

|f i(K0 [K1)| < C(
1
A

+ 1)
C

A
|f i(K2)|

for i = 0, . . . , q
n+1 � 1. Since the first q

n+1 � 1 iterates of K0 [K1 cover the
circle and because the first q

n+1 iterates of I
n

(x) are disjoint,

1 
q

n+1�1
X

i=0

|f i(K0 [K1)| < C(
1
A

+ 1)
C

A
.

Therefore A  2C2 and this proves that

|K1|
|K0|

= A  2C2 = C.

Similarly we can show that |K1|
|K0| > 1

C

. This completes the proof of the claim.
As fq

n(I
n

(f�q

n(x)) = I
n

(x) we get from (2.6), taking k = q
n

,

1
C

|I
n

(x)|
|I

n

(f�q

n(x))| < |Dfq

n(x)| < C
|I

n

(x)|
|I

n

(f�q

n(x))| .

Hence, the proof follows from the claim.

2.2 Ergodicity

Now we will show that if f : S1 ! S1 is a C1 di↵eomorphism such that log Df
has bounded variation then every measurable invariant set ⇤ either has zero or
full Lebesgue measure. As before, if A ⇢ S1 is measurable denote the Lebesgue
measure of A by |A|. A map f : S1 ! S1 is said to be ergodic with respect to
the Lebesgue measure if any measurable set X for which f�1(X) = X has either
zero or full Lebesgue measure. In Chapter V we shall discuss this notion in
detail and see that this notion is extremely useful.

Theorem 2.5. Let f : S1 ! S1 be a C1 di↵eomorphism such that x! log |Df(x)|
has bounded variation. Then f is ergodic.
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Proof. Suppose that the Lebesgue measure of ⇤ is positive. Then there exists a
density point of ⇤, i.e., a point x such that for each sequence of neighbourhoods
I
n

of x with |I
n

|! 0 as n!1,

(2.7)
|⇤ \ I

n

|
|I

n

| ! 1, as n!1

(see the appendix for more details on this). Take the neighbourhood J
n

(x) of
x bounded by f�q

n(x) and fq

n(x). As we have seen in Lemma 1.3, each point
of S1 is contained in at least one and at most two of the first q

n+1 � 1 iterates
of J

n

(x). From this disjointness and from Lemma 2.1, there exists C <1 such
that

1
C
 |Df i(y)|
|Df i(z)|  C,

for all i = 0, . . . , q
n+1 � 1 and each y, z 2 J

n

(x). In particular, since ⇤ is
invariant,

(2.8)
|f i(J

n

(x)) \ ⇤|
|f i(J

n

(x))|  C · |Jn

(x) \ ⇤|
|J

n

(x)| .

Since the intervals J
n

(x), f(J
n

(x)), . . . , fq

n+1�1(J
n

(x)) cover S1,

|S1 \ ⇤| 
q

n+1�1
X

i=0

|f i(J
n

(x) \ ⇤)|

and applying equation (2.8) gives,

(2.9) |S1 \ ⇤|  C · |Jn

(x) \ ⇤|
|J

n

(x)| ·
q

n+1�1
X

i=0

|f i(J
n

(x)|.

Since each point of S1 is contained in at most three of the intervals J
n

(x),
f(J

n

(x)), . . . , fq

n+1�1(J
n

(x)),
P

q

n+1�1
i=0 |f i(J

n

(x)|  3 and therefore from (2.9),

|S1 \ ⇤|  3 · C · |Jn

(x) \ ⇤|
|J

n

(x)| .

From (2.7), this last ratio tends to zero and it follows that S1 \ ⇤ has zero
Lebesgue measure.

Exercise 2.3. Show that the proofs of Denjoy’s Theorem 2.1, Denjoy’s inequality in

§2.2 and the result of this section work equally well for piecewise linear homeomor-

phisms f : S1

! S1. (In §3 we shall see that an improved Denjoy inequality holds if f

is C3.)

3 Smooth Conjugacy Results

We have seen in Section 2 that a C2 di↵eomorphism f without periodic points
is conjugate to an irrational rotation. Moreover, as we saw in the exercises at
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the end of Section 1, an irrational rotation is uniquely ergodic (i.e., it has a
unique invariant probability measure). Therefore f also has a unique invariant
probability measure µ which is defined by µ(A) = �(h(A)), where h is the
conjugacy between f and the rotation g and � is the Lebesgue measure, which
is the only probability measure invariant by the rotation g. Consequently, if
� : S1 ! R is a continuous function, then the Birkho↵ Ergodic Theorem implies
that the sums 1

n

P

n�1
i=0 ��f i converge uniformly to a constant

R

� dµ, see Section
5. From this it follows easily that if I is an interval then the frequency with
which the orbit of a point x visits I (or the sejour time of x in I) coincides with
the measure of I, i.e., µ(I) = lim

n!1 1
n

#{i ; 0  i  n such that f i(x) 2 I}.
In the case of a rigid rotation this sejour time is therefore equal to the Lebesgue
measure of the interval. If we want to get more quantitative information on the
sejour time of orbits of f we are led to analyze the regularity of the conjugacy
h. For example, if h is a di↵eomorphism, the sejour time of an orbit in the
interval I is comparable to the Lebesgue measure of I since this is comparable
to the Lebesgue measure of h(I) which is the sejour time in h(I) of the orbit of
g through h(x).

In Arnol’d (1961) there are examples of analytic di↵eomorphisms of the cir-
cle, without periodic points, for which the conjugacy to a rotation is not even
absolutely continuous (we will present this example in Section 5 of this chapter).
The orbits of such a di↵eomorphism, although dense in the circle, spend more
time in some regions than in others. This is due to the arithmetic properties of
the rotation numbers, which, in the case of these examples, are irrational num-
bers which are very well approximated by rational numbers (Liouville numbers).
In the same article, Arnol’d proved that if the rotation number ↵ of an analytic
di↵eomorphism f satisfies a Diophantine condition (i.e., |↵� p

q

| > K

q

2+�

for every
rational number p

q

, where K and � are positive constants) and if, furthermore,
f is close enough to a rotation, then the conjugacy h is analytic. The proof of
this theorem uses a method of approximation to solve the functional equation
h�f = R

↵

�h which is a modification of Newton’s method. This method, which
is based on the very rapid convergence of the Newton method, was suggested by
Kolmogorov to face problems with small divisors. Later, Moser extended the
above theorem to the smooth category, see Moser (1966).
This result has a local nature: it is important that f is near to a rotation. M.
Herman (1979) proved the global result which had been conjectured by Arnol’d:
there exists a subset A ⇢ (0, 1) with Lebesgue measure 1, such that if f is a
C1 di↵eomorphism with rotation number in A then it is C1 conjugate to a
rotation. Herman’s result also applies if one has only a finite amount of di↵er-
entiability. However, even for very good rotation numbers the conjugacy is in
general less di↵erentiable then the di↵eomorphism. This loss of di↵erentiability
is typical in this type of problem.

Let us say that f is Ck�� where k � 1 is an integer and � 2 (0, 1), if f is
Ck�1 and its k � 1-th derivative satisfies a Hölder condition:

|Dk�1f(x)�Dk�1f(y)|
|x� y|1�� < constant.
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The best result on these smooth linearizations is

Theorem 3.1. (Katznelson and Ornstein) Let f : S1 ! S1 be a Ck, k
a positive real number, di↵eomorphism whose rotation number ↵ satisfies the
Diophantine condition:

|↵� p

q
| > C

q2+�
for all

p

q
2 Q.

Then, if � + 2 < k, the homeomorphism h which conjugates f with the rotation
R
↵

is of class Ck�1���✏ for all ✏ > 0.

This result is due to Katznelson and Ornstein (1989a) and sharpens earlier
results due to Herman (1979) and Yoccoz (1984a).

Here we will present an extension of Herman’s theorem due to Yoccoz (1984a).
This theorem guarantees the di↵erentiability of the conjugacy whenever the ro-
tation number satisfies a Diophantine condition. As we will see in Section 5,
without this condition the conjugacy is in general not even absolutely continu-
ous.

Theorem 3.2. (Herman and Yoccoz) Let f be a Ck circle di↵eomorphism,
k � 3. Suppose the rotation number ↵ of f satisfies the Diophantine condition:

|↵� p

q
| > K

q2+�
for all

p

q
2 Q ,

where K and � are positive constants. Then, if k > 2�+1, there exists a C1 dif-
feomorphism which is a conjugacy h between f and a rotation R

↵

. Furthermore,
h is Ck�1���✏ for every ✏ > 0.

Khanin and Sinai (1987), (1989) and Stark (1988) gave di↵erent proofs of
part of Theorem 3.2 using renormalization techniques. One of the main points in
all the proofs of these results is that certain derivatives cancel. A new analytical
tool plays a fundamental role in the proof of this result: this is the Schwarzian
derivative which we will define below.

The proof of these theorems is quite intricate. To simplify the exposition
of Theorem 3.2 we will prove only that a C3 di↵eomorphism whose rotation
number satisfies a Diophantine condition is C1 conjugate to a rotation and we
refer to Yoccoz (1984a) for the complete proof. Along the way, we shall obtain
rigidity results which do not require conditions on the rotation number, see
Steps 3 and 4 of the proof below.

In order to simplify the notation we will use the letter C for all constants
that will appear in our estimates that do not depend on n or on a point in the
circle. So in each (of the finite) steps of the proof, C may be bigger than the
previous constant C and so we will sometimes write expressions like C = 2C.

The proof of Theorem 3.2 will be subdivided in several steps.
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Step 1: It is enough to show that derivatives stay bounded

First we prove the following

Proposition 3.1. Let f be a C1 di↵eomorphism of the circle. Then f is C1

linearizable if and only if the sequence || log Df i|| is bounded. (Here || · || denotes
the supremum norm.)

The proof of this proposition will be given in the next two lemmas. First note
that if h is C1, R

↵

a rotation then it easy to see that h�f = R
↵

�h is equivalent
to the following cocycle condition: log Dh � f � log Dh = � log Df . A general
lemma of Gottschalk and Hedlund gives necessary and su�cient conditions for
solving this kind of cocycle condition.

Lemma 3.1. (Gottschalk-Hedlund) Let X be a compact metric space and
f : X ! X be a minimal homeomorphism (i.e., every orbit of f is dense in
X). If g : X ! R is a continuous function then the following statements are
equivalent:
1. there exists a continuous function � : X ! R such that

� � f � � = g;

2. there exists x0 2 X such that

sup
n2N

|
n

X

i=0

g(f i(x0))| <1.

Proof. Let us first show that 1) implies 2). In fact, g(f i(x0)) = �(f i+1(x0)) �
�(f i(x0)). Thus

P

n

i=0 g(f i(x0)) = �(fn+1(x0)) � �(x0) and therefore for each
n, |

P

n

i=0 g(f i(x0))| < 2 sup |�| <1.
Now we prove that 2) implies 1). Let F : X ⇥ R ! X ⇥ R be the ho-

meomorphism defined by F (x, t) = (f(x), t + g(x)). By induction we get
Fn(x, t) = (fn(x), t +

P

n�1
i=0 g(f i(x))). Let M ⇢ X ⇥ R be the closure of

the orbit of the point (x0, 0). It is clear that F (M) ⇢M . From the assumption
the second component of Fn(x0, 0) is bounded and therefore M is compact.
Let N ⇢ M be a minimal set of F (i.e., N is a closed set with F (N) = N
such that no non-trivial closed subset of it is invariant under F ). We have the
following properties: a) ⇡1(N) = X, where ⇡1 is the projection onto the first
factor, because f is minimal; b) N can be written as the graph of a function
X ! R. Indeed, suppose, by contradiction, that there exist (x, y) 2 N and
(x, y + �) 2 N . Let T

�

: X ⇥ R ! X ⇥ R, T
�

(x, t) = (x, t + �). We have
that T

�

� F = F � T
�

. Hence T
�

(N) = T
�

(F (N)) = F (T
�

(N)), i.e., T
�

(N)
is also invariant by F . As (x, y + �) 2 N \ T

�

(N) and N is minimal, we get
that N ⇢ T

�

(N). From the compactness of N it follows that the last inclu-
sion is impossible for � 6= 0, and this proves Property b). Let � : X ! R
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be the function whose graph is equal to N . We have that � is continuous
since N is compact. As F (x,�(x)) = (f(x),�(x) + g(x)) 2 N , we have that
(f(x),�(x) + g(x)) = (f(x),�(f(x))), and this proves the lemma.

Lemma 3.2. If f : S1 ! S1 is a C1 di↵eomorphism without periodic points
and is such that the sequence of functions {|| log Df i||} is bounded then f is C1

- linearizable.

Proof. As log Dfn =
P

n�1
i=0 log Df � f i and sup

n

|| log Dfn|| < 1, we have,
from Lemma 3.1, that there exists a continuous function  : S1 ! R such that

log Df =  �  � f.

If f̂ is a lift of f we get

(⇤) log Df̂ =  ̂ �  ̂ � f̂ ,

where  ̂ is a lift of  . Because equation (⇤) remains valid if we add a constant
to  ̂, we may assume that

R 1

0
e ̂dx = 1. Let

ĥ(x) =
Z

x

0

e ̂(t)dt

We have that ĥ is a di↵eomorphism of the real line and ĥ(x + 1) = ĥ(x) + 1.
Hence ĥ is a lift of a di↵eomorphism h : S1 ! S1. From (⇤) we get that

(Dĥ � f̂)⇥Df̂ = Dĥ.

Thus ĥ(f̂(x)) = ĥ(x)+� for some constant �. Let R
�

: S1 ! R1 be the rotation
over � and R̂

�

be the lift to R of this rotation. Then the last inequality implies
ĥ � f̂ = R̂

�

� ĥ.

Now it is very easy to complete the proof of Proposition 3.1.

Proof of Proposition 3.1. If f is C1 linearizable, f = h � R
↵

� h�1 then
log Dfn(x) = log Dh(Rn

↵

(h�1(x)) + log Dh�1(x) and therefore || log Dfn|| is
bounded. This proves the ‘only if’ part of Proposition 3.1. The ‘if’ part was
proved in Lemma 3.2.

By Proposition 3.1, in order to construct C1 linearizations, it su�ces to show
that || log Df i|| is bounded. (The Denjoy inequality from §2.a merely states that
|| log Dfq

n || is bounded.) Later on, in Section 5 of this chapter, we will show
that not every analytic di↵eomorphism without periodic points satisfies this
condition, but we will show in the remainder of this section that this condition
is satisfied for all C3 di↵eomorphisms which have special rotation numbers.
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Step 2: It is enough to show that the length of the intervals
of closest return do not vary too much

Let p

n

q

n

be the convergents of ↵ 2 (0, 1) as in section 1. These numbers p
n

and
q
n

were characterized by the following two properties:

dist(x,Rq

n

↵

(x)) = min{dist(x,Ri

↵

(x)) ; 0  i  q
n

},

0 < ↵
n

= dist(x,Rq

n

↵

(x)) = (�1)n(q
n

↵� p
n

) < 1.

(Note that these numbers are independent of x because R
↵

is an isometry.) As
before let

I
n

(x) = [x, fq

n(x)]

be the interval in S1 \{f(x)} connecting x and fq

n(x). We refer to this interval
as the interval of closest return. Moreover, we introduce the following notation:
Let m

n

(x) denote the length of the interval I
n

(x),

m
n

= min
x2S

1
m

n

(x) and M
n

= max
x2S

1
m

n

(x).

From the next proposition it follows that in order to show that || log Df i||
is bounded it su�ces to estimate M

n

m

n

from above and below.

Proposition 3.2. Let 0  i < q
n+1. Then:

1
C

m
n

M
n

< |Df i(x)| < C
M

n

m
n

.

Proof of Proposition 3.2. Since f i(I
n

(x)) = I
n

(f i(x)), from the Mean Value
Theorem, there exists z 2 I

n

(x) such that |Df i(z)| = m

n

(fi(x))
m

n

(x) . Thus m

n

M

n

<

|Df i(z)| < M

n

m

n

. On the other hand, since the first i � 1 iterates of I
n

(x) are
pairwise disjoint, we get 1

C

|Df i(z)| < |Df i(x)| < C|Df i(z)|. Combining these
inequalities completes the proof.

So it su�ces to show that there is a constant such that
1
C
 m

n

(x)
m

n

(y)
 C

for all x, y 2 S1 and all n. Now we want to show that the function m
n

(x) does
not vary too much.

Step 3: An estimate on the variation of the length of the
intervals of closest return and an improved version of the
Denjoy Inequality

In this step the main purpose is to estimate |m
n

(x) �m
n

(y)| in terms of M
n

.
In all the estimates we have obtained so far we have used only that the di↵eo-
morphism f is of class C2. Now we will need that f is C3. The purpose of this
step is to prove the following
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Proposition 3.3. Let f be C3. Then

|m
n+1(x)�m

n+1(y)|  C{M
1
2
n

m
n+1(x) + M

n

m
n

(x)}

for each y 2 I
n

(x).

Let us explain why this proposition is useful. Rewriting the inequality in
this proposition one gets

M
n+1

m
n+1

 1 + C{M
1
2
n

+ M
n

M
n

m
n+1

}.

As we will see in the next step, m
n

M
n

tends exponentially fast to zero inde-
pendently of the rotation number of f . In Step 5 we will see that a Diophantine
condition on the rotation number su�ces to get a bound on the growth rate of

M

n

m

n+1
. Together with the previous inequality this will give that M

n

/m
n

can be
estimated from above for these rotation numbers.

In the proof of Proposition 3.3 we need to estimate the derivative D2 log Df
of the non-linearity Nf = D log Df of f . Related to this derivative is the
di↵erential operator defined below, which needs derivatives up to the order 3,
and which plays a fundamental role in many metric results in one-dimensional
dynamics. In Chapter III and IV we will go deeper into some of the properties
of the Schwarzian derivative. In particular, in Section 1 of Chapter IV we will
show that this derivative is related to the hyperbolic Poincaré metric and show
its connections with cross-ratios.

Definition. Let g be a C3 function such that Dg > 0. The Schwarzian deriva-
tive of g is the di↵erential operator defined by:

Sg = D2 log Dg � 1
2
(D log Dg)2 =

D3g

Dg
� 3

2
(
D2g

Dg
)2.

Remark. 1. From the above definition, the following formula for the Schwar-
zian derivative of the composition of two functions: S(g � f) = (Sg � f) ⇥
(Df)2+Sf follows immediately. From this we get: Sfn(x) =

P

n�1
i=0 Sf(f i(x))⇥

(Df i(x))2. 2. As we have seen before, the operator Ng = D log Dg plays an

important role in the study of the distortion of functions. Indeed,

Ng = D log Dg =
D2g

Dg

and so if g is a di↵eomorphism on (x, y) then

log
Dg(y)
Dg(x)

=
Z

y

x

D2g(t)
Dg(t)

dt =
Z

y

x

Ng(t) dt.

This operator Ng is related with the Schwarzian derivative in the following way:

Sg = D(Ng)� 1
2
[Ng]2.
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We will study the Schwarzian derivative in much greater detail in Chapter IV.

In the next lemma it will be shown that the non-linearity of fk, i.e., Nfk =
D log Dfk can be estimated by M

n

and m
n

. In this lemma essential use is made
of the disjointness properties from Lemma 1.3. More specifically we should note
that it is only because one has such nice ‘tiling’ properties that one gets the

estimate (3.2). (Without this one could only get |D log Dfk(x)|  C M

1
2

n

m

n

which
gives in general a much weaker estimate.) So let us state this lemma.

Lemma 3.3. If x 2 S1 and 0  k  q
n+1 then:

|D log Dfk(x)|  C
M

1
2
n

m
n

(x)
;(3.1)

|D2 log Dfk(x)|  C
M

n

(m
n

(x))2
.(3.2)

Remark. This lemma is the only place where the assumption that f is C3

is explicitly used. One can prove (3.1) and another version of (3.2) also if f is
C2+z (this is the class of C2 di↵eomorphisms for which D2f satisfies a Zygmund
condition; this condition will be defined in Section IV.2.a). Therefore, to get a
C1 conjugacy in Theorem 3.1 it is enough that the di↵eomorphism belongs to
this class.

Proof. Let us prove that

(3.3) |Sfk(x)|  C
M

n

(m
n

(x))2
.

Since Sfk =
P

k�1
i=0

⇥

Sf(f i(x))
⇤

(Df i(x))2 and |Sf |  C, we have that

|Sfk(x)|  C ( max
0ik�1

|Df i(x)|)
k�1
X

i=0

|Df i(x)|.

By Lemma 1.3, the intervals I
n

(x), . . . , fq

n+1�1(x) are pairwise disjoint and
therefore, from Corollary 1 of Lemma 2.1, we get that for 0  k  q

n+1,

|Df i(x)|  C
|f i(I

n

(x))|
|I

n

(x)| .

Again because these intervals are disjoint we get for 0  k  q
n+1,

k�1
X

i=0

|Df i(x)|  C

|I
n

(x)|

k�1
X

i=0

|f i(I
n

(x))| < C

|I
n

(x)| =
C

m
n

(x)
.

Hence
|Sfk(x)|  C

M
n

(m
n

(x))2
.
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This proves (3.3).
Now let us prove (3.1). Let x0 2 S1 be such that x 7! |D log Dfk(x)| is

maximal in x0. Then, D2 log Dfk(x0) = 0 and therefore

Sfk(x0) = �1
2
(D log Dfk(x0))2.

Thus
|D log Dfk(x0)|2  2 · |Sfk(x0)|  C

M
n

(m
n

(x0))2
.

Hence

(3.4) ||D log Dfk|| = |D log Dfk(x0)|  C
M

1
2
n

m
n

.

In order to prove (3.1) let z 2 S1 be such that m
n

(z) = m
n

. Again by Lemma
1.3, there exist t 2 I

n

(z) [ I
n

(f�q

n(z)) and 0  i < q
n+1 such that x = f i(t).

Therefore

D log Dfk+i(t) =
�

D log Dfk(x)
�

Df i(t) + D log Df i(t)

and so

|D log Dfk(x)|  |D log Dfk+i(t)|+ |D log Dfk(t)|
|Df i(t)| .

Using (3.4), the chain rule

D log Dfq

n

+i(x) =
�

D log Df i(fq

n(x))
�

Dfq

n(x) + D log Dfq

n(x),

and the Denjoy inequality we get that formula (3.4) even holds for k = 0, 1, 2, . . . , 2q
n+1

(with a di↵erent constant C). Therefore the last inequality and (3.4) give

(3.5) |D log Dfk(x)|  1
|Df i(t)| ⇥ C

M
1
2
n

m
n

.

On the other hand, there exists y 2 I
n

(t) such that |Df i(y)| = |I
n

(x)|
|I

n

(t)| = m

n

(x)
m

n

(t) .
Since the intervals I

n

(t), . . . , f i�1(I
n

(t)) are pairwise disjoint, we get as before

(3.6) |Df i(t)|�1  C|Df i(y)|�1 = C
m

n

(t)
m

n

(x)
.

Because t 2 I
n

(z) [ I
n

(f�q

n(z)) = I
n

(z) [ f�q

n(I
n

(z)), one has |t � z| 
m

n

(z) + m
n

(z)||Df�q

n ||  Cm
n

(z) (here we use the Denjoy inequality). Using
this, Dm

n

(x) = ±(Dfq

n(x) � 1) and the Mean Value Theorem implies that
m

n

(t) = m
n

(z)+Dm
n

(ẑ)(t�z)  m
n

(z)+ ||Dfq

n�1|| · |t�z|  Cm
n

(z) for all
t 2 I

n

(z) [ I
n

(f�q

n(z)). Using this in (3.6) gives |Df i(t)|�1  C m

n

m

n

(x) . From
this and (3.5) we get (3.1). Finally, (3.1) and (3.3) imply

|D2 log Dfn(x)|  |Sfn(x)|+ 1
2
|D log Dfn(x)|2  C

M
n

(m
n

(x))2

and this completes the proof of Lemma 3.3.
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Using the previous lemma we can improve Denjoy’s inequality substantially.
The contents of Denjoy’s inequality was that || log Dfq

n || was bounded; in the
next lemma we see that these numbers even tend to zero.

Lemma 3.4. (An improved version of Denjoy’s Inequality)

||Dfq

n � 1||  CM
1
2
n

.

In other words, the derivative of the n-th renormalization Rn(f) of f goes quite
rapidly to one as n tends to infinity.

Proof. Let x 2 S1. Choose z 2 S1 so that m
n

(z) = m
n

. We have that
Dfq

n(z)� 1 = 0 (since x! m
n

(x) takes its minimum at x = z and Dm
n

(x) =
±(Dfq

n(x)� 1)). As the intervals f j{I
n

(z) [ I
n

(f�q

n(z))}, 0  j < q
n+1 cover

the circle, there exists t 2 I
n

(z) [ I
n

(f�q

n(z)) such that f i(t) = x for some
0  i < q

n+1. Hence

log Dfq

n(x) = log Dfq

n

+i(t)� log Df i(t) =

= log Dfq

n(t) + [log Df i(fq

n(t))� log Df i(t)].

On the other hand,

| log Df i(fq

n(t))� log Df i(t)|  ||D log Df i|| · |I
n

(t)|,

and
| log Dfq

n(t)| = | log Dfq

n(t)� log Dfq

n(z)| 
 ||D log Dfq

n || · |I
n

(z) [ I
n

(f�q

n(z))|,
since log Dfq

n(z) = 0. As the intervals I
n

(t) and I
n

(z) [ I
n

(f�q

n(z)) are con-
tained in the interval [f�q

n(z), f2q

n(z)] whose length is smaller or equal to Cm
n

,
we get from (3.1),

| log Dfq

n(x)|  Cm
n

�

||D log Df i||+ ||D log Dfq

n ||
 

 CM
1
2
n

.

Clearly the lemma follows.

In the next two lemmas we will estimate the variation of |m
n+1(y)�m

n+1(x)|
for x 2 S1 and y 2 I

n

(x). If m
n+1 is monotone on the interval I

n

(z) for some
z 2 S1 then it will be possible to estimate |m

n+1(y) � m
n+1(x)| in terms of

|m
n+1(fq

n(x)) � m
n+1(x)| and to use inequality (3.1). On the other hand, if

there exists no such z then one gets local minima of log Dfq

n+1 on I
n

(x) and one
can combine this information with inequality (3.2). In this way we get estimates
in both cases.

Lemma 3.5. Suppose that m
n+1 is monotone on the interval I

n

(z) for some
z 2 S1. Then, for every x 2 S1 and y 2 I

n

(x) we have

|mn+1(y)
m

n+1(x)
� 1|  CM

1
2
n

.
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Proof. By Lemma 3.4, we have ||Dfq

n � 1||  CM
1
2
n

. Since I
n+1(fq

n(x)) =
fq

n(I
n+1(x)) we have, from the Mean Value Theorem

m
n+1(fq

n(x)) = Dfq

n(⇠)m
n+1(x)

for some ⇠ 2 I
n+1(x). Thus m

n+1(f
q

n (x))
m

n+1(x) � 1 = Dfq

n(⇠)� 1. Therefore

|mn+1(fq

n(x))
m

n+1(x)
� 1| < CM

1
2
n

for each x 2 S1. As m
n+1 is monotone on I

n

(z) this inequality implies |mn+1(t)
m

n+1(z)�
1| < CM

1
2
n

for every t 2 [z, fq

n(z)] and, since fq

n(I
n+1(t)) = I

n+1(fq

n(t)), by
using the previous inequality again, that

|mn+1(t)
m

n+1(z)
� 1| < CM

1
2
n

for every t 2 [f�2q

n(z), fq

n(z)]. In the same way, |mn+1(z)
m

n+1(t)
� 1| < CM

1
2
n

for
every t 2 [f�2q

n(z), fq

n(z)]. Thus

|mn+1(t0)
m

n+1(t)
� 1| < CM

1
2
n

for every t, t0 2 [f�2q

n(z), fq

n(z)]. Take now x 2 S1 and y 2 I
n

(x). By the sec-
ond statement of the second lemma in §2.a, there exist t, t0 2 [f�2q

n(z), fq

n(z)]
and 0  j < q

n+1 such that f j(t) = x and f j(t0) = y. Thus m
n+1(x) =

m
n+1(t)Df j(⇠) and m

n+1(y) = m
n+1(t0)Df j(⇠0) with ⇠, ⇠0 2 [f�2q

n(z), fq

n(z)].
Hence |⇠ � ⇠0| < Cm

n

(z). From this and (3.1),

| log Df j(⇠)� log Df j(⇠0)| = |D log Df j(⇠̄)| · |⇠ � ⇠0|  C
M

1
2
n

m
n

(⇠̄)
m

n

(z).

As I
n

(z) ⇢ [f�3q

n(⇠̄), f3q

n(⇠̄)], we have that m
n

(z) < Cm
n

(⇠̄). Therefore

| log Df j(⇠)� log Df j(⇠0)|  CM
1
2
n

.

Hence, combining all this,

|mn+1(y)
m

n+1(x)
� 1| = |mn+1(t0)Df j(⇠0)

m
n+1(t)Df j(⇠)

� 1|  CM
1
2
n

.

Lemma 3.6. If t ! m
n+1(t) is not monotone on every interval of the type

I
n

(z), z 2 S1, then, for every x 2 S1 and y 2 I
n

(x),

|m
n+1(y)�m

n+1(x)|  CM
n

m
n

(x).
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Proof. By the hypothesis, the intervals I
n

(f�q

n(x)), I
n

(x) both contain a zero
of log Dfq

n+1 . Thus by the Mean Value Theorem, D log Dfq

n+1 vanishes in
some point ⇠ 2 [f�q

n(x), fq

n(x)]. By inequality (3.2) of Lemma 3.3,

|D log Dfq

n+1(t)| = |D log Dfq

n+1(t)�D log Dfq

n+1(⇠)| =

= |D2 log Dfq

n+1(⇠̄)| |t� ⇠|  C
M

n

(m
n

(⇠̄))2
|t� ⇠|

for every t 2 I
n

(x). Now

|t� ⇠|  m
n

(f�q

n(x)) + m
n

(x)  m
n

(x)||Df�q

n ||+ m
n

(x)  Cm
n

(x)

and

m
n

(t) = m
n

(x)�Dm
n

(t̂)(t� x) � m
n

(x)� ||Dfq

n � 1|| · |t� x| � Cm
n

(x)

for every t 2 [f�q

n(x), fq

n(x)]. Therefore

|D log Dfq

n+1(t)|  C
M

n

m
n

(x)

for every t 2 I
n

(x). Since log Dfq

n+1(t̄) = 0 for some t̄ 2 I
n

(x), we get, using
again the Mean Value Theorem,

| log Dfq

n+1(t)| < CM
n

, 8t 2 I
n

(x).

Finally,

|m
n+1(y)�m

n+1(x)| = |Dm
n+1(x̄)| |x� y| = |Dfq

n+1(x̄)� 1| |x� y|

< C| log Dfq

n+1(x̄)|m
n

(x) < CM
n

m
n

(x).

Proof of Proposition 3.3. The proof of Proposition 3.3 follows immediately
by combining Lemmas 3.5 and 3.6.

Step 4: Comparing the length of the closest return intervals
for the di↵eomorphism with the corresponding numbers for
the rotation

By Step 2 it su�ces to prove that the sequence M

n

m

n

is bounded. In order to
achieve this we will need to make an assumption on the rotation number of f .
More precisely, let ↵

n

be the length of the interval [x,Rq

n

↵

(x)] ⇢ S1 \ {R
↵

(x)}.
Then ↵1 > ↵2 > · · · and, since R

↵

is a rotation, ↵
n

does not depend on x and,
by the definition of the convergents, ↵

n

= (�1)n(q
n

↵� p
n

). We have also that

↵
n

= a
n+2↵n+1 + ↵

n+2

where ↵ = [0; a1, a2, . . . ] is the continued fraction expansion of ↵. As a
n

� 1
we have that ↵

n+2  1
2↵n

. Thus the sequence ↵
n

decreases exponentially. To
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analyze the behaviour of the sequences M
n

and m
n

, we are going to compare
them with the sequence ↵

n

.
Let g : S1 ! S1 be a di↵eomorphism without periodic points. Take a lift

ĝ : R! R of g such that ĝ = Id + �̂, with �̂ one-periodic and 0 < �̂(x) < 1 for
every x 2 R. As we have seen in Section 1,

⇢(g) = lim
k!1

1
k

(ĝk(x)� x) = lim
k!1

1
k

k�1
X

i=0

�̂(ĝi(x))

Let ⇡ : R! S1 be the canonical covering map and define � : S1 ! R such that
�(⇡(x)) = �̂(x) for each x 2 R. Clearly �(x) is the length of the arc in the circle
which connects x to g(x) and which is positively oriented. Hence

⇢(g) = lim
k!1

1
k

k�1
X

i=0

�(gi(x)) =
Z

� dµ

where µ is the probability measure on the circle invariant by g. Applying this
to g = fq

n and, taking into account that the length of the oriented arc of the
circle between x and fq

n is equal to either m
n

(x) or 1�m
n

(x) according to the
parity of n, we have

Z

S

1
m

n

(x) dµ(x) = min{⇢(fq

n), 1� ⇢(fq

n)}

= min{⇢(Rq

n

↵

), 1� ⇢(Rq

n

↵

)} = ↵
n

.

Thus
M

n

� ↵
n

� m
n

.

As we have in Step 2, to complete the proof of the Theorem 3.2, it is su�cient
to prove that the sequence M

n

m

n

is bounded and therefore it is enough to prove
that M

n

↵

n

and ↵

n

m

n

are bounded. In this section we will show that M

n+1
↵

n+1
can be

estimated from above in terms of M

n

↵

n

. In the next step, this inequality and the
Diophantine condition will then imply that M

n

↵

n

and ↵

n

m

n

are both bounded.

Proposition 3.4. For n su�ciently large,

M
n+1 M

n

↵

n+1
↵

n

+ CM
n

1� CM
1
2
n

,

m
n+1 � m

n

↵

n+1
↵

n

� CM
n

1 + CM
1
2
n

.

(Notice that by Denjoy’s theorem M
n

!1 as n!1 so the above inequalities
make sense for large n.)

Let us first motivate this inequality. Since ↵
n+2  1

2↵n

, we have from the
first of these inequalities that M

n+2  2
3M

n

for n su�ciently large. Now rewrite
the first inequality as

M
n+1

↵
n+1

 M
n

↵
n

1 + ↵

n

↵

n+1
CM

n

1� CM
1
2
n

.



3. SMOOTH CONJUGACY RESULTS 61

Therefore if ↵

n+1
↵

n

does not grow too fast as n goes to infinity then we expect
the sequence M

n+1
↵

n+1
to be bounded.

In order to prove Proposition 3.4 we will need two lemmas. The first of these
is crucial in comparing the locally defined numbers m

n

(x) with the correspond-
ing numbers ↵

n

for the rotation. It shows that the ratio of the lengths of some
dynamically defined intervals are determined by the rotation number. In other
words, this lemma gives an example of a rigidity result.

Lemma 3.7. For every x 2 S1, there exist y 2 I
n

(x) and z 2 I
n+1(x) such that

m
n+1(y)

m
n

(z)
=
↵

n+1

↵
n

.

Proof. Proof Of course the Lebesgue measure � is invariant under R
↵

. Let h
is the conjugacy between f and R

↵

and µ = h
?

� be the measure defined by
h
?

�(A) = �(h�1(A)). Clearly µ is invariant under f . Let ! : S1 ! R be a map
with a single discontinuity at f(x) such that ⇡ � ! is the identity map of the
circle. We have

m
n

(t) = |!fq

n(t)� !(t)|.

By the invariance of the measure we have
Z

I

n

(x)

! � fq

n+1 dµ =
Z

I

n

(fq

n+1 (x))

! dµ

and
Z

I

n+1(x)

! � fq

n dµ =
Z

I

n+1(fq

n (x))

! dµ.

Because I
n

(fq

n+1(x)) \ I
n

(x) = I
n+1(x) \ I

n+1(fq

n(x)) one gets therefore
Z

I

n

(x)

(! � fq

n+1 � !) dµ =
Z

I

n

(fq

n+1 (x))\I
n

(x)

! dµ =

=
Z

I

n+1(x)\I
n+1(fq

n (x))

! dµ = �
Z

I

n+1(x)

(! � fq

n � !) dµ.

Applying the Mean Value Theorem to the last equality, one obtains
y 2 I

n

(x) and z 2 I
n+1(x) such that

m
n+1(y)

Z

I

n

(x)

dµ = m
n

(z)
Z

I

n+1(x)

dµ.

Since
Z

I

n

(x)

dµ =
Z

[h(x),R
↵

(h(x))]

d� = ↵
n

,

we have that
m

n+1(y)↵
n

= m
n

(z)↵
n+1

and this proves the lemma.
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Lemma 3.8. For every x 2 S1 we have

|m
n+1(x)� ↵

n+1

↵
n

m
n

(x)|  C[M
n

m
n

(x) + M
1
2
n

m
n+1(x)].

Proof. Let x 2 S1. Take y 2 I
n

(x) and z 2 I
n+1(x) as in Lemma 3.7 such that

m
n+1(y) = ↵

n+1
↵

n

m
n

(z). By Proposition 3.3, we have

|m
n+1(x)�m

n+1(y)|  C{M
1
2
n

m
n+1(x) + M

n

m
n

(x)}.

On the other hand, as |Dfq

n(t)� 1|  CM
1
2
n

, we have that

|m
n

(z)�m
n

(x)|  CM
1
2
n

|[x, z]|  CM
1
2
n

m
n+1(x).

Thus
|m

n+1(x)� ↵
n+1

↵
n

m
n

(x)| 

 |m
n+1(x)�m

n+1(y)|+ |↵n+1

↵
n

m
n

(z)� ↵
n+1

↵
n

m
n

(x)| 

 C{M
1
2
n

m
n+1(x) + M

n

m
n

(x)}+ CM
1
2
n

m
n+1(x) =

= C{M
1
2
n

m
n+1(x) + M

n

m
n

(x)}.

Proof of Proposition 3.4. Follows immediately from Lemmas 3.7 and 3.8.

Step 5: For appropriate rotation numbers the variation of
the length of the intervals of closest return is bounded; the
proof of Theorem 3.2

Notice that the Diophantine condition on the rotation number was not used
until now. In this section we will use this condition and Proposition 3.4 to
prove

Lemma 3.9. If the rotation number of f satisfies a Diophantine condition of
order �, 0 < � < 1, then the sequences M

n

↵

n

and ↵

n

m

n

are bounded.

Proof. By Denjoy’s theorem, M
n

! 0 as n!1. Since, by Proposition 3.4,

M
n+1 M

n

↵

n+1
↵

n

+ CM
n

1� CM
1
2
n

we have that, given ✏ > 0,

M
n+1 M

n

((1 + ✏)
↵

n+1

↵
n

+ ✏)

for every n big enough. Hence

M
n+2 M

n

((1 + ✏)2
↵

n+2

↵
n

+ O(✏)).
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Since ↵

n+2
↵

n

< 1
2 , we have that

M
n+2 

2
3
M

n

for n big enough. Therefore the sequence {M
n

} decreases even exponentially.
From the Diophantine condition we get |↵ � p

q

| > K

q

2+�

for some � 2 (0, 1).
Furthermore, by (1.5) in §1, |↵� p

n

q

n

| < 1
q

n

q

n+1
. Hence

K

q1+�
n

< ↵
n

= (�1)n(q
n

↵� p
n

) <
1

q
n+1

and therefore
↵

n

> ↵
n+1 > K↵1+�

n

.

Since 0 < � < 1, there exists ✓ 2 (0, 1) such that (1 +�+ ✓)(1 + ✓) < 2� ✓ and,
since ↵

n

M
n

! 0, there exists n0 such that if n � n0 then

M
n+2 

2
3
M

n

,

CM
1
2
n

 1
2
,

↵
n+1 � ↵1+�+✓

n

.

Since the sequence M✓

n

converges at least geometrically to zero, there exists
A > 1 such that

(3.7)
1
Y

n=n0

1 + M✓

n

1� CM
1
2
n

< A.

Claim: there exists n1 such that if n � n1 then

(3.8) M
n+1 M

n

↵
n+1

↵
n

1 + M✓

n

1� CM
1
2
n

.

Before proving this claim let us finish the proof of the lemma. From equations
(3.7) and (3.8), we have

M
n

↵
n

 A
M

n1

↵
n1

for every n � max{n0, n1}. This shows that

(3.9)
M

n

↵
n

< C for all n � 0.

From the second inequality of Proposition 3.4, we get

m
n+1 � m

n

↵
n+1

↵
n

1� C M

n

↵

n+1
↵

n

1 + CM
1
2
n

and therefore, using (3.9),

↵
n+1

m
n+1
 ↵

n

m
n

1 + C↵
1
2
n

1� C ↵

2
n

↵

n+1

.
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Since, by the Diophantine condition, ↵2
n

(↵
n+1)�1  C↵1��

n

, and ↵
n

goes to zero
exponentially fast, we have that the product

1
Y

n=0

1 + C↵
1
2
n

1� C ↵

2
n

↵

n+1

converges and, consequently, the sequence ↵

n

m

n

is also bounded.
It remains to prove the inequality (3.8). By Proposition 3.4,

(3.10) M
n+1 M

n

↵
n+1

↵
n

1 + ↵

n

↵

n+1
CM

n

1� CM
1
2
n

.

Therefore it is enough to prove that

(3.11)
↵

n

↵
n+1

CM
n

M✓

n

for n big enough. We may assume that A satisfies A2 > A1�✓ > 4C. Take n1

such that M
n1 < 1

A

2 . Let

r
n1 =

1
A2

and


n1 =

log(A2M
n1)

log(↵
n1)

=
log(M

n1)� log(r
n1)

log(↵
n1)

.

Since r
n1 > M

n1 � ↵n1 , we have that 0 < 
n1 < 1. Since A > 1, also r

n1 < 1.
For n � n1 define

(3.12a) r
n+1 = r

n

1 + M✓

n

1� CM
1
2
n

and 
n+1 = 

n

if CM
n

↵

n

↵

n+1
M✓

n

and otherwise

(3.12b) r
n+1 = r

n

, and 
n+1 = (1 + ✓)

n

.

Let us prove by induction that

(3.13) M
k

 r
k

↵k

k

for all k � n1. For k = n1 equation (3.13) holds (with equality) by definition of


n1 . Assume that we have proved by induction that (3.13) holds for n1  k  n.
Notice that r

n

< 1 for all n � n1 since

r
n


1
Y

i=n1

1 + M✓

i

1� CM
1
2
i

r
n1 

1
A

< 1.

Therefore (3.13) implies that 
k

< 1 because

↵k

k

> r
k

↵k

k

�M
k

� ↵
k

.
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We have two cases to consider. If CM
n

↵

n

↵

n+1
M✓

n

then from (3.10),

M
n+1 M

n

↵
n+1

↵
n

1 + M✓

n

1� CM
1
2
n

.

Thus, using the induction assumption and that 
n+1 = 

n

2 (0, 1) in this case,

M
n+1 

↵
n+1

↵
n

1 + M✓

n

1� CM
1
2
n

r
n

↵n

n

 r
n+1↵n+1↵



n

�1
n

 r
n+1↵



n+1
n+1

which shows that (3.13) remains valid for k = n + 1. If on the other hand
CM

n

↵

n

↵

n+1
> M✓

n

, then (3.10) and CM
1
2
n

 1
2 imply M

n+1  4CM2�✓
n

. Using
the induction hypothesis, this gives

M
n+1  4C[r

n

↵n

n

]2�✓.

Since 4Cr1�✓
n

 A1�✓r1�✓
n

< 1, this yields

(3.14) M
n+1  r

n

[↵n

n

]2�✓.

Since (1 + � + ✓)(1 + ✓) < 2� ✓, and, since ↵
n

> ↵
n+1 � ↵1+�+✓

n

, one has

[↵n

n

]2�✓  ↵(1+�+✓)�1(2�✓)
n

n+1  ↵(1+✓)
n

n+1 = ↵n+1
n+1 .

Using this in (3.14),
M

n+1  r
n+1↵



n+1
n+1

and (3.13) holds also in this case. Thus as we saw above, 
n

< 1 for every
n � n1. But since 

n+1 � n

for all n � n1, the inequality

CM
n

↵
n

↵
n+1

> M✓

n

can only occur a finite number of times, because from the definition in (3.12b)
otherwise 

n+1 = (1 + ✓)
n

infinitely often, contradicting 
n

< 1 for every
n � n1. This completes the proof of the lemma and also of Theorem 3.2.

4 Families of Circle Di↵eomorphisms;

Arnol’d Tongues

Following Arnol’d and Herman we will study in this section families of circle
di↵eomorphisms. So let f : S1 ! S1 be a circle homeomorphism and define the
rotation function, S1 3 ↵ 7! ⇢(↵) := ⇢(R

↵

�f). It will turn out that the function
⇢ : S1 ! S1 is continuous and assumes every irrational value in S1 = R/Z
exactly once. Under a mild additional condition it will be shown that for each
rational number p

q

, ⇢�1(p

q

) has a non-empty interior. Finally it will be shown
that for 0 < |a| < 1

2⇡ , the map f : S1 ! S1 defined by f(t) = t + a sin(2⇡t) is
an analytic di↵eomorphism satisfying this additional condition. Consequently,
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for such maps f , the function ↵! ⇢(R
↵

� f) is locally constant at each rational
value! This phenomenon is called phase locking.

For convenience of notation let f
↵

= R
↵

� f , and let f̂ and f̂
↵

be the lifts of
f respectively f

↵

such that f̂
↵

= f̂ + ↵.

Lemma 4.1. Let f : S1 ! S1 be a homeomorphism without periodic points.
Then ⇢(R

↵

� f) > ⇢(f) if ↵ > 0.

Proof. Suppose f : S1 ! S1 is a homeomorphism without periodic points. By
Zorn’s Lemma, there exists a closed f -invariant subset K ⇢ S1 which is minimal,
i.e., K does not contain any compact, non-empty, proper f -invariant subset. By
minimality, every orbit in K is dense in K. Therefore, if x 2 K, there exists a
sequence n

i

!1 with fn

i(x)! x. So choose x so that it is accumulated from
both sides by other points in K (this is possible because otherwise K would be
countable). Let ⇡ : R ! S1 be the canonical projection and take x̂ 2 R such
that ⇡(x̂) = x. Therefore there exists a sequence p

i

of positive integers such
that f̂n

i(x̂) � x̂ � p
i

tends to zero from both sides. By taking a subsequence
we may assume that f̂n

i(x̂) < x̂ + p
i

for all i. So take ↵ > 0. We claim that
f̂n

↵

(x̂) � f̂n(x̂) + ↵ for all n 2 N. Indeed, this is true for n = 1 and assuming,
by induction, it is true for n� 1 we get f̂n

↵

(x̂) = f̂
↵

(f̂n�1
↵

(x̂)) � f̂
↵

(f̂n�1(x̂)) =
f̂n(x̂) + ↵ and the claim is proved. This, f̂n

0 (x̂) < x̂ + p
i

and the Intermediate
Value Theorem implies that there exists 0  ↵

i

 x̂ + p
i

� f̂n

i(x̂) such that
(f̂
↵

i

)n

i(x̂) = x̂ + p
i

. Hence x is a periodic point of f
↵

i

. It follows that

↵! ⇢(↵) is increasing and strictly increasing if ⇢(↵) is irrational.
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Fig. 4.1: The graph of fs

↵

when ↵ 2 K±
r/s
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Lemma 4.2. Assume that fm

↵

6= id for all ↵ 2 S1 and all m 2 N. Then ⇢�1( r

s

)
has a non-empty interior for each rational number r

s

. In particular, the set

{↵ ; ⇢(f
↵

) is irrational}

is nowhere dense in S1.

Proof. Let K
r/s

the set of ↵ such that ⇢(f
↵

) = r

s

. From the continuity and the
monotonicity of ↵ 7! ⇢(↵) it follows that this set is non-empty. Equivalently,

K
r/s

= {↵ ; f̂s

↵

(x) = x + r at some point x}.

Similarly, define

K+
r/s

= {↵ 2 K
r/s

; f̂s

↵

(x) � x + r for all x},

K�
r/s

= {↵ 2 K
r/s

; f̂s

↵

(x)  x + r for all x}.

The proof in the previous lemma also implies that these sets are non-empty and
they both consist of single points. Since f̂s

↵

(x) 6⌘ x + r for all ↵, K+
r/s

6= K�
r/s

.
Therefore K

r/s

is a non-trivial interval and the lemma follows.

If ↵ 2 K
r/s

then f
↵

has periodic points of period s. If ↵ 2 K±
r/s

then each
of these periodic points of f

↵

attracts from one side and is repelling from the
other side, see Figure 4.1. If ↵ 2 interior(K

r/s

) then at least one of the periodic
points of f is attracting from both sides.

Lemma 4.3. Consider S1 as the unit circle in the complex plane. If f : S1 ! S1

is an analytic di↵eomorphism which has an entire extension to the complex plane
which is not a�ne, then there exists no integer n such that fn ⌘ id on S1.

Proof. If fn(x) = x for all x 2 S1 then fn(x) = x for all x in the complex plane.
Therefore fn�1 � f = id and f is an entire biholomorphic transformation. This
implies that f is of the form f(z) = cz+d. This contradicts the assumptions.

In particular, for each 0 < |a| < 1
2⇡ , the map f : S1 ! S1 defined by

f
a

(t) = t+a sin(2⇡t) is an analytic di↵eomorphism and satisfies the conditions of
Lemmas 4.2 and 4.3. In particular, for each such a, the function ↵! ⇢(R

↵

�f
a

)
is monotone, locally constant at each ↵ for which ⇢(R

↵

� f
a

) is rational, and
non-constant at each irrational value. A function with these properties is often
called a devil’s staircase.

figure 4.2: The function ↵! ⇢(R
↵

� f
a

).
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figure4.3: The boundary of the set {(↵, a) ; ⇢(f
↵,a

) = constant}. In the verti-
cal direction the parameter a is drawn. The tongues corresponding to rotation
numbers 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8 and 1 are given.

Furthermore, consider the two-parameter family

f
↵,a

= R
↵

� f
a

.

From Lemma 4.2 for each irrational number ⇢, the set {(↵, a) ; ⇢(f
↵,a

) = ⇢}
is the graph of a continuous function. For ⇢ rational this set has a non-empty
interior, and is bounded by two continuous curves, see Figure 4.3. The wedges
between these two curves are commonly referred to as Arnol’d tongues. Al-
though {↵ ; ⇢(f

↵,a

) is irrational} (where a is some fixed number as before) is
nowhere dense in S1, this set has positive Lebesgue measure. This follows from
the result of M. Herman which we will discuss in the Section 6.
Exercise 4.1. In this exercise we will show that for any r � 1 the set of Morse-
Smale di↵eomorphisms is open and dense in the space of all Cr di↵eomorphisms.
Here a di↵eomorphism g : S1 ! S1 is called a Morse-Smale if g has only a finite
number of periodic points and if each of these periodic points is hyperbolic (a
periodic point p of g is called hyperbolic if gn(p) = p implies |Dgn(p)| 6= 1).
(In higher dimensions a Morse-Smale di↵eomorphism has to satisfy some other
properties.) We will show this statement in a few steps.
i) Show that Lemma 4.1 implies that a Cr di↵eomorphism f : S1 ! S1 can
be approximated in the Cr topology by a di↵eomorphism f1 : S1 ! S1 with a
periodic point.
ii) Let p be a periodic point of f1 and assume it has period n. Show that f1 can
be approximated in the Cr topology by a Cr di↵eomorphism f2 : S1 ! S1 such
that p is again a periodic point of f2 of period n but with Dfn

2 (p) 6= 1. (Hint:
simply change f1 in a neighbourhood U of p such that U \ O(p) = {p} and so
that f2(p) = f1(p) and Df2(p) 6= Df1(p) by using bump functions.)
iii) Show that f2 can be approximated by a di↵eomorphism f3 having p as a
periodic point of period n and such that all periodic points of f3 are hyperbolic.
(Hint: since f2 has a periodic point of period n, all periodic points of f2 have
period equal to n (unless f2 reverses orientation in which case the situation
is simpler). Now repeat the previous construction. Note that it may happen
that fn

2 is the identity on some interval.) Steps i)-iii) imply the density of
Morse-Smale di↵eomorphisms. iv) Let f be a Cr Morse-Smale di↵eomorphism,
where as before r � 1. Show that any di↵eomorphism g su�ciently close in the
Cr topology to f has only hyperbolic periodic points and that the number of
periodic points of f and g is the same. (Hint: use the implicit function theorem.)
Exercise 4.2. Let f, f̃ : S1 ! S1 be two Morse-Smale di↵eomorphisms with
the same number, say k, of periodic points and with the same period. Show
that these di↵eomorphisms are conjugate.
i) Show that the number of periodic points of a Morse-Smale di↵eomorphism
g : S1 ! S1 is even. (Hint: between each two attracting periodic points there
is a repelling periodic point.)
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ii) Let p be an attracting periodic point of g. Show that there exists two half-
open intervals I1 and I2 in the basin B(p) of p with the property that each orbit
in B(p) intersects one of these intervals exactly once. The set I1 [ I2 is called
a fundamental domain of p. (Hint: let q1 and q2 be the neighbouring periodic
points, i.e., the periodic point so that the arc (q1, q2) contains no other periodic
points except p. Let x

i

2 (q
i

, p) ⇢ (q1, q2) and define I
i

= [x
i

, g(x
i

)). The union
[

i=1,2 [n2Z fn(I1) coincides with the basin of p.)
iii) Now construct a conjugacy between f and f̃ . (Hint: Let I1, . . . , Ik

be
the fundamental domains for f and Ĩ

,

. . . , Ĩ
k

the fundamental domains for f̃ .
Take any homeomorphism h⇤ : S1 ! S1 which sends I

i

homeomorphically to
Ĩ
i

. For each non-periodic point x there exists a unique integer n(x) such that
fn(x) 2 I

i

. Next define h(x) = f̃�n(x) � h⇤ � fn(x)(x). Show that h extends to
a homeomorphism on S1. By definition one immediately has f̃ � h = h � f .)
Combining this and the previous exercise one has that each Morse-Smale di↵eo-
morphism is Cr structurally stable, i.e., each such di↵eomorphism is conjugate
to any Cr nearby di↵eomorphism.

Exercise 4.3. Consider the two-parameter family f
↵,a

for a � 0 from before.
Show that the wedge ⇢(f

↵,a

) at (0, 0) is bounded by the curves ↵ = ±|a|.
Similarly, by looking at the second and third iterate of f

↵,a

, show that the
wedges in (1/2, 0) and (1/3, 0) are bounded by respectively

↵ = 1/2 +±(⇡/2)a2 + O(a3)

and
↵ = 1/3 + (

p
3⇡/6)a2 ± (

p
7⇡/6)a3 + O(a4).

See also Arnol’d (1961).

5 Counter-Examples to Smooth Linearizability

In this section we assume that f : S1 ! S1 is analytic and satisfies fn 6⌘ id for
all n 2 Z. Furthermore, let f

↵

= R
↵

� f and

R = {↵ 2 S1 ; ⇢(f
↵

) is irrational}.

From the previous section it follows that we could take here the family,

f
↵

(t) = t + a sin(2⇡t) + ↵mod1,

where 0 < |a| < 1
2⇡ . Moreover, the results from the previous section imply that

R is perfect (has no isolated points) and totally disconnected (has no interior
points) and that its closure has the same properties. In other words, the closure
of R is a complete metric space and this closure is just the union of R with a
countable set. Therefore R has the Baire property: the countable intersection
of a collection of open and dense subsets in R is again dense in R.

In general an analytic di↵eomorphism without periodic points is not C1 con-
jugate to a rotation, see Finzi (1950). In the theorem below, due to Arnol’d, it
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will be shown that, even when a di↵eomorphism f as above is analytic, there
exists a dense set of parameters ↵ 2 R such that the conjugacy between f

↵

and
the rotation is not even absolutely continuous. So in general a conjugacy sends
a set of positive Lebesgue measure into a set of zero Lebesgue measure. In par-
ticular, these maps do not have an absolutely continuous invariant probability
measure.

Theorem 5.1. For f and f
↵

as above there exists a dense set of ↵’s in R such
that there exists no absolutely continuous conjugacy between f

↵

and a rotation.
(Note that for ↵ 2 R, f

↵

is certainly conjugate to a rotation.)

Corollary 5.1. There exists a dense set of ↵’s in R such that there exists no
C1 conjugacy between f

↵

and a rotation.

Proof of Corollary. Although the corollary follows immediately from Theo-
rem 5.1 let us give an independent proof. Notice that if h is a C1 conjugacy
between f and R

⇢

, then fn = h � Rn

⇢

� h�1 for all n 2 Z. Since h is C1,
sup

n2Z log ||Dfn|| is finite. So let us show that there exist many parameters ↵
such that sup

n2Z log ||Dfn

↵

|| is infinite. This is done as follows. Take the open
set

U
k

= {↵ 2 R ; sup
n2Z

log ||Dfn

↵

|| > k}.

Let us show that this set is dense in R. So take ↵ 2 R. From Lemma 4.2,
arbitrarily close to ↵ there exists a number ↵0 2 K±

r/s

. Since f
↵

0 has peri-
odic points which are attracting (from one-side), sup

n2Z log ||Dfn

↵

0 || = 1. In
particular, for any ↵00 su�ciently close to ↵0 one has sup

n2Z log ||Dfn

↵

00 || > k.
From Lemma 4.2 one can choose such a parameter ↵00 so that it is contained
in R and so that it is arbitrarily close to ↵0. Combining this gives that U

k

is dense in R. From the Baire property one gets that \
k�0Uk

is dense in R.
Since sup

n2Z log ||Dfn

↵

|| = 1 for ↵ 2 \
k�0Uk

, f
↵

is not C1 conjugate to a
rotation.

Note that the di↵eomorphisms which were constructed in the previous result
are near to di↵eomorphisms with a one-sided attractor O. This forces orbits to
spend most of their time near O. Such behaviour is sometimes called intermit-
tency. We will elaborate on this in the next exercise.

Exercise 5.1. Let f and f
↵

as above. For each ↵0 2 K+
r/s

, the di↵eomorphism
f
↵

0 has a one-sided periodic attractor O (this set consists of one or possibly of
a finite number of periodic orbits). Show that for any neighbourhood U of O
and any x 2 S1, there exists ✏ > 0 such that for any ↵ 2 (↵0,↵0 + ✏) \R any
limit measure µ of the measures

1
n

n�1
X

i=0

�
f

i

↵

(x)
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has the property that µ(U) � 1/2. (Hint: For any neighbourhood U , the
cardinality of {0  k < n ; fk(x) 2 U} is at least n/2 for n su�ciently large
provided ✏ > 0 is su�ciently small.) The idea of the proof of Theorem 5.1 is to
combine this with a Baire argument.

Proof of Theorem 5.1. Let V
k

be the open subset of R of parameters ↵ for
which there exist open sets A with |A| < 1

k

(where |A| denotes the Lebesgue
measure of A) and an integer N with fN

↵

(S1 \A) ⇢ A. We claim that for each
k the set V

k

is dense.
Before proving this claim let us show that the theorem follows from this

claim. So let V = \
k�0Vk

. Then the Baire property implies that V is dense in
R. For ↵ 2 V , there exists a sequence of sets A

k

and integers N
k

such that i)
fN

k

↵

(S1 \A
k

) ⇢ A
k

and ii) |A
k

| < 1
k

. Let us show that there exists no absolutely
continuous homeomorphism h such that h�f

↵

�h�1 is a rotation. Since rotations
preserve Lebesgue measure, for any homeomorphism h such that h � f

↵

� h�1

is a rotation one has that the measure of h(A
k

) is equal to the measure of
h(fN

k

↵

(A
k

)). From this and i),

1� |h(A
k

)| = 1� |h(fN

k

↵

A
k

)| = |h(fN

k

↵

(S1 \A
k

))|  |h(A
k

)|.

This implies that |h(A
k

)| � 1
2 . Since |A

k

|  1
k

, the conjugacy h is definitely not
absolutely continuous!

So we only need to prove that V
k

is dense in R. Take ↵ 2 R. From Lemma
4.2, arbitrarily close to ↵ there exists a number ↵0 2 K±

r/s

. Since f is analytic,
f
↵

0 has a finite number of periodic points x1, . . . , xr

all of which are fixed points
of fs

↵

0 and attracting from one-side (and repelling from the other side). It follows
that for each x 2 S1, fn

↵

0(x) ! {x1, . . . , xr

} as n ! 1. In particular, if we let
A

k

be an open neighbourhood of {x1, . . . , xr

} with Lebesgue measure < 1
k

, then
there exists N(k) <1 such that for each x 2 S1\A

k

, fN

↵

0 (x) 2 A
k

and therefore
fN

↵

0 (S1 \A
k

) ⇢ A
k

. By continuity and, since A
k

is open, it follows that for each
↵00 su�ciently near ↵0, one also has

fN

↵

00(S1 \A
k

) ⇢ A
k

.

From Lemma 4.2 one can choose ↵00 2 R arbitrarily close to ↵0. Hence ↵00 2 V
k

.
The density of V

k

in R follows.

Remark. As we have seen in one of the exercises in §1, every circle homeomor-
phism without periodic points has precisely one invariant probability measure.
In particular, if f is conjugate to the rotation R and has an invariant probability
measure µ then h⇤µ is the Lebesgue measure. Here h is the conjugacy between
f and R, h � f = R �h, and h⇤µ is the measure defined by h⇤µ(A) = µ(h�1(A))
for all measurable sets A. From the previous result it follows that in general h
is not absolutely continuous, and therefore that µ is not absolutely continuous
with respect to the Lebesgue measure. Even if f has no finite invariant mea-
sure which is absolutely continuous with respect to the Lebesgue measure, it
may still have an �-finite invariant measure which is absolutely continuous with
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respect to the Lebesgue measure. This is an invariant measure µ such that S1

it the countable union of intervals I
i

, such that µ(I
i

) < 1 and such that µ is
absolutely continuous, i.e., there exists a L1-function � : S1 ! [0,1] such that

µ(A) =
Z

A

� dµ.

Equivalently, letting K = ��1(0,1) one has that µ(K) > 0 and that

� � f ·Df = � for µ almost all points.

It is not known whether all di↵eomorphisms without periodic points from the
family f(t) = t + a sin(2⇡t) + ↵, 0 < |a| < 1

2⇡ , have such an invariant �-finite
measure. However, there are examples of C1 di↵eomorphisms which have no �-
finite absolutely continuous invariant measure and also of such di↵eomorphisms
which have no finite but do have an �-finite absolutely continuous measure, see
Katznelson (1977). In the next exercise an example due to Herman (1979) of a
continuous, piecewise linear circle homeomorphism without invariant absolutely
continuous �-finite measures is given.

Exercise 5.2. Show that in general an analytic di↵eomorphism f without periodic

points is not quasi symmetrically conjugate to a rotation. Here we say that a homeo-

morphism h : S1

! S1 is quasisymmetric if there exists K < 1 such that for each two

intervals I
1

and I
2

with a common end-point such that |I
1

| = |I
2

| one has |h(I1)|
|h(I2)|  K.

(This concept plays an important role in the last chapter of this book because of its

connections with quasiconformal maps on the Riemann sphere.) (Hint: use the same

type of di↵eomorphism as in the proof of Theorem 5.1 and choose intervals I
1

[ I
2

on

one side of a point which is almost a one-sided fixed point.) (Recently, Yoccoz has

shown that any two analytic homeomorphisms with a unique critical point and with the

same rotation number are quasi-symmetrically conjugate. Later on we shall see that

quasisymmetry plays an important role in non-invertible one-dimensional systems.)

Exercise 5.3. In this exercise we shall show, following Herman (1979), that there

exist continuous, piecewise linear circle homeomorphisms without invariant absolutely

continuous �-finite measures. Define a continuous map F : [0, 1] ! [0, 1] with slope

� on an interval of the form [0, a] and slope 1

�

on [a, 1], and such that F (0) = 0.

(Clearly F is completely determined and a = 1/(� + 1).) Now define f : S1

! S1

so that f(x) = F (x) + b mod1, where b 2 R is chosen so that f has no periodic

points. Suppose by contradiction that f has an absolutely continuous �-finite invariant

measure µ, which is absolutely continuous with respect to the Lebesgue measure. Let

� be its density and let K = ��1(0,1) (where µ(K) > 0). a) Show that the invariance

of µ implies that

� � f · Df = � for µ almost all points.

b) Let

g(x) =

8
<

:
exp

“
2⇡i log �(x)

2 log �

”
when x 2 K,

0 when x /2 K.

Using step a) show that g � f(x) = �g(x) for x 2 K. In particular g � f2 = g on F .

c) Show that g is strictly positive on a set of positive Lebesgue measure. (Use that

µ is absolutely continuous and that g(x) > 0 for x 2 K and µ(K) > 0.) d) As we
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remarked in exercise 1 in §2.b, f and also f2 is ergodic. Show that this implies that

g is µ-almost everywhere constant. (Hint: use g � f2 = g and deduce from this that

for each c 2 R the set {x ; g(x) � c} is f2-invariant. From the ergodicity this set

has either Lebesgue measure zero or full Lebesgue measure. Since this holds for each

c 2 R, g must be constant.) e) Show that g cannot be almost everywhere constant.

This contradicts part d) of this exercise.

6 Frequency of Smooth Linearizability in Fami-

lies

Following Herman (1977), we will show in this section that for smooth families
[0, 1] 3 t ! f

t

of smooth di↵eomorphisms such that ⇢(f0) 6= ⇢(f1), the set of
parameters for which f

t

is C1 linearizable has positive Lebesgue measure.

Theorem 6.1. Let [0, 1] 3 t! f
t

be a family of C3 di↵eomorphisms depending
C1 on t such that ⇢(f0) 6= ⇢(f1). Then the set of parameters for which f

t

is C1

linearizable has positive Lebesgue measure.

First we need the following lemma. This lemma states that the rotation
number depends Lipschitz on the perturbation at smoothly linearizable maps.

Lemma 6.1. Assume that t! f
t

is C1 and that h � f
t0 � h�1 = R

↵

where h is
a C1 conjugacy. Then

|⇢(f
t

)� ⇢(f
t0)|

|t� t0|
 ||Dh|| · || @

@t
f

t

||.

Proof. First notice that |⇢(f)� ⇢(R
↵

)|  ||f �R
↵

||. Indeed, let ✏ = ||f �R
↵

||;
then the lift f̂ of f can be chosen such that x +↵� ✏  f̂(x)  x +↵+ ✏ for all
x. Hence

↵� ✏  f̂n(x)� x

n
 ↵+ ✏

and |⇢(f)� ⇢(R
↵

)|  ||f �R
↵

|| follows. Hence

|⇢(f
t

)� ⇢(f
t0)| = |⇢(h � f

t

� h�1)� ⇢(R
↵

)| 

 ||h � f
t

� h�1 �R
↵

||  || @
@t

h � f
t

� h�1||⇥ |t� t0| 

 ||Dh|| · || @
@t

f
t

||⇥ |t� t0|.
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Lemma 6.2. Let f be a C3 di↵eomorphism such that ↵ = ⇢(f) satisfies the
Diophantine condition:

|↵� p

q
| > K

q2+�
for all

p

q
2 Q

where K and � are positive constants. Then f is C1 conjugate to a rotation and
||Dh|| can be estimated from above in terms of || log Df ||, ||Sf || and K and �.

Proof. That there exists a C1 conjugacy is the contents of Theorem 3.1. So we
need to check that an upper-bound of ||Dh|| can be given which only depends
on K, �, || log Df || and ||Sf ||. So let us go through the proof of Theorem 3.1.
The first part of the proof of Theorem 3.1 was to show that f is C1 conjugate
to a rotation if sup log ||Df i|| is bounded. Since h is a C1 and conjugates f to
a rotation, one has

log Dh� log Dh � f = log Df.

Since there exists a point x 2 S1 such that Dh(x) = 1, it follows from the con-
tinuity of Dh and from log Dh � fn(x) = �

P

n

i=0 log Df(f i(x) = � log Dfn(x)
that

|| log Dh||  sup
n

|| log Df i||.

One can easily check that the constants C appearing in Steps 2-4 only depend
on || log Df || and ||Sf ||. Finally the upper-bound obtained for M

n

/m
n

in Step
5 only depends on C, K, and �.

Proof of Theorem 6.1 Fix K > 0 and � > 0 and let D be the set of ↵’s in
(⇢(f0), ⇢(f1)) such that

|↵� p

q
| > K

q2+�
for all

p

q
2 Q.

It is well known that the set D has positive Lebesgue measure, see the exercise
below. Let A = {t 2 (0, 1) ; ⇢(f

t

) 2 D}. Since t! ⇢(f
t

) is continuous, one has
⇢(A) = D. From the previous lemma there exists C1 < 1 such that for each
t 2 A, the C1 conjugacy h

t

between f
t

and a rotation satisfies ||Dh
t

||  C1.
Let C2 = sup || @

@t

f
t

||. From Lemma 6.1 one gets that ⇢ : A 3 t 7! ⇢(f
t

) 2 D has
Lipschitz constant C1 · C2. It follows that

0 < |D| = |⇢(A)|  C1 · C2 · |A|.

(Here |X| a.s.o. denotes the Lebesgue measure of a set X ⇢ S1). It follows that
|A| > 0, and, since for each t 2 A the di↵eomorphism f

t

is C1 linearizable, the
theorem follows.

Exercise 6.1. Let K > 0 and ⌧ > 1 and let

⌦
K,⌧

= {↵ ; |q↵ mod 1| >
K
q⌧

for all q 2 Z}.
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Show that the set of ⌦
K,⌧

has positive Lebesgue measure. Moreover, ⌦
⌧

= [

K>0

⌦
K,⌧

has full Lebesgue measure. (Hint: for r > 0 and for fixed q 2 Z the set
⇢
↵ ; �r  ↵  r, |q↵mod 1| <

K
q⌧

�

has at most Lebesgue measure cqr K

q

1+⌧

. Hence [�r, r] \ ⌦
K,⌧

has at most Lebesgue

measure
P

q2Z cqr K

q

1+⌧

 c0rK. Hence [�r, r] \ ⌦
⌧

has Lebesgue measure zero.)

7 Some Historical Comments and Further Re-

marks

The best reference on circle di↵eomorphism is no doubt M. Herman’s thesis
(1979). Results on ergodic properties of flows without singularities on a torus
can be found in Furstenberg (1961) and also Chapter XVI of Cornfield et al.
(1982). If a torus flow has singularities the situation becomes more complicated.
In one of the simplest cases the return map is a continuous circle map which
is constant on some arcs. This case was first studied by Cherry (1938) and
generalized in Martens et al. (1990). For more on flows on surfaces see for
example Aranson and Grines (1986), Cornfield et al. (1982) and Godbillon
(1983).

The results on the rotation intervals of non-invertible circle homeomorphisms
mentioned in the exercises at the end of Section 1 are due to several people.
For this we refer to Newhouse et al. (1983) (already circulated in 1977 as a
preprint), and for example Bernhardt (1982), Boyland (1985), Chenciner et al.
(1984), Misiurewicz (1986), Barkmeijer (1988) and Alsedà and Mañosas (1990).

Denjoy’s result that C2 di↵eomorphisms without periodic points do not have
wandering intervals is sharp in many ways. Hall (1981) has shown that there
exists a C1 homeomorphism (with one critical point) without periodic points
and which has wandering intervals. Yoccoz (1984b) has shown that analytic
homeomorphisms of the circle without periodic points have no wandering in-
tervals. This last result is known in much greater generality now, see Chapter
IV.

For the proof of the result that any analytic di↵eomorphism which is near
to a rotation and has a ‘good rotation number’ is analytically conjugate to a
rotation, see Arnol’d (1965), (1983). In Moser (1990) the problem of simul-
taneously linearizing commuting di↵eomorphisms is solved when they are near
rotations. The corresponding global problem (when the di↵eomorphisms are
not near rotations) is still open. In Chapter VI we shall study similar rigidity
results for renormalizable interval maps. Here Lanford proved the local version
of the rigidity conjectures of Feigenbaum and later Sullivan proved the global
results.

As we have seen in Section 6, for families of smooth circle di↵eomorphisms
with non-constant rotation number the set of parameter values for which the
rotation number is irrational has positive Lebesgue measure. Later it was shown
that the analogous result is false for circle homeomorphisms with critical points.
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Indeed, in Boyd (1985), families of monotone degree one circle maps, which are
constant on some interval and expanding elsewhere, were considered. It was
shown for these families that the set of parameters corresponding to rational ro-
tation numbers has full measure. This result was greatly generalized by Świa̧tek
(1988), (1989) who proved that for a rather general class of families of maps
the parameter for which the rotation number is rational has again full measure,
see also Veerman (1989), Veerman and Tangerman (1990a) and Tangerman and
Veerman (1991). Moreover, Świa̧tek (1989) shows that the orbit of the critical
point of a critical circle map (a smooth map with some critical points) satisfies
some very specific scaling laws. Khanin (1990) shows that the conjugacy be-
tween a critical circle map and a rotation is definitely not absolutely continuous
if its coe�cients in the continued fraction expansion of its rotation number are
unbounded. Moreover, Herman and Yoccoz have shown that the conjugacy be-
tween two analytic homeomorphisms with a unique critical point and the same
rotation numbers is quasisymmmetric, see also Świa̧tek (1990). Extending ideas
which will be discussed in the last chapter, Faria (1992), has obtained an impor-
tant result which leads to rigidity for these critical circle maps. We will come
back to this in the last chapter.

There are several numerical results about the sizes of the rational regions
in Arnol’d tongues. For some numerically observed scalings of the sizes of the
‘steps’ {↵ ; ⇢(R

↵

� f
a

) is rational}, see for example Cvitanović and Söderberg
(1988). In this paper it is also conjectured that if p/q and p0/q0 are Farey
neighbours then the largest step between the two steps which correspond to p/q
and p0/q0 is the step corresponding to the rotation number (p + p0)/(q + q0).
This last number is the rational number between p/q and p0/q0 with the largest
denominator (and the number following these rationals in the Farey tree). Some
of these numerical observations have recently been confirmed for families of
di↵eomorphisms and C1 homeomorphisms of the circle by Graczyk (1991a),
Jonker (1991) and Graczyk and Świa̧tek (1991). Moreover, let f

a

be a nice
one-parameter family of circle di↵eomorphisms. The set of parameter values a
for which f

a

has a rotation number which is either rational or satisfies some
Diophantine condition has Lebesgue measure zero, see Tsujii (1992e). Graczyk
(1992) has strengthened this result and shown that this set even has Hausdor↵
measure zero.



Chapter II.

The Combinatorics of
Endomorphisms

In this chapter we will discuss endomorphisms of the circle and of the interval
from a combinatorial point of view. The aim is to develop an analogue to the
topological description of circle homeomorphisms given in Section I.1. As in
that section, the main ingredient here is symbolic dynamics and the structure
to be considered is the order structure of the interval or of the circle.

In Section 1, we will show that non-invertible maps have a much richer
dynamics than invertible maps, by proving Sarkovskii’s remarkable result that
the existence of some periodic points implies the existence of many others. For
example, if such a map has a periodic orbit of period three then it has periodic
orbits of each period. In Section 2, we will describe the dynamics of the simplest
non-invertible dynamical systems: covering maps of the circle. It will be proven
that any covering map of the circle of degree d > 1 is combinatorially equivalent
to a unique model, namely, the expanding map z 7! zd. In Section 3, we will
develop the combinatorial theory of Milnor and Thurston (1977) for maps with
a finite number of turning points (a point c is called a turning point of an interval
map f : I ! I if the map has a local extremum at c and if c is in the interior of
I). In this theory, a point x is coded by associating to it a sequence of symbols
i
n

(x), n = 0, 1, . . . . Here i
n

(x) is an element from a finite list of symbols and
depends only on the position of fn(x) in relationship to the position of the
turning points of f . The main result states that if the forward orbits of the
critical points of two endomorphisms are ordered in the same way then the
endomorphisms are combinatorially equivalent. This notion of combinatorial
equivalence will be defined in Section 3. We use this notion here because if two
endomorphisms are combinatorially equivalent then not only their kneading
invariants are the same but also the dynamics of points attracted to periodic
points is ‘the same’. In other words, up to some non-essential features, such
endomorphisms are conjugate. In Section 4, we will consider families of maps
f

µ

with l turning points and show when such a family is full. Such a family is full
if given a map g with l turning points, there exists a parameter µ such that f

µ

77
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and g are ‘essentially’ combinatorially equivalent. It turns out that the fullness
of families can be proved by solving a certain fixed point problem (using what
we call the Thurston map). In Section 5, we will apply some of these results to
families and give a first introduction to the theory of renormalization of maps.

Using the results of Section 3 and some important analytical results of Singer
and Guckenheimer on the dynamics of quadratic maps, in Section 6 we will prove
that any unimodal map is semi-conjugate to a quadratic map. Therefore the
quadratic family f

µ

(x) = µx(1�x), µ 2 [0, 4], plays the same role in the theory
of unimodal maps as the rotations for circle di↵eomorphisms. In fact, quoting
results from Chapter IV on the non-existence of wandering intervals, we prove
a corresponding result for families of multimodal maps.

In Section 7, we will introduce an important invariant, the topological en-
tropy, which is a measure of the dynamical complexity of a map and relate
this invariant with the growth of the ‘lap number’ of interval maps. Sections
8 and 9 contain a further development of the Milnor-Thurston theory. Using
the combinatorial tools of Section 3 it will be shown that any interval map with
positive topological entropy is semi-conjugate to a piecewise linear map with
constant slope and the same topological entropy and also that the topological
entropy depends continuously on the map. Finally, in Section 10, we will deal
again with the quadratic family Q

µ

and show that the kneading invariant, and
therefore the topological entropy, of Q

µ

increases with the parameter µ.
Only Sections 2 to 6 are relevant to the remainder of the book; the reader

could skip the other sections.

1 The Theorem of Sarkovskii

As we have seen in the last chapter, the existence of a periodic point for an in-
vertible one-dimensional dynamical system makes the dynamics extremely sim-
ple. We will see now that this is not true for non-invertible maps: unlike the
case of di↵eomorphisms of the circle, periodic points of di↵erent period may
coexist for non-invertible maps. In fact, as a corollary of the theorem we will
prove in this section that the existence of a periodic point of period three for a
continuous interval map implies the existence of periodic points of every period.

The result below was proved by Sarkovskii in 1964, and has since been
rediscovered by several authors.

Definition. Consider the following ordering on the set of natural numbers,
called the Sarkovskii ordering:

3 � 5 � 7 � · · · � 2n + 1 � · · · � 6 � 10 � 14 � · · · � 2⇥ (2n + 1) � · · ·

� 2m ⇥ 3 � 2m ⇥ 5 � 2m ⇥ 7 � · · · � 2m ⇥ (2n + 1) � · · ·

� · · · � 2n � · · · � 2 � 1 .
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Theorem 1.1. (Sarkovskii)
Let f : [0, 1] ! [0, 1] be a continuous map having a periodic point of period

n. If n � m in the Sarkovskii ordering then f has a periodic point of period m.

In the proof we will use some ingredients of symbolic dynamics and we will
follow the exposition of Block et al. (1980).

Lemma 1.1. Let f : I ! I be a continuous map where I is an interval.

a) If J ⇢ I is an interval such that f(J) � J then f has a fixed point in the
closure of J .

b) If {I
i

⇢ I ; i = 0, 1, 2, . . . } is a family of closed intervals such that f(I
i

) �
I
i+1 then there exist a nested and decreasing sequence of intervals J

n

in I0 such
that fn(J

n

) = I
n

. In particular, there exists x 2 I0 such that f i(x) 2 I
i

for
every i � 0.

Proof. a) Let a < b be the boundary points of J . Since f(J) � J , there
exist z, w 2 J such that f(z)  a and f(w) � b. So if g(x) = f(x) � x then
g(z) = f(z) � z  f(z) � a  0 and g(w) � 0. By the Intermediate Value
Theorem, there exists x in the interval bounded by z and w such that g(x) = 0
and this proves a).

b) As f(I0) � I1, there exists a closed interval J1 ⇢ I0 such that f(J1) = I1.
Suppose, by induction, that there exist closed intervals J1 � J2 � · · · � J

n

such that f i(J
i

) = I
i

for every 1  i  n. Since f(I
n

) � I
n+1, there exists

a closed interval Ĩ
n

⇢ I
n

such that f(Ĩ
n

) = I
n+1. On the other hand, as

fn(J
n

) = I
n

� Ĩ
n

, there exists an interval J
n+1 ⇢ J

n

such that fn(J
n+1) = Ĩ

n

.
Hence fn+1(J

n+1) = f(Ĩ
n

) = I
n+1. Since the intervals J

i

lie nested, there exists
x 2 \1

n=0Jn

and, since fn(J
n

) = I
n

for every n � 0, each such x satisfies the
required properties.

Definition. We say that a collection of closed subintervals {I
k

} of the interval
I forms a partition if the interior of the intervals I

k

are pairwise disjoint. Given
a partition, the Markov graph of f : I ! I associated to this partition is the
graph whose vertices are the intervals of the partition and the edges are the
pairs (I

i

, I
k

) such that f(I
i

) � I
k

. Let us denote such an edge by I
i

! I
k

. (Of
course, for some partitions the number of edges might be zero.)

It follows from the previous lemma that every path in the Markov graph
of a partition, is associated to a point whose itinerary is exactly the sequence
of vertices in this path. If the path is a closed path, i.e., a path of the type
I
i0 ! I

i1 ! · · · ! I
i

n�1 ! I
i0 then there exists a periodic point x 2 I

i0 such
that f j(x) 2 I

i

j

and fn(x) = x. However, even if the vertices I
i0 , . . . Ii

n�1

are distinct, the period of x may be smaller than n because the intervals of the
partition are not disjoint (only the interior of the intervals are pairwise disjoint).
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Example. Let 0 < p1 < p2 < p3 < 1. It is easy to construct a continuous map
f : [0, 1]! [0, 1] such that f(p1) = p2, f(p2) = p3 and f(p3) = p1. Indeed, it is
enough to connect the points (p1, p2), (p2, p3), (p3, p1) by a curve in the square
[0, 1] ⇥ [0, 1] transverse to each vertical line, see Figure 1.1. This curve is the
graph of a function f : [0, 1]! [0, 1].
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Fig. 1.1: A map f : [0, 1] ! [0, 1] hav-

ing a periodic point of period three.
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Fig. 1.2: The Markov graph associ-

ated to a periodic point of period three.

Consider the partition I1 = [p2, p3], I2 = [p1, p2]. Since f(I1) � I1 [ I2

and f(I2) � I1, the Markov graph of this partition has a subgraph having two
vertices, an edge connecting I1 to itself, an edge connecting I1 to I2 and an edge
connecting I2 to I1, as in Figure 1.2 (notice that the Markov graph may contain
another edge if f(I2) � I2). Let us consider the closed path

I1 ! I1 ! I1 · · ·! I1 ! I2 ! I1

with m > 3 edges. By Statement b) of Lemma 1.1, there exists an interval J ⇢ I1

such that f i(J) ⇢ I1 for 0  i < m� 1, fm�1(J) ⇢ I2 and fm(J) = I1. Hence
because J ⇢ I1 and using Statement a) of Lemma 1.1, there exists x 2 J ⇢ I1

such that fm(x) = x. Clearly f i(x) 2 I1 if 0  i < m � 1 and fm�1(x) 2 I2.
We claim that x is a periodic point of period m. So we claim that there is
no integer 0 < i < m with f i(x) = x. Indeed, if f i(x) = x with 0 < i < m
then fm�1(x) = f i�1(x) 2 I1 because x = fm(x). Thus fm�1(x) 2 I1 \ I2 =
{p2} and therefore x = f(fm�1(x)) = f(p2) = p3. This is impossible because
f(p3) = p1 /2 I1. Therefore f has a periodic point of every period > 3. By
considering the path I2 ! I1 ! I2, we get also a periodic point of period two.
With the same argument, we prove that a continuous map f : [0, 1] ! [0, 1]
such that f(p1) = p3, f(p3) = p2 and f(p2) = p1 also has periodic points of all
periods. Thus we have shown that Theorem 1.1 holds for n = 3. From part b)
of Lemma 1.1, we get also that, in this example, the itinerary of a point x (i.e.,
the sequence of intervals I

i(1)Ii(2)Ii(3) . . . such that fk(x) 2 I
i(k) for k � 0) may

be quite arbitrary. In fact, given a list (n1, n2, n3 . . . ) of positive integers, there
exists a point whose itinerary is equal to the list (I1)n1I2(I1)n2I2(I1)n3I2 . . . ,
where (I1)n

j denotes the list made of n
j

symbols equal to I1.
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Let us now come to the general case. Let x be a periodic point of period n
of a continuous map f : I ! I. Let x0 < x1 < · · · < x

n�1 be the points of the
orbit of x defining a partition of the interval J = [x0, xn�1] into n � 1 closed
intervals. We will describe some of the properties of the Markov graph of f
associated to this partition.

Lemma 1.2. There exists a vertex I1 = [x
a

, x
a+1] of the Markov graph of f

such that f(I1) � I1 and, in fact, f(x
a+1)  x

a

< x
a+1  f(x

a

).

Proof. Since O
f

(x) = {x0, . . . , xn�1} 2 [x0, xn�1], we have f(x0) > x0 and
f(x

n�1) < x
n�1. Thus there exists an integer 0 < a < n� 1 such that

x
a

= max{x
i

; f(x
i

) > x
i

}.

Take I1 = [x
a

, x
a+1]. Since f(x

a

) � x
a+1, f(x

a+1)  x
a

and f(I1) is an interval,
we have that f(I1) � I1.

From now one let I1 be as in Lemma 1.2.

Lemma 1.3. Let I1 be a vertex of the Markov graph such that f(I1) � I1. Then
for any vertex K of the Markov graph there exists a path connecting I1 to K.

Proof. Let V
i

be the set of vertices which are endpoints of some path of size i
starting at I1. Thus K 0 2 V

i

if there exists a path I1 ! K2 ! · · · ! K
i

with
K

i

= K 0. Hence I1 ! I1 ! K2 ! · · · ! K
i

is a path of size i + 1 connecting
I1 to K 0. Therefore V

i

⇢ V
i+1. Let U

i

be the set of points contained in some
K 0 2 V

i

, i.e., U
i

= [{K 0 ; K 0 2 V
i

}. We have that U
i

⇢ U
i+1. We claim that if

there exists K 0 2 V
i

such that f(@K 0) /2 U
i

then V
i+1 6= V

i

. Indeed, if f(z) /2 U
i

for some z 2 @K 0 then f(K 0) contains a vertex (i.e., an interval) having f(z) as
a boundary point and this vertex is not contained in V

i

. This proves the claim.
Since the number of vertices is equal to n� 1, there exists an integer i  n� 1
such that V

i

= V
i+1. From the above claim we conclude that U

i

\ O
f

(x) is
invariant by f . Therefore U

i

= [x0, xn

] and V
i

is the set of all vertices.

Lemma 1.4. Suppose there is no vertex, distinct from I1, that can be connected
to I1 by a path in the Markov graph. Then f maps the elements of the orbit of
x that are on the left of the interior of I1 into the elements that are on the right
and vice-versa. Furthermore, in this case the period of x is even and f has a
periodic point of period two.

Proof. If I1 = [x
a

, x
a+1] is as in Lemma 1.2 then f(x

a

) � x
a+1 and f(x

a+1) 
x

a

. If there exists x
i

< x
a

such that f(x
i

)  x
a

then, taking x
b

= max{x
i

<
x

a

; f(x
i

)  x
a

}, we have that f(x
b

)  x
a

and f(x
b+1) � x

a+1. Hence
f([x

b

, x
b+1]) � I1 which is a contradiction. Therefore for every x

i

< x
a

, we have
that f(x

i

) � x
a+1. Similarly, f(x

i

)  x
a

for every x
i

� x
a+1. Hence the period

of x is even. Let J0 = [x0, xa

] and J1 = [x
a+1, xn�1]. Thus f(J0) � J1 and
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f(J1) � J0. Therefore there exists z 2 J0 such that f2(z) = z and f(z) 2 J1.
Therefore z is a periodic point of period two.

Lemma 1.5. Assume f has periodic points with odd period. Let n > 1 be
the smallest such period and x be a periodic point of period n. Then the
corresponding Markov graph contains the following paths (see Figure 1.3): i)
I1 ! I2 ! · · · ! I

n�1 ! I1 ! I1. ii) I
n�1 ! I2i+1 for every i such that

2i + 1 < n. Furthermore, there is no edge of the type I
j

! I
j+k

if k > 1.

Proof. By Lemmas 1.2 - 1.4, there exist vertices I1, . . . , Ik

such that f(I
k

) � I1

and such that there exists a path I1 ! I2 ! · · · ! I
k

. Let k > 1 be the
smallest integer such that there exists a path I1 ! · · · ! I

k

! I1. We claim
that k = n � 1. Indeed, if k < n � 1 we conclude, by considering the path
I1 ! · · · ! I

k

! I1 (if k is odd) or the path I1 ! · · · ! I
k

! I1 ! I1 (if k
is even), the existence of a periodic point of odd period smaller than n. This
contradicts the hypothesis. By the minimality of n� 1, there is no edge of the
type I

j

! I
j+k

if k > 1, because, otherwise, we would get a shorter closed path
connecting I1 to itself. Let I1 = [x

a

, x
a+1]. From Lemma 1.2, f(x

a

) � x
a+1 and

f(x
a+1)  x

a

. Since x is not a periodic point of period two, we must have either
f(x

a+1) < x
a

or f(x
a

) > x
a+1. Suppose the first inequality holds (in the other

case the argument is similar). Then f(x
a

) = x
a+1 and f(x

a+1) = x
a�1 since,

otherwise, f(I1) would contain not only I1 and I2 but also another vertex and
this would contradict the property we have proved. Hence I2 = [x

a�1, xa

]: so I2

is the first interval of the partition which is to the left of I1. Since f(x
a

) = x
a+1

and f(x
a�1) � x

a+1, we must have f(x
a�1) = x

a+2 since otherwise f(I2) would
contain more than one vertex, which again contradicts the above property. Thus
I3 = [x

a+1, xa+2] and therefore I3 is the first interval of the partition which is on
the right of I1. Using this argument repeatedly, we get, by induction, that the
intervals with even indices are to the left of I1 whereas the intervals with odd
indices are to the right and that these intervals are ordered in the interval in
the following way: I

n�1, . . . , I2, I1, I3, . . . , In�2. Since for i = 1, . . . , n�3
2 , f(I2i

)
contains I2i+1 and no other vertex, f(x1) = x

n�1 and therefore f(I
n�1) 3 x

n�1.
On the other hand, since f(I

n�1) contains I1, we get that f(I
n�1) contains

[x
a

, x
n�1]. Therefore f(I

n�1) contains every vertex which is to the right of I1

which, as we saw, are the ones with odd index.

Corollary 1.1. If f has a periodic point of odd period n then f has periodic
points of all periods larger than n as well as all even period smaller than n.

Proof. If m is an integer larger than n, by looking at the path of length m:
I1 ! · · · ! I1 ! . . . I

n�1 ! I1 we conclude as before, using Lemma 1.1, the
existence of a periodic point of period m. If m = 2i < n, the path I

n�1 !
I
n�2i

! I
n�2i+1 ! · · ·! I

n�1 gives a periodic point of period m.

Lemma 1.6. If f has a periodic point of even period then f has a periodic point
of period two.
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Fig. 1.3: The Markov graph associated to a periodic point of odd period.

Proof. Let n � 2 be the smallest integer such that f has a periodic point of
period n. Suppose, by contradiction, that n > 2. By the corollary of Lemma
1.5, n is even since, otherwise, f would have a periodic point of period two. By
Lemma 1.4, there exists a vertex I

k

such that f(I
k

) � I1 because f does not
have periodic points of period two. As before, let k be the smallest integer such
that the Markov graph has a path I1 ! I2 ! · · · ! I

k

! I1. Since f does
not have periodic points of period smaller than n, we have, as in the proof of
Lemma 1.5, that k = n � 1 and that there is no edge of the type I

i

! I
i+j

if
j > 1. Using the same arguments as in the proof of Lemma 1.5, we conclude
that there exist edges connecting I

n�1 to all vertices with even indices. Hence
the path I

n�1 ! I
n�2 ! I

n�1 gives, via Lemma 1.1, a periodic point of period
two and the lemma is proved.

Proof of Theorem 1.1
1) Suppose that f has a periodic point of period n = 2k. If n � m then

m = 2l with l < k. If l = 0 the result is obvious. If l 6= 0 then g = f
m

2 has
a periodic point of period 2k�l+1. Therefore, by Lemma 1.6, g has a periodic
point of period two. This is a periodic point of period m for f , and the theorem
is proved in this case.

2) Let n = p2k where p is an odd number and k � 0. If n � m we have
three cases to consider: a) m = q2k, with q > p odd; b) m = q2k with q even;
c) m = 2l with l  k. In the cases a) and b), g = f2k

has a periodic point
of period odd equal to p. Since q > p, in case a), or q is even in case b), the
corollary of Lemma 1.5, gives a periodic point of period q for g. It is easy to see
that this point is a periodic point of precisely period m for f . In case c), we get
from case b) that f has a periodic point of period 2k+1. Since l  k, it follows
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from 1) that f has a periodic point of period m. This completes the proof of
the theorem.

Example. Figure 1.4 represents the graph of a map f : [0, 1] ! [0, 1] with a
periodic point of period five and the corresponding Markov graph. It is easy to
see that the map we have drawn does not have a periodic point of period 3. In
the same way, we can construct maps having a periodic point of period n but
no periodic point whose period is larger than n with respect to the Sarkovskii
ordering on N.
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Fig. 1.4: A map f : [0, 1] ! [0, 1] with a periodic point of period 5 and the associated

Markov graph.

Exercise 1.1. Let f : S1

! S1 be a continuous map with a periodic orbit of period

3. Show that if a lift F : R ! R of f has also a periodic orbit of period 3, then f has

periodic orbits of every period. Show that this last condition on the lift F cannot be

dropped.

Exercise 1.2. Show that the map Q
µ

: [0, 1] ! [0, 1] defined by Q
µ

(x) = µx(1 � x)

has periodic orbits of each period for every µ su�ciently close to 4. (Hint: show that

these maps have a periodic orbit of period 3.)

Exercise 1.3. Show that if a continuous map f : [0, 1] ! [0, 1] has a periodic point

p of period 4 such that p < f(p) < f2(p) < f3(p), then f has periodic orbits of each

period. (Hint: show for example that such a map has also a periodic point of period

3 using the ideas of this section.)

Exercise 1.4. Show that there exist parameters µ 2 [0, 4] such that Q
µ

(x) = µx(1�x)

has periodic orbits of periods 1, 2 and 4 and no other periodic orbits.

2 Covering Maps of the Circle as Dynamical

Systems

In this section we will consider covering maps f : S1 ! S1 of degree d with
|d| � 2. By this we mean that f is a surjective local homeomorphism such that
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the pre-image of each point consists of exactly |d| points. If d > 0 then f is
orientation preserving and if d < 0 it is orientation reversing. If we consider a
lift f̂ : R! R of f to the universal covering space, then f̂ is a homeomorphism
such that f̂(x + 1) = f(x) + d for all x 2 R. Conversely any homeomorphism
of the real line with this property is a lift of some circle covering map. In
particular, for each d the map ĝ

d

: R ! R, defined by ĝ
d

(x) = d · x is a lift of
a covering map g

d

: S1 ! S1. Our goal is to prove the following result of Shub
(1969): any covering map of degree d is semi-conjugate to g

d

. This result plays
the same role in the dynamics of covering maps as the theorem of Poincaré in
the dynamics of homeomorphisms as described in Section I.1.

The covering maps g
d

satisfy the condition |Dg
d

(x)| = |d| > 1. This is a
special case of the following situation.

Definition. We say that a C1 map f : S1 ! S1 is expanding if there exist
constants C > 0 and � > 1 such that

|Dfn(x)| > C�n

for all n 2 N and all x 2 S1.

It is not hard to see that every expanding map f : S1 ! S1 is a covering
map of degree d with |d| bigger than one.

Theorem 2.1. (Shub) Let f : S1 ! S1 be an expanding C1 map of degree d.
If g : S1 ! S1 is a covering map of degree d, then there exists a (not necessarily
strictly) monotone and surjective map h : S1 ! S1 such that h � g = f � h.

We should emphasize that the conjugacy is not unique in general: if we take
f(z) = 3z mod 1 and h(z) = z+0.5 mod 1 then h�f = f �h. Also notice that,
in general, h is not a conjugacy. In fact, if x is a fixed point of f and � : S1 ! S1

is a di↵eomorphism such that �(x) = x and |D�(x)| < |Df(x)|�1 then x is an
attracting fixed point of g = f � �. (That x is an attracting fixed point means
that the set B

g

(x) = {y ; gn(y) ! x as n ! 1} contains a neighbourhood of
x.) Since f has no attracting fixed point, it follows that g is not conjugate
to f : the semi-conjugacy of Theorem 2.1 maps B

g

(x) onto the full orbit of a
fixed point of f . However, if g is also an expanding map then h is a conjugacy.
In fact, assume by contradiction that the preimage under h of a point z is an
interval I. If z is not a periodic point of f then the intervals {gn(I), n 2 N}
are pairwise disjoint since h(gn(I)) = fn(z) and if z is periodic then gk(I) = I
where k is the period of z. But both these situations cannot occur because g is
expanding. Therefore we get the following consequence of the above theorem.

Corollary 2.1. Let Endr(S1), r � 1, be the space of the Cr endomorphisms of
the circle endowed with the Cr topology. Then all expanding maps of Endr(S1)
are structurally stable (i.e., any two nearby expanding maps are conjugate).
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Proof of Theorem 2.1: The idea of the proof is the following pullback ar-
gument. We start with a homeomorphism h0 : S1 ! S1; since both g and f
have degree d, we can pullback h0 to a homeomorphism h1, i.e, f � h1 = h0 � g.
By induction we construct a sequence h

n

of homeomorphisms such that h
n

is
a pullback of h

n�1. Next we prove that the sequence converges to a monotone
map h1 which is a semiconjugacy between f and g.

It is more convenient to work in the universal covering. So, let f̂ : R ! R
and ĝ : R! R be lifts of f and g. Then f̂ and ĝ are di↵eomorphisms and since
f and g are expanding there are constants K <1 and ⇢ < 1 such that

|Df̂�n(x)|, |Dĝ�n(x)|  K · ⇢n

for each n � 0 and each x 2 R. Let E be the space of continuous monotone
maps � : R ! R such that �(x + 1) = �(x) + 1. In E we consider the uniform
metric: d(�1,�2) = sup

x

|�1(x) � �2(x)| (the supremum exists because � � Id
is periodic). Then E is a complete metric space and each function in E is a lift
of a continuous map of the circle. For each � 2 E let T� = f̂�1 � � � ĝ. Clearly,
T� 2 E . To prove the theorem we will show that T is a contraction, in the sense
that

d(Tn�1, T
n�2)  K · ⇢n · d(�1,�2).

Indeed,

|f̂�n(�1(ĝn(x)))� f̂�n(�2(ĝn(x)))|  K · ⇢n · |�1(ĝn(x))� �2(ĝn(x)|
 K · ⇢n · d(�1,�2).

It follows that T has a unique fixed point ĥ which means that f̂ � ĥ = ĥ � ĝ. Of
course ĥ is a lift of a monotone map h and f � h = h � g.

Remarks. 1. The same proof as above gives a similar theorem for expanding
maps of compact manifolds of higher dimension, see Shub (1969). 2. Let f and

g be C2 covering maps, f being expanding and g a local C2 di↵eomorphism.
If h is the semi-conjugacy given by the theorem and I = h�1(z) is an interval
then I is eventually periodic, namely, there are integers n and p > 0 such that
gp(gn(I)) = gn(I). Indeed, either z is an eventually periodic point of f or it is
not. In the first case fp(fn(z)) = fn(z) for some integers n and p > 0 and this
implies gp(gn(I)) = gn(I) and therefore our assertion. In the second case all
the points z, f(z), . . . are distinct and, since f is expanding, the sequence fk(z)
cannot tend to a periodic orbit. It follows that the intervals gk(I) = h�1(fk(z)),
k 2 N are pairwise disjoint and that gk(I) also does not tend to a periodic orbit.
Hence I is a wandering interval of g. But, as we have proved in Corollary I of
Theorem I.2.2, a C2 covering map cannot have a wandering interval. It follows
that the second alternative cannot occur. Thus the assertion is proved. If J is a
periodic interval for g, i.e., g is the pre-image of a periodic point of f by h, then
gp maps J di↵eomorphically onto itself. Hence every point in J is either periodic
or asymptotic to a periodic orbit. Therefore the dynamics of g is obtained from
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the dynamics of f by blowing up the orbit (both positive and negative) of
some periodic points and inserting intervals. In Chapter IV we will prove that
the number of (maximal) periodic intervals is finite. 3. Later on, in Exercise

III.2.4, we will see that the structurally stable covering maps form an open and
dense set in the space of all covering maps. 4. In Shub and Sullivan (1985)

it is proved that if the conjugacy h from Theorem 2.1 between two expanding
C2 maps is absolutely continuous (in both directions, i.e., for each measurable
set A its image h(A) has Lebesgue measure zero if and only if A has zero
Lebesgue measure) then it is C1. Clearly, if h is C1 then Dh�Dfn = Dgn �Dh
and therefore eigenvalues of corresponding periodic points of f and g coincide.
Therefore in general such conjugacies are certainly not absolutely continuous.

Exercise 2.1. Prove that for an expanding map, the periodic points are dense; each

backward orbit is dense and there exist points whose forward orbits are dense. From

this and from the previous theorem it easily follows that if a C2 covering map has

a periodic interval then the closure of the complement of the full orbit of all these

periodic intervals is an invariant Cantor set.

Exercise 2.2. Show that each expanding map of the circle has periodic orbits of each

period. (Hint: use the Markov graphs from the proof of the theorem of Sarkovskii to

construct the periodic orbits.)

Exercise 2.3. Show that the conjugacy h from Theorem 2.1 is quasisymmetric pro-

vided f and g are expanding C1+↵ maps with ↵ 2 (0, 1). This means that there exists

C < 1 such that | log Df(x)� log Df(y)|  C|x� y|↵ for all x 6= y and similarly for

g. (Together with the result of Shub and Sullivan mentioned above, this shows that

a quasisymmetric homeomorphism is not necessarily absolutely continuous.) We note

that this contrasts with the situation for circle di↵eomorphisms see Exercise I.5.2. In

Exercise III.6.2 a more general result is proved. Later on, in Chapter VI, we shall

see why quasisymmetry is such a useful concept. (Hint: use the ‘Naive Distortion

Lemma’, see Lemma I.2.1. More precisely, assume that there exists C > 0 and � > 1

such that |Dfn(x)|, |Dgn(x)| � C�n for each n > 0 and let h be the conjugacy be-

tween f and g with h � g = f � h. Take two intervals I
1

and I
2

in S1 with a common

endpoint such that |I
1

| = |I
2

|. Since g is expanding, there exists n > 0 such that

gn+1(I
1

[ I
2

) � S1. Let n be the smallest integer with this property. Then there

exists K
1

< 1 such that
P

n�1

i=0

|gi(I
1

[ I
2

)| < K
1

. It follows from Lemma 2.1 of

Section I.2 that Dgn has bounded distortion on I
1

[ I
2

, i.e., there exists K < 1

such that |Dgn(x)|/|Dgn(y)| < K for each x, y 2 I
1

[ I
2

. Hence |gn

(I1)|
|gn

(I2)| < K. Fur-

thermore, from the definition of n the length of each of these two intervals is of the

order of |S1

|, because in one extra iterate these intervals overlap the circle. There-

fore by the uniform continuity of h, there exists a universal constant K0 such that
|h�g

n

(I1)|
|h�g

n

(I2)| < K0. Similarly one has |Dfn(x)|/|Dfn(y)| < K for each x, y 2 h(I
1

[ I
2

).

This and f�n

� h � gn = h implies that |h(I1)|
|h(I2)|  K · K0 and therefore that h is

quasisymmetric.)
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3 The Kneading Theory and Combinatorial Equiv-

alence

One of the main questions in the field of dynamical systems is whether two
systems are ‘the same’. Of course, there are many equivalence relations. In
this section we shall introduce the one based on kneading invariants and the
slightly stronger one of combinatorial equivalence. We will describe a machin-
ery which can be used to solve this question for interval maps. This will be done
through the combinatorial theory developed by Milnor and Thurston (1977) for
piecewise monotone, continuous maps of the interval. Parts of this theory date
back to Parry (1964) and Metropolis et al. (1973). This theory is the analogue
of the Poincaré theory for homeomorphisms of the circle and states that the
combinatorial type of such a map is completely determined by the orbits of its
turning points. The main ingredient is the use of symbolic dynamics. In the
previous chapter we associated to each circle homeomorphism a rotation num-
ber. Because the maps in this chapter are not order preserving anymore, the
situation is more complicated now. Therefore we shall define some sequences of
symbols and show that these sequences completely determine the combinatorial
type of such maps. See also Parry (1964), Hofbauer (1981) and Hofbauer and
Keller (1982) for the symbolic dynamics of maps that may have some disconti-
nuities. In Section 3.a we shall give some examples and in Section 3.b we will
describe a tool, ‘the Hofbauer tower construction’ which can be used to give a
more graphical description of the orbits of the turning points.

Definition. Let I be the compact interval [0, 1] and f : I ! I be a piecewise
monotone continuous map. This means that f is continuous and that f has
a finite number of turning points, i.e., points in the interior of [0, 1] where f
has a local extremum. Such a map is called l-modal if f has precisely l turning
points and if f(@I) ⇢ @I. More precisely, we assume that f has local extrema
at 0 < c1 < · · · < c

l

< 1 and that f is strictly monotone in each of the l + 1
intervals I1 = [0, c1), I2 = (c1, c2), . . . , Il+1 = (c

l

, 1]. In particular, we say that f
is unimodal if f(@I) ⇢ @I and if f has precisely one turning point c. There is no
loss of generality in the assumption that f(@I) ⇢ @I since any endomorphism
of a compact interval can be extended to a bigger interval so that the boundary
of the larger interval is mapped into itself.

Often one says that two maps f, g : I ! I define ‘the same’ dynamical
system if they are identical up to coordinate change. This means that there is
a homeomorphism h : I ! I such that

I
h����! I

f

?

?

y

?

?

y

g

I
h����! I

commutes. In this case h(fn(x)) = gn(h(x)) so h maps orbits of f onto orbits
of g and we say that f and g are topologically conjugate or simply conjugate.
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Often two interval maps share many dynamical properties even though they are
not quite conjugate. We will show that this happens if two maps f and g ‘fold’
the interval in the same way. In Figure 3.1 it is shown that – in general – two
di↵erent maps fold the interval in completely di↵erent ways.
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Fig. 3.1: A map f : [0, 1] ! [0, 1] can be represented by a graph but also by a folding

map. On the left the folding of [0, 1] under f3

a

is shown for a = 2 and on the right

for a = 4 where f
a

(x) = ax(1 � x). The segment [0, 1] is embedded in the square

[0, 1]⇥ [0, 1] as shown and then projected into itself.

Definition. We say that two l-modal maps f, g : I ! I with turning points
c1 < · · · < c

l

respectively c̃1 < · · · < c̃
l

are combinatorially equivalent if there
exists an order preserving bijection h such that

(3.1)

S

l

i=1

S

n2Z fn(c
i

) h����!
S

l

i=1

S

n2Z gn(c̃
i

)

f

?

?

y

?

?

y

g

S

l

i=1

S

n2Z fn(c
i

) h����!
S

l

i=1

S

n2Z gn(c̃
i

)

commutes and h(c
i

) = c̃
i

for i = 1, . . . , l. The map h is called the combinatorial
equivalence between f and g.

We introduce the notion of combinatorial equivalence because it is very close
to the usual conjugacy relationship, as will become clear in Theorem 3.1 and its
corollary. For those who are already familiar with kneading theory we should
remark that two maps without periodic attractors and without wandering inter-
vals are combinatorially equivalent if and only if they have the same kneading
invariants (we shall return to this in Theorem 3.2 below). Moreover, if two maps
are combinatorially equivalent then their kneading invariants are the same. Be-
cause the preimages of turning points are the places where iterates of the map
are folded and forward images of turning points determine where these ‘fold-
points’ are mapped, two maps f and g are combinatorially equivalent if and only
if the interval I is folded by fn and gn in the same way for all n 2 N, see Figure
3.1. Below, in Theorem 3.1, we shall see that only the forward iterates of the
turning points really matter. Let us analyze this definition in more detail and
relate it to the notion of conjugacy. For this we need to introduce the concepts
of ‘homterval’, ‘basin’ and ‘wandering interval’.

Definition. Let us define a homterval to be an interval on which fn is monotone
for all n � 0.
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What we want to explain now is that homtervals do not carry too much
interesting information. Indeed, homtervals are related to wandering intervals
and attracting periodic orbits. Let us first define these notions.

Definition. An interval J is wandering if all its iterates J, f(J), f2(J), . . . are
disjoint and if (fn(J))

n�0 does not tend to a periodic orbit.

As we will show later, ‘smooth’ maps do not have wandering intervals. The
reason for the second condition in the above definition, is that there are clearly
many intervals whose forward orbit consists of disjoint intervals tending to a
periodic orbit (one can show that in this case the limiting periodic orbit is
attracting).

Definition. Let O(p) be a periodic orbit. This orbit is called attracting if

B(p) = {x ; fk(x)! O(p) as k !1}

contains an open set. The set B(p) is called the basin of O(p). The immediate
basin B0(p) of O(p) is the union of the components of B(p) which contain points
from O(p). If B0(p) is a neighbourhood of O(p) then this orbit is called a two-
sided attractor and otherwise a one-sided attractor. For later use we will denote
by B(f) the union of the basins of periodic attracting orbits and by B0(f) the
union of the immediate basins of periodic attractors.

Lemma 3.1. Let J be a homterval of f : I ! I. Then there are two possibilities:

a) J is a wandering interval;

b) every point in J is contained in the basin of a periodic orbit: some iterate
of J is mapped into an interval L such that fp maps L monotonically into
itself for some p 2 N.

Proof. Suppose that not all the intervals J, f(J), . . . are disjoint. Then there
exist integers n � 0, p > 0 such that the interiors of fn(J) and fn+p(J) have a
non-empty intersection. Hence, for all k � 0, fn+kp(J) and fn+(k+1)p(J) also
intersect and so the closure L of [

k�0fn+kp(J) is an interval and fp maps L
homeomorphically into itself. So points of J are eventually mapped into fixed
points of fp|L or iterate to some fixed point of fp|L.

Remarks. 1. In Chapter IV we shall show that maps f which satisfy some mild
smoothness conditions do not have wandering intervals. 2. If J is a connected

component of the complement of
S

l

i=1

S

n2Z fn(c
i

) then there exists no n 2 N
for which fn(J) contains a turning point and therefore fn is monotone on J
for all n 2 N. So a combinatorial equivalence is defined on the complement of
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homtervals. In particular, a combinatorial equivalence defines an order preserv-
ing surjective ‘map’ h : I ! I with the property that the image of a point is
either again a unique point or a single closed homterval and such that h�g = f�h.
So h may collapse some intervals to points or blow-up some points to intervals.
If f and g have no homtervals then a combinatorial equivalence h between f and
g is in fact a conjugacy between f and g. 3. Note that the basin of a periodic

point p of period n is completely invariant, i.e., f(B(p)) = B(p) = f�1(B(p))
but that f(B0(p)) ⇢ B0(p) because B0(f) can contain turning points of f . We
also claim that B(p) = [

n�0f�n(B0(p)). Indeed, if x 2 B(p) then fkn(x) tends
to a point in O(p) as k ! 1, say p. Hence, either fkn(x) = p 2 B0(p) for
k su�ciently big or there exists a (possibly one-sided) neighbourhood U of p
such that fn(U) ⇢ U , \

k�0fkn(U) = {p} and such that fkn(x) 2 U for k large.
Since this implies that U ⇢ B0(p), the claim holds. Note that a l-modal map f
is not constant on any interval and therefore the image of a non-trivial interval
is also a non-trivial interval. Because for any attracting periodic point p its
basin B(p) contains an interval, the immediate basin B0(p) is a finite union of
intervals and f maps B0(p) into itself. 4. Of course, a monotone map fn from

an interval L into itself can have many fixed points and consequently not all
these fixed points need to be attracting. However, every non-periodic point in
L is in the basin of an attracting fixed or an attracting periodic orbit of period
two of fn : L ! L. (This last possibility can only occur when fn : L ! L is
orientation reversing.) Moreover, for every x 2 L we have !(x) ⇢ B(p) for some
(not necessarily attracting) fixed point p of fn : L! L.

How do we know when two maps are combinatorially equivalent? If we look
at the definition it would be necessary to determine all images and preimages of
c. But this is usually an infinite set. However, the turning points of a map could
all be eventually periodic. So it would be much nicer if we could concentrate our
attention on forward iterates of the turning points. The next theorem tells us
that we are permitted to do so. It also tells us that frequently a combinatorial
equivalence between two maps can be extended to a conjugacy.

Theorem 3.1. Suppose that f, g : I ! I are two l-modal maps with turning
points c1 < · · · < c

l

respectively c̃1 < · · · < c̃
l

. Assume that the map

(3.2) h :
l

[

i=1

[

n�0

fn(c
i

)!
l

[

i=1

[

n�0

gn(c̃
i

)

defined by h(fn(c
i

)) = gn(c̃
i

) is an order preserving bijection. Then the follow-
ing properties are satisfied.

1. The maps f and g are combinatorially equivalent.

2. If PT (f) denotes the set of periodic turning points of f then the ‘conju-
gacy’ h maps

S

l

i=1

S

n�0 fn(c
i

)
T

(B0(f) [ PT (f)) into the corresponding
set for g.
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3. Assume that i) f and g have no wandering intervals, ii) there are no
intervals consisting of periodic points of constant period, iii) each periodic
turning point is attracting and iv) the restriction of the map h from (3.2)
to B0(f), i.e.,

h :
l

[

i=1

[

n�0

fn(c
i

) \B0(f)!
l

[

i=1

[

n�0

gn(c̃
i

) \B0(g)

extends to a conjugacy from B0(f) to B0(g) (here we use assumption iii)
to make sure that B0(f) [ PT (f) = B0(f)). Then h can be extended to a
conjugacy on I.

The assumptions ii) and iii) above are not superfluous: the turning point
of each the unimodal maps Q(x) = 2x(1 � x), f(x) = �|1/2 � x| + 1/2 and
g(x) = �

p

1/2
p

|1/2� x|+ 1/2 is a fixed point. Therefore they are all combi-
natorially equivalent and also a map h as in the assumption of the third part
of Theorem 3.1 exists trivially. Even so, they are not conjugate because the
turning point is respectively an attracting, neutral and repelling fixed point.
We should emphasize that any periodic turning point of a C1 map is necessarily
attracting and therefore in this condition iii) can be dispensed with.

We should also remark that we can call an interval consisting of periodic
points of constant period an interval of periodic points because of the following

Proof. Claim if each point in an interval J is periodic then each point in J must
be a fixed point of some iterate fp of the map. Indeed, let J be a component of
the set Per(f) of periodic points of f . If x 2 J has period k then fk(J)\J 6= ;.
Therefore fk(J) [ J is an interval which is contained in Per(f) and since J is
a component of Per(f) it follows that fk(J) = J . Let us now show that fk|J
is injective. If x, y 2 J and fk(x) = fk(y) then both fk(x) and fk(y) have the
same period. Since x, y 2 Per(f) this implies that x and y have the same period
n 2 N. Hence x = fn�k(fk(x)) = fn�k(fk(y)) = y. It follows that fk : J ! J
is a homeomorphism and therefore that each point of J has either period k or
period 2k.

Before proving this theorem, let us state the following:

Corollary 3.1. Let f and g be as in the previous theorem and assume that

1. the map h from (3.2) is an order preserving bijection;

2. the basin of each periodic attractor of f and g contains a turning point
and each periodic turning point is an attractor;

3. the immediate basins of two periodic attractors have no boundary point in
common;
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Then there exists a one-to-one correspondence between periodic attractors of f
and g. Moreover, if a periodic attractor of f is one-sided if and only the same
holds for the corresponding periodic attractor of g, then the monotone bijection h
from (3.2) can be extended to a conjugacy between f |B0(f) and g|B0(g). In par-
ticular, if f and g have no wandering intervals and have no intervals consisting
of periodic points of constant period, then f and g are conjugate.

Proof. Conditions 1, 2 and 3 imply that f and g have the same number of
periodic attractors and that each of these attractors can be ‘detected’ by the
orbit of at least one of the turning points. More precisely, let O(p) be a periodic
attractor of period n. If fn is orientation preserving near p then we can take
a small open neighbourhood U(p) of p such that fn sends U(p) orientation
preservingly into U(p). Then the set V (p) = U(p)\fn(U(p)) consists of two half-
open intervals. If fn is orientation reversing near p or if fn has a local extremum
at p then take U(p) to be a one-sided neighbourhood of f such that f2n(U(p)) ⇢
U(p) and let V (p) = U(p) \ fn(U(p)). The intervals V (p) form what is called
a fundamental domain of O(p). Of course one can choose the fundamental
neighbourhood V (p) of O(p) so that the forward orbit of each turning point
which intersects B0(p)\O(p) also intersects this neighbourhood. By assumption
O(p) attracts at least one turning point c

i

and since the map h from (3.2) is
order preserving, it follows that c̃

i

is also in the basin of a periodic attractor
O(p̃). Moreover, it follows from assumption 3) that this correspondence between
periodic attractors of f and g is one-to-one. Therefore we can extend h to a
homeomorphism between corresponding fundamental neighbourhoods V (p) and
V (p̃). Using h� f = g �h, we get the required extension to a conjugacy between
the restriction of f to B0(f) and the restriction of g to B0(g).

Remark. 1. As we shall see in Section 6, the previous result implies that
there exists a very large class of smooth piecewise monotone maps S such that
f, g 2 S are conjugate if and only if they are combinatorially equivalent. 2.

Part of Theorem 3.1 can also be proved using the itineraries defined below, but
we prefer to use another technique, the pullback construction. One reason we
will use this method is because it will play an important role throughout the
remainder of this book. Another reason is that the itineraries defined below
only give a way to construct conjugacies outside basins of periodic attractors.
To extend these one has to use pullback construction. Therefore we prefer to
use the pullback construction from the start.

The previous result is the analogue of the theorem of Poincaré for circle
homeomorphisms without periodic points. Indeed, consider two l-modal maps
f and g without periodic attractors and without wandering intervals. The
previous result shows that f and g are conjugate if and only if there exists
an order preserving map h from the forward orbits of the turning points of f to
the forward orbits of the turning points of g such that h(c

i

) = c̃
i

and such that
h � f = g � f on this set. This is the analogue of Poincaré’s Theorem I.1.1.
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Fig. 3.2: The pulling back construction defines H
n+1

from H
n

by pulling back via f

and g.

Proof of Theorem 3.1: Let I = [0, 1] and assume that h is as in (3.2). If h
extends as in 2) then one can extend h to a homeomorphism H0 : [0, 1]! [0, 1] in
such a way that the restriction of H0 is a conjugacy between f : B0(f)! B0(f)
and g : B0(g) ! B0(g). Now we are ready to define a sequence of maps H

n

as follows. Since H0 maps the f -image of the i-th turning point of f onto the
g-image of the i-th turning point of g, consequently g and H0 � f have the same
local extremal values and the same number of turning points. Hence there exists
a unique homeomorphism H1 : [0, 1]! [0, 1] with

g �H1 = H0 � f

and H1(0) = 0, H1(1) = 1, see Figure 3.2. Note that H1 agrees with h on the
forward iterates of c

i

: for each n � 0,

g �H1(fn(c
i

)) = H0 � fn+1(c
i

) = h(fn+1(c
i

)) = gn+1(c̃
i

)

and by construction H1(fn(c
i

)) and gn(c̃
i

) lie in the same interval of mono-
tonicity. Hence

H1(fn(c
i

)) = gn(c̃
i

).

We should note that H1 is a bijective and order preserving map from f�1(c
i

)
to g�1(c̃

i

). Similarly, one defines inductively H
n+1 by

g �H
n+1 = H

n

� f.

It follows that

H
n

:
[

k��n

fk(C(f) [B0(f)) !
[

k��n

gk(C(g) [B0(g))

is an order preserving bijection where C(f) = {c1, . . . , cl

} and C(g) = {c̃1, . . . , c̃l

}.
Moreover, H

n+1 coincides with H
n

on this set, and we also have

g �H
n

= H
n

� f.
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In particular there exists a unique limit

H⇤ :
[

n2Z
fn(C(f) [B0(f)) !

[

n2Z
gn(C(g) [B0(g))

such that H⇤ � f = g � H⇤ on this set and H⇤(ci

) = c̃
i

. We should emphasize
that the maps H

n

do not need to have a well defined limit on all of [0, 1], see
Example 3.1.

If g has no wandering intervals and no intervals consisting of periodic points
of the same period, then Lemma 3.1 implies that the set of preimages of turning
points and of points which are eventually mapped into B0(g) is dense in [0, 1]. It
follows that H⇤ can be extended in a unique way to a monotone and surjective
map H⇤ : [0, 1]! [0, 1] and so f and g are semi-conjugate. If the same properties
hold for f then H⇤ uniquely extends to a homeomorphism.

So far we have seen that the combinatorial type of a multimodal map is
determined completely by the forward orbits of its turning points and that
the notions of combinatorial equivalence and of conjugacy are closely related.
In the remainder of this section we will show that there is a very convenient
way to describe the orbits of these turning points by using symbolic dynamics.
As we shall see it is possible to ‘characterize’ the dynamics of a map almost
completely by a string of symbols. To do this, let us denote by S the symbols
space consisting of the symbols I1, . . . , Il+1 and c1, . . . , cl

and by ⌃ = SN the
space of sequences x : N ! S, x = (x0, x1, . . . ), where x

i

= x(i). In ⌃ we
consider the topology defined by the metric d(x, y) =

P1
i=0

1
2i

d(x
i

, y
i

) where
d(x

i

, y
i

) = 1 if x
i

6= y
i

and d(x
i

, x
i

) = 0. With this topology ⌃ is a compact
metric space and the shift transformation � : ⌃! ⌃,

�(x0, x1, x2, . . . ) = (x1, x2, . . . )

is continuous.
Let i : I ! ⌃ be defined by i(x) = (i0(x), i1(x), . . . , i

n

(x), . . . ) where i
n

(x) =
I
k

if fn(x) 2 I
k

and i
n

(x) = c
k

if fn(x) = c
k

. The sequence i(x) is called the
itinerary of x under f . The map i relates the dynamics of f with the dynamics
of the shift transformation: the diagram

I
f����! I

i

?

?

y

?

?

y

i

⌃ �����! ⌃

commutes. Notice that the map i is not continuous exactly at the backward
iterates of the turning points. But given n 2 N and x 2 I, there exists � > 0
such that i

n

(y) is constant on the interval (x, x + �) (but this value is not the
same as i

n

(x) if fn(x) is a turning point). It follows that the one-sided limits
i(x+) = lim

y#x i(y) and i(x�) = lim
y"x i(y) always exist. Notice that both

i(x+) and i(x�) belong to the closed, �-invariant subspace ⌃0 ⇢ ⌃ of sequences
with elements in S0 = {I1, . . . , Il+1}. If x is not in the backward orbit of some
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turning point then i is continuous at x and i(x) = i(x+) = i(x�). The sequences
⌫1, . . . , ⌫l

defined by
⌫

i

= i(c+
i

)

are called the kneading invariants of f . For simplicity let

⌫0 = i(0) and ⌫
l+1 = i(1).

We will see below that they play a role similar to the rotation number. In
Section II.8, it will turn out to be useful to rewrite this kneading invariant as a
formal power series.

Remark. 1. If f and g are combinatorially equivalent then they have the same
kneading invariants. As we will show below, if f and g have the same kneading
invariants and both f and g have no periodic attractors, no wandering intervals
and no intervals of periodic points then they are also combinatorially equiva-
lent. 2. Even if f and g have the same kneading invariants, they need not be

combinatorially equivalent. Indeed, the kneading invariants give no information
about the positions of the iterates of the turning points which are contained
in homtervals. A very simple example illustrating this is given by the maps
f(x) = 2x(1 � x) and g(x) = ax(1 � x) where 0 < a < 2. Both these maps
have kneading invariant (I2, I1, I1, . . . ). However, the turning point of f is a
fixed point and the turning point of g is attracted to an attracting fixed point.
Moreover, in the multimodal case, iterates of several turning points can land
in a fundamental domain inside the basin of a periodic attractor. The knead-
ing invariant gives no information about the relative position of these iterates.
In particular, if f and g have the same kneading invariants and they have the
same number of periodic attractors with the same orientation, then they are
still not necessarily combinatorially equivalent. Similarly, conditions 2 and 3 in
the Corollary of Theorem 3.1 are needed to make sure that the dynamics inside
the basins of attractors is completely determined by the orbits of the turning
points. 3. To any l-modal map f : I ! I we can associate a continuous map

f̃ : I ! I with modality  l and without homtervals by simply collapsing all
homtervals of f . If f has no homtervals which coincide with an entire interval
of monotonicity I

i

then the modality of f̃ is again l and it is easy to see that f
and f̃ have the same kneading invariants. It follows in particular that kneading
invariants give little information on the dynamics within the basins of periodic
attractors and also do not detect the presence of wandering intervals which are
strictly contained inside a homterval. (If slightly di↵erent kneading invariants
were used then wandering intervals could sometimes be detected by these in-
variants, see the next remark.) 4. The kneading invariants we defined above

were used in Milnor and Thurston’s (1977) paper. Notice that some authors use
slightly di↵erent kneading invariants. Indeed, if the forward orbit of a turning
point c

k

does not contain a turning point then �⌫
k

coincides with the itinerary
of f(c

k

). In this case �⌫
k

determines ⌫
k

. Therefore, sometimes the alternative
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invariants i(f(c
i

)) are used instead of those introduced above with limits. For
most questions they can be used equally well. However, there is an important
di↵erence: the alternative invariant – unlike ‘ours’ – can detect certain wan-
dering intervals. In particular, the alternative kneading invariants of a map f
and its associated map f̃ (as defined in Remark 3 above) are not always equal.
This observation was first made in MacKay and Tresser (1988). Indeed, let us
illustrate this by considering a bimodal map f : I ! I as drawn in Figure 3.3
with turning points c1 and c2. It is possible to construct this map so that f(c1)
is in the interior of I3 = (c2, 1] and the interval connecting f(c1) and c2 is a wan-
dering homterval J . Indeed, first choose a bimodal map f̂ such that f̂(c1) = c2

is not eventually periodic. By ‘blowing-up’ each of the points of this orbit to a
small interval one can modify f̂ so that a neighbourhood Ĵ of c2 is a wandering
interval. Because Ĵ is wandering, the forward orbit of Ĵ does not contain c1 and
therefore we can modify f̂ near c1 such that Ĵ remains a wandering interval.
In this way we get our required map. Clearly i

f

(f(c1)) = I3 · i
f

(f(c2)) and it
is not hard to see that the symbols appearing in i

f

(f(c2)) are not eventually
periodic. (This will be explained below Proposition 3.1.) Now any map g with
the same ‘alternative’ kneading invariants as f has the property

i
g

(g(c1)) = i
f

(f(c1)) = I3 · i
f

(f(c2)) = I3 · i
g

(g(c2))

and i
g

(g(c2)) is not eventually periodic. This equality implies that g(c1) 6= c2

and that each point in the interval J̃ connecting g(c1) and c2 has the same
itinerary and therefore J̃ is a homterval. Since the symbols in i

g

(g(c2)) are
not eventually periodic J̃ does not tend to a periodic orbit and therefore is
a wandering interval. It follows that any map g with the same ‘alternative’
kneading invariants as f has a wandering interval. As we remarked above, the
kneading invariants introduced by Milnor and Thurston – and which we adopted
here – do not ‘feel’ these types of wandering intervals.
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Fig. 3.3: Any bimodal map f such that i
f

(f(c
1

)) = i
f

(c+

2

), f(c
1

) 6= c
2

and such that

(c
2

, f(c
1

)) is not in the basin of a periodic attractor, has a wandering interval.
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Next we introduce an order structure on the space

⌃ = {I1, I2, . . . , Il+1, c1, . . . , cl

}N

such that the itinerary map i : I ! ⌃ is order preserving.

Definition. A signed lexicographical ordering � on ⌃ is defined follows. Asso-
ciate to each interval I

j

a sign ✏(I
j

) = ±1 such that (�1)j✏(I
j

) has a constant
sign and define ✏(c

j

) = 0. (Given a l-modal map f we shall always assume that
✏(I

j

) = 1 if and only if f is orientation preserving on I
j

.) Then we say that
x � y if there exists n � 0 such that x

i

= y
i

for i = 0, . . . , n� 1 and
0

@

Y

j2J

✏(x
j

)

1

Ax
n

<

0

@

Y

j2J

✏(y
j

)

1

A y
n

.

Here J = {j ; 0  j  n � 1 and ✏(x
j

) 6= 0} if n � 1 and J = ; if n = 0.
Moreover, the ordering “<” on the symbols ±I

k

and ±c
k

is taken as in the
interval: �I

l+1 < �c
l

< · · · < �c1 < �I1 < 0 < I1 < c1 < · · · < c
l

< I
l+1.

We also write x � y if x � y or x = y. (The reason for excluding in J the
integers j with ✏(x

j

) = 0 is that � would otherwise not define an ordering on ⌃.
However, the subset i(I) of ⌃ has an additional property: if the first n symbols
of x, y 2 i(I) coincide and one of these is in {c1, . . . , cl

} then x = y. So to define
the ordering on this subspace i(I) one could take equally well J = {0, . . . , n�1}.)

This ordering is motivated by the following

Proposition 3.1. Let � be the lexicographical ordering corresponding to a l-
modal map f and let i(x) be the itinerary of x under f .

a) If x < y then i(x) � i(y).

b) If i(x) � i(y) then x < y.

Proof. a) Suppose x < y and i(x) 6= i(y) and let n � 0 be such that i
j

(x) =
i
j

(y) for j = 0, . . . , n� 1 and i
n

(x) 6= i
n

(y). Hence there are no turning points
in the intervals [x, y], f([x, y]), . . . , fn�1([x, y]) but there is a turning point c

k

2
fn([x, y]). Therefore fn is monotone on the interval [x, y], and is increasing if the
product of the signs of the intervals i0(x), . . . , i

n�1(x) is positive and is otherwise
decreasing. If this product is positive then fn(x) < fn(y) and, consequently,
i
n

(x) < i
n

(y). Since the product is positive, this implies that i(x) < i(y).
Similarly, if the above product is negative, we have that fn(x) > fn(y) which
implies again that i(x) < i(y). This proves a). The proof of b) follows by
reversing the argument.

Let I(x) = {y ; i(y) = i(x)}. Proposition 3.1 implies that I(x) is connected.
If it is a non-trivial interval then it is a homterval (and no larger interval has
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this property). In particular, by Lemma 3.1 either each point in this interval
is contained in the basin of a periodic orbit or this interval is wandering. If
fn(x) 2 I(x) (and n > 0 is minimal with this property) then fn maps I(x)
monotonically into itself and so x is either periodic or contained in the basin of
a periodic orbit of period n or 2n. In particular, the kneading invariant ⌫

i

is
eventually periodic if and only if the !-limit of c

i

is a periodic orbit.
Next we will show that if f and g have the same kneading invariants, and

if they have no periodic attractors and no wandering intervals then they are
conjugate. In order to state this result let ⌫1, . . . , ⌫l

be the kneading invariants
of some l-modal map and as before let ⌫0 = i(0) and ⌫

l+1 = i(1). Note that ⌫0
and ⌫

l+1 are determined by the signs of ✏(I1) and ✏(I
l+1) (because f(@I) ⇢ @I).

For example ⌫0 = I11 if ✏(I1) = 1. Next define ⌃(⌫0, ⌫1, . . . , ⌫l+1) to be the
sequences ↵ 2 ⌃ which satisfy the following conditions for each n � 0 and each
k = 0, 1, . . . , l:

(3.3)

�n↵ = i(c
k

) if ↵
n

= c
k

,

�⌫
k

� �n+1↵ � �⌫
k+1 if ↵

n

= I
k+1 and ✏(I

k+1) > 0,

�⌫
k+1 � �n+1↵ � �⌫

k

if ↵
n

= I
k+1 and ✏(I

k+1) < 0.

The slightly larger set ⌃̂(⌫0, . . . , ⌫l+1) is defined by (3.3) but with � replaced
by �. The next result tells us that the dynamics of a map f can be ‘computed’
on a symbolic level. It tells us that it su�ces to work with kneading invariants
(rather than with the notion of combinatorial equivalence) if we restrict ourselves
to maps without periodic attractors and without wandering intervals or if we
are not interested in the dynamics on the basins of periodic attractors. It also
gives a way to prove the existence of certain orbits of f by constructing them on
a symbolic level: for each sequence ↵ 2 ⌃ as in (3.3) there exists a point which
has this sequence as its itinerary. Therefore (3.3) is sometimes referred to as an
admissibility condition. Jonker (1981) used this method to prove Sarkovskii’s
Theorem in the unimodal case, see also Collet and Eckmann (1980).

Theorem 3.2. Let f : I ! I be a l-modal map. If f has kneading invariants
⌫1, . . . , ⌫l

2 ⌃0 and ⌫0, ⌫l+1 are the kneading invariants in the boundary points
of I, then for each j = 0, . . . , l, k = 0, . . . , l and n = 0, 1, 2, . . . one has ⌫

j

=
(I

j+1, . . . ) and if �n(⌫
j

) = (I
k+1, . . . ) then

(3.4)
�⌫

k

� �n+1⌫
j

� �⌫
k+1 if ✏(I

k+1) > 0,

�⌫
k+1 � �n+1⌫

j

� �⌫
k

if ✏(I
k+1) < 0.

i
f

maps I into ⌃̂(⌫0, . . . , ⌫l+1) and i
f

(I) � ⌃(⌫0, . . . , ⌫l+1). If f has no wander-
ing intervals then i

f

(I) = ⌃(⌫0, . . . , ⌫l+1) and if f also has no periodic attractors
then one of the inequalities in (3.4) is strict. Furthermore, i

f

is only constant
on wandering intervals, on intervals of periodic points and on intervals which
are in the basin of some periodic attractor; therefore i

f

: I ! ⌃(⌫0, . . . , ⌫l+1) is
an order preserving bijection if f has no wandering intervals and no periodic
attractors. Finally, if f and g have the same kneading invariants, no wandering
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intervals, no intervals of periodic points and no periodic attractors then they are
conjugate.

Proof. Let us first show that i
f

maps I into ⌃(⌫0, . . . , ⌫l+1). In fact, if fn(x) 2
I
k+1 = (c

k

, c
k+1) then f(c

k

) < fn+1(x) < f(c
k+1) if ✏(I

k+1) > 0 and the
opposite inequality holds if the sign of I

k+1 is negative. Therefore �⌫
k

�
i(fn+1(x)) � �⌫

k+1 if ✏(I
k+1) > 0 and �⌫

k+1 � i(fn+1(x)) � �⌫
k

if ✏(I
k+1) < 0.

Since i(fn+1(c+
j

)) = �n+1i(c+
j

) = �n+1⌫
j

, letting x tend to c
j

from the right
one gets (3.4). If f has no wandering intervals, no intervals of periodic points
and no periodic attractors, i

f

is injective and consequently one of the inequal-
ities in (3.4) has to be strict. So let us show that i

f

(I) � ⌃(⌫0, . . . , ⌫l+1). So
take ↵ 2 ⌃(⌫0, . . . , ⌫l+1) and suppose, by contradiction, that there is no x 2 I
such that i

f

(x) = ↵. Then I = A [ B where A = {x 2 I ; i(x) � ↵} and
B = {x 2 I ; ↵ � i(x)}. By Proposition 3.1, A and B are intervals. Let
a = supA and b = inf B. If a 62 A and b 62 B we get a contradiction because
0 2 A, 1 2 B and I is connected. So let us prove that a 62 A. The proof that
b /2 B goes similarly. In fact, if we assume by contradiction that a 2 A, then

(3.5) i(a) � ↵

and

(3.6) ↵ � i(a+).

Since x 7! i(x) is continuous unless fn(x) is a turning point for some n, (3.5) and
(3.6) imply that fn(a) = c

k

for some n � 0 and some k. Let n be the smallest
integer with this property. Then i

j

(a) = i
j

(a+) = ↵
j

for j = 0, 1, . . . , n � 1
and i

n

(a) = c
k

. Since fn(a) = c
k

either fn(x) 2 I
k+1 or fn(x) 2 I

k

for each
x > a su�ciently close to a. Let us assume we are in the former case. Then
i
n

(a+) = (c
k

, c
k+1) = I

k+1 and therefore by (3.5) and (3.6), c
k

 ↵
n

 I
k+1.

If ↵
n

= c
k

then by definition of the space ⌃(⌫0, . . . , ⌫l+1) we have �n(↵) =
i(c

k

) and hence i(a) = ↵, a contradiction. Therefore we have ↵
n

= I
k+1.

Moreover, �ni(a) = i(c
k

) and �ni(a+) = i(c+
k

) = ⌫
k

. So by the definition of the
ordering, and by (3.6), �n↵ � �ni(a+) = ⌫

k

. This is impossible: if the sign of
I
k+1 is positive then this implies �n+1↵ � �⌫

k

and if the sign is negative then
�⌫

k

� �n+1↵. Since �n(↵) = (I
k+1, . . . ) both cases are impossible by definition

of the class ⌃(⌫0, . . . , ⌫l+1). Hence i
f

(I) = ⌃(⌫0, . . . , ⌫l+1). It follows that
i
f

: I ! ⌃(⌫0, . . . , ⌫l+1) is a well defined order preserving bijection if f has no
wandering intervals, no intervals of periodic points and no periodic attractors.
From this the last statement of the theorem follows: in that case the monotone
bijection i�1

g

� i
f

: I ! I is a conjugacy between f and g.

Finally, in the remainder of this section we shall characterize the sequences
in ⌃ that can occur as kneading invariants of a map f . Indeed, as we will see
in the next theorem, (3.4) gives not only necessary but also su�cient “admissi-
bility” conditions for a collection of sequences ⌫1, . . . , ⌫l

2 ⌃ to be the kneading
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invariants of a l-modal map f . For simplicity, if ↵ is some finite string of sym-
bols from the set {I1, . . . , Il+1} then, as before, ↵1 2 {I1, . . . , Il+1}N denotes
the infinite repetition of this string.

Theorem 3.3. Consider ⌃0 = {I1, . . . , Il+1}N and let � be a signed lexicograph-
ical ordering on ⌃. Furthermore, let ⌫1, . . . , ⌫l

be sequences in ⌃0 of the form
⌫

j

= (I
j+1, . . . ) and define ⌫0 and ⌫

l+1 so that

⌫0 = I11 , ⌫
l+1 = I1

l+1 if ✏(I1) = 1, ✏(I
l+1) = 1

⌫0 = I11 , ⌫
l+1 = I

l+1 · I11 if ✏(I1) = 1, ✏(I
l+1) = �1

⌫0 = (I1 · Il+1)1, ⌫
l+1 = (I

l+1 · I1)1 if ✏(I1) = �1, ✏(I
l+1) = �1

⌫0 = I1 · I1
l+1, ⌫l+1 = I1

l+1 if ✏(I1) = �1, ✏(I
l+1) = 1.

If ⌫0, . . . , ⌫l+1 satisfies the admissibility conditions (3.4) then there exists a l-
modal map f : [0, 1] ! [0, 1] with turning points c1, . . . , cl

and with kneading
invariants i

f

(c+
i

) equal to ⌫
i

.

Remarks. 1. The proof of Theorem 3.3 shows that the conditions (3.4) are
not magical at all: they simply reflect the fact that f is alternatingly order
preserving and order reversing on each of the laps of f . More precisely, a simple
way to check whether some eventually periodic kneading sequences satisfy the
conditions (3.4) goes as follows. For each k = 0, 1, . . . and each i = 1, . . . , l,
simply embed �k(⌫

i

) in an order preserving fashion into I and mark the points
(�k(⌫

i

),�k+1(⌫
i

)) in the square I⇥ I. If a l-modal graph can be drawn through
these points then these conditions are admissible. 2. As explained in Remark

3 above the definition of the lexicographical ordering, we can construct a map
f that has no wandering intervals with such admissible kneading invariants. 3.

In the next section we shall strengthen this result: we will show that there also
exist polynomial maps with such admissible kneading invariants.

Proof of Theorem 3.3: If a, b 2 ⌃0 then we say that a ⇠ b if a = b or if
a = I

k±1 ·�b where b = I
k

· · · . So for example i(c+
k

) ⇠ i(c�
k

). Next choose some
N < 1. For n = 0, . . . , N � 1 and j = 0, . . . , l + 1 associate to �n⌫

j

a point
pn

j

in the interval [0, 1] so that the ordering of these symbols with respect to �
coincides with the natural ordering on [0, 1] and such that p0

j

= c
j

; here we take
c0 = 0 and c

l+1 = 1. So we choose these points so that

pn

i

< pm

j

if �n(⌫
i

) � �m(⌫
j

) and �n(⌫
i

) 6⇠ �m(⌫
j

)

pn

i

= pm

j

if �n(⌫
i

) ⇠ �m(⌫
j

)

pn

i

> pm

j

if �m(⌫
j

) � �n(⌫
i

) and �m(⌫
j

) 6⇠ �n(⌫
i

).

Next let F
N

: [0, 1] ! [0, 1] be the piecewise linear map whose graph consists
of straight lines connecting the points (pn

j

, pn+1
j

) with j = 0, 1, . . . , N � 1. We
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want to show that this map F
N

is l-modal. Let us first show that if �n⌫
j

=
(I

k

, . . . ) then ⌫
k�1 � �n⌫

j

� ⌫
k

and therefore that the corresponding point pn

j

is contained in [c
k

, c
k+1]. This is not di�cult to show: from (3.4), �⌫

k�1 �
�n+1⌫

j

� �⌫
k

if the sign of I
k

is positive and �⌫
k

� �n+1⌫
j

� �⌫
k�1 otherwise.

Moreover, from the definition of the signed lexicographical ordering, one has for
any ↵,� 2 ⌃ with ↵0 = �0 = I

k

that

(3.6)
[↵ � � implies �(↵) � �(�)] if ✏(I

k

) > 0,

[↵ � � implies �(�) � �(↵)] if ✏(I
k

) < 0.

Because of all this, ⌫
k�1 � �n⌫

j

� ⌫
k

. It follows that the point pn

j

is contained
in [c

k

, c
k+1]. Furthermore, from the requirement that one of the inequalities in

(3.4) is strict, ✏(I
k

) > 0 if and only if �⌫
k�1 � �⌫k

. Similarly, if pn

j

< pm

i

are in
[c

k

, c
k+1] then, because of the definition of⇠, F

N

(pn

j

) = pn+1
j

< pm+1
i

= F
N

(pm

i

)
if ✏(I

k

) > 0 and F
N

(pn

j

) = pn+1
j

> pm+1
i

= F
N

(pm

i

) if ✏(I
k

) < 0. It follows that
F

N

is order preserving on [c
k

, c
k+1] if ✏(I

k

) > 0 and order reversing if ✏(I
k

) < 0.
Since the sign of I

k

alternates, this implies that F
N

does have turning points
c1, . . . , cl

and therefore is a l-modal map. Next construct F
N+1 inductively by

choosing new points pN

j

in the interval associated to �N⌫
j

, j = 1, . . . , l between
the previous points in the right order. It is not hard to do this in such a way
that one gets a sequence of maps F

N

which converges in the C0 topology. (For
example, keep the old points fixed and choose these new points pN

j

, j = 1, . . . , l
so that they are ‘equally distributed’ over the components of the complement of
{pn

j

; n = 0, . . . , N�1, j = 1, . . . , l}. It is easy to show that this forces the maps
to converge in the C0 topology.) Now the kneading invariants of F

N

coincide
with ⌫1, . . . , ⌫l

up to the N -th position. Moreover the position of the first N �1
iterates under F

k

of c
i

is the same for each k � N because we do not change
the position of the points pn

j

for n  N . It follows that the limiting map f has
the required kneading invariants.

3.1 Examples

Let us now give a few examples of maps with given kneading invariants.

Example. Let 0 < c1 < c2 < 1 and I1, I2, I3 be as before. Furthermore,
let ✏(I1) = ✏(I3) = 1 and ✏(I2) = �1 and ⌫1 = (I2, I3, I2, I2, I2, . . . ), ⌫2 =
(I3, I1, I2, I2, I2, . . . ). It is easy to check that these sequences satisfy the ad-
missibility conditions from the previous lemma. However, a more convenient
way to check these conditions is to simply draw a bimodal map which has these
kneading invariants. Such a map is drawn in Figure 3.4 on the left with the
corresponding kneading invariants. Similarly, let 0 < c < 1 and I1 = [0, c) and
I2 = (c, 1]. Let ✏(I1) = �✏(I2) = 1 and let ⌫ = (I2, I2, I1, I1)1 (this means
that the block (I2, I2, I1, I1) is repeated infinitely often). In Figure 3.4 we have
drawn on the right a corresponding unimodal map with this kneading invariant.
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Fig. 3.4: The bimodal and unimodal maps with kneading invariants as in Example

3.1.

Example. Let f : [�1, 1] ! [�1, 1] be the quadratic map f(x) = �2x2 + 1.
This map has only one turning point, c = 0, and its orbit is c ! 1 ! �1 !
�1 . . . . Hence i(�1) = (I1, I1, I1, . . . ), i(1) = (I2, I1, I1, . . . ) and ⌫ = i(c+) =
(I2, I2, I1, I1, . . . ). This map is conjugate to the tent map T : [�1, 1] ! [�1, 1]
defined by T (x) = 2x + 1, x  0, T (x) = �2x + 1, x > 0. In fact, let � : I ! I
be the homeomorphism �(x) = 2

⇡

sin�1 x. Then � � f � ��1(y) = 2
⇡

sin�1(1 �
2 sin2

⇡

2 y)) = 2
⇡

sin�1(sin(⇡2 (2y + 1))). Hence � � f � ��1 is the tent map T . It
is easy to see that the backward orbit of the turning point 0 of T is dense or,
indeed, that the backward orbit of any point is dense. (This follows from the fact
that for every interval I ⇢ [�1, 1] there exists n � 0 such that Tn(I) = [�1, 1].)
Hence the backward orbit of the turning point of f is also dense. Therefore,
from Theorem 3.1, it follows that any unimodal map g : I ! I with the same
kneading invariant as f is semi-conjugate to f .

Example. Let f : I ! I be a piecewise linear unimodal map such that there
exists an interval J1 containing the turning point of f such that J1, f(J1), f2(J1)
are disjoint and f3 : J1 ! J1 is again unimodal, see Figure 3.5. Let r1 be the
a�ne scaling which maps I onto J1 and let r(J1) = J2. Since f is a�ne on each
interval f i(J1) when 0 < i < 3, one can modify f on J1 so that

r1 � f � r�1
1 equals f3 on J1 \ J2.

Repeating this infinitely often one gets a map f which is called infinitely renor-
malizable. Another term which is frequently used is that the map is solenoidal.
This means that there exists a nested sequence of intervals J

n

such that I
n

, . . . , f3n�1(J
n

)
are disjoint and f3n

maps J
n

as a unimodal map into J
n

. Similarly, one can also
construct maps for which the period of J

n

is equal to q(n) = a(1) ·a(2) · · · ·a(n)
where a(k) � 2. We will come back to these infinitely renormalizable maps in
Section 5.
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Fig. 3.5: The construction of an infinitely renormalizable map. The first return map

to the solid square is a unimodal map with the opposite orientation.

3.2 Hofbauer’s Tower Construction

In this section we shall give another way to represent the kneading invariants
for unimodal maps. This representation is due to Hofbauer (1979) and is used
extensively in the work of Hofbauer and Keller, see also Bruin (1992c). We shall
not use this description anywhere in the remainder of this book. However, the
ideas of this section are philosophically related to those in Section V.6 and also
to the concept of the tableau recently introduced for cubic maps of the Riemann
sphere by Branner and Hubbard (1991).

So assume that f : [0, 1] ! [0, 1] is a unimodal map with turning point c,
f(0) = f(1) = 0 and f2(c) < c < f(c). (If this last condition does not hold then
f has no interesting dynamics.) Then the kneading invariant ⌫ of f is of the
form

⌫ = e0e1e2 . . .

with e
i

2 {I1, I2}, e0 = e1 = I2 and e2 = I1. Let us show that one can write ⌫
in a very nice form. In order to do this define

e0
m

=

(

I1 if e
m

= I2,

I2 if e
m

= I1.

Definition. Take a kneading invariant ⌫(f) of a unimodal map f . To such
a kneading invariant one can associate in a unique way � blocks B

i

where
� 2 N [ {1} such that

⌫(f) =

(

I2I2B1B2B3 . . . if � =1
I2I2B1B2B3 . . . B

�

otherwise,

(⇤) B
i

= e
j+1ej+2 . . . e

j+m(i)�1ej+m(i) = e1e2 . . . e
m(i)�1e

0
m(i)



106 CHAPTER II. THE COMBINATORICS OF ENDOMORPHISMS

for i < � and, if � <1, the last block B
�

coincides with e1e2 . . . . This is done
as follows. First let m(1)� 1 be largest integer such that

B1 = e3 . . . e3+m(1)�1 = e1e2 . . . e
m(1)�1.

If such a largest integer does not exist then B1 is an infinite block, � = 1 and
m(1) =1. In this case the procedure terminates and ⌫(f) = I2I2B1; otherwise
� > 1, m(1) <1 and B1 is the finite block such that

B1 = e3 . . . e3+m(1) = e1e2 . . . e0
m(1).

Now suppose that B1, . . . , Bk�1 are defined such that I1I2B1 . . . B
k�1 = e1 . . . e

j

and such that (⇤) holds for i = 1, . . . , k� 1. Then define B
k

such that m(k)� 1
is the largest integer with

B
k

= e
j+1 . . . e

j+m(k)�1 = e1e2 . . . e
m(k)�1.

If no such integer m(k) exists then we take B
k

to be the infinite block and � = k;
otherwise (⇤) holds for i = k. If for each i = 1, 2, . . . such an integer m(i) exists
then we obtain an infinite number of blocks B1, B2, . . . . Otherwise, we obtain
a finite number of blocks B1, . . . , B�

such that the last one has infinite length
and B

�

coincides with e1e2 . . . . It is easy to see that this decomposition of ⌫(f)
is unique (for example, because e2 = I1 one has B1 = e2).

Let � 2 N [ {1} be the number from the previous definition and define

N
�

= {n 2 N ; 1  n < �}.

We should note that if c is not contained in the basin of periodic attractor then
� = 1. In the next lemma we shall show that ⌫ is completely determined by
some map Q : N

�

! N
�

[ {0} called the kneading map.

Lemma 3.2. For each f as above there exist � 2 N[{1} and a map Q : N
�

!
N
�

[ {0} such that Q(k) < k for each k 2 N
�

and with the following properties.
Define

S0 = 1 and S
j

= S
j�1 + S

Q(j)

for 1  j < �. Then, for 1  j < �, the length of the block B
j

is equal to some
number S

Q(j). In fact, B1 = e2 and

B
j

= e
S

j�1+1eS

j�1+2 . . . e
S

j

�1eS

j

= e1e2 . . . e
S

Q(j)�1e
0
S

Q(j)

for 2  j < � and (if � <1)

B
�

= e
S

��1+1eS

��1+2 · · · = e1e2 . . . .

We shall prove this lemma by constructing the Hofbauer tower. The orbit
of the turning point can be followed extremely well in this tower. The main
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aim of this construction is to get a Markov extension of the original interval
map, but we shall not use this Markov extension anywhere in the remainder of
this book. (This extension is said to have the Markov property because, as we
will see below, it sends each connected component of its domain to a union of
connected components.) We shall, however, give some examples which illustrate
these ideas by constructing unimodal maps for which the orbit of the turning
point can easily be visualized in the tower construction.

Let us for simplicity assume that c is not periodic. Let a
k

< c be so that
[a

k

, c] is the maximal interval of this form on which fk is monotone. Of course
for k � 2, a

k

is a preimage of c under some iterate of f ; for example a2 =
f�1(c) \ [0, c]. Let

V
k

= fk[a
k

, c].

Since a
k

is a turning point of fk, for k � 2 the interval V
k

is of the form

V
k

= [fk(c), f i

k(c)]

with 1  i
k

< k and fk�i

k(a
k

) = c. Here, as before, [fk(c), f i

k(c)] stands for
the segment connecting fk(c) and f i

k(c) even if fk(c) is to the right of f i

k(c).
So V

k

is a one-sided neighbourhood of fk(c) and for example V2 = [f2(c), f(c)]
and i2 = 1. One has

(3.7) i
k+1 =

(

i
k

+ 1 if c /2 V
k

1 if c 2 V
k

.

In particular,

(3.8) if c /2 V
k

then f(V
k

) = V
k+1.

Now let D
k

be the closure of the component of V
k

\ {c} which contains fk(c) in
its boundary and E

k

the closure of the other component. So D
k

= V
k

if c /2 V
k

.

Lemma 3.3.

(3.9) f(D
k

) = V
k+1

and

(3.10) if E
k

6= ; then E
k

= D
i

k

.

Proof. If c /2 int (V
k

) then D
k

= V
k

and (3.9) follows from (3.8). If c 2
int (V

k

) then D
k

= [fk(c), c], i
k+1 = 1, V

k+1 = [fk+1(c), f(c)] and so again
(3.9) holds. Moreover, fk is monotone on [a

k

, c] and fk�i

k(a
k

) = c. Therefore
f i

k is monotone on [c, fk�i

k(c)]. Now a
i

k

< c is chosen so that [a
i

k

, c] is the
largest interval with the property that f i

k |[a
i

k

, c] is monotone. So either [a
i

k

, c]
contains [c, fk�i

k(c)] or it contains its symmetric [c, ⌧(fk�i

k(c))] (where ⌧ is
so that f(⌧(x)) = f(x) and ⌧(x) 6= x for x 6= c). But, since the f -images of
intervals which are each others symmetric are the same, one gets in both cases

V
i

k

= f i

k [a
i

k

, c] � f i

k [c, fk�i

k(c)] = [f i

k(c), fk(c)] = V
k

.
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Since both these intervals have f i

k(c) as a boundary point and since V
k

contains
c, this implies that the components of V

i

k

\ {c} and V
k

\ {c} containing f i

k(c)
coincide. In particular, from the definitions of D

i

k

and E
k

, one has (3.10).

Proof of Lemma 1: Define S0 = 1 and assuming S0 < S1 < S2 < · · · < S
j

are defined we inductively define S
j+1 as

S
j+1 = min{l > S

j

; c 2 V
l

}.

From (3.7) one has S
j+1 � S

j

= i
S

j+1 . Moreover, by (3.10) one has that V
i

S

j+1

contains c and so i
S

j+1 is equal to S
Q(j+1) for some Q(j + 1) < j + 1.

Note that S
j

are precisely the integers such that i
S

j

+1 = 1 and so the places
where one can go down in the diagram, see for example Figure 3.6. So define
D̂ =

S

k�2 V
k

⇥ {k} and f̂ : D̂ ! D̂ as follows. Let x̂ = (x, k) 2 D̂. If x 2 D
k

then we move up in the diagram:

f̂(x̂) = (f(x), k + 1) 2 V
k+1 ⇥ {k + 1}.

If x 2 E
k

then E
k

= D
i

k

and so map down to level i
k

+ 1:

f̂(x̂) = (f(x), i
k

+ 1) 2 V
i

k

+1 ⇥ {ik + 1}.

By (3.9) and (3.10) this map is well defined when x 6= c. Moreover, f̂ sends
each component of (V

k

\{c})⇥{k} monotonically onto a set of the form V
l

⇥{l}
for some l � 2. Therefore f̂ is called a Markov map. Examples of these maps
are given below.

Remark. It is not too di�cult to show that if f is a unimodal map as above
then the map Q : N

�

! N
�

[ {0} from Lemma 1 is so that

Q(k) < k for all k 2 N
�

and
(Q(j))

k<j<�

⌫ (Q(Q(Q(k)) + j � k))
k<j<�

for all k 2 N
�

with Q(k) � 1 (where ⌫ denotes the lexicographical ordering on
sequences of integers). A map satisfying these inequalities is called a kneading
map. Building on earlier work of Hofbauer, it is shown in Hofbauer and Keller
(1990a) that any kneading map Q also defines the kneading invariant e0e1e2 . . .
of a unimodal map: take as before e0 = e1 = I2,

S0 = 1 and S
k

= S
k�1 + S

Q(k)

for 1  k < � and

e
S

k�1+1eS

k�1+2 . . . e
S

k

�1eS

k

= e1e2 . . . e
S

Q(k)�1e
0
S

Q(k)

for 2  k < �. Moreover, if � <1, e
S

��1+1eS

��1+2 · · · = e1e2 . . . .

Using this one can construct many examples of unimodal maps such that
the closure of the turning point is a minimal Cantor set. Indeed,
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c

Fig. 3.6: The tower associated to the Feigenbaum map.

Example. The Feigenbaum map: the prototype of the infinitely renormalizable
map. In this case we have � =1 and Q(j) = j�1 for all j � 1. It follows from
this that S

j

= S
j�1 + S

j�1 and since S0 = 1 this gives S
j

= 2j . So the interval
V

k

contains c if and only if k is a power of 2. The tower is drawn below. Since
V

S

k

contains c and fS

k(c) are closest returns,

f2(c) < f8(c) < f32(c) < · · · < c < · · · < f16(c) < f4(c) < f(c)

and
⌧(D

S

k+1) ⇢ D
S

k

.

From the tower one can check that the 2j closed intervals D
S

j

, . . . ,D
S

j+1�1 are
disjoint (otherwise one would a contradiction with Q(j) = j � 1) and each for-
ward iterate of c is contained in the union K

j

of these intervals. Moreover, each
of these intervals contains precisely two of the 2j+1 intervals D

S

j+1 , . . . ,DS

j+2�1.
Since c is contained in D

S

j

for every j it follows that the forward orbit of c is
contained in

K =
\

j�1

�

D
S

j

[ · · · [D
S

j+1�1

�

.

Of course K has no isolated points and therefore K is a Cantor set provided
it contains no intervals. From the disjointness of D

S

j

, . . . ,D
S

j+1�1 and since
S

j

= 2j !1 as j !1, it follows that each component of K contains at most
one iterate of c. It follows that the closure of the forward orbit of c is a Cantor
set (and is equal to !(c)). If f has no wandering intervals then K is indeed a
Cantor set and K = !(c).

Example. The Fibonacci map: the prototype of the non-renormalizable map
for which the orbit of the turning point is a Cantor set, see Hofbauer and Keller
(1990). For this map we have � =1 and Q(j) = j � 2 for j � 2. Since S0 = 1,
Q(1) = 0 and S

j

= S
j�1 + S

Q(j) = S
j�1 + S

j�2 the sequence S
j

generates
the Fibonacci numbers. Again the intervals D

j

are decreasing: the intervals
D

S

j+1 ⇢ D
S

j

are on the same side of c and the interval D
S

j+3 ⇢ D
S

j+2 on the
other side of c. Moreover, it is not hard to show that the first S

j+1 � S
j

� 1
forward iterates of D

S

j

are all disjoint (otherwise one would get a contradiction
with Q(j) = j � 2). So again the closure of the forward orbit of c forms a
Cantor set. However, the situation is di↵erent from the previous case: here
there exists no restrictive interval J containing the turning point. Indeed, if
such an interval existed then the smallest such interval (with the same period)
would contain forward iterates of c in its boundary. But it is easy to see from
the tower in Figure 3.7 that this is impossible. It follows that the corresponding
map is non-renormalizable.
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Fig. 3.7: The tower associated to the Fibonacci map.

Exercise 3.1. As in Example 3.2, let f(x) = �2x2 + 1. Show that Theorem 3.2

implies that each sequence in ⌃ = {I
1

, I
2

}

N occurs as the itinerary of some point x

in [�1, 1]. Using the conjugacy from Example 3.2, show that for each such sequence

there exists at most one such point x. Determine � and the corresponding kneading

map Q.

Exercise 3.2. Show that if f is a unimodal map with a periodic attractor then the

kneading invariant ⌫(f) of f need not be periodic: ⌫(f) is of the form ⌫ = I
2

·(B ·I
1

)1

or of the form ⌫ = I
2

· (B · I
2

)1.

Exercise 3.3. Suppose f : [0, 1] ! [0, 1] is unimodal and that its turning point has

period 4. Determine all possible kneading invariants that f can have. What possible

orderings can the orbit of the turning point have? (Hint: check for each periodic

sequence (J
1

, J
2

, J
3

, J
4

, . . . ) with period 4 that the required compatibility conditions

are satisfied.)

Exercise 3.4. Let � = 1 and assume Q : N
�

! N
�

[ {0} is non-decreasing. Show

that Q is admissible and therefore corresponds to the kneading map of a unimodal

map f .
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Exercise 3.5. Suppose that f is unimodal and let Q be the corresponding kneading

map. Show that if Q(n) !1 as n !1 then !(c) is a minimal Cantor set.

4 Full Families and Realization of Maps

Full Families and Realization of Maps In this section we will consider families
of smooth maps and investigate whether there exists a map in such a family
of a given combinatorial type. For convenience we shall make the following
assumptions.

Assumptions.

1. Let � be some subset of a Euclidean space and for each µ 2 �, let f
µ

: I ! I
be a l-modal map. 2. Assume that f

µ

depends continuously on µ in the C0

topology and that the turning points of f
µ

depend continuously on µ. For
simplicity, assume I = [0, 1] and denote the turning points of f

µ

by 0 < c1(µ) <
· · · < c

l

(µ) < 1. By assumption f
µ

is strictly monotone on each of the intervals
I1(µ) = [0, c1(µ)), I2(µ) = (c1(µ), c2(µ)), . . . , I

l+1(µ) = (c
l

(µ), 1] and f
µ

(@I) ⇢
@I. 3. Assume that the Lipschitz norm of f

µ

is uniformly bounded, i.e.,

sup
x6=y,µ

|f
µ

(x)� f
µ

(y)|
|x� y| <1

and that for each ✏ > 0 there exists � > 0 such that for each i = 1, . . . , l and
each µ 2 �,

|x� c
i

(µ)| < � implies
|f

µ

(x)� f
µ

(c
i

(µ))|
|x� c

i

(µ)| < ✏.

4. Finally, we require that for each � > 0, if � 3 µ(n)! µ and if the Lipschitz

norm of f
µ(n) tends to zero on some subinterval of I

i

(µ(n)) of length � then the
Lipschitz norm of f

µ(n)|Ii

(µ(n)) tends to zero (note that � need not be closed
and therefore f

µ

may not be defined).

We say that two l-modal maps f, g : I ! I have the same orientation if f and
g are both increasing or both decreasing on corresponding laps I

i

, i = 1, . . . , l+1.
From the assumptions it follows that all maps from a family f

µ

as above have
the same orientation if � is connected. Since successive turning points of f

µ

are
alternating local maxima and local minima, the map F : �! I l defined by

F (µ) = (f
µ

(c1), . . . , fµ

(c
l

))

has values in

V = {(v1, . . . , vl

) 2 I l ; s(�1)i(v
i+1 � v

i

) < 0 for i = 0, . . . , l}

where s 2 {�,+} depending on the orientation of f
µ

and where v0 and v
l+1 are

respectively the images of the left and right endpoint of I. Here, and below, we
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have written f
µ

(c
i

) instead of f
µ

(c
i

(µ)). We assume that F can be extended
continuously from the closure of � to the closure of V .

In this section we will show that any l-modal map g ‘appears’ in a reasonable
family of smooth maps. So, for example, given a l-modal map g : I ! I we
want to show that there exists a polynomial map which has essentially the same
dynamics as g. Of course one cannot expect that there exists a polynomial map
which is conjugate to g. Indeed, g might have wandering intervals and as we
shall see polynomial maps do not. Moreover, g might have many ‘superfluous’
attractors and, as we shall see later, a polynomial map of degree l has at most
l�1 periodic attractors. So in order to define the notion of a full family we first
introduce the notion of two maps being essentially conjugate.

Definition. We call a periodic attractor essential if it contains a turning point
in its immediate basin. Furthermore, we define an equivalence relation as
follows: x ⇠ y whenever the interval connecting x and y is contained in a
union of homtervals which are disjoint from the basins of all essential periodic
attractors.

Examples of an interval [x, y] with x ⇠ y are 1) the closure of a component
of the basin of an inessential periodic attractor, 2) a component of a preimage
of an interval consisting of points of constant period (some iterate of the map
is the identity restricted to this interval) or 3) a wandering interval. In fact,
because of Lemma 3.1, equivalence classes are unions of such intervals.

Note that the equivalence classes of this relation are closed intervals and
that therefore the quotient map g/⇠ : I/⇠ ! I/⇠ is a well defined continuous
map. However, in general g/⇠ is not l-modal anymore. For example, if g(x) = x
for x 2 [0, 1/2] and g(x) = 1/2 � x for x 2 [1/2, 1] then all elements of I are
equivalent and therefore I/ ⇠ consists of only one point. Therefore we shall
assume that no equivalence class of ⇠ contains a lap of g.

Definition. Two l-modal maps f and g are said to be essentially conjugate if
there exists an order preserving homeomorphism h such that

I/⇠ f/⇠����! I/ ⇠

h

?

?

y

?

?

y

h

I/ ⇠ g/⇠����! I/⇠

commutes. Moreover, we say that f and g are essentially combinatorially equiv-
alent if the map

(4.1) h :
l

[

i=1

[

n�0

fn(c
i

)
�

⇠ !
l

[

i=1

[

n�0

gn(c̃
i

)
�

⇠

defined by h[fn(c
i

)] = gn[c̃
i

] is an order preserving bijection.
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Clearly, if f and g are essentially conjugate then they are essentially combina-
torially equivalent. The reverse implication also holds provided each one-sided
periodic attractor of f corresponds in a unique way to a one-sided periodic
attractor of g, see the Corollary of Theorem 3.1.

Definition. Let � be a connected subset � of a Euclidean space. We say that
a l-modal family f

µ

, µ 2 � is full if, given a l-modal map g : I ! I such that

1. no lap of g is contained in an equivalence class of ⇠;

2. each periodic turning point is an attractor (this conditions is automatically
satisfied if g is C1);

3. g has the same orientation as maps from the family f
µ

,

there exists µ0 2 � such that g and f
µ

0 are essentially conjugate.

Because of Remark 3 above Theorem 3.2 the kneading invariants of g and
f

µ

0 are the same. However, if g has wandering intervals the alternative ‘unusual’
kneading invariants from Remark 4 above Theorem 3.2 of g and f

µ

0 might di↵er
(as was explained in that remark). The reason we impose the first condition
on g is that otherwise g/ ⇠ : I/ ⇠! I/ ⇠ might not have modality l. The
second condition excludes a map of the type g(x) = �s|x � 1/2| + s/2 with
s = (1 +

p
5)/2 which has a repelling turning point of period three. We exclude

this type of map because no smooth map can be essentially conjugate to g since
a periodic turning point of a smooth map is necessarily an essential attractor. It
is easy to check that we could drop this assumption if we merely want that f

µ

is
essentially semi-conjugate to g (this means that there exists an order preserving
continuous surjection h : I/ ⇠! I/ ⇠ such that h � (f/ ⇠) = (g/ ⇠) � h). In
this case the semi-conjugacy only can 4 the basin a periodic turning point of f

µ

(and this happens precisely if the corresponding periodic turning point of g is
not attracting).

In this section we will show that many families are full. The appropriate
condition for this is given in the following definition.

Definition. We say that F : � ! V is persistently surjective if the induced
homology map

F⇤ : H⇤(�, F�1(@V ))! H⇤(V, @V )

is surjective. Equivalently, if each interior deformation F
t

: � ! V , t 2 [0, 1],
of F is surjective for each t. Here, an arc of continuous maps G

t

: W ! Z,
t 2 [0, 1], between subsets W and Z of Euclidean spaces is called an interior
deformation of G : W ! Z if G

t

extends continuously to a map from cl (W ) to
cl (Z), if G0 = G, G

t

= G on G�1(@Z) and if G
t

depends continuously on t.
(It is not assumed that G

t

maps @W into @Z.)
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Definition. A family of l-modal maps f
µ

: I ! I, µ 2 �, satisfying Assump-
tions 1)-4) from the beginning of this section, is persistently surjective if the
corresponding map F : � ! V is persistently surjective in the sense defined
above.

Theorem 4.1. Assume that f
µ

is a l-modal family of maps satisfying assump-
tions 1)-4) from above. Furthermore, assume that f

µ

is persistently surjective,
i.e., assume that F : �! V is persistently surjective (this condition is satisfied
if F is a homeomorphism). Then f

µ

is a full family.

Before proving the theorem let us state and prove the following

Corollary 4.1. Let a = (a0, . . . , al+1) 2 Rl+2, P
a

(x) = a0 + · · ·+ a
l+1xl+1 and

� = {a 2 Rl+2 ; P
a

is l �modal}.

Then the family P
a

, a 2 �, is a full family.

Remark. 1. Clearly, in the unimodal case and when� is connected, F : �! V
is persistently surjective if and only if it is surjective. 2. Even if F : � ! V is

surjective, F : �! V need not be persistently surjective and f
µ

need not be a
full family. Indeed, take g

a

(x) = ax(1 � x) and � = [1, 2.1] [ [3.9, 4]. One can
find di↵eomorphisms h

a

depending smoothly on a such that the map F : �! V
associated to f̂

a

= h
a

� f
a

� h�1
a

is surjective. However, there exists no a 2 �
such that the turning point of f̂

a

has period 2 and so f̂
a

, a 2 �, is not a full
family. In this example � is not connected, but in the multimodal case one can
give similar examples in which � is connected or even simply connected. For
this reason we have introduced this stronger surjectivity assumption on F . 3.

If F : � ! V is a homeomorphism then it is persistently surjective. Indeed,
suppose by contradiction that F

t

: �! V is an interior deformation of F such
that F1 : � ! V is not surjective. Then G

t

= F
t

� F�1 : V ! V satisfies
G0 = id. Moreover, G

t

can be extended continuously so that it is the identity
map restricted to @V . Indeed, take y

n

! y 2 @V and by contradiction assume
that for some subsequence F

t

F�1(y
n

) ! y0 6= y. By taking an additional
subsequence we may assume that F�1(y

n

) converges to some x 2 @�. Then
y

n

= FF�1(y
n

)! F (x) and therefore y = F (x). Hence F
t

F�1(y
n

)! F
t

(x) =
F (x) = y, a contradiction. Since F1 is not surjective, G1 is also not surjective
and therefore G1 can be used to define a retract of the simplex onto its boundary.
(A retract from a topological space B to a subset A of B is a continuous map
r : B ! A such that r|A = id.) As is well known, see for example Dold (1972)
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or Massey (1991), this is impossible. 4. From Exercise IV.1.7, it follows that

these polynomial maps P
a

have an important additional property: they have
negative Schwarzian derivative (later we shall define this notion). From this and
the above Corollary it will follow that polynomial maps model all multimodal
maps, see Section 6. 5. Let f

µ

be a full l-modal family and let g be a l-modal

map with the same orientation. In general, there exists no parameter µ such
that f

µ

is combinatorially equivalent to g. This is the reason we had to include
the notion of essential combinatorial equivalence in the definition of full families.
Let us give an example, due to Milnor, why this stronger equivalence does not
always hold for maps as above. Choose a smooth bimodal map g : [0, 1]! [0, 1]
with g(0) = 0, g(1) = 1 so that its first turning point c1 maps to a point with
itinerary I3I1I1I1I1 · · · = I3(I1)1 and its second turning point c2 maps to a
point with itinerary (I1)1. Furthermore, choose g so that 0 is an inessential
attracting fixed point, with g(g(c1)) and g(c2) as distinct points in its immediate
basin. For example, g can be a polynomial of degree 4. However, no polynomial
P of degree 3 can realize this kneading data. This is because 0 is an inessential
fixed point of g. Indeed, in the degree 3 case, since P (0) � 0, if P (c1) > c1 and
since P 00(x) < 0 for x  c1, we would have P (x) > x for 0 < x  c1. Hence
0 would be the only point which could have itinerary (I1)1. Since P (c1) > c2,
it would follow that P (P (c1)) > P (c2) � 0, so that P (c1) can not have the
specified itinerary.

Proof of Corollary: Let us first show that � is a l-dimensional bounded
submanifold of R2+l. By definition a l-modal map sends @I into itself. So
assuming that I = [0, 1] there are several possibilities. Let us take the case that
P

a

(0) = 0 and P
a

(1) = 1 (so l is even). Then a0 = 0 and a
l+1 = 1�a1� · · ·�a

l

.
For a 2 � let c

i

(a) be the i-th turning point of P
a

. Note that because P
a

is l-
modal and this polynomial is of degree l+1, all critical points (points where DP

a

is zero) are turning points (the second derivative in these points is non-zero).
Let v

i

(a) = P
a

(c
i

(a)). Then

@v
i

@a
j

(a) = cj

i

� cl+1
i

for 1  i, j  l. Note that v
i

(a) are the components of F (a). Hence the Jacobian
of F is equal to the determinant of the matrix

0

B

B

B

@

c1 � cl+1
1 c2

1 � cl+1
1 . . . cl

1 � cl+1
1

c2 � cl+1
2 c2

2 � cl+1
2 . . . cl

2 � cl+1
2

...
...

. . .
...

c
l

� cl+1
l

c2
l

� cl+1
l

. . . cl

l

� cl+1
l

1

C

C

C

A
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which is equal to the determinant of
0

B

B

B

@

c1 � cl+1
1 c2

1 � c1 . . . cl

1 � c1

c2 � cl+1
2 c2

2 � c2 . . . cl

2 � c2

...
...

. . .
...

c
l

� cl+1
l

c2
l

� c
l

. . . cl

l

� c
l

1

C

C

C

A

which is a polynomial Q in (c1, . . . , cl

) of degree l+
l(l + 1)

2
. On the other hand

Q vanishes in the spaces c
i

� c
j

= 0, c
i

= 0 and c
j

= 1, where 1  i, j  l. By
factoring we get that Q is some polynomial q times

l

Y

i=1

c
i

⇥
l

Y

j=1

(c
j

� 1) ⇥
Y

i<j

(c
i

� c
j

).

Comparing the degree of the polynomials we see that q is actually a constant.
Hence the map a 7! F (a) has non-vanishing Jacobian on � and is therefore a
local di↵eomorphism. So let us show that F is injective on each component of
�. Since F extends continuously to the boundary, F (@�) ⇢ @V and F is a local
di↵eomorphism, one has that F�1(y) is a finite set for each y 2 V . Let n be the
maximal cardinality of F�1(y) for y 2 V . Because F is a local di↵eomorphism,
the set V0 of y 2 V such that #F�1(y) = n is open. We want to first show that
V0 = V ; so assume this is not the case. Then take y0 2 V0 and y1 2 V \ V0

and an arc � : [0, 1] ! V starting at y0 and ending at y1. Let s 2 [0, 1] be
min{t ; �(t) 2 @V0}. Because F is a local di↵eomorphism, � : [0, s) ! V0 has
n preimages, say �1, . . . , �n

: [0, s) ! �. Because of continuity of F , any limit
point of �

i

(t) as t " s belongs to F�1(s) which consists of at most n points and
because of F (@�) ⇢ @V this gives F�1(s) ⇢ V . So �

i

(t) converges to a point
x

i

2 V as t " s. Because F is a local di↵eomorphism x
i

cannot be equal to x
j

for i 6= j, because otherwise �
i

(t) = �
j

(t) for t < s close to s, a contradiction.
So V0 is closed and therefore V0 = V . This implies that F is a covering map.
This means any y 2 V has a neighbourhood U such that each component of
F�1(U) maps di↵eomorphically onto U . To prove this, let x1, . . . , xn

be the
preimages of y 2 V . Let W

i

be a neighbourhood of x
i

which is mapped by F
di↵eomorphically onto F (W

i

) and choose these neighbourhoods to be mutually
disjoint. Now take U = \F (W

i

) and let W 0
i

= W
i

\ F�1(U). So F maps
W

i

di↵eomorphically onto U and since each point of U ⇢ V has precisely n
preimages, F�1(U) = W1 [ · · · [W

n

. Hence F is a covering map. Since V is
simply connected it follows easily that the restriction of F to each connected
component is a homeomorphism. Hence the theorem above implies that P

a

,
a 2 � is a full family.

The proof of Theorem 4.1, which will occupy the remainder of this section,
will use the so-called Thurston map and is based on the fact that there exists no
retract from a simplex onto its boundary. There is a widely known alternative
way to show that unimodal families are full which is based on a connectedness
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argument similar to the one used in the proof of Theorem 3.2, see for example
Metropolis et al. (1973), Collet and Eckmann (1980) or Van Strien (1987).
In the multimodal case the traditional proof does not work because the space
of kneading invariants associated to multimodal maps is not ordered. Even in
the unimodal case we prefer our proof because it gives an algorithmic way of
constructing maps with a certain kneading invariant. This algorithm was used
to draw many of the pictures in this book.

Because the proof of this theorem is quite long we have subdivided it into
four steps. In Step 1 we shall prove the result in the case that each turning
point is eventually periodic under the additional assumption that F is a homeo-
morphism. In Steps 2, 3 and 4 we shall deal with the general case. Of course,
we can collapse each of the components of the basins of inessential periodic at-
tractors of g, the intervals consisting of periodic orbits of constant period and
all wandering intervals. Consequently, we may and will assume that g has no
inessential periodic attractors, no intervals of periodic points and no wandering
intervals. Moreover, by assumption, each periodic turning point of g is attract-
ing. Because of the Corollary below Theorem 3.1, it is enough to show that
for each such map g there exists a parameter µ such that the following two
properties are satisfied. Property 1. The map

(4.2) h :
l

[

i=1

[

n�0

fn

µ

(c
i

)
�

⇠ !
l

[

i=1

[

n�0

gn(c̃
i

)

defined by h[fn(c
i

)] = gn[c̃
i

] is an order preserving bijection; here ⇠ is the (order
preserving) equivalence relation from above. (Notice that we do not need to use
the equivalence relation on the right hand side of (4.2) because have already
collapsed equivalence classes for g. This is why we may say that f

µ

and g are
essentially combinatorially equivalent if (4.2) is satisfied).
Property 2. Whenever c

i

, c
j

are in the basin of one periodic attractor p of period
n, the same holds for c̃

i

, c̃
j

and vice versa; this periodic attractor p is one-sided
if and only if the same holds for the corresponding periodic attractor p̃.

Step 1: F : � ! V is a homeomorphism and each turning
point of g is eventually periodic

Let us first prove the result under the additional assumptions that F is a ho-
meomorphism and that each turning point of g is eventually periodic. In this
case the sets from (4.2) have finite cardinality. The main tool in the proof is the
pullback argument from the previous section. For simplicity assume that the
turning points of g are not mapped into the boundary of I. (If this happens the
situation is clear for this turning point.) The parameter µ so that f

µ

is combi-
natorially equivalent to g will be found as a limit of a sequence of parameters
µ(n).

One way to construct these parameters is as follows. Because F is a ho-
meomorphism, there exists a unique parameter µ(0) such that the values in the
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critical points of f
µ(0) are the same as those in corresponding critical points of

g. Hence there exists a unique orientation preserving homeomorphism h0 such
that f

µ(0) = g0 � h0 where g0 = g. Now write g1 = h�1
0 � g0 � h0. Proceeding in

this way inductively, we construct homeomorphisms h
n

, parameters µ(n) such
that f

µ(n) = g
n

� h
n

and maps g
n+1 = h�1

n

� g
n

� h
n

which are topologically
conjugate to g. Except in the case that f

µ

is a polynomial family (and - as we
assumed here - each turning point of g is eventually periodic) it is not known
whether this sequence µ(n) converges, see also Section II.10.

Therefore we shall follow a somewhat di↵erent strategy: we shall show that
there exists some map g0 which is merely conjugate to g and for which the
procedure from above does converge. More precisely, we shall choose g0 so that
if we set f

µ(0) = g0 � h0 as before then h0 fixes all iterates of turning points of
g0. It follows that g1 = h�1

0 � g0 � h0 has the same extremal values as g0 and
that µ(1) = µ(0). Thus we get that µ(n) is equal to µ(0) for all n. Because all
relevant information about the map g is contained in the forward orbits of the
turning points, we shall emphasize the role of these iterates in the proof below.

So let us be more specific. By assumption, the forward orbits of the turning
points of g consist of a finite number, say k, distinct points 0 < z1 < z2 <
· · · < z

k

< 1 and l of these points are equal to c1 < c2 < · · · < c
l

. Let
⇡ : {1, . . . , k} ! {1, . . . , k} be so that g(z

i

) = z
⇡(i) and let z

t(1) < z
t(2) < · · · <

z
t(l) be the turning points of g. In other words, the graph of g goes through

the points (z
i

, z
⇡(i)) 2 [0, 1] ⇥ [0, 1], i = 1, . . . , k. (The relevant information is

really contained in the points (z
i

,⇡(z
i

)) which can be thought of as the graph
of ⇡. The information we shall use about g is just that it is l-modal and passes
through these points. So if we connect the consecutive points by line segments
we get a l-modal map as in Figure 4.1 which contains the same combinatorial
information as g.) By definition

�

z
⇡(t(1)), . . . , z⇡(t(l))

�

2 V.

The points z
j

correspond to iterates of the turning points of g and this map
is assumed to have no inessential periodic attractors. From this one gets the
following.

Claim. For each m 2 {1, . . . , k} there exists s and i = 1, . . . , l so that either
⇡s(m + 1)  t(i)  ⇡s(m) or ⇡s(m)  t(i)  ⇡s(m + 1) (and one of the
inequalities is strict).

Proof of Claim: Since the turning points of g are eventually periodic, the
corresponding interval [z

m

, z
m+1] would otherwise eventually be mapped into

a periodic homterval. Since g has no inessential periodic attractors, this is
impossible.

Let us show that there exists a parameter µ for which f
µ

is essentially combi-
natorially equivalent to g. For this let W be the space of points (x1, . . . , xk

) 2 Rk

with 0 < x1 < x2 < · · · < x
k

< 1. Clearly W is a simplex. Unfortunately, this
simplex is not closed. Let @W be the set of points (x1, . . . , xk

) 2 Rk with
0  x1  x2  · · ·  x

k

 1 such that at least one equality holds. This set is
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Fig. 4.1: The points (x
1

, . . . , x
k

) and the corresponding points (y
1

, . . . , y
k

) =

T (x
1

, . . . , x
k

). Here ⇡(1) = 3, ⇡(2) = 5, ⇡(3) = 3, ⇡(4) = 1 and ⇡(5) = 3. Note

that the map T depends on the family f
µ

and is not dynamical: the second iterate of

T in general uses a pullback by two di↵erent maps from the family. Only at a fixed

point of T the pullback has a dynamical meaning.

the boundary of W and W [ @W is closed. Now take x = (x1, . . . , xk

) 2 W .
Since (z

⇡(t(1)), . . . , z⇡(t(l))),

(x
⇡(t(1)), . . . , x⇡(t(l))) 2 V.

Since F : �! V is a homeomorphism, there exists therefore a unique parameter
µ = µ(x1, . . . , xk

) such that

(4.3) f
µ

(c
i

(µ)) = x
⇡(t(i)) for i = 1, . . . , l.

Such a point µ(x1, . . . , xk

) exists because the map

F : �! (f
µ

(c1(µ)), . . . , f
µ

(c
l

(µ))) 2 V

is surjective and therefore has (x
⇡(t(1)), . . . , x⇡(t(l))) as a value. It is unique be-

cause we have assumed that F is a homeomorphism which is also the reason that
µ(x1, . . . , xk

) depends continuously on (x1, . . . , xk

) 2 W . Furthermore, there
exists a unique point (y1, . . . , yk

) 2 W depending continuously on (x1, . . . , xk

)
such that a) the t(j)-th coordinate of this vector, y

t(j), is the j-th turning point

of f
µ

(and therefore f
µ(x1,...,x

k

)(yt(j)) = x
⇡(t(j))); b) if i /2 {t(1), . . . , t(l)} then

there exists j such that x
t(j�1) < x

i

< x
t(j)¿ Then define y

i

to be the unique
point such that

(4.4) f
µ(x1,...,x

k

)(yi

) = x
⇡(i)

and such that y
i

is in the j-th interval of monotonicity of f
µ(x1,...,x

k

), i.e.,
y

t(j�1) < y
i

< y
t(j), see Figure 4.1. This choice is possible, because by def-

inition of the ordering, x
⇡(i) is contained in the interval connecting x

⇡(t(j�1))
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and x
⇡(t(j)). Since these points are equal to respectively f

µ

(y
t(j�1)) and f

µ

(y
t(j))

it follows that one can choose y
i

as above.

The map
T (x1, . . . , xk

) = {(y1, . . . , yk

) as in (4.4)}

defines a continuous single-valued map T from W into itself. We call T the
Thurston map associated to the family f

µ

.
It su�ces to show that T has a fixed point (x1, . . . , xk

) 2 W , because then
there exists a parameter µ such that f

µ

(x
i

) = x
⇡(i) and such that f

µ

(c
i

(µ)) =
x
⇡(t(i)). From the choice of the pullback above, it follows that x

t(i) = c
i

(µ) and
that the forward iterates of c1(µ), . . . , c

l

(µ) are ordered the same way in [0, 1]
as the forward iterates of the turning points of g. Hence f

µ

and g are combina-
torially equivalent. Note that in this setting we are not primarily interested in
finding a good parameter µ but in finding a good realizable ‘spatial structure’
for the ‘ordered structure’ of the forward orbit of the turning points. Unfor-
tunately, the existence of such a fixed point in W does not follow immediately
from Brouwer’s Fixed Point Theorem since W is not closed. Even if T extends
continuously to the closed simplex W [ @W and therefore has fixed points in
this larger simplex, these fixed points of T could, a priori, all be in @W (and
therefore of no use). In the exercises below we see that some of the fixed points
could, indeed, be in @W .

Exercise 4.1. Show that T is not a homeomorphism from W onto W . (Hint: it is not

surjective because y
t(i)

are turning points of f
µ

; by a parameter dependent coordinate

change we may assume that the positions of the turning points of f
µ

do not vary and

therefore y
t(i)

can only take one value c
i

. It is also easy to show explicitly that T need

not be injective.)

Exercise 4.2. Show that T can have fixed points in @W and also periodic points

in W . (Hint: take the quadratic family f
µ

(x) = µx(1 � x). Then c = 1/2 is the

turning point of f
µ

. Let g be some continuous unimodal map such that g4(c) = c and

g2(c) < c < g3(c) < g(c). That is, the graph of g goes through points (x
i

, x
⇡(i)

) where

0 < x
1

< x
2

< x
3

< x
4

< 1 and ⇡ is simply the permutation on {1, . . . , 4} defined

by ⇡(1) = 3, ⇡(2) = 4, ⇡(3) = 2 and ⇡(4) = 1. It is easy to see that there exists

a parameter µ such that f2

µ

(c) < c = f4

µ

(c) < f3

µ

(c) < f
µ

(c) and also µ0 such that

f2

µ

0(c) = c < f3

µ

0(c) = f4

µ

0(c). It follows that the map T from above has a fixed point

(x
1

, x
2

, x
3

, x
4

) in W but also one of the form (x, x, y, y) in @W .)

Exercise 4.3. Exercise 4.3 Show that even if T can be extended to the boundary

of W it does not necessarily map @W into @W . (Hint: if for example precisely two

of the points x
1

< · · · < x
k

, say x
⇡(i)

< x
⇡(i)+1

, are extremely close together and if

⇡(i± 1) 6= ⇡(i) + 1, then none of the corresponding points y
1

< · · · < y
k

are too close

together; this is because these two nearby points are pulled back through di↵erent

branches of f
µ

.)

Exercise 4.4. Suppose that at least one of the turning points of g is in the basin of

an inessential periodic attractor. Show that in this case all fixed points of T may be

contained in the boundary of W . (Hint: let f
µ

be the quadratic family and g be a

unimodal map with turning point c such that, for example, g2(c) < g3(c) < g4(c) =
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g8(c) < g6(c) < c < g5(c) < g7(c) < g(c). Note that the orbit c is mapped onto the

orbit g4(c) < g6(c) < g5(c) < g7(c). The interval [g4(c), g6(c)] is a periodic homterval

of period two. Therefore there is no quadratic map for which the orbit of the critical

point is ordered in the same way.)

For simplicity we define for x = (x1, . . . , xk

) 2W ,

d(x, @W ) = min
i=2,...,k

|x
i

� x
i�1|.

We claim that if T has no fixed point in W then there exists an interior de-
formation of id : W ! W to a non-surjective map. We shall prove this in the
following two lemmas.

Lemma 4.1. For any sequence x(n) 2W converging to some x 2 @W ,

lim
n!1

|T (x(n))� x(n)|
d(x(n), @W )

=1.

Proof. Suppose by contradiction this is false. Then there exists a sequence
x

n

! @W and a constant K <1 such that

(4.5)
|T (x(n))� x(n)|

d(x(n), @W )
 K

for all n. Writing x(n) = (x1(n), . . . , x
k

(n)) and (y1(n), . . . , y
k

(n)) = T (x(n)).
Using (4.5),

(4.6)

|x
⇡(i)(n)� x

⇡(j)(n)| � |y
⇡(i)(n)� y

⇡(j)(n)|
� |x

⇡(j)(n)� y
⇡(j)(n)|� |x

⇡(i)(n)� y
⇡(i)(n)|

� |y
⇡(i)(n)� y

⇡(j)(n)|� 2 · |x(n)� T (x(n))|
� |y

⇡(i)(n)� y
⇡(j)(n)|� 2K · d(x(n), @W ).

By definition, f
µ(n)(yi

(n)) = x
⇡(i)(n). Because x(n)! x 2 @W and because of

(4.5) we have that y(n)! x. From the Mean Value Theorem,

(4.7)
|y

i

(n)� y
j

(n)|
|x
⇡(i)(n)� x

⇡(j)(n)| =
1

|Df
µ(n)(z(n))|

for some z(n) which is between y
i

(n) and y
j

(n). Hence taking

C = max
µ,x

|Df
µ

(x)|,

one gets

(4.8) C · |y
i

(n)� y
j

(n)| � |x
⇡(i)(n)� x

⇡(j)(n)|

for all n. Combining this with (4.6) one gets a constant K1 <1 with

|y
⇡(i)(n)� y

⇡(j)(n)|  C · |y
i

(n)� y
j

(n)|+ K1 · d(x(n), @W ).
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Repeating this one gets for each s 2 N constants C
s

> 0 and K
s

<1 such that

(4.9) |y
⇡

s(i)(n)� y
⇡

s(i+1)(n)|  C
s

· |y
i

(n)� y
i+1(n)|+ K

s

· d(x(n), @W )

for each n 2 N. Take m 2 {1, . . . , k � 1} such that |y
m

(n) � y
m+1(n)| =

d(y(n), @W ) (of course m might depend on n). Because x(n) ! x 2 @W and
because of (4.5) we have that y(n) ! @W . So some points collapse in the
limit. Let us show that this implies that one of the turning points and one of its
neighbours also collapse in the limit. So take the integer s corresponding to m
as in the Claim at the beginning of this step. Note that we use here that g has
no inessential attractors because otherwise such an integer s might not exist.)
Then y

⇡

s(m)(n) and y
⇡

s(m+1)(n) lie on di↵erent sides of a turning point of f
µ(n)

and so there exists r 2 {1, . . . , l} such that either

|y
t(r)(n)� y

t(r)+1(n)|  |y
⇡

s(m)(n)� y
⇡

s(m+1)(n)|

or
|y

t(r)(n)� y
t(r)�1(n)|  |y

⇡

s(m)(n)� y
⇡

s(m+1)(n)|.

Let us assume we are in the former case. Then we get from (4.9),

d(y(n), @W ) = |y
m

(n)� y
m+1(n)|

� C 0
s

· |y
⇡

s(m)(n)� y
⇡

s(m+1)(n)|�K 0
s

· d(x(n), @W )

� C 0
s

· |y
t(r)(n)� y

t(r)+1(n)|�K 0
s

· d(x(n), @W ).

Because x(n)! x 2 @W and because of (4.5) we have that y(n)! @W . Hence,
using (4.7),

|y
t(r)(n)� y

t(r)+1(n)|
|x
⇡(t(r))(n)� x

⇡(t(r)+1)(n)| !1

because y
t(r)(n) is a turning point of f

µ(n). Therefore,

d(y(n), @W )
d(x(n), @W )

� C 0
s

·
|y

t(r)(n)� y
t(r)+1(n)|

|x
⇡(t(r))(n)� x

⇡(t(r)+1)(n)| �K 0
s

· d(x(n), @W )
d(x(n), @W )

!1.

Of course this contradicts (4.5).

Lemma 4.2. If T : W ! W has no fixed points in the open set W then there
exists an interior deformation H

t

of id : W !W such that H1 is not surjective
(in other words, the identity map id : W !W is not persistently surjective).

Proof of Lemma 4.2: The idea of the proof of this lemma is to show that
the direction of the vector T (x) � x ‘points inward’ if x 2 W is near @W . We
should emphasize that we shall not use that T extends continuously to @W .
In order to construct a deformation as above, we will construct curves in W
which are roughly speaking the ‘geodesics in terms of a hyperbolic metric’ on
W ; these curves are used to deform the map T . We shall construct these curves
by mapping W di↵eomorphically onto a ball and considering the curves in W
which correspond to straight lines in the ball, see Figure 4.2.
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More precisely, let ⇢ map a stereographic projection from the closure of W
homeomorphically onto the closed ball B centred in 0 and with radius l. This
map is defined as follows. Since W ⇢ B there exists z0 in the interior of W \B.
For z 2 @W , let ⇢(z) 2 @B be the intersection of the infinite ray from z0 through
z with @B and then interpolate ⇢ linearly on each such ray.

We get from Lemma 4.1 that, if v 2 Rk is a limit of

(4.9) lim
x(n)!x

⇢(T (x(n)))� ⇢(x(n))
|⇢(T (x(n)))� ⇢(x(n))|

for some sequence x(n) 2W converging to x 2 @W , then v is either tangent to
@B or points inwards. Since T has no fixed points in W , ⇢(T (z)) 6= ⇢(z) for all
z 2W . Let  (z) 2 @B so that ⇢(z) lies on the straight line between ⇢(T (z)) and
 (z). Now let  

t

: W ! B, t 2 [0, 1) be defined by  
t

(z) = ⇢(z)+t( (z)�⇢(z)).
Because of (4.9), the vector from ⇢(z) to ⇢(T (z)) points inwards, and therefore
|⇢(z)� (z)|! 0 when z ! @W . Hence  

t

extends continuously to @W and  1

is equal to ⇢(z) on @W . In particular, H
t

= ⇢�1 �  
t

: W ! W is the required
deformation which moves x 2 W along the ‘hyperbolic geodesic’ connecting x
and T (x) towards the boundary of W .
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Fig. 4.2: The map  from W to @W if T has no fixed points.

From the previous lemma it follows that if T has no fixed points then one
can find an interior deformation from the identity map on W to a non-surjective
map. Since W is a finite-dimensional simplex this is impossible, see for example
Dold (1972). This concludes the proof of the theorem in this case.

Step 2: F : � ! V is a homeomorphism and each turning
point of g is either eventually periodic or belongs to the
basin of an essential periodic attractor

Let us now generalize the previous situation and allow g to have periodic at-
tractors. Let us first explain the di�culty. Of course, if one of the turning
points is not eventually periodic, then there are infinitely many distinct iterates
of turning points and therefore the set W from Step 1 would have to be taken
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infinite-dimensional. As is well known, the theorem on retracts is rather more
delicate in the infinite-dimensional case. Moreover, the method we used to show
that the boundary of W is repelling would not work if W is infinite-dimensional.
Therefore, we will consider only a finite piece of the orbit of each turning point
and use this to make sure that the dynamics in the remaining pieces of the
orbits is ‘correct’.
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Fig. 4.3: A fundamental domain D
j

.

Let C(g) = {c1, . . . , cl

} and

C
k

(g) =
k

[

i=0

gi(C(g)).

For each essential periodic orbit choose a point p
j

on this orbit such that the
component B

j

of the immediate basin of this orbit which contains p
j

also con-
tains a turning point z

a(j). Choose p
j

and z
a(j) so that all iterates of g are

monotone on the interval connecting p
j

and z
a(j). Moreover, choose a closed

subset D
j

of B
j

so that

1. each boundary point of D
j

is an iterate of a turning point of g;

2. the boundary of D
j

contains two forward iterates of z
a(j); D

j

consists of
one component if p

j

is orientation reversing or a turning point; D
j

can
consist of one or two components if p

j

is orientation preserving (it has
two components precisely if p

j

attracts di↵erent turning points from each
side);

3. the forward orbit of each turning points which is attracted to p
j

(but not
mapped into this orbit) intersects the interior of D

j

at most once and the
closure of D

j

at least once;

4. the smallest interval containing D
j

, z
a(j) and p

j

is a homterval contained
in the basin of p

j

.
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The subset D
j

is called the fundamental domain of p
j

. For convenience, let (j)
be the period of p

j

and denote the iterates of z
a(j) in the boundary of D

j

by

z
⇡

�(j)(j)(a(j)) = z
r(j)

and
z
⇡

(�(j)+1)(j)(a(j)) = z
⇡

(j)(r(j));

(In other words g�(j)(j)(z
a(j)) = z

r(j) and g(�(j)+1)(j)(z
a(j)) = g(j)(z

r(j)).)

Next we take for each turning point c
i

of g the smallest positive integer n(i)
so that either

(4.10) gn(i)(c
i

) 2 C
n(i)�1(g) or gn(i)(c

i

) 2 [(D
j

[ {p
j

}).

Then c
i

, . . . , gn(i)(c
i

), i = 1, . . . , l and p
j

, g(p
j

), g2(p
j

), . . . consists of a finite
number, say k, distinct points 0 < z1 < z2 < · · · < z

k

< 1 such that l of these
points are equal to c1 < c2 < · · · < c

l

. From this choice, there are no points
in {z1, . . . , zk

} between D
j

and the periodic attractor p
j

and each of the points
of the periodic orbit O(p

j

) corresponds to a point z
i

. Let p
j

= z
d(j). This

defines the space W as before. Note that the map ⇡ such that z
⇡(i) = g(z

i

)
from the previous step is only defined on a subset of {1, . . . , k}. Let z

l(j) be
so that [z

l(j), zr(j)] is the smallest interval containing D
j

and z
d(j). If D

j

has
two components then z

l(j) and z
r(j) are the ‘external points’ of D

j

. If D
j

has
one component then one of the points coincides with z

d(j) and the other is in
the ‘external’ boundary of D

j

. Note that ⇡(r(j)), ⇡(d(j)) and ⇡(l(j)) are well
defined.

Let us now define the Thurston map associated to this family. Let x 2 W .
Choose as before µ(x) 2 � so that f

µ(x) has extremal values x
⇡(t(i)). Now

we define (y1, . . . , yk

) as follows. If z
i

/2 [
j

int (z
l(j), zr(j)) then we define y

i

,
as before, to be the unique point with f

µ(x)(yi

) = x
i

that lies in the m-th
interval of monotonicity of f

µ(x) where m is so that z
i

lies in the m-th interval
of monotonicity of g. This defines in particular the points y

l(j) and y
r(j). Next

let L
j

be the orientation preserving a�ne map which sends z
l(j) and z

r(j) to
y

l(j) and y
r(j). Now define y

i

when z
i

2 (z
l(j), zr(j)) by y

i

= L
j

(z
i

). Thus
(y1, . . . , yk

) is well defined. Now we shall prove the analogue of Lemma 4.1 in
this case.

Lemma 4.3. For any sequence x(n) 2W converging to some x 2 @W ,

lim
n!1

|T (x(n))� x(n)|
d(x(n), @W )

=1.

Proof. Suppose by contradiction that there exists K < 1 and a sequence
x(n)! @W for which

(4.11)
|T (x(n))� x(n)|

d(x(n), @W )
 K.
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As before, write x(n) = (x1(n), . . . , x
k

(n)) and (y1(n), . . . , y
k

(n)) = T (x(n)).
As in Lemma 4.1, for each s 2 N there are constants C

s

> 0 and K
s

<1 such
that

(4.12) |y
⇡

s(i)(n)� y
⇡

s(i+1)(n)|  C
s

· |y
i

(n)� y
i+1(n)|+ K

s

· d(x(n), @W )

for each n 2 N provided z
⇡

�(i), z⇡�(i+1) /2 [(z
l(j), zr(j)) for � = 0, . . . , s�1. Take

m 2 {1, . . . , k � 1} such that |y
m

(n) � y
m+1(n)| = d(y(n), @W ) (of course m

might depend on n). If it is not the case that both z
m

and z
m+1 are contained in

some component of a basin of an essential periodic attractor, then (4.11) gives
a contradiction exactly as in Lemma 4.1. So we may assume that (z

m

, z
m+1) is

contained in some component of the basin of an essential periodic attractor of
g. Take s so that z

⇡

s(m) or z
⇡

s(m+1) is in (z
l(j), zr(j)) with s minimal for some

j. From inequality (4.12),

|y
⇡

s(m)(n)� y
⇡

s(m+1)(n)|  C
s

· |y
m

(n)� y
m+1(n)|+ K

s

· d(x(n), @W ).

Hence one can find m0 2 {1, . . . , k} such that z
m

0 , z
m

0+1 2 [z
l(j), zr(j)] with

|y
m

0(n)� y
m

0+1(n)|  C
s

· |y
m

(n)� y
m+1(n)|+ K

s

· d(x(n), @W ).

By definition, y
l(j), yd(j), ym

0 , y
m

0+1, y
r(j) are images under f

µ

of the correspond-
ing points z

l(j), zd(j), zm

0 , z
m

0+1, z
r(j) under an a�ne map. It follows that there

is a universal constant ⌧ <1 such that

(4.13)

|y
i

(n)� y
i

0(n)|  ⌧ · |y
m

0(n)� y
m

0+1(n)|
 ⌧ · C

s

· |y
m

(n)� y
m+1(n)|+ ⌧ ·K

s

· d(x(n), @W )

 ⌧ · C
s

· d(y(n), @W ) + ⌧ ·K
s

· d(x(n), @W )

for each i, i0 with z
i

, z
i

0 2 [z
l(j), zr(j)]. Therefore if (4.11) holds then y(n)! @W

and (4.13) gives

(4.14)
|y
⇡

�(j)(j)(a(j))(n)� y
⇡

(�(j)+1)(j)(a(j))(n)|
= |y

⇡

(j)(r(j))(n)� y
r(j)(n)|! 0

as n!1. We claim that (4.11) implies that either i) the distance of the interval
[y

l(j)(n), y
r(j)(n)] to the turning point y

a(j) tends to zero, or, ii) Df
µ(n) tends to

zero on the entire interval of monotonicity of f
µ(n) containing [y

l(j)(n), y
r(j)(n)].

Indeed, if the last possibility does not hold then we get by Assumption 4 that
Df

µ(n) also does not go to zero on any subinterval of this interval of monotonic-
ity. Now we have for s = 1, . . . ,�(j) + 1,

(4.15)

|f
µ(n)(y

⇡

(s�1)(j)(a(j))(n))� f
µ(n)(y

⇡

s(j)(a(j))(n))|
= |x

⇡

s(j)(a(j))(n)� x
⇡

(s+1)(j)(a(j))(n)|
 |y

⇡

s(j)(a(j))(n)� y
⇡

(s+1)(j)(a(j))(n)| + 2d(x(n), y(n))

and by assumption all the points y
⇡

s(j)(a(j))(n), s = 0, . . . ,�(j)+1 are contained
in the same interval of monotonicity. Because of (4.14) and (4.11) the terms in
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(4.15) converge to zero as n!1 when s = �(j) + 1. Because Df
µ(n) does not

tend to zero on any subinterval of this interval of monotonicity we get

lim
n!1 |y⇡s(j)(a(j))(n)� y

⇡

(s+1)(j)(a(j))(n)| = 0

for s = �(j). Continuing in this way we get

lim
n!1 |y⇡(s�1)(j)(a(j))(n)� y

⇡

s(j)(a(j))(n)| = 0

for all s = 1, . . . ,�(j) + 1. So all these points are close to the turning point
y

a(j)(n) and since |y
l(j)(n) � y

r(j)(n)| ! 0 this completes the proof of the
claim. Both i) and ii) imply that Df

µ(n) tends to zero on the interval on
[y

l(j)(n), y
r(j)(n)]. In particular, it follows from the Mean Value Theorem that

|y
l(j)(n)� y

r(j)(n)|
|x
⇡(l(j))(n)� x

⇡(r(j))(n)| =
|y

l(j)(n)� y
r(j)(n)|

|f
µ(n)(yl(j)(n))� f

µ(n)(yr(j)(n))| !1

as n! 0. Hence, using (4.13),

d(y(n), @W )
d(x(n), @W )

� 1
⌧C

s

·
|y

l(j)(n)� y
r(j)(n)|

|x
⇡(l(j))(n)� x

⇡(r(j))(n)| �
K

s

C
s

· d(x(n), @W )
d(x(n), @W )

!1

as n!1. This clearly contradicts (4.11).

Using Lemmas 4.3 and 4.2, T has a fixed point in W as before. By construc-
tion this implies that there is an order preserving map sending c

i

, . . . , gn(i)(c
i

)
into c

i

(µ), . . . , fn(i)
µ

(c
i

(µ)) for each i = 1, . . . , l. It remains to be shown that the
same holds for the infinite orbits of the turning points of f

µ

. But this follows
by construction. If T (y) = y then f

µ(y)(yi

) = y
⇡(i) whenever ⇡(i) is defined

except when z
i

= z
d(j) 2 (z

l(j), zr(j)) for some j. (So in this case z
i

is the
attracting point z

d(j) and D
j

consists of two components. The reason we do
not have equality in that case is that y

d(j) is then defined as the image under
some a�ne map and not as some preimage under f

µ(y).) So if D
j

consists of one
component then it follows by construction that y

d(j) is a periodic point of f
µ(y)

with the same period as z
d(j). Let m be this period. It also follows that fm

µ(y)

is monotone on each interval [y
d(j), yi

]. This implies that each y
i

is attracted to
a periodic point y0

d(j) in this interval with the same period m or perhaps with
period m/2 (this can only happen if fm

µ(y) is orientation reversing in y
d(j)). In

general y0
d(j) need not be equal to y

d(j) but then y0
d(j) ⇠ y

d(j) where ⇠ is the
equivalence relation from above. It follows that f and g are essentially conju-
gate. If D

j

consists of two components then y
d(j) is not necessarily a periodic

point of f
µ(y) (because, in this case, T (y) = y does not imply f

µ(y)(yi

) = y
⇡(i)

when i = d(j)). Let n(j) be the period of z
d(j). Then, since D

j

consists of two
components, gn(j) is orientation preserving near z

d(j) and gn(j)(z
i

) > z
i

for z
i

in one component of D
j

and gn(j)(z
i

) < z
i

for z
i

in the other component of D
j

.
Moreover, gn(j) has no turning points in the interval connecting these two com-
ponents. Hence, since T (y) = y, the same holds for fn(j)

µ(y) : and fn(j)
µ(y)(yi

) > y
i

for z
i

in one component of D
j

and fn(j)
µ(y)(yi

) < y
i

for z
i

in the other component
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of D
j

and fn(j) is monotone on the interval connecting these points. It follows
that there exists a periodic attractor ỹ

d(j) which attracts all points y
i

for which
z
i

is in one component of D
j

and (perhaps a di↵erent) periodic attractor ŷ
d(j)

which attracts all points y
i

corresponding to z
i

in the other component of D
j

.
Moreover, fn(j)

µ(y) is monotone on [ỹ
d(j), ŷd(j)]. It follows that f

µ(y) and g are
essentially conjugate.

Remark. We should note that the points y
i

with z
i

2 D
j

are a�ne images
of corresponding points z

i

. Moreover, because of the assumption made on the
family f

µ

at the beginning of this section, the slope of this a�ne map can be
bounded from above and below in terms of �(j)(j).

Step 3: The proof of Theorem 4.1 under the assumption
that F : �! V is a homeomorphism

Let us first construct a sequence of l-modal maps g
n

tending to g in the C0

topology such that g
n

satisfies the following two properties:

1. the first n iterates of the turning points of g and g
n

coincide;

2. each turning point of g
n

is eventually periodic or contained in the basin
of an essential periodic attractor.

If g already satisfies Property 2, then we can simply take g
n

= g. Otherwise let
C(g) = {c1, . . . , cl

} and

C
k

(g) =
k

[

i=0

gi(C(g)).

Since 2) is not satisfied at least one of the turning points, say c1, is not contained
in the basin of an essential periodic attractor and also has the property that
gk(c1) /2 C

k�1(g) for all k � 1. (Otherwise each turning point which is not
contained in the basin of an essential periodic attractor has a finite orbit and
therefore is eventually periodic.) Choose � > 0 so small that distinct points
from C

n

(g) are at least � apart and let ñ be the smallest integer for which the �
neighbourhood of gñ(c1) contains a point x from C

ñ�1(g). Since the sequence
c1, g(c1), g2(c1), . . . has accumulation points, such an integer ñ exists and by
definition of � one has ñ > n. Next choose a map g̃ which coincides with g
except on the � neighbourhood of gñ�1(c1), so that g̃ñ(c1) = g̃(gñ�1(c1)) is
equal to some point x 2 C

ñ�1. We should emphasize that the first ñ�1 iterates
of the turning points of g and g̃ coincide. Next repeat this argument successively
for each turning point which is not contained in the basin of an essential periodic
attractor and for which gk(c1) /2 C

k�1(g) for all k � 1. In this process replace
n each time by the previous integer ñ and g by the previous map g̃. In this way
we eventually end up with a map ĝ and an integer n̂ such that for each turning
point c which is not contained in the basin of periodic attractor,

ĝn̂(c) 2 C
n̂�1(ĝ).
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It follows that ĝ satisfies Properties 1 and 2. By taking n su�ciently large and �
su�ciently small, we can construct a sequence of l-modal maps g

n

tending to g in
the C0 topology with the required properties. Whether or not g

n

has wandering
intervals will play no role. Also it is not necessary that g

n

is di↵erentiable.
From the previous step there exist parameters µ(n) such that the forward

iterates of the turning points of f
µ(n) and g

n

are essentially combinatorially
equivalent. Let µ0 be a limit point of the sequence of µ(n), (such a limit exists by
compactness) and let f = f

µ

0 . Since the first n iterates of the turning points of g
and g

n

coincide, the fact that g
n

and f
µ(n) are essentially combinatorially equiv-

alent implies that if c
i(1) and c

i(2) are turning points and gk

n

(c
i(1)) < gm

n

(c
i(2))

then fk

µ(n)(ci(1)(µ(n))) < fm

µ(n)(ci(2)(µ(n))). Therefore, by taking limits we get
that gk(c

i(1)) < gm(c
i(2)) implies fk(c

i(1))  fm(c
i(2)). So it remains to show

that fk(c
i(1)) 6= fm(c

i(2)).
Let us first show that fk(c

i(1)) 6= fm(c
i(2)) when c

i(1) or c
i(2) is contained

in the basin of a periodic attractor p
j

with period �(j) and let (j) be as in the
previous step. This is easy. Indeed, g

n

is equal to g on the basin of periodic
attractors. If fk(c

i(1)) = fm(c
i(2)) then

lim
n!1 |f

k

µ(n)(ci(1)(µ(n)))� fm

µ(n)(ci(2)(µ(n)))|! 0

and so the iterates of these turning points which are inside D
j

also tend to each
other. But because of the remark at the end of the previous step and since
�(j)(j) does not depend on n, this is impossible.

So let us assume that c
i(1) or c

i(2) is not contained in the basin of a periodic
attractor. By contradiction assume that fk(c

i(1)) = fm(c
i(2)). Since gk(c

i(1)) 6=
gm(c

i(2)) we have gk

n

(c
i(1)) 6= gm

n

(c
i(2)) for n su�ciently large. Therefore, by the

choice of µ(n), fk

µ(n)(ci(1)) 6= fm

µ(n)(ci(2)) while

lim
n!1 fk

µ(n)(ci(1)) = lim
n!1 fm

µ(n)(ci(2)).

Let J denote the open interval connecting gk(c
i(1)) and gm(c

i(2)). Since g has
no wandering intervals and c

i(1) is not contained in the basin of a periodic
attractor, there exists k0 � 0 so that gk

0
(J) contains a turning point. So if

J
n

denotes the open interval connecting gk

n

(c
i(1)) and gm

n

(c
i(2)), then gk

0

n

(J
n

)
contains also a turning point for n su�ciently large. Since g

n

and f
µ(n) are

essentially combinatorially equivalent, for the corresponding segment J̃
n

con-
necting fk

µ(n)(ci(1)) and fm

µ(n)(ci(2)) one has again that fk

0

µ(n)(Jn

) contains a
turning point. Since the length of this segment J̃

n

tends to zero as n ! 1,
this implies that fk

0+m(c
i(2)) = fk

0+k(c
i(1)) is a turning point c

i(3) of f . Since
fk

µ(n)(ci(1)) 6= fm

µ(n)(ci(2)) and lim
n!1 fk

µ(n)(ci(1)) = lim
n!1 fm

µ(n)(ci(2)), for all

n large either fk

0+k

µ(n) (c
i(1)) 6= c

i(3) or fk

0+m

µ(n) (c
i(2)) 6= c

i(3) and

(4.16) lim
n!1 fk

0+k

µ(n) (c
i(1)) = lim

n!1 fk

0+m

µ(n) (c
i(2)) = c

i(3).

By the construction in Step 2a, gk

0+k(c
i(1)) = c

i(3) (respectively, gk

0+m(c
i(2)) =

c
i(3)) implies that for all n, gk

0+k

n

(c
i(1)) = c

i(3) (and similarly gk

0+m

n

(c
i(2)) =
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c
i(3)). Since either fk

0+k

µ(n) (c
i(1)) 6= c

i(3) or fk

0+m

µ(n) (c
i(2)) 6= c

i(3) this implies that
either gk

0+k(c
i(1)) 6= c

i(3) or gk

0+m(c
i(2)) 6= c

i(3). Therefore, as before, the
interval connecting either fk

0+k

µ(n) (c
i(1)) or fk

0+m

µ(n) (c
i(2)) to c

i(3), is mapped after
a finite number of iterates over a turning point c

i(4). By (4.16) it follows that
this iterate of f maps c

i(3) into a turning point c
i(4). Continuing in this way, it

follows that one of the turning points of f is periodic and, since f has ‘derivative’
zero at turning points, therefore attracting. Moreover, c

i(1) and c
i(2) are both

contained in the basin of this periodic attractor, which gives a contradiction.

Step 4: The proof of Theorem 4.1

Let us now drop the assumption that F is a homeomorphism. The main di↵er-
ence with the proof in the previous steps is that there can be many parameters
µ which satisfy (4.2). More precisely, the map T becomes multi-valued when
considered as a map from W into W . Even so, we are looking for a ‘fixed point’
of T , i.e., a point z 2W for which z 2 T (z).

If all periodic points of g are eventually periodic then take z
i

as in Step
1. To start with, let V0 be the set of point (v1, . . . , vl

) 2 V which are ordered
in the same way as z

⇡(t(1)), . . . , z⇡(t(l)). This means that the values at the
turning points have the right ordering. Let �0 = F�1(V0) and let F0 denote
the restriction of F to �0. If all the integers ⇡(t(i)) are distinct (or equivalently,
if all the points z

⇡(t(i)) are distinct) then V0 is an open subset of V and otherwise
it is an open subset of a linear subspace of V . In the latter case we shall denote
by @V0 the boundary of V0 as a subset of this linear subspace of V . Furthermore,
define

⌃(v1,...,v

l

) = {x = (x1, . . . , xk

) ; 0 < x1 < · · · < x
k

< 1 and

x
⇡(t(i)) = v

i

for 1  i  l}

and
Z = {(µ, x) ; µ 2 �0 and x 2 ⌃

F (µ)}.

Note that for µ 2 �0 we get ⌃
F (µ) ⇢ W and that for µ /2 �0 the definition of

⌃
F (µ) does not even make sense, i.e., ⌃

F (µ) is the empty set. The multi-valued
map T : W ! W from above can be considered as a continuous single-valued
map from Z to W . Indeed, if (µ, x) 2 Z then x 2 ⌃

F (µ) and therefore we have,
as in (4.1),

f
µ

(c
i

(µ)) = x
⇡(t(i)).

It follows that T : Z !W can be defined exactly as before by

(y1, . . . , yk

) = T (µ, x1, . . . , xk

)

where
(y1, . . . , yk

) 2W is such that f
µ

(y
i

) = x
⇡(i)

where y
i

belongs to the j-th interval of monotonicity of f
µ

if z
i

belongs the j-th
interval of monotonicity of g.



4. FULL FAMILIES AND REALIZATION OF MAPS 131

If some turning point of g is not eventually periodic but in the basin of some
essential periodic attractor, then define z

i

as in Step 2. Take Z as above and
then define T : Z !W again as in Step 2.

Proof of Theorem 4.1: We are looking for (µ, x) 2 Z with x in the interior of
⌃

F (µ) which is a ‘fixed point’ in the sense that T (µ, x) = x. As in Lemmas 4.1
to Lemma 4.3, one proves that if such a ‘fixed point’ does not exist then there
exists an interior deformation  

t

: Z ! W from the projection (µ, x) 7! x to a
map which sends Z to @W . Indeed, if T (µ, x) 6= x for all (µ, x) 2 Z then we can
define  

t

(µ, x) to be on the ‘hyperbolic geodesic’ through x and T (µ, x) such
that x is between  

t

(µ, x) and T (µ, x). This is done exactly as in the proof of
Lemma 4.2. Because the estimates of Lemmas 4.1 and 4.3 still hold it follows
also as in Lemma 4.2 that  

t

: Z !W extends continuously to the boundary of
Z and that  1 is the projection map (µ, x)! x.

Let F̂ : Z !W be the projection

F̂ (µ, x) = x.

If T has no fixed point then

F̂
t

(µ, x) =  
t

(µ, F̂ (µ, x))

defines an interior deformation of F̂ : Z ! W to a map sending Z to @W . So
in order to show that T has ‘fixed points’, it remains to show that F̂ : Z ! W
is persistently surjective.

To prove this, let us first show that F : �0 ! V0 is persistently surjective. So
assume by contradiction that this is not the case. Then there exists an interior
deformation F

t

of F : �0 ! V0 to a map sending �0 to the boundary of V0. If
V0 is an open set then G

t

: �! V defined by

G
t

=

(

F
t

on �0

F outside �0

is an interior deformation of F : � ! V . We shall extend this deformation by
taking a point p in the interior of V0 and defining for each x 2 V \ {p} the arc
[0, 1] 7! �

t

(x) which starts in x and moves x with constant speed towards @W
along the ray starting at p and going through x. Clearly �

t

depends continuously
on t and since G1(�) ⇢ cl (V \ V0), it follows that

F
t

=

(

G2t

for t 2 [0, 1/2]
�2t�1 �G1 for t 2 [1/2, 1]

is an interior deformation of F : �! V to a map sending � to the boundary of
V , contradicting the assumption made on F in the statement of the theorem.
If V0 is a linear subspace of V then one can define G

t

similarly by extending
F

t

: �0 ! V0 to a small neighbourhood U of �0 so that F
t

: U \�0 ! V \V0 is a
well defined deformation. Hence the theorem follows from the next lemma.
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Lemma 4.4. If F : �0 ! V0 is persistently surjective then so is F̂ : Z !W .

Proof. Let pr : W ! V0 be defined by pr(x1, . . . , xk

) = (x
⇡(1), . . . , x⇡(l)). First

we claim that for each (v1, . . . , vl

) 2 int (V0), there exists a continuous map

H(v1,...,v

l

) : {w 2W ; pr(w) 2 int (V0)} ! ⌃(v1,...,v

l

)

which maps @W into the boundary of ⌃(v1,...,v

l

) and which depends continuously
on (v1, . . . , vl

) 2 int (V0). Indeed, using a piecewise a�ne homeomorphism on
[0, 1] we can send adjacent points from {x

⇡(t(1)), . . . , x⇡(t(l))} to adjacent points
from {v1, . . . , vl

}. This homeomorphism induces the map from above. Now
assume by contradiction that there exists an interior deformation of F̂

t

: Z !
W from F̂ to a map which sends Z into the boundary of W . If there exists
µ 2 �0 such that pr � F̂1(µ ⇥ ⌃

F (µ)) 6⇢ @V0 then, by the definition of an
interior deformation, we get pr � F̂

t

(µ⇥⌃
F (µ)) 6⇢ @V0 for each t 2 [0, 1). Hence,

F̃
t

: ⌃
F (µ) ! ⌃

F (µ) defined by

F̃
t

(x) := Hpr(F̂
t

(µ,x)) � F̂
t

(µ, x)

is an interior deformation and one has F̃0 = id. But since F̂1 maps Z into @W
one gets that F̃1(⌃

F (µ)) ⇢ @⌃
F (µ) and therefore F̃

t

is an interior deformation
from the identity map on ⌃

F (µ) to a map sending this space to its boundary.
This is impossible because ⌃

F (µ) is a finite-dimensional simplex as before. It
follows that for each µ 2 �0, pr � F̂1(µ ⇥ ⌃

F (µ)) 2 @V0. Take a continuous
function w : � ! ⌃

F (µ) such that for all j = 1, . . . , l all the coordinates of
w

i

(µ) of w(µ) with w
i

(µ) 2 (v
j

, v
j+1) are equally spaced in this interval; here

(v1, . . . , vl

) = F (µ), Then F̃
t

: �0 ! V0 defined by F̃
t

(µ) = pr � F̂
t

(µ, w(µ)) is
an interior deformation to a map sending �0 to @V0. Therefore F : �0 ! V0 is
not persistently surjective, a contradiction.

Remark. In Section II.10 we shall show that the Thurston map T associated
to the quadratic family f

µ

= µx(1 � x) is a contraction. This will imply that
if the turning point of f

µ

is eventually periodic then there exists no parameter
µ0 6= µ such that f

µ

0 is combinatorially equivalent to f
µ

. This result uses ideas
from Milnor, Douady, Hubbard and Sullivan, see Milnor (1983). In Section VI.4
we shall give a second proof of this last statement. This second proof is due to
Sullivan and uses quasiconformal deformations. Whether this result also holds
for more general families of maps is still an open question.

Exercise 4.5. Write a computer program which finds, given a l-modal map g for

which the orbits of the turning points are finite, a polynomial l-modal map P which is

essentially conjugate to g. (Hint: because of Remark 5 at the beginning of this section,

the map F : � ! V corresponding to the canonical l-parameter family of polynomials

P
a

is a homeomorphism. Therefore the appropriate map P
a

can be ‘constructed’ as in

Step 1. Because of the results in Section 10 of this chapter the associated Thurston

map is a contraction and therefore its fixed point can be found by Picard iteration.)

Most pictures in this book were made with such a program.



5. FAMILIES OF MAPS AND RENORMALIZATION 133

5 Families of Maps and Renormalization

In this section we shall introduce the concept of renormalization. In particu-
lar, we shall show that many maps from a full family of multimodal maps are
‘infinitely renormalizable’.

5.a: Restrictive intervals

A piecewise monotone map can sometimes be decomposed into ‘smaller’ pieces.
To formalize this notion we shall introduce the notion of restrictive intervals.

Definition. Let f : I ! I be a multimodal map. A closed proper subinterval
J of I is called restrictive with period n � 1 for f if

1. the interiors of J, . . . , fn�1(J) are disjoint;

2. fn(J) ⇢ J , fn(@J) ⇢ @J ;

3. at least one of the intervals J, . . . , fn�1(J) contains a turning point;

4. J is maximal with respect to these properties: if J 0 � J is a closed interval
which is strictly contained in I and such that the previous properties also
hold for J 0 (for the same integer n) then J 0 = J .

In the unimodal case, restrictive intervals are also called central. We say that J
is a maximal restrictive interval if there exists no restrictive interval J 0 (whose
period might be di↵erent from the period of J) which strictly contains J . The

reason to introduce this notion is that it allows us to consider pieces of the
dynamics on a finer scale:

Definition. The map fn : J ! J is called the return map or the renormaliza-
tion of f to J . If � : J ! I is an a�ne map sending J onto I then

f 7! R(f ;J) = � � fn(f) � ��1 : I ! I

is called the renormalization operator associated to J . (Of course, there are
two such maps � with opposite orientations; if the original map is unimodal
then one could choose the orientation of � so that the unimodal map R(f ;J)
is increasing on the left lap.) If such a restrictive interval exists of period � 2,
then f is called renormalizable. The class of maps which are renormalizable is
denoted by D.

It is easy to see that if f : I ! I is l-modal and fn : J ! J is the renormal-
ization of a restrictive interval J with period n, then fn : J ! J has at least
one and at most 2l � 1 turning points. In particular, if f is unimodal and J
is a restrictive interval which contains the turning point then fn : J ! J is a
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unimodal map and f folds J onto f(J) and maps f i(J) homeomorphically onto
f i+1(J) for i = 1, . . . , n� 1.

As we shall see in Section III.4 and V.6, many maps have no restrictive
intervals. On the other hand, we shall construct in this section a large class of
maps which have infinitely many restrictive intervals.

Let us first give an example which shows that the return map associated to
a restrictive interval of a l-modal map need not be l-modal.

Example. Let f : [0, 1]! [0, 1] be a bimodal map as in Figure 5.1. Clearly, the
restrictive interval J has period 2 and f2 : J ! J is 3-modal. Of course, this
might indicate that the modality of a return map of f2 : J ! J to a restrictive
interval J1 ⇢ J could again be larger. However, as we indicated above this is
not the case: the modality of these return maps is bounded by 2l � 1 where in
this case l = 2. Note also that the 3-modal map f2 : J ! J is of a very special
form: there exists an involution ⌧ : J ! J such that f2 � ⌧ = f2.
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Fig. 5.1: J is a restrictive interval for the bimodal map f . The return map of J is

3-modal, whereas the return map to f2(J) is unimodal.
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Fig. 5.2: J is a restrictive interval for the bimodal map f . The return map of J is 3-

modal. Notice that the return map to J is surjective: therefore some maps arbitrarily

near f have no restrictive interval of period three.
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Sometimes, and this will be done in the last chapter, it is more natural to
consider renormalizations of f to periodic intervals which are minimal in the
following sense:

Definition. We say that J is a unimodal interval for some interval map g if J
contains precisely one turning point of g, g(J) = J and if no subinterval of J
has these properties. This implies that J = [g2(c), g(c)] for some turning point
c of g. We say that J is a periodic unimodal interval for f of period n if it is a
unimodal interval for fn.

Let us show 1) how to construct restrictive intervals, 2) that the first n
iterates of a unimodal interval of period n are automatically disjoint and 3)
that restrictive intervals define a ‘filtration’ of the space.

Lemma 5.1. Let f : I ! I be l-modal.

1. If n � 2 and J is an interval such that fn(J) ⇢ J , such that J, . . . , fn�1(J)
are disjoint and such that one of these intervals contains a turning point
then J is contained in a restrictive interval of the same period.

2. If J is a unimodal interval of period n then J, . . . , fn�1(J) are pairwise
disjoint and one of the intervals fk(J) is of the form [f2n(c), fn(c)] where
c is a turning point of f .

3. If J and J 0 are restrictive intervals whose interiors have a non-empty in-
tersection and with periods � 2 then one of these intervals is contained in
the other. In particular, f has at most l di↵erent orbits of maximal re-
strictive intervals. Moreover, if J and J 0 are maximal restrictive intervals
of period n, n0 > 1 with precisely one common point then n = n0 = 2 and
f(J) ⇢ J 0.

4. If f has no wandering intervals then there exists N < 1 such that any
restrictive interval J of period � N contains only one turning point.

Remark. 1. We should emphasize that a restrictive interval J of period n
can be contained in a strictly larger restrictive interval J 0. In that case J 0 has
period m and n/m is an integer � 2. 2. If f is a C1 map with a turning point

c of period n then Statement 1) of Lemma 5.1 implies that c is contained in a
restrictive interval of period n.

Proof of Lemma 5.1: First we claim that if J is a closed interval with the
property that

(5.1) f i(J) and fn(J) have no interior point in common
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for i = 1, . . . , n� 1 then f i(J) and f j(J) have no interior point in common for
0  i < j < n. Indeed, otherwise fn�j+i(J) and fn(J) would also have an
interior point in common, contradicting (5.1).

To prove Statement 1, let us first assume that J is such that (5.1) and

(5.2) fn(J) ⇢ J,

are satisfied and such that there exists no larger closed interval J 0 for which
(5.1) and (5.2) are also satisfied. We claim that fn(@J) ⇢ @J . Indeed, suppose
by contradiction that

(5.3) p 2 @J and fn(p) 2 int (J).

This implies that there exists a small neighbourhood V of p such that (5.2)
still holds for V [ J . By the maximality of J the interval V [ J cannot satisfy
(5.1) for any neighbourhood V of p. This and (5.1) implies that there exists
0  i < n with q = f i(p) 2 @fn(J). Since f i(J) \ J = ; and fn(J) ⇢ J this
implies q 2 @J . But then, because of (5.3), fn�i(q) = fn(p) 2 int (J) which
contradicts (5.1). This completes the proof of the claim and of Statement 1.

Let us now prove Statement 2. So let J be a unimodal interval of period
n. If f i(J) \ fn(J) 6= ; then this interval is invariant. However, by looking at
the graph of fn on J [ f i(J) and using that J and f i(J) are both n-periodic
unimodal intervals one sees immediately that J and f i(J) can only have a
common boundary point. (If this happens then fn maps J surjectively onto
itself.) Using the first part of the proof, the second statement follows.

So let us prove the third assertion and assume that J, J 0 are both restrictive
intervals with periods n  n0. Then each of the two collections J, . . . , fn�1(J)
and J 0, . . . , fn

0�1(J 0) consist of intervals with disjoint interiors and fn(J) ⇢ J
and fn

0
(J 0) ⇢ J 0. Therefore, if one of the intervals f i(J 0) intersects precisely

s of the intervals J, . . . , fn�1(J) then the same holds for all of the intervals
J 0, . . . , fn

0�1(J 0). So if one of the intervals J 0, . . . , fn

0�1(J 0) contains a com-
ponent of I \ (J [ · · · [ fn�1(J)) then each of the intervals J 0, . . . , fn

0�1(J 0)
intersects precisely s � 3 of the intervals J, . . . , fn(J). But since both the
first and the last collection consists of disjoint intervals (in the sense explained
above), this implies that the two intervals from the first collection J, . . . , fn�1(J)
which are situated most to the left and most to the right intersect at most one
of the intervals J 0, . . . , fn

0�1(J 0). Therefore n0 = n � 1 < n, a contradiction.
So each of the intervals from the collection J 0, . . . , fn

0�1(J 0) intersects at most
one of the intervals from the collection J, . . . , fn�1(J). Hence, if T

i

denotes the
union of f i(J) with the intervals J 0, . . . , fn

0�1(J 0) which intersect f i(J), then
T0, . . . , Tn�1 are all disjoint. In particular, the orbit T0, . . . , fn�1(T0) consists
of disjoint intervals and fn(T0) ⇢ T0. From the maximality of J it follows that
T0 = J and if J 0 has a non-empty intersection with J then J 0 ⇢ T0 = J (unless
perhaps T0 = I but then n = 1 and n0 = 2). Next assume that J and J 0 are
maximal restrictive intervals of period 1 < n  n0 with precisely one common
point. Then either n0 = n or n0 = 2n in which case both endpoints of J have
period n and fn(J 0) also has a common point with J . Moreover, if some iterate
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of J intersects the interior of J 0 then n is even and fn/2(J) ⇢ J 0. If n = n0 � 3
or if n = n0 = 2 and no iterate of J intersects the interior of J 0 then the first
part of this theorem implies that Ĵ = J [ J 0 is also contained in a restrictive
interval of period n, contradicting the maximality of J . If n0 = 2n then it fol-
lows similarly that Ĵ = J [ J 0 [ fn(J 0) is contained in a restrictive interval of
period n and again we get a contradiction. This concludes the proof of the third
assertion.

The last statement is obvious: from the third statement there exists other-
wise a nested sequence of restrictive intervals J

n

containing two turning points
and with period n(k) ! 1. Then T = \J

n

is a non-trivial interval, all for-
ward iterates of T are disjoint and T is not contained in the basin of a periodic
attractor. Hence T is a wandering interval, a contradiction.

Corollary 5.1. If f and g are two l-modal maps with turning points c1, . . . , cl

and c̃1, . . . , c̃l

respectively which are essentially conjugate then they have the
same number of restrictive intervals of period � 2. If J is a restrictive interval
of period n � 2 for f then there exists a restrictive interval J̃ of period n for g
such that for any i = 1, . . . , l and any k 2 N

fk(c
i

) 2 J if and only if gk(c
i

) 2 J̃ .

Proof. Let h : I/⇠! I/⇠ be the map sending orbits of turning points of f
to orbits of turning points of g (modulo the equivalence relation of being in
the basin of an inessential attractor). Let J be a restrictive interval of f with
period n and let J 0 be the smallest interval in J containing all forward iterates
of turning points which are contained in J . It follows that J 0, . . . , fn�1(J 0) are
disjoint and fn(J 0) ⇢ J 0. From the definition of a restrictive interval, we even
get that the boundary points of f i(J 0), f j(J 0) cannot be attracted to the same
periodic orbit for 0  i < j < n. Hence the equivalence relation ⇠ does not
identify points in these intervals. Therefore, taking J̃ = h(J 0) one has that
J̃ 0, . . . , gn�1(J̃ 0) are disjoint and gn(J̃ 0) ⇢ J̃ 0. From Statement 1 of Lemma 5.1
it follows that J 0 is contained in a restrictive interval of period n.

As we will see in Section III.4, the dynamics of points which do not enter
these restrictive intervals is quite simple to describe. Hence, renormalization
is a very natural and powerful tool to decompose the dynamics of a map into
simpler pieces.

Exercise 5.1. Show that if J is a restrictive interval of f with period n > 2
then J, . . . , fn�1(J) are disjoint.

5.b: Renormalizations within full families

Take a family f
µ

: I ! I, µ 2 � of l-modal maps satisfying the assumptions
made at the beginning of Section 4 and with a restrictive interval J

µ

of period
n for each µ 2 �0 ⇢ �. First we want to define when fn : J

µ

! J
µ

, µ 2 �0, is
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Fig. 5.3: The restriction of fn

µ

to some restrictive interval J
µ

is drawn for µ = 0. In

this case, J
µ

may not depend continuously on the parameter because the graph on fn

µ

is tangent to the diagonal at one of the boundary points of J
µ

for µ = 0.

a ‘full family’. The first complication in the definition of this notion is that, in
general, a restrictive interval does not necessarily depend continuously on the
parameter:

Example. Let f
µ

: [0, 1]! [0, 1], be a one-parameter family of unimodal maps
depending continuously on the parameter µ such that f0 is as in Figure 5.3. The
map f

µ

has a restrictive interval J
µ

of period n for each µ near 0. However, the
(endpoints of the) intervals J

µ

do not depend continuously on the parameter:
lim

µ#0 J
µ

strictly contains J0 because for µ > 0 ‘one of the periodic points
has disappeared’. In addition, the dependence of the fixed points of fn

µ

on the

parameter can be discontinuous if µ tends to 0 if fn

0 (x) has an interval consisting
of fixed points. For this reason we shall assume that

(5.4)
the number of fixed points of fn

µ

is finite for each µ and each n 2 N.

Because a restrictive interval does not depend continuously on the parameter,
we will now consider only subsets �0 ⇢ � such that there exists n such that f

µ

has a restrictive interval J
µ

for each µ 2 �0 of period n which is continuous in
the sense that

(5.5)
#
�

f i(J
µ

) \ TP (f
µ

)
�

is independent of µ 2 �0 for each 0  i < n

and each point in this set varies continuously with µ 2 �0.

Here TP (f
µ

) denotes the set of turning points of f
µ

. This assumption implies
that the modality of fn

µ

: J
µ

! J
µ

is constant as µ varies in�0. Next, as is shown
in Example 5.1, return maps have a special structure. Hence the following
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Definition. Let f
µ

: I ! I, µ 2 �, be a family as above with a restrictive
interval J

µ

for each µ 2 �0. We say that fn

µ

: J
µ

! J
µ

, µ 2 �0 is a full family
of renormalized maps if for each ‘reasonable’ g : I ! I there exists µ 2 �0 such
that fn

µ

is essentially conjugate to g. Here g is reasonable (for this restrictive
interval) if it is of the form g

n�1 � · · · � g0 where g
i

: I ! I is a continuous
map satisfying g

i

(@I) ⇢ @I and having the same orientation and modality as
f

µ

: f i

µ

(J
µ

) ! f i+1
µ

(J
µ

). Because of (5.5) this modality does not depend on
µ 2 �0. Note that a reasonable map associated to a bimodal map might be
3-modal but then two extremal values coincide.

Let us now state an analogue of Theorem 4.1 in this setting. To do this we
shall generalize the notion of persistently full families. This generalization will
allow some endpoints to depend discontinuously on the parameter and be also
useful for families of renormalized maps. Let

(5.6)
V̂ ={(v1, . . . , vk

) 2 Ik for which there exists

a k-modal reasonable map g : I ! I such that

v
i

is equal to the g-value of the i-th turning point of g}.

Definition. Let f
µ

: I ! I be a l-modal family as before having a restrictive
interval J

µ

of period n for each µ 2 �0 as in (5.5). We say that fn

µ

: J
µ

! J
µ

is
persistently surjective if the following conditions are met.

1. There exists an interval I
µ

= [a(µ), b(µ)] with a(µ), b(µ) 2 J
µ

depending
continuously on µ 2 �0 such that fn

µ

is monotone on each component of
J

µ

\ I
µ

and such that each point in J
µ

\ I
µ

is either periodic or contained
in the basin of a periodic attractor; this periodic orbit has period one or
two for fn

µ

: J
µ

! J
µ

because fn

µ

(@J
µ

) ⇢ @J
µ

.

2. The map F : � ! V̂ defined below is persistently surjective in the sense
defined at the beginning of Section 4.

Here F is defined as follows. Let A
µ

: R ! R be the continuous and piecewise
a�ne map which sends [a(µ), b(µ)] a�nely onto [0, 1], the interval (�1, a(µ)]
onto 0, [b(µ),1) onto 1 and define F : �! V̂ by

F (µ) =
�

A
µ

(fn

µ

(ĉ1(µ))), . . . , A
µ

(fn

µ

(ĉ
k

(µ)))
�

.

Here ĉ1(µ), . . . , ĉ
k

(µ) are the turning points of fn

µ

: J
µ

! J
µ

. The reason for in-

troducing a(µ) and b(µ) in this definition is that in order to define a continuous
map F : � ! V̂ we have to identify the interval J

µ

with [0, 1] in a way which
depends continuously on µ. Since the endpoints of J

µ

may depend discontinu-
ously on µ we insist that we can choose points a(µ), b(µ) 2 J

µ

which do depend
continuously on µ and which are ‘morally’ the same as the endpoints of J

µ

. In
Theorem 5.2 in the next subsection we will show that this can be done for many
families.
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Theorem 5.1. Let f
µ

: I ! I, µ 2 �, be a family satisfying the smoothness
conditions from the beginning of Section 4. Let J

µ

and �0 ⇢ � be as above and
assume that fn

µ

: J
µ

! J
µ

, µ 2 �0, is a family of maps which is persistently
surjective. Then fn

µ

: J
µ

! J
µ

, µ 2 �0, is a full family of renormalized maps.

Proof. Because of the Assumptions 1 and 2 in the definition above, the proof
goes precisely as before.

5.c: Renormalizations within persistently surjective fami-
lies

Consider a persistently surjective family f
µ

, µ 2 �, of l-modal maps. Let us
show that there is a subset �̃ ⇢ � such that for each of its components �0

one has the following properties. For each µ 2 �0, the map f
µ

has a restrictive
interval J

µ

of some period n and ‘some combinatorial type’ such that J
µ

depends
continuously on µ 2 �0 as in (5.5) above and such that fn

µ

: J
µ

! J
µ

, µ 2 �0, is
again a full family of renormalized maps. To be more specific, we associate to
each l-modal map f : I ! I a non-renormalizable interval map �(f) as follows.

Let x ⇡ y if the interval [x, y] is in the interior of a maximal restrictive
interval of f . Furthermore we say that f and f̂ are ⇡-combinatorially equivalent
if there exits an order preserving bijection h : I/⇡! I/⇡ such that

S

l

i=1

S

n�0 fn(c
i

)
�

⇡ f/⇡����!
S

l

i=1

S

n�0 fn(c
i

)
�

⇡

h

?

?

y

?

?

y

h

S

l

i=1

S

n�0 f̂n(c
i

)
�

⇡ g/⇡����!
S

l

i=1

S

n�0 f̂n(c
i

)
�

⇡

commutes.

Theorem 5.2. Let f
µ

: I ! I, µ 2 �, be a persistently surjective family of
l-modal maps satisfying the smoothness conditions made at the beginning of
Section 4 and satisfying (5.4). Let f̂ : I ! I be a l-modal, non-renormalizable
map with periodic turning points c

m(1), . . . , cm(r) of period n(1), . . . , n(r) with
the same orientation as maps from the family f

µ

. Then there exists a connected
subset �0 of � such that for each µ 2 �0 and each j = 1, . . . , r the following
properties hold.

1. There exists a maximal restrictive interval Jj

µ

of period n(j) containing
c
m(j)(µ) (and no other turning points of f

µ

) and depending continuously
on µ as in (5.5) above.

2. The maps f
µ

and g are ⇡–combinatorially equivalent;

3. fn(j)
µ

: Jj

µ

! Jj

µ

, µ 2 �0, is again a persistently surjective family of renor-
malized maps. In particular, because of Theorem 4.2, fn(j)

µ

: Jj

µ

! Jj

µ

,
µ 2 �0, is a full family of renormalized maps.
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Proof. Let �0 = {µ 2 � ; f
µ

and f̂ are ⇡–combinatorially equivalent}. Since
c
m(j) is a periodic point of period n(j) for f̂ for µ 2 �0 one has that f

µ

has
a maximal restrictive interval Jj

µ

of period n(j) containing c
m(j)(µ). Indeed,

otherwise the equivalence class containing c
m(j)(µ) consists of just one point.

Because f
µ

and f̂ are ⇡-combinatorially equivalent it follows that c
m(j)(µ) is

periodic with period n(j). Since f
µ

is C1 and therefore has derivative zero at
turning points, this implies that there exists an interval J̃j

µ

containing c
m(j)(µ)

for each j = 1, . . . , r and each µ 2 �0 such that J̃j

µ

, . . . , fn(j)�1
µ

(J̃j

µ

) are disjoint
and fn(j)�1

µ

(J̃j

µ

) ⇢ J̃j

µ

. Because of Lemma 5.1, this interval is contained in a
maximal restrictive interval Jj

µ

of the same period. This contradiction shows
that such restrictive intervals necessarily exist. Since f̂ is not renormalizable,
Jj

µ

contains precisely one turning point of f
µ

. Furthermore, Jj

µ

is continuous in
the sense that

f i

µ

(Jj

µ

)
\

TP (f
µ

)

consists of at most one point for each µ 2 �0 and each 0  i < n(j) and each of
the points in these sets depends continuously on µ 2 �0. From Theorem 4.1 it
immediately follows that fn(j)

µ

: Jj

µ

! Jj

µ

, µ 2 �0, is a full family of renormalized
maps. Indeed, one can modify f

µ

to a map f̃ in each of the iterates of Jj

µ

so
that the return map of f̃ to Jj

µ

becomes equal to an arbitrary ‘reasonable map
g, see the definition in Section 5.b. Because of Theorem 4.1 there is a parameter
value µ such that f

µ

is essentially conjugate equivalent to f̃ . This implies that
fn(j)

µ

: Jj

µ

! Jj

µ

is essentially conjugate to g and by construction f
µ

is still
⇡-combinatorially equivalent to f̂ .

So it remains to show that there exists a connected component �0 of �0

such that each of the families fn(j)
µ

: Jj

µ

! Jj

µ

, µ 2 �0, is again persistently
surjective. Let us first show that the intervals Ij

µ

from above exist. If Jj

µ

depends continuously on µ then we simply take Ij

µ

= Jj

µ

. If it is not continuous
at µ = µ0, then (5.4) implies that fn(j)

µ0 : Jj

µ0
! Jj

µ0
has some inessential periodic

attractors of period n(j) exactly as was depicted in Figure 5.3. Therefore,
in the discontinuous case, we can choose I

µ

so that its endpoints are in the
basins of these inessential periodic attractors. More precisely, let Kj

µ

be the
maximal neighbourhood of @Jj

µ

such that each component of Kj

µ

is a homterval,
fn(j)

µ

(Kj

µ

) ⇢ Kj

µ

and fn(j)
µ

(@Kj

µ

) ⇢ @Kj

µ

. From the continuity assumptions on
f

µ

,
Kj = {(µ, x) ; µ 2 �0 and x 2 Kj

µ

}

is a closed set. Because for each µ 2 �0 there exists at least one x 2 Kj

µ

and
because of (5.4), there exist continuous functions�0 3 µ 7! a(µ), b(µ) 2 Kj

µ

such
that Ij

µ

= [a(µ), b(µ)] has the required properties. Now suppose by contradiction
that there exists no component �0 of �0 such that the family fn(j)

µ

: Jj

µ

! Jj

µ

,
µ 2 �0, is persistently surjective. So let V̂ be the set from (5.6) corresponding
to Jj

µ

. To reach a contradiction we shall use that each interior deformation of
F : �! V̂ does in fact come from an ‘interior deformation’ of f

µ

. To make this
more precise, take a component �0 of �0. Since F : � ! V̂ is not persistently
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surjective we can continuously deform f
µ

inside Ij

µ

to a map f̃
µ

for µ 2 �0 such
that the image of at least one of the turning points of f̃n(j)

µ

: Jj

µ

! Jj

µ

is mapped
into Jj

µ

\ Ij

µ

. Note that the map F̃ : � ! V̂ corresponding to f̃n(j)
µ

: Jj

µ

! Jj

µ

is an interior deformation of F and therefore also persistently surjective. But
by construction f̃n(j)

µ

: Jj

µ

! Jj

µ

, µ 2 �0, is not a full family. But since F̃ is
persistently surjective, f̃n

µ

: Jj

µ

! Jj

µ

with µ 2 �0 is full according to Theorem
5.1, and this contradicts the previous observation.

Remark. 1. In the unimodal case, the combinatorial type of a unimodal map
with a periodic turning point is determined by a permutation on a finite set.
So in this case we can take a finite set X = {x1, . . . , xn

} endowed with an
order relation �. We say that a permutation � : X ! X is unimodal with
respect to the order relation � if it satisfies the following condition. Embed X
monotonically into the real line, draw the graph of � on R2 and connect the
consecutive points of the graph by a line segment. If the curve so obtained is
the graph of a unimodal map then we say that the permutation is unimodal.
The resulting map is renormalizable if X is the disjoint union of p sets X

i

each
containing m points and such that

1. each X
i

is mapped by � onto some X
j

;

2. for each i 6= j, either X
i

� X
j

or X
j

� X
i

(here X
i

� X
j

means that
x

i

2 X
i

, x
j

2 X
j

implies x
i

� x
j

).

Similarly, to each renormalizable unimodal map f : I ! I we associate a non-
renormalizable unimodal permutation �(f) : X(f)! X(f) as follows. Let x ⇡ y
if x and y are both contained in the same restrictive interval. Moreover, let

X(f) =
l

[

i=0

[

k�0

fk(c
i

)
�

⇡

with the ordering induced from the ordering on I. Since f is unimodal and
renormalizable, X(f) is a finite set and �(f)(x) = f(x)/⇡ defines a permu-
tation. So in the unimodal case the above theorem can be stated as follows.
Let f

µ

: I ! I, µ 2 �, be a persistently surjective family of unimodal maps
satisfying the smoothness conditions made at the beginning of Section 4. Let
� : X ! X be a non-renormalizable unimodal permutation. Then there exists
a connected subset �0 of � such that for each µ 2 �0, i) there exists a max-
imal restrictive interval J

µ

of period #X, ii) �(f
µ

) = � and iii) fn

µ

: J i

µ

! J i

µ

,
µ 2 �0, is again a persistently surjective family of renormalized maps. 2. There

are only a countable number of combinatorial types of renormalizations possible
in the unimodal case as we saw above. In the multimodal case, there are an
uncountable number of combinatorial types of maps with one periodic turning
point: the combinatorial type also depends on the orbit of the other turning
points. 3. There is also a version of the above theorem where g has modality
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l0  l with l � l0 is even. In this case, the corresponding restrictive intervals
contain several turning points. 4. If in the previous theorem f

µ

: I ! I, µ 2 �,

is a full family which is not persistently surjective then such a connected subset
�0 as in Statement 3 of that theorem need not exist. 5. We should note that

each equivalence class J of ⇡ is an open interval. This implies that I/⇡ is not
Hausdor↵. If we would have changed the definition of ⇡ so that all points in
one restrictive interval J are equivalent, then we would get another problem: in
order to make sure that ⇡ defines an equivalence relationship (that transitivity
holds) we would also have to impose that J has no common point with another
maximal restrictive interval. However, this is precisely what happens if f is a
unimodal map and J has period two (this is the best known case related to
period doubling, see Example 5.3 below). For this reason we have introduced
the notion of ⇡-combinatorial equivalence.

Example. The restrictive interval J of the unimodal map f drawn in Figure
5.4 corresponds to the cyclic permutation �(f) on {J0, J1, . . . , J4} where these
intervals are ordered as J2 � J0 � J3 � J4 � J1. Because this last set consists
of 5 elements and 5 is a prime number, this permutation is non-renormalizable.
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Fig. 5.4: A unimodal map with a restrictive interval corresponding to a cyclic permu-

tation on five elements. By Theorem 5.1 there exists a quadratic map with a restrictive

interval of the same type. In this case f5(J
0

) = J
0

.
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5.d: Examples of unimodal maps with solenoidal attractors

We say that a map is infinitely often renormalizable if it has restrictive intervals
of arbitrary high period. For reasons which will become clear in Section III.4
we shall say that we have a solenoidal attractor in this case. Inside each full
family one has renormalizable maps and, because of Statement 2 of the previous
theorem, the return maps to the restrictive intervals form again a full family.
Therefore there are many maps which are infinitely often renormalizable. In
this subsection we shall make this more explicit in the unimodal case. Indeed,
let D be the space of renormalizable unimodal maps. Furthermore, let �0 be a
non-renormalizable unimodal permutation and let

D
�0 = {f 2 D ; �(f) = �0}.

As we saw in the previous theorem this set contains a full family of maps. So
applying the previous theorem again, the set

D
�0,�1 = {f 2 R ; �(f) = �0, R(f) 2 D and �(R(f)) = �1}

contains a full family if �0 and �1 are unimodal non-renormalizable permuta-
tions. In general, lettingD

n

be the set of unimodal maps such that f,R(f), . . . ,Rn�1(f)
are renormalizable, the set

D
�0,�1,...,�

n�1 = {f 2 D
n

; �(Rif) = �
i

, i = 0, . . . , n� 1}

contains a full family of unimodal maps if �0, . . . ,�n�1 are unimodal, non-
renormalizable permutations. Note that

R(D
�0,�1,...,�

n

) = D
�1,...,�

n

,

i.e., the renormalization operator acts as a shift map.

Theorem 5.3. Let f
µ

, µ 2 � be a full family of C1 unimodal maps and let
�

i

be a sequence of non-renormalizable, unimodal permutations. Then for each
n 2 N, the set

{µ 2 � ; f
µ

is infinitely renormalizable �(Ri(f
µ

)) = �
i

, i = 0, . . . , n}

is a closed, non-empty and contains an interval �
�0,�1,...,�

n

such that Rn(f
µ

),
µ 2 �

�0,�1,...,�

n

is a full family. Furthermore, these intervals lie nested, i.e.,
�
�0,�1,...,�

n

⇢ �
�0,�1,...,�

n�1 . In particular, �
�0,�1,...

is non-empty and �1 =
[�

�0,�1,...

contains a Cantor set.

Proof. Follows inductively from the previous theorem.
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Fig. 5.5: The second iterate of a map with a restrictive interval of period two.

Example. (The Feigenbaum maps) Let � be the permutation on two elements
and let f

µ

be a full family. Let �
�

= {µ ; �(f
µ

) = �}. Then f2
µ

maps a
restrictive interval J

µ

into itself for all µ 2 �
�

, see Figure 5.5. For each µ 2
�
�,�,...

let J
n

be the corresponding restrictive interval of Rn(f
µ

). Then the
f

µ

-orbit of this interval consists of 2n intervals with disjoint interiors and the
closure of J

n+1 is contained in the interior of J
n

, see Figure 5.6. In particular,
the set

K
n

=
2n�1
[

i=0

f i(J
n

)

consist of 2n intervals (2n�1 of which with disjoint interiors) and lie nested. In
particular,

K =
\

n�0

K
n

contains a Cantor set. When µ 2 �
�,�,...

then f
µ

is called the map at the
accumulation of period doubling or the Feigenbaum map. Metric properties of
the set K were discovered independently by Feigenbaum (1978), (1979) and
Coullet and Tresser (1978); a rigorous treatment of this will be presented in
Chapter VI.

Example. Let f
µ

be a full unimodal family and �1 and �2 be two distinct
unimodal permutations. Then for each � = (a

k

)
k�0 for which a

k

2 {�1,�2}
there exists a parameter µ such that f 2 D

�

. It follows that there exists (at
least) a Cantor set of parameters for which the corresponding maps are infinitely
renormalizable of this type.

Example. Let �
i

be non-renormalizable, unimodal permutations on a(i) ele-
ments. If f 2 D

�0 , then f has a restrictive interval J1 which is mapped after
a(0) steps into itself. If f 2 D

�0,�1 then J1 contains a restrictive interval J2 of
R(f) and the orbit under fa(0)|J1 of J2 consists of a(1) intervals. Hence the
orbit under f of J2 consists of q(1) = a(0)a(1) intervals. Similarly, the orbit
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Fig. 5.6: The orbit of the intervals J
3

for the unimodal period doubling map. This

interval has period eight. Notice that the unimodal map f2 : J
1

! J
1

has a minimum

(while f : K
0

! J
1

has a maximum). Because of f(J
1

) is to the right of J
1

this implies

that f2(J
2

) is to the left of J
2

. Since f maps f(J
1

) in an orientation reversing way

onto J
1

, the positions of f(J
2

) and f3(J
2

) are as shown. Continuing in this way, one

can gets that the orbit of J
3

is as above.

2 11 14 8 5 3 12 0 9 6 4 7 13 10 1

Fig. 5.7: The orbit of J
2

for a unimodal map f 2 D

�0,�1 when �
0

is the cyclic per-

mutation on {0, 1, 2} with 0 � 1 � 2 and �
1

is the cyclic permutation on {0, 1, 2, 3, 4}

with 2 � 3 � 0 � 4 � 1. Notice that the unimodal map f2 : J
1

! J
1

has a minimum

while the unimodal map associated to �
1

has a maximum. Therefore the intervals

J
2

, f3(J
2

), f6(J
2

), f9(J
2

), f12(J
2

) in J
0

which of course correspond to 0, 1, 2, 3, 4 are

ordered as f3(J
2

) � f12(J
2

) � J
2

� f9(J
2

) � f6(J
2

). Because f2 : f(J
1

) ! J
1

is

orientation reversing and f : f2(J
1

) ! J
1

is orientation preserving, the orbit of J
2

is

as shown.
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under f of J
n

consists of q(n) = a(0)a(1) . . . a(n) intervals. So the action of f
on J

n

can be reconstructed by considering �0,�1, . . . ,�n�1, see Figure 5.7. If
we let

K
n

=
q(n)�1
[

i=0

f i(J
n

)

then we call

K =
\

n�0

K
n

a solenoidal attractor. We shall motivate this terminology in Section III.4. In
Chapter VI we shall study metric properties of the set K in the case that the
integers a(i) are bounded.

6 Piecewise Monotone Maps can be Modelled

by Polynomial Maps

We will prove in this section that any C1 unimodal map of the interval is semi-
conjugate to a quadratic map and that the semi-conjugacy is strictly monotone
in the backward orbit of the turning point. This result is due to Guckenheimer
(1979) and will follow from the discussion of the last section together with some
properties of maps which satisfy the assumption that their Schwarzian derivative
is negative.

That a quadratic map is described by a very simple mathematical formula is
not very useful for the understanding of its dynamics because this property is not
preserved under iteration: the n-th iterate of the map is a polynomial of degree
2n. Singer (1978) made the following fundamental observation: if a map has
negative Schwarzian derivative then all of its iterates also have this property.
(Independently Allwright (1978) observed something similar.) Furthermore,
quadratic maps turn out to have negative Schwarzian derivative. Therefore,
rather than restrict attention to quadratic maps, we will study the dynamical
properties of maps with negative Schwarzian derivatives. In the same paper,
Singer proved that such maps have a finite number of attracting periodic orbits,
if they have a finite number of turning points. This, because each of these orbits
must attract at least one critical point or one boundary point. Later Gucken-
heimer (1979) showed, for unimodal maps with negative Schwarzian derivative,
that any interval whose points have the same itinerary must be contained in the
basin of the unique attracting periodic orbit. In particular, if the map has no
attracting periodic orbit, the backward orbit of its turning point is dense. Com-
bining these two results with Corollary 1 of Theorem 4.1 of the last section, we
shall show that the quadratic family is the “universal model” for C1 unimodal
maps.

Let us recall the definition of the Schwarzian derivative (we already used
this derivative in Section I.3). If f : I ! I is a C3 map and Df(x) 6= 0, the
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Schwarzian derivative of f at x is defined as

Sf(x) =
D3f(x)
Df(x)

� 3
2

✓

D2f(x)
Df(x)

◆2

.

From the definition, the following formula for the Schwarzian derivative of the
composition of two functions follows immediately by the chain rule,

S(g � f)(x) = Sg(f(x)) · |Df(x)|2 + Sf(x).

Hence the Schwarzian derivative of the iterates of f is given by

Sfn(x) =
n�1
X

i=0

Sf(f i(x)) · |Df i(x)|2.

Therefore, if a map has negative Schwarzian derivative, so do all its iterates.
Next we shall state two analytical properties of maps with negative Schwar-

zian derivatives we will use in this section. The first of these is the Minimum
Principle. We will give some additional background to the Schwarzian derivative
and properties similar to the Minimum Principle in Chapter IV.

Lemma 6.1. (Minimum Principle) Let T be a closed interval with endpoints
a, b and f : T ! R a map with negative Schwarzian derivative. If Df(x) 6= 0
for all x 2 T then

|Df(x)| > min{|Df(a)|, |Df(b)|}, 8x 2 (a, b).

Proof. At a critical point y of the function x 7! |Df(x)| we have D2f(y) = 0.
Hence 0 > Sf(y) = D

3
f(y)

Df(y) , i.e., D3(f(y)) and Df(y) have di↵erent signs.
Therefore, y is a local maximum of Df if Df(y) > 0 or a local minimum
if Df(y) < 0. Consequently, the function x 7! |Df(x)| cannot have a local
minimum in the interior of the interval. Hence its minimum must be in the
boundary.

Before stating the second property we will derive some conclusions from the
Minimum Principle. As before we say that the basin of a periodic point p is
the set of points whose !-limit set contains p. We say that a periodic point
p of period n is attracting and that O(p) is a attracting periodic orbit if its
basin contains an open set. The immediate basin of a periodic point p is the
union of the connected components of its basin which contain a point from O(p).
The periodic point is called a hyperbolic attractor if |Dfn(p)| < 1, a hyperbolic
repeller if |Dfn(p)| > 1 and neutral if |Dfn(p)| = 1. Notice that the immediate
basin of a hyperbolic attractor is the union of n open intervals, where n is the
period. Finally, we say that c is a critical point of a C1 map f if Df(c) = 0. It
is called non-degenerate if D2f(c) 6= 0. As in Section 4 we say that a periodic
attractor is essential if it contains a turning point in its basin. (In particular,
any l-modal map can have at most l essential periodic attractors.)
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Theorem 6.1. (Singer) If f : I ! I is a C3 map with negative Schwarzian
derivative then

1. the immediate basin of any attracting periodic orbit contains either a crit-
ical point of f or a boundary point of the interval I;

2. each neutral periodic point is attracting;

3. there exists no interval of periodic points.

In particular, the number of non-repelling periodic orbits is bounded if the num-
ber of critical points of f is finite. Moreover, if all critical points of f are turn-
ing points then f has at most two inessential periodic attractors (containing a
boundary point of @I in its basin).

Proof. Let p be an attracting periodic point which does have a boundary point
of I in its immediate basin. Let n be the period of p and let T be the connected
component of its basin containing p. Then fn(T ) ⇢ T and, since p does not
attract a boundary point of I, fn(@T ) ⇢ @T . If there exists x 2 T such that
Dfn(x) = 0 then, for some 0  j  n�1, f j(x) is a critical point which belongs
to f j(T ) and this interval is clearly contained in the immediate basin of f j(p).
Thus the theorem is verified in this case. So assume, by contradiction, that
Dfn(x) 6= 0 for all x 2 T . Let m = n if Dfn(x) > 0 for all x 2 T and let
m = 2n if Dfn(x) < 0 for all x 2 T . Since T is a component of the basin this
implies fm(T ) = T , Dfm(x) > 0 for all x 2 T and fm(x) = x for x 2 @T . If
x 2 @T then Dfm(x) � 1 because otherwise x would be a two-sided attractor.
But since x 2 @T this would contradict that T is contained in the basin of p.
From the Minimum Principle, it follows that Dfm(w) > 1 for all w 2 int (T )
and this is impossible since fm(T ) = T . This proves Statement 1. If p is a
neutral periodic point of period n then Df2n(p) = 1 and Df2n(x) � 1 for x
near p; by the Minimum Principle this is impossible. Statement 3) follows from
the claim below the statement of Theorem 3.1 and because of the Minimum
Principle.

Corollary 6.1. Assume that f : I ! I is a unimodal C3 map with precisely one
critical point (i.e., no inflection points). If f has negative Schwarzian derivative
and the fixed point of f in @I is repelling then f has at most one attracting
periodic orbit. In particular, any map Q : [0, 1] ! [0, 1] from the quadratic
family Q

µ

= µx(1� x), µ 2 [0, 4] has at most one attracting periodic orbit.

Proof. Because f is unimodal, f(@I) ⇢ @I. Since the fixed point in @I of f
is repelling it follows from the previous result that each periodic attractor is
essential.

Another important property of maps with negative Schwarzian derivative is
the Koebe Principle. We will come back to this principle and related principles
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extensively in Chapter IV. A version of this principle was first used and proved
in Van Strien (1981) and later rediscovered by Johnson and Guckenheimer,
see Guckenheimer (1987). In order to state this principle it is convenient to
introduce the following terminology. Let U ⇢ V be two intervals. We say that
V contains a �-scaled neighbourhood of U if each component of V \ U has at
least length �|U |.

Macroscopic Koebe Principle. (See Theorem IV.3.3). There exists a posi-
tive function B0 : R+ ! R+ with the following property. Let f be C3, Sf < 0
and suppose that for some pair of intervals M ⇢ T , and some n 2 N fn|T is
a di↵eomorphism. If ✏ is so that fn(T ) contains a ✏-scaled neighbourhood of
fn(M) then

T is a B0(✏)-scaled neighbourhood of M.

In the remainder of this section we will show that unimodal maps with
negative Schwarzian derivatives have no wandering intervals. Here we say as
before that J ⇢ I is a wandering interval for a map f : I ! I if the intervals
{J, f(J), . . . , fn(J), . . . } are pairwise disjoint and if J is not contained in the
basin of an attracting periodic orbit of f . Now we come to the main topic of this
section: maps satisfying some regularity conditions have no wandering intervals.
So let us say that c is a critical point of a C1 map f if Df(c) = 0. We say that
f is non-flat at a point c if there exists a C2 di↵eomorphism � : R ! I with
�(0) = c such that f � � is a polynomial near the origin.

Theorem 6.2. Let f : I ! I be a C2 map such that f is non-flat at each critical
point. Then f has no wandering intervals.

From this theorem, which will be proved in Chapter IV, it follows that maps
which are essentially conjugate are often even conjugate:

Corollary 6.2. Let S be the class of C3 maps f : I ! I satisfying the following
properties:

1. D2f(c) 6= 0 at each point c 2 I with Df(c) = 0,

2. Sf < 0,

3. |Df(x)| > 1 if x 2 @I and f has no one-sided periodic attractors.

Then f, g 2 S are conjugate if and only if they are combinatorially equivalent.

Proof. Because of Theorem 6.1, each periodic attractor contains a critical point
in its basin. Moreover, all critical points are turning points. Because of the
Minimum Principle, the immediate basin of two periodic attractors can have no
boundary point in common and there exists no interval consisting of periodic
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points of constant period. The corollary therefore follows from Theorem 6.2 and
the corollary to Theorem 3.1.

Since the proof of Theorem 6.2 is not that easy we shall prove it in Chapter
IV (in even greater generality). In this section we shall prove it when the
map is unimodal and has negative Schwarzian derivative. This result is due to
Guckenheimer (1979). The proof we give here serves as an introduction to the
proof given in Chapter IV for the multimodal case.

Theorem 6.3. (Guckenheimer) Let f : I ! I be a C3 unimodal map with
negative Schwarzian derivative and such that D2f(c) 6= 0 at the unique critical
point c of f . Then f has no wandering intervals.

Remark. If f is symmetric then there is a very simple proof of Theorem 6.3.
(We should remark that for any unimodal map there are new coordinates in
which the map becomes symmetric; however, the property that the Schwarzian
derivative of the maps is negative may get lost under this coordinate change.)
This proof is given in Exercise 6.1 below. Step 3 of the proof we will give here
is di↵erent from the original proof of Guckenheimer. He did not make use of
the Koebe Principle, but used the arguments given in Exercise 6.1 to show that
even if f is not symmetric that there exists ⇢ > 0 such that the sequence of
closest approach fn(k)(J) defined below satisfies |fn(k+1)(J)| � ⇢ · |fn(k)(J)|.
Combining this with the first part of Step 2 below and using the Minimum
Principle, completes the argument. The main advantage of our proof is that it
makes no use of periodic points. We prefer this because periodic points cannot
be used in the multimodal analogue of this theorem.

Proof of Theorem 6.3 Since f is unimodal, there exists a map ⌧ : I ! I such
that f(⌧(x)) = f(x) and ⌧(x) 6= x for x 6= c. Since Df2(c) 6= 0, the map ⌧ is
Lipschitz and in particular there exists a number  2 (0, 1) such that

|⌧(J)| � |J |

for each interval J not containing the turning point. In order to prove the
theorem suppose, by contradiction, that f has a wandering interval J . By
considering an iterate of J instead of J we may assume that no iterate of J
contains the critical point of f . So fn is a homeomorphism on J for all n � 0.
Furthermore, we may assume that J is not contained in a larger wandering
interval. This last assumption implies that no interval T which strictly contains
J is a homterval. Indeed, by Corollary 1 of Lemma II.3.2, either all points of
a homterval T are contained in the basin of a periodic attractor or T is also
a wandering interval. Since T � J and J is a wandering interval, the first
alternative is impossible. Therefore T is also a wandering interval. But this
contradicts the maximality of J .
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Next we have from Corollary 2 of Theorem I.2.2 that fn(J) must accumulate
at the critical point c. Therefore there exists a sequence of integers n(k) !
1 such that fn(k)(J) ! c. Hence we can consider the sequence of ‘closest
approach’ to the critical point defined inductively as follows:

n(1) = 0,

n(k + 1) = min{j > n(k) ; f j(J) ⇢ (fn(k)(J), ⌧(fn(k)(J)))}.

Here (K, ⌧(K)) denotes the smallest interval which connects K and ⌧(K) (and
whose intersection with these intervals is empty). Furthermore, let

[K, ⌧(K)] = K [ (K, ⌧(K)) [ ⌧(K).

Now the remainder of the proof goes in three steps.

Step 1: Let T
n(k) � J be the largest interval on which fn(k) is a homeomor-

phism. We claim that either

fn(k)(T
n(k)) � [c, fn(k�1)(J)]

or that the first interval contains the mirror image of the second, i.e.,

fn(k)(T
n(k)) � [c, ⌧(fn(k�1)(J))].

Indeed, let L and R be the components of T
n(k) \ J . By maximality of T

n(k)

there exists an integer 0  l < n(k) such that f l(L) contains c (in its boundary).
At the same time

f l(J)
\

h

fn(k�1)(J), ⌧(fn(k�1)(J))
i

= ;

for l 6= n(k� 1) since l < n(k) and by definition of the sequence n(k). It follows
that f l(L[ J) contains [fn(k�1)(J), c] or [⌧(fn(k�1)(J)), c]. Hence fn(k)(L[ J)
can be contained neither in [fn(k�1)(J), c] nor in [⌧(fn(k�1)(J)), c]. Indeed,
otherwise one of the intervals [fn(k�1)(J), c] or [⌧(fn(k�1)(J)), c] would contain
fn(k)(L[ J). In particular one of the intervals f l(L[ J) or ⌧(f l(L[ J)) would
contain fn(k)(L[J) and hence fn(k)�l would map one of these intervals f l(L[J)
or ⌧(f l(L[J)) monotonically into itself and consequently J would be attracted
by a periodic attractor (with period n(k)� l), a contradiction to the assumption
that J is a wandering interval. Similarly, fn(k)(R [ J) cannot be contained in
[fn(k�1)(J), c] or in its mirror image [⌧(fn(k�1)(J)), c]. Combining this it follows
that fn(k)(T

n(k)) contains [c, fn(k�1)(J)] or [c, ⌧(fn(k�1)(J))].

Step 2: Next we show that the gap between fn(k)(J) and c is much smaller
than the size of fn(k)(J) for k large. More precisely, we will show that

(6.1) lim
n!1

|(fn(k)(J), c)|
|fn(k)(J)| ! 0.

Of course it is enough to show that for each ✏ > 0

(6.2) |(fn(k)(J), c)|  ✏|fn(k)(J)|
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fn(k�1)(J) fn(k+1)(J) c fn(k)(J)

Fig. 6.1: The intervals fn(k)(J) tend to c, but not necessarily monotonically. In Step

2 it is shown that fn(k)(J) is not too large compared to the gap between this interval

and c.

f l(J) fn(k�1)(J) c

f l(L)f l(J)

Fig. 6.2: f l(L[ J) contains either [fn(k�1)(J), c] or its symmetric. So if fn(k)(L[ J)

is contained in [fn(k�1)(J), c] or in its symmetric [⌧(fn(k�1)(J)), c] then fn(k)�l would

map the interval f l(L [ J) or the interval ⌧(f l(L [ J)) monotonically into itself and

J would be attracted by a periodic attractor with period n(k)� l.

provided k is large enough (and of course we may even assume that ✏ 2 (0,)
where  is as in the beginning of the proof). Because the intervals fn(J) are all
disjoint, there exist infinitely many integers k with

(6.3) |fn(k)(J)|  |fn(k�1)(J)|.

Take such an integer k. By Step 1, one of the components of fn(k)(T
n(k) \ J)

contains either fn(k�1)(J) or its mirror image (note that this is the component
which is ‘further away from the turning point’), and therefore

min
⇣

|fn(k�1)(J)|, |⌧(fn(k�1)(J))|
⌘

�  · |fn(k�1)(J)| �  · |fn(k)(J)|.

So on this side of fn(k)(J) one has ‘space’. On the other side of fn(k)(J) (i.e.,
the side which is closer to the turning point), the interval fn(k)(T

n(k)) contains
(fn(k)(J), c). If (6.2) would fail then we would also get space on the other side
and fn(k)(T

n(k)) would at least contain an ✏0-scaled neighbourhood of fn(k)(J)
where ✏0 = min(, ✏). But then the Koebe Principle implies that T

n(k) is a
⇢(✏0)-scaled neighbourhood of J . So we get an interval T which is strictly larger
than J on which fn(k) is a homeomorphism for all k � 0. But then fn|T is
a homeomorphism for all n � 0 and therefore T is a homterval which strictly
contains J . As we have seen above, this gives a contradiction. Consequently, for
k su�ciently large (6.3) implies (6.2). But since ✏ 2 (0,) and either fn(k+1)(J)
or its symmetric is contained in (fn(k)(J), c), inequality (6.2) gives

|fn(k+1)(J)|  |fn(k)(J)|.

Thus we get back the assumption (6.3) with k + 1 instead of k and so (6.2)
holds also for k + 1 instead of k. Repeating this both (6.2) and (6.3) hold for
all subsequent integers k. This completes the proof of this step.
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Step 3: Next we claim that

(6.4) n(k + 2)� n(k + 1)  n(k + 1)� n(k)

for k large enough. In order to prove this we first show the following. If (6.4)
would not hold then there would be an interval T � fn(k)(J) which is mapped
by fn(k+1)�n(k) monotonically onto [fn(k)(J), ⌧(fn(k)(J))]. So let T � fn(k)(J)
be the maximal interval which is mapped by fn(k+1)�n(k) monotonically into
[fn(k)(J), ⌧(fn(k)(J))]. If the image of T under this map is not the entire inter-
val then there exists 0  l < n(k + 1) � n(k) such that f l(T ) contains c in its
boundary. But f l(fn(k)(J)) is certainly not contained in [fn(k)(J), ⌧(fn(k)(J))]
because l+n(k) < n(k+1) and by the definition of the sequence of n(k). Hence
f l(T ) contains either fn(k)(J) or its symmetric. But then fn(k+1)�n(k)(T )
contains fn(k+1)�l(J). So we would get that fn(k+1)�l(J) is contained in
[fn(k)(J), ⌧(fn(k)(J))]. But since n(k) < n(k + 1) � l  n(k + 1) this is im-
possible unless l = 0 again by the definition of the sequence of n(k). But if
l = 0 then T contains [fn(k)(J), c] and therefore fn(k+1)(J) or its mirror image.
Thus

[fn(k)(J), ⌧(fn(k)(J))] � fn(k+1)�n(k)(T )

would contain fn(k+1)�n(k)+n(k+1)(J) and by definition of n(k + 2) this gives
n(k + 2)  n(k + 1) + n(k + 1)� n(k) and (6.4) holds. So if (6.4) does not hold
then we get the required interval T .

But if we let M = fn(k)(J) then Step 2 implies that the space (fn(k)(J), c)
between fn(k)(J) and c is much smaller than the size of fn(k)(J) for k large. In
particular, [fn(k)(J), ⌧(fn(k)(J))] is a 1-scaled neighbourhood of fn(k+1)�n(k)(M) =
fn(k+1)(J) for k su�ciently large. So fn(k+1)�n(k)(T ) ‘has space around’ fn(k+1)�n(k)(M).
But then the Koebe Principle implies that this space can be pulled back. More
precisely, T contains a ⇢(1)-scaled neighbourhood of M where ⇢(1) > 0 is a
universal number. Since T does not contain c, one of the components of T \M
is contained in (fn(k)(J), c) and therefore

|(fn(k)(J), c)| � ⇢(1)|M | = ⇢(1)|fn(k)(J)|.

But this contradicts again (6.1) for large k. All these contradictions show that
(6.4) needs to hold for k su�ciently large. Now we can easily complete the

proof. Since (6.4) holds, n(k + 1) � n(k) is eventually equal to some integer a
for all k su�ciently large. In particular, since the intervals fn(k)(J) tend to c, it
follows that c is an attracting fixed point of fa and that J is in its basin. This
contradicts that J is a wandering interval.

Exercise 6.1. If f is symmetric one can simplify the previous proof considerably. In

that case it follows from the Minimum Principle that |fn(k+1)(J)| > |fn(k)(J)| and so

no wandering intervals can exist. Prove this in three steps. Step 1) Let

V
k

= {y ; f j(y) /2 [y, ⌧(y)] for all 0 < j < k, fk(y) 2 [y, ⌧(y)]}

and let T be a connected component of V
k

. Show that: i) Dfk(y) 6= 0 for all y 2 T

and ii) for each y 2 @T , fk(y) 2 {y, ⌧(y)}. (Hint: since f j(y) /2 [y, ⌧(y)], f j(y) is
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not equal to the critical point of f for 0  j < k and hence Dfk(y) 6= 0. This

proves i). Since y is in the boundary of T , it follows from the definition of V
k

that

f j(y) 2 {y, ⌧(y)} for some j = 0, 1, . . . , k. If j = k then ii) follows. So we are

left with the case that there exists 0 < l < k with f l(y) 2 {y, ⌧(y)} and such that

f j(y) /2 [y, ⌧(y)] for j = 1, . . . , l � 1. Let m, p 2 N be such that k = ml + p with

0  p < l. Then fk(y) = fpfml(y) and since f l(y) 2 {y, ⌧(y)} and f(y) = f(⌧(y)) this

gives fk(y) 2 fp({y, ⌧(y)}). If p > 0 then fk(y) = fp(y) and since fk(y) 2 [y, ⌧(y)]

this gives a contradiction with the definition of l. So p = 0 and therefore again

fk(y) 2 {y, ⌧(y)}.) Step 2) Show that |Dfk(z)| > 1 for all z 2 T . (Hint: as in Step

1, if we take y 2 @T , we get ŷ = fk(y) 2 {y, ⌧(y)} and therefore ŷ is a fixed point

of fk: fk(ŷ) = fk(fk(y)) 2 fk(fk({y, ⌧(y)})) = fk(y) = ŷ. Furthermore, f cannot

have an attracting periodic point because otherwise, by Theorem 6.1, this attracting

periodic point would attract the critical point and therefore J would be contained in

the basin of this periodic point and therefore not be a wandering interval. Because

fk(ŷ) = ŷ this gives |Dfk(ŷ)| � 1. On the other hand, by the symmetry hypothesis,

Dfk(y) = �Dfk(⌧(y)). Therefore |Dfk(y)| = |Dfk(⌧(y))| � 1 for both boundary

points y of T . From the Minimum Principle it follows that |Dfk(z)| > 1 for all z 2 T .

Step 3) By the definitions of V
k

and of the sequence of closest approach n(k) we

have fn(k)(J) ⇢ V
n(k+1)�n(k)

. Therefore Step 2 implies that |fn(k+1)(J)| > |fn(k)(J)|.

From the previous theorem and the results from Sections 3 and 4 one gets
that quadratic maps form a good model for unimodal maps. In Chapter IV
we will prove Theorem 6.2 (more generally the non-existence of non-wandering
intervals will be proved for a very large class of maps which includes for example
all analytic interval maps). From all this we get the following

Theorem 6.4. If f : I ! I is a l-modal C1 map then there exist a polynomial
l-modal map P : I ! I and a semi-conjugacy h : I ! I between f and P , i.e.,
h is continuous, monotone and

P � h = h � f.

Furthermore, h is strictly monotone in the backward orbits of the turning points
of f . In fact, h merely collapses wandering intervals and the basins of periodic
attractors which do not attract a turning point.

Proof. Let P be the l-modal polynomial map which is essentially conjugate to
f and which has negative Schwarzian derivative, repelling boundary points and
non-degenerate critical points. By the Corollary to Theorem 4.1 such a map P
exists. It follows from Theorem 6.1 that P has only essential periodic attractors.
We will show that there is a semi-conjugacy from f to P . Let c

i

be the turning
points of f and let B be the union of the basins of all periodic attractors of
f . Similarly, let c̃

i

and B̃ be the corresponding objects for P . Since f and
P are combinatorially equivalent, c

i

is contained in the immediate basin of a
periodic attractor if and only if the same holds for c̃

i

. So let B
e,0 be the union of

immediate basins of essential periodic attractors for f and similarly let B̃0 the
union of immediate basins of periodic attractors of P (all periodic attractors of
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P are essential). Extend h to a conjugacy h : B
e,0 ! B̃0. As in Theorem 3.1

and the corollary below this theorem, h extends to a homeomorphism from

[l

i=1 [n2Z fn(c
i

)
[

B

to the set
[l

i=1 [n2Z Pn(c
i

)
[

B̃.

From Theorem 6.2, P has no wandering intervals, the last set is dense. It follows
that h extends to a semi-conjugacy from f to P .

Remark. 1. The semi-conjugacy between f and P of Theorem 6.4 collapses
i) the basin of every non-essential attracting periodic point of f , ii) wandering
intervals of f and iii) intervals of periodic points. However, if f has negative
Schwarzian derivative, all critical points of f are of quadratic type and the
boundary points of I are not contained in the immediate basin of a periodic
attractor then f has no inessential periodic attractors, no wandering intervals
and no intervals of periodic points, see Theorems 6.1 and 6.2. Hence in this case
the semi-conjugacy is in fact a conjugacy. 2. In the next chapter we shall show

that each map with negative Schwarzian derivative whose turning points are in
the basin of hyperbolic periodic orbits is structurally stable.

Exercise 6.2. Take a quadratic map Q. Let O
1

, . . . , O
k

be periodic orbits such that

the critical orbit does not accumulate on O
1

, . . . , O
k

. Show that there exists a C1

unimodal map f which is semi-conjugate to Q such that the inverse of each point

which is eventually mapped into O
1

[ · · ·[O
k

under this semi-conjugacy consists of an

interval. In particular, f has k periodic attractors, and h maps the immediate basins of

these periodic attractors onto the periodic orbits O
1

, . . . , O
k

. Later on, in Chapter IV,

we will show that any C1 map with non-flat critical points can be constructed in this

way. (Hint: because the critical orbit of Q does not accumulate onto the orbits O
i

one

can modify Q near these orbits without changing the kneading invariant. So modify

Q into a unimodal map f which coincides with Q outside a small neighbourhood of

O
1

[ · · ·[O
k

and such that f has very small derivative in each point of O
1

[ · · ·[O
k

.

Then f has a periodic attractor near O
i

.)

7 The Topological Entropy

In the next three sections we will discuss the relationship between the dynamics
of an interval map and an important topological invariant, called topological
entropy. We will not use this relationship in the remainder of this book. This
topological invariant, which appeared for the first time in Adler et al. (1965),
is defined for continuous maps of compact metric space and is a measure of
the dynamical complexity of the map. It measures the growth rate as n tends
to infinity of the number of di↵erent orbits of length n if we use a precision
✏ to distinguish two orbits. For continuous piecewise monotone maps of the
interval we will show that the topological entropy coincides with the growth
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of the number of points in the backward orbits of the turning points which
is equal to the “lap number” of the iterates of the map, i.e., the number of
maximal intervals of monotonicity of the iterate. This result was first proved by
Misiurewicz and Szlenk (1980) and Young (1981). We will follow the exposition
of L.S. Young.

Definition. Let X be a compact metric space with metric d and f : X ! X
be a continuous function. A subset E ⇢ X is (n, ✏)-separated if for any x, y 2 E
with x 6= y, there is an integer j such that 0  j < n and d(f j(x), f j(y)) > ✏.
A set F ⇢ X is said to (n, ✏)-span another set K if for each x 2 K there exists
y 2 F such that d(f j(x), f j(y))  ✏ for all 0  j < n.

If K ⇢ X is a compact subset, we denote by r
n

(✏, K), or r
n

(✏, K, f), the
smallest cardinality of any set F ⇢ K that (n, ✏)-spans K and by s

n

(✏, K) the
largest cardinality of any set E ⇢ K which is (n, ✏)-separated. Define:

r(✏, K) = lim sup
n!1

1
n

log r
n

(✏, K),

s(✏, K) = lim sup
n!1

1
n

log s
n

(✏, K).

Notice that, for a given “precision” ✏ > 0, s
n

(✏, K) is the maximum number of
di↵erent orbits of length n starting at K. Let us first show that these numbers
r
n

and s
n

are strongly related.

Lemma 7.1. 1. If ✏1 < ✏2 then r(✏1, K) � r(✏2, K) and s(✏1, K) � s(✏2, K). 2.
r
n

(✏, K)  s
n

(✏, K)  r
n

( 1
2✏, K) <1.

Proof. Let us first prove Statement 1). For each n we have that every (n, ✏2)-
separated set is also a (n, ✏1)-separated set. Hence s

n

(✏1, K) � s
n

(✏2, K). There-
fore s(✏1, K) � s(✏2, K). The proof of the other inequality is the same. In order
to prove Statement 2) let us first remark that, by compactness of K, the number
of disjoint balls of radius ✏ and therefore the cardinality of any (n, ✏)-separated
set is bounded. Let E ⇢ K be a (n, ✏)-separated set of maximal cardinality. If
x 2 K there exists y 2 E such that d(f i(x), f i(y))  ✏ for all i = 0, . . . , n � 1
because, otherwise, E [ {x} would be an (n, ✏)-separated set with bigger cardi-
nality. Therefore E also (n, ✏)-spans K. Thus

Card (E) = s
n

(✏, K) � r
n

(✏, K).

Let F be a set which (n, 1
2✏)-span K. If E ⇢ K is an (n, ✏) -separated set then,

for every x 2 E, we can choose a point T (x) 2 F such that d(f i(T (x)), f i(x)) 
1
2✏, 8i < n. We claim that T (x1) 6= T (x2) if x1 6= x2. In fact, if T (x1) = T (x2)
then d(f i(x1), f i(x2))  d(f i(x1), f i(T (x1))) + d(f i(T (x2)), f i(x2))  ✏, 8i < n
and this is not possible because E is (n, ✏)-separated. From the claim we get
that Card(E)  Card(F ). Hence s

n

(✏, K)  Card(F ) and therefore s
n

(✏, K) 
r
n

( 1
2✏, K).

From Lemma 7.1, it follows that the limit, as ✏ ! 0, of both r
n

(✏, K) and
s

n

(✏, K) exist and are equal (but this number may be equal to +1).
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Definition. For a continuous map f : X ! X of a compact metric space with
metric d and a (not necessarily f -invariant) subset K ⇢ X the topological en-
tropy of f with respect to K is the number

h
t

(f, K) = lim
✏!0

r(✏, K) = lim
✏!0

s(✏, K).

The number h
t

(f) = h
t

(f, X) is called the topological entropy of f .

The topological entropy is a measure of the dynamical complexity of the
map. Indeed, for n big and ✏ small, the number of di↵erent orbits of length n,
up to precision ✏, is of the order enh

t

(f).

Lemma 7.2. If f : X ! X is a continuous map of a compact metric space X
then

h
t

(fm) = mh
t

(f)

for all integers m > 0.

Proof. If F ⇢ X (mn, ✏)-spans X with respect to f then it clearly (n, ✏)-spans
X with respect to fm. Therefore r

n

(✏, X, fm)  r
mn

(✏, X, f). This implies
h

t

(fm)  mh
t

(f). Since X is compact, given ✏ and n, there exists � > 0 such
that if x, y 2 X satisfy d(x, y) < � then d(f i(x), f i(y)) < ✏, 8i < n. Therefore
any set F that (n, �)-spans X with respect to fm also (mn, ✏)-spans X with
respect to f . Hence r

mn

(✏, X, f)  r
n

(�, X, fm) and this implies mh
t

(f) 
h

t

(fm).

In the remainder of this section we will show how to calculate the topological
entropy of a continuous one-dimensional map f : [0, 1]! [0, 1]. We will do this
using the fact that f is semi-conjugate to the shift operator on the space of
symbols introduced in Section 3. Therefore it will be useful to have the following
result.

Amongst other things this result will also show that the topological entropy
of a continuous map f : X ! X on a metric space X does not depend on the
choice of the metric on X (and is therefore really a topological invariant).

Theorem 7.1. (Bowen) Let (X, d) and (Y, d0) be compact metric spaces, f : X !
X, g : Y ! Y be continuous maps. If ⇡ : X ! Y is a continuous and surjective
map such that ⇡ � f = g � ⇡ then

h
t

(g)  h
t

(f)  h
t

(g) + sup
y2Y

h
t

(f,⇡�1(y)).

Proof. Since X is compact, given ✏ > 0 there exists � > 0 such that if
d0(⇡(x),⇡(y)) > ✏ then d(x, y) > �. Hence, if E

n

⇢ Y is an (n, ✏)-separated
set of maximal cardinality s

n

(✏, Y, g) and Ẽ ⇢ X is a set having one and only
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one point in each fiber over each point of E
n

, we have that Ẽ is an (n, �)-
separated set with the same cardinality as E

n

. Thus s
n

(�, X, f) � s
n

(✏, Y, g)
for all integers n 2 N. From this we get easily, h

t

(f) � h
t

(g).
Let us now prove the second inequality. Let

a = sup
y2Y

h
t

(f,⇡�1(y)).

If a = 1 there is nothing to prove. So we can assume that a < 1. Let
r
n

(✏,⇡�1(y)) be the minimum cardinality of a subset of ⇡�1(y) which (n, ✏)-
spans ⇡�1(y) with respect to f . Since r

n

(✏,⇡�1(y)) is a decreasing function of
✏ > 0, we have

h
t

(f,⇡�1(y)) � lim sup
n!1

1
n

log r
n

(✏,⇡�1(y)) for every ✏ > 0.

Fix ✏ > 0 and choose ↵ > 0. From the previous inequality it follows that for
each y 2 Y we can choose an integer m(y) such that

(⇤) a + ↵ � h
t

(f,⇡�1(y)) + ↵ � 1
m(y)

log r
m(y)(✏,⇡�1(y)).

Note that h
t

(f) and h
t

(g) are equal to limits of respectively s
n

(✏, X, f) and
r
n

(�, Y, g). Therefore, in order to prove the second inequality of the theorem,
we need to relate s

n

(✏, X, f) to r
m(y)(✏,⇡�1(y)) and r

n

(�, Y, g). In order to
do this we choose a finite number of points {y1, . . . , yp

} as follows. For each
y 2 Y choose a set F

y

⇢ ⇡�1(y) with the smallest possible cardinality so that
it (m(y), ✏)-spans ⇡�1(y) with respect to f . From (⇤) we have

(⇤⇤) a + ↵ � 1
m(y)

Card(F
y

).

Let D
n

(z, 2✏, f) be the neighbourhood of z defined by

D
n

(z, 2✏, f) = {w 2 X ; d(f i(z), f i(w)) < 2✏, for 0  i < n}

and also define
U

y

= [
z2F

y

D
m(y)(z, 2✏, f).

Since F
y

is an (m(y), ✏)-spanning set of ⇡�1(y) with respect to f , it follows that
U

y

is a neighbourhood of ⇡�1(y) in X. Let {W
y1 , . . . Wy

p

} be a finite cover of
Y such that ⇡�1(W

y

i

) ⇢ U
y

i

, 8i = 1, . . . , p and let � be the Lebesgue number
of this cover (this means that for y 2 Y the ball B(y, �) of radius � around y is
contained in one of the sets W

y

i

).
We want to estimate the maximal cardinality s

n

(4✏, X, f) of a (n, 4✏) sepa-
rated set of X from above in terms of Card(F

y

i

), i 2 {1, . . . , p}, and r
n

(�, Y, g).
For that we take an (n, �)-spanning set E

n

for Y , with respect to g, having
minimal cardinality r

n

(�, Y, g). We want to shadow the orbit of a point y 2 E
n

by pieces of orbits of points from {y1, . . . , yp

} in such a way that we can ap-
ply (⇤⇤) to each of these pieces. This we do as follows. Take y 2 Y and let
c0(y) 2 {y1, . . . , yp

} be such that W
c0(y) � B(y, �) and define t0(y) = 0. Next let
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t1(y) = m(c0(y)) and let c1(y) 2 {y1, . . . , yp

} be such W
c1(y) � B(gt1(y)(y), �).

Similarly, assuming that t0(y), . . . , t
k

(y) and c0(y), . . . , c
k

(y) are already defined
we define t

k+1(y) = t
k

(y)+m(c
k

(y)) and let c
k+1(y) 2 {y1, . . . , yp

} be such that
W

c

k+1(y) � B(gt

k+1(y)(y), �). Finally, let l = l(y) be such that

l�1
X

s=0

m(c
s

(y)) = t
l

(y) < n  t
l

(y) + m(c
l

(y)).

For each y 2 E
n

, x0 2 F
c0(y), . . . , xl

2 F
c

l

(y), consider

V (y;x1, . . . , xl

) =
n

x 2 X ; d(f t+t

s

(y)(x), f t(x
s

)) < 2✏ for all

0  t < m(c
s

(y)) and all 1  s  l(y)
o

.

We claim that

1. the family V = {V (y;x1, . . . , xl

) ; y 2 E
n

, x
s

2 F
c

s

(y), 1  s  l(y)} is an
open cover of X;

2. any (n, 4✏)-separated set intersects each element of V in at most one point.

In order to prove 1), let x 2 X. Since E
n

is a set which (n, �)-spans Y , there
exists y 2 E

n

such that d(gi(y), gi(⇡(x))  � for all j < n. Hence for each
0  s  l(y), ⇡ � f t

s

(y)(x) = gt

s

(y)(⇡(x)) 2 W
c

s

(y). Therefore there ex-
ists x

s

2 F
c

s

(y) such that d(f t+t

s(x), f t(x
s

)) < 2✏ for all 0  t < m(c
s

(y)).
Thus x 2 V (y;x1, . . . x

l(y)). This proves 1). If z, w 2 V (y;x1, . . . x
l(y)) then

d(f t+t

s(z), f t+t

s(w)  d(f t+t

s(z), f t(x
s

)) + d(f t(x
s

), f t+t

s(w)) < 4✏, for all
0  t < m(c

s

(y)) and all 0  j < n. This proves 2).
It follows from the claim that the cardinality s

n

(4✏, X, f) of the maximal
(n, 4✏)-separated subset of X is bounded from above by the cardinality of the
covering V. But V = [

y2E

n

V
y

and the cardinality of V
y

is

Card(V
y

) =
l(y)
Y

s=0

Card(F
c

s

(y)).

Hence, using (⇤⇤),

log(Card(V
y

))
(⇤⇤)! (a + ↵)

l(y)
X

s=0

m(c
s

(y))

= (a + ↵)

0

@

l(y)�1
X

s=0

m(c
s

(y)) + m(c
l

(y))

1

A

 (a + ↵)(n + M),

where M = max{m(y1), . . . ,m(y
p

)}. Hence, since s
n

(4✏, X, f)  Card(V) =
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Card([
y2E

n

V
y

), the previous inequality implies

1
n

log s
n

(4✏, X, f)  1
n

log Card(V)

 1
n

log Card(E
n

) +
M + n

n
(a + ↵)

=
1
n

log r
n

(�, Y, g) +
M + n

n
(↵+ a).

If we let n go to infinity we get, since M does not depend on n,

s(4✏, X, f)  r(�, Y, g) + ↵+ a  h
t

(g) + ↵+ a.

Since ↵ is arbitrary, this implies

s(4✏, X, f)  h
t

(g) + a.

Hence h
t

(f)  h
t

(g) + a and the theorem is proved.

Corollary 7.1. Assume f : X ! X and g : Y ! Y are continuous maps of
compact metric spaces and ⇡ : X ! Y is a conjugacy between f and g. Then f
and g have the same topological entropy. In particular, the topological entropy
does not depend on the choice of the metric.

Proof. For a finite set K ⇢ X, we have that h
t

(f, K) = 0. Hence, since ⇡�1(y)
is a unique point, the corollary follows.

As we have seen in Section 3, if f : [0, 1] ! [0, 1] is a piecewise monotone
one can associate to each point x the itinerary of x. However, this itinerary
is constant on intervals on which all iterates of f are monotone. Therefore in
order to apply Theorem 7.1, we will need the following

Lemma 7.3. Let f : I ! I be a continuous map on a compact interval I and
let K ⇢ I be an interval such that the restriction of fn to K is monotone for
every n. Given ✏ > 0 there exists a constant C

✏

such that r
n

(✏, K)  C
✏

· n for
every n. In particular, the topological entropy of f with respect to K is zero.

Proof. Choose a finite set F
i

⇢ f i(K) so that each point in f i(K) is at most
✏ far from F

i

. Clearly, F
i

can be chosen so that Card(F
i

)  C
✏

where C
✏

=
|I|/✏+ 1. Next let

F
n

=
n

[

i=0

f�i(F
i

) \K.

Since f i is a homeomorphism on K for each i 2 N, we have Card(F
n

)  C
✏

· n.
We claim that F

n

is a (n, ✏)-spanning set of K. Indeed, take y 2 L and let
y0 2 F

n

be so that no other point in F
n

is nearer to y. From the choice
of y0 and from the fact that f i : L ! f i(L) is a homeomorphism it follows
that d(f i(y), f i(y0))  ✏ for i = 0, 1, . . . , n. This completes the proof of the
lemma.
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Definition. Let f : I ! I be a continuous piecewise monotone map. The lap
number of f , which we denote by l(f), is the number of maximal intervals on
which f is monotone. In other words, l(f)� 1 is the number of turning points
of f .

Lemma 7.4. Let f : I ! I be a piecewise monotone continuous map. Then the
sequence { n

p

l(fn)} converges as n!1.

Proof. We claim that
l(g � f)  l(g)l(f)

when f and g are continuous functions. Indeed, in the f -image of each lap of f ,
g has at most l(g) laps. Hence the total number of laps of g�f can be estimated
by the above formula. Using a general argument one gets from this that n

p

l(fn)
converges. Indeed, let k be a fixed integer. If n 2 N, there exist integers p, q
such that n = pk + q with 0  q < k. From l(g � f)  l(g)l(f) we get

l(fn)  (l(fk))pl(fq).

Hence (l(fn)) 1
n  (l(fk))

p

pk+q ⇥ (l(f))
q

kp+q . As n tends to infinity we have that
p tends to infinity and q remains bounded. Hence p

pk+q

tends to 1
k

and q

pk+q

tends to zero. Therefore

lim sup
n!1

(l(fn))
1
n  (l(fk))

1
k for all k 2 N.

Therefore

lim sup
n!1

(l(fn))
1
n  inf

k

(l(fk))
1
k  lim inf

k!1
(l(fk))

1
k .

Now we come to the main result of this section.

Theorem 7.2. (Misiurewicz and Szlenk) Let f : I ! I be a continuous,
piecewise monotone map. Then the topological entropy of f is equal to the
logarithm of the number s(f) = lim

n!1 (l(fn)) 1
n . In particular, if f is l-modal

then s(f)  l.

Proof. Let I = [0, 1] and 0 < c1 < · · · < c
l

< 1 be the turning points of f .
Consider the intervals I1 = [0, c1), I2 = (c1, c2), . . . Il+1 = (c

l

, 1). We are going
to consider the symbolic dynamics of f . First we define

⌃0(f) = {x = (x
i

)
i�0 ; x

i

2 {1, . . . , l + 1} and \n

i=0 f�i(I
x

i

) 6= ; for all n 2 N}

with the metric d defined by d(x, y) =
P1

i=0
1
2i

�
x

i

,y

i

where �
x

i

,y

i

= 1 if x
i

6= y
i

and �
x

i

,y

i

= 0 if x
i

= y
i

. Notice that ⌃0(f) is compact and invariant by the
shift operator � : ⌃0(f)! ⌃0(f). Let ⌃

I

(f) = { (x, x) 2 ⌃0(f)⇥[0, 1] ; f i(x) 2
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cl (I
x

i

) for all i 2 N }. ⌃
I

(f) is compact. Indeed, if x 2 [0, 1] then as we saw
in Section 3, i(x±) 2 ⌃0(f) where i(t) is the itinerary of t. Hence ⌃

I

(f) =
{(i(x±), x) 2 ⌃0(f)⇥[0, 1]} and because i(y

j

)! i(y±) when y
j

! y, we get that
⌃

I

(f) is compact. Let �
I

: ⌃
I

(f)! ⌃
I

(f) be defined by �
I

(x, x) = (�(x), f(x)).
Let ⇡1 : ⌃

I

(f) ! ⌃0(f) and ⇡2 : ⌃
I

(f) ! [0, 1] be the projections defined by
⇡1(x, x) = x and ⇡2(x, x) = x. Both ⇡1 and ⇡2 are continuous, surjective and
⇡1 ��I

= � �⇡1 and ⇡2 ��I

= f �⇡2. Hence we can use Theorem 7.1 and we get

h
t

(�)  h
t

(�
I

)  h
t

(�) + sup
x2⌃0(f)

h
t

(�
I

,⇡�1
1 (x)).

Each fibre ⇡�1
1 (x) is equal to x ⇥ I(x) where I(x) is the closure of the set

of points whose itinerary is equal to x. Therefore the restriction to I(x) of
iterates of f are monotone. Hence we can use Lemma 7.3 to conclude that
h

t

(�
I

,⇡�1
1 (x)) is equal to zero. Hence h

t

(�) = h
t

(�
I

). On the other hand, the
cardinality of ⇡�1

2 (x) is at most two. Therefore, again using Theorem 7.1, we
get h

t

(�
I

) = h
t

(f). Thus h
t

(f) = h
t

(�).
For each x 2 ⌃0(f) and each n > 0 consider the cylinder C

n

(x) = {y 2
⌃0(f) ; y

i

= x
i

, 8i = 0, . . . , n�1}. So C
n

corresponds to the intervals on which
fn is monotone. Let us denote by C

n

the family of such cylinders. It is clear
that the cardinality of C

n

is equal to the lap number l(fn). If C
n

(x) 6= C
n

(y)
then x

i

6= y
i

for some i < n. Using the definition of the metric d, one gets
d(�i(x),�i(y)) > 1

2 . Hence, if we choose one point in each element of C
n

, we
get a set which (n, 1

2 )-separated. Therefore l(fn) = Card(C
n

)  s
n

( 1
2 ,⌃0(f),�).

Thus 1
n

log l(fn)  1
n

log s
n

( 1
2 ,⌃0(f),�) or, by taking the lim sup of both mem-

bers of the previous inequality, log s(f)  s( 1
2 ,⌃0(f),�). Therefore

log s(f)  h
t

(�).

Let us now prove the reverse inequality. Fix an integer p. If C
n+p

(x) = C
n+p

(y)
then

d(�i(x),�i(y))  1
2p

for all i  n.

Therefore, if we choose one point in each of the elements of C
n+p

, we get an
(n, 1

2p

)-spanning set. Hence

r
n

(
1
2p

,⌃0(f),�)  Card(C
n+p

) = l(fn+p).

Thus
1
n

log r
n

(
1
2p

,⌃0(f),�)  n + p

n

1
n + p

log l(fn+p).

Now, letting n tend to infinity, we get lim sup 1
n

r
n

( 1
2p

,⌃0(f),�)  log s(f).
Therefore h

t

(�)  log s(f).

Remark. We shall show in the next section that the lap numbers l(fn) are
determined by the kneading invariant of f . Of course one can deduce this from
the techniques developed in Section 3, but in the next section we will give a
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much more precise relationship between the kneading invariants and the lap
numbers of a map.

Corollary 7.2. If f : I ! I is a piecewise linear continuous map with slope
equal to ±s then the topological entropy of f is equal to max(0, log s).

Proof. Let I = [0, 1]. If x, y 2 I we have d(f i(x), f i(y))  sid(x, y). Hence the
set F that partitions [0, 1] into equal intervals of size ✏

s

n

is an (n, ✏)-spanning set.
The cardinality of F is at most s

n

✏

. Therefore 1
n

log r
n

(✏, I, f)  log s� 1
n

log ✏.
From this we get h

t

(f)  log s.
Let J be a lap of fn. Then |fn(J)| = sn|J |. Therefore |J |  s�n. Since

the laps are disjoint, l(fn) � sn. From the previous theorem we get h
t

(f) �
log s.

In Section 9 of this chapter we will show that the topological entropy depends
continuously on the map if one considers C1 maps in the C1 topology and
restricts oneself to maps with the same number of turning points.

Exercise 7.1. Show that if f : I ! I is a continuous interval map, then h(f) =

h(f |⌦(f)) where ⌦(f) is the non-wandering set of f . (Hint: elaborate on the proof

given in Lemma 7.3. However, this result holds also for a general continuous map on a

compact space.) In particular, f has topological entropy zero whenever ⌦(f) consists

of only a finite number of points.

Exercise 7.2. Show that the topological entropy of f : [0, 1] ! [0, 1] is at least log 2

if there exist two open disjoint intervals I
1

and I
2

such that f(I
1

) � I
1

[ I
2

and

f(I
2

) � I
1

[ I
2

. (Hint: in this case the number of laps of fn is at least 2n.)

Exercise 7.3. Exercise 7.3 If f has a periodic point of period s and if s is not of

the form s = 2n for some n 2 N, then f has positive topological entropy. (Hint: use

Lemma 7.2, Lemma 1.5 from the proof of the theorem of Sarkovskii and the previous

exercise.)

Exercise 7.4. In general the topological entropy does not depend continuously on the

map in the C0 topology. (Hint: consider, for example, the non-symmetric piecewise

linear map F : [�1, 1] ! [�1, 1] with slope 1 and s
2

< �2 to the left respectively to the

right of the turning point and with F (�1) = �1. Show that F n = F for all n � 1 and

therefore h(F ) = 0. Perturb F to a piecewise linear continuous map F ⇤ with slopes

s > 1 and s
2

as in Figure 7.1. Let p be the fixed point for F ⇤ with |DF ⇤(p)| = |s
2

| > 2.

Take q so that F ⇤(q) = p. Show that the second iterate of F ⇤ maps [q, p] strictly over

itself as shown in this figure. Using Exercise 7.2 it follows that h(F ⇤) � log(2)/2.)

8 The Piecewise Linear Model

In this section we will prove, following Milnor and Thurston (1977), that a
continuous, piecewise monotone map with positive topological entropy is semi-
conjugate to a continuous, piecewise linear map with constant slope and with
the same entropy. Essentially this result was already proved by Parry (1966).
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Fig. 7.1: The maps F ⇤ and (F ⇤)2.

Theorem 8.1. (Parry) and (Milnor and Thurston) Assume that f : I ! I
is a continuous, piecewise (strictly) monotone map with positive topological en-
tropy h

t

(f) and let s = exp(h
t

(f)). Then there exists a continuous, piecewise
linear map T : [0, 1]! [0, 1] with slope ±s, and a continuous, monotone increas-
ing map � : I ! [0, 1] which is a semi-conjugacy between f and T , i.e.,

� � f = T � �.

The proof of this theorem gives also a very important relationship between
the lap numbers l(fn) and the kneading invariants. In the next section we will
show that often the growth rate of l(fn) depends continuously on f . Of course
to show that the growth rate of numbers l(n) depending on some parameter a
varies continuously on a is not that easy. In order to solve this problem Milnor
and Thurston associated both to the lap numbers and to the kneading invariants
a power series. The product of these two power series is an extremely simple
power series which is meromorphic on the Riemann sphere with a unique simple
pole in z = 1. In this way the growth rate of l(fn) will turn out to be a special
zero of the power series associated to the kneading invariants of f . To show
that the zero of this last power series depends continuously on the map will be
quite easy.

Let us first give a rough idea how to use power series in order to construct
conjugacies. Consider the functions defined by

L
f

(t) =
1
X

n=0

l(fn)tn

and

L
f

(J ; t) =
1
X

n=0

l(fn|J)tn,

where l(fn|J) is the lap number of fn restricted to J . (Sometimes we shall sim-
ply write L(t) and L(J ; t) instead of L

f

(t) and L
f

(J ; t).) L
f

(t) is holomorphic
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in the disc centred at the origin of the complex plane and with radius 1
s

, where
s = lim

n!1 n

p

l(fn). From Theorem 7.2 we had that s > 1 if the topological
entropy of f is positive. Next show that

⇤(J) = lim
t!1/s

L(J ; t)
L(I; t)

exists. Once we know this, it is very easy to show that ⇤ defines an additive
continuous probability measure on I and that ⇤(f(J)) = s⇤(J) whenever f is
monotone on J . In this way one constructs a semi-conjugacy with a continuous
piecewise linear map.

Rather than merely showing that ⇤(J) = lim
t!1/s

L(J;t)
L(I;t) exists, we will show

that it has a meromorphic extension to |t| < 1. This will be done by showing
that there is a rather intriguing relationship between the function L

f

(t) and
another function D

f

(t) called the kneading determinant of f . This kneading
determinant is holomorphic in the unit disc and its Taylor series is constructed
from the itineraries of the turning points of f and can be simply deduced from
the kneading invariants of f . A consequence of this relationship will be that
L

f

(t) is a meromorphic function on the unit disc whose poles are contained in
the set of zeros of the kneading determinant. Furthermore, the point t = 1

s

is a
pole of L

f

(t) and the semi-conjugacy will be constructed using this pole. These
last results will also be crucial in the next section.

Exercise 8.1. Consider f(x) = 4x(1 � x). Show that L
f

(t) =
P

n�0 2ntn =
1

1�2t

. In particular, L
f

(t) is a rational function with a single pole at 1/2.

Let f : I ! I be a l-modal map. That is, f is piecewise monotone map with
l turning points 0 < c1 < · · · < c

l

< 1 and with f(@I) ⇢ @I. Moreover, let
c0 = 0 and c

l+1 = 1 be the endpoints of I and let I0 = [0, c1), I1 = (c1, c2), . . . ,
I
l+1 = (c

l

, 1]. As before, we denote by ⌃ the space {I1, . . . , Il+1, c1, . . . , cl

}N

and ⌃0 is the shift-invariant subspace of sequences x = (x0, x1, . . . ) such that
x

n

2 {I1, . . . , Il+1} for all n. In ⌃ we consider again the product topology which
is induced by the metric d(x, y) =

P1
n=0

1
2n

�
x

n

y

n

.

Next we define for k = 1, . . . , l + 1 and n � 0,

⇥k

n

: ⌃! {�1,�1
2
, 0,

1
2
, 1}

as follows. For x 2 ⌃, let ✏0(x) = 1 and ✏
n

(x) = ✏(x0) ⇥ · · · ⇥ ✏(xn�1) where
✏(x

i

) is the sign of x
i

, i.e., ✏(c1) = · · · = ✏(c
l

) = 0, ✏(I
j

) = 1 if f is increasing on
I
j

and ✏(I
j

) = �1 if f is decreasing on I
j

. Then for k = 1, . . . , l + 1 and n � 0
we define

⇥k

n

(x) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

+1 if x
n

= I
k

and ✏
n

(x) = 1,
�1 if x

n

= I
k

and ✏
n

(x) = �1,

+ 1
2 if x

n

2 @I
k

= {c
k

, c
k�1} and ✏

n

(x) = 1,

� 1
2 if x

n

2 @I
k

= {c
k

, c
k�1} and ✏

n

(x) = �1,

0 otherwise, i.e., if either ✏
n

(x) = 0 or x
n

/2 {c
k

, I
k

, c
k+1}.
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Note that ⇥k

0(x) is equal to +1 if x0 = I
k

and equal to 1
2 if x

n

2 @I
k

= {c
k

, c
k�1}

and 0 otherwise.

Now let D be the open unit disc in the complex plane. For each x 2 ⌃ and
each t 2 D, define

⇥k(x; t) =
1
X

n=0

⇥k

n

(x)tn

and
⇥(x; t) = (⇥1(x; t), . . . ,⇥l+1(x; t)).

So the k-th component of this vector only depends on the occurrences of the
terms c

k

, I
k

or c
k+1 in x. Since the coe�cients of the Taylor series of ⇥k(x; t)

are bounded, it follows that ⇥k(x; t) is indeed a holomorphic function of t on
the unit disc D. Hence ⇥(x; t) is well defined for each x 2 ⌃ and each t 2 D.

Now we can define a similar power series for points x which are of the form
i
f

(x) where x 2 I. More precisely, define

✓k

n

(x) = ⇥k

n

(i
f

(x)),

and
✓

n

(x) = (✓1
n

(x), . . . , ✓l+1
n

(x)) 2 {±1,±1
2
, 0}l+1

and the invariant coordinates of a point x 2 I as

✓
f

(x; t) = ⇥(i
f

(x); t)) =
1
X

n=0

✓
n

(x)tn.

Since |✓
n

(x)|  1 for each x 2 I, each of the coordinate functions t 7! ✓k

f

(x; t)
is a holomorphic Cl+1-valued function on D. If no confusion can arise we will
write ✓ instead of ✓

f

.

Of course, there is some redundancy: as we will show in Lemma 8.1 below one
can reconstruct ✓l+1(x) from ✓1(x), . . . , ✓l(x). For this reason, in the unimodal
case one often uses a slightly simpler C-valued holomorphic function, see for
example Milnor and Thurston (1977) or Van Strien (1987). This function is
defined in the exercise below.

Exercise 8.2. Let f : [0, 1] ! [0, 1] be unimodal and assume for simplicity
that f is monotone increasing on I1. Let ✓

f

(x) = ✓1
f

(x) � ✓2
f

(x) and write
✓(x) =

P

n�0 ✓n

(x)tn. Show that

✓
n

(x) =

8

>

>

<

>

>

:

1 if fn+1 is increasing near x

�1 if fn+1 is decreasing near x

0 if fn+1 has a local extremum at x.

(Hint: ⇥1
n

(x) � ⇥2
n

(x) = 1 if ✏
n

(x) = 1 and x
n

= I1 or if ✏
n

(x) = �1 and
x

n

= I2. Since ✏(I1) = 1, it follows that ⇥1
n

(x) � ⇥2
n

(x) = 1 if and only if
✏
n+1(x) = 1.)
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Exercise 8.3. Consider f(x) = 4x(1� x). Show that

✓
f

(c�; t) = (1� [t2 + t3 + t4 + . . . ], t) = (1� t2

1� t
, t)

✓
f

(c+; t) = (t2 + t3 + t4 + . . . , 1� t) = (
t2

1� t
, 1� t).

Hence the term ✓
f

(c�; t) from the previous exercise is equal to 1� [t + t2 + t3 +
t4 + . . . ] = 1 � t

1�t

. Check that this coincides with the alternative description
given in the previous exercise.

Remarks. 1. Notice that if i(x) /2 ⌃0 then there exists n 2 N such that
fn(x) 2 {c1, . . . , cl

} and therefore ✏
i

(i(x)) = 0 for i � n and ⇥k(i(x)) is a
polynomial of at most degree n for every k. Similarly, let x be in the backward
orbit of the turning points, i.e., fn(x) = c

k

for some k = 1, . . . , l+1 and assume
x, . . . , fn�1(x) are not turning points. Then for each k = 1, . . . , l + 1, ✓k(x; t)
is a polynomial in t of degree at most n. In fact, ✓k(x; t) and ✓k+1(x; t) are
polynomials of degree equal to n and the coe�cient of the tn term is for both
polynomials equal to 1

2 if fn is monotone increasing in a neighbourhood of x
and � 1

2 if fn is monotone decreasing. 2. If x is not in the backward orbit of

the turning points then

✓k

n

(x) =

8

>

>

<

>

>

:

+1 if fn(x) 2 I
k

and fn is locally increasing near x,

�1 if fn(x) 2 I
k

and fn is locally decreasing near x,

0 if fn(x) /2 I
k

.

3. The mapping (x, t) ! ✓(x, t) is not continuous as a function of the first

variable. In fact, since ⇥ is continuous, the left and right handed limits are
respectively

✓(x�; t) = ⇥(i
f

(x�))(t),

✓(x+; t) = ⇥(i
f

(x+))(t).

Hence ✓ is discontinuous precisely at the points where the itinerary map is
discontinuous, i.e., at the set of backward orbits of the turning points. Notice
that from the definition of ⇥k

0(x) above, for 1  k  l + 1 and 1  i  l,

✓k

0 (c�
i

) =

(

1 when k = i

0 otherwise;

and similarly

✓k

0 (c+
i

) =

(

1 when k = i + 1
0 otherwise.

So let H(D) be the space of holomorphic Cl+1-valued functions on D endowed
with the compact open topology: a basis of neighbourhoods for a map � 2 H(D)
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is V (✏, K) = { 2 H(D) ; | (t)��(t)| < ✏, 8t 2 K}, where K ⇢ D is a compact
set and ✏ is a positive real number. From the previous expressions it follows that
the map ✓(x) 2 H(D) defined by t 7! ✓(x; t) is not continuous in x 2 I. On the
other hand, if we consider the map ⇥(x) 2 H(D) defined by t 7! ⇥(x; t) where
x is contained in the space of all sequences in ⌃, then ⌃ 3 x 7! ⇥(x) 2 H(D)
is continuous. Indeed, let x 2 ⌃, K ⇢ D be a compact set and ✏ > 0. Choose
r < 1 such that |t|  r for all t 2 K. Choose N 2 N such that 2 r

N

1�r

< ✏.
Let V be a neighbourhood of x 2 ⌃ such that if y 2 V then y

i

= x
i

, 8i < N .

Then |⇥k(x)(t)�⇥k(y)(t)| 
P1

n=N

|⇥k

n

(x)�⇥k

n

(y)|tn 
P1

n=N

2|tn| = 2|t|N
1�|t| 

2 r

N

1�r

< ✏. Therefore ⇥ is a continuous map.

In the next lemma it is shown that ✓1(x), . . . , ✓l+1(x) are strongly related.
Of course this is not surprising: the coe�cients of the power series ✓k(x) are
determined by the visits of x to cl (I

k

) and so are related to the coe�cients of
the remaining power series.

Lemma 8.1. For every x 2 I we have the following identity:

l+1
X

k=1

(1� ✏(I
k

)t)✓k(x; t) = 1.

Proof. We claim that

l+1
X

k=1

✓k

0 (x) = 1;(i)

l+1
X

k=1

✏(I
k

)✓k

n

(x) =
l+1
X

k=1

✓k

n+1(x) for n � 0.(ii)

Indeed, if x 2 I
j

then ✓j

0(x) = 1 and ✓k

0 (x) = 0 for k 6= j and therefore (i) holds.
On the other hand, if x = c

k

then ✓k

0 (x) = 1
2 , ✓k+1

0 = 1
2 and ✓j

0(x) = 0 for all
j 6= k, k + 1 and so again (i) holds. This completes the proof of (i). If ✏

n

=
✏(i0(x))⇥ · · ·⇥ ✏(i

n�1(x)) = 0 then ✓k

n

(x) = ✓k

n+1(x) = 0 for all k = 1, . . . , l + 1
and therefore both the left and the right hand side of (ii) is zero. Suppose
now that ✏

n

6= 0. If fn(x) 2 I
k

and fn+1(x) 2 I
m

then ✓m

n+1(x) = ✏(I
k

)✓k

n

(x),
✓j

n+1(x) = 0 for j 6= m and ✓j

n

(x) = 0 for j 6= k. Hence both members in (ii) are
equal to ✏(I

k

)✓k

n

(x). If fn(x) = c
k

then the second member in (ii) is equal to
zero and the first member is equal to ✏(I

k

)✓k

n

(x) + ✏(I
k+1)✓k+1

n

(x) which is also
equal to zero, since ✏(I

k

) = �✏(I
k+1) and ✓k

n

(x) = ✏
n

· 1
2 = ✓k+1

n

(x). Finally, if
fn(x) 2 I

k

and fn+1(x) = c
m

the first member of (ii) is equal to ✏(I
k

)✓k

n

(x) and
the second member is equal to ✓m

n+1(x)+✓m+1
n+1 (x) = ✓k

n

(x)✏(I
k

) 1
2 +✓k

n

(x)✏(I
k

) 1
2 =

✏(I
k

)✓k

n

(x). Thus the claim is proved.
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From the claim we get

l+1
X

k=1

"

[1� ✏(I
k

) t] ·
N

X

n=0

✓k

n

(x)tn
#

=
N

X

n=0

l+1
X

k=1

�

✓k

n

(x)tn � ✏(I
k

)✓k

n

(x) tn+1
�

= 1�
l+1
X

k=1

✏(I
k

)✓k

N

(x)tN+1.

Therefore

lim
N!1

l+1
X

k=1

"

(1� ✏(I
k

)t)
N

X

n=0

✓k

n

(x)tn
#

= 1

uniformly on any compact subset of D.

Definition. The l ⇥ (l + 1) matrix
0

B

B

B

@

N1,1(t) N1,2(t) . . . N1,l+1(t)
N2,1(t) N2,2(t) . . . N2,l+1(t)

...
...

. . .
...

N
l,1(t) N

l,2(t) . . . N
l,l+1(t)

1

C

C

C

A

,

where N
i,j

(t) are the holomorphic functions defined by

N
i,j

(t) = ✓j(c+
i

; t)� ✓j(c�
i

; t)

is called the kneading matrix. The i-th row of this matrix, i.e., the holomorphic
mapping N

i

: D! Cl defined by

N
i

(t) = ✓(c+
i

; t)� ✓(c�
i

; t)

is the kneading vector associated to the i-th turning point. The kneading matrix
carries all the combinatorial information on the map f because it allows us
to recover the itinerary of the turning points, and because of Lemma 8.1 the
columns of this matrix are related in a very neat way.

Let us write [N
i,j

(t)] =
P1

n=0[N
n

i,j

]tn, where [Nn

i,j

] is an l ⇥ (l + 1) matrix
of integers. For n > 0, each entry of this matrix is in {0,±2} because ✓j

n

(c+
i

) =
�✓j

n

(c�
i

) 2 {0,±1} for n > 0. Using Remark 3 above we get that the matrix
[N0

i,j

] is equal to
0

B

B

B

@

�1 1 0 0 . . . 0 0
0 �1 1 0 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . �1 1

1

C

C

C

A

.

In the next lemma we shall use Lemma 8.1 to show that the determinants
of the matrices which we get by deleting one of the columns of the kneading
matrix are all equal. So we will call this holomorphic function the kneading
determinant D

f

of f .
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Lemma 8.2. Let D
i

(t) be the determinant of the l⇥ l matrix obtained from the
kneading matrix by deleting the i-th column. Then

1. D
i

is a holomorphic function on D;

2. the function D
f

(t) defined by D
f

(t) = (�1)i+1 D

i

(t)
1�✏(I

i

)t is independent of i
(this function is called the kneading determinant of f ;

3. D
f

(0) = 1.

Exercise 8.4. Consider f(x) = 4x(1�x). Using Exercise 8.3, show that the kneading

matrix (N
11

(t) N
12

(t)) of f is equal to
“
�1 + 2t

2

1�t

1� 2t
”

=
“

(t+1)(2t�1)

1�t

1� 2t
”

.

Similarly, the kneading matrix of f(x) = 2x(1� x) is equal to
“
�1� 2t

1�t

1
”

.

Exercise 8.5. Consider f(x) = 4x(1� x). Using Exercise 8.4 show that

D
f

(t) =
2t� 1
1� t

= �1 + [t + t2 + t3 + . . . ].

Proof of Lemma 8.2 Let N1, . . . N l+1 be the columns of the kneading matrix
and let [N1, . . . , N̂ i, . . . N l+1] be the matrix obtained from the kneading matrix
by deleting the i-th column. From Lemma 8.1, it follows that

(⇤)
l+1
X

j=1

(1� ✏(I
j

)t)N j(t) = 0.

Using (⇤) and the fact that the determinant is an alternating l+1-linear function
of the columns, we get

(�1)l+2(1� ✏(I
l+1)t) · Det[N1, . . . , N̂ i, . . . , N l, N l+1]

= Det[N1, . . . , N̂ i, . . . , N l, (�1)l+2(1� ✏(I
l+1)t)N l+1]

(
⇤)!= Det[N1, . . . , N̂ i, . . . , N l, (�1)l+1

X

j 6=l+1

(1� ✏(I
j

)t)N j ]

=
X

j 6=l+1

Det[N1, . . . , N̂ i, . . . , N l, (�1)l+1(1� ✏(I
j

)t)N j ]

= Det[N1, . . . , N̂ i, . . . , (�1)l+1(1� ✏(I
i

)t)N i]

= (�1)l�i Det[N1, . . . , (�1)l+1(1� ✏(I
i

)t)N i, . . . , N̂ l+1]

= (�1)2l�i+1(1� ✏(I
i

)t)Det[N1, . . . , N i, . . . , N̂ l+1]

= (�1)i+1(1� ✏(I
i

)t)D
l+1.

This proves Statement 2). Statement 1) is obvious and Statement 3) is true
because the matrix [N2(0), . . . , N l(0)] is lower triangular with a 1 in each term
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in the diagonal. Our next aim is to show how the kneading matrix and

the number of laps of iterates of f are related. In order to do this we first show
that the discontinuities of x 7! ✓(x; t) are of a very special type.

Lemma 8.3. If x 2 I is such that fn(x) is a turning point c
k

and f i(x) is not
a turning point for 0  i < n then

✓(x+; t) = ✓(x; t) +
1
2
tnN

k

(t);

✓(x�; t) = ✓(x; t)� 1
2
tnN

k

(t).

and ✓(x; t) is a polynomial map of degree n. Here N
k

is the kneading vector
associated to the k-th turning points (i.e., the k-th row of the kneading matrix),
as before.

Remark. In particular,

✓(c+
k

; t) = ✓(c
k

; t) +
1
2
N

k

(t),

✓(c�
k

; t) = ✓(c
k

; t)� 1
2
N

k

(t).

Since ✓(c
k

; t) = (0, . . . , 0, 1/2, 1/2, 0, . . . , 0) where the terms 1/2 are in the k-th
and k + 1-th position, this implies that each one of the terms ✓(c+

k

; t), ✓(c�
k

; t)
and N

k

(t) determines the other two. So all, except the constant terms, in the
power series of ✓(c+

k

; t) and �✓(c�
k

; t) coincide.

Exercise 8.6. Show that if f : [0, 1] ! [0, 1] is unimodal, i.e., l = 1, and f is increasing

on I
1

that then

D
f

(t) =
�N

1,1

(t)
1 + t

=
N

1,2

(t)
1� t

and therefore 2D
f

(t) = �N
1,1

+N
1,2

= �✓1(c+)+✓1(c�)+✓2(c+)�✓2(c�) = �✓
f

(c+)+

✓
f

(c�). In particular,

D
f

(t) = ✓
f

(c�) = �✓
f

(c+).

Compute this for f(x) = 4x(1� x) using the terms ✓
n

from Exercise 8.2 and compare

this with the result from Exercise 8.5.

Proof of Lemma 8.3 Let i
f

(x�) = x�, i
f

(x+) = x+ and i
f

(x) = x. Further-
more, let i

f

(c�) = v and i
f

(c+) = w. Then, x+
i

= x�
i

= x
i

, i < n, and because
f(c+) = f(c�), x+

n+k

= x�
n+k

= v
k

= w
k

, k � 1. So ✏
k

(v) = �✏
k

(w) for k � 1.
Finally, if fn is locally increasing near x then for k � 0,

✏
n+k

(x�) = ✏
n

(x)⇥ ✏
k

(v) = ✏
k

(v) =
1
2

(✏
k

(v)� ✏
k

(w))

and
✏
n+k

(x+) = ✏
n

(x)⇥ ✏
k

(w) = ✏
k

(w) = �1
2

(✏
k

(v)� ✏
k

(w)) ;
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otherwise, if fn is locally decreasing near x then one has for k � 1, again that

✏
n+k

(x�) = ✏
n

(x)⇥ ✏
k

(w) = ✏
k

(v) =
1
2

(✏
k

(v)� ✏
k

(w))

and
✏
n+k

(x+) = ✏
n

(x)⇥ ✏
k

(v) = �✏
k

(v) = �1
2

(✏
k

(v)� ✏
k

(w)) .

From this and from the definition of the function ⇥ it follows that all the
coe�cients, except possibly those corresponding to the term tn, of the power
series ✓(x+; t) and ✓(x; t) + 1

2 tnN
k

(t) coincide. Using Remark 1 above Lemma
8.1, the lemma follows immediately. In

the next lemma we introduce functions �
i

(J)(t) which are holomorphic on the
disc |t| < 1/s where s is the growth rate of l(fn). These functions are closely
related to the maps t 7! L(J ; t) defined in the introduction of this section.

Lemma 8.4. Let J be an interval in I and

�
i,n

(J) = #{x 2 int (J) ; fn(x) = c
i

and

fk(x) is not a turning point for k < n}.

Then, for each i = 1, . . . , l, the function

�
i

(J)(t) =
1
X

n=0

�
i,n

(J)tn

is holomorphic on the disc {t 2 D ; |t| < 1
s

} where, as before, s is the limit of
n

p

l(fn) as n!1.

Proof. Since �
i,n

(J)  l(fn|J)  l(fn), we get

lim sup
n!1

n

q

�
i,n

(J)  lim sup
n!1

n

p

l(fn) = s.

Therefore the radius of convergence of the Taylor series of �
i

(J) is at least equal
to 1

s

.

In the next theorem we will give a precise relationship between the power
series �

i

(J)(t) and the kneading vectors N
i

(t) associated to the i-th turning
point. From this relationship it will follow that the map t 7! L(J ; t), which is
holomorphic on |t| < 1/s, has a meromorphic extension to the disc D. We shall
also use Theorem 8.2 in Section 9.

Theorem 8.2. Let J be an open interval in I with endpoints a < b and �
i

(J)
the holomorphic function defined in Lemma 8.4. For every t 2 {C ; |t| < 1

s

} we
have

✓(b�; t)� ✓(a+; t) =
l

X

i=1

�
i

(J)(t)⇥N
i

(t).

Here �
i

(J)(t) ⇥ N
i

(t) is the product of the scalar function �
i

(J)(t) and the
kneading vector N

i

(t) 2 Cl+1 associated to the i-th turning point.
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Proof. Let n 2 N and let F
n

= [
kn

[l

i=1 E
i,k

(J) where E
i,k

(J) is the set of
points x 2 int (J) for which fk(x) = c

i

and f j(x) is not a turning point for
j < n. The previous lemma shows that the cardinality of these sets does not
increase too fast as n ! 1. The finite set F

n

is equal to the set of turning
points of fn+1|J . Notice that if x < y are two consecutive points of F

n

then, for
every z 2 (x, y), the Taylor series of ✓(x+; t), ✓(y�; t) and of ✓(z; t) coincide up
to the order n. Hence ✓(b�; t) � ✓(a+; t) has the same partial sum up to order
n as the holomorphic map

P

x2F

n

(✓(x+; t)� ✓(x�; t)). By Lemma 8.3, the n-th
partial sum of ✓(b�; t)� ✓(a+; t) is therefore equal to the n-th partial sum of

l

X

i=0

n

X

k=0

X

x2E

i,k

(J)

tkN
i

(t) =
l

X

i=0

n

X

k=0

�
i,k

(J) tkN
i

(t).

Therefore the required equality holds up to terms of order n. Since this is true
for all n 2 N the theorem follows.

Corollary 8.1. Let J = (a, b) ⇢ I as before. Then the function �
i

(J)(t)
has a meromorphic extension to D, for each i = 1, . . . , l. The poles of these
meromorphic functions can only be at the zeros of the kneading determinant
D

f

(t).

Proof. By Lemma 8.2, the determinant D
l+1 of the l ⇥ l matrix [N1, . . . , N l]

(obtained from the kneading matrix by deleting the l + 1-th column of the
kneading matrix) is a holomorphic function on D which is not identically zero.
Hence there exists an l⇥ l matrix [M

i,j

] with meromorphic entries which is the
inverse of [N1, . . . , N l]. From Theorem 8.2 we get for each j = 1, . . . , l,

✓j(b�; t)� ✓j(a+; t) =
l

X

i=1

�
i

(J)(t)⇥N
i,j

(t).

Thus
l

X

j=1

(✓j(b�; t)� ✓j(a+; t)) M
j,k

(t) =
l

X

j=1

l

X

i=1

�
i

(J)N
i,j

(t)M
j,k

(t)

=
l

X

i=1

�
i

(J)(t)
l

X

j=1

N
i,j

(t)M
j,k

(t) =
l

X

i=1

�
i

(J)(t)�
i,k

= �
k

(J)(t).

Hence �
k

(J)(t) is a meromorphic function. Furthermore, multiplying both
members by the kneading determinant

D
f

(t) =
D

l+1(t)(�1)l+2

1� ✏(I
l+1)t

,

we get that D
f

(t)�
k

(J)(t) is equal to

l�1
X

j=1

�

✓j(b�; t)� ✓j(a+; t)
�

·M
j,k

(t) ·D
l+1(t) · (�1)l+2

1� ✏(I
l+1)t

.
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Since the l⇥ l matrix [M
i,j

] is the inverse of [N1, . . . , N l], and since the determi-
nant of the matrix [N1, . . . , N l] is equal to D

l+1, we get by Cramer’s rule that
M

j,k

(t)D
l+1(t) is the determinant of a (l�1)⇥ (l�1) submatrix of [N1, . . . , N l]

for each j, k = 1, . . . , l. Since this last determinant is holomorphic on D, all this
implies that D

f

(t)�
k

(J)(t) is also holomorphic on D. All the work done so

far in this section was aimed at proving that t 7! L
f

(t), which is holomorphic
on |t| < 1/s, has a meromorphic extension to D with a pole in 1/s. This will be
shown in the next corollary.

Corollary 8.2. The function L
f

(t) = L(I; t) =
P1

n=0 l(fn)tn is meromorphic
on D and its poles are contained in the set of zeros of the kneading determinant
D

f

(t). Furthermore, L
f

(t) = L(I; t) has a pole at the point t = 1
s

.

Proof. Let J be the interior of I. The number of turning points of fn in J is
P

n�1
p=0

P

l

i=1 �i,p

(J). Therefore the number of laps of fn is

l(fn) =
n�1
X

p=0

l

X

i=1

�
i,p

(J) + 1.

Thus

L
f

(t) =
1
X

n=0

l(fn)tn =
l

X

i=1

1
X

n=0

n�1
X

p=0

�
i,p

(J)tn +
1

1� t
.

From the formula for the product of two power series we get

t

1� t

1
X

n=0

a
n

tn = (
1
X

n=0

tn+1)(
1
X

n=0

a
n

tn) =
1
X

n=0

(
n�1
X

p=0

a
p

)tn.

Using this expression in the formula for L
f

(t) we get

L
f

(t) =
1

1� t
+

l

X

i=1

t

1� t
�

i

(J)(t).

Hence, from the previous corollary, L
f

(t) is meromorphic on D and the poles of
L

f

(t) are contained in the set of poles of �
i

(t) which is a subset of the set of
zeros of the kneading determinant. It remains to prove that L

f

(t) has a pole at
the point t = 1

s

. Since the coe�cients of the Taylor series of L
f

(t) are positive
numbers,

|L
f

(t)| 
1
X

n=0

l(fn)|t|n.

Hence lim
t! 1

s

P1
n=0 l(fn)|t|n =1 because, otherwise, L

f

(t) would be bounded
in the disc of radius 1

s

and therefore it could be extended holomorphically to a
bigger disc. This is a contradiction because the radius of convergence of L

f

(t)
is 1

s

.
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Next we are going to define a probability measure in I which will give the
semiconjugacy between f and a piecewise linear map. If J ⇢ I is a closed
interval then, as we have seen in the previous corollary, the map

L
f

(J ; t) =
1
X

n=0

l(fn|J)tn

converges for |t| < 1
s

and, in fact, extends to a meromorphic function on the
unit disc with poles contained in the set of zeros of the kneading determinant.
Hence L(J;t)

L(I;t) is a meromorphic function. However, the point t = 1
s

is a removable

singularity of the meromorphic function L(J;t)
L(I;t) because 0  L(J ; t)  L(I; t) for

0 < t < 1
s

. In particular, the limit

⇤(J) = lim
t!1/s

L(J ; t)
L(I; t)

exists and satisfies the inequality 0  ⇤(J)  1.

Lemma 8.5. Assume that s > 1.

1. If the intervals J1 and J2 have only a boundary point in common then

⇤(J1 [ J2) = ⇤(J1) + ⇤(J2);

2. the number ⇤(J) depends continuously on the endpoints of J;

3. if f is monotone on J then

⇤(f(J)) = s⇤(J).

Proof. Since l(fn|J1) + l(fn|J2) di↵ers from l(fn|J1 [ J2) by at most one, we
have that the di↵erence of the meromorphic functions,

L(J1; t) + L(J2; t)� L(J1 [ J2; t)

is bounded by ⌃|tn| = 1
1�|t| < 1 for |t|  1

s

< 1. Dividing by L(I; t) and
passing to the limit as t ! 1

s

we get Statement 1) since lim
t! 1

s

|L(I; t)| = 1.
To prove Statement 3), we notice that, since f |J is a homeomorphism, then,
l(fn+1|J) = l(fn|f(J)). This clearly implies that L(J ; t) = 1 + tL(f(J); t).
Therefore

⇤(J) = lim
t! 1

s

1 + tL(f(J); t)
L(I; t)

=
1
s
⇤(f(J)).

This proves Statement 3). In order to prove Statement 2), let J = [a, b]. For
any n 2 N we can choose x > b so that the interval [b, x] is contained in a single
lap of fn. Then, using Statements 1) and 3) we get

⇤([a, x]) = ⇤(J) + ⇤([b, x]) and
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⇤([b, x]) = s�n⇤(fn([b, x]))  s�n.

Since s > 1, the proof is finished.

Now we can prove the main result of this section.

Proof of Theorem 8.1 As before let I = [c0, cl+1]. Let us define � : I !
[0, 1] by �(x) = ⇤([c0, x]). From Lemma 8.5, it follows that � is a continuous,
surjective and monotone map. We claim that if x, y 2 I are such that �(x) =
�(y) then �(f(x)) = �(f(y)). So let us consider a partition J1, . . . , Jn

of the
interval [x, y] such that f |J

i

is monotone. From Lemma 8.5 we have that 0 =
⇤([x, y]) =

P

n

i=1 ⇤(J
i

) = 1
s

P

n

i=0 ⇤(f(J
i

)). Since [f(x), f(y)] ⇢ [n

i=1f(J
i

), this
gives ⇤([f(x), f(y)]) 

P

n

i=1 ⇤(f(J
i

)) = 0. Therefore |�(f(x)) � �(f(y))| =
⇤([f(x), f(y)]) = 0. This proves the claim.

From the previous claim it follows that the mapping T : [0, 1]! [0, 1] defined
by T (x) = �(f(��1(x))) is well defined, continuous and satisfies � � f = T � �.
It remains to show that T is piecewise linear. Take x 2 I

k

= [c
k�1, ck

]. We
assume first that f is monotone increasing on I

k

. Then,

T (�x) = �(f(x)) = �(f(c
k�1)) + ⇤(f(c

k�1, x)).

But
⇤( f(c

k�1, x) ) = s⇤(c
k�1, x) = s�(x)� s�(c

k�1).

Therefore
T (�(x)) = a

k

+ s�(x)

where a
k

is the constant �(f(c
k

)) � s�(c
k�1). Hence T has slope s in �(I

k

).
Similarly, if f is decreasing in I

k

we get that T has slope �s in �(I
k

).
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Fig. 8.1: In the map drawn on the left the growth rates of l(fn

|J
1

) and l(fn

|J
2

) are

di↵erent where J
1

and J
2

. This map is semi-conjugate to the piecewise linear map

drawn on the right; the semi-conjugacy collapses the whole interval J
2

.
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Remark. 1. From the Corollary below Theorem 5.2, a continuous piecewise
map with slopes equal to ±s has topological entropy equal to log s. Therefore
T has the same topological entropy as f . 2. The semi-conjugacy � of the

theorem may collapse one or several laps of T into a point. In fact, suppose
I can be partitioned into f -invariant intervals J1, . . . , Jk

, see Figure 8.1 on
the left. Then, l(fn) =

P

n

i=1 l(fn|J
i

). From this it follows that if we define
s

i

= lim
n!1 n

p

l(fn|J
i

), then s = max{s1, . . . , sk

}. Furthermore, from the
construction of � it is clear that any interval J

i

of the partition with growth
number s

i

< max{s1, . . . , sk

} must be collapsed to a point. 3. As we will see in

Section III.4 one can use Theorem 8.2 to give a canonical decomposition of the
non-wandering set, see Jonker and Rand (1981). It will follow that there are
uncountably many non-combinatorially equivalent maps which have the same
topological entropy. Hence, even for unimodal maps, topological entropy is only
a very rough invariant.

Exercise 8.7. Let f : [�1, 1] ! [�1, 1] be as in Figure 8.1 on the left. Show that the

growth rate of l(fn) is equal to 3. It follows that the semi-conjugacy from the previous

theorem has the property that �[0, 1] = {1} and that �[�1, 0] = [0, 1]. In particular,

the piecewise linear map T is as in Figure 8.1 on the right.

Exercise 8.8. Show that any unimodal f : [0, 1] ! [0, 1] with s(f) <
p

2 has no

periodic points of odd period p � 3. (Hint: use the Exercise 5.3.)

Exercise 8.9. Even if � is a homeomorphism it is in general not a di↵eomorphism.

(Hint: if � were di↵erentiable then eigenvalues at a periodic point of period n would

have to be of the form sn. In fact, this type of argument can be used to show that in

general h is not even absolutely continuous, see Exercise V.3.1.)

Exercise 8.10. Show that the continuous piecewise monotone maps from Theorem

8.1 have sensitive dependence on initial conditions. (Hint: use a similar idea as in the

proof of Proposition 5.2.)

9 Continuity of the Topological Entropy

In this section we will prove, using the tools developed in the last section, that
the topological entropy h

t

(f) depends continuously on f : I ! I as long as
we consider only maps f in the space of C1 piecewise monotone maps with a
fixed lap number. This result was first proved in Milnor and Thurston (1977).
As we have seen in Theorem 8.2 the topological entropy of f is equal to the
logarithm of the number s(f) = lim

n!1 n

p

l(fn). First we will show that 1
s(f)

is the closest zero to the origin of kneading determinant D
f

. Next we will
analyze how the kneading determinant varies with the mapping. Although this
determinant certainly does not depend continuously on the mapping, we will
show that its zeros do vary continuously. The reason for this is that the change
of the kneading matrix due to a perturbation of the map is of a very special
nature. Indeed, as we will see, the kneading matrix of the perturbed map can
be obtained from the original kneading matrix by a small perturbation of the



180 CHAPTER II. THE COMBINATORICS OF ENDOMORPHISMS

matrix followed by some elementary operations on the matrix (which do not
change the kneading determinant) and subsequently by multiplying some rows
by holomorphic functions which are non-zero in the unit disc.

We consider the space Cr(I, I), r � 0 of Cr maps of a compact interval
I endowed with the Cr topology: this is defined by the norm ||f � g||

r

=
sup{|f(x) � g(x)|, . . . , |Drf(x) � Drg(x)| ; x 2 I}. We fix l points c1 < · · · <
c
l�1 < c

l

in the interior of I and denote by P r = P r(I; c1, . . . , cl

) the subspace of
piecewise monotone maps whose turning points are exactly the points c1, . . . , cl

and such that the boundary of I is mapped into itself.
The main result of this section is the following

Theorem 9.1. (Milnor and Thurston) The function P 1 ! R which as-
sociates to each mapping g 2 P 1(I; c1, . . . , cl

) its topological entropy h
t

(g) is
continuous.

Of course one can also apply this theorem also to the space P 2,l of C2 maps
(with the C2 topology) which are l-modal and whose critical points are non-
degenerate (i.e., the second derivative is non-zero at critical points). Indeed, if
f 2 P 2,l then every map g which is C2 close to f is also l-modal and by the
Implicit Function Theorem there exists a C2 coordinate change h : I ! I which
is C2 close to the identity so that the turning points of f and h�g�h�1 coincide.
It follows that P 2,l 3 f 7! h

t

(f) is continuous.

To prove this theorem we need some lemmas. For simplicity write I =
[c0, cl+1].

Lemma 9.1. Let f 2 P 1(I; c1, . . . , cl

) and D
f

(t) be its kneading determinant,
s = lim

n!1 n

p

l(fn) and t = 1
s

. Then t = 1
s

is a zero of D
f

(t) and D
f

(t) 6= 0
if |t| < 1

s

.

Proof. As before let N1, . . . , Nl

be the rows and N1, . . . , N l+1 the columns of
the l ⇥ (l + 1) kneading matrix of f . From Theorem 8.2 we get

✓(c�
k

; t)� ✓(c0; t) =
l

X

i=1

�
i

([c0, ck

])(t)N
i

(t)

for every 1  k  l. Since ✓(c�
k

; t) = ✓(c
k

; t)� 1
2N

k

(t), we have

✓(c
k

; t)� ✓(c0; t) =
l

X

i=1

�
i

([c0, ck

])(t)N
i

(t) +
1
2
N

k

(t).

If we set �
i,k

= �
i

([c0, ck

])(t) + 1
2�i,k, where [�

i,k

] denotes the identity matrix,
then

✓(c
k

; t)� ✓(c0; t) =
l

X

i=1

�
i,k

(t)N
i

(t)
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or, written out in components,

(⇤) ✓j(c
k

; t)� ✓j(c0; t) =
l

X

i=1

�
i,k

(t)N
i,j

(t)

for every 1  j  l + 1. Let A(t) be the l ⇥ l matrix defined by A(t) =
[A

j,k

]1j,kl

where A
j,k

= ✓j(c
k

; t) � ✓j(c0; t). Since we only use (⇤) for j =
1, . . . , l, the matrix A is the product of the transpose of the matrix [�

i,j

] with the
matrix [N1, . . . , N l]. The last matrix is constructed from the kneading matrix
by deleting the last column, and, therefore, its determinant is equal to D

l+1(t).
Since the entries of all the above matrices are holomorphic functions on the disc
of radius 1

s

, it follows that, for t < 1
s

, D
l+1(t) = 0 implies that the determinant

of A(t) is also zero. Since the kneading determinant D
f

(t) has the same zeros as
D

l

(t) in the unit disc, the determinant of A(t) vanishes if |t| < s and D
f

(t) = 0.
So, to prove that D

f

(t) has no zeros in the disc of radius 1
s

it is enough to prove
that the matrix A(t) is non-singular for |t| < 1

s

.
Let us compute the matrix A(t) and its determinant. Since f(@I) ⇢ @I we

have that ✓i(c0; t) = 0 if i 6= 1, l + 1. We have also that

✓j(c
k

; t) =

(

0 if j /2 {k, k + 1}
1
2 if j = k, k + 1.

Hence the l ⇥ l matrix A(t) is equal to
0

B

B

B

B

B

B

B

B

@

1
2 � ✓1 �✓1 �✓1 . . . �✓1 �✓1

1
2

1
2 0 . . . 0 0

0 1
2

1
2 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 1
2 0

0 0 0 . . . 1
2

1
2

1

C

C

C

C

C

C

C

C

A

where ✓1 = ✓1(c0; t). By using elementary row operations on the above matrix
we can eliminate an even number of terms �✓1 from the first row and we get
that the determinant as A(t) is equal to the determinant of

0

B

B

B

B

B

B

B

B

@

1
2 � ✓1(c0; t) 0 0 . . . 0 0

1
2

1
2 0 . . . 0 0

0 1
2

1
2 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 1
2 0

0 0 0 . . . 1
2

1
2

1

C

C

C

C

C

C

C

C

A

if l is odd and
0

B

B

B

B

B

B

B

B

@

1
2 0 0 . . . 0 0
1
2

1
2 0 . . . 0 0

0 1
2

1
2 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 1
2 0

0 0 0 . . . 1
2

1
2

1

C

C

C

C

C

C

C

C

A
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if l is even. Therefore, det(A(t)) = (1
2 )l if l is even and det(A(t)) = (1

2 )l�1( 1
2 �

✓1(c0; t)) if l is odd. Since

✓1(c0; t) =

(

1 if f(c0) = c
l+1

1 + t + t2 + · · · = 1
1�t

if f(c0) = c0.

it follows that the determinant of A(t) is non-zero when t is in the unit disc.
Therefore the kneading determinant is non-zero in the disc of radius 1

s

. Since
the point 1

s

is a pole of the function L
f

(t) (Corollary 2 of Theorem 8.2) it must
be a zero of the kneading determinant.

Lemma 9.2. If f belongs to the space P 0 = P 0(I; c1, . . . , cl

) of continuous
piecewise monotone maps and the forward orbit of each turning point does not
contain turning points then for each i, j = 1, . . . , l the mappings P 0 ! H(D),
g 7! N

i,j

(t; g) is continuous at f . Here H(D) is the space of holomorphic maps
on D with the supremum metric. In particular, the kneading determinant D

g

(t)
is continuous at f .

Proof. Let ✏ > 0 and K ⇢ D be a compact set. Choose r > 0 and N 2 N such
that |t| < r for all t 2 K and 4 r

N+1

1�r

< ✏. Since there is no turning point in the
forward orbit of c

k

we can choose a neighbourhood N of f in P 0 such that if
g 2 N then the itineraries i

f

(c
k

) and i
g

(c
k

) coincide up to the order N for every
k = 1, . . . , l. Hence the Taylor series of N

k,j

(t; f) and N
k,j

(t; g) coincide up to
the order N . Since all the coe�cients of these powers series are in {0,±1,±2},
we have:

|N
k,j

(t; f)�N
k,j

(t; g)| 
1
X

n=N+1

4|t|n  4
rN+1

1� r
< ✏.

If there are turning points in the forward orbit of some turning point then
the kneading matrix is no longer continuous. However we have the following:

Lemma 9.3. Let f belongs to the space P 0 of piecewise monotone continuous
maps. Assume that no turning point of f is a periodic point. Then the mapping
P 0 ! H(D), g 7! D

g

is continuous at f .

Proof. To simplify the exposition let us suppose that fp(c
i

) = c
j

and that for
k 6= i there is no turning point in the forward orbit of c

k

. The general situation
will follow from the same ideas.

We claim that if ✏ > 0 and K ⇢ D is a compact set then there exists a
neighbourhood N of f such that for every g 2 N the following conditions are
satisfied: i) if k 6= i then

|N
k,m

(t; f)�N
k,m

(t; g)| < ✏ for all t 2 K and m = 1, . . . , l;
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ii) for k = i one of the following holds for all t 2 K and m = 1, . . . , l:

|N
i,m

(t; f)�N
i,m

(t; g)| < ✏ or

|N
i,m

(t; f)� 2tpN
j,m

(t; f)�N
i,m

(t; g)| < ✏.

The proof of (i) is exactly the same as in the previous lemma: take some large
number N 2 N. Because k 6= i, the turning point c

k

is never mapped onto a
turning point. Hence, the itineraries of i

f

(c±
k

) and i
g

(c±
k

) coincide up to order
N provided g is su�ciently close to f . Hence the Taylor series of ✓

f

(c±
k

; t) and
✓

g

(c±
k

; t) coincide up to order N for k 6= i and (i) follows as in Lemma 9.2. Since
fp(c

i

) = c
j

(and p is minimal with this property), one has

i
f

(c�
i

) =
�

i0(c�
i

), i1(c�
i

), . . . , i
p�1(c�

i

)
�

· �p(i(c�
j

))

or
i
f

(c�
i

) =
�

i0(c�
i

), i1(c�
i

), . . . , i
p�1(c�

i

)
�

· �p(i(c+
j

))

depending on fp(c�
i

) = c�
j

or fp(c�
i

) = c+
j

. (Here a · b is the concatenation of
symbols as defined below Lemma I.1.1.) Because fp(c

i

) = c
j

and no forward
iterate of c

j

meets a turning point, provided g is su�ciently close to f , the first
N itineraries of c

i

for f and g coincide with possibly the exception of the p-th
itinerary; hence, for the first N itineraries one of the following two equalities
hold:

i
g

(c�
i

) =
�

i0(c�
i

), i1(c�
i

), . . . , i
p�1(c�

i

)
�

· �p(i(c�
j

))

or
i
g

(c�
i

) =
�

i0(c�
i

), i1(c�
i

), . . . , i
p�1(c�

i

)
�

· �p(i(c+
j

)).

From this (ii) easily follows.
From the claim, it follows that for every t 2 K, the kneading matrix of g is

either near to the kneading matrix of f or near to a matrix which is obtained
from the kneading matrix of f by an elementary row operation. Since elementary
row operations do not change the determinant, the kneading determinant of g
is uniformly near to the kneading determinant of f on the compact set K.

In the general situation, the kneading matrix has some other discontinu-
ities, but all of them are of the same type: they correspond to elementary row
operations and we get the same conclusion.

Next we analyze the discontinuities of the kneading matrix due to the pres-
ence of periodic turning points. Here we do need the C1 topology and the
following two lemmas.

Lemma 9.4. Suppose that fp(c
i

) = c
i

where f is of class C1. If g 2 P 1 is
su�ciently close to f in the C1 topology, then

gnp(c+
i

)� c
i

, n = 1, 2, 3, . . .

all have the same sign (here we define the sign of this number as the sign of
gnp(x) � c

i

for x > c
i

su�ciently close to c
i

). Furthermore, given ✏ > 0 there
exists � > 0 such that |gm(c

i

)� fm(c
i

)| < ✏ for all m 2 N if ||g � f ||1 < �.
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Proof. Since fp(c
i

) = c
i

and Dfp(c
i

) = 0 one has that |Dfp(x)|  1
4 for all x

in a small neighbourhood J of c
i

. If g is C1 close to f then gp is also C1 close
to fp and consequently, |Dgp(x)|  1

2 for all x 2 J and there exists a unique
attracting fixed point x of gp in J . It follows that the distance between gnp(c

i

)
and x goes monotonically to zero as n!1. In particular gnp(c

i

)� c
i

has the
same sign for all n 2 N.

Exercise 9.1. For a  2 the kneading matrix of f(x) = 2x(1� x) is equal to

“
�1� 2t

1�t

1
”

and for a > 2 but |a� 2| small, the kneading matrix of f(x) = ax(1� x) is equal to

“
�1 1� 2t

1+t

”
.

Notice that the last matrix is equal to the first matrix times (1� t)/(1 + t). Similarly,

the kneading matrix of f(x) = a
0

x(1� x) is equal to

“
�1 1� 2t

1+t

”
=
“
�1 1� 2t�t

2

1�t

2

”
.

when a
0

= 1+
p

3. For a close to a
0

the kneading matrix of f(x) = ax(1�x) is either

the same or equal to “
�1 + 2t

2

1+t

2 1� 2t

1+t

2

”
.

(Hint: the turning point has period 2 for this last map.)

Lemma 9.5. Let c
i

be a periodic point of period p of f 2 P 1 and suppose that
the orbit of c

i

contains no other turning points. Then:

1. the i-th kneading vector N
i

(t; f) is of the form 1
1�t

p

P (t) where P : C! Cl

is a polynomial map of degree p;

2. if g 2 P 1 is close enough to f then the i-th kneading vector N
i

(t; g) of g
is equal to

N
i

(t; f) or to
1� tp

1 + tp
N

i

(t; f).

The first case occurs when gp(c+
i

)�c
i

and fp(c+
i

)�c
i

have the same sign,
and the second case otherwise.

Proof. As we have seen before,

N
i,j

(t) = ✓j(c+
i

; t)� ✓j(c�
i

; t) = 2✓j(c+
i

; t)

for j � 1. Moreover, since fp(c
i

) = c
i

we get from the previous lemma that the
coe�cients ✓j(c±

i

), j = 1, 2, . . . have period p for x close to c
i

. More precisely,
we have that

N
i

(t; f) =
✓

0 · · · 0 � 1� 2tp

1� tp
1 0 · · · 0

◆

+
t

1� tp
Q̃(t)
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when fp has a local maximum at c
i

and

N
i

(t; f) =
✓

0 · · · 0 � 1 1 +
2tp

1� tp
0 · · · 0

◆

+
t

1� tp
Q̃(t)

when fp has a local minimum at c
i

, where Q̃(t) is a Cl+1 valued polynomial of
degree p � 2. If fp has a local maximum at c

i

then for each g su�ciently C1

close to f ,

N
i

(t; g) =

8

<

:

N
i

(t; f) if gp(c
i

)  c
i

⇣

0 · · · 0 � 1 1� 2t

p

1+t

p

0 · · · 0
⌘

+ t

1+t

p

Q̃(t) if gp(c
i

) > c
i

.

In the latter case the periodic orbit is orientation reversing. A similar statement
holds when fp has a local minimum at c

i

: in that case

N
i

(t; g) =

8

<

:

N
i

(t; f) if gp(c
i

) � c
i

⇣

0 · · · 0 � 1 + 2t

p

1+t

p

1 0 · · · 0
⌘

+ t

1+t

p

Q̃(t) if gp(c
i

) < c
i

.

Statements 1) and 2) follow immediately from this.

Exercise 9.2. Let f : [0, 1] ! [0, 1] be a C1 bimodal map with turning points in 1/3

and 2/3 and such that f(0) = 0, f(1) = 1, f(1/3) = 2/3, f(2/3) = 1/3. Then the

kneading matrix of f is equal to
 

N
1

(t; f)

N
2

(t; f)

!
=

 
�1 1� 2t�2t

2

1�t

2 0

0 �1 + 2t�2t

2

1�t

2 1

!
.

If g is also a bimodal map with turning points in 1/3 and 2/3, su�ciently C1 close to

f such that g2(1/3) = 1/3 then the kneading matrix of g is equal to

 
N

1

(t; g)

N
2

(t; g)

!
=

 
�1� 2t

2

1�t

2 1 �

2t

1�t

2

2t

1�t

2 �1 1 + 2t

2

1�t

2

!
=

0

B@

1 + t2

1� t2
�2t

1� t2
2t

1� t2
1 + t2

1� t2

1

CA

 
N

1

(t; f)

N
2

(t; f)

!
.

if g(2/3) < 1/3. The reason for this is that when g is C1 close to f then g2(1/3) < 1/3.

Similarly, this matrix is equal to
 

N
1

(t; g)

N
2

(t; g)

!
=

 
�1 1� 2t

2�2t

3

1�t

2 �2t

0 �1 + 2t�2t

2

1�t

2 1

!
=

 
1 �2t

0 1

! 
N

1

(t; f)

N
2

(t; f)

!

if g(2/3) > 1/3.

Lemma 9.6. Let c
i(1) be a periodic point of period p of f 2 P 1 and suppose

that the orbit of c
i

contains the turning points c
i(1), ci(2), . . . , ci(k), ci(k+1) = c

i(1)

(in this order). Then for g 2 P 1 su�ciently close enough to f one has
0

B

@

N
i(0)(t; g)

...
N

i(k)(t, g)

1

C

A

= B(t)

0

B

@

N
i(0)(t; f)

...
N

i(k)(t, f)

1

C

A

,
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and
0

B

@

N
i(0)(t; f)

...
N

i(k)(t, f)

1

C

A

= C(t)

0

B

@

N
i(0)(t; g)

...
N

i(k)(t, g)

1

C

A

,

where B(t) and C(t) are k ⇥ k matrices with rational coe�cients.

Proof. We shall leave the elementary but tedious proof to the reader as it uses
the ideas from Lemmas 9.3 and 9.5 and Exercise 9.2. It is based on analyzing
what happens to the kneading vectors if one of the turning points ‘falls o↵’ the
orbit of c

i(1). From this it easily follows that
0

B

@

N
i(0)(t; g)

...
N

i(k)(t, g)

1

C

A

and

0

B

@

N
i(0)(t; f)

...
N

i(k)(t, f)

1

C

A

are related by a matrix B(t). The (i, i)-th coe�cient of B(t) is equal to 1 or
1 + tp

1� tp
. When i 6= j then the (i, j)-th coe�cient of B(t) is equal to 0,

±2tb(i,j)

1� tp

or to ±2tb(i,j), where b(i, j) > 0 is the smallest integer so that f b(i,j)(c
i

) = c
j

.
The reason for this is as follows. For example the e↵ect of a perturbation of g
on the j-th coe�cient of the i-th kneading vector is due to a change of sign of
ga(j)(c

i(j))� c
i(j+1). This can be described by a row operation as in Lemma 9.3

but now perhaps with a periodic e↵ect. This explains the (i, j)-th coe�cient of
B(t). A possible ‘change in orientation’ as in Lemma 9.5 explains the (i, i)-th
coe�cient of B(t).

Proof of Theorem 9.1 Let f 2 P 1 and K 2 D be a compact disc that contains
the point 1

s

. Since 1
s

is a zero of the kneading determinant D
f

(t) it follows from
the Cauchy integral formula that for each ✏ > 0 there exists � such that if
� : D ! C is an analytic function with |�(t) � D

f

(t)| < � for all t 2 K then
� has a zero in an ✏-ball around 1

s

. Clearly, since D
f

(t) 6= 0 for |t| < 1
s

, it
also follows that �(t) 6= 0 for |t|  1

s

� ✏. If f has no periodic turning point
then, by lemmas 9.2 and 9.3, there exists a neighbourhood N of f such that
|D

g

(t) � D
f

(t)| < � for any g 2 N . Therefore the growth number of g, s(g)
satisfies | 1

s(g) �
1
s

| < ✏.
If some turning point of f is periodic, we can use Lemmas 9.2-9.6 to get

a neighbourhood N of f so that if g 2 N then the matrix [N
i,j

(t; g)]1i,jl

is
close to the matrix [N

i,j

(t; f)]1i,jl

multiplied (on the left) with a matrix B(t).
Also [N

i,j

(t; f)]1i,jl

is close to the matrix [N
i,j

(t; g)]1i,jl

multiplied (on the
left) with a matrix C(t). Hence

|det(C(t))D
g

(t)�D
f

(t)| = |D
g

(t)� det(B(t))D
f

(t)| < �

for all t 2 K. It follows from the previous argument that the zeros of D
g

(t) and
D

f

(t) are ✏-close to each other on D. Hence the growth number s(g) of g also
satisfies | 1

s

� 1
s(g) | < ✏. This proves the continuity of the topological entropy

since h
t

(g) = log s(g).
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Exercise 9.3. Let f
a

be a family of C1 unimodal maps depending continuously on

a in the C1 topology. Assume that ⌫(f
a

) increases at a = a0. Show that this implies

that the turning point of f
a

0 is periodic and that the attracting hyperbolic periodic

orbit near the turning point of f
a

for a near a0 changes from orientation preserving

for a < a0 to orientation reversing for a > a0.

Exercise 9.4. Suppose that f
a

is a family of C1 unimodal maps depending continu-

ously on the parameter in the C1 topology. Assume that � is an interval of parameter

values such that for each a 2 �, f
a

has a (possible one-sided) periodic attractor. Show

that f
a

has the same topological entropy for each a 2 �.

10 Monotonicity of the Kneading Invariant for

the Quadratic Family

In this section we will consider one parameter families f
a

: [0, 1] ! [0, 1] of
unimodal maps. In order to show that the kneading invariant depends mono-
tonically on the parameter it su�ces to show the following statement:

(⇤)
if the turning points of f

a

and f
a

0 are eventually periodic

and their kneading invariants are equal

then a = a0.

Similarly, as we will see, a similar statement holds if the turning points of f
a

and f
a

0 are eventually periodic.

Theorem 10.1. (Sullivan, Milnor, Douady and Hubbard)
Let f

a

: [0, 1] ! [0, 1] be the quadratic family f
a

(x) = ax(1 � x). Then f
a

satisfies condition (⇤).

A similar result holds for polynomials of higher degree (but then some con-
ditions on the order of the critical points have to be made). In this section
we will give a proof of this result using Teichmüller theory and the Thurston
pullback map from Section II.4. The background for the proof of this theorem
will only be developed in Section III.1 and in Chapter VI. Since Theorem 10.1 is
so important we shall give another proof, due to Sullivan, of this fact in Section
VI.4. This other proof uses deformations of quasiconformal maps.

Proof of Theorem 10.1. Let us show that the map T from the proof of
Theorem II.4.1 can be used to prove that the quadratic family f

µ

= µx(1� x)
has the following property: if µ is so that the critical point of f

µ

is eventually
periodic then there exists no parameter µ0 6= µ such that f

µ

0 is combinatorially
equivalent to f

µ

. This result uses ideas from Sullivan, Milnor, Douady and
Hubbard, see Milnor (1983). So in order to prove Theorem 10.1 it is enough to
show that there exists a unique fixed point of the Thurston map T : W ! W
from Section 4.
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In order to prove the fixed point of T is unique, we will show that T is a
contraction on the space if we endow W with a ‘convenient’ metric. For this
we need some background in Teichmüller theory (for some background in this,
see the Appendix and Chapter VI). Let C̄ = C [ {1} be the Riemann sphere.
Consider two punctured Riemann spheres

C̄ \ {0, x1, x2, . . . , xk

, 1,1} and C̄ \ {0, x01, x
0
2, . . . , x

0
k

, 1,1}.

Next define the distance of these punctured spheres to be log K where K is
the smallest number for which there exists a K-quasiconformal homeomorphism
� : C̄! C̄ sending x

i

to x0
i

with �(0) = 0, �(1) = 1, �(1) =1 which is isotopic
(in these punctured spheres) to a homeomorphism preserving the real axis. (We
will discuss quasi-conformal maps in the first section of Chapter III much more
thoroughly.) According to Teichmüller theory this ‘best’ homeomorphism exists
and is unique. It is called the Teichmüller map. In fact, this homeomorphism
is quasiconformal and its dilatation is constant. (These terms are explained in
Section III.1.) If its dilatation K is equal to 1 then this homeomorphism is con-
formal. Otherwise there is a unique pair of foliations on C̄\{0, x1, . . . , xk

, 1,1}
and on C̄ \ {0, x01, . . . , x

0
k

, 1,1} both of which are smooth and mutually trans-
verse except in a finite number of points. In these special points the foliations
have a ‘prong’ singularity: the foliations are locally mapped by z 7! za on the
pair of foliations consisting of horizontal and vertical lines for some a � 1. The
number of leaves (of one of the foliations) emanating from the singularity is
called the number of prongs. These foliations can be characterized as follows.
The directions where � stretches most respectively least together define a pair
of foliations on C̄ \ {0, x1, . . . , xk

, 1,1}. The corresponding directions for ��1

define a similar foliation on C̄\{0, x01, . . . , x
0
k

, 1,1}. The total number of singu-
larities of each of these singularities counted with their index (i.e., the number
of prongs) depends only on k. For more on this, see Casson and Bleiler (1988),
Gardiner (1987) and Fathi et al. (1979).

Now note that the preimage of such a pair of foliations under any quadratic
map on C̄ has either an additional singularity or a singularity with a larger
number of prongs. Indeed, if the critical value is for example a regular point
(in that case both foliations are transverse at the critical value of the quadratic
map) then the preimage has a 2-prong singularity at its preimage. For each
other singular point of the foliations there are precisely two preimages which
also have singularities. From this argument it follows that the total number of
singularities counted with their ‘index’ increases by taking preimages under a
quadratic map.

Now we can prove the result announced: of course we can view f
µ

as a qua-
dratic map on the Riemann sphere. Assume that the critical point of f

µ

is even-
tually periodic and denote the forward orbit of the critical point by {x1, . . . , xk

}
as in the proof of Theorem II.4.1. Now put a special metric on the space W from
the proof of Theorem II.4.1: we define the distance between {x1, x2, . . . , xk

}
{x01, x02, . . . , x0

k

} 2 W to be the distance between the corresponding punctured
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Riemann spheres

C̄ \ {0, x1, x2, . . . , xk

, 1,1} and C̄ \ {0, x01, x
0
2, . . . , x

0
k

, 1,1}

i.e., the Teichmüller metric as described above. This metric is equivalent to
the usual Euclidean metric on W . So take two points {x1, x2, . . . , xk

} and
{x01, x02, . . . , x0

k

} in W and the corresponding ‘optimal’ homeomorphism � : C̄!
C̄. Now one can take the pullback of the homeomorphism �: the map

�̃ = f�1
µ(x01,...,x

0
k

) � � � f
µ(x1,...,x

k

)

is well defined because the branch point of the first map is mapped by � onto
the branch point of the second map. Moreover, �̃ sends x

i

to x0
i

(and 0, 1,1
to 0, 1,1). Moreover, �̃ also is isotopic to a map which preserves the real axis
and therefore isotopic to the �. Since f

µ

is a conformal map, this implies that
the quasiconformal constant of �̃ is also precisely K. Certainly the best K̂
for which there exists a quasiconformal homeomorphism �̂ sending (x1, . . . , xk

)
onto (x01, . . . , x0

k

) is not larger than K. So T is non-expanding in terms of the
Teichmüller metric. Using the results from Teichmüller theory mentioned above
one can even show that this quasiconformal constant is strictly smaller than K
and so that T is a contraction. Indeed, associated to the best K̂ as above
there exists a unique quasiconformal homeomorphism �̂ with quasiconformal
constant K̂. Now if K = K̂ then, by the uniqueness of the Teichmüller map,
�̂ = �̃. This would imply that the preimages of the foliations mentioned above
under the maps z 7! �z(1� z) must be these unique foliations again. However,
the preimage of such a pair of foliations has a larger multiplicity and from the
uniqueness of these foliations it follows that this is impossible. In this way it
turns out that T becomes (not necessarily uniformly) contracting in this metric.
In particular, T can have at most one fixed point.

It is easy to show that condition (⇤) implies that the kneading invariant of
the family is monotone:

Corollary 10.1. Let f
a

: [0, 1] ! [0, 1] be a unimodal family consisting of C1

maps depending continuously on a. If condition (⇤) is satisfied then

a 7! ⌫(f
a

)

is monotone.

Proof. Let us suppose by contradiction that the kneading sequence of f
a

is
not monotone in a. Then there exists a local minimum of a 7! ⌫(f

a

). Note
that a 7! ⌫(f

a

) is constant on each interval in the parameter space such that
the turning point of f

a

is not periodic for each parameter value in this interval.
Combining this gives that there exist two parameters a 6= a0 such that f

a

and
f

a

0 both have periodic turning points and the same periodic kneading sequences.
This contradicts (⇤).
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Corollary 10.2. Let f
a

: [0, 1] ! [0, 1] be a unimodal family consisting of C1

maps depending continuously on a. If condition (⇤) is satisfied then

a 7! h
top

(f
a

)

is monotone.

Proof. This follows simply from the fact that the kneading invariant uniquely
determines the topological entropy. Indeed, as we have seen in Exercise 9.1,
⌫(f

a

) is only discontinuous at a = a0 if the turning point of f
a

0 is periodic of
some period n and if it is not periodic of period n for a > a0 su�ciently close to
a0. By the previous corollary ⌫(f

a

) increases at such a parameter value a0 and
therefore the hyperbolically attracting periodic orbit near the turning point of
f

a

for a near a0 changes from orientation preserving for a < a0 to orientation
reversing if a > a0. Similarly, the lap numbers of l(fn

a

) only change at a = a0 if
the turning point of f 0

a

is periodic. Moreover, the lap number increases if the
orientation of the periodic orbit changes from orientation preserving to reversing
as the parameter increases. Combining this, proves the corollary.

Remark. 1. Of course the kneading invariant is not strictly monotone: if f
a

0

has an attracting hyperbolic periodic point then the kneading invariants of f
a

and f
a

0 are the same for a near a0. 2. From the previous conditions it does not

quite follow that the number of periodic orbits of f
a

of a given period increases as
a increases. If f

a

undergoes a periodic doubling (or pitch fork) bifurcation then
the number of periodic orbits changes even though the kneading invariant stays
the same. However, between any two consecutive periodic doubling bifurcations
of di↵erent periods (say n and 2n) the turning point becomes periodic and then
the kneading invariant does change. For the quadratic family one can also show
that there exists at most one parameter a0 for which f

a

0 has a periodic weakly
attracting orbit (with eigenvalue �1) with a given kneading type. So for the
quadratic family the number of periodic orbits of f

a

of a given period increases
as a increases. 3. For general families of unimodal maps f

a

one certainly

cannot hope to get monotonicity for the kneading sequence. Even for a family
f

a

: [0, 1]! [0, 1] of the form f
a

(x) = a · f(x) this need not be the case. In fact,
even when f has negative Schwarzian derivative one can give counter-examples,
see Zdunik (1984), Nusse and Yorke (1988a) and Koljada (1989).

11 Some Historical Comments and Further Re-

marks

There are many refinements of Sarkovskii’s theorem. Some of these results not
only deal with the periods of periodic orbits, but also with their combinatorial
type. Exercise 1.3 gives an example of such a result. We should also mention
a proof of Sarkovskii’s theorem (in the unimodal case) in which a circle map
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with a non-trivial rotation interval is associated to a unimodal interval map;
the result then follows from Exercise I.1.5, see Gambaudo and Tresser (1991).
There are also Sarkovskii type results for continuous maps of degree one on a
circle for example in Block et al. (1980). More recently, results were obtained for
maps defined on more general one-dimensional spaces. An example of this is the
space ‘Y’ (where three intervals are glued together at one of their endpoints).
On this space an analogue of the theorem of Sarkovskii can be proved (but
with a more delicate ordering). We shall not go into details of these results
in this book but refer to the book of Alsedá et al. (1990), and also to Alsedá
(1991), Baldwin (1987), (1988), Bernhardt (1982), (1987), Blokh (1991) and
Misiurewicz and Nitecki (1989). Sometimes, using Thurston’s results on pseudo-
Anosov di↵eomorphisms and traintracks, these Sarkovskii type of results can be
applied to di↵eomorphisms on surfaces, see Gambaudo et al. (1980).

The kneading theory of Section 3 can also be developed for maps of the
circle. There are di�culties however because of the circular ordering, see Alsedà
and Mañosas (1990) and also Barkmeijer (1988). The tower construction of
Hofbauer, described in Section 3b, also makes it pretty clear that some kneading
sequences corresponding to non-renormalizable maps should be more ‘irrational’
than others. It is not impossible that provided a map has a certain growth rate
of the sequence S

n

defined in Section 3b, results similar to those in Section I.3
for circle di↵eomorphisms with Diophantine rotation numbers can be obtained.
We will come back to this in Section V.7.

The result of Section 4, that many multimodal families are full, answers a
question of Milnor (the unimodal case was dealt with in Milnor and Thurston
(1977)). This result can be used to find a map f

µ

within a full l-modal family
which is essentially conjugate to a given l-modal map g. The parameter µ we are
looking for can be found as the fixed point of the Thurston map associated to
g. However, although we have shown in Section 4 that this Thurston map does
have a fixed point if the family f

µ

satisfies some mild conditions, it need not be
attracting. Indeed, the examples mentioned at the end of Section 10 show that
the Thurston map associated to a map g can have several fixed points. On the
other hand, if the critical orbits of g are finite and the family is polynomial then
the Thurston map is a contraction, as we have seen in Section 10 of this chapter.
Therefore, in this case the polynomial f

µ

can be found by Picard iteration. More
generally we would like to state:

Conjecture 1. For any l-modal map g and any analytic l-modal full family
f

µ

, the corresponding Thurston map does not have attracting periodic orbits of
period > 1 or strange attractors: almost all points x 2W tend to a fixed point.

The algorithm suggested by the proof in Section 4 was used to draw the
pictures in this chapter.

The renormalization results of Section 5 are usually only stated in the uni-
modal case. However, there are several papers dealing with renormalization
in the bimodal case; for example, in the papers of MacKay and Tresser, bi-
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modal families of maps of the circle and the set of parameters for which the
corresponding maps have zero topological entropy are studied.

There are several results showing that the topological entropy of a continuous
interval map is determined by its periodic orbits, see for example Jonker (1981),
Baldwin (1987) and Block and Coppel (1989). There are several algorithms
to determine numerically the topological entropy of a map of the interval, see
Collet et al. (1983), Góra and Boyarsky (1991) and Block and Keesling (1991).

The kneading determinant from Section 8 is related to a zeta function, see
Milnor and Thurston (1977). The properties of another zeta function are related
to the spectrum of the Perron-Frobenius operator (this operator acts on densities
of measures and is defined in Sections V.2 and V.3), see Keller (1984) and also
Baladi and Keller (1990).

Misiurewicz (1989) has some results on the continuous dependence of the
topological entropy for maps which are not C1 or piecewise monotone, see also
Misiurewicz and Shlyachkov (1989).

As we have seen in Section 10 of this chapter each bifurcation of the map
x 7! ax(1 � x) creates periodic orbits as a increases. However, for general
families of the form x 7! a · f(x) this is not the case. In this direction we would
like to state the following conjectures.

Conjecture 2. If f : [0, 1] ! [0, 1] is unimodal, Sf < 0 and f is symmetric
then the kneading invariant of the x 7! a · f(x) is monotone in a.

So other instances of monotone families can be found in Douady and Hub-
bard (1984).

Conjecture 3. There exists an open set U of one-parameter families of uni-
modal smooth maps such that any two families {f

a

}
a2[0,1], {f̃a

}
a2[0,1] 2 U are

equivalent. More precisely, for each pair of these families there exists a one-
parameter family of homeomorphisms h

a

: [0, 1]! [0, 1] and a reparametrization
⇢ such that

h
a

� f
a

= f̃
⇢(a) � h

a

.

It is also not clear whether these homeomorphisms could be chosen in such a
way that they would depend continuously on the parameter, because at the pa-
rameters where saddle-node bifurcations occur one could get moduli of stability
as in Newhouse et al. (1983).

We expect that kneading invariants of generic families vary not too errati-
cally on the parameter.

Conjecture 4. Generic one-parameter families of unimodal maps have the
property that their kneading invariants vary piecewise monotonically.

The corresponding statement has been proved for families of circle di↵eo-
morphisms in the C1 topology, see de Melo and Pugh (1991).
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For families of bimodal maps, for example the family f
a,b

(x) = ax3 + bx2 +
(1� a� b)x, one can also ask whether the entropy depends ‘monotonically’ on
the parameter. Milnor (1990) made this question precise in the following way:

Conjecture 5. The set of parameters (a, b) for which the topological entropy
of the map f

a,b

: [0, 1]! [0, 1] is equal to s is connected for each s � 0.

The numerical studies from Milnor (1990) support this conjecture.



Chapter III.

Structural Stability and
Hyperbolicity

In this chapter we want to analyze which one-dimensional systems are struc-
turally stable. In Chapter I this question was quite easy to answer: a circle
di↵eomorphism is structurally stable if and only if all periodic points of f are
hyperbolic. Moreover structurally stable di↵eomorphisms form an open and
dense set. (These statements were shown in Exercise I.4.1.) For non-invertible
maps the situation is much more complicated and partly unknown. The concept
of hyperbolicity of some infinite compact set will play an essential role in this
discussion. As we will see in this chapter non-invertible one-dimensional dynam-
ical systems have many infinite hyperbolic sets whereas circle di↵eomorphisms
have none.

Hyperbolicity plays such a key role because it can be used to establish the ex-
istence of non-invertible one-dimensional endomorphisms which are structurally
stable and at the same time have a very complicated dynamics. In fact, one of
the main open problems in the theory is to prove that the set of one-dimensional
dynamical systems with this hyperbolicity property is dense. We will discuss
this problem in more detail later.

Section 1 is devoted to the study of holomorphic dynamics in the Riemann
sphere. The notion of hyperbolicity was already present in the pioneering work
of Julia and Fatou. Many results in the dynamics of rational maps on the
Riemann sphere have an analogue in real one-dimensional dynamics. Moreover,
although the techniques are necessarily di↵erent, one can find similarities in
many proofs. This is the main reason for proving some statements in this
section instead of merely referring to more complete sources. The techniques in
this first section do not, however, play an immediate role in the remainder of
this chapter, so the reader could skip this section. However, in Chapter VI we
will make extensive use of the ideas explained in Section 1.

In Section 2 we discuss the relation between hyperbolicity and structural sta-
bility for smooth endomorphisms of the circle and of the interval. We also prove
that a hyperbolic invariant set for a C1,↵ map has either zero Lebesgue measure

194
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or full Lebesgue measure (in which case the map is an expanding covering map
of the circle).

In Section 3 we prove that maps with negative Schwarzian derivatives behave
very much like rational maps and have many invariant hyperbolic sets. In
Section 4 we give a fairly complete description of the structure of maps with
negative Schwarzian derivative in the same spirit as in Jonker and Rand (1981)
and Van Strien (1981).

Section 5 is an exposition of the results of Mañé (1985) which show that
hyperbolicity is very common even in general smooth interval maps. This result
deals with the dynamics of the points which stay away from the critical points
(these are points where the derivative is zero). More specifically, the main result,
which is an extension of the results in Section 3, states that an invariant set
of a C2 interval map is hyperbolic if it does not contain critical points and
non-hyperbolic periodic points. The proof we will give is much easier than the
original one in Mañé (1985) and uses the ideas from Van Strien (1990). There
points whose orbits come close to critical points are also analyzed provided
the critical points satisfy the so-called Misiurewicz condition. In Section 6 we
give a proof of some of these results for Misiurewicz maps under the additional
assumption that they satisfy the negative Schwarzian condition. These results
will turn out to be important for the proof of Jakobson’s Theorem in Section
V.6.

1 The Dynamics of Rational Mappings

In this section we will describe some of the aspects of the dynamics of holomor-
phic maps f : C̄ ! C̄. It will turn out that many of the results and concepts
from this theory play a part in the real case. However, none of the results in
this section is actually needed in this chapter. This section serves also as an
introduction to the tools used in Chapter VI. The development of this theory
started at the end of the last century and made much progress in the beginning
of this century with the long papers of Julia (1918) and Fatou (1919)-(1920).
More recently, this theory gained new impetus with the work of several mathe-
maticians, in particular Sullivan, Thurston, Douady and Hubbard, and with the
beautiful pictures that resulted from numerical experiments. We do not intend
to make a detailed exposition of the subject. The reader can find this in the
survey articles of Blanchard (1984) and Lyubich (1986). Instead we present a
few basic results in order to make explicit some of the analogies between this
theory and the dynamics of smooth maps defined on an interval.

The main reason for the success of the study of iterations of rational func-
tions comes from the strong analytical tools provided by Complex Analysis.
The main tool used by Julia and Fatou is the Koebe-Riemann Uniformization
Theorem and one of its consequences: Montel’s Theorem on normal families of
holomorphic maps. Another important result is Koebe’s Distortion Theorem
for univalent holomorphic functions. More recently, Sullivan started the use of
the Measurable Riemann Mapping Theorem to perform deformations of rational
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maps via quasiconformal maps, and Thurston introduced Teichmüller theory in
the study of rational maps, see Sullivan (1985) and Thurston.

The Uniformization Theorem of Koebe and Riemann states that any sim-
ply connected Riemann surface is conformally equivalent, i.e., holomorphically
equivalent, to either the Riemann sphere C̄ = C[ {1}, the complex plane C or
the unit disc D = {z 2 C ; |z| < 1}. As a consequence, we have that given any
Riemann surface S, there exists a holomorphic covering map ⇡ : S̃ ! S where
S̃ is one the three Riemann surfaces above. If S is either the complex plane,
the punctured plane C \ {0} or is homeomorphic to the torus, then it is called
a parabolic Riemann surface and its holomorphic universal covering surface S̃
is the complex plane. If S is the Riemann sphere then it is an elliptic surface.
All other Riemann surfaces are called hyperbolic and they have the unit disc as
the holomorphic universal covering space (later on we shall put a special metric
on such a surface S using its covering space D). In particular, if S is the Rie-
mann sphere minus three points then there exists a holomorphic covering map
⇡ : D! S. If f

n

: D ! C̄ is a sequence of holomorphic maps whose images omit
three points in the Riemann sphere, then they define a sequence of holomorphic
maps f

n

: D ! S, where S is the sphere minus these three points. If D is simply
connected we can lift all these maps and we get a sequence of holomorphic maps
f̂

n

: D ! D such that ⇡� f̂
n

= f
n

. Of course a sequence of bounded holomorphic
maps f̂

n

is equicontinuous and is therefore a normal family, i.e., its closure is a
compact set in the space of holomorphic maps in D endowed with the compact
open topology. From this we get that {f

n

} is a normal family of holomorphic
maps. Therefore we get the following important statement.

Theorem 1.1. (Montel) Let S be any Riemann surface and f
n

: S ! C̄ be a
family of holomorphic maps. If there exist at least three points in the Riemann
sphere C which are not covered by the union of the images of all these maps,
then the family {f

n

} is a normal family.

Let f : C̄ ! C̄ be a holomorphic map. Then f is a rational map, that is
f(z) = P (z)

Q(z) where P and Q are polynomials. The critical set of f , is the finite
set C

f

= {z 2 C̄ ; Df(z) = 0}. The f -images of points in C(f) are called
critical values. Clearly for each non-critical value y of f the set f�1(y) consists
of d distinct point. Hence the restriction of f to C̄ \ f�1(f(C

f

)) is a covering
map of degree d = max{degree P,degree Q} over C̄ \ f(C

f

). In the remainder
of this section we will only study iterates of rational maps of degree d � 2.

Definition. A point x in the Riemann sphere belongs to the Fatou set of f
if there exists an open neighbourhood V of x such that the restriction of the
iterates of f to V is a normal family. Let F (f) denote the Fatou set of f . The
Julia set J(f) of f , , is the complement of the Fatou set.

Let us say that a set E is completely invariant if f(E) = E = f�1(E). The
following statement is an important consequence of Montel’s Theorem.
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Lemma 1.1. Let f be a rational map of degree d. Then there exists a completely
invariant set E = E(f) satisfying the following properties:

1. the set E(f) contains at most two points;

2. if D is an open set with a non-empty intersection with the Julia set of f ,
then [1

n=0f
n(D) � C̄ \ E(f);

3. if the cardinality of E(f) is one then f is holomorphically conjugate to a
polynomial and if the cardinality of E(f) is two, then f is holomorphically

conjugate to either z 7! 1
zd

or z 7! zd.

Proof. From Montel’s Theorem it follows that if D is an open set intersecting
the Julia set then the iterates of D omit at most two points in the Riemann
sphere. Suppose first that there is an open set D containing a point x 2 J(f)
such that E = C̄ \ [1

n=0f
n(D) = {↵,�}. We have that f�1(E) ⇢ E because E

is the complement of a forward invariant set. Since E has at most two points,
it follows that it is also forward invariant. Let us show that E(f) = E. There
are two cases to consider:

i) E = {↵,�} with f(↵) = ↵. Hence, ↵ /2 f�1(�) and, since f�1(�) ⇢
f�1(E), therefore f�1(�) = {�}. It follows that f(�) = � = f�1�) and f(↵) =
↵ = f�1(↵). So the points ↵ and � are totally invariant. If � : C̄ ! C̄ is
a holomorphic isomorphism (i.e. a Möbius transformation: �(z) = az+b

cz+d

) with
�(↵) = 0 and �(�) =1 we have that g = ��f ���1 is a rational map satisfying

1 = g(1) = g�1(1) and

0 = g(0) = g�1(0).

The first equation implies that g is a polynomial which, together with the second
equation, implies that g(z) = czd where c is a complex constant. The Julia set
of g is clearly equal to the unit circle and if W is any small disc intersecting the
Julia set then [1

n=0g
n(W ) = C̄ \ {0,1} since the iterates of W omit the two

points 0,1 and cannot omit a third point. Hence, E(f) = {↵,�} in this case.
ii) E = {↵,�} with f(↵) = �. Hence, f�1(↵) = � and, therefore, f(�) = ↵.

As before, we take a Möbius transformation � with �(↵) = 0, �(�) =1 and let
g = � � f ���1. Hence, g is a rational map of degree d such that 0 = g�1(1) =
g(1). It follows that g(z) = cz�d where c is a constant and this is clearly
holomorphically conjugate to the mapping z 7! z�d. The Julia set of g is again
the unit circle and the iterates of any small disc intersecting the unit circle omit
precisely the points 0,1. Therefore, again E(f) = {↵,�} in this case.

Suppose now that there is no open set D intersecting the Julia set whose
iterates omit two points. Then, as we have mentioned above, there is an open
set D containing a point in the Julia set and whose iterates omit one point
which we call ↵. If � is a Möbius transformation which maps ↵ to 1, then
g = � � f � ��1 is a polynomial. The Julia set of any polynomial is contained
in the finite plane (1 is an attracting fixed point) and the iterates of any open
subset of the finite plane omit the point 1. Hence, the iterates of any disc
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in the finite plane intersecting the Julia set of g omits the point 1 and (by
assumption) no other point. Therefore E(f) = {↵} in this case and the proof
is finished.

Remark. The completely invariant set E(f) of the above lemma is called the
exceptional set of f . One has E(f) \ J(f) = ; and from Property 2 from the
previous lemma one has for each x /2 E that ↵(x) � J(f). Here ↵(x) is the set
of points z for which there exist z

k

! z and n(k)!1 such that fn(k)(z
k

) = x.
Moreover, if f is neither a polynomial and nor holomorphically conjugate to the
mapping z 7! z�d then E(f) is the empty set.

Proposition 1.1. 1. The Fatou set and the Julia set are both completely in-
variant sets, i.e., f(F (f)) = f�1(F (f)) = F (f) and f(J(f)) = f�1(J(f)) =
J(f).

2. Each orbit in the Fatou set is Lyapounov stable with respect to the spherical
metric ⇢: given x 2 F (f) and ✏ > 0 there exists � > 0 such that if
⇢(x, y) < � then ⇢(fn(x), fn(y)) < ✏ for all n 2 N.

3. The Julia set is a non-empty perfect set (this means that it is closed and
contains no isolated points).

4. If the Julia set has non-empty interior then it is the whole Riemann sphere.

Proof. It is clear from the definition that the Fatou set is open and completely
invariant. Hence, the Julia set is closed and also completely invariant.

To prove Statement 2, let x 2 F (f) and V be a neighbourhood of x such
that the family of iterates of f restricted to V is a normal family. Hence, if
W ⇢ V is a compact neighbourhood of x then {fn|W} is an equicontinuous
family. Therefore, given ✏ > 0 there exists � > 0 such that if ⇢(x, y) < � then
⇢(fn(x), fn(y)) < ✏ for all n 2 N. Hence the orbit of x is Lyapounov stable.

Let us prove Statement 3. Suppose the whole sphere is the Fatou set. Then
the iterates of f would be a normal family at each point of the whole sphere,
and by compactness it would be a normal family on the whole sphere. But this
is impossible since fn is a rational map of degree nd tending to infinity with
n (here we use that d � 2 because the iterates of a Möbius transformation are
again Möbius transformations). Hence the Julia set is non-empty. In order to
show that the Julia set is perfect let a be a point in the Julia set. Suppose first
that a is not a periodic point of f . Let V be a neighbourhood of a. We want
to prove the existence of a point of the Julia set in V \ {a}. Since a is not in
the exceptional set of f , there exists an integer n such that fn(V ) contains a,
i.e., there exists b 2 V such that fn(b) = a. Since the Julia set is backward
invariant, we get that b 2 J(f). On the other hand, b 6= a because a is not
periodic. Hence every point in the Julia set which is not a periodic point is an
accumulation point of the Julia set. Suppose now that a is a periodic point of
period k in the Julia set. Then a is not a super-attracting periodic point (a is
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super-attracting if Dfk(a) = 0 or in other words if there is a critical point in
the orbit of f) because in such points {fn} is equicontinuous. It follows that
there exists b 2 f�1(a), b 6= fk�1(a). Since b is not a periodic point and it
is in the Julia set, it follows from the previous argument that there exists a
sequence z

n

! b with z
n

2 J(f) and z
n

6= b. Hence f(z
n

) ! a, f(z
n

) 2 J(f)
and f(z

n

) 6= a. Thus a is also an accumulation point of the Julia set in this
case.

Finally, we prove Statement 4. Suppose the interior of the Julia set is non-
empty and let D be an open disc contained in the Julia set. Since the family of
the restriction of the iterates of f to D is not a normal family, it follows from
Montel’s Theorem that [

n2Nfn(D) omits at most two points in the Riemann
sphere. By the invariance of the Julia set, we have that [

n2Nfn(D) is contained
in the Julia set. Hence J(f) is equal to the sphere because it is compact.

To get further properties of the dynamics of rational maps it is convenient
to use the Poincaré metric, see the Appendix.

Definition. We call a Riemann surface S hyperbolic if D is the universal cov-
ering of S. So in this case there exists a holomorphic universal covering map
⇡ : D ! S. The hyperbolic metric on S is the unique Riemannian metric on
S such that ⇡ is a local isometry between the hyperbolic metric of D and the
hyperbolic metric of S.

Using this hyperbolic metric it is often extremely easy to show that f is
expanding on some sets. For this one uses the following version of the Lemma
of Schwarz which states that a holomorphic map from D into itself which fixes
0 is either a rotation or is everywhere contracting.

Lemma 1.2 (Lemma of Schwarz for Riemann surfaces). Let f : S1 ! S2 be
a holomorphic map between hyperbolic Riemann surfaces. Then either f is a
holomorphic covering map and a local isometry (of the hyperbolic metric) or it
strictly contracts the hyperbolic metric.

Proof. See the Appendix.

Definition. Let f : C̄ ! C̄ be a rational map and let p be a periodic point of
period n of f . We say that p is an attractor if 0 < |Dfn(p)| < 1, it is a super-
attractor if Dfn(p) = 0, it is a repeller if |Dfn(p)| > 1 and if |Dfn(p)| = 1
it is called an indi↵erent periodic point. The basin of p is the set of points
whose !-limit set is the orbit of p and the immediate basin is the union of the
connected components of the basin that contain points of the orbit of p.
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Theorem 1.2. (Julia) If p is an attracting periodic point of a rational map
f : C̄ ! C̄ then the immediate basin of p contains a critical point of f . In
particular, the number of periodic attracting orbits is bounded by the number of
critical points. (Note that 1 is a critical point and also a super-attracting fixed
point if f is a polynomial.)

Proof. Let B
p

be the connected component of the basin of p that contains p.
Then f i(B

p

) = B
f

i(p) is the connected component of the basin containing f i(p)
and the immediate basin of p is [n�1

i=0 f i(B
p

). Hence there is a critical point of
f in the immediate basin of p if and only if there exists a critical point of fn

in B
p

. Suppose, by contradiction, that the map g = fn has no critical point in
B

p

. We claim that this implies that g has an analytic inverse on B
p

. Indeed,
take neighbourhoods U ⇢ V of p with g(V ) = U and V \ U an annulus. By
writing V as the union of a nested collection of simple closed curves surrounding
p one can easily see that g must be injective on U if g has no critical points.
So one can define g�1 on U . Similarly, one can define g�1 on g�n(U) for each
U . In this way we get that g�1 is a well defined analytic map on B

p

. It follows
that g is a covering map and, therefore, it is a local isometry with respect to the
hyperbolic metric of B

p

. But this is not possible because p 2 B
p

is an attracting
fixed point of g.

Remark. One can even prove that the immediate basin of an attracting periodic
point contains a critical point whose forward orbit consists of an infinite number
of distinct points. The above proof does not guarantee the last condition.

Theorem 1.3. (Julia) If f is a rational map of degree d � 2, then the number
of non-repelling periodic orbits of f is bounded by 3(2d� 2).

Proof (sketch). By the previous theorem, it follows that the number of at-
tracting periodic orbits is bounded by the number of critical point which is
bounded by 2d � 2. Using a similar, but more complicated, argument one can
prove that if p is a periodic point of period n and Dfn(p) = 1 then there must
exist a critical point in the immediate basin of p. Hence the number of attract-
ing periodic orbits plus the number of periodic orbits of this type is bounded by
the number of critical points. It remains to estimate the cardinality of the set
I of periodic points p such that if n is the period of p then |Dfn(p)| = 1 but
Dfn(p) 6= 1. Given such a periodic point, it follows from the Implicit Function
Theorem that there exist a neighbourhood V of f in the space of rational maps
and a holomorphic function �

p

: V ! C̄ such that �
p

(f) = p and �
p

(g) is a peri-
odic point of period n of g. Then the function �

p

: V ! C, �
p

(g) = Dgn(�
p

(g))
is holomorphic and it is not constant. Hence it maps any neighbourhood of f
onto a neighbourhood of Dfn(p). In particular, there is an open set of maps
in this neighbourhood consisting of maps with an attracting periodic orbit of
period n. We claim that if the cardinality of I is N , we can perturb the map
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in order to get a map g which has 1
2N attracting periodic orbits. Indeed, let

w 7! f
w

be a holomorphic one parameter family of rational maps of degree d
with f0 = f and, for each such periodic point p of f let us denote by �

p

(w) the
restriction of �

p

: V ! C to this one parameter family. Hence for each p, �
p

is
a non-constant holomorphic function in a neighbourhood of 0. In this neigh-
bourhood let us consider the function �(w) =

P

p2I sign(log |�
p

(w)|), where
sign(t) denotes the sign of the real number t (with sign(0) = 0). Thus � is an
integer valued function. For each p, the set {w ; |�

p

(w)| = 1} is a real ana-
lytic curve passing through zero and |�

p

(w)|� 1 changes sign along this curve.
So take a line L through 0 which is transversal to each of these curves in 0.
Then L 3 w 7! |�

p

(w)| � 1 changes sign at 0 for each p 2 I. In particular,
�(w) = ��(�w) for w 6= 0 and w 2 L su�ciently close to 0. So there exists
w 2 L arbitrarily close to 0 such that �(w)  0 and |�

p

(w)| 6= 1 for all p. This
clearly implies that at least half of the N periodic points of f

w

are attractors.
This proves the claim. Hence the total number of periodic orbits of this type is
bounded by twice the number of critical points. This proves the theorem.

Theorem 1.4. The Julia set is the closure of the set of repelling periodic orbits
of f .

Proof. Since the number of non-repelling periodic orbits is finite, it is enough
to prove that the Julia set is the closure of the repelling periodic points of f . Let
p be a non-periodic point in the Julia set. We may also assume that p is not a
critical value. Given a neighbourhood V of p, we want to prove the existence of
a periodic point in V . Let p1 and p2 be such that f(p1) = f(p2) = p (note that
we have assumed all along that degree(f) � 2). Since p is not a critical value of
f , there exists a neighbourhood U ⇢ V of p and local inverses of f , �

i

: U ! U
i

such that �
i

(p) = p
i

. Taking U small, we can assume that the neighbourhoods
U , U1, U2 are pairwise disjoint. The family fn|U is not a normal family because
p is in the Julia set. Hence g

n

(x) = f

n(x)��1(x)
f

n(x)��2(x)
x��2(x)
x��1(x) is not a normal family.

Therefore, by Montel’s Theorem [
n�0gn

(U) cannot omit the points {0, 1,1}.
Thus, because �1(x) 6= �2(x) for all x 2 U , there exist n 2 N and x 2 U such
that either fn(x) = x or fn(x) = �1(x) or fn(x) = �2(x). In all of these cases,
x is a periodic point of f .

Definition. Let K ⇢ C̄ be an invariant set for the rational map f . We say
that K is a hyperbolic set if there exist constants C > 0 and � > 1 such that

||Dfn(x)|| > C�n,

for all n 2 N. Here || · || is any Riemannian metric on the Riemann sphere.

The above definition does not depend on the choice of the metric of the
sphere, because any two Riemannian metrics are equivalent. If we change the
metric, the only thing that changes is the constant C. Because of the Lemma of
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Schwarz for Riemann surfaces (Lemma 1.2) it is natural to consider the Poincaré
metric on an appropriate neighbourhood of K:

Theorem 1.5. Let f : C̄! C̄ be a rational map and S = C̄ \ P where P is the
closure of the forward orbit of the critical points of f . If S is connected and
K ⇢ S is a compact invariant set, then K is a hyperbolic set.

Proof. Let ||v||S
x

be the norm of the tangent vector v at the point x with respect
to the hyperbolic metric of S. We claim that for each x 2 S with f(x) 2 S
one has ||Df(x)(v)||S

f(x) > ||v||S
x

, i.e., f expands the hyperbolic metric of S.
Indeed, let R be the connected component of f�1(S) that contains x. Then
R ⇢ S and since the restriction of f to R is a proper holomorphic map without
critical points and it maps R onto S, it is a covering map. Therefore, it is a
local isometry of the hyperbolic metrics, namely,

||Df(x)(v)||S
f(x) = ||v||R

x

.

On the other hand, the inclusion map i : R ! S is also holomorphic but it is
not a covering map because it is not surjective. Hence, since S is connected,
one gets from Lemma 1.2 that

||v||S
x

= ||Di(x)(v)||S
x

< ||v||R
x

.

This proves the claim. Since K ⇢ S is compact and invariant we have, from
the claim, that there exists � > 1 such that ||Df(x)(v)||S

f(x) > �||v||S
x

. If
|| · || is some Riemannian metric in the Riemann sphere, there exists a constant
C > 0 such that 1

C

||v||
x

< ||v||S
x

< C||v||
x

for every x 2 K and every tangent
vector v at x. Hence, ||Dfn(x)(v)||

f

n(x) � 1
C

||Dfn(x)(v)||S
f

n(x) > 1
C

�n||v||S
x

>

( 1
C

)2�n||v||
x

.

Corollary 1.1. If f is a rational map such that each critical point of f is in
the basin of an attracting periodic point or is a super-attractor, then the Julia
set of f is a hyperbolic set.

Corollary 1.2. If f is a rational map such that each critical point is eventually
mapped onto a repelling periodic point then J(f) = C and any closed forward
invariant set which does not contain a critical point is hyperbolic. (Note that
this corollary is not applicable if f is polynomial, because then 1 is a critical
point and a super-attractor.)

Proof of Corollary 1.2. In this case, the forward orbits of the critical points
form a finite set P and S = C̄ \ P is connected. Clearly P is contained in the
Julia set because every point of P falls into an expanding periodic point. Hence
the backward orbit of P is also in the Julia set. If x is not in the backward orbit
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of P then fn(x) 2 S for every n � 0. Let y 2 S be a point in the !-limit of x (it
is clear that the !-limit set of x cannot be a subset of P since the periodic points
in P are repelling). Since ||Df(z)||S

f(z) > 1 for z, f(z) 2 S, there exists � > 1
such that ||Df(z)||S

f(z) > � for each z near y. From this one gets for fn

i(x)! y

that ||Dfn

i+1(x)||S � 1 · � · ||Dfn

i(x)||S and therefore that ||Dfn

i(x)||S tends
to infinity. The hyperbolic metric and the spherical metric are equivalent in a
compact neighbourhood of {x, y}. Therefore, ||Dfn

i(x)|| also tends to infinity.
This implies that x belongs to the Julia set because fn

i cannot be a normal
family in a neighbourhood of x. Hence the Julia set is the whole Riemann
sphere. Since ||Df(x)(v)||S

f(x) > ||v||S
x

for x, f(x) 2 S the last statement follows
from compactness and the fact that each point in P is eventually periodic and
repelling.

Theorem 1.6. (Structural Stability of J(f))
Let f be a rational map of degree d whose Julia set is a hyperbolic set. Then

there exists a neighbourhood N of f in the space of rational maps of degree d
such that for any g 2 N , the Julia set of g is also hyperbolic and there exists
a homeomorphism h

g

: J(f) ! J(g) which is a conjugacy between f |J(f) and
g|J(g).

Before proving Theorem 1.6, let us prove the existence of an adapted metric
to a hyperbolic invariant set.

Lemma 1.3. Let K be a hyperbolic invariant set for a rational map f . Then
there exists a Riemannian metric || · || on C̄ and � > 1 such that

||Df(x) · v||
f(x) > �||v||

x

for every x 2 K and v 2 T
x

C̄.

Proof. Let | · |
x

be any Riemannian metric on the Riemann sphere. Since K is
a hyperbolic invariant set, there exist C > 0 and ↵ > 1 such that

|Dfn(x)|
f(x) > C↵n|v|

x

for every v 2 T C̄
x

and for every x 2 K. Let N > 0 be such that C↵N > 1.
Define

||v||
x

=
1
N

N�1
X

n=0

|Dfn(x) · v|
f

n(x).

Clearly || · ||
x

is a Riemannian metric on the Riemann sphere. Since any two
Riemannian metrics on the Riemann sphere are equivalent, it follows that there
exists a constant C1 > 0 such that 1

C1
|v|

x

< ||v||
x

< C1|v|x for all x 2 C̄ and all
v 2 T

x

C̄. Thus,

||Df(x) · v||
f(x) =

1
N

N�1
X

n=0

|Dfn(f(x)) ·Df(x) · v|
f

n+1(x) =
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= ||v||
x

+
1
N

(|DfN (x) · v|
f

N (x) � |v|x) � ||v||
x

+
1
N

(C↵N � 1)|v|
x

�

� (1 + (C↵N � 1))
NC1

||v||
x

.

Taking 1 < � < 1 + (C↵N�1)
NC1

the lemma follows.

Proof of Theorem 1.6. By taking an adapted metric, we can assume that
|Df(x)| > 1 for all x 2 J(f). From the compactness of J(f), there exist � > 1,
a neighbourhood V of J(f) and a neighbourhood N of f such that |Dg(x)| > �
for all x 2 V and for all g 2 N . Let ✏ > 0 be such that for all x 2 J(f),
the ball B(x, ✏) is contained in V . By shrinking N , we can assume that for all
x 2 J(f) and all g 2 N , g(B(x, ✏)) � B(f(x), ✏). Therefore, for each integer n,
and each x 2 J(f) the set W

g,n

(x) = {y ; gi(y) 2 B(f i(x), ✏), for all 0  i  n}
is a non-empty set with diameter at most equal to 2✏��n. Hence there exists a
unique point h

g

(x) such that gn(h
g

(x)) 2 B(fn(x), ✏) for all integer n. Clearly
h

g

(f(x)) = g(h
g

(x)). It is easy to verify that h
g

is continuous and one-to-one.
Thus h

g

is a homeomorphism from J(f) onto the compact set h
g

(J(f)) ⇢ V
conjugating f and g. Since h

g

maps the periodic points of f in J(f) into the
periodic points of g in h

g

(J(f)), we get that h
g

(J(f)) contains all periodic
points of g except for, possibly, a finite number of them (corresponding to the
periodic points of f which are not in the Julia set). Hence, h

g

(J(f)) is the Julia
set of g. The lemma below plays an important role in extending

conjugacies defined on a set to its closure, see Mañé et al. (1983). We will skip
the proof because it is not needed in this book.

Lemma 1.4. Let X ⇢ C̄ be a set and �
�

: X ! C̄ be a parametrized family of
maps, where the parameter � belongs to an open set W ⇢ (C̄)k, satisfying the
following conditions:

1. �0(z) = z for all z 2 X;

2. �
�

is one-to-one for every � 2W ;

3. for each z 2 X, the map W ! C̄, � 7! �
�

(z) is holomorphic.

Then, for each � 2W , there exists a unique extension �
�

: X̄ ! C̄ to the closure
X̄ of X which is continuous and satisfies Properties 1, 2 and 3 above.

Theorem 1.7. (Mañé et al.) Let f : C̄ ! C̄ be a rational map satisfying the
following properties:

1. each critical point of f is contained in the basin of a hyperbolic attracting
periodic point;
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2. the critical points are non-degenerate, i.e., the second derivative of the
map does not vanish at the critical points;

3. there is no critical point in the forward orbit of a critical point.

Then f is structurally stable.

Proof (Sketch). If W is a small neighbourhood of f then Properties 1, 2 and 3
above are clearly satisfied for all g 2W . Next we take a neighbourhood V of the
attracting periodic points of f and define a holomorphic family of continuous
maps h

g

: V ! h
g

(V ) ⇢ C̄ (close to the identity) which conjugate f with g
and map the forward orbit of the critical points of f into the forward orbit of
the corresponding critical points of g. Then we extend h

g

to a conjugacy in the
backward orbit of V . This is the union of the basins of the periodic attractors of
f which is dense in C̄. Indeed, because the Poincaré metric of the complement
of the closure of the forward orbits of the critical point is expanded and it is
equivalent to the spherical metric in any compact subset, C̄ \ V cannot contain
an open set. Therefore we can use Lemma 1.4. to extend h

g

continuously to
C̄.

Remark. One should compare the proof of this theorem with the proof of
Theorem II.3.1. Instead of Lemma 1.4, we use there the simple fact that a
monotone map of a dense subset of the interval whose image is a dense subset,
extends continuously to a homeomorphism of the whole interval.

It is not known if the set of rational maps satisfying the above properties is
dense in the space of rational maps. This is one of the main open problems in
this theory. By the above theorem, a positive answer to this question would give
a characterization of the structurally stable rational maps. From Mañé et al.
(1983) and Sullivan and Thurston (1986), it follows that the set of structurally
stable rational maps is dense.

The dynamics of a rational map on its Fatou set is completely described by an
important theorem due to Sullivan. Since the Fatou set is completely invariant,
the image of one of its connected components is another connected component.
A connected component U of the Fatou set, also called a domain of f , is periodic
if there is an integer n such that fn(U) = U . It is called wandering if it is not
eventually periodic. Julia and Fatou had already a complete understanding of
the dynamics of fn on U . There are five possibilities:

1. there is a hyperbolic attracting fixed point of fn in U and U is contained
in the basin of this fixed point;

2. there is a super-attracting fixed point of fn in U and U is in the basin of
this fixed point;

3. there exists a unique fixed point of fn in the boundary of U , this fixed
point is rationally indi↵erent, and U is in the basin of this fixed point;
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4. the restriction of fn to U is holomorphically conjugate to an irrational
rotation R

�

: D! D, R
�

(z) = �z;

5. the restriction of fn to U is holomorphically conjugate to an irrational
rotation of an annulus: R

�

: A
r

! A
r

, R
�

(z) = �z, where A
r

= {z ; r <
|z| < 1}.

That the possibilities 4) and 5) really do occur for rational maps was proved
by Siegel and Herman, respectively. That the number of domains of type 1),
2), 3) and 4) is finite follows from Theorem 3.3. The non-existence of wan-
dering domains as well as the finiteness of domains of type 5) was proved in
Sullivan (1985) using the Measurable Riemann Mapping Theorem to perform
quasiconformal deformations. More precisely:

Theorem 1.8. (Sullivan) If f : C̄! C̄ is a rational map then:

1. every domain is eventually periodic;

2. the number of periodic domains is finite.

To prove the above theorem Sullivan introduced in this theory the idea
of quasiconformal deformations that had been developed earlier in the theory
of Kleinian groups. The main technical tool here is the Measurable Riemann
Mapping Theorem. This also plays a fundamental role in the study of many
dynamical properties of polynomials, see Douady (1984), Douady and Hubbard
(1984), (1985) and Shishikura (1987).

In Chapter IV we will prove the analogue of this theorem in the real case.
Although the proof of this theorem cannot be generalized to real dynamics we
want to give a sketch of the main ideas involved because some of these tools are
also important in the theory of real one-dimensional dynamics as we will see
in the last chapter. The most important tool in this proof is the Measurable
Riemann Mapping Theorem which allows one to construct deformations of con-
formal maps. This deformation theory is accomplished through changing the
conformal structure so that it is still close to being conformal.

Before stating this generalized Riemann Mapping Theorem we need some
definitions. For more detailed information on these definition, see the Appendix
and for example Ahlfors (1987) and Lehto (1987).

Definition. Let � : ⌦ ! ⌦0 be so that its partial derivatives @̄�(z) and @�(z)
are almost everywhere defined. Here

@�(z) = 1/2(�
x

� i�
y

) = 1/2(u
x

+ v
y

) + i/2(v
x

� u
y

)

and
@̄�(z) = 1/2(�

x

+ i�
y

) = 1/2(u
x

� v
y

) + i/2(v
x

+ u
y

)
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where w = �(z), z = x+iy and w = u+iv. At each point where these derivatives
are defined we define the Beltrami coe�cient µ : ⌦! C of � by

µ
�

(z) =
@̄�(z)
@�(z)

.

Next we say that � is K-quasiconformal if

a) � : ⌦! ⌦0 is an orientation preserving homeomorphism between the open
sets ⌦ and ⌦0;

b) the real Re(�) and imaginary part Im(�) of � are absolutely continuous on
almost all verticals and on almost all horizontals in the sense of Lebesgue;

c) there exists k < 1 such that for

µ
�

(z) =
@̄�(z)
@�(z)

one has
|µ
�

(z)|  k for almost all z 2 ⌦

where
K  1 + k

1� k
.

Remark. If � is orientation preserving then |µ
�

(z)| < 1 almost everywhere.
Furthermore, it is not hard to see that if � is di↵erentiable at z then D�(z)
sends the ellipses r · [ei✓ + µ

�

(z)e�i✓], r � 0, to circles and the eccentricity (i.e.,
the ratio of the major to the minor axis of this ellipse) is equal to

D
�

=
1 + |µ

�

(z)|
1� |µ

�

(z)| .

This will play an important role in Chapter VI.

Theorem 1.9. If � is 1-quasiconformal then it is conformal.

Proof. See for example Ahlfors (1987) and Lehto (1987).

The main analytic tool which is used in the proof of Sullivan’s result men-
tioned above is the following

Theorem 1.10. (Ahlfors-Bers)

1. For each measurable µ : C̄ ! {z ; |z| < 1} such that ||µ||  k < 1 there
exists a unique K = 1+k

1�k

-quasiconformal map � such that

µ
�

= µ a.e.

such that �(0) = 0, �(1) = 1, �(1) =1.
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2. If for each z 2 C̄, µ
t

(z) depends analytically on a parameter t 2 C̄l then
t 7! �

t

(z) is also analytic for all z 2 C̄.

A Beltrami coe�cient or a complex structure is a measurable mapping
z ! µ(z) such that |µ(z)| < 1 in almost every point. We call this a Bel-
trami coe�cient or a complex structure because at every z for which µ(z) is
defined, one gets the ellipses r · [ei✓ + µ(z)e�i✓], r � 0, which are based at z
with eccentricity 1+|µ(z)|

1�|µ(z)| . The previous theorem states that for any Beltrami
coe�cient µ with ||µ|| < 1, there exists a quasiconformal map � which sends the
Beltrami coe�cient µ to the Beltrami coe�cient 0. This means that in every
point z where � is di↵erentiable, D�(z) sends the ellipses r · [ei✓ + µ(z)e�i✓],
r � 0 centred at z to circles.

Let us explain in a few words how this theorem is used to construct defor-
mations of conformal maps which are conjugate to the original map. So let h
be a quasiconformal conjugacy between two conformal maps f and g. Because
f and g are conformal, any Beltrami coe�cient is preserved by these maps. In
particular, the Beltrami coe�cient corresponding to the Beltrami coe�cient of
h is preserved by f . Indeed, consider the ellipses corresponding to µ(z) based at
z. Dh(z) sends these ellipses to circles and since g is conformal, Dg �h(z) sends
these ellipses to circles based in g(h(z)). By definition Dh�1 sends these circles
to the ellipses corresponding to µ(h�1 � g � h(z)) = µ(f(z)). So the fact that f
and g are conjugate implies that Df sends the ellipses corresponding to h(z) to
those corresponding to h(f(z)). More formally, because f and g are analytic,

µ(f(z))
f 0(z)
f 0(z)

=
@̄h (f(z))
@h (f(z))

f 0(z)
f 0(z)

=
@̄h (z)
@h (z)

= µ(z).

So if we take µ
t

= t ·µ with t 2 C and |t| < 1 we get another Beltrami coe�cient
which is also kept invariant by f , i.e.,

(⇤) µ
t

(f(z))
f 0(z)
f 0(z)

= µ
t

(z).

We can use the Ahlfors-Bers Theorem to get a family of quasiconformal home-
omorphisms h

t

with Beltrami coe�cient µ
t

. Because of (⇤), h
t

� f � h�1
t

is
1-quasiconformal (see also Lemma VI.4.1) and therefore conformal. Thus one
gets an arc of conformal maps connecting f to g; each map in this arc is quasi-
conformally conjugate to f .

The idea behind Sullivan’s Theorem is the following: if f has a wandering
domain then one can use this to construct an arbitrarily high-dimensional space
of conformal deformations of f . But since the space of rational maps of a certain
degree is bounded, it follows that wandering domains cannot exist.

A similar result will be shown in the real case in Chapter IV. However, in
that case no analogue of the Measurable Riemann Mapping Theorem is known
and therefore di↵erent ideas will have to be used.
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2 Structural Stability and Hyperbolicity

In this section we will introduce the important concept of hyperbolicity in real
one-dimensional dynamics and prove that an endomorphism with ‘enough’ hy-
perbolicity in the relevant part of the dynamics is structurally stable. This
result was first proved by Shub (1969) for maps of the circle without attract-
ing periodic points (see Section II.2), by Nitecki (1970) for maps of the circle
without critical points and finally by Jakobson (1971) for endomorphisms with
critical points.

Here N will denote either a compact interval of the real line or of the unit
circle. Let Cr(N,N), r � 1, be the space of Cr endomorphisms of N such
that, if the boundary @N of N is not empty, then it is invariant by the maps
in Cr(N,N). That is, if f 2 Cr(N,N) then f(@N) ⇢ @N and therefore every
x 2 @N is either x a fixed point, a periodic point of period 2 or f(x) is a fixed
point of f .

In Cr(N,N) we consider the Cr-topology which is defined by the metric

d
r

(f, g) = max
1ir

{d(f(x), g(x)), |Dif(x)�Dig(x)| ; x 2 N}.

Here, d is the usual metric in N . A sequence of maps f
n

converges to a map
g in the Cr topology if and only if f

n

converges uniformly to g together with
all its derivatives up to the order r. It is easy to see that with the Cr metric,
Cr(N,N) is a complete metric space. Hence, by Baire’s Theorem, a countable
intersection of open and dense subsets of Cr(N,N) is also a dense subset of
Cr(N,N).

Definition. An endomorphism f 2 Cr(N,N) is Cr structurally stable if there
exists a neighbourhood N of f in Cr(N,N) such that for each g 2 N , there
exists a homeomorphism h

g

: N ! N which is a conjugacy between f and g,
i.e., g � h

g

= h
g

� f . (As we shall see below, a C2 endomorphism can be C2-
structurally stable without being C1-structurally stable.)

One of the main open questions in one-dimensional dynamics is the charac-
terization of the structurally stable endomorphisms in Cr(N,N) for r � 2. We
will define in this section a class of endomorphisms which are structurally sta-
ble. It is conjectured that this class is dense in the space of all endomorphisms
and, therefore, coincides with the space of structurally stable endomorphisms.
Before going into this, we will establish some properties which are necessary for
the stability of endomorphisms.

2.a: Necessary conditions for structural stability

Note that a conjugacy h between two endomorphisms f and g, must map a
turning point of f into a turning point of g and a periodic point of period n of
f into a periodic point of period n of g. From this we get that a structurally



210 CHAPTER III. STRUCTURAL STABILITY AND HYPERBOLICITY

stable map f must satisfy some conditions at each periodic point and at each
critical point.

Definition. Let f be a periodic point of period n of f 2 Cr(N,N). If 0 6=
|Dfn(p)| 6= 1 we say that p is a hyperbolic periodic point (the reason we do
not allow Dfn(p) to be zero in this definition is that the structural stability
of f implies Dfn(p) 6= 0, see Corollary 2 below). It is an attracting periodic
point if 0 < |Dfn(x)| < 1 and a repelling periodic point if |Dfn(p)| > 1. If
Dfn(p) = 0 then p is called a super-attracting periodic point. The basin of p
is the set B(p) = {x ; !(x) 2 {p, . . . , fn�1(p)}}. If p is a hyperbolic periodic
point and f is not constant on any interval then B(p) is an open set.

Definition. If c is a critical point of f , i.e., Df(c) = 0 then we say that c is
non-degenerate if f is C2 and D2f(c) 6= 0.

Note that a non-degenerate critical point of a map is always a turning point,
i.e., f is not monotone on any neighbourhood of the critical point. Let us prove
that for ‘most’ maps all periodic points are hyperbolic and all critical points are
non-degenerate.

Proposition 2.1. Take f 2 Cr(N,N) and let r � 1. Then there exists a map
g 2 Cr(N,N) arbitrarily close to f in the Cr topology, such that all periodic
orbits of g are hyperbolic. If, furthermore, r � 2, then all critical points of g
are non-degenerate.

Proof. The space Cr(N,N) is a Baire space. Therefore, the proposition follows
from the following claims:

1) Let U
n

⇢ Cr(N,N), r � 1, be the space of maps whose periodic points of
period smaller or equal to n are all hyperbolic. Then U

n

is an open and dense
subset of Cr(N,N). Furthermore, given f 2 U

n

, there exists a neighbourhood
N ⇢ U

n

of f and continuous functions p
i

: N ! N, i = 1, . . . , k
n

, such that
{p

i

(g) ; i = 1, . . . , k
n

} is the set of periodic points of g of period smaller or
equal to n.

2) Let U ⇢ Cr(N,N), r � 2, be the space of maps whose critical points are all
non-degenerate. Then U is an open and dense subset of Cr(N,N). Furthermore,
given f 2 U , there exists a neighbourhood N ⇢ U of f and continuous functions
c
i

: N ! N , i = 1, . . . , d, such that {c
i

(g) ; i = 1, . . . , d} is the set of critical
points of g.

In order to prove these claims notice that if the graph of f i is transversal
to the diagonal � of N ⇥ N for all i  2n then all the periodic points of f of
period  n are hyperbolic and, by the Implicit Function Theorem they depend
continuously on the map. So the openness of U

n

follows from the Implicit
Function Theorem. From transversality techniques the density of U

n

follows, see
the Appendix. In fact, this statement is also true for endomorphisms of compact
manifold of any dimension. The second claim also follows from transversality
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techniques, because the critical points of f are nondegenerate if and only if the
map x 7! (x,Df(x)), from N to N ⇥ R is transversal to N ⇥ {0}. The details
are left to the reader.

In the next two corollaries we will show that the two generic properties from
the previous proposition are satisfied for every structurally stable map.

Corollary 2.1. Assume that f 2 Cr(N,N), r � 1, is structurally stable then
each periodic orbit of f is hyperbolic (and in particular f has only a finite number
of periodic points of each period).

Proof. Let N be a neighbourhood of f such that any map in N is conjugate
to f . By Proposition 2.1, there exists a map g 2 N such that all periodic
points of g are hyperbolic and g has a finite number of turning points which are
non-degenerate. Hence, the number of periodic points of g of any given period
is finite. Since turning points and periodic points are preserved by conjugacies,
all maps in N have the same number of turning points and the same number
of periodic points of period n for each integer n. In particular, the number of
periodic points of a given period and the number of turning points of f is finite.

Suppose, by contradiction that f has a periodic point p of period n such
that |Dfn(p)| = 1. Let V be a neighbourhood of p such that f has no periodic
point of period 2n in V and, furthermore, has no periodic point of period n in
V \ {p}. We will show that |Dfn(p)| = 1 implies that there exists g 2 N such
that the number of periodic points of period  2n of f and g is di↵erent. Let �
be a positive C1 function which is equal to 1 near p and equal to 0 outside V .

First suppose that Dfn(p) = 1 and that p is attracting (resp. repelling) from
both sides. Take g(x) = f(x)+ ✏�(x) · (x� p). Then gn(p) = p and Dgn(p) > 1
or Dgn(p) < 1 depending on the sign of ✏. Therefore, one can find g 2 N so
that gn has at least three fixed points in V , see Figure 2.1. It follows that f
and g have a di↵erent number of periodic points of period n, a contradiction.
Next suppose that Dfn(p) = 1 and that p is attracting from one side and take
g(x) = f(x) + ✏�(x). Then Dgn(p) = 1 and gn(p) > p or gn(p) < p depending
on the sign of ✏. Therefore one can find g 2 N so that gn has at least two
fixed points in V , see Figure 2.1. Again this gives a contradiction. Similarly,
if Dfn(p) = �1 then Df2n(p) = 1 and p is either attracting or repelling from
both sides (this holds because f maps one component of V \ {p} to the other).
So perturb f to g(x) = f(x) + ✏�(x) · (x � p) as in the previous case. Again
the number of periodic points of g and f of period  2n is di↵erent for an
appropriate choice of ✏.

We should remark that if r � 3 then we can choose perturbations of a
special form, see the exercises at the end of the next section. In this case these
perturbations give rise to generic bifurcations.

Remark. The above corollary is also true for endomorphisms of higher-dimensional
manifolds, see Shub (1969).
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Fig. 2.1: The number of periodic points of f and g from the proof of Corollary 1

di↵ers.

The next corollary motivates us to consider structurally stable maps in
Cr(N,N) only for r � 2.

Corollary 2.2. If f 2 C1(N,N) is structurally stable then f has no critical
points. If f 2 Cr(N,N), r � 2, is structurally stable then all critical points of
f are non-degenerate.

Proof. Let N be a neighbourhood of f such that each map in N is conjugate
to f . By Proposition 2.1, there exists a map g1 2 N such that g1 has a finite
number of turning points. Since turning points are preserved by conjugacies, all
maps in N have a finite number of turning points. On the other hand, if f has
a critical point, it is easy to see that we can approximate f in the C1-topology
by a map g2 with an infinite number of turning points (here it is important that
we use the C1 topology).

Furthermore, if f has a degenerate critical point c then arbitrarily Cr-close
to f one can find a map g which has a larger number of turning points than f .
Again we get a contradiction.

2.b: Hyperbolicity and the Axiom A condition

The previous corollary shows that hyperbolicity of periodic orbits and non-
degeneracy of critical points is necessary for structural stability. Now we shall
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introduce the same notion of hyperbolicity for general forward invariant sets K.
This notion formalizes when f is uniformly expanding along K. It will turn
out in Theorem 2.3 below that hyperbolicity of the complement of the basins of
periodic attractors and the necessary conditions from above are also su�cient
for structural stability.

Definition. Let f : N ! N be a Cr map, r � 1, where N is either the circle or
a compact interval of the real line. A subset K ⇢ N is a hyperbolic repelling (or
for short, hyperbolic) set of f if K is forward invariant and there exist constants
C > 0 and � > 1 such that

|Dfn(x)| > C�n

for all x 2 K and all n 2 N. Notice that a periodic orbit p of period n was called
hyperbolic if 0 < |Dfn(p)| 6= 1; in particular, such periodic orbits are allowed to
be attracting. However, it is unnecessary to define this notion for more general
sets because we will see in Section 5 and Chapter IV that if |Dfn(x)| < 1

C

��n

for all n 2 N, x 2 K, then all points in K are attracted to a finite union of
attracting hyperbolic periodic orbits.

Lemma 2.1. Let K ⇢ N be a compact invariant set of a C1 map f : N ! N .
Then K is a hyperbolic set if and only if for each x 2 K there exists an integer
n = n(x) such that |Dfn(x)| > 1.

Proof. If K is hyperbolic we take n so that C�n > 1. So let us prove the reverse
implication. So suppose that |Dfn(x)(x)| > 1 for every x 2 K. By compactness
of K and continuity of the derivative of f , there exists a finite cover V1, . . . , Vk

of K by open sets, integers n1, . . . , nk

and numbers �1, . . . ,�k

> 1, such that
|Dfn

i(x)| > �
i

for every x 2 V
i

and every i = 1, . . . , k. Let n0 = max{n
i

; 0 <
i  k}, �0 = min{�

i

; 0 < i  k} and a = min{|Df(x)| ; x 2 K}. Choose an
integer m so big that �m

0 · an0 > 1. Let ñ = (m + 1) · n0.
We claim that |Df ñ(x)| > 1 for every x 2 K. Indeed, choose i

i

2 {1, . . . , k}
so that x 2 V

i1 , i2 so that fn

i1 (x) 2 V
i2 , i3 so that fn

i1+n

i2 (x) 2 V
i3 and so

on. Since ñ > m · n0, there exist integers s = s(x) � m and m0 < n0 such that
ñ = n

i1 + · · ·+ n
i

s

+ m0. Therefore,

|Df ñ(x)| � �
i1 ⇥ · · ·⇥ �i

s

⇥ |Dfm0(fn

i1+···+n

i

s (x))| � �m

0 · am0 > 1

which proves the claim.
From the claim and the compactness of K we get the existence of � > 1 such

that |Df ñ(x)| > �ñ for every x 2 K. Now, taking C = min{ai

�i

; 1  i  ñ} we

get |Df i(x)| � C�i if i  ñ. If n is any integer we can write n = sñ + t with
t < ñ and we get

|Dfn(x)| = |Dfsñ(x)| · |Df t(fsñ(x))| � �sñ · C · �t = C�n.
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Now we define when a map satisfies the so-called Axiom A conditions. This
notion will play an essential role throughout the remainder of this chapter.

Definition. Definition We say that a map f 2 Cr(N,N), r � 1, satisfies the
Axiom A conditions if:

1. f has a finite number of hyperbolic periodic attractors;

2. ⌃(f) = N \B(f) is a hyperbolic set, where B(f) is the union of the basins
of the hyperbolic attractors of f .

We should point out that this definition is slightly di↵erent from the usual
definition for di↵eomorphisms on manifolds. The reason one considers the set
⌃(f) rather than the non-wandering set ⌦(f) is the fact that ⌦(f) is not neces-
sarily backward invariant for non-invertible maps f , see Exercise 2.1 below. If
f satisfies the Axiom A, then all critical points of f are in the basins of hyper-
bolic periodic attractors and all periodic points in ⌃(f) are hyperbolic repellors.
Furthermore, if J ⇢ ⌃(f) is an interval then, since ⌃(f) is completely invariant,
all the iterates fn(J) also belong to ⌃(f). Since |Dfn(x)| > C�n for all x 2 J
and � > 1 it follows that ⌃(f) = N = S1 and fn(J) = S1 for n big enough.
Therefore, either ⌃(f) is totally disconnected or f is an expanding map of the
circle. Note that this argument also shows that Axiom A maps do not have
wandering intervals.

Exercise 2.1. Assume that f : [�1, 1]! [�1, 1] is C1 and satisfies the follow-
ing properties. ⌦(f) is hyperbolic, all the critical points of f are non-degenerate,
f has a finite number of critical points and the orbits of the critical points of
f are disjoint. Show that these conditions do not imply that f is structurally
stable. (Hint: take f : [�1, 1]! [�1, 1] such that f [�1, 0] ⇢ [0, 1], f(0) = 1 and
f [0, 1] ⇢ [0, 1] with a turning point in (�1, 0) which is mapped onto a repelling
periodic orbit of f : [0, 1] ! [0, 1] and note that ⌦(f) = ⌦(f |[0, 1]).) It will
be shown in Theorem 2.3 that f is structurally stable if in addition ⌃(f) is
hyperbolic.

Exercise 2.2. Show that if f : N ! N satisfies the Axiom A conditions, then
the periodic points of f are dense in the non-wandering set. (Hint: as re-
marked above we may assume that ⌃(f) is totally disconnected because other-
wise N = S1 and f is an expanding map of the circle. So take a non-wandering
point x which is not periodic. Then there exists a sequence n(k) ! 1 and a
sequence of points x

k

! x with fn(k)(x
k

)! x. Now let J
n(k) be the component

containing x
k

of the set {y ; f i(y) /2 B0(f) for all 0  i < n(k)} (since x is
non-wandering this component is non-empty). Here B0(f) is the union of the
immediate basins of periodic attractors. By the forward invariance of B0(f),
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fn(k)(J
n(k)) is a component of N \ B0(f). Since B0(f) only has a finite num-

ber of components this implies that fn(k)(J
n(k)) � J

n(k) for su�ciently large
k. Since by assumption ⌃ contains no intervals, |J

n(k)|! 0 and it follows that
arbitrarily close to x there are periodic points.)

Exercise 2.3. Show that the periodic points of a C1 map f : [0, 1] ! [0, 1]
need not be dense in ⌦(f). (Hint: choose 0 < a < b < c < 1 and let f be so
that f(a) = f(b) = f(c) = c, f [0, a] ⇢ [a, c], f [a, b] ⇢ [c, 1], f [b, c] = [a, c] and
f [c, 1] ⇢ [c, 1], see Figure 2.2. Then no point in [0, b] is periodic and yet a is
non-wandering.) One can also show that the Axiom A conditions defined above
exclude the existence of cycles. (We should note that L.S. Young (1979) has
shown that for each r � 0, any Cr endomorphism can be Cr approximated by
an endomorphism for which the periodic orbits are dense. Even for r = 1 the
corresponding result is much more di�cult in higher dimensions. In fact, for
di↵eomorphisms in higher dimensions this property has only been proved for
r = 1: it follows from Pugh’s closing lemma.)
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Fig. 2.2: The point a is a non-wandering point of the map f : [0, 1] ! [0, 1] from

Exercise 2.3, but there are no periodic points in [0, b]. This shows that the periodic

points are in general not dense in the non-wandering set.

2.c: The density of Axiom A

In contrast to the situation in higher dimensions, Axiom A maps occur com-
monly in one-dimensional dynamical systems. For example, in the next section,
we will prove that any map with negative Schwarzian derivative and whose crit-
ical points are in the basin of hyperbolic periodic attractors, satisfies the Axiom
A. This result of Misiurewicz was generalized by Mañé (1985) for general C2

maps. He proved that any C2 map whose periodic points are hyperbolic and
whose critical points are in the basins of periodic attractors satisfies the Axiom
A. More precisely, Mañé proved the following remarkable theorem. Here we let
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C(f) be the set of critical points of a map f , i.e.,

C(f) = {x ; Df(x) = 0}.

Moreover, let B0(f) be the union of the immediate basins of the periodic at-
tractors of f .

Theorem 2.1. (Mañé) Let N be a compact interval of the real line or the circle
and let f : N ! N be a C2 map. Let U be a neighbourhood of the set C(f) of
critical points of f . Then

1. All periodic orbits of f contained in N \ U of su�ciently large period are
hyperbolic and repelling.

2. If all periodic orbits of f which are contained in N \U are hyperbolic, then
there exists C > 0 and � > 1 such that

|Dfn(x)| � C�n

whenever f i(x) 2 N \ (U [B0(f)) for all 0  i  n� 1.

In particular, if all critical points of f are contained in the basin of periodic
attractors and all periodic points of f are hyperbolic then f is Axiom A.

Proof. We will give a proof of this result in Section 5 of this chapter.

Furthermore, Jakobson (1981) has shown the following:

Theorem 2.2. (Jakobson) The set of maps satisfying the Axiom A is dense
in C1(N,N).

Proof. For maps having no critical points this result follows immediately from
Proposition 2.1 and Theorem 2.1 (each C1 map can be approximated by a C2

map in the C1 topology). The proof of this result for maps with critical points
is sketched in Exercises 2.4-2.7 below. The density of Axiom A

in the space Cr(N,N), r � 2, is one of the most important open questions in
one-dimensional dynamics. By the result of Mañé this density property would
follow from

Conjecture 1. The set of maps in Cr(N,N), r � 2, whose critical points are
in the basin of hyperbolic attractors forms a dense set.

This is still an open question even in the space of maps with negative Schwar-
zian derivative. Recently the proof of the following conjecture was announced
by Świa̧tek (1992b).

Conjecture 2. The set of parameters a for which the critical point of f
a

(x) =
ax(1� x), 0 < a  4 is in the basin of hyperbolic attractors, is dense.
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In the C1 topology the situation is much easier, as we will see in the next
exercises. Below, in Section 2.D, we shall show that the sets of maps (or pa-
rameters) from the previous conjectures are certainly open.

Exercise 2.4 (A C1 closing lemma for interval maps). Let f 2 Cr(N, N), r � 1,

have a finite number of critical points and suppose that c is a critical point which is

recurrent, i.e., c 2 !(c). Show that C1 close to f there exists a Cr map g such that g

coincides with f outside a neighbourhood of c, has a unique critical point c0 near c and

c0 is in the basin of an attracting periodic point of g. Whether one can choose g to be C2

close to f is unknown. (Hint: Let n be an integer so that fn(c) is very close to c and so

that d(fk(c), c) > d(fn(c), c) for 0 < k < n. Let I be the interval connecting fn(c) and

c. Since c is recurrent one can choose n such that I is arbitrarily small and such that

there exists an integer m > n with fm(c) 2 I. Choose m minimal with this property.

Now distinguish two cases. i) fm(c) is closer to c, i.e., d(fm(c), c)  d(fm(c), fn(c)).

Then let z between fm(c) and fn(c) be such that d(fm(c), z) = d(z, fn(c)) and let U

be a small neighbourhood of the segment connecting c and z such that fk(c) /2 U for

all 0 < k < m. Modify f on U to a Cr map g as follows. Let ĉ = fm(c). Choose

g such that g(ĉ) is equal to f(c) and such that g|U has a unique critical point in

ĉ. It is not hard to see that g can be chosen arbitrarily C1 close to f provided we

choose fn(c) su�ciently close to c and therefore |Df | is su�ciently close to 0 on U .

Moreover, since g and f coincide outside U , gm(ĉ) = gm�1(f(c)) = fm(c) = ĉ. So ĉ

is the unique critical point of g in I and it is periodic. ii) fm(c) is closer to fn(c),

i.e., d(fm(c), fn(c))  d(fm(c), c). Then let z between c and fm(c) be such that

d(c, z) = d(z, fm(c)) and let U be a small neighbourhood of the segment connecting

z and fn(c) such that fk(c) /2 U for all 0 < k < m with k 6= n. Modify f on U

to a Cr map g as follows. Let ĉ = fm(c) and choose g such that Dg is almost zero

on the segment between fn(c) and fm(c) and such that g(fn(c)) = f(fn(c)). Then

gm�n(U) is almost equal to gm�n�1(fn+1(c)) = fm(c) = ĉ. It follows that if we take

|Dg| su�ciently small on U then g has an attracting fixed point p of period m� n on

U near ĉ. Moreover g has the same critical points as f and c is in the basin of p. It

is not hard to see that g can be chosen arbitrarily C1 close to f provided we choose

fn(c) su�ciently close to c because then |Df | is su�ciently close to 0 on U .)

Exercise 2.5. Let f 2 Cr(N, N), r � 1 with a finite number of critical points and

suppose !(c) contains a critical point d 6= c. Show that C1 close to f there exists a

Cr map g such that g coincides with f outside a neighbourhood of d, has a unique

critical point d0 near d and either fn(c) = d for some n or c 2 B(g). (Hint: use the

same ideas as in Exercise 2.4.)

Exercise 2.6. a) Let f 2 Cr(N, N) with r � 2 and suppose that f has no critical

points and no neutral periodic points. (So |Dfn(p)| 6= 1 when p is a periodic point

with period n.) Show that f is Axiom A. (Hint: if N is an interval this is trivial. If

N = S1 it follows immediately from Mañé’s result that N \B(f) is hyperbolic.) b) Let

f 2 Cr(N, N) with r � 2 and suppose that f has no critical points. Show that there

exists Cr close to f a Cr Axiom A map g. (Hint: by Proposition 2.1 there exists Cr

close to f a Cr map g whose periodic points are all hyperbolic. So the claim follows

from part a) of this exercise.)

Exercise 2.7. In this exercise we will see that if f 2 Cr(N, N) with r � 2 then

C1 close to f there exists a Cr map g such that all its critical points are contained
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in the basin of periodic attractors. The proof proceeds in a three steps. a) Let

f 2 Cr(N, N) with r � 2. Assume that f has a critical point c, all periodic points

of f are hyperbolic and that !(c) \ C(f) = ;. Show that in this case, there exists

Cr near to f a Cr map g which coincides with f except near c such that for some

integer n > 0 one has gn(c) 2 C(g) [ B(g). (Hint: if this were not the case then

there would exist a neighbourhood U of f(c) such that no point in U is eventually

mapped into C(g) [ B(g). It follows in particular that U would be a homterval (i.e.,

all iterates of f are monotone on U) and that no point in U would be in the basin of

a periodic attractor. As we have proved in Lemma II.3.1 this would imply that U is

a wandering interval. In particular the length of fn(U) would tend to zero. However,

!(c) \ C(f) = ; and since f(c) 2 U this implies that fn(U) does not accumulate

on C(f). But this would contradict the Theorem of Schwartz from Chapter I, more

precisely it would contradict Corollary 2 to Theorem I.2.2.) b) Let f 2 Cr(N, N)

with r � 2. Assume that f has a critical point c and that all periodic points of f

are hyperbolic. Show that there exists map g such that all critical points of g are

contained in the basins of periodic attractors. (Hint: from a) we may assume that

for each critical point c, either !(c) ⇢ C(f) or fn(c) 2 C(f) [ B(f) for some n > 0.

Then, using Exercises 2.4 and 2.5, we can find C1 close to f a Cr map g such that for

each critical point of g, gn(c) 2 C(g)[B(g) for some n > 0. Since this holds for each

critical point there are two possibilities. Firstly, there exists a sequence k(i) !1 with

gk(i)(c) 2 C(g). Because C(g) consists of only a finite number of points, c is eventually

mapped onto a periodic (super attracting) point of C(g) in this case. Secondly, there

exists n � 0 with gn(c) 2 C(g) and gk(c) /2 C(g) for k > n and therefore gn(c) 2 B(g).)

c) Prove that C1 close to f there exists a map g such that all critical points of g are

contained in the basins of periodic attractors. (Hint: simply use b) and Proposition

2.1.)

2.d: Axiom A implies stability

The main reason for defining the notion of hyperbolic sets is that they are
persistent under perturbations.

Theorem 2.3 (Stability of hyperbolic sets). Suppose that K is a compact hy-
perbolic invariant set for some map f 2 Cr(N,N), r � 1. Then there exists a
neighbourhood N of f such that for each g 2 N there exists a compact hyperbolic
invariant set K(g) for g and a homeomorphism h

g

: K ! K(g) conjugating f
and g.

Proof. By changing the metric in N we can assume that the constant C of
the definition of hyperbolicity of K is equal to one, see Lemma III.1.3. Using
this and the compactness of K, we get an open neighbourhood V of K, a
neighbourhood N of f and a constant � > 1 such that

(⇤) |Dg(x)| > � for all x 2 V and all g 2 N .

Suppose that ✏ > 0 is so small that V contains a 2✏ neighbourhood of K. From
(⇤) we certainly have that the set of points K̃(g) of points y such that gn(y) 2 V
for all n � 0 is hyperbolic. Let us now show that there exists a subset K(g)
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of K̃(g) with the required properties. Again we conclude from (⇤), if g 2 N
then g(B(x,

t

�
)) � B(f(x), t) for each t 2 (0, ✏] and each x 2 K. Since K is

f -invariant, for each x 2 K the set

I
n

(x) = {y 2 B(x, ✏) ; gi(y) 2 B(f i(x), ✏), for all 0  i  n}

is a non-empty interval with length smaller than ( 1
�

)n. From this we get the
existence of a unique point h(x) such that gn(h(x)) 2 B(fn(x), ✏) for every
positive integer n. From the definition it follows immediately that h(f(x)) =
g(h(x)). Also h(K) ⇢ K̃(g) because the forward orbit of g through the point
h(x) is contained in an ✏ neighbourhood of K and therefore in V . We claim
that h is one-to-one. Indeed, if h(x) = h(y) then fn(y) 2 B(fn(x), 2✏) for every
positive integer n. By the choice of ✏ and since fn(x) 2 K for all n 2 N, it would
follow that the f -iterates of the interval bounded by x and y remain in V . This
is not possible because f is expanding in V . So simply take K(g) = h(K). Then
h is a conjugacy between f and g on K.

The next theorem shows that the Axiom A condition defined above plays
the same role as the Axiom A and no-cycle condition for di↵eomorphisms on
higher-dimensional manifolds.

Theorem 2.4 (⌃-stability of Axiom A maps). For each f 2 Cr(N,N), r � 1,
satisfying the Axiom A there exists a neighbourhood N of f such that each g 2 N
satisfies the Axiom A and there exists a homeomorphism h

g

: ⌃(g) ! ⌃(f)
conjugating f and g. Furthermore, h

g

depends continuously on g in the C0-
topology.

Proof. If ⌃(f) is not totally disconnected then f is an expanding map of the
circle and the result was already proven in Section II.2. So we may assume
that f has some attracting periodic point. By changing the metric in N we can
assume that the constant C of the definition of hyperbolicity of ⌃(f) is equal
to one, see Lemma III.1.3. Using this and the compactness of ⌃(f), we get an
open neighbourhood W of ⌃(f), a neighbourhood N1 of f and a constant � > 1
such that |Dg(x)| > � for all x 2W and all g 2 N1.

Let {p
i

; i = 1, . . . , k} be the set of hyperbolic attracting periodic points
of f and let n

i

be the period of p
i

. Since |Dfn

i(p
i

)| < 1, there exist an open
interval U

i

containing p
i

such that its closure Ū
i

is contained in the immediate
basin of p

i

, and fn

i(Ū
i

) ⇢ U
i

. By the Implicit Function Theorem there exist
a neighbourhood N2 ⇢ N1 of f and continuous functions p

i

: N2 ! U
i

such
that p

i

(f) = p
i

and p
i

(g) is a hyperbolic periodic attractor of g of period n
i

if
g 2 N2. Shrinking N2 if necessary we can assume that Ū

i

is in the immediate
basin of the periodic attractor p

i

(g) and gn

i(Ū
i

) ⇢ U
i

. Let U = [U
i

. From the
construction it follows that if g 2 N2 and gn(x) 2 U then x is in the basin of
one of the periodic attractors p

i

(g).
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Let V be a neighbourhood of ⌃(f) such that V̄ ⇢ W . Let ✏ > 0 such that
for each x 2 V̄ , the ball of centre x and radius 2✏ in N is contained in W .
For each x in the compact set N \ V , there exists a neighbourhood U

x

of x,
a neighbourhood N

x

⇢ N2 of f and an integer n
x

such that gn

x(U
x

) ⇢ U if
g 2 N

x

. By taking a finite cover of the compact set N \ V and intersecting the
corresponding neighbourhoods of f we get a neighbourhood N3 ⇢ N2 of f and
an integer n0 such that for every x 2 N \V and g 2 N3, gn0(x) 2 U . Hence the
complement of the union B(g) of the basins of the hyperbolic attractors p

i

(g) is
contained in V and since |Dg(x)| > � > 1 for x 2 W , ⌃(g) = N \B(g) ⇢ W is
hyperbolic. This proves the first part of the theorem. Notice that ⌃(g) is equal
to the set of points of V whose positive orbits remain in V .

Exactly as in the proof of the previous theorem there exist ✏ > 0 and a
neighbourhood N ⇢ N3 of f such that for g1, g2 2 N there exists a unique
point h

g1(x) such that gn

2 (h
g1(x)) 2 B(gn

1 (x), ✏) for every positive integer n.
Moreover, h

g1 is one-to-one, h
g1(g1(x)) = g2(hg1(x)) and h

g1(⌃(g1)) ⇢ ⌃(g2).
Finally, h

g1 is a homeomorphism from ⌃(g1) to ⌃(g2) since h
g2(hg1(x)) = x for

every x 2 ⌃(g1).

Thus we have shown that the set ⌃ corresponding to an Axiom A map is
stable under small perturbations. In the next result we will show that the Axiom
A condition and an additional condition is su�cient for structural stability.
This additional condition was shown to be necessary for structural stability in
Corollary 2 of Proposition 2.1. These additional conditions can be regarded
as the analogue of the condition on the transversality of invariant manifolds
condition for di↵eomorphisms on higher-dimensional manifolds.

Theorem 2.5 (Structural stability of Axiom A maps without cycles). Let f 2
Cr(N,N), r � 2, satisfy the Axiom A together with the following conditions:

i) the critical points of f are non-degenerate;

ii) if c1, c2 are critical points and fn(c1) = fm(c2) then n = m and c1 = c2.

Then f is structurally stable.

Proof. If f has no critical points then it is an expanding map of the circle and
structurally stable, by the Corollary of Theorem II.2.1.

Suppose now that f has a critical point. Because ⌃(f) = N \ B(f) is
hyperbolic this implies that each critical point must be contained in B(f); in
particular, the set of attracting periodic orbits of f is non-empty. Choose a
point p

i

, i = 1, . . . , k in each hyperbolic attracting periodic orbit of f and let n
i

be the period of p
i

. Let c1, . . . , cd

be the critical points of f . Choose compact
intervals V

i

in the basin of p
i

such that fn

i(V
i

) ⇢ int (V
i

), fn

i is monotone in
V

i

and such that the boundary of V
i

does not contain points in the orbit of a
critical point of f . The compact set D

i

= V
i

\ int (fn

i(V
i

)) is a union of two
intervals and it is a fundamental domain for the basin of p

i

in the sense that each
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orbit in the basin of p
i

has at least one and at most two points in D
i

(the last
situation occurs if and only if the orbit hits the boundary of D

i

). In particular,
for every critical point c

j

, there exist a positive integer m
j

and i(j) 2 {1, . . . , k}
such that fm

j (c
j

) 2 D
i(j).

Let N be a neighbourhood of f such that there exist continuous functions
p

i

: N ! N, i = 1, . . . , k and c
j

: N ! N, j = 1, . . . , d such that for each g 2 N :

1. c
j

(g) is a critical point of g and c
j

(f) = c
j

, for j = 1, . . . , d;

2. p
i

(g) is the only hyperbolic attracting periodic point of period n
i

for g in
V

i

and p
i

(f) = p
i

;

3. gn

i(V
i

) ⇢ int (V
i

), gn

i is monotone in V
i

and gm

j (c
j

) belongs to the interior
of D

i(j)(g) = V
i(j) \ int (gn

i(V
i(j)));

4. the points c
j

(g), . . . , gm

j (c
j

(g)), j = 1, . . . , d are all distinct and

5. g satisfies the Axiom A and each forward invariant set in N \ [
i

V
i

is
hyperbolic (and repelling).

From Properties 4 and 5 it follows that the itinerary of each critical point of
g 2 N is the same as the itinerary of the corresponding critical point of f .
From Property 2, 3 and 5 it follows that f and g have the same number of
periodic attractors. By Properties 3 and 4, there exists an orientation preserving
homeomorphism

h :

0

@

l

[

j=1

[

i�0

f i(c
j

)

1

A

[

B0(f) !

0

@

l

[

j=1

[

i�0

gi(c
j

(g))

1

A

[

B0(g)

such that h(c
i

) = c
i

(g) and g � h = h � f . Moreover, since f and g are Axiom
A, these maps do not have wandering intervals. It follows from all this and
Theorem II.3.1 that f and g are topologically conjugate.

2.e: The measure of hyperbolic invariant sets

Now we will show that a hyperbolic compact forward invariant set has either
Lebesgue measure zero or is equal to N . In the first section of Chapter V we
will come back to this issue in much greater generality. In order to prove this
we need the following concept.

We say that a map f is of class Cs where s = k + ↵, k 2 N and ↵ 2 [0, 1)
when f is Ck and its k-th derivative satisfies a Hölder condition of order ↵,
namely

|Dkf(x)�Dkf(y)|  C|x� y|↵,

where C is a positive constant.
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Theorem 2.6 (Hyperbolic sets have zero or full Lebesgue measure). Let f : N !
N be a C1+↵ map with ↵ > 0. If � ⇢ N is a compact, forward-invariant,
hyperbolic set for f then either � = N = S1 (and f is an immersion of the
circle) or � has Lebesgue measure equal to zero.

Proof. Since � is also a hyperbolic set for iterates of f , we consider fn instead
of f . So we can assume that |Df(x)| > � > 1 for all x in a neighbourhood V
of �. If � contains an interval then � = S1. Indeed, if J ⇢ � is an interval
then, because ⇤ is invariant, fn(J) ⇢ V for all n and fn has no critical point
in J , because � is hyperbolic. Hence if fn|J is injective then fn(J) is an
interval of length at least equal to �nµ(J), where µ(J) is the Lebesgue measure
of J . This cannot hold for all n 2 N because � > 1. It follows that for some
n 2 N, fn|J is not injective and since fn has no critical points, this implies that
N = S1 = fn(J). So in this case N cannot be an interval and f is an immersion
of the circle.

Therefore, we assume by contradiction that � has positive Lebesgue measure
and contains no intervals. By Lebesgue’s Density Theorem, see the Appendix,
there exists a density point a 2 �. This means that

(⇤) lim
�!0

µ(B(a, �) \ �)
µ(B(a, �))

= 1,

where B(a, �) is the ball of radius � and centre at a in N . Let ✏ > 0 be such
that B(x, ✏) ⇢ V whenever x 2 �. Since |Df(x)| > � > 1 for every x 2 V , for
every � > 0, there exists an integer n such that µ(fn(B(a, �))) � ✏. Taking the
smallest such n one has f i(B(a, �)) ⇢ V for all 0  i < n.

We claim that fn has bounded distortion on B(a, �), more precisely, there
exists a constant C1, independent of �, such that

(⇤⇤) |Dfn(x)|
|Dfn(y)| < C1

for all x, y 2 B(a, �). Indeed, since f is C1+↵ and the derivative of f is not zero
in the closure of V , there exists � > 0 such that the map x 7! log |Df(x)| is C�

on V . Therefore,

log
Dfn(x)
Dfn(y)

=
n�1
X

i=0

�

log |Df(f i(x))|� log |Df(f i(y))|
�


n�1
X

i=0

C|f i(x)� f i(y)|�


n�1
X

i=0

C�(i�n)� |fn(x)� fn(y)|  C
��

�� � 1
.

This proves the claim.
Hence there exists n � 0 such that fn maps B(a, �) di↵eomorphically and

with bounded distortion onto an interval J
�

of at least length ✏. From the
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forward-invariance of � we get that fn(� \ B(a, �)) ⇢ � \ J
�

and therefore,
using (⇤⇤) and (⇤), we conclude

µ(J
�

\ �)
µ(J

�

)
� µ(fn(� \B(a, �)))

µ(J
�

)
= 1� µ(fn(B(a, �) \ �))

µ(fn(B(a, �)))

� 1� C1 ·
µ(B(a, �) \ �)

µ(B(a, �))
! 1,

as � ! 0. Since each of the intervals J
�

has length at least ✏, there exists a
sequence �

n

! 0 so that J
�

n

converges to an interval J . Therefore, µ(J \ �) =
µ(J). Since � is a closed set, we get that � � J and this contradicts the
assumption that J does not contain intervals.

Exercise 2.8. Give an example of a C1 map f : S1

! S1 of degree two with Df(x) > 1

for all x 2 S1, with a compact, forward-invariant, hyperbolic set � 6= S1 which has

positive Lebesgue measure. (Hint: take an interval J ⇢ S1 and let f be as above.

Taking �
n

= {x ; f i(x) /2 J for all i = 1, . . . , n}, � = \

n�0

�
n

is forward invariant and

compact. In order to show that one can choose � to have positive measure while f is

still C1, use a construction similar to the Denjoy counter-example in Chapter I. More

details can be found in Bowen (1975).)

3 Hyperbolicity in Maps with Negative Schwar-

zian Derivative

As we saw in the previous section hyperbolicity plays a fundamental role when
one studies the stability of maps. In general it is extremely di�cult to check
whether a map is hyperbolic. However, as we will see in the remainder of this
chapter hyperbolicity is rather common in one-dimensional systems. In this
section we will prove a result due to Misiurewicz (1981) which states that maps
with negative Schwarzian derivative have many hyperbolic invariant sets. In
particular we will get that a map with negative Schwarzian derivative satisfies
the Axiom A (and therefore is structurally stable) if its critical points are in
the basin of hyperbolic attractors. In the next section we shall apply all this
to get a decomposition of the non-wandering set for unimodal maps similar
to the one which is known for Axiom A di↵eomorphisms without cycles. In
Sections 5 and 6 of this chapter we shall see that the assumption on the negative
Schwarzian derivative can be dispensed with. However, since the proofs under
this assumption are much easier we shall first deal with this simpler case.

Let I be a compact interval and f : I ! I be a C3 map with negative
Schwarzian derivative. In Section II.4 we have studied some basic properties
of such maps. We saw for example that the iterates of f also have negative
Schwarzian derivative and that the Minimum Principle holds. This principle
says that, if x is strictly between two points a, b from an interval T and fn|T
is a di↵eomorphism, then |Dfn(x)| > min{|Dfn(a)|, |Dfn(b)|}. As we saw in
Section II.6, Singer (1978) realized that this property could be used to show
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Theorem 3.1. (Singer) If f : I ! I is a C3 map with negative Schwarzian
derivative then the number of hyperbolic attracting and of non-hyperbolic periodic
points of f is bounded.

Notice that the above theorem is the exact analogue of Theorem III.1.3 con-
cerning the finiteness of the number of non-repelling periodic points of rational
maps. For rational maps, we have seen in Theorem III.1.5, that a compact
invariant set which is not accumulated by the forward orbit of a critical point
is a hyperbolic set. We will show below that the same is true for maps with
negative Schwarzian derivative. In fact, the statement of Theorem 3.2 below is
even stronger and it does not hold for rational maps. Indeed, f is not hyperbolic
in a Herman ring, see Section 1. A more general version of this theorem will be
proved in Section 5.

Theorem 3.2. (Misiurewicz) Let f : I ! I be a C3 mapping with negative
Schwarzian derivative. A compact forward-invariant set K is hyperbolic if it
does not contain critical points, non-hyperbolic periodic points or hyperbolic at-
tracting periodic points.

By Theorem 2.5 this set K has zero Lebesgue measure. In particular, if
such a map f : I ! I has no periodic attractors and non-hyperbolic periodic
orbits then almost every point accumulates on critical points of f . Theorem 3.2
follows immediately from the following useful result.

Theorem 3.3. Let f : I ! I be a C3 map with negative Schwarzian derivative.
Let V be an open set which contains all critical points of f and contains at least
one point from each non-repelling periodic orbit. Then there exist C > 0, � > 1
and K <1 such that if x 2 I satisfies f i(x) /2 V for every i = 1, . . . , n�1 then

|Dfn(x)| > C�n.

If J is an interval so that J, . . . , fn�1(J) are all outside V then

Dfn(x)
Dfn(y)

 K for all x, y 2 J.

Proof. We claim that there exists an integer m such that if f i(x) /2 V for all
0  i  m then |Dfm(x)| > 1. Indeed suppose, by contradiction, that there
exist arbitrarily large integers n for which there is a point x

n

2 I such that
|Dfn(x

n

)|  1 and f i(x
n

) /2 V for every 0  i  n. Since the set of critical
points of f and of non-repelling periodic points is finite, there exists an open
set U containing each non-repelling periodic point in V and whose closure is
contained in V . Let J

n

be the maximal interval containing x
n

such that

f j(J
n

) ⇢ I \ cl (U) for all j = 0, . . . , n.
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Since fn is a di↵eomorphism on J
n

(because the critical points of f are in U) and
Sfn < 0, it follows from the Minimum Principle that there exists a component
L

n

of J
n

\ {x
n

} such that

|Dfn(x)|  1 for all x 2 L
n

.

Let y
n

6= x
n

be in the boundary of L
n

. By the maximality of J
n

, there exists
an integer 0  k(n) < n such that fk(n)(y

n

) 2 cl (U). Let � be so that each
component of V \U has length � �. Since fk(n)(x

n

) /2 V and fk(n)(y
n

) 2 cl (U)
we get

(3.1) |fk(n)(L
n

)| > �.

On the other hand, since 0 < |Dfn(x)|  1 for all x 2 L
n

, we get

(3.2) |fn(L
n

)|  |L
n

|.

We claim that

(3.3) |L
n

|! 0 as n!1.

Indeed, if (3.3) does not hold, we can take a subsequence L
n

i

converging to an
interval L of positive length. If J is an interval whose closure is contained in
the interior of L then there exists an integer j such that L

n

i

contains J for all
n

i

> j. Since L
n

⇢ J
n

, and f j(J
n

) \ cl (U) = ; for all 0  j  n, it follows
that fn(J) ⇢ I \cl (U) for all integers n. From Theorem I.2.2, we get that there
exists a point in J that is asymptotic to periodic attractors (Denjoy-Schwartz).
This is not possible because U contains a point from each attracting periodic
orbit of f . This proves (3.3).

From (3.2) and (3.3) we get |fn(L
n

)| ! 0. Since |fk(n)(L
n

)| � �, we can
take a subsequence n

i

! 1 such that the intervals fk(n
i

)(L
n

i

) converge to an
interval S of length at least equal to �. As |fn(L

n

)| = |fn�k(n)(fk(n)(L
n

))|! 0
and |fk(n)(L

n

)| � � we get n � k(n) ! 1. If J is an interval whose closure
is contained in the interior of S, then fk(n

i

)(L
n

i

) contains J for i big enough.
As before, it follows that fn(J) is contained in I \ cl (U) for all n. Using again
Theorem I.2.2 we get that there exist points in J which are asymptotic to a
periodic attractor, a contradiction because fn(J) \ cl (U) = ; for all n � 0.
This proves the claim.

From the claim, and the compactness of I \ V it follows that there exist an
integer k and � > 1 such that |Dfk(x)| > �k whenever f i(x) /2 V for all i  k.
Let ⇢ = min{|Df(x)| ; x 2 I \ V } and C > 0 be such that ⇢i > C�i for all
0  i < k. If n is an integer such that f l(x) /2 I \ V for all l < n, then we can
write n = jk + i, with 0  i < k and we have

|Dfn(x)| =
 

j�1
Y

l=0

|Dfk(f lk(x))|
!

⇥ |Df i(f jk(x))| �

� (�k)j⇢i � �jkC�i = C�n.
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This proves the first inequality from the statement of this theorem. The last in-
equality holds because there exists a constant C 0 (which is equal to the Lipschitz
constant of log Df on the complement of V ) such that

�

�

�

�

Df(f i(x))
Df(f i(y))

� 1
�

�

�

�

 C 0 · |f i(x)� f i(y)|

for x, y 2 J and i = 0, 1, . . . , n � 1. Combining this with the first inequality
gives the second inequality.

Corollary 3.1. Let f : I ! I be a map with negative Schwarzian derivative, a
finite number of critical points and such that all critical points of f are in the
basin of the hyperbolic attractors of f . Then f satisfies the Axiom A.

Proof. By Singer’s Theorem II.6.1, f has a finite number of hyperbolic attrac-
tors since each one of them must contain a critical point or a boundary point of
I in its basin. From the previous theorem it follows that the complement ⌃(f)
of the basins of the hyperbolic attractors is a hyperbolic set.

Let us conclude this section by analyzing the dynamics near non-hyperbolic
periodic points and their bifurcations.

Remark. 1. The periodic points of a map f with negative Schwarzian derivative
have some special properties. Because Sfn(p) < 0, one has that D2fn(p) = 0
implies D3fn(p) · Dfn(p) < 0. Furthermore, if p is a periodic point of period
n of f and Dfn(p) = �1 then a simple calculation shows that Df2n(p) = 1,
D2f2n(p) = 0 and D3f2n(p) < 0. Therefore, if f is a map with negative
Schwarzian derivative and p is a non-hyperbolic periodic point of period n then
p is (possibly one-sided) attracting. So only one of the following situations can
occur:

1. p is a super-attractor, i.e., Dfn(p) = 0;

2. p is semi-stable, i.e., Dfn(p) = 1 and D2fn(p) 6= 0;

3. p is an orientation reversing weak-attractor of codimension 1, i.e., Dfn(p) =
�1, Df2n(p) = 1, D2f2n(p) = 0 and D3f2n(p) < 0;

4. p is a weak-attractor of codimension 2, i.e., Dfn(p) = 1, D2fn(p) = 0 and
D3fn(p) < 0.

As we have seen in the previous section if f has such a periodic point, some
nearby maps will have a di↵erent number of periodic points. Therefore, such
periodic points are said to bifurcate. Precise descriptions how these periodic
orbits can bifurcate is given in the exercises below. 2. The terminology ‘codi-

mension k’ periodic orbit refers to the minimum number of parameters that are
necessary to observe such orbits in generic (i.e., typical) families depending on
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these parameters. For example for periodic orbits of codimension 1 one has the
following. Each Cr map f with such a periodic orbit can be approximated in the
Cr topology by a map without such periodic orbits. Moreover there exist one-
parameter families of maps such that for each nearby family there are parameter
values for which these codimension 1 periodic orbits will occur. Similarly one
can motivate the terminology codimension 2. (For more on this see the exercises
at the end of this section.) 3. All non-hyperbolic periodic points of a map with

negative Schwarzian derivative are attracting periodic points because its basin
contains an open set.

In the next exercises we analyze the bifurcations which non-hyperbolic pe-
riodic orbits can undergo. Because of the above remark only the bifurcations
discussed in the exercises below can occur in families of maps with negative
Schwarzian derivative.

Exercise 3.1. If f is unimodal and has negative Schwarzian derivative then f cannot

have a periodic attractor p of codimension two. (Hint: since f has negative Schwarzian,

p is accumulated from both sides by a turning point. But this is impossible because

fn is orientation preserving and n is the minimal period of p. Alternatively, show that

one can find a unimodal map g which coincides with f outside a neighbourhood of

p, is arbitrarily C3 near f and has two periodic attractors near p. This is impossible

according to Theorem II.6.1.)

Exercise 3.2. Assume that f
µ

: R ! R depends continuously on a parameter µ 2 R
in the C2 topology. a) Show that if f

0

(0) = 0, Df
0

(0) = 1 and Df2

0

(0) 6= 0, then there

exists a neighbourhood V of 0 such that f
0

is semi-stable at 0 in V (i.e., fn(x) ! 0

for n ! 1 in one component of V \ {0} and fn(x) ! 0 for n ! �1 in the other

component of V \{0}). Moreover, for each parameter µ su�ciently close to 0, f
µ

|V has

either 0, 1 or two fixed points. For each x, either some iterate of x is outside V or the

orbit of x tends to a fixed point of f
µ

. b) Let in addition d

dµ

f
µ

(0) 6= 0 at µ = 0, and

let us assume, for simplicity, that d

dµ

f
µ

(0)Dfs

0

(0) > 0. Then f
µ

has no fixed points in

V for µ > 0, one fixed point in V for µ = 0 and two fixed points in V for µ < 0 (if
d

dµ

f
µ

(0)Dfs

0

(0) < 0 the same statements hold for µ < 0, µ = 0 and µ > 0 respectively.)

More precisely, show that locally near (0, 0) the set {(x, µ) ; f
µ

(x) = x} is of the form

µ = g(x) where g(0) = 0, Dg(0) = 0 and D2g(0) 6= 0. This bifurcation is called the

saddle-node bifurcation or fold bifurcation.) (Hint: consider f
µ

(x) � x = 0. Since
d

dµ

f
µ

(0) 6= 0 at µ = 0 the statement follows from the Implicit Function Theorem.)

c) Show that any two nearby families f
µ

and f̃
µ

as above are conjugate near 0 for µ

near 0: show that there exists a family of conjugacies h
µ

such that h
µ

� f
µ

= f̃
µ

� h
µ

restricted to V . (Hint: for µ > 0 choose x 2 V and an arbitrary order preserving

homeomorphism h
µ

: [x, f
µ

(x)] ! [x, f̃
µ

(x)]. There exists a unique extension of h
µ

to

V such that h
µ

�f
µ

= f̃
µ

�h
µ

restricted to V . For µ = 0 one chooses two corresponding

intervals and for µ < 0 three such intervals. These intervals are called fundamental

domains. In order to show that one can construct h
µ

so that it depends continuously

on the parameter one has to do more work, see Newhouse et al. (1983).

Exercise 3.3. Assume that f
µ

: R ! R depends continuously on a parameter µ 2 R
in the C3 topology. a) Show that if f

0

(0) = 0, Df
0

(0) = �1 then Df2(0) = 1 and

D2f2(0) = 0. b) If f
0

(0) = 0, Df
0

(0) = �1 and D3f2(0) < 0 then there exists a
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neighbourhood V of 0 such that f
0

is stable at 0 in V (i.e., fn(x) ! 0 for n ! 1

for x 2 V ). Moreover, for each parameter µ su�ciently close to 0, the map f
µ

has

precisely one fixed point in V , and f
µ

has either zero, or two periodic points of period

2. Each point in V (except the fixed point) tends to these periodic points. c) If in

addition d

dµ

Df
µ

(0) > 0 at µ = 0, then f
µ

has two periodic points of period 2 in V for

µ > 0 and no periodic points of period 2 in V for µ < 0. More precisely, show that

locally near (0, 0) the set {(x, µ) ; f
µ

(x) = x} is of the form x = g(µ) and that the

set {(x, µ) ; f2

µ

(x) = x 6= f
µ

(x)} is of the form µ = ĝ(x) where ĝ(0) = 0, Dĝ(0) = 0

and D2ĝ(0) 6= 0. This bifurcation is called the flip or period doubling bifurcation.

(Hint: consider f
µ

(x) � x = 0. Since d

dx

f
0

(0) 6= 0 the first statement follows from

the Implicit Function Theorem. The second statement is a little bit harder to prove:

consider f2

µ

(x) � x = 0. Since d

dµ

f2

0

(0) = 0 one can not apply the Implicit Function

Theorem immediately. Show that
f

2
µ

(x)�x

f

µ

(x)�x

is C2 and that one can apply the Implicit

Function Theorem to this new function by showing that the assumptions imply that
d
dµ

f2

µ

(x)� x

f
µ

(x)� x
is non-zero at µ = 0 and x = 0.)

Exercise 3.4. Assume that f
µ

: R ! R depends continuously on a parameter µ 2 R in

the C3 topology. Assume that f
0

(0) = 0, Df
0

(0) = 1, D2f
0

(0) = 0 and D3f
0

(0) < 0.

So 0 is a weak-attractor of codimension 2. Show that for µ close to zero f
µ

has

either one fixed point near 0 (which is attracting), or three fixed points near 0 (with

the middle one repelling and the other two attracting). This is sometimes called the

pitch-fork bifurcation.

4 The Structure of the Non-Wandering Set

In this section we will describe the non-wandering set of multimodal maps
f : I ! I. As usual, a point x is called non-wandering if for each neighbourhood
U of x there exists n � 1 such that fn(U)\U 6= ;. The non-wandering set ⌦(f)
is the collection of all points which are non-wandering. We shall decompose
the non-wandering set into simpler parts. More precisely, we would like to get a
structure similar to the structure of Axiom A di↵eomorphisms satisfying the no-
cycle condition. For such di↵eomorphisms one knows that the non-wandering
set decomposes into a finite number of transitive sets and moreover one has
a filtration. Using this filtration one proves the stability of these di↵eomor-
phisms, see Smale (1967). Surprisingly, for arbitrary multimodal interval maps
one has a similar (but possibly countably infinite) decomposition of the non-
wandering set. This decomposition is related to possible renormalizations of
the system and was first constructed in Jonker and Rand (1981) for continuous
unimodal maps. In Van Strien (1981) it was shown that for unimodal maps
with negative Schwarzian derivative all, except possibly one, of these parts of
the non-wandering sets are hyperbolic. Here we shall deal with the multimodal
case.

As a byproduct of the decomposition of the non-wandering set we shall
describe the attracting sets of a multimodal map. Here we say that a forward
invariant set A is a topological attractor if its basin B(A) = {x ; !(x) ⇢ A}
satisfies
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1. the closure of B(A) contains intervals;

2. each closed forward invariant subset A0 which is strictly contained in A
has a smaller basin of attraction: cl (B(A)) \ cl (B(A0)) contains intervals.

(A measure theoretic analogue of this definition will be given in Section V.1.)
Let us say that f has sensitive dependence on some set K if there exists � > 0
such that for each x 2 K and each interval J containing x there exists n 2 N
such that fn(J) has length � �. Guckenheimer (1979) defines f to be sensitive
dependent on initial conditions if this last statement holds for a set K of positive
Lebesgue measure. A forward invariant set A is called transitive if it contains a
dense orbit. In the first theorem we describe attractors of interval maps.

Theorem 4.1. If f : I ! I be a l-modal map without wandering intervals then
each attractor C of f is transitive and is of one of the following types:

1. periodic;

2. a finite union of intervals on which f acts transitively and such that (at
least) one of the intervals contains a turning point; the restriction of f
to these intervals has sensitive dependence on initial conditions and the
restriction of f to these intervals is conjugate to a piecewise linear map;

3. a solenoidal attractor: this means that f acts on C as an adding machine
(as explained in Section II.5); in this case f is infinitely renormalizable
and

C =
1
\

n=0

K
n

.

Here for each � 0,

K
n

=
q(n)�1
[

k=0

fk(J
n

),

where J
n

is a restrictive interval of period q(n), J
n+1 ⇢ J

n

and q(n+1) =
a(n) ·q(n) with a(n) 2 {2, 3, 4, . . . }. Moreover, C contains a turning point
whose forward orbit is dense in C.

Moreover, we have the following properties:

a. If an attractor of f is as in 1) or 2) then its basin has non-empty interior;
if it is as in case 3) then the interior of the basin is empty.

b. If f is C3 and has negative Schwarzian derivative then each attractor has
a critical point or a boundary point of I in its basin.

The proof of this theorem will occupy the remainder of this section. Before
starting with the proof we will state a related theorem which asserts that one can
decompose the non-wandering set of a one-dimensional map by some ‘filtration’:
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there exists an at most countable nested sequence of forward invariant sets K
n

.
Such a set K

n

consists of a finite number of periodic, restrictive, intervals (for
the definition of a restrictive interval, see Section II.5). In particular, each point
either remains forever in K

n

\K
n+1 or it is eventually mapped into K

n+1. Axiom
A di↵eomorphisms have a similar, but finite, filtration, see Smale (1967). For
simplicity, we say that two maps are ⌦-conjugate, if there exists a conjugacy
between the restriction of the two maps to their non-wandering sets.

Theorem 4.2. Let f : I ! I be a l-modal map without wandering intervals
and let K

n

, J
n

and q(n) be as in the previous theorem. Then there exists N 2
N [ {1} such that

1. ⌦(f) can be decomposed into closed forward invariant subsets ⌦
n

:

⌦(f) =
[

0nN

⌦
n

.

These sets ⌦
n

are defined as follows. Define K0 = I and K
n+1 as the

union of all maximal restrictive intervals of f : K
n

! K
n

. Then K
n

is
a nested decreasing sequence of sets each consisting of a finite union of
intervals for each finite n  N . If we define K1 = \

n�0Kn

when N =1
then

⌦
n

:= ⌦(f) \ cl (K
n

\K
n+1)

for n < N and ⌦
N

:= ⌦(f) \K
N

.

2. For each finite n  N , the set ⌦
n

is a union of transitive sets and, if
N =1, ⌦1 = K1 consists of solenoidal attractors as above.

3. The topological entropy of f is zero if and only if ⌦
n

consists of periodic
orbits of period 2n for every finite n  N .

4. If ⌦
n

contains non-periodic points then fq(n) : ⌦
n

! ⌦
n

is ⌦-semi-conjugate
to a piecewise linear map with constant slopes (and the semi-conjugacy is
almost injective, see the proof below).

Finally, most of these sets ⌦
n

are hyperbolic if f satisfies some additional
conditions. Indeed, we define a stratum on level n  N of the filtration (K

i

)
iN

to be a set W which is the forward orbit of a component of K
n

. Such a stratum
is called critical if W \K

n+1 contains a turning point or if W ⇢ K1 (here we
take K

n+1 = ; if n = N < 1 and K1 = ; if N < 1). Clearly the filtration
has at most l critical strata if f is l-modal. The next theorem says that the
part of the non-wandering set which is contained in a non-critical stratum of
the filtration is hyperbolic.
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Theorem 4.3. Let f : I ! I be a l-modal C3 map, with negative Schwarzian
derivative, non-flat critical points and whose periodic point(s) in the boundary
of I are repelling. Then each stratum of the filtration consists of a finite number
of transitive sets and, similarly, each transitive set is contained in a stratum of
the filtration. A transitive set which is contained in a non-critical stratum is
hyperbolic and the restriction of f to this transitive set is conjugate to a subshift
of finite type and so has positive topological entropy. Each attractor of f is
contained in a critical stratum.

Remark. 1. Guckenheimer (1979) proved Theorem 4.1 in the unimodal case.
If f is unimodal then f has at most one such attractor and Lebesgue almost
all points tend to this attractor. In cases 1) and 3), f is only finitely often
renormalizable. In the second case f is infinitely often renormalizable. In the
unimodal case, f has no sensitive dependence on initial conditions in cases 1)
and 2). Theorem 4.2 was proved previously by Jonker and Rand (1981) in the
unimodal case. For the multimodal case, see Blokh (1983). A more abstract
decomposition for general piecewise monotonic maps can be found in Hofbauer
(1979), Nitecki (1982) and Hofbauer and Raith (1989).

2. Note that K
n

consists of several intervals and that f : K
n

! K
n

permutes
these components. One can define the notion of a restrictive interval for such a
map defined on a union of intervals exactly as before.

3. The condition Sf < 0 can be replaced by the assumption that f is C2 and
that all attracting periodic points of f are essential, see Section 5.

In the remainder of this section we shall prove these theorems. First we shall
deal with maps having zero topological entropy.

Proposition 4.1. If f : I ! I is multimodal with zero topological entropy and
which is not renormalizable then the !-limit of every point in I is a fixed point.

Proof. If f is a homeomorphism then the result is obviously true. So assume
that f is l-modal with l � 1. If f has an orientation reversing fixed point then
because f(@I) ⇢ @I there are two possibilities: i) there exists p0 6= p such that
f(p0) = f(p) = p or ii) f exchanges the two components of J \ {p}. However,
ii) cannot occur because then f is renormalizable. So assume that i) holds and
let J = [p0, p]. Since p is an orientation reversing fixed point, and since f is not
renormalizable, f2(J) strictly contains J and f2(@J) ⇢ @J . Therefore, for each
point x in the interior of J there exist at least two points x1 and x2 in J such
that f2(x1) = f2(x2) = x. It follows that for each x in J and each integer n
there exist at least 2n points in J which are mapped to x by f2n. In particular,
the number of laps of f2n is at least 2n and hence, by Lemma II.7.4, we get that
the topological entropy of f is at least equal to (1/2) log 2. This contradicts the
assumption that f has zero entropy. Therefore f has no orientation reversing
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fixed points. It is easy to see that this implies that the !-limit of every point in
I is a fixed point.

Proposition 4.2. Assume that f : I ! I is a multimodal map with zero topo-
logical entropy. Then any restrictive interval of period � 2 is contained in a
restrictive interval of period 2. Any point which is not eventually mapped into
a restrictive interval of period 2 is asymptotic to a fixed point.

Proof. Suppose that J is a restrictive interval with period n � 2. We shall
prove that this restrictive interval is contained in a restrictive interval of period
2. By definition J, . . . , fn�1(J) are disjoint and f permutes these intervals. By
Lemma II.1.2, there exists a component I1 of I \ (J [ · · ·[fn�1(J)) (which does
not contain @I) such that f(I1) � I1 and for which f(a) � b and f(a)  b where
a < b are the boundary points of I1. Therefore the set {t 2 I1 ; f2(t)  t}
is non-empty and we can define p to be the maximum of this set. Then p
is either a periodic point of period 2 or a fixed point. If p 2 @I1 then p is
contained in one of the intervals f i(J) and therefore J has period 2 and so J is
as claimed. Otherwise let q be equal to the smallest t > p such that f2(t) = p
and if such a t does not exist then we take q to be the right endpoint of I.
From the choice of p one has q /2 I1. We claim that V = [p, q] is mapped
into itself by f2. This is easy to see: since f2(p) = f2(q) = p and f2(t) > p
for t 2 (p, q) one would otherwise have that f2(V ) strictly contains V and
f2(@V ) ⇢ @V . As in the proof of the previous proposition this implies that
h(f) � (1/2) log(2), a contradiction. Therefore f2(V ) ⇢ V . Moreover, f(V ) \
V ⇢ {p} because otherwise there exists x 2 V for which f(x) = p and therefore
V 3 f2(x) = f(p) /2 V \ {p}, a contradiction. So V is a restrictive interval of
period 2. Since q /2 I1, V has a non-empty intersection with at least one of the
restrictive intervals J, . . . , fn�1(J). From Lemma II.5.1 it follows that V � J
which proves the claim. The last statement follows immediately: by collapsing
all maximal restrictive intervals (and their preimages) one obtains a map which
is not renormalizable and also has zero topological entropy; so this proposition
follows from the previous one.

Remark. From these two propositions it follows that f has only periodic orbits
whose periods are powers of 2 if the topological entropy of f is zero. This result
was proved before by Misiurewicz (1979). Next we consider maps with positive

entropy:

Proposition 4.3. Let f : I ! I be a C1 multimodal map with positive topo-
logical entropy and without wandering intervals. Then f is semi-conjugate to a
piecewise linear map T with slope ±s with s > 1 where log s is the topological
entropy of f . Moreover, the following properties hold. Let X be the set of points
which are eventually mapped into a restrictive interval or into the basin of a
periodic attractor.
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1. This semi-conjugacy can collapse an interval only if it is contained into
X. Basins of periodic attractors are certainly collapsed.

2. The union of X and the set of points which are mapped eventually into an
interval V 6= I with f(V ) ⇢ V is dense in I. Moreover, f is conjugate to
T on the complement of X.

3. If T has a periodic turning point c then h�1(c) is a restrictive interval
where h is the semi-conjugacy between f and T .

Proof. By Theorem II.8.1, there exist a monotone semi-conjugacy h : I ! I
between f and a piecewise linear map T with constant slope and with the same
topological entropy as f . In other words there exists a monotone continuous
surjective map with h � f = T � h. Let us prove Statement 1). So take a non-
trivial interval J of the form h�1(x). Let us suppose by contradiction that the
forward orbit of x does not contain a periodic point. Then the forward orbit
of J consists of disjoint intervals not tending to a periodic point and so J is a
wandering interval, a contradiction. Therefore some forward iterate T k(x) of x
is a periodic point with period n. Hence K = fk(J) = h�1(y) is also a non-
trivial interval, fn(K) ⇢ K, fn(@K) ⇢ @K and K, . . . , fn�1(K) are disjoint.
So if the orbit of K contains no turning point then it is contained in the basin
of a periodic attractor and otherwise it is contained in a restrictive interval.
Since T has no periodic attractors h certainly collapses components of basins of
periodic attractors. This completes the proof of 1).

Let us prove 2). If U is an interval in the complement of X then it is
not contained in the basin of a periodic attractor. Since f has no wandering
intervals this implies that fn(U) \ fm(U) 6= ; for some n > m � 0 (where n
and m minimal). Since f�1(X) ⇢ X, this implies that fn�m(U 0) ⇢ U 0 where
U 0 is the maximal interval in the complement of X which contains fm(U). So
there exists k  n �m such that U 0, . . . , fk�1(U 0) have disjoint interiors and
fk(U 0) ⇢ U 0. By definition U 0 is not contained in a restrictive interval and so
it follows from Lemma II.5.1 that k = 1 and that the only closed interval V
containing U 0 for which f(V ) ⇢ V , f(@V ) ⇢ @V and V contains a turning point
is equal to I. It follows that U is contained in a forward invariant interval. This
proves Statement 2)

Finally, if one of the turning points c
T

of T is periodic with period n then fn

maps h�1(c
T

) into itself. Now assume by contradiction that h�1(c
T

) consists
of a single point. Then, since h maps turning points of f to turning point of
T , this singleton is a turning point c of f with period n. Since f is C1 each
periodic turning point is attracting and therefore h maps the immediate basin
of c to c

T

, so h�1(c
T

) is not a singleton, a contradiction.

Since the previous proposition shows that a smooth multimodal map with
positive entropy is semi-conjugate to a piecewise linear map T with slopes ±s,
we shall now describe the non-wandering set of these piecewise linear maps.
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Proposition 4.4. Let T : I ! I be a piecewise linear l-modal map with slope
±s, s > 1. Then one has the following properties.

1. T has sensitive dependence on initial conditions.

2. T is only finitely often renormalizable.

3. The non-wandering set of T contains a finite number of intervals which
are permuted by T and on each of these intervals T is transitive. (The
permutation of the intervals may split into disjoint cycles.) On the com-
plement of these intervals, the non-wandering set of T consists of a finite
number of periodic points and the remainder is a subshift of finite type.

4. The only attractors of T are intervals.

Proof. Take k so large that (sk/2l) > 1 and so that each periodic turning
point has at most period k. Let X = {T i(c

j

) ; j = 1, . . . , l and i = 0, 1, . . . , k}.
We claim that for each interval J and each integer j � 0, one of the following
possibilities holds:

1. |T j+k(J)| � (sk/2l)|T j(J)|;

2. at least l+1 of the intervals T j(J), . . . , T j+k�1(J) contain a turning point
or one of these intervals contains at least two turning points.

Here |J | denotes the length of the interval J . So let us prove this claim. Of
course, |T (J)| = s|J | if J contains no turning point and |T (J)| � (s/2)|J | if
J contains precisely one turning point. So if 2) does not hold then 1) holds.
Since (sk/2l) > 1 one cannot be in case 1) for all j 2 N, because otherwise
|Tn(J)| ! 1. So there exists j so that 2) holds. Therefore either one of the
intervals T j(J), . . . , T j+k�1(J) contains two turning points or there exists a
turning point c and j  r < s < j +k such that c 2 T r(J)\T s(J) and therefore
c, T s�r(c) 2 T s(J). If c is non-periodic then this implies that T s(J) contains two
points from X; if c is periodic then T s�r(c) = c and T i(s�r)(T s(J)) contains
another turning point for i large because otherwise |T i(s�r)(T s(J))| ! 1 as
i!1. So in each case we get that there exists n 2 N so that Tn(J) contains two
points from X. This implies the Statements 1 and 2 because, as we have shown,
there are no arbitrarily small restrictive intervals. In order to prove Statement
3), take a minimal periodic interval V . By this we mean that Tn(V ) ⇢ V for
some n 2 N and that no subset of V has this property. From the first part of
the proof, such an interval exists (but it might be equal to I). We claim that
V is a subset of the non-wandering set of T . So assume by contradiction that
there exists a closed interval J ⇢ V such that T i(J)\ J = ; for all i 2 N. Then
consider U = [

i�0T i(J). Clearly T maps components of U into components of
U and since T has no wandering intervals each component of U is eventually
periodic. Since J is not contained in an eventually periodic component and
since T kn(J) ⇢ V for each k � 0 one gets that J is eventually mapped into a
periodic component U 0 of U which is a proper subset of V . This contradicts the
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minimality of V . We leave the (easy) proof of the remaining statements to the
reader.

Finally, let us describe the dynamics in the infinitely renormalizable case.

Proposition 4.5. Let f be infinitely renormalizable and without wandering in-
tervals. Then there exists a nested sequence of intervals I

n

containing a turning
point and integers q(n) such that the intervals I

n

, . . . , fq(n)�1(I
n

) have pairwise
disjoint interiors and such that fq(n) maps I

n

into itself and fq(n)(@I
n

) ⇢ @I
n

.
The intersection of the nested sets

F
n

=
q(n)�1
[

j=0

f j(I
n

)

for n � 0 forms a Cantor set denoted by ⌦1. The map f : ⌦1 ! ⌦1 is
minimal, has zero entropy and is conjugate to some adding machine (this notion
is defined in the proof of this proposition).

Proof. Since f has no wandering interval and since the first q(n) iterates of I
n

are disjoint, the maximal length of each connected component of F
n

tends to
zero as n tends to infinity. Therefore ⌦1 contains no intervals and so it is a
Cantor set. Let us abstractly describe the dynamics of f : ⌦1 ! ⌦1. Let Z

k

the group of integers modulo k and ⌧
k

: Z
k

! Z
k

the translation by one. Since
no point in ⌦1 is contained in the interior of an interval of the form fk(I

n

),
k = 0, 1, . . . , q(n) � 1 one can code each point x in ⌦1 uniquely by integers
0  k

n

(x) < q(n) by defining

x 2 fk

n

(x)(I
n

) for all n � 0.

Let � =
Q1

i=1 Z
q(i). Endow Z

k

with discrete topology and � with the corre-
sponding product topology. If we let ⌃(q(0),q(1),... ) be the subset of elements
(m1, m2, . . . ) 2 � such that

m
i+1 = m

i

mod q(i)

then, because f j(I
n+1) ⇢ fk(I

n

) if and only if j = k mod q(n), one has that the
map

⌦1 3 x 7! (k1(x), k2(x), . . . ) 2 ⌃(q(0),q(1),... )

is well-defined for x 2 ⌦1 and surjective. Since ⌦1 contains no intervals, this
maps is injective. For simplicity write ⌃ = ⌃(q(0),q(1),... ). The action of f on ⌃
is given by the translation ⌧ : ⌃! ⌃, defined by

⌧(k1, k2, . . . ) = (⌧
q(1)(k1), ⌧

q(2)(k2), . . . ).

This translation map is a homeomorphism and it is in fact an isometry if we
consider the following metric on ⌃: for (k1, k2, . . . ), (k̃1, k̃2, . . . ) 2 �, let n be the
smallest integer such that k

n

6= k̃
n

and take then d((k1, k2, . . . ), (k̃1, k̃2, . . . )) =
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1
n

. It follows from this that the topological entropy of ⌧ is zero. Moreover, ⌧ not
only acts on this Cantor set but it also acts on each finite level of ⌃: it simply
permutes the cylinder sets of the form

{(k1, k2, . . . , kn

, ⇤, ⇤, . . . ) ; k
i

= m
i

for i = 1, . . . , n}

(which have arbitrary elements at the coordinates larger than n + 1). In par-
ticular, for each point x 2 ⌃ and each cylinder set there exists n � 0 such that
⌧n(x) is contained in this cylinder set. Hence, ⌧ is a minimal homeomorphism
on ⌃, i.e., every orbit is dense in ⌃ with zero topological entropy. This action
is called an adding machine.

Proof of Theorems 4.1-4.3. Let us first assume that h(f) = 0. In this case
Propositions 4.1 and 4.2 imply that a point is either asymptotic to a periodic
attractor or eventually mapped into a restrictive interval of period 2. For each
maximal restrictive interval J one can repeat the same argument by considering
f2 : J ! J . So if f is finitely renormalizable then there exists N <1 such that
the non-wandering set of f consists of periodic orbits of period 2n with n  N .
If f is infinitely renormalizable then the non-wandering set of f consists of
periodic orbits of period 2n for each n 2 N (some of which may be attracting)
and a subset of \

n�0Kn

where K
n

is the union of all restrictive intervals of
period � n. In Proposition 4.5 it was proved that the dynamics of f on the
closure of each orbit of this intersection is as stated. Clearly the first return
time q(n + 1) of f to each component I

n+1 of K
n+1 is a multiple of q

n

. This
and Theorem II.6.1 imply Theorems 4.1-4.3 in this case.

So assume that h(f) > 0. If f has no restrictive interval then from Propo-
sition 4.3 we get that f is semi-conjugate to a piecewise linear map T . This
semi-conjugacy only collapses basins of periodic attractors. Moreover, the only
attractors of T are intervals. Since f has no restrictive intervals it has no es-
sential periodic attractors. This proves Theorems 4.1 and 4.2. Moreover, if f
is as in Theorem 4.3 then, because of Theorem II.6.1, f has also no neutral or
inessential periodic attractors. By Theorem II.6.2 the map f has no wandering
intervals. Hence Proposition 4.3 implies that f and T are conjugate. Theorem
4.3 follows.

On the other hand, if f does have a restrictive interval then take K1 to
be the union of all maximal restrictive intervals. ⌦0 = ⌦(f) \ cl (I \ K1) and
⌦0 = ⌦(f) \ cl (I \ K1) are both forward invariant. Note that ⌦0 may con-
tain a forward invariant interval if the set X from Proposition 4.3 is not dense
in I. Since f : ⌦0 ! ⌦0 is semi-conjugate to a piecewise linear map; it fol-
lows by Proposition 4.4 that f is transitive on such an interval. Next consider
f : K1 ! K1. Of course K1 = [

j

Jj

1 where Jj

i

are maximal restrictive intervals.
By applying the previous construction to each of these intervals Jj

1 and con-
sidering the first return map to this interval we can repeat the procedure. It
may terminate after a finite number, say N , of steps or this procedure may be
continued infinitely often. In the latter case we get a solenoidal attractor. This
proves Theorems 4.1 and 4.2. If f is as in Theorem 4.3, then f has no neu-
tral or inessential periodic attractors. Moreover, it has no wandering intervals
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because of Theorem II.6.2. By definition the forward orbit K̃ of a non-critical
component K 0 of K

n

\K
n+1 contains no turning points. Since K

n+1 is forward
invariant, all this implies that K̃ contains only hyperbolic repelling periodic
orbits. From Theorem 3.3 it follows that each transitive set in K̃ is hyperbolic.
By construction fq(n) : K 0 ! K 0 is semi-conjugate to a tent map T (or has
zero topological entropy but then we are in the previous situation). Proposi-
tion 4.3 implies that the semi-conjugacy h precisely collapses points which enter
K

n+1. It follows that h restricted to ⌦(f) \ cl (K 0 \K
n+1) is almost injective:

if x, y 2 ⌦(f) \ cl (K 0 \ K
n+1) and x 6= y then h(x) = h(y) implies that the

interval [x, y] is eventually mapped into K
n+1 and therefore (from the choice

of x and y) into two endpoint of a component of K
n+1. It follows that h is

at most two-to-one on this set. Since each component of K
n+1 is periodic and

since fq(n) : K 0 ! K 0 has no turning points in K 0 \K
n+1, every turning point

of T is periodic. From this one easily gets that fq(n) : ⌦(f) \K 0 ! ⌦(f) \K 0

is a subshift of finite type, see Van Strien (1981). It then follows immediately,
that all attractors are contained in critical strata of K

n

\K
n+1.

Example. In this example we construct a unimodal map f : I ! I as above
with positive entropy, semi-conjugate to the tent map with slope ±2 and with
an attracting fixed point in the boundary of I. Hence the complement of the
basin of this attracting fixed point is a Cantor set. Let

f
a,b

(x) = �1
3
x3 � 1

2
(a� b)x2 + abx

where the parameters a and b are positive real numbers. Since Df
a,b

(x) =
�(x+a)(x� b), it is easy to prove that f

a,b

has negative Schwarzian derivative,
see Exercise 1.7 in Section IV.1. Moreover, it has a minimum at the point �a
and a maximum at the point b. If ab < 1, say a = 1

2b

, then 0 is an attracting fixed
point. So let us consider the one parameter family of maps g

b

= f
a(b),b, with

a(b) = 1
2b

. Let d = d(b) be the positive zero of g
b

. Note that g
b

(b) = 1
6b3 + 1

4b
and therefore g

b

(b)  b if b2  9
2 and g

b

(b) > b if b2 > 9
2 . Thus, g

b

(b) < d(b)
if b2  9

2 . On the other hand, g
b

(b) > d(b) if b is big enough. Therefore there
exists b0 such that g

b

0(b0) = c and g
b

(b) < d(b) for b < b0. Thus, for b 2 (0, b0],
g

b

maps the interval [0, d(b)] into itself. If �
b

: [0, d(b)] ! I is the orientation
preserving a�ne map, then f

b

= �
b

� g
b

� ��1
b

is a full family of unimodal maps
with negative Schwarzian derivative. Therefore, for b < b0 but close to b0, f

b

satisfies the required conditions. f
b

is semi-conjugate to the tent map with
slopes ±2.

Remark. 1. The numbers q

i+1
q

i

2 N can be considered as the analogue of the
continued fraction expansion for rotations of the circle. In the last chapter we
shall consider unimodal infinitely renormalizable maps for which these fractions
are bounded. 2. If f is unimodal and as in Theorem 3.4 then K

n

\ K
n+1
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never contains a turning point for n < N . So all, except of possibly one,
transitive set is hyperbolic. If f is multimodal then K

n+1 may not contain
all turning points, and therefore ⌦

n

may contain a critical point. So in this
case ⌦

n

is not hyperbolic. 3. In Jonker and Rand (1981) and also Collet and

Eckmann (1980), a so-called ⇤-product is used to construct the decomposition
in the unimodal case. This ⇤-product is a way of expressing that the kneading
invariant of renormalizable maps can be determined by the piecewise linear
map T (which has at least one periodic turning point) and by the renormalized
map fq(2) : I2 ! I2. If f is unimodal then this ⇤-product is quite simple to
define. In the multimodal case the notation needed for such a ⇤-product becomes
somewhat more complicated, and therefore, just as in Van Strien (1981), we have
not used this ⇤-product here. These renormalizations can also be described by
giving symbolic substitution rules. We shall not discuss this matter here either.

Exercise 4.1. Let T : I ! I be the family of symmetric unimodal tent maps with

slope s 2 (1, 2] and turning point c. Then the following statements hold: 1. If
p

2 < s  2 then for every open interval J there exists an integer n such that T n(J) �

[T 2(c), T (c)]. The non-wandering set of T is equal to {p} [ [T 2(c), T (c)] where p is

the fixed point of T on the boundary of I. Moreover, T has no restrictive intervals in

this case. 2. If k is such that
p

2 < s2

k

 2 then T has exactly k restrictive intervals

I
k

⇢ I
k�1

⇢ I
0

= I containing the turning point. I
i

has period 2i for i = 0, 1, . . . , k.

The non-wandering set of T consists of k periodic orbits which remain outside the

forward orbit of I
k

. Periodic orbits are dense in the non-wandering set of T and for

each x 2 I there exists an integer n such that either T n(x) 2 I
k

or such that T n(x) is

in one of these k periodic orbits. (Hint: For simplicity let I = [0, 1] and assume that

T (0) = T (1) = 0. First assume
p

2 < s  2. Exactly as in the proof of Proposition 4.4

one proves that if J is an interval then T n(J) � [T 2(c), T (c)] for n su�ciently large.

Next show that T : I ! I can be renormalized if s2

 2: T has two fixed points, the

fixed point p in the boundary point of I and another, orientation reversing, fixed point

p
1

in the interior of I. So let I
1

be the closed interval connecting p
1

to its symmetric p0
1

(this is the point p0
1

6= p
1

with T (p0
1

) = p
1

). Then T folds I
1

onto the interval [p
1

, T (c)].

Since the length of this last interval is precisely equal to the length of I
1

times (s/2)⇥s,

we get from s2

 2 and since p
1

is orientation reversing, T 2(I
1

) = [T 2(c), p
1

] ⇢ I
1

.

Therefore, the first return map to I
1

is T 2. Moreover, T 2 : I
1

! I
1

is again a symmetric

unimodal tent map with slope s2. So T
s

: I ! I can be renormalized. Furthermore,

any point x 2 I is mapped into I
1

[ T (I
1

) after some iterate. Indeed, if x 2 (T (c), 1)

then T
s

(x) 2 (0, T 2(c)). If x, T (x), . . . , T j(x) 2 (0, T 2(c)) then the distance of T j(x)

to 0 is sj times the distance of x to 0. Hence, since s > 1, some iterate of x must be

mapped into I
1

. If s2

k

 2 then this argument can be repeated k times.)

Exercise 4.2. Let T
s

be a tent map with slope ±s. If T
s

has periodic points of odd

period p � 3 then s >
p

2. (Hint: use the previous proposition.)

Exercise 4.3. Exercise 4.3 Let T be a piecewise linear l-modal map with slopes ±s

where s > 1. Show that the union of the backward orbits of the turning points is dense.

(Hint: clearly such a map cannot have periodic attractors. Moreover, it cannot have

wandering intervals because then T would not have sensitive dependence. It follows
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from Section 3 that T has no homtervals and therefore the union of the backward

orbits of the turning points is dense.)

Exercise 4.4. Show that any unimodal map with negative Schwarzian derivative

which has no restrictive intervals (and no periodic attractors) has sensitive dependence

on initial conditions. (Hint: in that case the map is conjugate to a tent map and so

the statement follows from Proposition 4.4.)

Exercise 4.5. Suppose that f
a

is a unimodal family of maps with negative Schwarzian

derivative and suppose that f
a

(0) = 0 and Df
a

(0) > 1. Suppose that f
a

has a periodic

(possibly one-sided) attractor for each a in some interval �. Show that there exists an

integer such that each periodic attractor of f
a

has periodic k ·2n for some n 2 N. More

precisely, each component of the set {(a, x) 2 �⇥N ; such that fn

a

(x) = x} is a curve.

If it is a closed curve, then the periodic orbit is created and later disappears again.

(Hint: use the fact that the only bifurcations these maps can have are saddle-node

and flip bifurcations.)

Exercise 4.6. Let f
a

be as in the previous exercise and assume that a 7! f
a

is a full

family. Let � be a maximal interval such that f
a

has a periodic (possibly one-sided)

attractor for each a 2 �. Let a⇤ be a boundary point of �. Show that one of the

two following possibilities is satisfied. 1. f
a

⇤ has a semi-stable periodic orbit of period

k as in Case 2 of Remark 1 of the previous section and for a 2 � close to a⇤, this

semi-stable orbit splits up in a hyperbolic stable orbit for f
a

and a repelling orbit,

both of period k. Furthermore for each a 2 � each periodic orbit of f
a

has period

k · 2n for some n 2 N. 2. f
a

⇤ is infinitely renormalizable, and as a 2 �, a ! a⇤, f
a

has periodic orbits of period k · 2n where n ! 1. (Hint: the only way a (possibly

one-sided) periodic attractor can disappear is when it is of type 2, or if its period tends

to infinity. All other changes just imply the doubling or halving of the period of this

periodic attractor. This follows from the exercises at the end of the previous section.)

Exercise 4.7. Consider f
a

(x) = ax(1�x). Show that no periodic halving of periodic

attractors can occur as a increases. (Hint: use the results from Section II.10.)

5 Hyperbolicity in Smooth Maps

In this section we will prove a remarkable theorem due to Mañé (1985) which
extends the hyperbolicity result we proved for maps with negative Schwarzian
derivative to general C2 maps. It states that a compact invariant set is hyper-
bolic if all the periodic points in the set are hyperbolic and if it contains no
critical points. This result is remarkable because, for higher-dimensional sys-
tems, the assumption that all periodic points are hyperbolic usually gives no
uniform estimates. And even when the periodic points carry some sort of hyper-
bolic structure it is in general not clear how to extend this hyperbolic structure
to the closure of the set of periodic points. However, for one-dimensional maps
one has good distortion results. These distortion results, and the inherent topo-
logical expansion, are the main ingredients for proving the strong results for
one-dimensional maps.

The proof we give below uses many arguments from Van Strien (1990) and
is much simpler than the proof in Mañé (1985). Mañé uses the lemma of Zorn
to show that some maximal non-hyperbolic set cannot exist. Here a more direct
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argument is used. In Van Strien (1990), see also the next section, these ideas are
used to show that Misiurewicz maps are almost hyperbolic. The special case
where the map has negative Schwarzian derivative, is considered in the next
section.

The main ingredient here is to control the distortion of each iterate fn

restricted to some interval T . As we have already seen in Section I.2, in order
to get a bound which is independent of n for the distortion of fn|T we need two
requirements:

1. the intervals f i(T ), i = 0, . . . , n � 1 stay away from a neighbourhood of
the critical points;

2. the sum of the lengths of these intervals,
P

n�1
i=0 |f i(T )| is bounded by a

constant which does not depend on n.

In order to get a bound for the total length of the iterates of the interval T
up to n we have two methods. The first one is to require disjointness. More
generally, we get a bounded total length if the family of intervals have bounded
intersection multiplicity. Here the intersection multiplicity of a collection of sets
X1, . . . Xn

is the maximal cardinality of a subcollection with non-empty inter-
section, i.e., it is equal to the maximum of distinct integers 1  i1, i2, . . . , ik  n
such that X

i1 \ · · · \X
i

k

6= ;. Therefore, if the intersection multiplicity of the
above collection of intervals is d, then the total length is bounded by d because
the total length of N is equal to one.

The second method does not require bounded intersection multiplicity but
does require a weak form of hyperbolicity. If there exists a constant � > 1
independent of n, such that |f i+1(T )| > �|f i(T )| for all i  n then the total
length is bounded by |fn(T )| · �

��1 
�

��1 .
We have already used the first method to prove Denjoy’s Theorem in Section

I.2 and the second method was used in Section III.2. Here we will need a
combination of these methods.

Theorem 5.1. (Mañé) Let N be a compact interval of the real line and f : N !
N be a C2 map. Let U be a neighbourhood of the critical points of f . Then 1. All
periodic orbits of f contained in N \U of su�ciently large period are hyperbolic
repelling. 2. If all the periodic orbits of f contained in N \ U are hyperbolic,
then there exist C > 0 and � > 1 such that

|Dfn(x)| � C�n

whenever f i(x) 2 N \ (U [ B0) for all 0  i  n� 1, where B0 is the union of
the immediate basins of the periodic attractors of f contained in N \ U .

Before we prove this theorem we will derive some corollaries from it.
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Corollary 5.1. Let f : N ! N be a C2 map and K ⇢ N be a compact forward
invariant set. If K does not contain critical points, periodic attractors and
non-hyperbolic periodic points of f , then it is a hyperbolic set.

Proof of Corollary 1. Let U be a neighbourhood of the critical points of f
which does not intersect K. By the first part of Theorem 5.1, there exists n0

such that all periodic orbits of f contained in N\U of period � n0 are hyperbolic
repelling. Since the set of periodic points of period  n0 is a compact set, there
exists an open neighbourhood V of K which does not contain critical points
and non-hyperbolic periodic orbits of f . Let W be a neighbourhood of K whose
closure is contained in V . Using the transversality techniques of section III.2,
we can approximate f by a C2 map g which coincides with f in W and has
the property that all the periodic points of g are hyperbolic. (Notice that the
space W of C2 maps that coincide with f in W is a closed subspace of C2(N,N)
and therefore is a Baire space. Exactly as in Proposition 2.1, one can prove by
induction that the set W

n

⇢W of maps whose periodic points of period less or
equal n are hyperbolic is open and dense in W. Therefore \1

n=1Wn

is residual,
and in particular dense in W.)

Let U be a neighbourhood of the critical points of g such that U \K = ;.
From Theorem 5.1 it follows that K is a hyperbolic set for g. Since g = f on
W , it follows that K is a hyperbolic set for f as well.

From the above result we immediately get the following corollaries:

Corollary 5.2. Let f : N ! N be a C2 map such that all critical points of f
belong to the basin of a hyperbolic attracting periodic orbit. If the periodic points
of f are hyperbolic then f satisfies the Axiom A.

In Chapter V we will need that similar results hold for open sets of maps:

Corollary 5.3. Let f : N ! N be a C2 map such that each of its periodic orbits
is repelling and let U be a neighbourhood of the set of critical points of f . Then
there exists a neighbourhood N of f in the C1 topology and constants C > 0,
� > 1 such that if g 2 N and x, g(x), . . . , gn�1(x) /2 U then

|Dgn(x)| � C�n.

Proof. From Theorem 5.1 there exist constants C 0 > 0 and �0 > 1 such that
x, f(x), . . . , fn�1(x) /2 U implies |Dgn(x)| � C 0(�0)n. It follows that there exists
n̂ such that if x, . . . , f n̂�1(x) are outside U then |Df n̂(x)| � 3. Therefore, for
g su�ciently close to f in the C1 topology, one also has that |Dgn̂(x)| � 2
provided x, . . . , gn̂�1(x) /2 U . If x, . . . , gn�1(x) /2 U we can cut this orbit up
into k = [n/n̂] pieces of length n̂ and possibly a last piece of length  n̂. On the
last piece the map g does not contract more than C1 =

�

inf |Dg
N\U |

�

n̂. From
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this it follows that there exist � > 1 and C > 0 such that for each g which is
C1 close to f and for each x with x, g(x), . . . , gn�1(x) /2 U one has

|Dgn(x)| � C1 · 2k � C�n.

From Corollary 2 and the transversality techniques of Section III.2, it follows
that any Cr map, r � 2, whose critical points belong to the basin of hyperbolic
attracting periodic points can be approximated closely, in the Cr topology, by
a map satisfying the Axiom A. Therefore, the question of density of Axiom A
is reduced to the following

Conjecture 1. The set of Cr maps, r � 2, whose critical points are all in the
basins of the hyperbolic attracting periodic points is dense in Cr(N,N).

Before proving Theorem 5.1 let us explain that in the space of Cr, r � 2,
unimodal maps the above conjecture is reduced to a closing-lemma type of
Conjecture.

Conjecture 2. Let r � 2. Any unimodal Cr map f whose critical point c is
recurrent (i.e., c 2 !(c)) can be approximated in the Cr topology by a unimodal
map whose critical point is periodic.

Proof. that Conjecture 1 and 2 are equivalent in the case of unimodal maps Let
us first show that if the critical point of a unimodal map f is not recurrent, hen
f it can be Cr approximated by a unimodal map g whose critical point is in the
basin of a hyperbolic attractor. Indeed, otherwise there exists a neighbourhood
N of f in the Cr topology such that the turning point of any map in this
neighbourhood is non-periodic; it follows that each g 2 N is combinatorially
equivalent to f and so its turning point is also not recurrent. Moreover, we
may assume that the turning point of g 2 N is not contained in the basin of
a periodic attractor of g. Now choose g 2 N so that all its periodic orbits are
hyperbolic. Take an open neighbourhood V of c such that its closure contains no
forward iterates of c, let P be the first return map to V and let D be the domain
of this first return map. Clearly D is open; by the choice of V one has that c is
not contained in the closure of any component of D. We claim c is in the closure
of D. Before proving this claim let us show that the result follows from this
claim. Indeed, because of the claim, there exist a sequence of components of D
accumulating to c. For each component I of D one has P |I = fn for some n and
fn maps I monotonically onto V . So we can choose x 2 D arbitrarily close to c
so that P (x) = gn(x) = c. If we modify g on V to a map g̃ so that g̃(c) = g(x)
then g̃n(c) = c and so g̃ has the required properties. The Cr distance between
g and g̃ can be made arbitrarily small by choosing x su�ciently close to c1,
compare this also to Exercise III.2.4. So it remains to prove the claim. In other
words, we need to show that [

n�1g�n(c) contains c in its closure, because then
c is the closure of D. So assume by contradiction that there exists an interval
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neighbourhood I of c such that I contains no points of [
n�1g�n(c). Since c is

not in the basin of a periodic attractor it follows from Lemma 5.2 below that I
is a wandering interval. Since the forward iterates of I do not accumulate to c
and all iterates of I are disjoint, there exists a neighbourhood W of c and an
integer n0 such that fn(I)\W = ; for all n � n0. From Theorem 5.1 it follows
that |fn(I)| � C�n, a contradiction.

In the remainder of this section we shall prove Theorem 5.1. For the proof we
need several lemmas. The first lemma gives the topological disjointness which
is needed to get bounds on the non-linearity.

Lemma 5.1. Let p be a periodic point of period n. If T is an interval that
contains p and such that the intersection of fn(T ) with the orbit of p is {p},
then the intersection multiplicity of the set of intervals {T, f(T ), . . . , fn�1(T )}
is at most 2.

Proof. Let J be the maximal interval which contains p and does not contain any
other point of the orbit of p. Then fn(T ) ⇢ J . Let O(p) denote the orbit of p.
Notice that if 0  i  n then f i(T )\O(p) = f i(p). In fact, if fk(p) 2 f i(T ) for
some 0  k  n, k 6= i, then fn�i+k(p) = fn�i(fk(p)) 2 fn(T ) and this is not
possible because fn�i+k(p) 6= p. From this the result follows immediately.

The next lemma shows that forward iterates of an interval must either meet
turning points or be contained in the basin of a periodic attractor.

Lemma 5.2. Let f : N ! N be a piecewise monotone continuous map. If
T ⇢ N is an interval such that fn|T : T ! fn(T ) is a homeomorphism for
every n 2 N, then T is either a wandering interval or there exist an interval L
and integers j, k such that f j(T ) ⇢ L, fk(L) ⇢ L and fk|L is monotone. In
particular, if T is not a wandering interval then the !-limit set of any point in
T is a periodic orbit of period  2k.

Proof. Suppose T is not a wandering interval. If T is contained in the basin of a
periodic attractor then the statement is obvious. So assume that it is not in the
basin of a periodic attractor. Then the sequence of intervals fn(T ) cannot be
disjoint. Thus, there exist integers j, k such that f j(T )\f j+k(T ) 6= ;. Therefore
f j+k(T )\f j+2k(T ) 6= ; and, by induction, f j+nk(T )\f j+(n+1)k(T ) 6= ;. Hence,
L = [1

n=0f
j+nk(T ) is an interval. Clearly, fk(L) ⇢ L and fk|L is monotone.

Therefore, all periodic points in L are fixed points of f2k and every point in L
is asymptotic to a periodic point. Next it is necessary

to show that the periodic orbits carry some hyperbolic structure. First we shall
show that they become ‘very’ expanding when the period is large. This and the
disjointness from Lemma 5.1 will enable us to show that some intervals which
are contained in each other decrease in length with a definite factor. This is an
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important step towards proving that the sum of the lengths of the iterates of
some interval is universally bounded.

Lemma 5.3. Let f : N ! N be a C2 map and U be a neighbourhood of the
critical points of f . Then there exists a sequence K

n

with K
n

!1 as n!1
such that if p is a periodic point of period n whose orbit is entirely contained in
N \ U then |Dfn(p)| > K

n

.

Proof. Let M be an interval which contains N in its interior. It is easy to see
that there exists a C2 map g : M ! M which coincides with f in N \ U and
satisfies the following conditions: i) the boundary of M is an attracting periodic
point of g whose immediate basin is contained in M \N ; ii) every critical point
c of g has interval neighbourhoods W

c

⇢ V
c

⇢ U such that if J is a connected
component of V

c

\ W
c

then either g(J) or g2(J) contains a repelling periodic
point. Let V = [V

c

and W = [W
c

. From the second property above, it follows
that there exists a positive number ⇢ such that for every component J of V \W
and any positive integer i, we have that |gi(J)| > ⇢. Since f coincides with g
in N \ U it is enough to prove the lemma for g on M \ V , instead of for f on
N \ U .

Let us consider a periodic orbit of period m entirely contained in M \V and
let p be a point in this orbit which is the closest to some critical point c, in
the sense that there is no other point of the orbit of p between c and p. Let T
be the maximal interval containing p such that gi(T ) \W = ; for 0  i < m
and gm(T ) \ O(p) = {p}. We claim that given ✏, there exists m0 such that for
m � m0 any interval T corresponding to a periodic orbit of period m has length
< ✏. Indeed, if this were not the case, there would exist a sequence of intervals
T

n

of length at least equal to ✏ around a periodic point p
n

of period m
n

! 1
such that gi(T ) \W = ; for 0  i < m

n

and gm

n(T ) \ O(p) = {p}. By taking
a subsequence, if necessary, we can assume that the intervals T

n

converge to
an interval T . As m

n

! 1 as n ! 1, gi(T
n

) \W = ; for 0  i  m
n

, it
follows that gi(T ) \ W = ; for all i 2 N. By Corollary 2 of Theorem I.2.2,
T is not a wandering interval since it does not accumulate at critical points.
Hence, by Lemma 5.2, there exist integers j, k and an interval L such that
lim

n!1 gj(T
n

) = gj(T ) and g2k maps L homeomorphically and orientation
preservingly into itself. If gj(T

n

) contains no fixed point of g2k : L ! L then
because gj(T

n

) ! L as n ! 1 one has for n su�ciently large that g2k maps
gj(T

n

) homeomorphically into itself. But this contradicts that T
n

contains a
periodic point of m

n

> 2k. So we may assume that for su�ciently large n, the
intervals gj(T

n

) contain a fixed point x of g2k : L! L. In this case let I
n

be the
interval in gj(T

n

) connecting f j(p
n

) and x. Since x is an orientation preserving
fixed point of g2k one has for n > 2k + j that g2k|I

n

is an orientation preserving
homeomorphism with fixed point x 2 @I

n

and either g2k(I
n

) ⇢ I
n

or g2k(I
n

) �
I
n

. Since gj(p
n

) 2 I
n

, in the first case gj+2k(p
n

) 2 g2k(I
n

) ⇢ I
n

⇢ gj(T
n

) and
in the second case gj(p

n

) 2 I
n

⇢ g2k(I
n

) ⇢ gj+2k(T
n

). Because n > j + 2k in
both cases we get a contradiction with gm

n(T
n

) \ O(p
n

) = {p
n

}. This finishes
the proof of the claim.
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Let T2 be the component of T \{p} which is mapped by gm outside [c, p] and
let T1 be the other component. Since there is no other point of the orbit of p
between c and p, we get, from the maximality of T either that gm(T1) contains
the component of V containing c or that there exists an integer 0  i < m
such that gi(T1) contains one component J of V \W . Hence, from the choice
of V , W and ⇢ above, we have that |gm(T1)| � ⇢. Since |T | tends to 0 as the
period m goes to 1, we get that |gm(T1)|

|T1| ! 1 as the period m goes to 1.
By Lemma 5.1,

P

0im

|gi(T )|  2|M |. Therefore, since gi(T ) \W = ; for
0  i < m, we get from Denjoy’s theorem (or more precisely from Corollary 1
of Lemma I.2.1) that the distortion of gm on T is bounded by a constant D0

which is independent of m. Hence, |Dgm(p)| � 1
D0

· |g
m(T1)|
|T1| tends to infinity as

m!1. This proves the lemma.

Let f : N ! N be a C2 map and V ⇢ cl (V ) ⇢ U be neighbourhoods of the
critical points of f .

Assume from now on, that all the periodic orbits entirely contained in N \V
are hyperbolic.

Let B0 be the immediate basin of the attracting periodic orbits which are
entirely contained in N \ V . By Lemma 5.3, B0 is a finite union of intervals.
Note also that the boundary of B0 is forward invariant. Moreover, let

�
n

(X,Y ) = {x 2 N ; f i(x) 2 N \ cl (X [ Y ), for all 0  i  n}.

Of course, �
n

(X,Y ) is open.

Now we show that some intervals which are contained in each other decrease
in length with a definite factor. From this we will get that the sum of the lengths
of the iterates of some interval is universally bounded.

Lemma 5.4. Let f : N ! N be as above. Then there exist � > 0 and � > 1 with
the following property. If J is an interval such that |J | < �, J, f(J), . . . , fn�1(J)
are disjoint intervals contained in N \ V and fn(J) � J then

|Dfn(x)| > �

for every x 2 J .

Proof. Since the intervals {J, f(J), . . . , fn�1(J)} are disjoint and contained in
N \ V , there exists a constant D0, independent of n, such that the distortion of
fn on J is bounded by D0. Since fn(J) � J , the interval J contains a periodic
point of period n. Hence, by Lemma 5.3,

|Dfn(x)| � 1
D0

·K
n
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for x 2 J . Since K
n

!1 there exists n0 such that

|Dfn(x)| � 2 if n � n0 and x 2 J.

Because all periodic points in N \V are hyperbolic, there is only a finite number
of periodic points of period  n0. Hence, there exist � > 0 and � > 1 such that
if x is a repelling periodic point of period n  n0 then |Dfn(y)| > � for every y
such that |y � x|  2�. So, if n  n0, J, f(J), . . . , fn�1(J) are disjoint intervals
contained in N \ V , and fn(J) � J , then J contains a repelling periodic point
of period n. Since |J | < � we get that |Dfn(x)| > � for every x 2 J . Thus we
get again |fn(J)| > �|J |.

The next two lemmas give some topological expansion.

Lemma 5.5. Given ✏ > 0 there exists a positive integer n(✏) such that if I is
an interval with |I| � ✏ and I ⇢ �

n

(V,B0) then n < n(✏).

Proof. If the lemma is not true, there exist an ✏ > 0 and a sequence I
n

of
intervals of length at least ✏ such that I

n

⇢ �
n

(V,B0). By taking a subsequence
we may assume that I

n

converges to an interval I. It follows that I ⇢ �
n

for all
n. Since the forward iterates of I do not accumulate at critical points, I cannot
be a wandering interval. Hence, by Lemma 5.2. there exist integers j, k and an
interval L such that f j(I) ⇢ L and fk maps L monotonically into L. Hence
every non-periodic point in L is in the basin of a periodic point. Consequently
f j(I) must intersect B0 and this implies that, for n big enough, f j(I

n

) intersects
B0 which is a contradiction.

Lemma 5.6. Let �
n

= max{|J | ; J is a connected component of �
n

(V,B0)}.
Then �

n

! 0 as n!1.

Proof. If this were not the case, then there would exist ✏ > 0 and a sequence
I
n(i) of connected components of �

n

(V,B0) such that |I
n(i)| � ✏. This contra-

dicts the previous lemma.

Now we come to the main concept which is needed to get the bound on the
sum of the lengths of some orbit of intervals.

Definition. An interval J is m-compatible if for every i < j  m such that
f i(J)\ f j(J) 6= ; we have f j(J) � f i(J). We say that J is (�, m)-compatible if
it is m-compatible and if |f j(J)| > �|f i(J)| whenever f i(J) and f j(J) are both
contained in an interval fk(J) for some i < j < k  m.

The use of this notion becomes immediately apparent from the next lemma.
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Lemma 5.7. Let � > 1. If J is a (�, m)-compatible interval then

m

X

i=0

|f i(J)| < �

�� 1
· |N |.

Proof. Let k be the biggest integer such that there exist i1, . . . , ik such that
none of the intervals f i1(J), f i2(J), . . . , f i

k(J) are strictly contained in some
interval f i(J), for some i = 0, . . . ,m. By the maximality of k and the fact that J
is m-compatible we have that for any 0  i  m, the interval f i(J) is contained
in one of the intervals f i

l(J) and the intervals f i1(J), f i2(J), . . . , f i

k(J) are
pairwise disjoint. Let us fix some l between 1 and k. Let j1 < j2 < · · · < j

s

be the set of integers i  m such that f i(J) ⇢ f i

l(J). Since J is (�, m)-
compatible, we have that j

s

= i
l

and |f j

i+1(J)| > � · |f j

i(J)| for all i  s � 1.
Thus,

P

s

i=1 |f j

i(J)|  �

��1 · |f i

l(J)|. Therefore,

m

X

i=0

|f i(J)| =
k

X

l=1

X

f

i(J)⇢f

i

l (J)

|f i(J)| 
k

X

l=1

�

�� 1
|f i

l(J)|  �

�� 1
|N |,

because the intervals f i1(J), . . . , f i

k(J) are disjoint.

Let ✏ = min{�, |E| ; E is a connected component of U \ V } where � is as in
Lemma 5.4. Moreover, let n0 = n(✏) be as in Lemma 5.5. Let us show that
connected components of �

n

(V,B0) are (�, m)-compatible.

Lemma 5.8. Let J be a connected component of �
n

(V,B0) which contains a
point of �

n

(U, B0). Then J is a (�, n� n0)-compatible interval.

Proof. First, let us prove that J is an (n � n0)-compatible interval. Let 0 
i < j  n � n0 be such that f i(J) \ f j(J) 6= ;. Suppose, by contradiction,
that f j(J) does not contain f i(J). Then the open interval f i(J) contains a
boundary point f j(a) of f j(J) where a is one of the boundary points of J . We
claim that if 0  l  j then f l(a) is not in the boundary of B0. Indeed, otherwise
f j�l(f l(a)) is also in the boundary of B0 but this is impossible because f j(a)
is contained in the open interval f i(J) and J ⇢ �

n

(V,B0). Furthermore, we
claim that for l  n � n0 the endpoint f l(a) does not belong to the boundary
of V . Indeed, if this is not the case, then f l(J) would contain a component
of U \ V since it contains a point outside U . Hence, by Lemma 5.5 and the
definition of ✏, f l(J) cannot be in �

n�l

(V,B0) since n�l � n0 and therefore this
contradicts J ⇢ �

n

(V,B0) and proves our second claim. From these two claims
it follows that there exists a neighbourhood W of a such that f j(W ) ⇢ f i(J)
and f l(W )\ (B0[V ) = ; for l  j. Since J ⇢ �

n

(V,B0) and since n� i > n� j
and f j(W ) ⇢ f i(J) 2 �

n�i

(V,B0) we get that J [ W ⇢ �
n

(V,B0). This
contradicts the fact that J is a connected component of �

n

(V,B0). Therefore
J is an (n� n0)-compatible interval.

Let us now prove that J is (�, n � n0)-compatible. Let 0  i < j < k 
n � n0 be such that f i(J) [ f j(J) ⇢ fk(J) and assume that j is the smallest
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integer satisfying this condition. Let E ⇢ �
j�i

(V,B0) be the maximal interval
containing f i(J) such that f j�i(E) ⇢ fk(J). We claim that f j�i(E) = fk(J),
E ⇢ fk(E) and the intervals E, f(E) . . . , f j�i�1(E) are pairwise disjoint. Let us
finish the proof, assuming the claim. From Lemma 5.4 we get that |Df j�i(x)| >
� for each x 2 E and therefore |f j(J)| > �|f i(J)| if j is the smallest integer
between i and k such that f i(J)[f j(J) ⇢ fk(J). If it is not the smallest integer
with the above property we use the above estimate for the smallest integer and
repeat the argument taking this integer instead of j. After a finite number of,
say s, steps we get |f j(J)| > �s · |f i(J)| > �|f i(J)|. So it remains to prove
the last claim. We note that f l(E) \ @V = ; if 0  l < j � i. Indeed, if
this is not true then |f l(E)| > ✏ because f l(f i(J)) ⇢ f l(E) contains a point
not in U . Since f j�i(E) ⇢ fk(J) we must have that f l(E) ⇢ �((j�i)�l)+(n�k).
This is impossible because of Lemma 5.5 and because ((j � i)� l) + (n� k) �
n0 = n(✏). Therefore, f l(E) \ @V = ;. Using this and the same argument
as in the first part of this proof, we get that E is (j � i)-compatible. Indeed
suppose, by contradiction, that fk(J) contains a boundary point of f j�i(E),
say f j�i(x) where x is a boundary point of E. Since B0 is forward invariant,
we get as before that f l(x) /2 @B0 for every l < j � i. Hence, we get as
before a neighbourhood X of x such that f j�i(X) ⇢ fk(J) and f l(X) \ (V [
B0) = ; for l  j � i. This contradicts the maximality of E and proves that
f j�i(E) = fk(J). Let us now prove the statement about disjointness. If, for
some 0  l < j � i we have that f l(E) \ fk(J) 6= ; then f i+l(J) ⇢ f l(E) ⇢
f j�i(E) = fk(J). This is a contradiction because i < i + l < j. Hence the
intervals E, f(E), . . . , f j�i�1(E) are pairwise disjoint. This proves the claim
and finishes the proof of the lemma.

Combining all this gives the following bound on the sum of the lengths
of iterates of some interval. From this we will immediately get the required
distortion results.

Proposition 5.1. Let f : N ! N be a C2 map, V ⇢ int (U) ⇢ U be neigh-
bourhoods of the set of critical points of f such that all periodic orbits which are
entirely contained in N \ V are hyperbolic. Let B0 denote the union of the im-
mediate basins of the periodic attractors of f whose orbits are entirely contained
in N \ V . Then there exists a positive constant C0 such that if J ⇢ �

n

(V,B0)
is an interval, then

n

X

i=0

|f i(J)| < C0.

Proof. Let J be a connected component of �
n

(V,B0), with n > n0, where n0

is as in the previous lemma. Then, by Lemma 5.8 and 5.7 we have

n

X

i=0

|f i(J)| =
n�n0�1
X

i=0

|f i(J)|+
n

X

i=n�n0

|f i(J)| < �

�� 1
|N |+ n0 · |N | = C0.

If n  n0 the above sum is bounded by n0|N |.
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Proof of Theorem 5.1. Because of Proposition 5.1 one can prove this theorem
exactly in the same way as Theorem 3.2. As in this theorem it is su�cient to
show that there exists k such that for each x 2 �

n

(U, B0) and each n > k,
we have |Dfn(x)| > 1. So let us show this by contradiction. Assume that
there exist sequences x

i

and n(i) ! 1 such that lim sup
i

|Dfn(i)(x
i

)|  1
and x

i

2 �
n(i)(U, B0). Since all periodic points of f which stay outside a

neighbourhood of the set of critical points and which have su�ciently large
period are hyperbolic repelling and since N \U does not contain non-hyperbolic
periodic points, we can take a neighbourhood V of C(f) such that the closure
of V is contained in U and such that f does not have a non-hyperbolic orbit
contained in N \V . Let � > 0 be smaller than any connected component of U \V
and also smaller than the distance between any two points in the boundary of
B0. Let J

i

be the connected component of �
n(i)(V,B0) which contains x

i

.
We claim that there exists m(i) < n(i) such that |fm(i)(J

i

)| > �. Indeed,
by the maximality of J

i

, there exists either l < n(i) such that f l(J
i

) contains
a point of the boundary of V or there exist integers l1 < l2 < n(i) such that
f l1(x) 2 @B0 and f l2(y) 2 @B0, where x, y are the endpoints of J

i

. In the first
case f l(J

i

) contains a component of U \V because f l(J
i

) contains f l(x
i

) which
is not in U . In the second case f l2(J

i

) contains two points in the boundary of
B0. In both cases the claim is verified.

By Proposition 5.1, the distortion of fn(i) on J
i

is bounded. Since lim sup
i

|Dfn(i)(x
i

)| 
1 we get that |fn(i)(J

i

)|/|J
i

| is universally bounded. On the other hand, by
Lemma 5.6, |J

i

| ! 0 as i ! 1. Hence, |fn(i)(J
i

)| ! 0 as i ! 1. Since
|fm(i)(J

i

)| > �, we get that (n(i) �m(i)) ! 1. By taking a subsequence we
may assume that fm(i)(J

i

) converges to an interval E. As n(i)�m(i)!1 we
get that E ⇢ �

k

(V,B0) for all k. This contradicts Lemma 5.6 and proves the
theorem.

Remark. 1. Theorem 5.1 and its corollaries also hold for C2 circle maps. If
f : S1 ! S1 is a C2 circle map which has either a critical point or an attracting
periodic point we can deduce the result for f directly from Theorem 5.1. In
fact, as we have done several times before we can construct an interval map
which has the same dynamics as f outside a neighbourhood of a pre-image of
the critical point (or of the attracting periodic point) and we can modify the
new map in this neighbourhood so that it satisfies the hypothesis of Theorem
5.1. If there is no critical point and no attracting periodic point then the map
f is conjugate to a covering map of the circle and we need to modify the proof
in this case. We refer to Mañé (1985) or Van Strien (1990) for the details. 2. In

the next section we will state a stronger result from which Theorem 5.1 easily
follows. This result will also deal with points which come close to critical points.
The main problem will be to control the non-linearity of high iterates. Because
of the critical points, we cannot hope to bound the non-linearity with the tools
of Section I.1. In the next chapter we will therefore develop tools which can be
used to analyze this non-linearity. In particular, in the next section we will give
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a proof of this generalization under the additional condition that the Schwarzian
derivative of f is negative.

6 Misiurewicz Maps are Almost Hyperbolic

In Theorem 5.1 only compact sets not containing critical points were considered.
Because of this, the bounded non-linearity results of Section I.1 su�ce for its
proof. In Van Strien (1990) a more general version of Theorem 5.1 is proved
which also deals with points whose orbit comes very close to critical points.
This theorem can be stated as follows. Let f be C2 and let C(f) be the set of
critical points of f , i.e., C(f) = {c ; Df(c) = 0}. We say that f satisfies the
Misiurewicz condition if there exists a neighbourhood W of C(f) such that

[

n�1

fn(C(f)) \W = ;.

This means that the forward orbit of each critical point does not accumulate
onto any critical point. Often we shall also assume that f has no periodic
attractors. In this section we shall show that these maps are almost hyperbolic.
So let us call a maximal interval on which fn is a di↵eomorphism a branch of
fn. The first result is a distortion result: fn is almost ‘polynomial’ on branches
of fn. In spite of the unbounded non-linearity, the branches of iterates are well
controlled: they are polynomial-like. To be more precise, there exists a finite
collection P

n

of C1 maps g : [0, 1]! [0, 1] with Dg(x) 6= 0 for x 2 (0, 1) which
have critical points of order  n for x = 0 or x = 1. This collection has the
following property. For each n 2 N the restriction of the map fn to any branch
is equal to one of the maps g up to a map which has bounded distortion.

Theorem 6.1 (Iterates are quasi-polynomial on branches). Suppose that f : N !
N is a C2 Misiurewicz map whose periodic points are all hyperbolic and repelling.
Furthermore, assume that all critical points of f are non-flat. Then there exists
a finite collection of smooth maps P and K < 1 with the following property.
For any n 2 N and any branch I of fn there exists g 2 P such that, up to
scaling, fn|I is equal to h � g. Here h : [0, 1]! [0, 1] is a di↵eomorphism, which
does depend on n and I, but such that

|Dh(x)|
|Dh(y)|  K for all x, y 2 [0, 1].

Clearly the set P
n

can be chosen in such a way that it consists only of
polynomial maps.

Corollary 6.1. For each Misiurewicz map as above there exist K <1 and ñ 2
N such that for each n � ñ and each interval I on which fn is a di↵eomorphism,
fn|I is a composition of a map with distortion bounded by K and a simple
‘polynomial map’.
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For the proof Theorem 6.1 in the C2 case we refer to Van Strien (1990). So
let us assume that f is C3 and has negative Schwarzian derivative. In this case
the proof is quite easy using the Koebe Principle. We shall discuss this principle
in detail in the next chapter but let us state it in the version we need here.

Let U ⇢ V be two intervals. We say that V contains a �-scaled neighbourhood
of U if both components of V \ U have at least length � · |U |.

Koebe Principle. Let f have negative Schwarzian derivative. Then for each
� > 0 there exists K <1 such that if I ⇢ J are intervals, fn|J is a di↵eomor-
phism and fn(J) contains a �-scaled neighbourhood of fn(I) then the distortion
of fn|I is bounded by K.

Proof. See the next chapter.

For the proof of Theorem 6.1 we need the following lemma.

Lemma 6.1. If f : [0, 1] ! [0, 1] has no periodic attractors and no wandering
intervals then there exists for each ⌧ > 0 some ñ < 1 such that if T is an
interval of length � ⌧ then f ñ|T is not a di↵eomorphism. Moreover, if f is
a Misiurewicz map there exists ⇢ > 0 such that if T is a maximal interval on
which fn is monotone then |fn(T )| � ⇢.

Proof. If the first statement did not hold one could find a sequence k
n

! 1
and intervals T

n

with |T
n

| � ⌧ and fk

n |T
n

monotone. Taking a limit of these
intervals we would get an interval T of length � ⌧ with fn|T monotone for all
n � 0. So T would be a homterval, but since f has no wandering intervals and
no periodic attractors this is not possible, see Corollary 1 of Section II.3.

If T = [a, b] is a maximal interval on which fn is monotone then there
exist k(a), k(b) < n such that fk(a)(a), fk(b)(b) 2 C(f). If k(a)  k(b) then
fk(b(a) /2W because f is Misiurewicz and therefore fk(T ) contains a component
of the set W \ C(f). From the first part of this lemma, n� k  ñ and so there
exists a constant ⇢ > 0 (which does not depend on n) such that |fn(T )| � ⇢.

Exercise 6.1. Show that Theorem 6.1 and Lemma 6.1 imply that each Misiurewicz

map f whose periodic points are hyperbolic and repelling has an absolutely continuous

invariant probability measure. (Hint: as we will see in Section V.4 the map f has an

absolutely continuous invariant probability measure if for each ✏ > 0 there exists � > 0

such that for all n 2 N one has |f�n(A)|  ✏ whenever A is a measurable set with

|A|  �. But this follows immediately from the fact that fn is quasi-polynomial on

each branch I
n

and from the fact that |fn(I
n

)| � ⇢.)

Proof of Theorem 6.1. Let V be a neighbourhood of C(f) such that the
neighbourhood W from the definition of Misiurewicz maps contains a 3-scaled
neighbourhood of V and let ⌧ = |V |. Let ñ be the number corresponding to ⌧
from the previous lemma. Now take n 2 N, a branch I of fn and let n0 2 N be
the largest integer < n1 = n � ñ such that fn0(I) \ V 6= ;. If no such integer
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exists then take n0 = 0. Because f has no wandering intervals we get from the
previous lemma and since fn�n0 |fn0(I) is a di↵eomorphism that

|fn0(I)|  ⌧.

Now by assumption the critical points of fn are outside W . We claim that

Dfn0(x)
Dfn0(y)

 K for all x, y 2 I.

If n0 = 0 then this is obvious. But otherwise fn0(I) \ V 6= ; and |fn0(I)|  ⌧
and so by the choice of V and ⌧ we get fn0(I) ⇢ W . It follows that there
exists an interval J � I on which fn0 is a di↵eomorphism for which fn0(J) �
W . Hence fn0(J) contains a ⌧ -scaled neighbourhood of fn0(I). Using the
Koebe Principle it follows that fn0 |I has a distortion which is bounded by some
universal constant K and the claim follows.

Next let I 0 = fn0(I). Since f i(I 0)\V = ; for i = 1, . . . , n1�n0�1 it follows
similarly that

fn1�n0�1|f(I 0) 7! I 00 = fn1�n0(I)

is also a di↵eomorphism with a universally bounded distortion. So fn|I is the
composition of the following four maps

fn0 : I 7! I 0, , f : I 0 7! f(I 0) ,

fn1�n0�1 : f(I 0)! fn1�n0(I) and f ñ : fn1�n0(I)! fn(I).

The first and third of these maps have bounded distortion and the second and
last of these maps are simply f and f ñ. From this one can easily deduce the
theorem.

Theorem 6.2 (Misiurewicz maps are globally expanding). Suppose that f : N !
N is a C2 Misiurewicz map with non-flat critical points and with all its periodic
points hyperbolic and repelling. Then there exist K > 0 and ⇢ 2 (0, 1) such that
each interval on which fn is a di↵eomorphism has at most size K ·⇢n. Moreover,
let I0 and I1 be two maximal intervals on which fn is a di↵eomorphism with a
common boundary point then 1

K

 |I0|/|I1|  K.

Proof of Theorem 6.2. Again we will only prove this here in the case that f
has negative Schwarzian derivative. For the general case, see Van Strien (1990).
Let I

n

be a maximal interval on which fn is a di↵eomorphism such that fn+1|I
n

is not a di↵eomorphism. Since I
n

is maximal, the endpoints of fn(I
n

) are critical
values of fn and therefore outside W and since fn+1|I

n

is not a di↵eomorphism
fn(I

n

) contains a critical point. So fn(I
n

) contains a component of W . So let
Ii

n+1 be the maximal intervals in I
n

on which fn+1 is a di↵eomorphism. Then
fn(Ii

n+1) contains a component of W \C(f). So the intervals fn(I
n

), fn(Ii

n+1)
all have length between ⌧ and 1. From the bounded distortion statement in the
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previous theorem it follows that there exists a universal constants ⌧̃1, ⌧̃2 2 (0, 1)
such that

(6.1) ⌧̃1 
|Ii

n+1|
|I

n

|  ⌧̃2.

Furthermore, fn+k|Ii

n+1 is not a di↵eomorphism for some k  ñ where ñ is
the number from Lemma 6.1. From the previous argument for each maximal
interval I

n+k

inside Ii

n+1 ⇢ I
n

on which fn+k is a di↵eomorphism one has

(6.2) |I
n+k

|  ⌧̃ |Ii

n+1|  ⌧̃ |In

|.

Clearly (6.1) and (6.2) imply the theorem.

Exercise 6.2. Show that the previous theorem implies that any conjugacy between

two Misiurewicz maps as above is quasisymmetric. We should note that later on,

in Chapter VI, we shall see that two conjugate infinitely renormalizable unimodal

maps of ‘bounded type’ are also quasi-symmetrically conjugate. Whether all smooth

conjugate maps are quasi-symmetrically conjugate is an open question. We shall see

in Theorem VI.4.2b that this exercise implies that there are no two parameters a for

which the maps 1� ax2 are conjugate and Misiurewicz (without a periodic attractor).

(Hint: Let f and g be the di↵eomorphisms and h the conjugacy. For any interval of

the form (x� a, x + a) simply choose n minimal so that (x� a, x) and (x, x + a) both

completely contain at least one maximal interval on which fn is a di↵eomorphism.

Now let I
n

(f) be the collection of interval I which are maximal intervals on which fn

is a di↵eomorphism. From the previous theorem it follows that there exists a universal

number R such that at most R intervals from I

n

(f) intersect (x � a, x + a). Since

this statement holds also for the other di↵eomorphism g it follows that h(x� a, x + a)

is contained in the union (of the closure) of at most R elements of I
n

(g) and that

h(x � a, x) and h(x, x + a) both contain an element from this collection. It follows

that the length of these intervals is comparable.)

Theorem 6.3 (Quasi-hyperbolicity for Misiurewicz maps). Suppose that f : N !
N is a C2 Misiurewicz map with non-flat critical points and with all its periodic
points hyperbolic and repelling. Then for each su�ciently small neighbourhood
W of C(f) there exist constants � > 1, C > 0 such that for each x 2 N one has
the following:

i) if f j(x) /2W for 0  j  k � 1 then

|Dfk(x)| � C�k;

ii) if fk(x) 2W then
|Dfk(x)| � C�k;

iii) without any conditions one gets,

|Dfk(x)| � C�k inf
j=0,...,k�1

|Df(f j(x))|.
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Remark. Theorem 6.3 implies that the periodic points of f are uniformly
expanding: if n is the period of a periodic point p then |Dfn(p)| � C�n. The
content of statement iii) of this theorem is that the only non-hyperbolic feature
of a Misiurewicz map is that one ‘picks up’ one small derivative even if one
enters W many times.

Proof of Theorem 6.3. Although this result holds for general C2 maps here we
will only again prove the result for C3 maps with negative Schwarzian derivative.
For the proof in the general case, see Van Strien (1990). Let W0 be a neigh-
bourhood of C(f) such that fn(C(f)) \W0 = ; for all n � 1. Of course we
may assume that the closure of W is contained in the interior of W0. Let � > 0
be such that the components of W0 \ W all have at least length �. Statement
i) follows immediately from Theorem 5.1 (for this it was not even necessary to
assume that the critical points of f are non-flat). So let us prove ii): let x be
such that fk(x) 2 W . Let I be the largest interval containing x on which fk|I
is monotone. Since f is Misiurewicz all critical values of fk are outside W0.
Therefore and because fk(x) 2 W , fk(I) contains one of the components of
W0. Therefore fk(I) contains a � neighbourhood of fk(x) and by the Koebe
Principle

|Dfn(x)| � 1
K

�

|I| .

From the previous theorem, |I|  K⇢n and therefore ii) follows. So let us prove
iii). If there exists no 0  l  k for which f l(x) 2 W then the result follows
immediately from i). Otherwise let l  k be the largest number such that
f l(x) 2W and we get from ii)

|Df l(x)| � C�l

and from i) one has

|Dfk�l�1(f l+1(x))| � C�k�l�1.

Combining this gives iii).

The next theorem shows that the estimates from the previous theorem also
hold for an open set of maps.

Theorem 6.4. Suppose that f : N ! N is a C2 Misiurewicz map with non-flat
critical points and with all its periodic orbits hyperbolic and repelling. Then
there exist C > 0 and � > 1 and a neighbourhood W of C(f) such that for any
neighbourhood U ⇢ W of C(f) there exists a neighbourhood N of f in the C1

topology such that for each g 2 N one has

i) if x, . . . , gn(x) /2W then

|Dgn(x)| � C�n;
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ii) if x, g(x), . . . , gn�1(x) /2 U and gn(x) 2W then

|Dgn(x)| � C�n;

iii) if gj(x) /2 U for 0  j  n� 1 but not necessarily gn(x) 2W , then

|Dgn(x)| � C�n inf
j=0,...,n�1

|Dg(gj(x))|.

Proof. By the previous theorem there exist a neighbourhood W of C(f), �1 > 1
and C1 > 0 such that

|Dfn(x)| � C1(�1)n

whenever fn(x) 2W . Of course this statement holds for the same values of �1

and C1 if we shrink W . So choose �2 2 (1,�1). Since f is Misiurewicz we may
assume that W is so small that fn(C(f))\W = ; for all n � 1 and moreover so
that for any x with x, fn(x) 2W one has C1(�1)n > 2(�2)n. So if x, fn(x) 2W
then

(6.3) |Dfn(x)| � 2(�2)n.

Furthermore, by Theorem 5.1 and Theorem 2.2, there exist �3 2 (1,�2) and
C3 > 0 such that for each g which is C1 close to f and for each x with
x, g(x), . . . , gn�1(x) /2W one has

(6.4) |Dgn(x)| � C3(�3)n.

This proves the first statement. Now let � 2 (1,�3) and choose n̂ so large that
for each n � n̂ and each g 2 N

(6.5) C3(�3)n�1 inf
x/2U

|Dg(x)| � �n.

Clearly n̂ strongly depends on the size of U . By (6.3) there exists a neighbour-
hood of f such that for each g in this neighbourhood and each x such that
x, gn(x) 2W for some n  n̂, one has

(6.6) |Dgn(x)| � �n.

(Again the neighbourhood of f depends strongly on n̂.) Now we claim that

(6.7) x 2W \ U, gk(x) 2W implies |Dgk(x)| � �k.

Indeed, take any point x 2 W \ U and let k  n be the smallest integer such
that gk(x) 2W . If k � n̂ then because g(x), . . . , gk�1(x) /2W we get from (6.4)
and (6.5) that

|Dgk(x)| = |Dgk�1(g(x))| · |Dg(x)| � C3(�3)k�1 · |Dg(x)| � �k.

On the other hand if k < n̂ then (6.7) follows from (6.6).
Let x be such that x, g(x), . . . , gn�1(x) /2 U and let 0  k1 < k2 < · · · <

k
l

 n be the integers so that gk

i(x) 2W . From (6.7),

(6.8) |Dgk

i+1�k

i(gk

i(x))| � �k

i+1�k

i
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for i = 1, . . . , l � 1. Furthermore, from (6.4) one has

(6.9) |Dgk1(x)| � C3�
k1 .

If gn(x) 2 W then k
l

= n and combining (6.8) and (6.9) gives the second
statement of the theorem. If gn(x) /2 W then k

l

< n and gk(x) /2 W for
k = k

l

+ 1, . . . , n. Hence, by (6.4),

|Dgn�k

l

�1(gk

l

+1(x))| � C3�
n�k

l

�1

and, using (6.8) and (6.9),

|Dgn(x)| � C3�
n�1 · |Dg(gk

l(x))|.

This concludes the proof of the third statement of the theorem.

7 Some Further Remarks and Open Questions

As we mentioned, the main open problem in this chapter is the following:

Conjecture 1. The set of Axiom A maps is dense in the Cr topology for
r � 2.

The case where r = 1 was proved by Jakobson (1981), see Theorem III.2.2.
Of course the example due to Gutierrez (1987) shows that in general a map
cannot be perturbed to an Axiom A map by a C2 small perturbation which is
localized in an arbitrarily small neighbourhood of one point. In other words one
will have to study global perturbations in order to prove Conjecture 1. A partial
result to the C2 closing lemma is given by Contreras (1991) and Tsujii (1992a)
and (1992d). Roughly speaking, these results show that C2 generically, maps
are either Axiom A or such that they have an ergodic invariant measure with
zero Liapounov exponent (note that these measures could have their support
on a rather small set). A conjecture related to the previous one is of course:

Conjecture 2. The set of parameters for which f
a

(x) = ax(1� x) is Axiom A
forms a dense set in [0, 4].

Recently, Świa̧tek has proved this old and famous conjecture which dates
back to the 1930’s, see Świa̧tek (1992b). His proof uses complex extensions as
in Chapter VI.
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Let us be somewhat more specific. Take f
a

(x) = ax(1� x) and define

A = {a ; f
a

has a hyperbolic periodic attractor

which is not a super-attractor},
Â = {a ; f

a

has a non-hyperbolic periodic attractor},
Ã = {a ; f

a

has a periodic super-attractor},
NA1 = {a ; f

a

has no periodic attractors and is only

finitely often renormalizable},
NA2 = {a ; f

a

has no periodic attractors and is

infinitely often renormalizable}.

Of course, A is the set of parameters for which f
a

is Axiom A. So the previous
conjecture states that Â[Ã[NA1[NA2 has no interior points. It follows from
Section II.10 (or Section VI.4) that Â and Ã have no interior points. Yoccoz
(1990) proved that NA1 contains no interior points. The proof of this result goes
beyond the scope of this book. From the results of Sullivan (1991), see Chapter
VI, it follows that the subset of parameters a 2 NA2 for which f

a

is of ‘bounded
type’, also has no interior points. The proof of this last statement is based on
the notion of quasisymmetry. It was Sullivan who first used this concept in this
theory. In particular he showed, see Section VI.4, that Conjecture 2 follows
from the following

Conjecture 3. If two C1 maps f, g : N ! N with quadratic critical points
are conjugate then they are quasi-symmetrically conjugate.

In fact, Świa̧tek proves Conjecture 3 for quadratic maps f and g and in this
way he solved Conjecture 2!

Because of the results of Yoccoz (1990) and Sullivan (1991), Conjecture 3
only remains to be proved for maps which are infinitely renormalizable and of
‘unbounded type’. However, Świa̧tek does not explicitly use these last results.
His result is based on the ‘divergence’ of the moduli of some annuli. This last
property does not hold anymore if the critical point is of higher order. Some
special cases of Conjecture 3 were solved previously. For example, if f and g are
Misiurewicz maps the proof of Conjecture 3 is very easy, see Exercise III.6.1.
More interestingly, Jakobson and Świa̧tek (1991b) proved Conjecture 3 for non-
renormalizable maps which satisfy some ‘starting’ conditions. For infinitely
renormalizable maps of ‘bounded type’ the conjecture is proved in Section VI.2
and VI.3. We should emphasize that in general two conjugate analytic uni-
modal maps with negative Schwarzian derivative are not quasi-symmetrically
conjugate: the order of the critical point plays an important role, see Section
VI.10.

Another result in the direction of Conjecture 3 was given in Nowicki and
Przytycki (1990). This result states that two conjugate maps with positive
Liapounov exponent, i.e., for which

lim inf
n!1

1
n

log |Dfn(f(c))| > 0
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are Hölder conjugate (however, a quasisymmetry is Hölder continuous but the
opposite is not true).

We should add that a theorem of Jakobson, which we will prove in Section
V.6, tells us that the set of parameters for which the maps f

a

(x) = ax(1 � x)
is not Axiom A has positive Lebesgue measure. In fact the set of parameters
for which the Liapounov exponent is positive, has positive Lebesgue measure.
However, we would like to state

Conjecture 4. For almost every parameter a 2 [0, 4] in the sense of Lebesgue
one has that f

a

(x) = ax(1� x) has either

1. a periodic attractor, or

2. lim inf
n!1

1
n

log |Dfn(f(1/2))| > 0.

If this conjecture holds then in particular the set of parameters for which
the corresponding maps are infinitely renormalizable has zero Lebesgue mea-
sure. Condition 1) implies that almost all points tend to the periodic attractor
and Condition 2) implies that !(x) is a finite union of intervals for almost ev-
ery x (and the way the orbit is distributed is determined by some absolutely
continuous invariant measure, see Chapter V). In Section V.5 we will see that
there are certainly uncountably parameters which do not satisfy 1) or 2) or even
correspond to infinitely renormalizable maps.



Chapter IV.

The Structure of Smooth
Maps

In the last chapter we described the structure of the unimodal maps with nega-
tive Schwarzian derivative. The ingredients we used were: i) the combinatorial
theory of Section II.3; ii) the finiteness of attractors; iii) the non-existence of
wandering intervals. For ii) and iii) we used the assumption on the Schwarzian
derivative.

Here we will study the structure of general smooth mappings of the interval
and of the circle. Since the combinatorial theory also applies to all maps with a
finite number of turning points, we only need to extend the last two ingredients
mentioned above to this more general class of maps. The aim of this chapter is
to show that ii) and iii) also hold under very mild assumptions. The example
of Denjoy, see Theorem I.2.3, and the example from Ivanov (1992), show that
it is essential to assume that f has some smoothness.

Moreover, it is necessary to assume that the map is non-flat at each of its
critical points. This assumption is necessary because there exist C1 maps with
flat critical points which have wandering intervals and for which, moreover,
the periods of the attracting periodic orbits are unbounded, see Sarkovskii and
Ivanov (1983), de Melo (1987). That wandering intervals can exist for C1 circle
homeomorphisms was already shown previously by Hall (1981). Moreover, it is
not enough that f is piecewise continuous; as we have seen in Exercise I.2.2
there are piecewise continuous, a�ne interval exchange transformations with
wandering intervals.

So let us state the results from this chapter more precisely. Let N be either
the interval [�1, 1] or the circle S1. We say that a critical point c of a C2 map
f : N ! N is non-flat if there exists a C2 local di↵eomorphism � with �(c) = 0
such that f(x) = ±|�(x)|↵ + f(c) for some ↵ � 2. If ↵ = 2 we say that c is a
non-degenerate critical point. For example, if f is C1 and some derivative is
non-zero at c then c is a non-flat critical point. The main results in this chapter

are the following two theorems:

259
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Theorem A. If f : N ! N is a C2 map with non-flat critical points then f has
no wandering interval .

Theorem B. If f : N ! N is a C2 map with non-flat critical points, then there
exist � > 1 and n0 2 N such that

|Dfn(p)| > �

for every periodic point p of f of period n � n0.

Moreover, the proof of Theorem B will give

Theorem B’. If K is a compact family of C2 maps with non-flat critical points
then there exist � > 1 and n0 2 N such that if f 2 K and p is a periodic point
of period n � n0 of f then one of the following possibilities hold.

1. p is an attracting periodic point whose immediate basin of attraction con-
tains a critical point;

2. p is in the boundary of the immediate basin of a periodic attractor which
attracts a critical point;

3. |Dfn(p)| � �.

In particular, the number of periodic orbits of maps in K of type 1) and 2) and
of period � n0 is bounded by the number of critical points.

We will prove Theorem A under a more general hypothesis. It holds for
maps in the collections NF 1+Z and NF 1+bv which will be defined precisely in
Section 2. This class of maps includes besides the C2 maps without flat critical
points, all continuous maps that are piecewise C2 (or C1 and satisfy a Zygmund
condition which will be discussed in Section 2.a) and are non-flat at the critical
points. In particular, one may have discontinuities of the derivative. Even
for maps in our class without critical points the techniques of Schwarz from
Theorem I.2.2 cannot be used: the distortion of the map in a neighbourhood of
a point of discontinuity of the derivative is not bounded by a constant times the
length of this neighbourhood. On the other hand, our class of maps includes
those for which the proof of Denjoy’s Theorem I.2.1 on the non-existence of a
wandering interval for circle di↵eomorphisms works. So Theorem A is a natural
extension of Denjoy’s original ideas to maps with critical points. Because our
class is so general, Theorem A is new even for non-invertible maps without
critical points (e.g., covering maps of the circle) or for piecewise linear maps.
Theorem B holds for the slightly smaller class of maps NF 1+z which we will
also introduce in Section IV.2 below.

We want to observe that these theorems give, for real one-dimensional dy-
namics, a result that is the analogue of Sullivan’s Structure Theorem of rational
maps discussed in Section III.1. To explain this we give the following
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Definition. Let N be as before and let f : N ! N be a continuous map.
We define its Fatou set F (f) as the set of points x for which there exists a
neighbourhood U such that the family fn|U is normal. This means that each
sequence in this family has a subsequence which converges in the C0 topology (to
a continuous function). Next the Julia set J(f) is defined to be the complement
of F (f). The Fatou set is clearly open and backward invariant. In general it
is not forward invariant but it is almost forward invariant: if U is a connected
component of F (f) not containing a turning point then F (U) is also a connected
component of the Fatou set. If U is one of the finitely many components of F (f)
that contains some turning point then f(U) is contained in the closure of another
component of F (f).

This definition is the same as the one given for rational maps of the Riemann
sphere, see Section III.1. As we have shown in that section, for a polynomial
map on the Riemann sphere

1. the Julia set is equal to the set of points which are not in the basin of a
periodic attractor;

2. the Julia set is the closure of the set of repelling periodic points.

For real one-dimensional maps the first statement still holds but the second
statement is false:

Lemma. For a real one-dimensional map f : N ! N

1. the Julia set is equal to the set of points which are not in the basin of a
periodic attractor and not contained in a wandering interval. It is also
equal to the ↵-limit of the set of turning points of f .

2. however, in general, the Julia set is not the closure of the set of repelling
periodic points and can, in general, be much larger than the non-wandering
set of f .

3. if f is the restriction of a polynomial map F then J(f) = J(F )|N .

Proof. We claim that if x 2 F (f) then there exists a neighbourhood of x
which contains at most one preimage of the set of turning points. Indeed,
otherwise for each neighbourhood U of x the modality of fn|U goes to infinity
as n ! 1 and so because x is in the Fatou set one has inf

n�0 |fn(U)| = 0.
From the Contraction Principle which we shall prove in Section 5 of this chapter
it follows that U is either a wandering interval or contained in the basin of a
periodic attractor. On the other hand, if some point is contained in a wandering
interval or in the basin of a periodic attractor then it is certainly contained in
F (f). This proves the claim and the first statement of the lemma. To prove the
second statement consider the quadratic Feigenbaum interval map. Because of
Theorem A, it has no wandering intervals and as we have seen before it has no
periodic attractors. So by the first part of this lemma, the Julia set of this map is
the whole interval. On the other hand, for that map the non-wandering points
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and in particular, the periodic points are certainly not dense in the interval.
This completes the proof of the second statement. The last property follows
easily from Property 2 above and Statement 1 of this lemma.

We can now reformulate Theorems A and B as

Theorem AB. Let f : N ! N be a C2 non-invertible map having a finite
number of critical points which are non-flat. Then

1. all the connected components of the Fatou set of f are eventually periodic
(i.e., eventually mapped into a periodic component);

2. the number of periodic components of the Fatou set is finite.

Our exposition of the above theorems follows very closely Martens et al.
(1991). This work is based on and extends work of Lyubich (1989) and Blokh
and Lyubich (1989). Let us describe some previous versions of these theorems.

The first result in this direction was obtained by Denjoy in 1932. He proved,
as we have already seen in Section I.2, that a C1 di↵eomorphism of the circle
such that the logarithm of its derivative is a function of bounded variation, does
not have wandering intervals. His proof relies on i) a detailed understanding of
the dynamics of rotations and ii) a uniform bound on the distortion of the n-th
iterate of the di↵eomorphism restricted to an interval whose first n iterates are
disjoint.

Guckenheimer (1979) proved the non-existence of wandering intervals for
unimodal maps of the interval with negative Schwarzian derivative and no in-
flection points, see also Misiurewicz (1981). In Section II.4, we gave a proof of
his result in a special case.

Yoccoz (1984b) proved the non-existence of wandering intervals for C1

homeomorphisms of the circle having only non-flat critical points. He com-
bines techniques of Denjoy away from the critical points with some analytical
estimates near the critical points which are related to the Schwarzian derivative.

In de Melo and Van Strien (1988) and (1989) the same result was shown for
smooth unimodal maps (not necessarily having negative Schwarzian derivative)
with a non-flat critical point and also for maps satisfying the so-called Misi-
urewicz condition. The main tool in this proof is the control of the distortion of
the cross-ratio under iterations. This control implies that under some disjoint-
ness assumptions the di↵eomorphic inverse branches of iterates of a smooth map
behave very much like univalent holomorphic maps. This similarity is clear from
the Minimum Principle and the Koebe Principle for real maps, see Sections 1
to 3 below.

In Lyubich (1989) and Blokh and Lyubich (1989) the non-existence of wan-
dering intervals is proved for smooth maps for which all critical points are turn-
ing points. They introduced some very nice and powerful new tools generalizing
those of Guckenheimer (1979) and used the analytical tools developed in de
Melo and Van Strien (1988) and (1989).
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The proof we present, coming from Martens et al. (1991), combines the
analytical tools developed in de Melo and Van Strien (1988) with the topological
ingredients of Lyubich and Blokh. Inflection points are also allowed in this proof.
Moreover, the smoothness required in this proof is precisely the same as needed
in the non-wandering results due to Denjoy in Chapter I.

Theorem B implies that the period of the attracting periodic orbits is bounded.
In particular, if f is an analytic function or if all the periodic points of f are
hyperbolic, the number of attracting periodic orbits is finite. So Theorem B is
related to Julia’s Theorem III.1.3 and to Singer’s Theorem II.4.1. In these the-
orems, the number of attracting periodic orbits is bounded because each must
contain a critical point in its basin. Of course this is no longer true for general
smooth maps.

Another contribution in this direction is due to Mañé (1985). Using estimates
related to Denjoy and Schwartz, he proved that Theorem B holds for maps of
the circle without critical points (see Section III.5). Van Strien (1990) proved
Theorem B for maps satisfying the Misiurewicz condition. In this case one even
has a ‘hyperbolic structure’ on the set of periodic points, see Section III.6.

Let us finish this introduction by stating a corollary of Theorem B.

Corollary. In the space Ur of Cr unimodal maps of the interval [�1, 1] endowed
with the Cr topology for r � 3, the set of structurally stable maps is open and
dense.

Proof. See de Melo (1987). This corollary is the

analogue of the Mañé-Sad-Sullivan Theorem on the density of the structurally
stable rational maps. Again we do not know if the structurally stable unimodal
maps satisfy the Axiom A property.

Exercise 1. Show that the previous theorems imply that for any C2 unimodal
map f : I ! I which is infinitely renormalizable and whose turning point is
non-flat, f has an attracting Cantor set and its basin has positive Lebesgue
measure.

1 The Cross-Ratio: the Minimum and Koebe

Principle

In Denjoy’s theory for circle di↵eomorphisms, described in Section I.1, the main
technical tool is the control of the distortion of iterates of a map on some
interval under some disjointness assumptions on the iterates of this interval.
The distortion of a di↵erentiable map f on an interval T was defined as the
maximal ratio of the absolute values of the derivative in two di↵erent points.
This number measures the non-linearity of the map. Another way to present
the same concept is to consider pairs of adjacent intervals L, R, intersecting at
a common boundary point, and to measure the distortion by the map of the
ratio R(L, R) = |L|

|R| , i.e., to evaluate the number R(f, L,R) = R(f(L),f(R))
R(L,R) . It
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is easy to see that the distortion of a di↵erentiable map f in the interval T is
bounded if and only if there is a bound for R(f, L,R) for any pair of adjacent
intervals L, R ⇢ T .

Cross-ratios

If a map f has critical points we cannot hope to get a bound for its non-linearity:
we cannot consider the ratio of the length of a pair of adjacent intervals. So,
instead of considering three consecutive points, we consider four points and we
measure their position by their cross-ratio. Then we determine how a map dis-
torts the cross-ratio of such a configuration of four points. Cross-ratios were
already discussed in Section III.1. They are connected with hyperbolic geome-
try: the hyperbolic distance between two points in the hyperbolic space is given
by the logarithm of the cross-ratio of four points. Using the same expression
as in Section III.1, on each bounded interval of the real line we can also define
a metric which is invariant by the group of real Möbius transformations. We
will prove below that a map with positive Schwarzian derivative contracts this
metric in the same way as a holomorphic map of the unit disc contracts the
hyperbolic metric. Hence, if the iterate of a map of negative Schwarzian deriva-
tive is di↵eomorphic on a given interval it expands the hyperbolic metric of this
interval. This is the main reason for many analogies between the theory on the
dynamics of rational maps and the theory of the dynamics of interval maps with
negative Schwarzian derivative.

In this section we will show that di↵eomorphic inverse branches of interval
maps with negative Schwarzian derivative (or which satisfy some bounds on the
distortion of the cross-ratio) are very much like univalent holomorphic maps.

Definition. Let J ⇢ T be open and bounded intervals in N such that T \ J
consists of intervals L and R. Define the cross-ratio of these intervals as

D(T, J) =
|J ||T |
|L||R| ,

(where |I| denotes the length of the interval I). This cross-ratio is related to
the hyperbolic metric. Indeed, let T be an open and bounded interval on N .
For x, y 2 T let

⇢
T

(x, y) = log
|L [ J ||J [R|

|L||R| = log(1 + D(T, J))

where J is the interval bounded by the points x, y. We will return to this in
Property 2 below.

Definition. If g : T ! N is continuous and monotone and J ⇢ T as above then
we define the cross-ratio distortion of g as

B(g, T, J) =
D(g(T ), g(J))

D(T, J)
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(if J has a common boundary point with T then we take lim supB(g, T, J
n

)
where J

n

is a sequence of intervals with J
n

" J). If f : I ! I is continuous and
fn|T is monotone then

B(fn, T, J) =
n�1
Y

i=0

B(f, f i(T ), f i(J)).

We recall that the Schwarzian derivative of a C3 map g : T ⇢ R! R is the
number,

Sg(x) =
D3g(x)
Dg(x)

� 3
2

✓

D2g(x)
Dg(x)

◆2

, if Dg(x) 6= 0.

As we have seen before in Section I.3, one has the following composition
formula: S(g �f) = (Sg �f) · (Df)2 +Sf . Furthermore, let M denote the group
of Möbius transformations of the real line, namely, � 2M if �(x) = ax+b

cx+d

where
a, b, c, d are real numbers with ad � bc 6= 0. Let us discuss some elementary
properties of the operator B defined above, the Schwarzian derivative and the
group of real Möbius transformations.

Property 1. The Schwarzian derivative of g : T ⇢ R! R is identically zero if
and only if g is the restriction of a Möbius transformation to T .

Property 1’. Let g : T ! R be a monotone map. Then B(g, T ⇤, J⇤) = 1 for
all pairs of intervals J⇤ ⇢ T ⇤ if and only if g is the restriction of a Möbius
transformation.

Property 2. Let T be a bounded open interval of the real line. For x, y 2 T
let

⇢
T

(x, y) = log
|L [ J ||J [R|

|L||R| = log(1 + D(T, J))

where J is the interval bounded by the points x, y. Then ⇢
T

is a metric in
T and the group of isometries of this metric is exactly the group M

T

of all
Möbius transformations which map T onto T . Furthermore, the group M

T

acts transitively on T , namely, given x, y 2 T , there exists an isometry � such
that �(x) = y. Notice that the formula defining ⇢

T

is exactly the same as the one
that gives the distance between two points in the hyperbolic space. Therefore,
we shall call this the hyperbolic metric of the interval T .

Property 3. If g : T ! R has negative (resp. positive) Schwarzian derivative
at all points, �,  are Möbius transformations then g � � and  � g also have
negative (resp. positive) Schwarzian derivative.

Property 4. If g : T ! R is a C3 map with negative Schwarzian derivative
then

B(g, T ⇤, J⇤) > 1, for all pairs of intervals J⇤ ⇢ T ⇤ ⇢ T.

Hence, a di↵eomorphism g : T ! T 0 having negative (resp. positive) Schwarzian
derivative expands (resp. contracts) the hyperbolic metric:

⇢
T

0(g(x), g(y)) > ⇢
T

(x, y)
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(respectively, ⇢
T

0(g(x), g(y)) < ⇢
T

(x, y))) for all x, y 2 T and x 6= y.

Proof of Properties 1-4. To prove Property 1, note that we may write

Sg = �2|Dg| 12 D2

r

1
|Dg| . If Sg ⌘ 0 then D2 1

|Dg| 12
⌘ 0. Hence, 1

|Dg(x)| 12
= cx+d

and, therefore, g(x) = ax+b

cx+d

. The converse is also easy. Property 1’) is proved as
follows: we have already seen in Section III.1 that any Möbius transformation
preserves cross-ratios. Suppose now that g is a monotone map which preserves
the cross-ratio D. Let T = [x0, x1] and choose a point x2 2 (x0, x1). As we have
seen in Section III.1, there exists a unique Möbius transformation � such that
�(x

i

) = g(x
i

) for i = 0, 1, 2. We claim that g(x) = �(x) for all x 2 T . Indeed,
if J is the interval bounded by x2 and x, then B(g, T, J) = B(�, T, J) = 1.
Therefore, D(�(T ),�(J)) = D(g(T ), g(J)) and, since �(T ) = g(T ) and �(x2) =
g(x2), we get that �(x) = g(x).

Let us prove Property 2. That ⇢
T

is a metric follows immediately from the
formula. From Property 1’ above, we get that the group of isometries coincide
with the group of Möbius transformations M

T

. Let T = (x0, x1). As there is a
unique Möbius transformation � satisfying, �(x

i

) = x
i

, �(x) = y, the group of
isometries acts transitively on T . This proves the statement. If T = (0, 1) then
the group of orientation preserving isometries is the family of maps

�
�

(x) =
x

�x + 1� � ,�1 < � < 1.

To see Property 3 we note that from Property 1 one has S = 0 and,
therefore, the composition formula from above gives that S( � g) = (S � g) ·
|Dg|2 + Sg = Sg and S(g � �) = (Sg � �) · |D�|2 + S� = (Sg � �) · |D�|2.

Finally, in order to prove Property 4, we should first note that an elementary
calculation shows if Sg < 0 then x 7! Dg(x) has no positive local minima. This
property we refer to as the Minimum Principle and will be generalized below.
Now let T ⇤ = [x0, x1], J⇤ = [y0, y1] and let � be a Möbius transformation such
that ��g fixes the endpoints of T ⇤ and the point y0. We claim that �(g(y1)) > y1.
In fact, suppose, by contradiction, that �(g(y1))  y1. By the Mean Value
Theorem, there exist z0 2 [x0, y0], z1 2 [y0, y1], z2 2 [y1, x1] such that D(� �
g)(z0) =

�(g(y0))� �(g(x0))
y0 � x0

= 1, D(� � g)(z1) =
�(g(y1))� �(g(y0))

y1 � y0
 1

and D(� � g)(z2) =
�(g(x1))� �(g(y1))

x1 � y1
� 1. Since S(� � g) = Sg < 0, this

contradicts the Minimum Principle. Therefore, �(g(y1)) > y1. Thus

B(� � g, T ⇤, J⇤) =

|�(g(T ⇤))|
|T ⇤|

|�(g(J⇤))|
|J⇤|

|�(g(L⇤))|
|L⇤|

|�(g(R⇤)|
|R⇤|

=

|�(g(J⇤))|
|J⇤|

|�(g(R⇤)|
|R⇤|

> 1.

Since B(��g, T ⇤, J⇤) = B(�, g(T ⇤), g(J⇤)).B(g, T ⇤, J⇤) and, by Property 1’, the
Möbius transformation � preserves the cross-ratio, we get that
B(g, T ⇤, J⇤) > 1.
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The Minimum Principle for maps with a given cross-ratio
distortion

In the remainder of this section we will prove that the inverse of a C1 di↵eomor-
phism of an interval behaves like a univalent holomorphic map if its cross-ratio
distortion is bounded from below. In the next section we will show that this as-
sumption is satisfied even for high iterates of a map provided some disjointness
assumptions are met.

The main properties of univalent holomorphic maps are the Maximum and
Koebe Principles. Since our maps will be like the inverse of holomorphic maps,
we will now show that one has the Minimum and the Koebe Principles for C1

maps g : T ! R for which there exists a constant C0 > 0 such that

B(g, T ⇤, J⇤) > C0 for all intervals J⇤ ⇢ T ⇤ ⇢ T

when g is a di↵eomorphism on T . Clearly we cannot take C0 > 1 and also we
can take C0 = 1 when Sg < 0.

Theorem 1.1. (“Minimum Principle”) Let T = [a, b] ⇢ N and g : T !
g(T ) ⇢ N be a C1 di↵eomorphism. Let x 2 (a, b). If for any J⇤ ⇢ T ⇤ ⇢ T .

B(g, T ⇤, J⇤) � C0 > 0

then
|Dg(x)| � C3

0 min{ |Dg(a)| , |Dg(b)| }.

Proof. Take an arbitrary interval T ⇤ = [a, b] in T and consider

B0(g, T ⇤) =
|g(T ⇤)|2
|T ⇤|2

1
|Dg(a⇤)| · |Dg(b⇤)| .

Moreover, define

B1(g, T, x) =
|Dg(x)| |g(T )|

|T |
|g(L)|
|L|

|g(R)|
|R|

,

where L and R are the components of T \ {x}. Observe that

B0(g, T ⇤) = lim
J

⇤!T

⇤
B(g, T ⇤, J⇤), B1(g, T, x) = lim

J!x

B(g, T, J)

(the last limit means that both endpoints tend to x). Hence, B0(g, L), B0(g, R),
B1(g, T, x) � C0 > 0. The first two of these three inequalities imply

✓

|g(L)|
|L|

◆2

� C0|Dg(a)| · |Dg(x)|,
✓

|g(R)|
|R|

◆2

� C0|Dg(x)| · |Dg(b)|

and the last one gives

|Dg(x)| |g(T )|
|T | � C0

|g(L)|
|L|

|g(R)|
|R| .
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Since g|T is a di↵eomorphism,

min
⇢

|g(L)|
|L| ,

|g(R)|
|R|

�

 |g(T )|
|T |  max

⇢

|g(L)|
|L| ,

|g(R)|
|R|

�

.

Then

|Dg(x)|2 � C2
0

0

@

|g(L)|
|L| · |g(R)|

|R|
|g(T )|
|T |

1

A

2

� C2
0 min

(

✓

|g(L)|
|L|

◆2

,

✓

|g(R)|
|R|

◆2
)

� C3
0 min{|Dg(a)| · |Dg(x)|, |Dg(b)| · |Dg(x)|}.

Hence, |Dg(x)| � C3
0 min{|Dg(a)|, |Dg(b)|}.

The Koebe Principle for maps with a given cross-ratio dis-
tortion

Now we shall discuss one of the most powerfull tools in one-dimensional dynam-
ics: the Koebe Principle. For maps with negative Schwarzian derivative one
version of this principle was already used and proved in Van Strien (1981) and
later rediscovered by Johnson and Guckenheimer, see Guckenheimer (1987). It
was extended in Van Strien (1987), (1990) for maps which do not satisfy the neg-
ative Schwarzian derivative condition. This principle states that a map which
satisfies bounds on the distortion of cross-ratios has bounded non-linearity ‘away
from its critical values’. If the map satisfies the negative Schwarzian derivative
condition then also iterates satisfy this condition. So in that case we can apply
the next result to each iterate. If this condition is not satisfied then we have to
estimate the cross-ratio distortion. This will be done in Section 2 and we shall
apply all this to iterates of maps in Section 3.

Let U ⇢ V be two intervals. We say that V is an ✏-scaled neighbourhood of
U if both components of V \ U have length ✏ · |U |.

Theorem 1.2. (“Koebe Principle”) Let C0 2 (0, 1], J ⇢ T be intervals and
g : T ! g(T ) a C1 di↵eomorphism. Assume that for any intervals J⇤ and T ⇤

with J⇤ ⇢ T ⇤ ⇢ T one has

B(g, T ⇤, J⇤) � C0 > 0.

If g(T ) contains a ⌧ -scaled neighbourhood of g(J), then

1
K(C0, ⌧)

 Dg(x)
Dg(y)

 K(C0, ⌧), 8x, y 2 J,

where K(C0, ⌧) =
(1 + ⌧)2

C6
0⌧

2
. Moreover, if Sg < 0 then one can take C0 = 1 and

there exists a constant K̂ which only depends on ⌧ so that
�

�

�

�

Dg(x)
Dg(y)

� 1
�

�

�

�

 K̂ · |x� y|
|J | .
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Remark. 1. K(C0, ⌧) tends to 1 as C0 ! 1 and ⌧ ! 1. Therefore, the
distortion of g is extremely small if C0 is close to 1 and if we consider points x
in an interval J ⇢ T such that g(J) is extremely small and extremely far away
from the boundary of g(T ).

2. The last part of the principle implies that there exists K̃ only depending on

⌧ such that
|Dg(x)�Dg(y)|

Dg(y)
 K̃ · |g(x)� g(y)|

|g(J)| for all x, y 2 J . Hence if g is

C2 then there exists a universal upper bound C(�, ⌧) with

|D2g(x)|
|Dg(x)|2 

K̃

|g(J)|

for each x 2 J .

3. If U ⇢ V are two intervals then the length of U in terms of the hyperbolic
metric on V is equal to

`
V

(U) := log
|L [ U ||U [R|

|L||R|

where L and R are the components of V \ U . If V contains an ✏-scaled neigh-
bourhood of U then

(⇤) exp [`
V

(U)/2]  1 + ✏

✏
 exp [2`

V

(U)] .

Using the expression for K(C0, ⌧) we get

C6
0 · exp

⇥

�2`
g(T )(g(J))

⇤

 |Dg(x)|
|Dg(y)| 

1
C6

0

· exp
⇥

2`
g(T )(g(J))

⇤

for all x, y 2 J . So this ratio is bounded on an interval J by a constant which
depends on C0 and on the projective length of g(J) in g(T ).

Proof. By rescaling, we may assume that J = g(J) = [0, 1] and that g is
increasing. Let a, b 2 @T be such that a < 0 < 1 < b and L = [a, 0], J = [0, 1]
and R = [1, b]. Using the operator B0 from the proof of the Minimum Principle,
we get

(1.1) |Dg(0)| · |Dg(1)|  1
C0

✓

|g(J)|
|J |

◆2

=
1
C0

.

Similarly, using the operator B1,

|Dg(0| � C0 ·
|g(L)|
|L|

|g(J)|
|J|

|g(L[J)|
|L[J|

.

Because |g(J)| = |J | = 1 and

|g(L)|
|L|

|L [ J |
|g(L [ J)| �

|g(L)|
|g(L [ J)| �

⌧

1 + ⌧



270 CHAPTER IV. THE STRUCTURE OF SMOOTH MAPS

this gives

(1.2) |Dg(0)| � C0⌧

1 + ⌧
.

Similarly,

(1.3) |Dg(1)| � C0⌧

1 + ⌧
.

Combining (1.1), (1.2) and (1.3) gives

C0⌧

1 + ⌧
 |Dg(0)|, |Dg(1)|  1 + ⌧

C2
0⌧

.

From the Minimum Principle we get

(1.4) |Dg(x)| � C4
0⌧

1 + ⌧
, for all x 2 [0, 1].

Let U = [0, x] and V = [x, 1]. Since g is a di↵eomorphism, either |g(U)|
|U | 

|g(J)|
|J| = 1 or |g(V )|

|V | 
|g(J)|
|J| = 1. If the former holds then

h

|g(U)|
|U |

i2

|Dg(0)| · |Dg(x)| � C0

gives

|Dg(x)| · |Dg(0)|  1
C0

· 1

and otherwise we get a similar estimate for |Dg(x)| · |Dg(1)|. Using (1.2) or
(1.3) this gives

|Dg(x)|  1
C0

1 + ⌧

C0⌧
.

From this and (1.4) one has

C4
0⌧

1 + ⌧
 |Dg(x)|  1 + ⌧

C2
0⌧

.

From the Koebe Principle we get that g has bounded distortion on a certain
interval. Now we shall some other versions of the Koebe Principle. We shall
not need these versions until much later in the book. First we state a version
which gives C1+1/2 control on the size of the distortion. In Section 3 we will
also encounter similar versions of the Koebe Principle. However, there we do
not consider some abstract map g whose cross-ratio is not distorted too much,
but instead consider the restriction of an iterate of some map satisfying some
additional conditions.
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Corollary 1.1. (‘C1+1/2 Koebe Principle’) For each D, ⌧ > 0 there exists
L(D, ⌧) < 1 with the following property. Let J ⇢ T be intervals and g : T !
g(T ) a homeomorphism such that g(T ) is a ⌧ -scaled neighbourhood of g(J).
Assume that for any intervals J⇤ and T ⇤ with J⇤ ⇢ T ⇤ ⇢ T one has

|B(g, T ⇤, J⇤)� 1|  D · |T
⇤|

|T | .

Then g is C1+1/2 in the sense that
�

�

�

�

Dg(x)
Dg(y)

� 1
�

�

�

�

 L(D, ⌧) ·


|x� y|
|T |

�1/2

, 8x, y 2 J.

In particular, log Dg is Hölder with exponent 1/2 on the interior of T .

Proof. See Exercise 1.5.

Corollary 1.2. (‘One-sided Koebe Principle’) For each C > 0, ⇢ > 0 there
exists K <1 with the following property. Let T = [a, b] and g : T ! g(T ) be a
C1 di↵eomorphism. Assume that for any intervals J⇤ and T ⇤ with J⇤ ⇢ T ⇤ ⇢ T
one has

B(g, T ⇤, J⇤) � C > 0.

Then
|Dg(x)| � 1

K
|Dg(b)|.

for each x 2 [a, b] with
|g(x)� g(a)|

|g(T )| � ⇢.

Proof. See Exercise 1.6.

The First Expansion Principle

The next principle will play an important role in proving that the periodic points
of high period are repelling and is concerned with the situation that B(g, T,M)�
1 � � > 0. It states that whenever an interval is mapped monotonically over
itself with an expansion of the cross-ratios then the map is really ‘bending’ and,
therefore, at some point expanding. In the next section we shall encounter a
second expansion principle.

Theorem 1.3. (“First Expansion Principle”) For every ✏ > 0 and � > 0
there exists ⇢ > 0 such that the following holds. Let J ⇢ T be intervals in N for
which g : T ! g(T ) ⇢ N is a C1 di↵eomorphism and assume both components
of T \ J have at least length � · |T | (note that this is not the same as saying that
T contains a �-scaled neighbourhood of J). If B(g, T, J) � 1 + ✏ and g(T ) � T
then there exists ✓ 2 T with Dg(✓) � 1 + ⇢.
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Proof. Let L and R be the components of T \ J and let ⇠ > 0 be so small that
(1 + ✏)(1� ⇠)2 � 1 + 1

2✏.

Case 1: First suppose that
|g(L)|
|L| � 1 � ⇠ and

|g(R)|
|R| � 1 � ⇠. Then, using

B(g, T, J) � 1 + ✏, we get
|g(T )|
|T | · |g(J)|

|J | � (1 + ✏)(1� ⇠)2 � 1 +
1
2
✏. So at least

one of the terms
|g(T )|
|T | ,

|g(J)|
|J | is greater or equal than

r

1 +
1
2
✏. Using the

Mean Value Theorem we obtain in either case ✓ 2 T so that |Dg(✓)| �
q

1 + 1
2✏.

Case 2: Suppose that
|g(L)|
|L| < 1 � ⇠. The case that

|g(R)|
|R| < 1 � ⇠ goes

similarly. Using |L|, |R| � �|T | we get

|g(J [R)|
|J [R| =

|g(T )|� |g(L)|
|J |+ |R| � |T |� |g(L)|

|J |+ |R| >

>
|T |� (1� ⇠)|L|

|J |+ |R| > 1 + �⇠.

The Mean Value Theorem then gives ✓ 2 J [ R such that |Dg(✓)| � 1 + �⇠.
Combining Case 1 and Case 2 proves the result.

Exercise 1.1. Show that the di↵eomorphism g : (0, 1) ! (0, 1) defined by g(x) = x2

satisfies B(g, T, J) > 1 for each J ⇢ T ⇢ (0, 1). Similarly, show that there exists no

lower bound C > 0 such that B(g�1, T, J) � C for each J ⇢ T ⇢ (0, 1).

Exercise 1.2. Give an example of g : (0, 1) ! (0, 1) which is convex or concave but

so that the property B(g, T, J) � 1 does not hold for each J ⇢ T ⇢ (0, 1). (However,

since Sg = �2|Dg|
1
2 D2

r
1

|Dg|
, Sg < 0 is equivalent to x 7!

r
1

|Dg(x)|
being convex.)

Exercise 1.3. Below we shall see that if a di↵eomorphism g : (0, 1) ! (0, 1) satisfies

B(g, T, J) > 1 for each J ⇢ T ⇢ (0, 1) that then |Dg(x)| > min(|Dg(a)|, |Dg(b)|) for

each x 2 [a, b] ⇢ (0, 1). Show that the reverse is not true.

Exercise 1.4. (Following Świa̧tek (1990)) Let f : (0, 1) ! (0, 1) be a homeomorphism

and let

D(f) = sup
x2(0,1)

⇢˛̨
˛̨log

|f(L)|/|L|
|f(R)|/|R|

˛̨
˛̨ ; where L = (0, x) and R = (x, 1)

�
.

Furthermore, let � : (0, 1) ! (0,1) be the Möbius transformation sending (0, 1) injec-

tively onto (0,1) and let  = log ��. Define P (f) =  � f �  �1. Show that

||P (f)� id||
C

0 = D(f).

(Hint: sup
x

|P (f)�x| = sup
y

| �f(y)� (y)|. Furthermore, because �(t) = t/(1� t),

 � f(y)�  (y) = log
�(f(y))
�(y)

= log
|f(L)|
|L|

|f(R)|
|R|

where L = (0, y) and R = (y, 1).)
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Exercise 1.5. Prove Corollary 1. (Hint: by considering intervals J ⇢ T such that

J , L or R is a point one can easily see that Dg must exist everywhere on T and

be bounded and bounded away from zero. In order to show that log Dg is Hölder let

x, y 2 J and define J 0 = [x, y]. We may assume that |J 0|  |T |/2 because otherwise the

Corollary follows trivially from the Koebe Principle. Furthermore, choose C
1

> 0 and

an interval T 0 with J 0 ⇢ T 0 ⇢ J such that T 0 is a C
1

[|T |/|J 0|]1/2-scaled neighbourhood

of J 0. We can even choose C
1

> 0 independently of J 0 = [x, y] because we have

assumed that |J 0|  |T |/2 and because (by the Koebe Principle) T contains a ⌧ 0-

scaled neighbourhood of J . One gets that

|T 0|  3C
1

ˆ
|T |/|J 0|

˜
1/2

· |J 0|  3C
1

(|J 0||T |)1/2 ( 3C
1

|T |).

Hence, from the assumption, for each J⇤, T ⇤ ⇢ T 0 one has

|B(g, T ⇤, J⇤)� 1|  D · |T 0|/|T |  D · 3C
1

·

ˆ
|J 0|/|T |

˜
1/2

.

Therefore, using the notation from the previous theorem applied to the pair of intervals

J 0 ⇢ T 0,

|C � 1|  D · 3C
1

·

ˆ
|J 0|/|T |

˜
1/2

.

Furthermore, again by the Koebe Principle, g(T 0) is a C0
1

[|T |/|J 0|]1/2-scaled neigh-

bourhood of g(J 0) and so we get ⌧ � C0
1

[|T ||J 0|]1/2. From the proof of the previous

theorem we get

C6

· (
⌧

1 + ⌧
)2 

|Dg(x)|
|Dg(y)|



1
C6

· (
1 + ⌧
⌧

)2

and since
1 + ⌧
⌧

� 1 and |C � 1| are at most

C
2

·

ˆ
|J 0|/|T |

˜
1/2

 C
2

·

»
|x� y|
|T |

–
1/2

,

the result follows.)

Exercise 1.6. Prove Corollary 2. (Hint: let J = [x, b] and simply use the strategy as

used in the proof of the Macroscopic Koebe Principle. The only place where the space

to the right of J was used in that proof is to obtain the estimate (1.3). If we do not

use this estimate but keep the term Dg(b) everywhere we get the desired estimate.)

1.1 Some Facts about the Schwarzian Derivative

In this section we shall make some remarks about the Schwarzian derivative
and its connection with projective transformations. First of all as we remarked
above Sf = 0 implies that f is a Möbius transformation and therefore that f
preserves cross-ratios. More precisely, one has the following relationship with
cross-ratios:

Lemma 1.1. Let f be a C3 map. There exists a unique Möbius transformation
� such that

lim
x!0

(� � f)(x)� x

x3

is finite. This limit is equal to Sf(0)/6. Moreover, let J = [h, 2h] and T = [0, 3h]
then

Sf(0) = �3
2

lim
h!0

B(f, T, J)� 1
h2

.
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Similarly,

Sf(0) =
�1
2

lim
h!0

1 + D(f(T ), f(J))
1 + D(T, J)

� 1

h2
.

Proof. Notice that we may assume that Df(0) 6= 0. Moreover, since S(� �
f) = Sf when � is a Möbius transformation, we may even assume that f(x) =
x + ax3 + o(|x|3). Indeed, given a0, a1, a2 2 R there exists a unique Möbius
transformation � for which �(0) = a0, D�(0) = a1 and D2�(0) = a2. Therefore,
there exists a unique Möbius transformation � for which � � f(x) = x + ax3 +
o(|x|3). Since S(f) = 6a, this completes the proof of the first statement. This
part of the lemma is due to Martio and Sarvas (1978/79), see also Lehto (1987,
p51). The second part of this lemma is due to E. Cartan (1937, p22) see also
Hermann (1976, p168) and is proved as follows. Choosing L and T as above,
D(T, J) = 3 and

D(f(T ), f(J)) =
[h + (8� 1)ah3][3h + 27ah3]
[h + ah3][h + (27� 8)ah3]

and so
B(f, T, J)� 1 = (16� 20)ah2 + o(h2).

Hence,

lim
h!0

B(f, T, J)� 1
h2

= �4a =
�2
3

Sf(0).

Next, we want to ask why one considers the invariance by the projective
group and not some other group. Suppose we have a group of local di↵eomor-
phisms on the real line generated by a Lie algebra L of infinitesimal generators.
Suppose that this group is transitive: this implies that there exists an element
u 2 L such that u(0) 6= 0. Using a di↵erent coordinate system we may assume

that L(x) =
d

dx
. Now assume that dim(L) = m and take v = f(x)

d

dx
2 L. Then

[u, v] = v0 where v0 = f 0(x)
d

dx
. Similarly, [u, vk] = vk+1 where vk = Dkf(x)

d

dx
.

So, since L is m-dimensional, v, . . . , vm are linearly dependent and, therefore,
the functions f, . . . ,Dmf are linearly dependent. Hence, f satisfies a linear
 m-th order homogeneous di↵erential equation with constant coe�cients and
so f is analytic. Now it is quite easy to see that, if f is not a polynomial of

degree  2, then the Lie algebra generated by u = f
d

x
is infinite-dimensional,

i.e.,
[u, u], [u, [u, u]], [u, [u, [u, u]], . . .

span an infinite-dimensional space. So the only generators which generate a
finite-dimensional Lie algebra are L1, L2, L3 where

L
p

= xp�1 d

dx
.
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Let us see which group is generated by these generators. The time t map of L1

is
x 7! x + t,

and, therefore, L1 generates the group of translations. The time t map for L2

is
x 7! xet

and generates the homotheties on the line. For L3 this is

x 7! x

�xt + 1

(which only exists for finite t) and these are projective transformations (the map
h

t

(x) =
x

�xt + 1
satisfies h

t

(0) = 0, Dh
t

(0) = 1 and D2h
t

(0) = t). Together
these transformations generate all projective transformations

x 7! ax + b

cx + d
.

It follows that the only di↵erential invariants which correspond to finite-dimensional
Lie groups are

D(f) = f 0 , N(f) =
D2f

Df
and S(f) =

D3f

Df
� 3

2

✓

D2f

Df

◆2

.

We know all these di↵erential operators already from the first chapter: they are
the di↵erentiation, the non-linearity operator and the Schwarzian derivative.
They are invariant because one has

D(L1,t

f) = D(f),

N(L1,t

f) = N(L2,t

f) = N(f),

S(L1,t

f) = S(L2,t

f) = S(L3,t

f) = S(f),

for all t. In particular, Df = 0 gives the group of translations, N(f) = 0 the
group of a�ne transformations and S(f) = 0 the group of projective transfor-
mations. For more on this we refer the reader to expositions on the work of E.
Cartan on the di↵erential invariants of S. Lie, see for example Cartan (1937,
pp22), Hermann (1976, pp168), Guggenheimer (1977, pp130) and Dieudonné
(1974, Exercise 7, p.143).

Exercise 1.7. If f is a polynomial of degree � 2 with real coe�cients and all zeros

of Df are real then Sf < 0. (Hint: By assumption Df(x) = A
Q

n

j=1

(x� a
j

) where a
j

are real. Then

Sf(x) = 2
X

i<j

1
(x� a

i

)(x� a
j

)
�

3
2

"
X

i

1
(x� a

i

)

#
2

and it easy to see that this is negative for x real.)
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2 Distortion of Cross-Ratios

As we have seen in the previous section, one has some very good non-linearity
estimates if bounds on the distortion of cross-ratio are known. In this section
we will describe the distortion of the cross-ratio under high iterates of a smooth
map. Obviously, if Sf < 0 then Sfn < 0 and then the assumptions in the
previous section on the distortion of the cross-ratios are trivially satisfied. In
this case B(fn, T ⇤, J⇤) > 1 on all intervals J⇤ ⇢ T ⇤ ⇢ T for which fn|T is
a di↵eomorphism. Now we will show that C2 maps have a similar property if
one restricts to an interval whose orbit has some disjointness properties. Such
disjointness was also crucial in Sections 2 and 3 in Chapter I.

Apart from these disjointness conditions we will make a smoothness and a
non-flatness assumption on the maps we consider.

The smoothness assumptions

In fact, the disjointness conditions needed for the proof of Theorem A are some-
what weaker than those for Theorem B. Therefore, we will introduce three
classes of maps NF 1+Z , NF 1+bv and NF 1+z. The last class is properly con-
tained in the first two. Theorem A holds for each map in NF 1+Z [ NF 1+bv

and Theorem B holds for maps in NF 1+z.

Definition. Let NF 1+bv be the class of absolutely continuous maps f : N ! N
such that the conditions a) and b) below are satisfied.

a) For each x0 2 N there exist ↵ � 1, a neighbourhood U(x0) of x0, and a
homeomorphism � : U(x0)! R such that �(x0) = 0 and

f(x) = ±|�(x)|↵ + f(x0), 8x 2 U(x0).

b) log D� (which exist almost everywhere because f is absolutely continuous)
coincides with the restriction of a function of bounded variation for each
of these homeomorphisms �.

We say that f 2 NF 1+Z if f is absolutely continuous, it satisfies condition a)
from above, and

b’) log D� satisfies the Zygmund condition (this condition will be defined in
Section 2a below and certainly holds if log D� is Lipschitz) for each of
these homeomorphisms �.

Next we will introduce a slightly smaller class of maps. Theorem B holds for
maps from this class. Let NF 1+z be the class of C1 maps for which the condi-
tions c) and d) below are satisfied.

c) For each x0 2 N there exist ↵ � 1, a neighbourhood U(x0) of x0, and a
homeomorphism � : U(x0)! R such that �(x0) = 0 and if ↵ > 1 then

f(x) = ±|�(x)|↵ + f(x0), 8x 2 U(x0)
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and if ↵ = 1 then

f(x) = |�(x)|↵ + f(x0), 8x 2 U(x0).

d) log D� satisfies the little Zygmund condition (this condition will be defined
in Section 2a and certainly holds if log D� is C1) for each of these maps
�.

Remark. 1. By the compactness of N , for each map f in one of the classes
NF 1+Z , NF 1+bv or NF 1+z there are at most a finite number of points x0 at
which either ↵ > 1 or at which f is not a local homeomorphism. Such points
are called critical points of f . The set of all critical points of f is denoted by
C(f). If f is C1 then C(f) = {x ; Df(x) = 0}. The number ↵ from assumption
a) is called the order of the critical point.

2. x0 2 N is a critical point if and only if ↵ > 1 at this point. Moreover, if f is
Ck+1 in a neighbourhood of a point x0 and Dkf(x0) 6= 0 then the assumptions
are satisfied near this point x0 when we take ↵ = k. In particular, all C1 maps
with non-flat critical points are contained in each of the three classes defined
above.

3. The class NF 1+bv contains the set of continuous piecewise linear maps. If
f is C2 and if for each critical point x0 there is a C2 coordinate system � and
↵ 2 N such that f(�(x)) = (x � x0)↵ then f is contained in all three of the
classes above. In particular, the results in this chapter hold for analytic maps.

The distortion of cross-ratios under iterates

In the following theorem we give a lower bound for B(fn, T, J) if the map f is
as above (a similar result also holds for a di↵erent cross-ratio, see de Melo and
Van Strien (1988), (1989) or Van Strien (1987), (1990) and Exercise 2.1 below).
To get a lower bound for B(fn, T, J) one has to assume that the sum of the
lengths of the iterates of T, . . . , fn�1(T ) is bounded. This occurs for example
when these iterates are essentially disjoint; to formalize this we define the inter-
section multiplicity of a finite collection of intervals to be the maximal number
of intervals in this collection whose interior has a non-empty intersection. We
will come back to this notion in the next section.

Theorem 2.1. (The distortion of cross-ratios under iterates)

1. If f 2 NF 1+Z [NF 1+z then there exists a bounded continuous function
� : [0,1) ! R+ with the following property. If m 2 N and J ⇢ T are
intervals such that fm|T is a di↵eomorphism then

B(fm, T, J) � exp{��(S) ·
m�1
X

i=0

|f i(T )|},
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where S = max
i=0,...,m�1 |f i(T )|. If f 2 NF 1+z then �(0) = 0 whereas if

f 2 NF 1+Z then � is merely bounded.

2. For each f 2 NF 1+bv and each p 2 N there exists V <1 with the follow-
ing property. If m 2 N and J ⇢ T are intervals such that T, . . . , fm�1(T )
has at most intersection multiplicity p and f i(T ) \ C(f) = ; for i =
0, 1, . . . ,m� 1 then

B(fm, T, J) � exp{�V }.

Proof of Theorem 2.1. Notice that B(fm, T, J) =
Q

m�1
i=0 B(f, f i(T ), f i(J)).

So for f from NF 1+Z or NF 1+z the theorem follows from the following lemma.
For f 2 NF 1+bv this follows from Proposition 3.1 and Lemma 3.1 in the next
section. In the next lemma we will use the following notation. O(t), o(t)

are functions such that O(t)/t is bounded and o(t)/t! 0 as t! 0.

Lemma 2.1. 1. If f 2 NF 1+z then

B(f, T, J) � exp{�o(|T |)}

for all intervals J ⇢ T on which f is a di↵eomorphism.
2. If f 2 NF 1+Z then

B(f, T, J) � exp{�O(|T |)}

for all intervals J ⇢ T on which f is a di↵eomorphism.

Proof. If T is not contained in any neighbourhood of the form U(x0) as above
then it is easy to see that B(f, T, J) is uniformly bounded away from zero.
So assume that T is contained in a neighbourhood U(x0) in which f(x) =
±|�(x)|↵ + f(x0) where ↵ � 1 and � : U(x0) ! (�1, 1) is as in the definition
of the classes NF 1+z and NF 1+Z . Since ↵ � 1, the map �

↵

(x) = x↵ has
Schwarzian derivative  0 and, hence, B(�

↵

,�(T ),�(J)) � 1. Therefore, and
since f is a di↵eomorphism on T ,

B(f, T, J) = B(�
↵

,�(T ),�(J)) ·B(�, T, J) � B(�, T, J).

So we may assume that f = � where � is as before and that |Df | � K on T .
So write T = [a, d] and J = [b, c]. Then

|B(f, T, J)� 1| =
�

�

�

�

�

f(c)�f(b)
c�b

· f(d)�f(a)
d�a

� f(b)�f(a)
b�a

· f(d)�f(c)
d�c

f(b)�f(a)
b�a

· f(d)�f(c)
d�c

�

�

�

�

�

 1
K2

·
�

�

�

�

f(c)� f(b)
c� b

· f(d)� f(a)
d� a

� f(b)� f(a)
b� a

· f(d)� f(c)
d� c

�

�

�

�

.
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Let us first prove statement 1). First we note that if f 2 NF 1+z then for
each x, y 2 N ,

f(x)� f(y)
x� y

=
1

x� y

Z

y

x

Df(t) dt =
Df(x) + Df(y)

2
+ o(|x� y|).

If f is C2, this follows immediately from Taylor’s Theorem. If Df satisfies the
little Zygmund condition, this is shown in the first lemma in Section 2a. Using
this, we get
�

�

�

�

f(c)� f(b)
c� b

· f(d)� f(a)
d� a

� f(b)� f(a)
b� a

· f(d)� f(c)
d� c

�

�

�

�


�

�

�

�

(Df(b) + Df(c))(Df(a) + Df(d))� (Df(a) + Df(b))(Df(c) + Df(d))
4

�

�

�

�

+ o(|T |)


�

�

�

�

(Df(a)�Df(c))(Df(b)�Df(d))
4

�

�

�

�

+ o(|T |).

If f is C2 then (Df(a)�Df(c))(Df(b)�Df(d)) is clearly at most O(|T |2) and
then Statement 1) follows. If Df satisfies the little Zygmund condition then
Df is Hölder with exponent 2/3 (see the first lemma in Section 2a). Hence, in
that case, (Df(a) � Df(c))(Df(b) � Df(d)) is also at most O(|T |4/3). Again
the result follows. This completes the proof of Statement 1).

So let us prove Statement 2) and assume that f 2 NF 1+Z . If log Df satisfies
the Zygmund condition then we get a similar result with the di↵erence that in
the first step one has

f(x)� f(y)
x� y

=
1

x� y

Z

y

x

Df(t) dt =
Df(x) + Df(y)

2
+ O(|x� y|)

(see the first lemma in Section 2a). Thus, we get the required result as before
with O(|T |) instead of o(|T |).

The Second Expansion Principle

Sometimes we need to have that B(f, T, J) is strictly bigger than one. (This is
for example the case if we want to apply the First Expansion Principle of the
previous section.) This estimate is provided by the Second Expansion Principle.
In order to state this principle, define

�(T ) = min
✓

Z

T

d x

d(x,C(f))
, 1

◆

where d(x,C(f)) is the distance of x to the set C(f) of critical points of f , i.e.,
to C(f) = {z ; Df(z) = 0}. This quantity measures how big T is compared
to its distance to C(f) and could be called the ‘projective length’ of T in the
punctured space N \ C(f).
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Theorem 2.2. (“Second Expansion Principle”) Let f 2 NF 1+z. For each
⌧ > 0 there exist a constant C1 > 0 such that if T is a ⌧ -scaled neighbourhood
of J and T \ C(f) = ; then

log B(f, T, J) � C1 · �(T ) � o(|T |).

Proof. Let U be a neighbourhood of C(f) as given in the definition of the class
NF 1+z. If T is not contained entirely in U then �(T ) ! 0 as |T | ! 0. From
Lemma 2.1 one has

B(f, T, J) � 1� o(|T |),

and, therefore, we are finishes in this case. On the other hand, if T is contained
in U then f is of the form

f(x) = ±|�(x)|↵ + f(x0)

where � : U(x0) ! (�1, 1) is so that log D� satisfies the little Zygmund condi-
tion and ↵ > 1. Now as before

log B(�, T, J) � �o(|T |).

From this, and the fact that � is a di↵eomorphism it follows that it su�ces to
prove that

log B(g, T, J) � C1 · �(T )

where g : (0,1) ! (0,1) is the map g(x) = x↵, J ⇢ T ⇢ (0,1) and T is a
⌧ 0-scaled neighbourhood of J . But this is easy to prove. Indeed,

B(g, T, J)� 1
�(T )

is invariant under the multiplication x 7! �x. So we may assume that the left
endpoint of T is 1 and that the length of T is bounded by some universal number
l. So it su�ces to show that there exists a constant C > 0 with

B(g, T, J)� 1
|T | � C

for each such interval T of length at most l. But since B(g, T, J) decreases if
one increases J , we may assume that

T = [1, 1 + (1 + 2⌧ 0)✏]

and J = [1 + ⌧ 0✏, 1 + (1 + ⌧ 0)✏]. But for these intervals one easily shows that

lim
✏!0

B(g, T, J)� 1
✏

> 0

and thus the result follows.
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Exercise 2.1. If f 2 NF 1+z then

| log B(f, T, J)|  o(|�(T )|)

for each interval T on which f is a di↵eomorphism where �(T ) and o(t) are as above

Theorem 2.2. (Hint: write f = g � � where � is as before and g(x) = x↵. In Lemma

2.1 we have shown that |B(�, T, J)� 1|  o(|T |). So it su�ces to show that

(⇤) |B(g, T, J)� 1|  o(|�(T )|)

for all intervals J ⇢ T not containing 0, where, in this context, �(T ) =
R

T

(1/x) dx.

Since (⇤) is an homogeneous expression, i.e., it is invariant under multiplications x 7!

�x, we may assume that the left endpoint of T is at 1. But then (⇤) follows from

Lemma 2.1.)

Exercise 2.2. If in addition D2f is Lipschitz then there exists C
0

> 0 such that

B(fm, T, J) � exp{�C
0

·

m�1X

i=0

|f i(T )|2} � exp{�C
0

· S ·

m�1X

i=0

|f i(T )|}.

(Hint: see de Melo and Van Strien (1989).)

Exercise 2.3. Consider the following cross-ratio:

D(T, J) =
|J ||T |

|L [ J ||R [ J |

and define

A(g, T, J) =
D(g(T ), g(J))

D(T, J)
.

Show that if f is C3 and satisfies the non-flatness condition, then

A(f, T, J)� 1 � �C
0

· |L| · |R|

where L and R are the components of T \ J . Furthermore, show that there exist

constants � > 0 and ✏ > 0 such that if fn

|T is a di↵eomorphism,
P

n�1

i=0

|f i(J)|  �

and |L| · |R| < ✏|J |2 where L and R are the components of T \ J then

(⇤⇤) A(fn, T, J)� 1 � 8
|L| · |R|
|J |2

.

Note that in the set-up one does not need any disjointness or bounds on the lengths of

the intervals T, . . . , fn�1(T ). In de Melo and Van Strien (1987), (1989) this cross-ratio

was used to prove that no wandering intervals can exist for C3 unimodal maps (not

necessarily satisfying the negative Schwarzian derivative condition). We should note

that (⇤⇤) is similar to Theorem I.2.2 of A. Schwartz because he also uses a bound onP
n�1

i=0

|f i(J)| to bound the non-linearity of fn on an interval T which is also larger

than J . (Hint: see de Melo and Van Strien (1989).)
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2.1 The Zygmund Conditions

In this section we will discuss the Zygmund conditions. Dennis Sullivan was
the first to use these Zygmund conditions in this context. As we will see in this
section these conditions are naturally related to distortions of cross-ratios. In
order to define these conditions let O(t), o(t) be functions such that respectively
O(t)/t is bounded and o(t)/t! 0 as t! 0.

Definition. A function � : J ! R on an open interval J satisfies the Zygmund
condition if for all x, y 2 J

(Z) �(x) + �(y)� 2�(
x + y

2
) = O(|x� y|)

and it satisfies the little Zygmund condition if

(z) �(x) + �(y)� 2�(
x + y

2
) = o(|x� y|).

The classes of these Zygmund functions are denoted by CZ respectively Cz.
Furthermore, we say that � : J ! R is ↵-Hölder at a point y 2 J if there exists
a constant B such that

|�(x)� �(y)|
|x� y|↵  B

for all x, y 2 J with |x� y|  1.

Obviously, if � is C1 then it certainly satisfies both of these conditions and if
� is Lipschitz then it satisfies the Zygmund condition. The reverse is not true:

Example. The function � : [0, 1]! R defined by �(x) = x log(x)+Ax for x > 0
satisfies the Zygmund condition, i.e., � 2 CZ . Indeed, taking x, y = tx in R+

one has

�(x) + �(y)� 2�(
x + y

2
)

y � x
=

t log t� (t + 1) log((1 + t)/2)
t� 1

which is bounded. Notice that the bound does not depend on A. Furthermore,
� is not Lipschitz. It is, however, ↵-Hölder for each ↵ < 1 since

�(x)� �(y)
|x� y|↵

is bounded. This last bound depends strongly on the constant A.

If � has bounded variation then it also does not necessarily satisfy the Zyg-
mund condition and vice versa:
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Example. The function �(x) =
p

x and also any discontinuous piecewise mono-
tone function has bounded variation but does not satisfy the Zygmund condi-
tion. On the other hand, �(x) = x2 sin(1/x2) has unbounded variation but does
satisfy the Zygmund condition.

Next we will prove that any � 2 CZ is ↵-Hölder for each ↵ < 1.

Lemma 2.2. If � 2 CZ and J = (a, b) then

1
|J |

Z

J

�(t) dt =
�(a) + �(b)

2
+ O(|J |).

If � 2 Cz then
1
|J |

Z

J

�(t) dt =
�(a) + �(b)

2
+ o(|J |).

Moreover, � is ↵-Hölder for each ↵ < 1 at each interior point of J .

Proof. If � 2 CZ then, writing J = [m� �,m + �], one has

1
|J |

Z

J

� =
1
|J |

Z

�

0

(�(m� t) + �(m + t)) dt

=
1
|J |

Z

�

0

(2�(m) + O(t)) dt

= �(m) + O(|J |)

=
�(m� �) + �(m + �)

2
+ O(|J |).

Similarly, one proves the second statement. Let us now prove that at each
interior point y of J , � is ↵-Hölder for each ↵ < 1. Of course we may, without
loss of generality, assume that y = 0, �(0) = 0 and that � 2 CZ on J =
(�a, b) ⇢ (�1, 1). Because of the Zygmund condition there exists a constant
C <1 such that

(2.1)
�(x)

x
� C  �(x/2)

x/2
 �(x)

x
+ C

for all x 2 J with x 6= 0. Let us show that

(2.2)
|�(x)|
|x|  A| log(x)|+ B

for all x 2 J where A > 0 is so that A log(2) = C and B is so large that (2.2)
holds for all x 2 (�a,�a/2) [ (b/2, b). Because of (2.1), if (2.2) holds for some
x then it also holds for x/2:

|�(x/2)|
|x/2| 

�(x)
x

+ C  A| log(x)|+ B + C = A| log(x/2)|+ B.

In this way we have shown that (2.1) holds for all x 2 J . Hence, � is ↵-Hölder
for each ↵ < 1.
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The Zygmund condition is quite natural in this context because of the fol-
lowing theorem.

Theorem 2.3. Assume that f : (0, 1) ! R is a C1 di↵eomorphism. Then the
following statements are equivalent.

1) For each pair of intervals J ⇢ T ⇢ (0, 1) one has |B(f, T, J)�1|  O(|T |);

2) log Df 2 CZ .

Similarly, |B(f, T, J)� 1|  o(|T |) is equivalent to the log Df 2 Cz.

Proof. That 2) implies 1) was already shown in Lemma 2.1. So let us prove
that 1) implies 2). First note that if we take L = [x� h, x], R = [x, x + h] and
T = [x� h, x + h] all in the interior of (0, 1) then one has

1� 4|f(L)||f(R)|
|f(T )|2 =

0

B

B

@

|f(L)|
|L| �

|f(R)|
|R|

|f(T )|
|T |

1

C

C

A

2

=
✓

|Df(u)�Df(v)|
|Df(w)|

◆2

where u, v, w 2 T . From 1) and the C1+1/2 Koebe Principle from the previous
section it follows that log Df is 1/2-Hölder on (0, 1); here we take in the state-
ment of the C1+1/2 Koebe Principle the interval (0, 1) to be the domain of the
map g and the smaller interval to be [x � h, x + h] ⇢ (0, 1). So there exists a
constant L such that

✓

|Df(u)�Df(v)|
|Df(w)|

◆2

=

0

B

B

@

|Df(u)
Df(v)

� 1|
|Df(w)|
|Df(v)|

1

C

C

A

2

 L ·
h

|u� v|1/2 · (1 + O(|w � v|1/2))
i2

 O(|T |).

Consequently,

(2.3)
4|f(L)||f(R)|

|f(T )|2 � 1 = O(|T |).

But if we take the interval T as before and J = {x} or J = [x� h, x + h] then
we get from 1) that

(2.4)
|Df(x)| |f(T )|

|T |
|f(L)|
|L|

|f(R)|
|R|

= 1 + O(|T |)
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respectively

(2.5)

✓

|f(T )|
|T |

◆2

|Df(x� h)| |Df(x + h)| = 1 + O(|T |).

Taking the product of the square of (2.4) and (2.5) and using |L| = |R| gives

|Df(x)|2|f(T )|4
16 |Df(x� h)| |Df(x + h)| |f(L)|2 |f(R)|2 � 1 = O(|T |).

Using (2.3),
|Df(x)|2

|Df(x� h)| |Df(x + h)| � 1 = O(|T |).

and, therefore, log Df satisfies the Zygmund condition.

Remark. From the lemma in Section 1a, it follows that |B(f, T, J) � 1| 
o(|T |2) implies that f is a Möbius transformation.

3 Koebe Principles on Iterates

In this section we will present three Koebe Distortion Principles for iterates of
a map.

The Koebe Distortion Principle

The first Koebe Principle holds for iterates fm of a map f 2 NF 1+Z [NF 1+z

which are di↵eomorphic on some interval T and for which
P

m�1
i=0 |f i(T )| is

bounded.

Theorem 3.1. (“Koebe Principle”) For each S, ⌧ > 0 and each map f 2
NF 1+Z [NF 1+z there exists a constant K(S, ⌧) with the following property. If
T is an interval such that fm|T is a di↵eomorphism and if

P

m�1
i=0 |f i(T )|  S

then for each interval J ⇢ T for which fm(T ) contains a ⌧ -scaled neighbourhood
of fm(J) one has

1
K(S, ⌧)

 Dfm(x)
Dfm(y)

 K(S, ⌧), 8x, y 2 J

where K(S, ⌧) =
(1 + ⌧)2

⌧2
· eC·S and C � 0 only depends on f .

Proof. This is simply Theorem 2.1 and the previous Koebe Principle (Theorem
1.2) put together.
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A C1+↵ Koebe Principle

Next we formulate a C1+↵ Koebe Principle. (We shall not use this principle until
the last chapter.) This principle holds for an iterate fm of f 2 NF 1+z which is
di↵eomorphic on some interval T and for which

P

m�1
i=0 |f i(T )|s is bounded for

some s < 1. (So in some sense the s-Hausdor↵ size of the orbit of T is bounded
for some s < 1; in the previous theorem we had s = 1.) Under these additional
conditions we get even C↵ control on the distortion. Compare this principle
also with the C1+1/2 Koebe Principle from Section IV.1. A somewhat similar
result for Misiurewicz maps can be found in Jiang (1991).

Theorem 3.2. (“C1+↵ Koebe Principle”) For each ↵ < 1, ⌧ > 0, S < 1
and f 2 NF 1+Z [ NF 1+z there exists K < 1 such that for each interval T
such that fm|T is a di↵eomorphism for which

m�1
X

i=0

|f i(T )|↵  S,

one has the following. For each interval J ⇢ T for which fm(T ) contains a
⌧ -scaled neighbourhood of fm(J) one has

�

�

�

�

Dfm(x)
Dfm(y)

� 1
�

�

�

�

 K ·
✓

|x� y|
|T |

◆

↵

for all x, y 2 J .

Proof. Let J ⇢ J 0 ⇢ T be so that fm(J 0) is a ⌧/2-scaled neighbourhood of
fm(J). By the previous Koebe Principle, the distortion of fm is uniformly
bounded on J 0. It follows that B(fm, J 0, J) is uniformly bounded (from above).
But

log B(fm, J 0, J) =
m�1
X

i=1

log B(f, f i(J 0), f i(J)).

According to the second Expansion Principle from Section IV.2, one has that

m�1
X

i=1

log B(f, f i(J 0), f i(J)) �
m�1
X

i=1

⇥

C1 · �(f i(J 0)) � C2 · |f i(J 0)|
⇤

.

As before, �(I) is the ‘projective length’ of an interval I,

�(I) = min
✓

Z

I

d x

d(x,C(f))
, 1
◆

.

Since the sum of the length of f i(J 0) is bounded, the sum of the first factors is
bounded from below. So we necessarily have that

P

m�1
i=1 �(f i(J 0)) is uniformly

bounded and therefore

(3.1)
m�1
X

i=1

�(f i(J))
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is uniformly bounded. Furthermore, by assumption,

(3.2)
m�1
X

i=0

|f i(J)|↵  S.

Now we claim that if f 2 NF 1+z and f is a di↵eomorphism on an interval
I then

(3.3)
�

�

�

�

Df(x)
Df(y)

� 1
�

�

�

�

 K (�(I) + |I|↵)
✓

|x� y|
|I|

◆

↵

for all x, y 2 I, where K is some constant which only depends on f , ↵, �(I) and
|I|. Of course, the theorem follows from this claim: since f i|J has universally
bounded distortion (3.3) gives (by taking I = f i(J))

�

�

�

�

Df(f i(x))
Df(f i(y))

� 1
�

�

�

�

 K 0
�

�(f i(J)) + |f i(J)|↵
�

✓

|x� y|
|J |

◆

↵

for all x, y 2 J . This, (3.1) and (3.2) imply the theorem.
So let us prove the claim. If I is far away from the critical points of f then

it simply follows from the fact that Df is at least C↵. (If f 2 NF 1+z then
Df satisfies the little Zygmund condition and is therefore C↵ for each ↵ < 1.)
If I is close to a critical point then one uses that f is near these points the
composition of a map as before and a polynomial map. From this the claim
easily follows.

The Macroscopic Koebe Principle

The last Koebe Principle holds for maps f 2 NF 1+Z [ NF 1+bv (and so are
less di↵erentiable) on intervals T on which some iterate fn is monotone (and
so not necessarily di↵eomorphic). To deal with this, we will have to rely on
disjointness assumptions: otherwise the orbit of T could contain many critical
points. Therefore we need to split up the iterates of T into collections of disjoint
intervals. We start by discussing some disjointness properties of families of
intervals.

Definition. The intersection multiplicity of a finite collection of intervals in
N is the maximal number of intervals in this collection whose interior has a
non-empty intersection.

Theorem 3.3. (“Macroscopic Koebe Principle”) Given f 2 NF 1+bv [
NF 1+Z and p 2 N there exists a strictly positive function B0 : R+ ! R+ such
that for any pair of intervals J ⇢ T , any m � 0 and any 0 < ⌧ < 1, satisfying
the following conditions

1. fm(T ) contains a ⌧ -scaled neighbourhood of fm(J);
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2. the intersection multiplicity of {T, f(T ), . . . , fm�1(T )} is at most p;

3. f i(J) \ C(f) = ;, i 2 {0, 1, . . . ,m � 1} and fm|T is a homeomorphism
(so T can contain an inflection point of f but J cannot).

Then
T is a B0(⌧)-scaled neighbourhood of J.

Remark. If f 2 NF 1+z then one can replace 1)-3) in the previous theorem by

1. fm(T ) contains a ⌧ -scaled neighbourhood of fm(J);

2̃.
P

m�1
i=0 |f i(T )|  p;

3̃. fm|T is a di↵eomorphism.

The proof of this theorem will occupy the remainder of this section. We first
need a proposition and two lemmas. The first proposition is concerned with the
notion of intersection multiplicity.

Proposition 3.1. Let W be a finite collection of intervals in N with intersection
multiplicity at most p then there exists a partition of the collection

W = A1 [A2 [ · · · [A2p

,

such that A
k

consists of mutually disjoint intervals for k = 1, 2, . . . , 2p.

Proof. Clearly we may assume that N is connected. So we only need to consider
the cases that N is equal to an interval or a circle.

Proof if N = [�1, 1]. Of course we may assume that all the intervals in W are
open. We claim that if N = [�1, 1] then there are p classes A1, A2, . . . , Ap

which
form the desired partition of W. Indeed let I be some collection of intervals in
[�1, 1]. For I 2 I let next{I, I} be some interval I 0 2 I such that i) I 0 does not
intersect I and is to the right of I and ii) there is no interval J 2 I satisfying
i) which is closer to I (if there is no interval to the right of I take next{I, I}
to be the empty set). Similarly R(I) is some interval in I such that there is
no interval in I which has points to the right of R(I). For k = 1, 2, . . . , p we
define inductively A

k

as follows. Let A0 = ; and suppose that we have defined
by induction A

k�1. If k  p and B
k

= W \ [
i=1,...,k�1Ai

= ; then let A
k

= ;.
If B

k

is non-empty then take an interval I
k

2 B
k

so that there is no interval in
B

k

containing points to the left of I
k

. Then define

A
k,1 = {I

k

},

A
k,n+1 = A

k,n

[ next {R(A
k,n

) , (W \ (A0 [ · · · [A
k�1 [A

k,n

)) } ,

and
A

k

=
[

n�1

A
k,n

.
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Then A
k

is a collection of intervals with disjoint interiors and the collections
A1, . . . , Ap

are mutually disjoint. Now we will show that W = A1 [ · · · [ A
p

.
Suppose this is not the case and there exists an interval I in the collection
W \ (A1 [ · · · [A

p

). Then

I 2W \ (A0 [ · · · [A
k�1 [A

k

)

for each k = 1, . . . , p and since I /2 A
k

it follows from the inductive definition
above that for i = 1, 2, . . . , p there exists T

i

2 A
i

such that the left boundary
point of T

i

is to the left of (or equal to) the left boundary point x of I. But
then since all these intervals are open, points just to the right of this boundary
point x are contained in I as well as in T

k

, k = 1, 2, . . . , p. This contradicts the
assumption that the intersection multiplicity of W is at most p.

Proof if N = S1. If N = S1 then choose some x 2 S1 and let I1, . . . , Ir

be
intervals inW which contain x. Then r  p. Since S1\{x} ' (�1, 1) ⇢ [�1, 1] it
follows from the previous case thatW\{I1, . . . , Ir

} can be disjointly decomposed
into collections A1, . . . , Ap

of disjoint intervals. Then W = A1 [ · · · [ A
p

[
[

k=1,...,r

{I
k

} has the desired properties.

Lemma 3.1. Let f 2 NF 1+bv [ NF 1+Z and {T0, T1, . . . , Tm�1} a collection
of intervals in N with intersection multiplicity p and assume that none of these
intervals contains points of C(f). Then there exists V <1 such that

m�1
X

i=0

log B(f, T
i

, J
i

) � �V

for all subintervals J
i

of T
i

.

Proof. If f 2 NF 1+Z then the lemma follows immediately from Lemma 2.1.
So assume that f 2 NF 1+bv. For each x

i

2 C(f), let U(x
i

) be an open interval
neighbourhood of x

i

on which f is of the form f(x) = �
↵

i

��
i

(x)+f(x
i

), where
�
↵

i

(x) = ±|x|↵i and ↵
i

� 1. Here �
i

: U(x
i

) ! (�1, 1) is a homeomorphism
and log |D�

i

| exists almost everywhere and has bounded variation. Hence V 0 =
P

i ; x

i

2C(f) V ar(log |D�
i

|) is finite. Let U = [
x

i

2C(f)U(x
i

) and let V be a
neighbourhood of C(f) such that int (N \V)[ int (U) = N . Then the restriction
of log |Df | to N \V exists almost everywhere and log |Df | has bounded variation
on this set. So let

V
f

= V ar (log [|Df |(N \ V) ]) <1

and let I1 = {0  i  m � 1 ; T
i

\ V = ;} and I2 = {0  i  m � 1 ; T
i

⇢
U and i /2 I1} and I3 = {0, 1, . . . ,m� 1} \ (I1 [ I2). By definition if i 2 I3 the
set T

i

contains a component of U \ V.
First assume that i 2 I1. Let L

i

and R
i

be the components of T
i

\ J
i

.
For u

i

, v
i

2 T
i

let (u
i

, v
i

) be the open interval connecting u
i

and v
i

. Because
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Df exists almost everywhere there exist m
i

2 J
i

, l
i

2 L
i

, r
i

2 R
i

and t
i

2 T
i

such that Df exists in these points and such that
|f(J

i

)|
|J

i

| � |Df(m
i

)|, |f(T
i

)|
|T

i

| �

|Df(t
i

)|, |f(L
i

)|
|L

i

|  |Df(l
i

)| and
|f(R

i

)|
|R

i

|  |Df(r
i

)|. Using this in the definition

of B(f, T
i

, J
i

) we find that there exist l
i

2 L
i

, r
i

2 R
i

, m
i

2 J
i

and t
i

2 T
i

such
that

(3.4) log B(f, T
i

, J
i

) � log
✓

|Df(m
i

)||Df(t
i

)|
|Df(l

i

)||Df(r
i

)|

◆

,

where

(3.5) m
i

2 (l
i

, r
i

).

From (3.4) and the choice of the points l
i

, m
i

, r
i

, t
i

one has

(3.6)
log B(f, T

i

, J
i

) � �{| log |Df(m
i

)|� log |Df(l
i

)| |
+ | log |Df(t

i

)|� log |Df(r
i

)| |}

and also

(3.7)
log B(f, T

i

, J
i

) � �{| log |Df(m
i

)|� log |Df(r
i

)| |
+ | log |Df(t

i

)| � log |Df(l
i

)| |}.

Rename the points l
i

, m
i

, r
i

, t
i

in increasing order a
i

, b
i

, c
i

, d
i

. From (3.5) one
gets that either (l

i

, m
i

) \ (t
i

, r
i

) = ; or (t
i

, l
i

) \ (m
i

, r
i

) = ;, and so we can use
either (3.6) or (3.7) and get

(3.8)

log B(f, T
i

, J
i

) � �{| log |Df(b
i

)|� log |Df(a
i

)| |
+ | log |Df(d

i

)|� log |Df(c
i

)| |}
� �V ar(log |Df |T

i

|) where T
i

⇢ N \ V.

Now consider i 2 I2. Then T
i

is contained in some component U(x
i

) of U
(and does not intersect C(f)) and so f has the form f(x) = �

↵

i

� �
i

+ f(x
i

)
where �

↵

i

and �
i

are as above. Hence

B(f, T
i

, J
i

) = B(�
↵

i

, T 0
i

, J 0
i

)⇥B(�
i

, T
i

, J
i

).

Here T 0
i

= �
i

(T
i

) and J 0
i

= �
i

(J
i

). Because ↵
i

� 1, the Schwarzian derivative of
�
↵

i

is less or equal to 0. Hence B(�
↵

i

, T 0
i

, J 0
i

) � 1 and therefore

(3.9)
log B(f, T

i

, J
i

) � 0 + log B(�
i

, T
i

, J
i

)

� �V ar(log |D�
i

|T
i

|).

Finally, if i 2 I3 then T
i

contains a component of U \ V. It is not hard to
see that in this case there exists a universal constant K <1 such that

(3.10) log B(f, T
i

, J
i

) � �K if T
i

contains a component of U \ V.
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Since the intersection multiplicity of {T0, . . . , Tm�1} is at most p, using Propo-
sition 3.1, one can write this collection as the union of A1, . . . , A2p

where A
j

consists of a collection of mutually disjoint intervals. Hence from (3.8), (3.9)
and (3.10) one gets

m�1
X

i=0

log B(f, T
i

, J
i

) � �2p ·

0

@V
f

+
X

x

j

2C(f)

Var(log |D�
j

|) + K

1

A .

The lemma follows.

Lemma 3.2. For each f 2 NF 1+Z [ NF 1+bv there exists A1 > 0 with the
following property. If J, T are intervals with cl (J) ⇢ int (T ) and L and R the
components of T \ J such that

1. |L|  |J | or |R|  |J | and

2. J \ C(f) = ;,

then
B(f, T, J) � A1.

Proof. By possibly renaming L and R, we may consider the case that |R|  |J |.
It is easy to show that there exists a universal number A0 > 0 such that for all
such intervals

(3.11)
|f(J)|/|J |
|f(R)|/|R| � A0.

Hence, in this case,

B(f, T, J) � |f(T )|
|f(L)| ·

|L|
|T | ·A0 � A0 ·

|L|
|T | .

If |L| � |J | then it follows from this and |R|  |J | that B(f, T, J) � A0 ·
|L|

|L|+|J|+|R| � A0 · |L|
|L|+|L|+|L| = A0 · 1

3 � A1 and the lemma is proved. So assume
that |L|  |J |. Then exactly as before,

(3.12)
|f(J)|/|J |
|f(L)|/|L| � A0.

Writing d = ( |J||J||R||L| )/( |J||R| + |J|
|L| ) and using (3.11) and (3.12),

B(f, T, J) =
|f(J)|
|f(R)| + |f(J)|

|f(R)|
|f(J)|
|f(L)| + |f(J)|

|f(L)|
|J|
|R| + |J|

|R|
|J|
|L| + |J|

|L|
� A0 + A2

0 · d
1 + d

.

Proof of the Macroscopic Koebe Principle. Let m0  m be the smallest
number such that |fm0(L)| � ⌧ |fm0(J)| and |fm0(R)| � ⌧ |fm0(J)|. Let A1 be
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the number from Lemma 3.2 and assume A1 < 1. Let V > 0 be the number
from Lemma 3.1. Let

B00 = [A1]3p#C(f)+1 · e�V .

We claim that
B(fm0 , T, J) � B00.

Indeed, let t(1) < t(2) < · · · < t(s) < m0 be the integers t < m0 such that
f t(T )\C(f) 6= ;. Since the intersection multiplicity of {T, f(T ), . . . , fm�1(T )}
is at most p one gets s  3p#C(f). From the choice of m either |f t(i)(L)| 
⌧ |f t(i)(J)|  |f t(i)(J)| or |f t(i)(R)|  ⌧ |f t(i)(J)|  |f t(i)(J)|. So from Lemma
3.2

B(f, f t(i)(T ), f t(i)(J)) � A1.

From Lemma 3.1
X

{jm0�1,j /2{t(1),...,t(s)}}
log B(f, f j(T ), f j(J)) � �V.

Hence the claim follows. From the claim and the definition of the operator B
the theorem easily follows.

4 Some Simplifications and the Induction As-

sumption

We shall prove Theorem A by induction on the number of turning points of f .
Let Ad be the collection of all continuous endomorphisms of N with precisely d
turning points. We will prove inductively that

(Ind
d

)
maps in

d

[

i=0

⇣

Ai \ (NF 1+Z [NF 1+bv)
⌘

have no wandering intervals.

Because the proof of Theorem A goes by induction on the number of turning
points we have to consider a more general situation: the manifold N is not
necessarily connected (but does consist of a finite number of components). As
before we say that f : N ! N is l-modal if f has l turning points in N .

We should note that allowing N to be disconnected does not give a more
general result. Indeed, if a map f : N ! N then one of the connected compo-
nents N 0 of N is periodic of period s and if f : N ! N has a wandering interval
then one can choose N 0 so that the map fs : N 0 ! N 0 also has a wandering
interval. Therefore, if we prove the theorem for connected manifolds we also
get the same theorem for non-connected manifolds. However, if f has d turning
points, the map fs may have more than d turning points. This is the main
reason to we allow N to be disconnected because then Ind

d�1 can be restated
as follows: if there exists a finite disjoint union of intervals which is invariant by
f and contains a wandering interval then the union of these intervals contains
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at least d turning points.This implies that we can ‘decompose the interval’ in
disconnected pieces.

By extending f to a slightly bigger interval we may assume that

f(@N) ⇢ @N.

It su�ces to prove the theorem for maps f such that none of the turning points
is contained in (the closure) of a wandering interval. Indeed, otherwise f also
has a wandering interval W containing a turning point c in its interior. Now
modify the map f in a small neighbourhood V ⇢ W of c to a map g such that
f = g on N \ V for which g|V has a unique turning point in c and g(c) is not
contained in a wandering interval. Then f(W ) is still a wandering interval for g
(the forward iterates of f(W ) under f and g are the same because these iterates
never enter W ) and g(c) is not contained in a wandering interval of g. Repeating
this procedure for every wandering interval which contains a turning point in its
closure we get a map g which still has wandering intervals but such that none
of its turning points is contained in the closure of a wandering interval. So it
su�ces the prove the theorem for g.

Furthermore, for each turning point c of f there exists a neighbourhood S
c

of c and a continuous involution ⌧ : S
c

! S
c

such that f(⌧(x)) = f(x) and
⌧(x) 6= x for all x 2 S

c

\ {c}. Since the critical point is non-flat for each map in
NF 1+bv [NF 1+Z the involution ⌧ is Lipschitz.

Before getting involved in the rather technical properties of the pullbacks
which we will introduce in the next section, let us, as an entertainment, illustrate
this notion with some pictures. This discussion is not going to be used in the
next sections, so these pictures can be skipped by the reader who does not like
pictures.

Fig. 4.1: A flow on a branched manifold.

We are going to consider a flow on a two-dimensional branched manifold, an
interval I in this manifold which is a section of this flow and a map f which is
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the first return map to I. For example, in Figure 4.1, we represent a flow on
a branched manifold with boundary whose first return map to I is a unimodal
map. The interval I is precisely the set of branch points (on the left hand side
of I we have two pieces of surfaces that meet tangentially at I with just one
piece of surface on the right hand side). The flow has a saddle point s. The two
horizontal arrows near the saddle point indicates that the contracting eigenvalue
dominates the expanding eigenvalue at s so that the orbits passing near s get
strongly contracted towards the unstable separatrix as indicated. Both unstable
separatrices intersect I at the critical value f(0) through di↵erent branches.

Fig. 4.2: A flow on a branched manifold which corresponds to a multimodal map.

Fig. 4.3: An embedding of the flow from Figure 4.1 in a branched manifold without

corners.

Notice that we can represent in the same way any map using one saddle
point for each turning point and as many ‘layers’ meeting tangentially at I as
the number of pre-images of points. The inflection points correspond to pairs of
saddles as indicated in Figure 4.2. The branched manifold B0 of Figure 4.1 has a
boundary but it can be embedded in a branched manifold B without boundary
as in Figure 4.2. B is consists of a cylinder and a Möbius strip which touch
each other tangentially at two lines, one containing I and the other containing
s. The shadowed area is part of B0 in B. The complement is the ‘imaginary
part’.

As Mañé (1985) observed, Theorem III.5.1 implies that the question of den-
sity of Axiom A for interval maps can be reduced to the following conjecture:
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Conjecture: Let f : N ! N be a C1 map and assume that the !-limit set of
a critical point contains a critical point. Then we can increase the number of
critical points in the forward orbit of some critical point by an arbitrarily small
perturbation of the map in the C1 topology.

Note that this conjecture is in the same direction as the proof of Jakobson’s
C1 Density Theorem III.2.2, see also Exercise III.2.4. We see that in terms of
the flow generating the corresponding map, this corresponds to creating a saddle
connection by a small perturbation of the flow. So this conjecture would be an
extension to branched manifolds of Peixoto’s theorem for flows on orientable
surfaces, see Palis and de Melo (1982, Chapter 4).

5 The Pullback of Space: the Koebe/Contraction

Principle

In this section we will start the proof of the non-existence of wandering intervals
for maps in NF 1+Z [ NF 1+bv. This will be proved by contradiction. More
precisely, suppose that J is a wandering interval and that J is not contained in
a larger wandering interval. The strategy of the proof is to show that in this case
an interval I needs to exist which strictly contains J such that inf

n�0 |fn(I)| =
0. For simplicity we shall write

J
n

= fn(J).

Using the next principle, which also can be found in Lyubich (1989), it follows
that I is a wandering interval (since fn(J) does not converge to a periodic orbit
the same holds for fn(I)), contradicting the maximality of J .

Contraction Principle 5.1. If I is an interval such that inf
n�0 |fn(I)| = 0

then I is a wandering interval or there exists a periodic orbit O such that
fk(I) ! O as k ! 1. In particular, if I contains a wandering interval J then
it is also a wandering interval.

Proof. Let I = [
n�0fn(int (I)). Clearly I is forward invariant. First suppose

that there exists a component U of I and n > 0 such that fn(U)\U 6= ;. Since
I is forward invariant this implies fn(U) ⇢ U . There are three cases.

1. U is an interval which contains a fixed point p of fn : U ! U in its
interior. In this case some iterate of I contains this fixed point of fn in its closure
and since inf

k�0 |fk(I)| = 0 this fixed point of fn attracts I, fk(I) ! O(p) as
k !1. So we are finished in this case.

2. U is an interval and there exists no fixed point as in 1. Then cl (U)
contains in its boundary an attracting fixed point p of fn : cl (U) ! cl (U).
If fn(U) 6= U then for every x 2 cl (U) one gets fkn(x) ! p as k ! 1.
If fn(U) = U then the boundary point {q} = @U \ {p} is a repelling periodic
point and inf

k�0 |fk(I)| = 0 implies that no iterate of I contains q in its closure.
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Since every point in int (U) is asymptotic to p under iterates of fn this implies
that fkn(x)! p for x 2 I as k !1. Again the result follows.

3. U is a circle. Since U is a union of iterates of I, there exists a finite
collection n1 < · · · < n

r

of positive integers such that
S

r

i=1 fn

i(int (I)) covers
S1. But since inf

n�0 |fn(I)| = 0 this implies that there exist an integer n > n
r

such that fn(I) is strictly contained in fn

i(int (I)) for some i = 1, . . . , r. But
then fn�n

i has an attracting fixed point in fn

i(int I) which attracts I. So again
the result follows.

Now assume that for every component U of I one has fn(U) \ U = ; for
all n � 1. Since I is forward invariant and this holds for each component, this
implies that fn(U) \ fm(U) = ; for all n > m � 0. It follows that U and
therefore I is a wandering interval (or asymptotic to a periodic orbit).

Definition. The pullback of P
n

� J
n

is the sequence of intervals {P
i

; i =
0, 1, . . . , n} where P

i�1 is the maximal interval containing J
i�1 such that

f(P
i�1) ⇢ P

i

.

for each i = 1, . . . , n. The integers i for which P
i

contains a turning point in its
closure are called the cutting times. It will turn out to be useful to call n also a
cutting time. This pullback is monotone if fn|P0 is monotone and fn(P0) = P .
Furthermore it is said to be di↵eomorphic if fn|P0 is a di↵eomorphism and
fn(P0) = P and unimodal if P

i

contains at most one turning point for each i.

In Figure 5.1 we represent the unimodal pullback and in Figure 5.2 the
monotone pullback of an interval. The horizontal line segments in these pictures
represent pieces of I.

Fig. 5.1: The unimodal pullback.

All the pullbacks we will consider are unimodal because of the following
lemma:
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Fig. 5.2: The multiimodal pullback.

Lemma 5.1. There exists ⌘ > 0 such that if P
n

� J
n

and |P
n

|  ⌘ then the
pullback of P

n

is unimodal.

Proof. Follows from the Contraction Principle and since by assumption no
wandering interval contains two turning points.

Next we formulate the basic principle which we shall use in the proof of
Theorem A. This principle states that the pullback of an ✏-scaled neighbourhood
of J

n

has high intersection multiplicity if n is large. Using some combinatorial
information we shall prove that this intersection multiplicity is not always large,
thereby showing that wandering intervals cannot exist.

Contraction/Koebe Principle 5.2. For each ✏ > 0 and each p 2 N there
exists N0(✏, p) with the following properties. Let P

n

� J
n

contain a ✏-scaled
neighbourhood of J

n

. If the pullback of P
n

has intersection multiplicity  p
then n  N0(✏, p).

Proof. Let ⇢ = min(✏, 1/2) and P̂
n

⇢ P
n

be a ⇢-scaled neighbourhood of J
n

.
Let m(0) < m(1) < · · · < m(`) = n be the cutting times of the pullback of P

n

.
Since the intersection multiplicity of the pullback is  p, `  p · d, where d is
the number of turning points of f . Let P̂±

i

be the components of P̂
i

\ J
i

. For
t = 0, . . . , ` � 1, let P̂+

m(t) be the component which contains the turning point.
Now the map

fn�m(`�1)+1 : P̂
m(`�1)+1 ! P̂

n

is monotone. Since P̂
n

is a ⇢-scaled neighbourhood of J
n

it follows from the
Macroscopic Koebe Principle that both components of P̂

m(`�1)+1 \ J
m(`�1)+1

have length at least B0(⇢). From this and the non-flatness of the turning points
we get that there exists a universal constant C 2 (0, 1) such that

|P̂�
m(`�1)| � C ·B0(⇢) · |J

m(`�1)|.
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Because P̂
m(`�1) is symmetric around a turning point, we also have that |P̂+

m(`�1)| �
|J

m(`�1)|. Therefore

|P̂±
m(`�1)| � C ·B0(⇢) · |J

m(`�1)|.

Repeating this `  p · d times we get, letting g(x) = C ·B0(x), that

|P̂±
0 | � g`(⇢) · |J |.

Hence there exists an interval P which does not depend on n and which strictly
contains the wandering interval J such that |fn(P )|  (1 + 2⇢)|J

n

|  2|J
n

|
for each n as above. Now if there exists no upper bound N0(✏, p) for n then
we would get |fn

i(P )|  2|J
n

i

| ! 0 for some sequence n
i

! 1 and since P
contains J this would imply from the Contraction Principle that P is also a
wandering interval. But this contradicts the maximality of J .

6 Disjointness of Orbits of Intervals

In this section we will give some upper bounds on the intersection multiplic-
ity of orbits of intervals. These bounds are needed in order to apply the
Macroscopic Koebe Principle. Let J

n

= fn(J) where J is the wandering in-
terval from above. We will define a natural neighbourhood T

n

of J
n

such that
its monotone pullback has good disjointness properties. (For those familiar
with the circle homeomorphisms these neighbourhoods will coincide with the
neighbourhood [fq

k�2(J), fq

k�2+(a
k

�1)q
k�1(J)] of fq

k(J) when n = q
k

and with
[fq

k�2+(i�1)q
k�1(J), fq

k�2+(i+1)q
k�1(J)] of fq

k�2+iq

k�1(J) when n = q
k�2+iq

k�1

and 1  i  a
k

� 1.)

Definition. We say that J
n1 and J

n2 = fk(J
n1) have the same orientation

if fk is orientation preserving. If n 2 N, we say that J
k

is a predecessor of
J

n

if 0  k < n, if J
k

and J
n

have the same orientation and if J
s

⇢ (J
k

, J
n

)
and 0  s < n implies that J

s

and J
n

have di↵erent orientations. If J
n

has a
predecessor to its left (right) then we denote the corresponding iterate by L(n)
(respectively R(n)). Finally, J

n

has a successor J
n+a

if

1. J
n�a

is predecessor of J
n

(with 0 < a  n)

2. fa|[J
n�a

, J
n+a

] is monotone, orientation preserving, and its image con-
tains no predecessor of J

n

(if L(n) and R(n) both exist and if for example
n � a = L(n) then this implies that fa[J

n�a

, J
n

] ⇢ [J
n

, J
R(n)) where

a = n� L(n));

3. if J
k

⇢ (J
n

, J
n+a

) and k = 0, 1, . . . , n + a � 1 then the intervals J
k

and
J

n+a

have di↵erent orientations.

Next we define the natural neighbourhood T
n

of J
n

to be the biggest open interval
containing J

n

which contains no neighbourhood of a predecessor or successor.
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Remark. Of course J
n

can have at most one predecessor on each side and it
has a predecessor to its right if there exists an interval J

s

with s < n to the right
of J

n

with the same orientation as J
n

. Moreover, as we will see in the lemma
below, an interval J

n

has at most one successor; so denote this successor by
J

s(n). Therefore, if J
n

has two predecessors and no successor then the natural
neighbourhood T

n

of J
n

is equal to T
n

= [J
L(n), JR(n)] and if it has a successor

then it is equal to

T
n

= [J
L(n), Js(n)] or T

n

= [J
s(n), JR(n)].

Lemma 6.1. For every n 2 N, J
n

can have at most one successor.

Proof. Suppose that J
n

had two successors. Then it also has two predeces-
sors, J

L(n) and J
R(n). By definition fn�L(n) : [J

L(n), Jn

] ! [J
n

, J
R(n)] and

fn�R(n) : [J
n

, J
R(n)] ! [J

L(n), Jn

] are both monotone. Hence J is attracted to
a periodic point, a contradiction.

Lemma 6.2. Assume that the interval J
n

has two predecessors J
L(n), J

R(n),
and a successor J

s(n). If this successor is to the right of J
n

then the predecessors
of J

s(n) are J
n

and J
R(n) and if J

s(n) has a successor then this successor must
be again to the right of J

s(n).

Proof. The left predecessor of s(n) (or rather of J
s(n)) is n (i.e., J

n

) by defini-
tion of s(n). The right predecessor of s(n) is certainly defined because J

R(n) and
J

s(n) have the same orientation and R(n) < n < s(n). Let us show that R(n)
is this predecessor. If this was not the case then there exists k < s(n) so that
J

k

⇢ (J
s(n), JR(n)) and so that J

k

and J
s(n) have the same orientation. Because

of the definition of R(n) this implies certainly that k > n. Because k < s(n)
this implies that 0  k � n < s(n) � n = n � L(n) and L(n) + k � n < n.
From the first of these two inequalities and the definition of s(n) it follows that
fk�n is monotone and orientation preserving on H = [J

L(n), Jn

]. In particular
J

L(n)+k�n

has the same orientation as J
n

. From this, from the definition of
L(n) and R(n) and from the second of these inequalities it follows J

L(n)+k�n

cannot be between J
L(n) and J

R(n). Hence,

fk�n(H) � [J
L(n), Jk

] � [J
n

, J
s(n)] = fn�L(n)(H).

In particular, f (n�L(n))�(k�n) maps fk�n(H) monotonically into itself, and
hence H and therefore J would be attracted to a periodic attractor, a con-
tradiction.

Let us finally show that s(n) cannot have a successor to its left. Indeed if it
did, then by definition fs(n)�R(n) would map [J

s(n), JR(n)] monotonically into
[J

n

, J
s(n)]. From the definition of s(n), fs(n)�n maps [J

n

, J
s(n)] monotonically

into [J
s(n), JR(n)]. Combining this would again give that J is attracted to a

periodic attractor. With this contradiction the proof of this lemma is completed.
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Remark. The previous lemma implies that if J
n

has a successor J
s(n) and J

s(n)

also has a successor J
s(s(n)) then s(n) � n = a = s(s(n)) � s(n) and J

s(n) is
between J

n

and J
s(s(n)). Continuing this there exists a maximal integer k such

that J
s

i+1(n) is a successor of J
s

i(n) for i = 0, 1, . . . , k � 1. In this case the
intervals

J
s(n), Js(s(n)), . . . , J

s

k(n)(n)

lie ordered and fa|[J
n

, J
s

k(n)] is monotone. So fa acts as a translation on these
intervals.

Theorem 6.1. Let n 2 N and assume that J
n

has two predecessors J
R(n) and

J
L(n). Let M

n

� J
n

be an open interval contained either in [J
n

, J
R(n)] or in

[J
L(n), Jn

]. Assume that {M
t0 , Mt0+1, . . . ,Mn

} is a monotone pullback of M
n

.
If the intersection multiplicity of this collection is at least 2p and p � 2 then
there exists t 2 {t0, . . . , n} such that 1. J

s(t), J
s

2(t), . . . , Js

2p�2(t) are defined;
2. n = sp(t) and J

s

j(t) is contained in M
n

for j = p, . . . , 2p� 2.

Corollary 6.1. If the pullback of an interval T � J
n

, where T is contained in
the natural neighbourhood T

n

, is monotone then the intersection multiplicity of
this pullback is at most 11. Similarly, if T � J

n

and sk(n) does not exist then
the monotone pullback of T has at most intersection multiplicity 2k + 4.

Proof of Corollary: Consider the pullback of T \[J
n

, J
R(n)] and T \[J

L(n), Jn

]
separately. If the intersection multiplicity of T is at least 12 then the pullback
of either T \ [J

n

, J
R(n)] or T \ [J

L(n), Jn

] has intersection multiplicity � 6. So
take p = 3 and the previous theorem implies that p + 1  2p � 2 and J

s(n)

is contained in T \ [J
n

, J
R(n)], which is impossible since T ⇢ T

n

. The second
statement follows also immediately. (Note that 2k + 4 � 6 for k � 1.)

Proof of Theorem 6.1: In order to be definite assume that M
n

⇢ [J
n

, J
R(n)].

By assumption there exists a point y which is contained in at least 2p of the
intervals M

t0 , . . . ,Mn

. Of course this implies that for at least p of these intervals
M

i

the corresponding intervals J
i

lie on the same side of y. So let N � p be
the maximal number of distinct integers t  i(1), . . . , i(N)  n such that each
of the intervals M

i(1), . . . ,Mi(N) contains this point y, all J
i(j) lie on one side of

y and are labeled such that

[J
i(1), y] � [J

i(2), y] � · · · � [J
i(N), y].

Since M
i

has a common endpoint with J
i

this implies that the intervals J
i(1), . . . , Ji(N)

all have the same orientation.

Claim 1: i(1) < i(2) < · · · < i(N) and we may assume that i(N) = n.
Furthermore, J

i(1) cannot be contained in f t(M
i(1)) for t = 1, . . . , i(N)� i(1) if

f t is orientation preserving on M
i(1). In particular if we take a = i(N)�i(N�1)
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then fa maps [J
i(1), Ji(N�1)] (which is contained in M

i(1)) monotonically into
(J

i(1), Ji(N)].

Proof of Claim 1: For j 2 {2, 3, . . . , N} the interval J
i(j) is contained in

[J
i(j�1), y] ⇢ M

i(j�1) and J
i(j) and J

i(j�1) have the same orientation. Since
fn�i(j�1) : M

i(j�1) !M
n

⇢ [J
n

, J
R(n)] is monotone this implies that the inter-

val J
i(j)+n�i(j�1) has the same orientation as J

n

and is between J
n

and J
R(n).

Since J
R(n) is a predecessor of J

n

this implies that i(j) + n � i(j � 1) > n
and consequently i(j) > i(j � 1). Let us show that we may assume that
i(N) = n. Indeed from what we have shown fn�i(N) is monotone on M

i(j)

for j = 1, . . . , N . In particular letting i0(j) = i(j) + (n� i(N)), and taking the
images of these intervals under this map we get that M

i

0(1), . . . ,Mi

0(N) all con-
tain one point y0, J

i

0(j) all lie on one side of y0 and that these are labeled so that
[J

i

0(1), y] � [J
i

0(2), y] � · · · � [J
i

0(N), y]. Since i0(N) = n we may as well assume
that i(N) = n. The first statement of the claim follows and it follows that fa

is monotone and orientation preserving on M
i(1) � [J

i(1), Ji(N�1)]. Now J
i(1)

cannot be contained in f t(M
i(1)) = M

i(1)+t

for t = 1, . . . , i(N) � i(1) because
otherwise J

i(N)�t

would be contained in M
i(N) = M

n

and would have the same
orientation as J

n

. But this is impossible because M
n

⇢ [J
n

, J
R(n)] and J

R(n) is
a predecessor of J

n

.

Claim 2: If J
k

and J
n

have the same orientation where k < n and if J
k

⇢
[J

i(1), Jn

] then k 2 {i(1), i(2), . . . , i(N)}. Furthermore, if we let a = i(N) �
i(N � 1) then i(j + 1)� i(j) = a for j = 1, 2, . . . , N � 1.

Proof. Let j < n be maximal such that J
k

⇢ [J
i(j), y] ⇢ M

i(j). Then fn�i(j)

maps J
k

into M
n

. Because J
k

, J
i(j) and J

n

all have the same orientation, it
follows that J

k+n�i(j) also has the same orientation. This implies that k �
i(j). Suppose k > i(j). If M

k

6� J
n

then M
k

⇢ M
i(j) and fk�i(j) maps

M
i(j) monotonically into M

k

⇢ M
i(j). This implies that J is attracted by a

periodic orbit, a contradiction. Hence, M
k

6� J
n

and by the maximality of
N , k 2 {i(0), . . . , i(N)}. This proves the first statement of the claim. From
Claim 1, fa maps [J

i(1), Ji(N�1)] monotonically and orientation preservingly
into (J

i(1), Ji(N)]. It follows from this and the first part of this claim that
i(j) + a = i(j + 1) for j = 1, . . . , N � 2. Thus Claim 2 is proved.

Define i(N +j) = n+j ·a for j = 1, . . . , N . As we have shown in the previous
claim this formula holds for j negative. So we get

i(N + j) = n + j · a for j = �N + 1,�N + 2, . . . , N � 1, N.

Now consider the interval
H = [J

i(1), Ji(N)].

The map fn�i(1) = f (N�1)a maps H ⇢M
i(1) monotonically and orientation pre-

servingly into M
n

⇢ [J
n

, J
R(n)]. In particular fa maps [J

i(1), Ji(2N�2)] monoton-
ically and orientation preservingly onto [J

i(2), Ji(2N�1)]. Therefore J
i(j) lies be-

tween J
i(j�1) and J

i(j+1) for |j|  N�2. Furthermore, if f t(H)\ [J
i(1), JR(n)] 6=
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; for some t = 1, . . . , (N � 1)a then f t|H is either orientation reversing or t is
a multiple of a. Indeed, assume that f t|H is orientation preserving and that
this intersection is non-empty. By Claim 1, f t(H) ⇢ f t(M

i(1)) does not contain
J

i(1). So f t(J
i(1)) must be contained in [J

i(1), JR(n)]. But f t(J
i(1)) ⇢ f t(H) can-

not be contained in [J
n

, J
R(n)] since J

R(n) is a predecessor of J
n

. So f t(J
i(1)) ⇢

[J
i(1), Jn

] and it follows from the previous claim that t must be a multiple of a.
Furthermore, consider J

k

for k < n and with the same orientation as J
n

. This
interval cannot be contained in [J

i(1), Jn

] (see Claim 2) and neither in [J
n

, J
R(n)]

from the definition of J
R(n). Combining all this shows that the only intervals

J
k

inside [J
i(1), JR(n)] for k  i(2N � 1) with the same orientation as J

n

are
intervals of the form k = i(1)+ j ·a. It follows that J

i(j+1) is a successor of J
i(j)

for j = 1, . . . , 2N � 2.

7 Wandering Intervals Accumulate on Turning

Points

In this section we are going to prove that the !-limit set of a wandering in-
terval contains at least one turning point and thus prove that the induction
hypothesis Ind0 holds. From this it follows in particular that maps without
turning points, e.g. circle homeomorphisms in NF 1+bv [NF 1+Z , cannot have
wandering intervals. So the proof in this section implies the classical result of
Denjoy.

Suppose we have a map f : N ! N with a wandering interval J whose
iterates stay outside a neighbourhood of the turning points of f . Then we can
modify the map f near these turning points without a↵ecting the orbit of J . So
change f such that each maximal interval on which f is monotone is mapped by
f onto a component of N . Once we have done this we may assume that every
pullback is monotone.

Proposition 7.1. There exists n0 2 N such that the following holds. If J
n

where n � n0 has two predecessors J
L(n) and J

R(n) and |J
R(n)| > |J

n

| and
|J

L(n)| > |J
n

| then J
n

has a successor and |J
s(n)| < |J

n

|.

Remark. Suppose for example that J
s(n) is to the right of J

n

. Then Lemma
6.2 implies that the interval J

s(n) has two predecessors, namely J
n

and J
R(n)

and that it has no left successor. From the proposition above it follows that the
assumptions of this proposition are again satisfied for J

n

0 where n0 = s(n). So
one can apply the proposition infinitely often!

Proof. Let n0 = N0(1; 11) be as in the Koebe/Contraction Principle and let
n � n0. Suppose s(n) is not defined and let T

n

= [J
L(n), JR(n)] be the natural

neighbourhood of J
n

. By the Corollary of Theorem 6.1 the monotone pullback
of T

n

has intersection multiplicity bounded by 11. Because |J
L(n)|, |JR(n)| �
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|J
n

| this contradicts the Koebe/Contraction Principle. Hence s(n) is defined.
From Lemma 6.2 L(s(n)) = n and R(s(n)) = R(n). Furthermore, s(n) has
no left successor. Now the natural neighbourhood of J

n

is T
n

= [J
L(n), Js(n)]

and again by the Corollary to Theorem 6.1 the monotone pullback of T
n

has
intersection multiplicity bounded by 11. Since |J

L(n)| > |J
n

| it follows from the
Koebe/Contraction Principle that |J

s(n)| < |(J
n

, J
s(n)]| < |J

n

|.

Theorem 7.1. If f 2 NF 1+Z [ NF 1+bv and f has a wandering interval J ,
then the !-limit set of J contains a turning point.

Proof. Let us first show that !(J) cannot have finite cardinality. Indeed oth-
erwise !(J) would contain a periodic point p of, say, period k and there would
exist a neighbourhood U of p such that U \ !(J) = {p}. Furthermore, there
exist a neighbourhood V ⇢ U of p such that fk(V ) ⇢ U and an integer n0 for
which J

n

0 ⇢ V and such that J
n

⇢ V whenever n � n0 and J
n

\ U 6= ;. Since
fk(V ) ⇢ U this implies by induction that J

n

⇢ V [ f(V ) [ · · · [ fk�1(V ) for
all n � n0 and therefore that !(J) = O(p). Hence !(J) would be attracted to
a periodic orbit, a contradiction.

Therefore, and since all intervals J
i

are disjoint, there exist arbitrarily large
integers l, r < n such that J

l

, J
r

, J
n

are in the same component of N , have the
same orientation, J

n

⇢ (J
l

, J
r

), such that

|J
n

|  min(|J
l

|, |J
r

|)

and, for i = 0, 1, . . . , n� 1,

J
i

⇢ (J
l

, J
r

) implies that J
i

has a di↵erent orientation

(from the intervals J
l

, J
r

, J
n

). Assume that l, r, n are bigger than the number n0

from above. It follows that J
l

and J
r

are the predecessors of J
n

. So we can apply
Proposition 7.1 and hence J

n

has infinitely many successors J
s

k(n), k = 1, 2, . . . .
From the description in Lemma 6.2, all these successors are contained in [J

l

, J
r

].
They either all lie to the right of the previous one or all to the left. Moreover
sk(n)� sk�1(n) is independent of k. It follows that as k tends to infinity these
intervals J

s

k(n) converge to a fixed point of fa where a = s(n)� n. Hence this
fixed point is an attracting fixed point with J in its basin. But this shows that
J was not a wandering interval after all, a contradiction.

Now we know that iterates of wandering intervals cannot stay away from
turning points. In order to analyze the metric properties of iterates of a wan-
dering interval we will pay special attention to the moments where the iterates
get closest to some turning point. This is formalized in the following definition.
Let, as in Section 4, S

c

be a neighbourhood of a turning point c of f on which
the involution ⌧ is defined.
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Definition. Let c be a turning point in !(J), let m � n and assume that
J

n

⇢ S
c

. Then we say that J
n

is the m-closest approach to c if (J
n

, ⌧(J
n

)) \
([

im

J
i

) = ;. Similarly, J
n

is the closest approach to c if it is the n-closest
approach to c. Now fix a turning point c in !(J) and let N(c) be the collection
of integers i 2 N with

J
i

⇢ S
c

and [J
i

, ⌧(J
i

)]
\

0

@

[

0j<i

J
j

1

A = ;.

From now on let
N(c) = {n(1), n(2), . . . }

where n(1) < n(2) < . . . . We call J
n(1), Jn(2), . . . the sequence of closest ap-

proach to c.

Lemma 7.1. If J
n(k) has a successor J

s(n(k)) then s(n(k)) = n(k + 1) and
J

n(k+1) is between J
n(k) and c. Furthermore, if there exists an integer j such

that s(j) and s2(j) = s(s(j)) are both defined and such that j < n(k) < s(j)
then

n(k + 1) = s(n(k)).

Proof. In order to be definite assume that J
n(k) is to left of c. Since J

n(k) is
a closest interval to c, any predecessor of J

n(k) to its right must also be to the
right of c. Therefore c 2 [J

n(k), JR(n(k))] and there can be no successor of J
n(k)

to its left. Hence if J
n(k) has a successor then it must be to its right and because

fs(n(k))�n(k)|[J
L(n), Js(n)] is monotone it even must be between J

n(k) and c. So
if s(n(k)) 6= n(k + 1) then n(k + 1) < s(n(k)). Consider H = [J

L(n(k)), Jn(k)]
and let a = n(k) � L(n(k)) = s(n(k)) � n(k). Then f2a is monotone on H
and a > n(k + 1) � n(k). Since L(n(k)) + n(k + 1) � n(k) < n(k) the inter-
val J

L(n(k))+n(k+1)�n(k) ⇢ fn(k+1)�n(k)(H) is not contained in [J
n(k), ⌧(Jn(k))]

whereas by assumption J
n(k+1) ⇢ fn(k+1)�n(k)(H) is contained in this inter-

val [J
n(k), ⌧(Jn(k))]. It follows that either J

n(k) or ⌧(J
n(k)) is contained in

fn(k+1)�n(k)(H). Hence for t = a � (n(k + 1) � n(k)) one has 0 < t < a
and

(⇤) f t(J
n(k)) ⇢ fa(H) = [J

n(k), Js(n(k))] ⇢ [J
n(k), c].

Since J
s(n(k)) is the successor of J

n(k) this implies that f t is orientation reversing
on H. So J

L(n(k))+t

is to the right of J
n(k). But since L(n(k)) + t < n(k) this

interval cannot be contained in [J
n(k), ⌧(Jn(k))]. Therefore, and because of (⇤),

f t(H) contains c; this contradicts the monotonicity of fa|H and proves the first
statement of the lemma.

Let us now prove the second statement. According to the first part it is
enough to show that s(n(k)) is defined. Now let a = s(j)� j then L(j) = j� a,
s(j) = j + a and s(s(j)) = j + 2a. Since fa is monotone on [L

j�a

, L
j+2a

] and
n(k)�j < s(j)�j = a it follows that J

n(k) is contained in T = [J
n(k)�a

, J
n(k)+a

]
and that fa is monotone on T . Furthermore, there is no predecessor of J

n(k) in
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fa(T ) because otherwise there would be a predecessor of J
j+a

in fa([L
j

, L
j+2a

]),
contradicting that s2(j) exists. So Properties 1 and 2 of the definition of the
successor of J

n(k) hold. Finally there is also no interval J
t

in [J
n(k), Jn(k)+a

]
with t < n(k) + a and with the same orientation as J

n(k) because J
t+(s(j)�n(k))

would have the same orientation as J
s(j) and be contained in [J

s(j), Js(j)+a

],
contradicting the definition of s2(j).

8 Topological Properties of a Unimodal Pull-

back

As before let Ad be the collection of all endomorphisms of N in A with f(@N) ⇢
@N and with precisely d turning points. From now on we will assume

(Ind
d�1)

maps in
d

[

i=0

⇣

Ai \ (NF 1+bv [NF 1+Z)
⌘

have no wandering intervals.

and try to show that this implies Ind
d

. So assume that f contains a wandering
interval J . As we have shown in the previous section we may assume that J
accumulates onto some turning point c. Throughout this section we will consider
properties of the unimodal pullback of two intervals. The first of these is the
interval Q

n(k) � J
n(k) not containing a turning point of f such that

f(Q
n(k)) = [f(J

n(k�1)), f(J
n(k+1))].

The second, and larger one contains c and is defined by

Q̂
n(k) = Q

n(k) [ [J
n(k+1), ⌧(Jn(k+1))].

Let us give an outline of the remainder of the proof of Theorem A first.
The reader might at this point also find it helpful to read Section II.6 where a
proof of a unimodal version of Theorem A is given. As in the proof of Theorem
II.6.2, it will first be shown that k 7! |J

n(k)| is monotone and decreasing. The
main tools for this are the Koebe/Contraction Principle and Theorem 8.3 be-
low which shows that the intersection multiplicity of the unimodal pullback of
Q

n(k) is universally bounded. Once we know this, we get that Q̂
n(k) contains

a universally scaled neighbourhood of J
n(k) for each k su�ciently large. If the

pullback of the interval Q̂
n(k) only meets the turning points finitely often then it

will follow from Theorem 8.4 below that one has enough disjointness. Therefore
the Koebe/Contraction Principle will again give a contradiction in this case. So
the di�cult case is when the number of visits of the pullback to turning points
is unbounded as k goes to infinity. Fortunately, in this case we will have

1. the turning points are visited in a periodic way, see Theorem 8.1 below
(this follows from the induction hypothesis);
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2. there exists a monotone pullback on a rather big interval around J
n(k),

see Theorem 8.2.

From this Theorem A will follow. The results in this section are essentially due
to Lyubich (1989) and Blokh and Lyubich (1989d).

So let us first show that the intervals from the pullback of Q̂
n(k) meet the

turning points in a periodic way. This fact is based on the induction assumption
that maps with less than turning points have no wandering intervals.

Structure Theorem 8.1. Let f be a map as above with d turning points and
with a wandering interval J . Let n(k) be as above and let P

n(k) � J
n(k) be an

interval which is contained in Q̂
n(k). Let m(0) < m(1) · · · < m(`) = n(k) be

the cutting times of its unimodal pullback P0, . . . , P
n(k) and let c

j

denote the
turning point in P

m(j). Then we have the following properties.

1. If i 2 {0, . . . , `� d} then J
m(i) is a m(i + d)� 1 closest approach to c

i

;

2. If i 2 {`� d + 1, . . . , `} then J
m(i) is a n(k) closest approach to c

i

;

3. c
i

= c
i+d

for i = 0, . . . , `� d and {c
`�d+1, . . . , c`} are distinct;

4. If J
m(i)+j

⇢ (J
m(i), ⌧(Jm(i))), i 2 {0, . . . , `�1} and m(i) < m(i)+j  n(k)

then P
m(i)+j

⇢ [J
m(i), ⌧(Jm(i))].

5. P
m(i+d) ⇢ [J

m(i), ⌧(Jm(i))] ⇢ P
m(i) for i = 0, 1, . . . , ` � d and therefore

fm(i+d)�m(i) maps P
m(i) into itself;

Proof of 4: If Statement 4 does not hold then the closure of J
m(i) is contained in

the interior of P
m(i)+j

. So the closure of J
m(i)+n(k)�(m(i)+j) is contained in the

interior of P
n(k). From the definition of P

n(k) this implies m(i)+n(k)�m(i)�j �
n(k) and therefore j  0, a contradiction.

Proof of 1 and 2: Let us just prove Statement 1. Statement 2 is proved in ex-
actly the same way. Suppose by contradiction that there exists l 2 {0, . . . ,m(i+
d) � 1} such that J

l

⇢ (J
m(i), ⌧(Jm(i))). Then J

l+n(k)�m(i) = fn(k)�m(i)(J
l

) ⇢
fn(k)�m(i)(P

m(i)) ⇢ P
n(k) and l 6= m(i). Hence l > m(i). From Statement 4

we know that P
l

⇢ P
m(i). So f l�m(i) maps P

m(i) into P
l

⇢ P
m(i). Because

l < m(i+d) the map f : [l�m(i)�1
t=0 f t(P

m(i))! [l�m(i)�1
t=0 f t(P

m(i)) has at most
d � 1 turning points. Since J

m(i) is a wandering interval of this map, we get a
contradiction with the induction hypothesis.

Proof of 3: Suppose there are i� d < j  i  s with c
i

= c
j

. From Statement
1 we get that J

m(i) and J
m(j) are both m(j + d) closest approaches to c

i

= c
j

.
Hence because m(i), m(j) < m(j + d) this implies i = j. Since f has precisely
d turning points one gets that c

`�d+1, . . . , c` are distinct and that c
i

= c
i+d

for
i 2 {0, . . . , `� d}.

Proof of 5: The proof of Statement 5 follows immediately from the other
statements.
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The following theorem shows that we can even take monotone pullbacks of
intervals which contain topologically rather large sets. A unimodal version of
this theorem was already used in Guckenheimer (1979).

Monotone Extension Theorem 8.2. Let P
n(k) = Q̂

n(k) and consider the
unimodal pullback {P0, P1, . . . , P

n(k)} of P
n(k) � J

n(k). Let m(0) < m(1) <
. . . < m(`) = n(k) be the cutting times of this pullback (i.e., the integers when
the pullbacks meet a turning point) and let c

i

be the turning point in P
m(i). Let

H
m(i) � J be the maximal interval such that fm(i) is monotone on H

m(i). Let
R

m(i) be the component of P
m(i) \ J

m(i) which contains c
i

and let L
m(i) be the

other component. If the number ` of cutting times of the pullback is at least
d + 1 then

fm(i)(H
m(i)) � [L

m(i), ci

],

fm(i�1)(H
m(i)) � [L

m(i�1), ci�1)

and
fm(i)�m(i�1)(L

m(i�1)) ⇢ L
m(i)

for i = 0, 1, . . . , `� d.

Proof. Let us first show that

(⇤) fm(i+1)�m(i)(P
m(i)) � [J

m(i+1), ci+1]

for i = 0, 1, 2, . . . , `�d. Suppose by contradiction that there exists i 2 {0, 1, . . . , `�
d} with P

m(i+1) � fm(i+1)�m(i)(P
m(i)) 63 c

i+1. By Statement 5 of the previous
theorem fm(i+d)�m(i) maps P

m(i) into itself. Now fm(i+1)�m(i)(P
m(i)) 63 c

i+1

implies that

T =
m(i+d)�m(i)�1

[

t=0

f t(P
m(i))

does not contain c
i+1. Hence f maps T into itself and has at most d�1 turning

points. Since J ⇢ P
m(i) it follows from the induction hypothesis that J is not a

wandering interval, a contradiction. This proves (⇤). Furthermore

(⇤⇤) fm(i+1)�m(i) : L
m(i) ! L

m(i+1) is monotone and onto

for i = 0, 1, 2, . . . , `� d because otherwise there exists such an integer i with

fm(i+1)�m(i)(R
m(i)) = L

m(i+1)

and then as before

T =
m(i+d)�m(i)�1

[

t=0

f t(R
m(i) [ J

m(i))

contains as most d� 1 turning points and f maps this interval into itself. Since
J is contained in T this contradicts the induction hypothesis. It follows from (⇤)
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and (⇤⇤) that fm(i+1)�m(i) maps [L
m(i), ci

] monotonically over [L
m(i+1), ci+1].

The theorem clearly follows.

Next we give two results about the disjointness of unimodal pullbacks of
intervals in Q

n(k) and in Q̂
n(k). The first result deals with the unimodal pullback

of Q
n(k).

Theorem 8.1. Let m(0) < m(1) < · · · < m(`) = n(k) be the cutting times of
the unimodal pullback of Q

n(k). Then

1. `  d� 1;

2. for every 0  j  ` either s(m(j)) or s2(m(j)) is not defined;

3. the intersection multiplicity of the unimodal pullback of Q
n(k) is univer-

sally bounded (in fact by 12d).

Proof. Suppose by contradiction that ` � d. By Statement 5 of Theorem 8.1
it follows that Q

m(`) = Q
n(k) is contained in Q

m(`�d). Hence f maps

[m(`)�m(`�d)�1
t=0 f t(Q

m(`�d))

into itself and since Q
n(k) contains no turning point this map has at most

d� 1 turning points. This contradicts Ind
d�1. So let us prove Statement 2 by

assuming by contradiction that there exists j 2 {0, 1, . . . , `} for which s(m(j))
and s(s(m(j)) are defined. Because m(j) is n(k)-closest we get s(m(j)) > n(k).
Hence from Lemma 7.1 we get that n(k + 1) = s(n(k)) and s(n(k)) � n(k) =
s(j) � j. Because the closure of J

s(m(j)) is contained in Q
m(j) we get that the

closure of J
n(k+1) = fn(k)�m(j)(J

s(m(j))) is contained in fn(k)�m(j)(Q
m(j)) ⇢

Q
n(k) which contradicts the definition of Q

n(k). So let us prove Statement
3. From Statement 2 and the Corollary of Theorem 6.1 it follows that the
intersection multiplicity of {P

m(j), . . . , Pm(j+1)} for j = �1, 0, 1, . . . , `�1 (where
we let m(�1) = 0) is bounded by 11. Since `  d� 1 the theorem follows.

Theorem 8.2. Assume n(k) > n(k � 1) + (n(k � 1) � n(k � 2)). Let m(0) <
m(1) < · · · < m(`) = n(k) be the cutting times of the unimodal pullback of
Q̂

n(k) and let ` � 2d. Then s(n(k � 1)) = s(m(` � d)) and sl(m(j)) are both
not defined if j 2 {` � ld, . . . , ` � ld + d � 1} and l � 2. Furthermore, if
j 2 {`� ld, . . . , `� ld + d� 1}, the intersection multiplicity of

{Q̂
m(j), . . . , Q̂m(j+1)}

is bounded by 4 + 2l. Similarly the intersection multiplicity of

{Q̂0, Q̂1, . . . , Q̂
m(0)}

is bounded by 4 + 2[`/d].
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Proof. Let us show that s(n(k�1)) is not defined. Indeed, otherwise we would
have J

n(k�2) ⇢ [J
L(n(k�1)), Jn(k�1)) and n(k) = s(n(k � 1)). Therefore, for

a = n(k)� n(k � 1) = s(n(k � 1))� n(k � 1),

J
n(k�2)+a

⇢ [J
n(k�1), Jn(k)).

But since n(k�2)+a < n(k�1)+a = n(k) this implies that n(k�2)+(n(k)�
n(k � 1)) = n(k � 2) + a must be equal to n(k � 1) and this contradicts the
assumption of the theorem.

Let us show that if l � 2 and j 2 {`� ld, . . . , `� ld + d� 1} then sl(m(j)) is
not defined. So suppose by contradiction sl(m(j)) exists. We claim that then
si+1(m(j)) > n(k � 1) > si(m(j)) for some i = 0, 1, . . . , l � 1. Indeed, since
m(0) < n(k�1) we may otherwise assume that sl�1(m(j)) < n(k�1). But then
J

m(j+(l�1)d) is the (l � 1)-th successor of J
m(j) and, again by Lemma 7.1, the

successor of J
m(j+(l�1)d) must be between J

m(j+(l�1)d) and c
j

. By Statement
2 of Theorem 8.1 this implies that sl(m(j)) > n(k � 1). This proves the claim.
Hence Lemma 7.1 and si+1(m(j)) > n(k�1) > si(m(j)) imply that s(n(k�1))
exists and so we get a contradiction. The disjointness statements immediately
follow from the Corollary of Theorem 6.1.

9 The Non-Existence of Wandering Intervals

In Section 7 we have proved Ind0 and so Theorem A follows from

Ind
d�1 ) Ind

d

.

So let us assume that Ind
d�1 holds and by contradiction assume that there

exists a map f 2
⇣

Ad \ (NF 1+bv [NF 1+Z)
⌘

which has a wandering interval
J . Moreover, assume that J is maximal in the sense that J is not contained
in any strictly larger wandering interval. From the Contraction Principle this
implies that

|H
n

|
|J | ! 1 if n!1

where H
n

is the maximal interval containing J on which fn is monotone.
From Section 7 we know that J accumulates at a turning point, say c. Con-

sider the sequence of closest approach to c, {J
n(k)}k�0.

Theorem 9.1. There exists k0 such that for all k � k0

n(k)� n(k � 1)  n(k � 1)� n(k � 2).

Corollary 9.1. J is not a wandering interval.
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Proof of Corollary: Since n(k) � n(k � 1)  n(k � 1) � n(k � 2) it follows
that n(k) � n(k � 1) is eventually equal to some integer a for all k su�ciently
large. In particular, since J

n(k�1) and J
n(k) tends to c it follows that c is an

attracting fixed point of fa and J is in the basin of this fixed point. Hence J is
not a wandering interval.

Proof of Theorem 9.1: Since the intervals J
n(k) are disjoint there exist

arbitrarily large k such that |J
n(k�1)| > |J

n(k)|. Let Q
n(k) be as before. If

|J
n(k)| < |J

n(k+1)| then |J
n(k±1)| > |J

n(k)|. Because f is non-flat at the critical
point c this implies that Q

n(k) is a (1/2)-scaled neighbourhood of J
n(k) (if k is

large). By Theorem 8.3 the intersection multiplicity of the unimodal pullback of
Q

n(k) is at most 12d and therefore the Koebe/Contraction Principle shows that
n(k) is bounded. This gives a contradiction. So we have shown that k 7! |J

n(k)|
is monotone decreasing for k large.

Let us now show that n(k)  n(k � 1) + (n(k � 1) � n(k � 2)) for k large.
So assume by contradiction n(k) > n(k � 1) + (n(k � 1)� n(k � 2)). Consider
the unimodal pullback of Q̂

n(k). If `  2d then from Theorem 8.4 the inter-
section multiplicity of {Q̂0, . . . , Q̂

n(k)} is uniformly bounded. Because Q̂
n(k)

contains a 1/2-scaled neighbourhood of J
n(k) this gives a contradiction with the

Koebe/Contraction Principle.
This implies that for k large the number of cutting times ` is at least

2d + 1. Now let L
i

and R
i

be as in Theorem 8.2. From Theorem 8.2 and
for j = 1, 2, . . . , `� d, there exists an interval H � J which is mapped by fm(j)

monotonically onto [L
m(j), cj�d

]. We claim that fm(j)(H) does not contain
⌧(J

m(j)). Indeed, since Theorem 8.2 gives

fm(j)(H) � [L
m(j), cm(j)]

one would otherwise have

fm(j)(H) � [L
m(j), ⌧(Jm(j))].

If we take j 2 {` � 2d, . . . , ` � d} then s2(m(j)) does not exist by Theorem
8.4, and since fm(j) is monotone on H we can apply the Corollary of Theo-
rem 6.1 and the intersection multiplicity of H, f(H), . . . , fm(j)(H) is at most
8. Furthermore, from the definition Q̂

n(k), [L
m(j), cj�d

] contains [J
m(j�d), cj

]
or it contains [⌧(J

m(j�d)), cj

]. Since the length of the closest approach intervals
decreases one has |J

m(j�d)| > |J
m(j)| and therefore fm(j)(H) contains a 1/2-

scaled neighbourhood of fm(j)(J). Therefore we get a contradiction with the
Koebe/Contraction Principle and this proves the claim.

Now let F
m(j) = [J

m(j), ⌧(Jm(j)]. By definition fm(j)|H is monotone and by
Theorem 8.2, fm(j�1)(H) � [J

m(j�1), cj�1) and fm(j)�m(j�1) maps [J
m(j�1), cj�1)

monotonically over [J
m(j), cj

]. By the previous claim, the image of [J
m(j�1), cj�1)

under this map is contained in F
m(j) and therefore we get

fm(j)�m(j�1)(F
m(j�1)) ⇢ F

m(j)
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for all j 2 {`� 2d, . . . , `� d}. In particular,

fn(k�1)�n(k�2)(F
n(k�2)) ⇢ F

n(k�1).

Hence
J

n(k�1)+(n(k�1)�n(k�2)) ⇢ [J
n(k�1), ⌧(Jn(k�1))].

Since n(k� 1)+ (n(k� 1)�n(k� 2)) > n(k� 1) and J
n(k) is a closest approach

this gives n(k � 1) + (n(k � 1)� n(k � 2)) � n(k), a contradiction.

10 Finiteness of Attractors

In this section we will prove Theorem B. If f : N ! N is a di↵eomorphism then
the period of periodic orbits of f is bounded. So Theorem B holds trivially
in this case. So from now on assume that f is not a di↵eomorphism and that
f 2 NF 1+z. Of course some points in C(f) may be attracted by periodic orbits
so let n̂ be an upper bound for the periods of these attracting orbits.

In this section we have to show that one has some expansion near periodic
orbits. For this it will be convenient to consider the orientation preserving
period of a periodic orbit. More precisely let O be a periodic orbit of period
k > n̂ and larger than, say, 300. Then p 2 O implies Dfk(p) 6= 0. Let n = 2k
if Dfk(p) < 0 and n = k otherwise.

The main idea of the proof of Theorem B is to choose p 2 O and get points
✓1 and ✓2 on both sides of p very close to p, with Dfn(✓i) � 1 + 2⇢. Using the
Minimum Principle we will get Dfn(p) � 1 + ⇢ for large n and we are done.

For p 2 O let us define T
p

to be the maximal open interval such that both
components of T

p

\ {p} contain at most one point of O. (So the closure of T
p

contains at most 5 points of O.) The interval T
q

, q 2 O, is a direct neighbour of
T

p

if T
q

\ T
p

= ; and cl (T
p

) and cl (T
q

) have one point in common).

Lemma 10.1. There exists a number ⌧ > 0 such that for each periodic orbit O
of period � max(n̂, 300) there exists p 2 O such that: 1) T

p

has direct neighbours
on both sides; 2) |T

q1 | � 2⌧ |T
p

| and |T
q2 | � 2⌧ |T

p

| where T
q1 and T

q2 are the
two direct neighbours of T

p

.

Proof. Let s 2 O be such that i) #(cl (T
s

) \ O) = 5 and ii) |T
s

|  |T
q

| for
all q with #(cl (T

q

) \ O) = 5. If T
s

has neighbours on both sides then we
take p = s and we are done. Otherwise N = [�1, 1], and then let T l and
T r be the smallest open intervals containing points of respectively {�1} and
{1} such that #(cl (T l) \ O) = #(cl (T r) \ O) = 5. Because T

s

has no two
neighbours we have either T

s

⇢ T l or T
s

⇢ T r. Since the interval cl (T
s

)
contains five points of O, and n is at most twice the period of p, there are at
most 5 ⇥ 2 ⇥ (5 + 5) = 100 integers t, 0  t  n such that f t maps a point in
cl (T

s

) \ O into a point of cl (T r) [ cl (T l) \ O. So there exists a 0  t  101
such that f t(cl (T

s

) \ O) is between T l and T r. Let p be the middle point of
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f t(cl (T
s

) \O). Let S = max{1, sup
x2N

|Df(x)|}. Since T
p

⇢ f t(T
s

), we get

|T
p

|  |f t(T
s

)| 
✓

sup
x2N

|Df(x)|
◆

t

|T
s

|  St|T
s

|.

As t  101 and |T
s

|  |T
q

i

|, i = 1, 2 the lemma follows.

Let p 2 O be the point from Lemma 10.1 and as before let n be the period
or twice the period of p. Let U

n

be the 2⌧ -scaled neighbourhood around T
p

. So
U

n

⇢ T
q1 [T

p

[T
q2 . Let J be the maximal interval around p for which fn maps

J orientation preservingly into U
n

. Let J l and Jr be the components of J \ {p}
and let U i

n

be the component of U
n

\ {p} which contains J i for i 2 {l, r}. Let n̂
be as in the beginning of this section.

Lemma 10.2. If n > n̂ then J ⇢ T
p

and fn(J i) � J i for i = l, r.

Proof. We claim that J \ P consists of at most 2 points. Indeed, take I to
be the maximal interval containing p such that @I ⇢ P and such that fn|I is
a di↵eomorphism. Since f is not a di↵eomorphism, I is an interval (i.e. not
equal to S1). Then fk|I is di↵eomorphism for all k � 0 and since I is maximal,
f i(I) \ I 6= ; implies that f i(I) = I. In particular the boundary points of I
(which are in P ) cannot be mapped into int (I) and so I contains at most two
points of P . (This argument also shows that if I contains two points of P then
fn interchanges these two points.) This proves the first inclusion. If the second
inclusion does not hold then fn(J i) ⇢ J i and a critical point of f is attracted
by a periodic orbit of period n. This implies n  n̂.

The main step in the proof of Theorem B is the following

Proposition 10.1. There exist a number ⇢ > 0 and an integer n0 such that if
the number n corresponding to p is greater than n0 then there exist ✓i 2 J i, i =
l, r, such that

Dfn(✓i) � 1 + 2⇢.

Remark. Let ⌧ be the number from Lemma 10.1. If there exists ✓i 2 J i with
Dfn(✓i) � 1 + ⌧ then we are done with J i. So from now on we may assume
that

(⇤) 0 < Dfn(x) < 1 + ⌧, 8x 2 J i.

By the previous lemma, for n > n̂ and i = l, r we know that J i ⇢ fn(J i) ⇢ U i.
Then fn(J i) = U i is impossible because otherwise

|fn(J i)|
|J i| � 2⌧ |T

p

|+ |J i|
|J i| � (1 + 2⌧),
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a contradiction with (⇤). Hence in this case

fn(J i)!
6=
⇢U i.

Let {U0, . . . , Un

} be the di↵eomorphic pullback of U
n

� fn(J): U
i

is the maxi-
mal interval containing f i(J) which is mapped by f di↵eomorphically into U

i+1.
Since fn|J is a di↵eomorphism this is well defined and U

k

� fk(J). Furthermore
from the maximality of J one has U0 = J .

Lemma 10.3. 1. There is a universal upper bound for the intersection mul-
tiplicity of the di↵eomorphic pullback {U0, U1, . . . , Un

} of U
n

� fn(J) (in
fact it is at most 74);

2. For every ✏ > 0 there exists n0 2 N such that if n > n0 then |U
k

|  ✏ for
all k = 0, 1, . . . , n.

Proof. Let U
k(1) \ · · · \ U

k(r) 3 x with k(1) < · · · < k(r)  n. Because
fn�k(U

k

) ⇢ int [T
q1 , Tq2 ] and f(U

k

) ⇢ U
k+1 we get that

fn�k(r)(x) 2 U
k(1)+n�k(r) \ · · · \ U

n

.

Therefore #{k ; U
k

\ int [T
q1 , Tq2 ] 6= ;} � r. Hence statement 1) follows from

#{ k ; U
k

\ int [T
q1 , Tq2 ] 6= ; }  74

which we will prove now. Note that int [T
q1 , Tq2 ] contains 11 points of O. So

there are at most 22 integers 0  k < n such that fk(p) 2 int [T
q1 , Tq2 ]. Hence

there are at most 22 integers 0  k < n such that U
k

⇢ int [T
q1 , Tq2 ]. Let

we need to show that there are at most 52 integers 0  k < n such that
U

k

\ @[T
q1 , Tq2 ] 6= ;. So let a and b be the boundary points of [T

q1 , Tq2 ], so
a, b 2 O. If U

k

is not contained in int [T
q1 , Tq2 ] but has a non-empty intersection

with this set then fn�k(a) or fn�k(b) 2 int [T
q1 , Tq2 ]. Because cl ([T

q1 , Tq2 ])
contains only 13 points of O, there exist at most 2 ⇥ 2 ⇥ 13 = 52 integers
0  k < n with this property. This completes the proof of the inequality and
finishes the proof of Statement 1). Statement 2) follows from the Contraction
Principle and the fact that U

k

contains at most 5 points of O.

Proof of Proposition 10.1: Let C > 0 be so that if T � I are intervals, f |T
is a di↵eomorphism and f(T ) is a ✏-scaled neighbourhood of f(I) then T is a
(C · ✏)-scaled neighbourhood of I. Since f is non-flat at its critical points such
a constant exists.

Let m(1) < m(2) < · · · < m(`) be the ‘cutting’ times of the pullback, i.e., the
integers for which U

j

contains a turning point in its closure. Let L
j

and R
j

be
the components of U

j

\f j(J i) and J i

j

= f j(J i) and let R
m(k) be the component

which contains c
k

in its boundary. Now U
n

contains a ⌧ scaled neighbourhood of
fn(J i). Since fn�m(`)+1 : U

m(`)+1 ! U
n

is a di↵eomorphism it follows from the
Macroscopic Koebe Principle that there exists a positive function B0 : R! R+
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(which only depends on f and the intersection multiplicity 74 from Lemma
10.3) such that U

m(`)+1 contains a B0(⌧)-scaled neighbourhood of J i

m(`)+1. If
U

m(`) also contains a C · B0(⌧)-scaled neighbourhood of J i

m(`) we repeat this
procedure and we get from the Macroscopic Koebe Principle that U

m(`�1)+1

contains a B0(g(⌧))-scaled neighbourhood of J i

m(`�1)+1 where g is the function
g(x) = C ·B0(x). U

m(`�1) contains a C ·B0(g(⌧)) = g2(⌧)-scaled neighbourhood
of J i

m(`�1) then we repeat this procedure. Since U = J this procedure must stop
however. Say it stops at m(r) where r  ` and then (by the definition of C
above)

|R
m(r)| < gr(⌧)|J i

m(r)|,

where one has r  74 ·#K
f

, since intersection multiplicity is at most 74.
Now let M 0 be the middle third interval of J i

m(r) and M ⇢ J i be such that
fm(r)(M) = M 0. From the Macroscopic Koebe Principle, see Theorem 3.3, J i is
a �-scaled neighbourhood of M . From Lemma 10.3, |U

k

| is small if n is large. So
we can apply the Second Expansion Principle, see Theorem 2.2, and get some
universal constant ⇠ > 0 such that

B(f, fm(r)(J i), M 0) � 1 + ⇠.

Let � be such that (1� �)2(1 + ⇠) � 1 + 1
2⇠. From the disjointness property of

the orbit of J i we get
B(fm(r), J i, M) � 1� �,

B(fn�m(r)�1, fm(r)+1(J i), f(M 0)) � 1� �,

for n large enough. Hence,

B(fn, J i, M) � 1 +
1
2
⇠,

for n large enough. Because of the First Expansion Principle, see Theorem 1.3,
it su�ces to show that the length of both components of J i\M is at least � ·|J i|.
But since fn�m(r)�1 has bounded distortion on f(J i

m(r)), since f is non-flat at
critical points and since the components of J i

m(r) \M 0 have the same length as
M 0, there exists a universal constant � such that the length of both components
of fn(J i \M) = fn�m(r)(J i

m(r) \M 0) is at least � · |fn(J i)|. However, by Lemma
10.2, fn(J i) � J i and by assumption |Dfn|  1 + ⌧ on J i. It follows that both

components of J i \M have at least size
�

1 + ⌧
· |J i|.

Proof of Theorem B

Let n be the period or twice the period of the periodic orbit O as before. Assume
that n > n0 where n0 is as in Proposition 10.1. So there exist two points ✓1, ✓2

such that p 2 T = [✓1, ✓2],

Dfn(✓i) � 1 + 2⇢, i = l, r,
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For n large, |f i(T )| is small for all i 2 {0, 1, . . . , n} and the orbit has intersection
multiplicity  74. Therefore we get

[B(fn, T ⇤, J⇤)]3 � 1 + ⇢

1 + 2⇢

for all intervals J⇤ ⇢ T ⇤ ⇢ T , provided n is large. Now applying the Minimum
Principle,

|Dfn(x)| � [inf B(fn, T ⇤, J⇤)]3 · (1 + 2⇢) � 1 + ⇢

for all x 2 T . So Dfn(p) � 1 + ⇢. This proves Theorem B.

11 Some Further Remarks and Open Questions

In this chapter we have shown that wandering intervals do not exist for NF 1+Z

maps satisfying some non-flatness conditions. Furthermore, the examples by
Denjoy (1932), Hall (1981), Sarkovskii and Ivanov (1983) and de Melo (1987)
show that for continuous piecewise monotone maps this result cannot be im-
proved much more.

Using Theorem A one sees that the result of Schwartz (1963) on minimal
sets of flows on surfaces holds also for vector fields for which the holonomy (the
translation along leaves) of the foliations is only C1+Z . A more general result
of Sacksteder (1965) extends the result of Schwartz to pseudo-groups and this
gives a basic result on foliations with codimension-one leaves. The analytical
part of Sacksteder’s proof is exactly the same as the one in Schwartz’s proof and
therefore it requires the generators of the pseudo-group to be C2 or C1+Lipschitz.
So a natural question is whether Sackstedter’s result holds if the generators of
the pseudo-group are merely C1+Z , see also Hurder (1991).

The results in the chapter give a complete description in the smooth case.
Some questions in the non-smooth case remain.

Conjecture: Suppose that f : S1 ! S1 is a homeomorphism such that both f
and f�1 are smooth except in a finite number of points where f can locally be
written in the form x� with � > 0. Then f has no wandering intervals.

The problem with such maps is that the cross-ratio distortion is not bounded
from below at points where f is of the form x� with � 2 (0, 1). Therefore the
method of proof given in this chapter breaks down. Similarly Blokh has asked

whether wandering intervals can exist for unimodal maps f which are smooth
except at their critical point where f(x) is locally of the form f(x) = (x � c)a

for x < c and f(x) = (x � c)b for x > c with a 6= b. In the proof of the
non-existence of wandering interval a local symmetry condition is needed (the
involution ⌧ needs to be Lipschitz), so the proof of Theorem A given above
completely breaks down in this case.

Of course, for maps which are not continuous the situation is quite di↵erent.
For example, as we have seen in Exercise I.2.2, there exists a piecewise a�ne
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interval exchange transformation which has wandering intervals! On the other
hand, an extension of Theorem A might hold for all maps which are analytic
except at, say, two discontinuities. Moreover, it is not clear whether the analogue
of Theorem B of this chapter holds (i.e., the period of attractors is bounded).
Partial results in this direction can be found in Berry and Mestel (1991) and
Martens and de Melo (1992).

In higher dimensions the situation is far more complicated. On a 2-torus,
a C3�✏ di↵eomorphism can have a wandering domain, see McSwiggen (1992).
By contrast, Norton and Velling (1991) have shown that there exists no C1

di↵eomorphism of the torus such that all iterates on some wandering domain
are uniformly quasiconformal. Of course, this last condition is rather strong.
We believe that partial results on the non-existence of wandering domains can
also be obtained for C3 di↵eomorphisms.



Chapter V.

Ergodic Properties and
Invariant Measures

In this chapter we want to study the typical behaviour of orbits. Up till now
we have seen that the topological behaviour of interval maps is quite well un-
derstood: for example if f is a unimodal interval map with negative Schwarzian
derivative and such that the fixed point on the boundary is repelling, then by
Guckenheimer’s theorem, see Theorem III.4.1, there are three possibilities:

1. f has a periodic attractor and then the basin of this attractor is a dense
set in the interval;

2. f is infinitely renormalizable and then there exists a corresponding solenoidal
Cantor set on which f acts as an adding machine, and, furthermore, a
dense set of points is attracted by this Cantor set;

3. f is finitely often renormalizable and f is transitive on some finite union
of intervals ⇤: there exists a dense orbit in ⇤. A dense set of points is
attracted to ⇤ and periodic points appear densely in ⇤.

Now we want to analyze whether we can say something similar about typical
points in the Lebesgue sense and describe the asymptotics of typical orbits in
more metrical detail. The metric analogue of the topological transitivity con-
dition is the notion of ergodicity. As before let N be either the unit circle or
a compact interval. Let B denote the Borel �-algebra of N , i.e., the smallest
�-algebra that contains all the open subsets of N . We say that f : N ! N is
ergodic with respect to a measure µ : B ! [0,1] if for each Borel set A such that
f�1(A) = A we have either µ(A) = 0 or µ(N \A) = 0. A measure µ : B ! [0,1]
is called f -invariant if µ(f�1(A)) = µ(A) for every A 2 B. If µ(N) = 1 we say
that µ is a probability measure. As we will see later, such invariant measures
often describe the relative frequency certain parts of the space are visited by
typical orbits. Since a non-invertible one-dimensional dynamical system usually
has infinitely many periodic points, it also has infinitely many invariant mea-
sures: if p is a periodic point of period n of f : N ! N and �

x

denotes the

317
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Dirac measure at x (i.e., �
x

(A) = 1 if x 2 A and �
x

(A) = 0 otherwise) then
µ = 1

n

P

n�1
i=0 �fi(p) is an invariant probability measure. So it is necessary to look

for further properties in order to select the relevant invariant measures. One
property that reveals, as we will see below, some chaotic or stochastic behavior
of the dynamics is the existence of an invariant measure which is absolutely
continuous with respect to the Lebesgue measure �. A measure µ : B ! [0,1]
is absolutely continuous with respect to the Lebesgue measure �, if for every
A 2 B with �(A) = 0 we have that µ(A) = 0. From the Radon-Nikodym theo-
rem, µ is a finite absolutely continuous measure if and only if it has a density
function � 2 L1(N), i.e., µ(A) =

R

A

� d�.
In this chapter we will almost always confine ourselves to unimodal maps

which satisfy the negative Schwarzian derivative condition. In many cases the
extension to the general case can be achieved with the techniques from Chapter
IV.

In Section 1 we will describe some work of Blokh and Lyubich with extensions
by Martens (1990) about the ergodicity and the (metric) attractors of unimodal
maps. It will be shown that such maps are ergodic and that for each such map
there exists a set C such that the !-limit of Lebesgue almost every x is equal
to C. This set can be of four types. Whether all these types actually occur is
unknown.

The next question to be discussed in this chapter is the existence of ab-
solutely continuous invariant measures for one-dimensional dynamical systems.
Many papers have addressed this question: Adler (1973), Benedicks and Car-
leseon (1985), (1991), Bowen (1977b), (1979), Collet and Eckmann (1983),
Jakobson (1981), Johnson (1986), (1987), Hofbauer and Keller, (1982b), (1990a),
Keller (1987), (1989), Lasota and Yorke (1973) Misiurewicz (1981), Nowicki
and Van Strien (1988), (1991a), Piangiani (1979), (1980), Renyi (1957), Ru-
elle (1977), Van Strien (1990), Rees (1984), (1986), Rychlik (1983), (1988) and
Szlenk (1979). In these papers it was shown that many maps possess such in-
variant measures. In particular, it is proved in Jakobson (1981) that in the
quadratic family, the set of parameter values for which the corresponding map
has an absolutely continuous invariant measure has positive Lebesgue measure.
In this sense, the situation here is similar to the case of one parameter families
of circle di↵eomorphisms where, as we have seen in Chapter I, in many fami-
lies the set of parameter values corresponding to di↵eomorphisms with such an
invariant measure has positive Lebesgue measure.

One motivation for studying the existence of an absolutely continuous invari-
ant probability measure is that it implies chaotic behavior. In fact, Ledrappier,
see also Section 3, has shown that if the interval map f : I ! I has an ab-
solutely continuous invariant probability measure with positive metric entropy
then there exists a subset A ⇢ I of positive Lebesgue measure, such that the
Lyapunov exponent lim 1

n

log |Dfn(x)| exists and is equal to some positive con-
stant for each x 2 A. By a result of Ruelle (1979) this implies that f exhibits
sensitive dependence on initial conditions, i.e., the orbits through nearby points
from a set of positive Lebesgue measure get separated exponentially fast. So,
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for these points, an error on the initial condition propagates exponentially fast
under iteration.

Moreover, as we will show in Section 1 these measures are Sinai-Bowen-
Ruelle. We say that a f -invariant measure µ : B ! [0, 1] is a Sinai-Bowen-Ruelle
measure if there exists a set B ⇢ I of positive Lebesgue measure such that for
any continuous function � : I ! R one has

lim
N!1

1
N

N�1
X

n=0

�(fn(x)) =
Z

� dµ for every x 2 B.

Any measure whose support is an attracting periodic orbit is a Sinai-Bowen-
Ruelle measure. Moreover, as we will show in Section 1, a unimodal map which is
infinitely renormalizable has a Sinai-Bowen-Ruelle invariant probability measure
whose support is the attracting Cantor set.

In Sections 2, 3 and 4 we shall study under what conditions maps have
absolutely continuous invariant probability measures. In Section 2 we will prove
a folklore theorem about the existence of such measures for expanding Markov
maps. In Section 3 we will prove the results of Ledrappier mentioned above and
its converse due to Keller. In Section 4 another very weak condition is given for
the existence of these measures for unimodal maps. In Section 5 we will give a
result due to Hofbauer and Keller (extending work of Johnson) which shows that
the support of Bowen-Ruelle-Sinai measures can be quite unexpected. Finally,
in Section 6 we will give a detailed proof of the result of Benedicks and Carleson
(1991) that for many one-parameter families of unimodal maps, for a positive
set of parameters the corresponding maps have positive Lyapunov exponents.
Combining this with Section 4 we get a result which implies the theorem of
Jakobson mentioned above.

1 Ergodicity, Attractors and Bowen-Ruelle-Sinai

Measures

In this section we will consider unimodal maps f : [�1, 1]! [�1, 1] with a unique
critical point, such that this critical point is non-flat, f has negative Schwarzian
derivative and such that the fixed point of f on the boundary of [�1, 1] is
repelling. (This last condition is in order to avoid silly problems.) The first
result we will prove is that such maps are ergodic. This result is due to Blokh
and Lyubich (1986), (1987), (1989a,b), (1990) and (1991). Recently in Blokh
and Lyubich (1989c) and Lyubich (1990) the same result in the multimodal case
is proved. Since we will confine ourself throughout this chapter to unimodal
maps we will not present the multimodal proof here. As before, we say that f is
ergodic with respect to the Lebesgue measure if each completely invariant set X
(by this we mean f�1(X) = X and certainly not f�1(X) ⇢ X) has either zero
or full Lebesgue measure. An alternative way to define this notion of ergodicity
goes as follows: f is ergodic if for each two forward invariant sets X and Y such
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that X \ Y has Lebesgue measure zero, at most one of these sets has positive
Lebesgue measure. (Here X is called forward invariant if f(X) ⇢ X.)

Exercise 1.1. Prove that these two definitions are equivalent. (Hint: since X\Y has

Lebesgue measure zero, the same holds for B(X) = {x ; fn(x) 2 X for some n � 0}

and B(Y ) and since these last two sets are completely invariant the equivalence of

these two definitions follows.)

Furthermore, we will give several results about attractors of interval maps.
Following Milnor (1985) we say that a closed forward invariant set A is a metric
attractor if the basin B(A) = {x ; !(x) ⇢ A} satisfies

1. the measure of B(A) is positive;

2. each closed forward invariant subset A0 which is strictly contained in A
has a smaller basin of attraction: B(A) \ B(A0) has positive Lebesgue
measure.

Next we will show that such a unimodal map can have at most one attractor.
This result was also first proved by Blokh and Lyubich, see Blokh and Lyubich
(1987). We will prove all these results using a distortion result of Martens (1990)
and also prove his result that the attractor has either Lebesgue measure zero, or
contains intervals. We should point out that a similar result was also obtained
by Guckenheimer and Johnson (1990).

A distortion result for unimodal maps with recurrence

Given a unimodal map f , we say that an interval U is symmetric if ⌧(U) = U
where ⌧ : [�1, 1] ! [�1, 1] is so that f(⌧(x)) = f(x) and ⌧(x) 6= x if x 6= c.
Furthermore, for each symmetric interval U let

D
U

= {x ; there exists k > 0 with fk(x) 2 U};

for x 2 D
U

let k(x, U) be the minimal positive integer with fk(x) 2 U and let

R
U

(x) = fk(x,U)(x).

We call R
U

: D
U

! U the Poincaré map or transfer map to U and k(x, U) the
transfer time of x to U . The distortion result states that one can find a sequence
of symmetric neighbourhoods of the turning point such that the Poincaré maps
to these intervals have a distortion which is universally bounded:

Theorem 1.1. Let f : [�1, 1] ! [�1, 1] be a unimodal map with one non-flat
critical point with negative Schwarzian derivative and without attracting periodic
points. Then there exists ⇢ > 0 and a sequence of symmetric intervals U

n

⇢ V
n

around the turning point which shrink to c such that V
n

contains a ⇢-scaled
neighbourhood of U

n

and such that the following properties hold.
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1. The transfer time on each component of D
U

n

is constant.

2. Let I
n

be a component of the domain D
U

n

of the transfer map to U
n

which does not intersect U
n

. Then there exists an interval T
n

� I
n

such
that fk|T

n

is monotone, fk(T
n

) � V
n

and fk(I
n

) = U
n

. Here k is the
transfer time on I

n

, i.e., R
U

n

|I
n

= fk.

Corollary 1.1. There exists K <1 such that

1. for each component I
n

of D
U

n

not intersecting U
n

, the transfer map R
U

n

to U
n

sends I
n

di↵eomorphically onto U
n

and the distortion of R
U

n

on I
n

is bounded from above by K;

2. on each component I
n

of D
U

n

which is contained in U
n

, the map R
U

n

: I
n

!
U

n

can be written as (fk(n)|f(I
n

))�f |I
n

where the distortion of fk(n)|f(I
n

)
is universally bounded by K.

Proof. Proof of the Corollary Follows immediately from the previous theorem
and the Koebe Principle, see Theorem IV.1.1.
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Fig. 1.1: If the forward orbit of c does not enter U
n

then the transfer map to U
n

is as drawn on the left, otherwise it is as the map on the right. The extension of

the branches is also drawn. Outside U
n

each branch extends monotonically to V
n

.

Inside U
n

each branch, except perhaps a central branch containing c, is mapped by

the transfer map monotonically to U
n

.

Remarks. 1. The Contraction Principle of Section IV.5 tells us that if U
n

and
I
n

are sequences of intervals with |U
n

|! 0 and such that some iterate fk(n) of
f maps I

n

into U
n

, then |I
n

| ! 0. We will use this property several times in
this section.
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2. The collection of maps of the form fk+1|U where U is a neighbourhood of
c, fk+1|U has one extremum and for which fk|f(U) has universally bounded
distortion is called polynomial-like. 3. Because the intervals U

n

shrink to c, for

each point x in the set {x ; !(x) 3 c} and which is not in the backward orbit
of c (i.e., for each x from a set of full measure) the transfer time k(n) tends
to infinity as n ! 1. 4. Martens calls the property described in the previous

theorem the weak Markov property.

All our proofs in this section are based on this result which is due to Martens
(1990). Related results were already proved by Blokh and Lyubich (1986)-
(1990), but they only got a one-sided inequality for the distortion of fn. Guck-
enheimer and Johnson (1990) also have a result similar in spirit to Theorem 1.1.
However, in their result the intervals U

n

and I
n

are constructed using metric de-
cision rules, whereas the collection of intervals U

n

of Theorem 1.1 are determined
by topological properties (in particular if two unimodal maps are conjugate then
the conjugacy sends the intervals U

n

onto corresponding intervals).

Ergodicity and description of attractors

Before proving Theorem 1.1, we will first state some corollaries of this theorem.
All these corollaries, except the last statement in Theorem 1.3 below, were first
proved by Blokh and Lyubich (1986)-(1990). However, Keller (1987), (1989)
and Guckenheimer and Johnson (1990) also obtained similar results.

Theorem 1.2. (Blokh and Lyubich) Let f : [�1, 1]! [�1, 1] be a unimodal
map with a non-flat critical point with negative Schwarzian derivative and with-
out an attracting periodic points. Then f is ergodic with respect to the Lebesgue
measure.

Proof that Theorem 1.2 follows from Theorem 1.1. Suppose that X and
Y are forward invariant sets such that X \ Y has zero Lebesgue measure and
both of these sets have positive Lebesgue measure. We will show that this is
impossible. By Theorem III.3.2, the set C of points whose !-limit contains c
has full Lebesgue measure. Therefore one can take a density point x of X \ C.
By the previous theorem there exist intervals I

n

3 x, U
n

3 c and integers k(n)
such that fk(n) maps I

n

with bounded distortion to U
n

. One has therefore

|U
n

\X|
|U

n

|  |fk(n)(I
n

\X)|
|fk(n)(I

n

)|  K
|I

n

\X|
|I

n

| .

Since x is a density point of X, one has |I
n

\X|
|I

n

| ! 0 (here we use that |I
n

|! 0
which holds because of the Contraction Principle, see Remark 1 above). There-
fore, the last inequality implies that

|U
n

\X|
|U

n

| ! 1 as n!1.
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So the upper density of X at c is one (in Exercise 1.3 below it is shown that c
is in fact a density point of X). Similarly, one has

|U
n

\ Y |
|U

n

| ! 1 as n!1.

But then X \ Y can certainly not have Lebesgue measure zero and thus we get
a contradiction.

Exercise 1.2. Let f be a non-renormalizable unimodal map and X a forward invariant

set. Suppose there are symmetric neighbourhoods U
n

⇢ V
n

of c such that V
n

contains

a �-scaled neighbourhood of U
n

and V
n

\ X ⇢ U
n

and such that |V
n

| ! 0. Show

that X has Lebesgue measure zero. (Hint: as before let C be the set of points whose

!-limit contains c. This set has full Lebesgue measure. For each point of x 2 C \X,

there exists k such that fk(x) 2 V
n

. Let k be the minimal such integer. Let us

first show this implies that there exists an interval T
n

3 x such that fk maps T
n

di↵eomorphically onto V
n

. Indeed, assume by contradiction that the maximal interval

T
n

on which fk is a di↵eomorphism and for which fk(T
n

) ⇢ V
n

would be mapped

strictly inside V
n

. Then there exists some integer i < k such that f i(T
n

) contains

c in its boundary. Since f i(x) /2 V
n

this implies that f i(T
n

) contains a component

of V
n

\ {c}. So fk�i(V
n

) ⇢ fk�i(f i(T
n

)) ⇢ V
n

which contradicts the assumption

that V
n

is non-renormalizable. Consequently, T
n

as above exists. Let S
n

⇢ T
n

be

so that fk(S
n

) = U
n

. From the Macroscopic Koebe Principle T
n

contains a �0-scaled

neighbourhood of S
n

. From the forward invariance of X one gets that T
n

\X ⇢ S
n

and S
n

contains x. Since |T
n

| ! 0, as we saw in Remark 1 above, it follows that x

is not a density point of X \ C. Since C has full Lebesgue measure this implies that

almost no point of X is a density point. Therefore, X has Lebesgue measure zero.)

Exercise 1.3. Let U
n

be the sequence of intervals from Theorem 1.1. In the proof of

Theorem 1.2 it is shown that any forward invariant set X which has positive Lebesgue

measure has the property that

(⇤)
|U

n

\X|

|U
n

|

! 1 as n !1.

So the upper density of X in c is one. Now let ⌧ be the involution such that f(⌧(x)) =

f(x) and ⌧(x) 6= x. Show that if X is a symmetric set, ⌧(X) = X then c is a density

point of X. So prove that (⇤) holds for any sequence of intervals U
n

with c 2 U
n

and |U
n

| ! 0. This result is due to Blokh and Lyubich. (Hint: For an interval I let

⇢(I) = |X \ I|/|I|. Since X has positive Lebesgue measure there exists a density point

x of X whose !-limit contains c. Write x
n

= fn(x) and let x
n(k)

be the sequence of

closest approach. This means that n(0) = 1 and n(k+1) is inductively defined to be the

smallest positive integer l such that x
l

2 (x
n(k)

, ⌧(x
n(k)

)). Let V
n

= (x
n(k)

, ⌧(x
n(k)

)).

As before since x
l

/2 V
n

for l < n(k+1) there exists an interval T
n

3 x such that fn(k+1)

maps T
n

di↵eomorphically onto V
n

. Since x is a density point of X, |T±
n

\ X|/|T±
n

|

tends to 1 for both components T±
n

of T
n

\ {x}. By the one-sided Koebe Principle

from Section IV.1 this implies that the shorter component V 0
n

of V
n

\ fn(k+1)(x) also

satisfies |V 0
n

\X|/|V 0
n

| tends to 1. Now V 0
n

is one of the components of V
n

\V
n+1

. Since

X is symmetric and ⌧ smooth (because the critical point is non-flat) one therefore gets

that ⇢(V
n

\ V
n+1

) ! 1 as n !1. It follows that ⇢(V
n

) ! 1 as n !1 and therefore

c is a density point.)
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Exercise 1.4. Show that any absolutely continuous invariant probability measure µ

of a unimodal map as above has positive metric entropy. This result is due to Blokh

and Lyubich (1990). (Hint: if the metric entropy of the measure µ were zero, then it is

a general result that f would be invertible µ-almost everywhere (i.e., there exists a set

D of full µ measure so that f |D is injective). But this would imply that the support

of µ could have at most density 1/2 at the critical point of f , in contradiction to the

previous exercise.)

Let us now describe the attractors of unimodal maps. In the next result it is
shown that maps as above have a unique attractor and that this set is either an
attracting periodic orbit, or a finite union of intervals or a Cantor set of zero
Lebesgue measure. In order to be more specific we remind the reader that each
such map f can be of three topological types, see Section III.4:

1. f has an attracting periodic orbit;

2. f is infinitely often renormalizable and the closure of the orbit of the crit-
ical point is a Cantor set;

3. f is only finitely often renormalizable and f is transitive on some finite
union of intervals (i.e., there exist orbits which are dense in these inter-
vals).

The next result states that this topological classification coincides with the metric
one in many ways. The first part of this result is due to Blokh and Lyubich
(1986)-(1990) and the last statement is due to Martens (1990).

Theorem 1.3. Let f : [�1, 1] ! [�1, 1] be a unimodal map with a non-flat
critical point c and with negative Schwarzian derivative. Then f has a unique
attractor A, !(x) = A for almost all x and A either consists of intervals or has
Lebesgue measure zero. Furthermore, one has the following:

1. if f has an attracting periodic orbit then A is this periodic orbit;

2. if f is infinitely often renormalizable then A is the attracting Cantor set
!(c) (in which case it is called a solenoidal attractor);

3. f is only finitely often renormalizable then either

a. A coincides with the union of the transitive intervals, or,

b. A is a Cantor set and equal to !(c).

If !(c) is not a minimal set then f is as in case 3.a and each closed forward
invariant set either contains intervals or has Lebesgue measure zero. Moreover,
if !(c) does not contain intervals, then !(c) has Lebesgue measure zero.

Here a forward invariant set X is said to be minimal if the closure of the
forward orbit of a point in X is always equal to X.
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It is not known whether maps with attractors as in case 3.b really do exist.
Such an attractor is called a non-renormalizable attracting Cantor set or absorb-
ing Cantor attractor. (This last terminology was introduced in Guckenheimer
and Johnson (1990).) If such an attractor really can exist then because of the
previous result one has the following strange phenomenon: there exist many
orbits which are dense in some finite union of intervals and yet almost all points
tend to a minimal Cantor set of Lebesgue measure zero (this Cantor set is !(c)).
In Section II.5a we have seen the example of the Fibonacci map which is non-
renormalizable and for which !(c) is a Cantor set. Recently, it was shown by
Milnor and Lyubich (1991) that the quadratic map with this dynamics has no
absorbing Cantor sets. More generally, Jakobson and Świa̧tek (1991a) proved
that maps with negative Schwarzian derivative and which are close to the map
f(x) = 4x(1�x) do not have such Cantor attractors. Moreover, Lyubich (1992)
has shown that these absorbing Cantor attractors cannot exist if the critical
point is quadratic:

Theorem 1.4. (Lyubich) If f : [�1, 1] ! [�1, 1] is C3 unimodal, has a qua-
dratic critical point, has negative Schwarzian derivative and has no periodic
attractors, then each closed forward invariant set K which has positive Lebesgue
measure contains an interval.

On the other hand, computer experiments done by Keller and Nowicki and
also by Lyubich and Milnor indicate that such absorbing Cantor sets can exist
if the critical point is of order 6 or larger.

The next result, which is due to Martens (1990), shows that if these ab-
sorbing Cantor attractors do not exist then one has a lot of ‘expansion’. This
expansion will later on, in Section 3, imply that f induces a Markov map; for
this reason Martens calls Property 3 in the theorem below a Markov property.
Let x not be in the preorbit of c and define T

n

(x) to be the maximal inter-
val on which fn|T

n

(x) is monotone. Let R
n

(x) and L
n

(x) be the components
of T

n

(x) \ x and define r
n

(x) be the minimum of the length of fn(R
n

(x)) and
fn(L

n

(x)). In the next section we shall show that Markov maps have absolutely
continuous invariant probability measures.

Theorem 1.5. (Martens) Let f be a C3 unimodal map with negative Schwar-
zian derivative whose critical point is non-flat. Then the following three prop-
erties are equivalent.

1. f has no absorbing Cantor attractor;

2. lim sup
n!1 r

n

(x) > 0 for almost all x;

3. there exist neighbourhoods U ⇢ V of c with cl (U) ⇢ int (V ) such that for
almost every x there exists a positive integer m and an interval neighbour-
hood T of x such that fm|T is monotone,

fm(T ) � V and fm(x) 2 U.
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Remark. 1. Note the di↵erence of 3) in this theorem with the situation de-
scribed in Theorem 1.1. In contrast to the situation above it is not claimed in
Theorem 1.1 that one can find arbitrary small neighbourhoods of most points
which are mapped with bounded distortion onto a fixed neighbourhood of c. In
fact, in Theorem 1.1 one uses the first return map and in general small intervals
near c are not mapped monotonically onto U

n

by the first return map (this only
happens if c /2 D

U

n

).

2. Martens (1991), has shown that if f is non-renormalizable and !(c) is a
Cantor set then it has a �-finite absolutely continuous invariant measure. If this
measure is finite, then this implies that f has no absorbing Cantor attractor,
see Theorem 1.5 below.

Proofs of Theorem 1.3 and 1.4

Proof that Theorem 1.3 follows from Theorem 1.2 (except the state-
ment that |!(c)| = 0): If f is as in Case 1 or 2 then the theorem follows from
the main result in Section III.4. So let us assume that f is only finitely often re-
normalizable and let ⇤ be the union of the transitive intervals of f . We want to
show that if ⇤ is not an attractor (in the sense defined above) then !(c) must be
an attractor. For this we use the Macroscopic Koebe Principle. Let us quickly
recall this principle. Since f has negative Schwarzian derivative we don’t need
to assume any disjointness conditions as in Chapter IV. Therefore this principle
simply states that for every ✏ > 0 there exist � > 0 and K < 1 such that the
following holds. Let M ⇢ T be intervals in [�1, 1]. If fn|T is monotone and
fn(T ) contains an ✏-scaled neighbourhood of fn(M) then T contains a �-scaled
neighbourhood of M and |Df(x)|/|Df(y)|  K for each x, y 2M . The idea of
the proof of this theorem is to use this Principle to show that if x is a density
point of a forward invariant set X then its iterates are also density points of X
(in a way made precise below).

So let J
n

be a countable collection of open intervals with |J
n

|! 0 and such
that [

n�N

J
n

covers ⇤ for each N 2 N. Furthermore, let C
n

= {x 2 ⇤ ; fk(x) /2
cl (J

n

) for all k � 0}. Clearly C
n

is forward invariant. If we take C = [
n�0Cn

and D = [�1, 1] \ C we get that the orbit of each point in D is dense in ⇤, i.e.,
D = {x ; !(x) = ⇤}. From the description of C and D it follows that C and
D are completely invariant and therefore from the ergodicity of f , either C or
D has full Lebesgue measure. If D has full measure we are finished. So assume
C has full Lebesgue measure. Then one of the sets C

n

has positive Lebesgue
measure. We claim that for each density point of x 2 C

n

one has that !(x) is
contained in the closure O+(c) of the forward orbit of c. Indeed, otherwise there
exist iterates k(i)!1 and � > 0 such that dist(fk(i)(x), O+(c)) � �. Let T

i

be
the maximal interval containing x such that fk(i)|T

i

is monotone. Because all
critical values of fk(i) are contained in O+(c), one has that fk(i)(T

i

) contains a
� neighbourhood of fk(i)(x) for i large. Let T 0

i

be intervals containing x such
that fk(i)(T 0

i

) contains a �/2 neighbourhood of fk(i)(x) for i large. Since C
n
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is forward invariant and x is a density point of C
n

it follows from the Koebe
Principle that there exists a universal constant K <1 such that

|fk(i)(T 0
i

) \ C
n

|
|fk(i)(T 0

i

)|  |fk(i)(T 0
i

\ C
n

)|
|fk(i)(T 0

i

)|  K
|T 0

i

\ C
n

|
|T 0

i

| ! 0

as i ! 1. Since the intervals fk(i)(T 0
i

) have length � �/2 for i large, one can
find an interval H of length �/3 such that one has fk(i)(T 0

i

) � H for infinitely
many i. The previous limit therefore implies that |H \ C

n

| = 0 and since C
n

is closed this gives H ⇢ C
n

. But as we saw in Section III.4, since H is an
interval, [

i�0f i(H) � ⇤. Therefore ⇤ ⇢ C
n

. So C
n

contains intervals. But this
is impossible for the same reason because [

i�0f i(U) � J
n

for each interval U ,
a contradiction. This proves the claim: !(x) is contained in the closure of the
forward orbit of c for each density point x 2 C. It is easy to show that this
implies that !(x) ⇢ !(c) for Lebesgue almost every x, using the ergodicity of f .
But since the !-limit of almost every point contains c, we also have !(c) ⇢ !(x)
for almost every point x of C. It follows that either 3.a or 3.b. holds.

Let us finally show that any closed forward invariant set X which does
not contain intervals has Lebesgue measure zero if !(c) is not minimal. Since
!(c) is not minimal, it contains a point x whose forward orbit stays outside
a neighbourhood U of c. As before this implies that there exists a sequence
of intervals I

n

3 x shrinking down to x and intervals J
n

⇢ I
n

with x 2 J
n

such that I
n

\ J
n

contains no points of X and such that I
n

contains a �-scaled
neighbourhood of J

n

. Indeed, let H
n

be the maximal interval containing x
for which fn|H

n

is monotone. Since c /2 !(x), the length |fn(H
n

)| does not
tend to zero, By taking some appropriate subintervals I

n

⇢ H
n

we may assume
that fn(i)(I

n(i)) converges to some interval V for some subsequence n(i) and
that the boundary points of V are not contained in X. Let U be some closed
interval which is contained in the interior of V such that V \ X ⇢ U and let
J

n(i) ⇢ I
n(i) so that fn(i)(J

n(i)) = U . From the Koebe Principle, there exists a
universal constant � > 0 (which only depends on f , U and V ) such that I

n(i)

is a �-scaled neighbourhood of J
n(i). Now let k(n) be the smallest integer such

that fk(n)(c1) 2 I
n

where c1 = f(c). It follows that there exists an interval
T

n

3 c1 such that fk(n)|T
n

is monotone and fk(n)(T
n

) = I
n

. Let S
n

⇢ T
n

be so that fk(n)(S
n

) = J
n

. From the Macroscopic Koebe Principle T
n

is a
�0-scaled neighbourhood of S

n

. Furthermore, the forward invariance of X gives
T

n

\ X ⇢ S
n

and therefore fk(n)(c1) 2 J
n

. In particular, c1 2 S
n

. Since c is
non-flat this implies that there are symmetric neighbourhoods U

n

⇢ V
n

of c such
that V

n

is a �00-scaled neighbourhood of U
n

and V
n

\X ⇢ U
n

. By Exercise 1.2
this implies that X has Lebesgue measure zero. Applying the above reasoning
to the sets C

n

from the first part of the proof yields |C
n

| = 0 and hence that D
has full measure. Hence the non-minimality of !(c) implies that f is as in case
3.a.

The proof of the last part of Theorem 1.3, that A either contains intervals
or has Lebesgue measure zero, will require some additional information. This
information will be obtained during the proof of Theorem 1.1.
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Proof of Theorem 1.4: Our proof di↵ers with the one given in Martens (1990)
and is much simpler. Without loss of generality we may assume that f is not
renormalizable and that f has no periodic attractors. Throughout the proof
we shall use the following. By the Contraction Principle for each � > 0 there
exists a constant (�) > 0 such that the length of fk(T ) is at least (�) for each
interval T with |T | � � and each integer k � 0 so that fk|T is monotone.

So assume that Property 1 holds. If !(c) is a Cantor set then, since this
set is not an absorbing Cantor attractor (and f is not renormalizable), we are
as in case 3.b of Theorem 1.3. Hence !(x) is equal to the interval [f2(c), f(c)]
for almost all x. Hence for each z 2 [f2(c), f(c)] \ !(c), there is a sequence
k(n) ! 1 with fk(n)(x) ! z. Since all extremal values of fk(n) are forward
iterates of c and since !(c) is a Cantor set, this implies lim sup

n!1 r
n

(x) > 0
for almost all x. So Property 2 holds.

Now assume again that Property 1 holds but that !(c) is not a Cantor
set. Then !(c) = [f2(c), f(c)]. Take an open neighbourhoods U of c such that
fn(@U)\U = ; for n = 1, 2, . . . . Since !(c) = [f2(c), f(c)], there exists a nested
decreasing sequence of intervals Z

n

whose endpoints are periodic points p
n

and
q
n

with O(p
n

)\U = O(q
n

)\U = ; and with |Z
n

|! 0. We will first prove that
there are disjoint intervals Ii

n

⇢ Z
n

and integers k
i

(n) for each i 2 Z such that

1. fk

i

(n) maps Ii

n

with bounded distortion onto U ;

2. Ii

n

lies to the left of Ij

n

if i < j;

3. lim
i!1 Ii

n

= p
n

and lim
i!�1 Ii

n

= q
n

;

4. the size of the ‘gap’ components of Z
n

\
S

j

Ij

n

neighbouring Ij

n

have the
same order as this interval.

To construct these intervals, let k(n) be the smallest integer such that
fk(n)(Z

n

) \ U 6= ;. This integer exists because otherwise Z
n

would be a
homterval and because f has no periodic attractors and no wandering inter-
vals this is impossible. From the choice of p

n

and q
n

and from the minimality
of k(n), it follows that fk(n) maps Z

n

di↵eomorphically over U . Moreover,
fk(n)|Z

n

has bounded distortion by Theorem III.3.3. It follows that there is
an interval I0

n

in the interior of Z
n

such that fk(n)(I0
n

) = U . Since fk(n)|Z
n

has bounded distortion, I0
n

and the components of Z
n

\ I0
n

have the same size
up to some multiplicative factor which is universally bounded from above and
below. Next let H±1

n

be the components of Z
n

\ I0
n

and let k±1(n) be the small-
est integer such that fk±1(n)(H

n

) \ U 6= ;. Note that by the choice of k(n)
we have that k±1(n) > k(n) and that the interval f i(H±1

n

) is outside U for
i = 0, 1, . . . , k(n). Moreover, fk(n) maps one endpoint of H±1

n

into @U and the
other endpoint outside U . Since forward iterates of @U never enter U it follows
that fk±1(n)(H±1

n

) � U . Hence, we get two intervals I±1
n

one on each side of I0
n

such that fk±1(n)(I±1
n

) = U and such that I±1
n

and the components of H±1
n

\I±1
n

have the same size up to some factor which is again universally bounded from
above and below. Continuing in this way we get a sequence of disjoint intervals
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Ii

n

in Z
n

with i 2 Z such that the size of each component of Z
n

\
S

i

Ii

n

is of the
same order as the size of the neighbouring components of

S

i

Ii

n

. This collection
has the required properties 1)-4). Next let s(n) > 0 be the smallest integer
such that fs(n)(c) 2 Z

n

. By the minimality of s(n) there exists an interval
S̃

n

3 c such that fs(n)�1 maps S̃
n

di↵eomorphically onto Z
n

. Let Ĩi

n

be the
preimage of Ii

n

under this map. By the Koebe Principle, the size of each gap of
S

Ĩi

n

in Z̃
n

is again of the same order as its neighbouring components: use two
neighbouring intervals to show that the pullback of the gap between them is
not too large; similarly, use two neighbouring gaps to show that the pullback of
an interval Ii

n

between them is not too large. Note that fk

i

(n)+s(n)�1 maps Ĩi

n

di↵eomorphically onto U . Now let Ẑ
n

= f�1(Z̃
n

) and let Îi

n

= f�1(Ĩi

n

). Note
that the preimage of some intervals Ĩi

n

consists of two components, some of one
and some of none at all (if they are at the ‘wrong’ side of f(c)). Because f
is non-flat at the critical point, the gaps of

S

i

Îi

n

are again of the same order
as the neighbouring intervals. So if we disregard the interval Îi

n

containing c
together with the two components from the collection

S

Îi

n

nearest to c, then
we get that each such component Îi

n

is mapped by fk

i

(n)+s(n) di↵eomorphically
and with universally bounded distortion onto U . Let

S

i2A

Ii

n

be the resulting
collection. Now take x with !(x) 3 c and let t(n) > 0 be minimal such that
f t(n)(x) 2 Ẑ

n

. Then there exists an interval Z̄
n

3 x such that f t(n) maps Z̄
n

di↵eomorphically onto Ẑ
n

. Let Īi

n

= f�t(n)(Îi

n

)\ Z̄
n

for i 2 A. Again, from the
Koebe Principle, the gaps and the neighbouring intervals from

S

i2A

Īi

n

have
roughly the same size and fk

i

(n)+s(n)+t(n) maps Īi

n

with bounded distortion
onto U for i 2 A. Finally, denote the middle third of the intervals Îi

n

by J i

n

.
Since fk

i

(n)+s(n)+t(n) maps Īi

n

with bounded distortion onto U , there exists a
universal constant � > 0 such that r

k

i

(n)+s(n)+t(n)(x) � � for x 2 J i

n

. Moreover,
there exists ✏ > 0 such that |

S

i

Īi

n

|/|Z̄
n

| � ✏. Since this holds for each n, it
follows that the lower density in x of the set {z ; lim sup r

n

(z) � �} is bounded
from below by ✏. Because this is true for each x with !(x) 3 c, the ergodicity
of f implies that Z(�) = {z ; lim sup r

n

(z) � � and c 2 !(z)} has full Lebesgue
measure.

Let us now show that Property 2 implies Property 3. So take symmetric
neighbourhoods U and V of c with U ⇢ cl (U) ⇢ int (V ) as in Theorem 1.1.
(We should note that we do not need the full strength of Theorem 1.1 here.
Only the topological properties of U and V which are proved in Lemma 1.1
below are essential.) The set

Z(�) = {x ; lim sup
n!1

r
n

(x) � � and c 2 !(x)}

is completely invariant. By ergodicity, for each given � this set therefore has
either zero or full Lebesgue measure. From Property 2 and since c 2 !(x) for
almost all x, it has full Lebesgue measure for some � > 0. Choose U ⇢ V so
that |V | < (�/2)/2. Take a point x 2 Z(�) and choose n so that r

n

(x) � �/2.
If fn(x) 2 U then fn(T

n

(x)) � V and we are done. If fn(x) /2 U then take
m > n minimal so that fm(x) 2 U . By Theorem 1.1,

(⇤) fm�n(T
m�n

(fn(x))) � V.
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If fn(R
n

(x)) contains a component of T
m�n

(fn(x)) \ fn(x) then (⇤) implies
that fm(R

m

(x)) contains a boundary point of V . The other possibility is that
fn(R

n

(x)) is contained in a component of T
m�n

(fn(x))\fn(x). Then fm|R
n

(x)
is monotone and therefore R

n

(x) = R
m

(x) and |fm(R
m

(x))| � (�/2). Since
fm(x) 2 U and because of the size of V this again implies that fm(R

m

(x))
contains a boundary point of V . Since the same statements hold for L

m

(x), we
get fm(T

m

(x)) � V and therefore Property 3.
From Property 3 it easily follows as in the proof of Theorem 1.3 that !(x) =

[f2(c), f(c)] for almost all x. Hence, Property 1 holds.

The proof of Theorem 1.1

So let us start with the proof of Theorem 1.1. For each x 2 I, let U
x

= (x, ⌧(x))
and

N = {x 2 I ; U
x

\ orbit(x) = ;}

where orbit(x) = [
n�0fn(x). The points in N are called nice. Every periodic

orbit contains a nice point, and therefore N is certainly not empty. Moreover,
since the turning point is accumulated by periodic points, the setN accumulates
on c. Clearly, N is also closed.

First we prove Theorem 1.1 in the case that c is not recurrent, i.e., when
!(c) does not contain c. In this case let V � U be some fixed neighbourhoods
of c such that V \ orbit(c) = {c} and with @U, @V ⇢ N . Take any point x
with c 2 !(x). Then there exists a sequence k(n)!1 such that fk(n)(x) 2 U .
Since all critical values of fk(n) are contained in the forward orbit of c there exist
intervals I

n

⇢ J
n

such that fk(n) maps J
n

di↵eomorphically onto V and such
that fk(n)(I

n

) = U . By the Koebe Principle there exists a universal constant
K (which only depends on the size of the components of V \ U) such that
|Dfk(n)(x)|/|Dfk(n)(y)|  K for all x, y 2 I

n

. Theorem 1.1 follows and in fact
one even has that the sequence U

n

does not depend on n.
So in the remainder of the proof of Theorem 1.1 we may assume that !(c)

is recurrent (and that f has no attracting periodic points). Fix x 2 N and let
D

x

= D
U

x

, i.e.,

D
x

= {y ; there exists k > 0 with fk(y) 2 U
x

}.

As before, let k(y, x) be the minimal integer with this property and let R
x

(y) =
fk(y,x)(y). We call k(y, x) the transfer time of y to U

x

and R
x

: D
x

! U
x

the
Poincaré map to U

x

. The transfer time k is constant on each component of D
x

:
if I is a maximal subinterval of D

x

on which the transfer time is constant then,
by maximality, some iterate of @I is mapped into @U

x

. But since x 2 N this
implies that this boundary point of I never enters U

x

and therefore @I \D
x

= ;
and R

x

(@I) ⇢ @U
x

. Hence I is a component of D
x

. On each component I of
D

x

which does not contain c the map R
x

is monotone and R
x

(I) = U
x

. Indeed,
let R

x

= fk on I; if R
x

|I is not monotone and I does not contain c, then
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f i(I) contains c for some 0 < i < k, but then k is not the first transfer time, a
contradiction.

We want to show that this Poincaré map has a universally bounded distortion
on each interval where it is defined. This is done by arranging it in such a way
that on each component of D

x

the Poincaré map R
x

has a monotone extension
to an interval T such that R

x

|T = fk for some k and such that fk(T ) contains a
�-scaled neighbourhood of U

x

where � > 0 is a universal constant. By applying
the Koebe Principle the bound on the distortion of R

x

will follow.

Lemma 1.1. Let z 2 N and assume that c is recurrent. Let S
z

be the component
of D

z

containing c1 = f(c). Next let x be the point (which we also denote by
 (z)) so that U

x

= (x, ⌧(x)) = f�1(S
z

) is the component of D
z

containing c.
Then one has the following properties:

1. x is contained in the closure of U
z

, f�1(S
z

) = U
x

and x 2 N (one even
has that f i(x) /2 U

z

for i � 1);

2. for each component I of D
x

not contained in U
x

there exists an interval
T � I such that fk (where k is the transfer time on I) maps T monoton-
ically onto U

z

.

Proof. Let R
z

= fn on S
z

and therefore R
z

= fn+1 on U
x

. One has that x
is contained in the closure of U

z

because otherwise z 2 U
x

and then fn+1(z) 2
fn+1(U

x

) ⇢ U
z

, contradicting that z is nice. Moreover, since n is the trans-
fer time to U

z

on S
z

, one has that fk+1(x) 2 fk(@S
z

) is outside U
z

for k =
0, 1, . . . , n � 1 and since fn+1(x) 2 fn(@S

z

) ⇢ @U
z

and z 2 N , this implies
Statement 1. In order to prove Statement 2, let I be a component of D

x

,
R

x

= fk on I and T the largest interval containing I such that fk maps T
monotonically into U

z

. If fk(T ) is not equal to U
z

, then the maximality of T
implies that there exists 0  i < k such that one of the boundaries of f i(T )
contains c. Since f i(I) \ U

x

= ; this implies that f i(T ) contains x. But then
fk(T ) ⇢ U

z

contains fk�i(x), contradicting Statement 1.

From Statement 2 of the previous lemma for each component I of D
x

we get
an interval T � I such that if k is the return time on I to U

x

(i.e., R
x

= fk on
I) then fk maps T di↵eomorphically onto U

z

. If U
z

is a �-scaled neighbourhood
of U

x

then we can apply the Koebe Principle to get a bound on the distortion of
R

x

in terms of �. In the next lemma we shall show that there exists a monotone
extension of R

x

to an even larger interval in some special cases.
and that both these situation will give some ‘Koebe space’.

Lemma 1.2. There exist �, ⇢ > 0 such that for any x, z, U
x

and S
z

as in the
previous lemma one has the following properties.

1. Assume that c 2 R
z

(U
x

). If I is a component of D
x

not intersecting U
x

,
R

x

|I = fk and T is the maximal interval containing I for which fk|T is
monotone then fk(T ) is a �-scaled neighbourhood of U

x

.
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Fig. 1.2: On the left R
z

: U
x

! U
z

is shown when c /2 R
z

(U
x

) and R
z

(c) /2 U
x

. On

the right when c 2 R
z

(U
x

). The basic idea of the proof of Theorem 1.1 is that one

may always assume to be in one of these situations and that both these situation will

give some ‘Koebe space’.

2. Assume that c /2 R
z

(U
x

) and |U
z

|  (1 + ⇢)|U
x

|. If R
z

|S
z

= fn and
T � S

z

is the maximal interval for which fn|T is monotone then fn(T )
contains a �-scaled neighbourhood of [R

z

(U
x

), c].

Proof. Let R
z

|S
z

= fn and M = f(U
x

) (M is contained in S
z

). The inter-
vals M, . . . , fn(M) are all pairwise disjoint. Indeed, otherwise there would be
some k < n such that fk(M) \ fn(M) 6= ; and since fn(M) = U

z

this would
imply that fk(M) \ U

z

6= ; but then fn�k(z) 2 U
z

and one gets a contradic-
tion with the assumption that z is nice. So let m0 2 {0, 1, . . . , n} be equal to
the index i for which |f i(M)|, i = 0, . . . , n � 1 is minimal. Since for i � 2,
f i(M) is between M and f(M) we can take m 2 {m0, m0 + 1, m0 + 2} such
that both to the left and to the right of fm(M) at least one of the intervals
M,f(M), . . . , fn(M) can be found. If ||Df || denotes the supremum of |Df(x)|
on I then one has |fm(M)|  ||Df ||2 · |f j(M)| for all i 2 {0, 1, . . . , n} and
fm(M) has on both sides neighbours (by this we mean intervals of the form
f i(M) with j = 0, 1, . . . , n). Letting f l(M) and fr(M) be the immediate neigh-
bours of fm(M) one has therefore

(1.1) |f i(M)| � 1
||Df ||2 |f

m(M)| for i = l, r.

Let H be the maximal interval containing M for which fm|H is monotone
and such that fm(H) ⇢ [f l(M), fr(M)]. We claim that

fm(H) = [f l(M), fr(M)].

Indeed, assume H does not satisfy this property. Then let H+ and H� be the
components of H \M . By the maximality of H there exists i 2 {0, 1, . . . ,m�1}
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with c 2 @f i(H�) and because f i(M)\U
x

= ; this implies that f i(H�) contains
a component of U

x

\{c} and therefore that fm(H�) � fm�i(U
x

) = fm�i�1(M).
Similarly fm(H+) contains an iterate of M . Hence fm(H) contains the two
neighbours (in the sense defined above) of fm(M), a contradiction. From (1.1)
and the Macroscopic Koebe Principle we get a universal constant �̃ > 0 (which
only depends on ||Df ||2) such that H contains a �̃-scaled neighbourhood of M .
Because the critical point is non-flat there exists a universal constant �̃0 > 0
such that for the preimage H 0 = f�1(H) and U

x

= f�1(M),

(1.2) H 0 contains a �̃0-scaled neighbourhood of U
x

.

Proof of Statement 1: Assume that c 2 fn(M) = fn+1(U
x

) = R
z

(U
x

). Take
a component I of D

x

which is not contained in U
x

, let k be the transfer time
to U

x

on I and let T be the maximal interval containing I for which fk|T is
monotone and fk(T ) ⇢ H 0. We claim that fk(T ) = H 0. Indeed, let L and R
be the components of T \ I. From the maximality of T there exists 0  i < k
such that f i(L) contains c in its boundary. But f i(I) \ U

x

= ; and therefore
f i(L) contains one component of U

x

\ {c}. Consequently, f i+1(L) contains M
and fk(L) contains fk�i�1(M). Now suppose by contradiction that the closure
of fk(L) is contained in H 0. Then, because fk�i�1(M) ⇢ fk(L) and because
fm+1 restricted to each component of H 0 \ {c} is monotone, this implies that
fm+1|fk�i�1(M) is monotone. Since fk�i�1|M is monotone this gives that
fk+m�i|M is monotone. In particular, because c 2 fn(M) this implies that
k + m� i  n. Furthermore, fk+m�i(M) ⇢ fk+m+1(L) ⇢ [f l(M), fr(M)]. But
then fk+m+1(L) contains a neighbour of fm(M). Similarly, fk+m+1(R) contains
a neighbour of fm(M). But this is only possible if fk+1(L) and fk+1(R) both
contain a component of H\M . Thus, we have proved that fk(T ) � H 0. Because
of (1.2), this completes the proof of Statement 1 of this lemma.

Proof of Statement 2: Assume that c /2 fn(M). Let T � S
z

be the maximal
interval for which fn|T is monotone and let L and R be the components of
T \ M . Since T � S

z

one has fn(T ) � U
z

. Since c /2 fn(M) for one of the
components of T \ M , which we denote by R, the interval fn(R) contains c.
Therefore fn(R) contains a component of U

z

\ {c} and fn(M) is contained in
the other component. Hence there exists a constant �̂ > 0 with

(1.3) |fn(R)| � �̂|U
z

|.

(Indeed, when z is su�ciently close to c then we can take �̂ close to 1 because c
is non-flat and therefore the two components of U

z

\ {c} have roughly the same
length.) Let us show that fn(L) contains a component of H 0 \ U

z

. So assume
by contradiction that the closure of fn(L) is strictly contained in the interior
of H 0 \ U

z

. As before there exists i 2 {0, 1, . . . , n� 1} such that f i(L) contains
c in its boundary. Because f i(M) \ U

z

= ;, this implies that f i(L) contains
U

z

, f i+1(L) �M and hence fn(L) � fn�i�1(M). Since fn(M [ L) lies on one
side of c, the intervals fn�i�1(M) and fn(M) are both on the same side of c.
Since, by assumption, fn(L) ⇢ H 0 one has fn(L) ⇢ [fn�i�1(M), c] and we have
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assumed that the closure of fn(L) is contained in a component of the interior
of H 0 \ {c}, the map fm+1 is monotone on these intervals. Hence the closure
of fm+1+n�i�1(M) is contained in the interior of [f l(M), fr(M)]. Since f l(M)
and fr(M) are the nearest neighbours (in the sense defined above) of fm(M)
this implies m + 1 + n� i� 1 > n and therefore m > i. In particular, since, by
assumption, [fn�i�1(M), c] ⇢ H 0, since fm+1 is monotone on the components
of H 0 \ {c} and since i < m, we get

(1.4) f i+1 maps [fn�i�1(M), c] monotonically into [f i(M), fn(M)]

and the last interval does not contain c. So we can conclude that fn�i�1(M),
fn(M) and f i(M) are all on one side of c. Since f i(M)\U

z

= ; and fn(M) ⇢ U
z

one has

(1.5) [f i(M), c] � [fn(M), c].

Furthermore, fn�i maps [f i(M), c] (which is contained in f i(L[M)) monoton-
ically onto the interval [fn(M), fn�i�1(M)]. Hence

[fn(M), fn�i�1(M)] 6⇢ [f i(M), c]

because otherwise f has a periodic attractor, contradicting our assumption.
Therefore, because all these intervals are on the same side of c and from (1.5)
one gets

(1.6) f i(M) ⇢ (fn�i�1(M), fn(M)).

Because of (1.4) and (1.6), the map f i+1 has an attracting fixed point, a contra-
diction. Thus we have shown by contradiction that fn(L) contains a component
of H 0 \ U

z

. Since |U
z

|  (1 + ⇢)|U
x

| combining this with (1.2) gives that the
length of fn(L) is at least (�̃0/2)|U

z

| provided ⇢ is small enough. Together with
(1.3) this implies that fn(T ) contains a �-scaled neighbourhood of R

z

(U
x

) when
� > 0 is su�ciently small.

Corollary 1.2. There exists a constant ⇢ > 0 (not depending on x) such that
if c /2 R

z

(U
x

) and R
z

(c) /2 U
x

then U
z

contains a ⇢-scaled neighbourhood of U
x

.

Proof. Let ⇢ be as in the previous lemma and let ⇢0 be so that |U
z

| = (1+⇢0)|U
x

|.
If ⇢0 � ⇢ then we are finished. So assume that ⇢0 < ⇢ and let us show that ⇢0

cannot be too small. Let R
z

= fn+1 on U
x

. Note that the assumption is
equivalent to

fn(M) = fn+1(U
x

) ⇢ U
z

\ U
x

.

Let T � S
z

be the maximal interval on which fn is monotone. From the
previous lemma fn(T ) contains a �-scaled neighbourhood of [R

z

(U
x

), c] (this is
one component of U

z

\ {c}). So take T 0 � M so that fn(T 0) contains a �/2-
scaled neighbourhood of [R

z

(U
x

), c]. Then fn|T 0 has bounded distortion by the
Koebe Principle. Hence, if we define U = f�1(T 0) then fn+1(U) contains an
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interval of size (�/2)|U
x

| and fn+1|U is polynomial-like in the sense define below
Theorem 1.1. Since fn+1(U

x

) ⇢ U
z

\ U
x

, |U
z

\ U
x

|  ⇢0|U
x

| and since fn+1|U
is polynomial-like it follows that the derivative of fn+1 is at most a universal
constant times ⇢0 on U

x

. Since fn+1|U is polynomial-like and |fn+1(U)| �
(�/2)|U

x

| the interval U is much larger than U
x

when ⇢0 is small. In particular,
there exists a neighbourhood Û ⇢ U of U

x

of size 2|U
x

|. On such an interval Û
the derivative of fn+1 is also at a universal constant K times ⇢0. Hence

(⇤) |fn+1(Û)|  K · ⇢0 · |Û |.

Since fn+1(U
x

) ⇢ U
z

, the interval U
z

is contained in a ⇢0-scaled neighbourhood
of U

x

and Û is a 1-scaled neighbourhood of U
x

, inequality (⇤) implies that
fn+1(Û) ⇢ Û when ⇢0 is very small. So this would imply that f has an attracting
periodic orbit, a contradiction. So ⇢0 cannot be too small.

Proof of Theorem 1.1: First we are going to define the sequence of closest
approach to c. Let c

n

= fn(c), and

q(1) = 1 and q(n + 1) = min{i 2 N ; f i(c) 2 U
c

q(n)}.

Because c 2 !(c) and c is not periodic the sequence q(1), q(2), . . . is well defined.
Since c is an accumulation point of N there are infinitely many n > 0 for which
(U

c

q(n�1) \ U
c

q(n)) \N 6= ;. For those n 2 N, let

z(n) = sup{y < c ; y 2 N \ (U
c

q(n�1) \ U
c

q(n))}

(because N is symmetric this intersection is non-empty) and let

x(n) =  (z(n))

where  is as in Lemma 1.1.
Because z(n) 2 U

c

q(n�1) \ U
c

q(n) one has that f i(c) /2 U
z(n) for i < q(n)

and c
q(n) 2 U

z(n). In particular, R
z(n) = fq(n) on the component U

x(n). We
distinguish two cases.
Case 1: c 2 R

z(n)(Ux(n)). In this case we can apply Statement 1 of Lemma
1.2. Therefore, for each component I of D

x(n) there exists an interval T � I
such that if R

x

|I = fk then fk|T is monotone and fk(T ) contains a definite
neighbourhood of U

x(n). (Note that we did not need to use the special definition
of z(n) in this case.)
Case 2: c /2 R

z(n)(Ux(n)). This case is more complicated. First of all, if
x(n) = z(n) then R

z(n) maps U
x(n) into U

z(n), i.e., into itself. Moreover, the
map R

z(n) : U
z(n) ! U

z(n) sends the boundary points of U
z(n) into itself. There-

fore, this map is unimodal. Since c /2 R
z(n)(Ux(n)) this unimodal map has an

attracting fixed point, contradicting our assumption. So we may assume that
x(n) 6= z(n). Now by the definition of z(n) there exists no z0 2 N such that
z0 2 (U

z(n) \U
c

q(n)). In particular, since x(n) 2 U
z(n)\N one has x(n) 2 U

c

q(n) ,
i.e.,

R
z(n)(c) = c

q(n) 2 U
z(n) \ U

x(n).
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Hence we can apply the Corollary to Lemma 1.2 and consequently U
z(n) con-

tains a ⇢-scaled neighbourhood of U
x(n), where ⇢ > 0 is a universal constant.

Moreover, for any component I of D
x(n) not intersecting U

x(n) there exists an
interval T � I such that fk|T is monotone (where k is the transfer time to
U

x

on I, i.e., R
x

|I = fk) and fk(T ) = U
z(n). Since U

z(n) contains a ⇢-scaled
neighbourhood of U

x(n), the theorem follows.

The Lebesgue measure of the !-limit of the critical point

Let us now prove the last part of Theorem 1.3:

Theorem 1.6. (Martens) Let f : [�1, 1] ! [�1, 1] be a unimodal map with a
non-flat critical point c and negative Schwarzian derivative. If !(c) contains no
intervals then

|!(c)| = 0.

Proof. Let us prove that !(c) has Lebesgue measure zero if !(c) contains
no intervals. If f is infinitely often renormalizable then f |!(c) is injective.
Therefore for each x 2 N , one has that |!(c) \ U

x

| is either less than |U+
x

|
or less than |U�

x

|, where U±
x

are the components of U
x

\ {c}. Hence the limit
superior of |!(c)\U

x

|/|U
x

| is at most to 1/2 as x tends to c because c is non-flat.
This contradicts the statement made in the proof of Theorem 1.2.

So let us deal with the situation when f cannot be renormalized. If !(c) is
not minimal then we have already shown in the proof of Theorem 1.3 that each
closed forward invariant set which is not equal to the union of transitive intervals
has Lebesgue measure zero. So we will assume that !(c) is minimal. Let z(n)
be the sequence from the proof of Theorem 1.1 and as before let x(n) =  (z(n)).
Let us define related sequences v(n) 2 N and u(n) =  (v(n)) such that

(⇤) U
v(n) contains a ⇢-scaled neighbourhood of U

u(n).

We distinguish three cases.

1. If c /2 R
z(n)(Ux(n)) then let v(n) = z(n) and u(n) = x(n). As we saw in the

proof of the previous theorem, in this case one has R
v(n)(c) 2 U

v(n) \U
u(n) and

the Corollary to Lemma 1.2 implies that (⇤) holds.
2. On the other hand if c 2 R

z(n)(Ux(n)) and U
z(n) contains a ⇢-scaled neigh-

bourhood of U
x(n) then we take again v(n) = z(n) and u(n) = x(n) and again

(⇤) holds.
3. Finally if c 2 R

z(n)(Ux(n)) and U
z(n) does not contain a ⇢-scaled neighbour-

hood of U
x(n) then we do the following. R

z(n) : U
x(n) ! U

z(n) has one orienta-
tion preserving fixed point p. Because f is not renormalizable R

z(n)(Up

) strictly
contains U

p

. Hence there exists a point q 2 U
p

such that R
z(n)(q) = ⌧(p). Since

R
z(n) : U

x(n) ! U
z(n) is polynomial-like and |U

z(n)| is not much bigger than
|U

x(n)|, this implies that U
p

contains a ⇢-scaled neighbourhood of U
q

where ⇢
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is a universal constant. So defining v(n) = p and u(n) = q =  (p) we get again
that (⇤) holds.

So in any case (⇤) is satisfied. Now we get to the main idea of the proof.
Because !(c) is minimal, the forward orbit of each point w 2 !(c) accumulates
onto c, and so for each u(n) 2 N , the set !(c) is contained in D

u(n). Because
!(c) is compact, there are only finitely many components of D

u(n) which in-
tersect !(c). Let I be a component of D

u(n) with the largest transfer time k
to U

u(n). Furthermore, let T be the interval containing I such that fk|T is
monotone and fk(T ) = U

v(n) (this interval exists by the second statement of
Lemma 1.1). We claim that T \ I contains no points from !(c). Indeed, be-
cause of the maximality of k, there exists otherwise a point r in T \ I which
returns to U

u(n) in time k0 < k. But since fk

0
(I)\U

u(n) = ; and fk

0
(r) 2 U

u(n)

there exists s 2 T with fk

0
(s) = u(n). But then fk(s) = fk�k

0
(u(n)) /2 U

v(n)

since u(n) =  (v(n)) is nice, see Statement 1 of Lemma 1.1, contradicting that
fk(T ) ⇢ U

v(n).
Let us now show that the fact that T \I contains points of ! (which because

of (⇤) means that !(c) is not ‘too thick’ in T ) implies that c cannot be a density
point of !(c). So let i be the smallest integer such that f i(c1) 2 T . Because
I ⇢ T contains points of !(c) such an integer exists. By the minimality of i,
there exists an interval S

n

3 c1 such that f i maps S
n

di↵eomorphically onto
T and f i+k maps S

n

di↵eomorphically onto U
v(n). So let M

n

⇢ S
n

be so that
f i(M

n

) = I, i.e., such that f i+k(M
n

) = U
u(n). Since T \ I contains no points

of !(c) and !(c) is forward invariant,

T
n

\M
n

contains no points of !(c).

Since U
v(n) contains a ⇢-scaled neighbourhood of U

u(n) we get from the Macro-
scopic Koebe Principle that

T
n

contains a �-scaled neighbourhood of M
n

for some universal constant � > 0. From these statements one gets that the
symmetric neighbourhood U

n

= f�1(T
n

) of c contains a �0-scaled neighbourhood
of V

n

= f�1(M
n

) and that !(c) \ U
n

⇢ V
n

. From Exercise 1.2 it follows that
!(c) has Lebesgue measure zero.

The existence of Bowen-Ruelle-Sinai measures

The next results deal with Bowen-Ruelle-Sinai measures of unimodal maps. Be-
fore defining this notion let us remind the reader of Birkho↵’s Ergodic Theorem.
This theorem deals with an ergodic invariant measure µ of f : N ! N . This is
an invariant measure such that for any measurable set A for which f�1(A) = A
either µ(A) = 0 or µ(N \ A) = 0. Birkho↵’s Ergodic Theorem states that for
any continuous function � and for any ergodic invariant probability measure µ
one has

(⇤) lim
n!1

1
n

n�1
X

i=0

�(f i(x)) =
Z

� dµ
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for µ-almost all x. This means that if we want to compute the average value of
the function � along the orbit of a µ-typical point x then this is equal to the
µ-average of � (over the whole the space). Now this theorem is only useful if
the support of the measure µ is rather large or if that is not the case (⇤) holds
for at least a large set of points x. Therefore one defines the following notion.

Definition. We say that µ is a Bowen-Ruelle-Sinai measure, or a B.R.S. mea-
sure if for each continuous function � the set of points x for which (⇤) holds has
positive Lebesgue measure. For this it is enough that the sequence of measures

⌫
n

=
1
n

n�1
X

i=0

�
f

i(x)

tends weakly to µ.

In the following corollary of the previous result it is shown that there exists
at most one Bowen-Ruelle-Sinai measure and that each absolutely continuous
invariant probability measure is such a measure. As before, we say that an
invariant measure µ is absolutely continuous with respect to the Lebesgue measure
or simply absolutely continuous if for each measurable set A with zero Lebesgue
measure one has µ(A) = 0. This measure is equivalent to the Lebesgue measure
if µ(A) = 0 if and only if the Lebesgue measure of A is zero. By the Radon-
Nikodym Theorem this implies that there exists a L1 function p for which

µ(A) =
Z

A

p(t) d�(t)

where � is the Lebesgue measure. The next theorem states that each absolutely
continuous invariant measure is a Bowen-Ruelle-Sinai measure and also that it
is equivalent to the Lebesgue measure on a finite union of intervals.

In Section 5 of this chapter we will use this theorem to show that there exist
quadratic maps which are transitive on certain intervals but which do not have
finite absolutely continuous invariant measures.

Theorem 1.7. Let f : [�1, 1] ! [�1, 1] be as before. Then f has at most one
Bowen-Ruelle-Sinai measure. Furthermore, if f has an absolutely continuous
invariant probability measure then

a. this absolutely continuous measure is a Bowen-Ruelle-Sinai measure and
(⇤) holds for Lebesgue almost all x;

b. f is only finitely often renormalizable and has no periodic attractors;

c. f has no absorbing Cantor attractor: the attractor A of f is the finite
union of the transitive intervals;

d. the support of this measure is equal to A and in particular the measure is
equivalent (in the sense defined above) to the Lebesgue measure restricted
to this finite union of intervals.
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Remark. Let r
i

(x) be defined as above the statement of Theorem 1.4. Then
lim sup r

n

(x) > 0 for Lebesgue almost all x if f has an absolutely continuous
invariant probability measure. This follows from Statement 1.4 and Statement
c) of Theorem 1.5. In Theorem V.3.2 we shall see that f has an absolutely

continuous invariant probability measure if and only if lim sup
n

1
n

P

n�1
i=0 r

i

(x) >

0 for almost all x. Moreover, that theorem implies that the density of such a
measure is bounded from below on the set A.

Proof. Let µ be an f -invariant probability measure. Let B
µ

be the set of points
x 2 I such that (⇤) holds for all continuous functions �. The set B

µ

is clearly
totally invariant. Therefore, from the ergodicity of f this set has either zero
or full Lebesgue measure. So assume that µ and µ̄ are two Bowen-Ruelle-Sinai
measures (which are not necessarily absolutely continuous). Let us show that
µ = µ̄. Since µ and µ̄ are Bowen-Ruelle-Sinai measures, B

µ

and B
µ̄

both have
non zero and therefore full Lebesgue measure. Hence B

µ̄

\B
µ

has full measure
and (⇤) implies that

R

� dµ =
R

� dµ̄ for all continuous functions �. It follows
that the two measures coincide.

Let us next show that if µ is absolutely continuous that then B
µ

has full
Lebesgue measure (and therefore µ is a Bowen-Ruelle-Sinai measure). In fact,
let �

n

2 C0(I, R) be a sequence which is dense in C0(I, R). By Birkho↵’s
Ergodic Theorem, see the Appendix, there exists a set B

n

of µ-measure one,
such that (⇤) holds for each x 2 B

n

and � = �
n

. Taking B = \B
n

and using
that any continuous function � is the uniform limit of some subsequence of �

n

we get that (⇤) holds for � and any x 2 B and this proves the claim.
Since µ is absolutely continuous, it follows that B

µ

has positive Lebesgue
measure. From Theorem 1.2 we get that B

µ

has full Lebesgue measure.
If f is infinitely renormalizable or has a periodic attractor then for almost

all points x one has !(x) ⇢ !(c) and !(c) is a Cantor set. So in this case, any
Bowen-Ruelle-Sinai measure must have its support in !(c). But by Theorem 1.3,
!(c) has zero Lebesgue measure if it is a Cantor set and so f has no absolutely
continuous invariant probability measure in this case.

So let us show now that if f has an absolutely continuous invariant measure
µ then the support of µ is equal to a finite union of transitive intervals. By
Theorem 1.3, if the attractor A of f is a Cantor set then for almost all x one
has !(x) ⇢ !(c) and !(c) is a finite set or a Cantor set of Lebesgue measure zero.
Therefore the support K of this measure is contained in !(c) and consequently
has Lebesgue measure zero, a contradiction because K is the support of an
absolutely continuous measure. So A is a union of intervals and therefore f has
no absorbing Cantor attractor. So it remains to show that the support K of
the measure µ is equal to A. Indeed, !(x) = A for almost all x. In particular,
!(x) = A for Lebesgue almost all x 2 K. Moreover, by Birkho↵’s Theorem one
has !(x) = K for almost all x 2 K. Combining this gives A = K.

In the previous theorem we have observed that an absolutely continuous
invariant probability measure for a map f : [�1, 1]! [�1, 1] is a Bowen-Ruelle-



340 CHAPTER V. ERGODIC PROPERTIES AND INVARIANT MEASURES

Sinai measure. Let us now show that even if one has no absolutely continuous
invariant measure one may still have a Bowen-Ruelle-Sinai measure. If, for
example, f satisfies the Axiom A it also has a Bowen-Ruelle-Sinai measure:
the invariant probability measure supported on an attracting periodic orbit is
such a measure. (If this map has negative Schwarzian derivative and a periodic
attractor then (⇤) holds again for almost all x.) Similarly, as we will show now
there exists a Bowen-Ruelle-Sinai measure in the infinite renormalizable case:

Theorem 1.8. Let f : [�1, 1] ! [�1, 1] be a C2 unimodal map with a non-flat
critical point. If f is infinitely renormalizable then f has a unique invariant
probability measure µ. It is a Bowen-Ruelle-Sinai measure which is supported
in the closure of the forward orbit of the critical point. This set is an attracting
Cantor set � and if x is in the basin B(�) of � then

lim
n!1

1
n

n�1
X

i=0

�(f i(x)) =
Z

� dµ

for every continuous function � 2 C0([�1, 1], R).

Proof. Since f is infinitely renormalizable, there exists a decreasing sequence
of symmetric intervals around the critical point c, I0

1 � I0
2 � I0

3 . . . and an
increasing sequence of integers n(1) < n(2) < n(3) . . . such that fn(j) maps I0

j

in a unimodal way into itself. Let F
j

= [n(j)�1
i=0 f i(I0

j

). From Corollary 2 of
Theorem AB of Chapter IV, the intersection

� = \1
j=1Fj

is a forward invariant Cantor set and its basin has positive Lebesgue measure.
(If all the periodic points of f are hyperbolic and f has no attracting periodic
orbits then B(�) has full Lebesgue measure.) Let x

j

2 I
j

and let µ
j

be the
probability measure

µ
j

=
1

n(j)

n(j�1)
X

i=0

�
f

i(x
j

)

where �
x

denotes the Dirac measure at x. The µ
j

-measure of each component of
F

j

is equal to 1
n(j) because each such component contains one and only one point

of the set {x
j

, f(x
j

), . . . , fn(j)�1(x
j

)}. It follows that for each open interval J ,
the measures µ

j

(J) are all the same for j su�ciently large (if k > j then any two
components of F

j

contain the same number of components of F
k

and therefore
any two components of F

j

have the same µ
k

-measure). Hence µ
j

converges
weakly to an invariant measure µ.

Let x 2 B(�) and let ⌫
k

be the probability measure

⌫
k

=
1
k

k�1
X

i=0

�
f

i(x).

As we have proved in Theorem III.5.1 and its corollary, for each j, f i(x) 2 I0
j

for some su�ciently large i. It follows as before that for each component I of
F

j

, lim
k!1 ⌫

k

(I) = 1
n(j) . This proves the theorem.
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2 Invariant Measures for Markov Maps

Let us start with a very simple and general remark. If µ is an invariant proba-
bility measure of a map f : N ! N , then the support of µ is contained in the set
of non-wandering points of f . Here, as before, a point x is non-wandering if for
each neighbourhood U of x there exists n > 0 with fn(U)\U 6= ;. In fact, if x
is a wandering point and V is a neighbourhood of x such that fn(V )\V = ; for
all n 2 N then f�(n+m)(V ) \ f�n(V ) = ; for all n, m > 0, because, otherwise,
V \ fn+m(f�n(V )) = V \ fm(V ) 6= ;. By invariance, µ(f�n(V )) = µ(V ) and,
therefore, since all the sets f�n(V ) are mutually disjoint,

P1
n=0 µ(f�n(V ))  1

implies that µ(V ) = 0. It follows from this remark that if the non-wandering
set of f has zero Lebesgue measure then f cannot have an absolutely continu-
ous invariant probability measure. In particular, from Theorem III.2.3, we get
that if a C1+↵ map f : N ! N satisfies the Axiom A and has an absolutely
continuous invariant probability measure then f is an expanding map of the
circle. Therefore, no C2 interval map satisfying the Axiom A has an absolutely
continuous invariant measure and in this sense it is not chaotic.

The simplest example of a one-dimensional smooth dynamical system pos-
sessing an absolutely continuous invariant probability measure is the quadratic
map f : [�1, 1] ! [�1, 1] defined by f(x) = 1 � 2x2 which was first considered
by von Neuman and Ulam (1947). In fact, as we have seen in Section II.3 the

homeomorphism h : [�1, 1]! [�1, 1] defined by h(x) =
2
⇡

sin�1x is a conjugacy
between f and the tent map T (x) = 1 � 2|x|. Since the Lebesgue measure �
is T -invariant, the push-forward measure h⇤�, defined by h⇤�(A) = �(h(A)) is
f -invariant. It is clear that h⇤� is an absolutely continuous invariant measure

with density �(x) =
2
⇡

1p
1� x2

.

As we will see in the later sections of this chapter in general smooth interval
maps do not have nice invariant measures. There are several ways to prove
the existence of invariant measures. Many of these use the Perron-Frobenius
operator. In this section we will illustrate this operator for special interval
maps f : [�1, 1] ! [�1, 1]. These maps will be called Markov maps, because
for each such map there is an associated partition of the interval [�1, 1] into
a collection of intervals I

i

(these are the states of the ‘Markov process’) such
that f is expanding on each of these intervals and such that the closure of the
image of f of one of the intervals is equal to the closure of some union of these
intervals (so from each state one can have some ‘proper’ transitions to other
states). In this section we will show that such maps have absolutely continuous
measures with nice properties. In the next section we will show how to obtain
such Markov maps from certain smooth interval maps. In Section 3 we will give
a somewhat di↵erent approach to obtain invariant measures.

The first important result on the existence of an absolutely continuous in-
variant measure is now considered to be a folklore theorem which originated
with the following basic result due to Renyi (1957).
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Theorem 2.1. (Folklore Theorem) Let f : M !M be a C1 expanding map of
a compact (n-dimensional) manifold M , whose derivative is Hölder continuous
(f is C1+↵). Then f has an absolutely continuous invariant probability measure
µ. Furthermore, µ is ergodic, its density is bounded and bounded away from zero
and µ(A) = lim

n!1 �(f�n(A)) for each measurable set A.

It is not very hard to prove that if a C2 covering map f : S1 ! S1 has
derivative bigger than one at every point except at the fixed point p where the
derivative is equal to one, then f has no finite absolutely continuous invariant
measure, see Bowen (1979). In the same spirit one can prove the existence of
an absolutely continuous invariant measure for a class of expanding map of N
(an interval or a circle) which are not continuous but have some Markov-like
properties (they send intervals of continuity onto unions of such intervals).

Definition. A C1 map f : N ! N is called Markov if there exists a finite or
countable family I

i

of disjoint open intervals in N such that

a) N \[
i

I
i

has Lebesgue measure zero and there exist C > 0 and � > 0 such
that for each n 2 N and each interval I such that f j(I) is contained in
one of the intervals I

i

for each j = 0, 1, . . . , n one has
�

�

�

�

Dfn(x)
Dfn(y)

� 1
�

�

�

�

 C · |fn(x)� fn(y)|� for all x, y 2 I.

b) if f(I
k

) \ I
j

6= ; then f(I
k

) � I
j

;

c) there exists r > 0 such that |f(I
i

)| � r for each i.

Remark. 1. As we shall see in the next section, Assumption a) often fol-
lows immediately from the Koebe Principle if the map has negative Schwarzian
derivative. Indeed, if there exists an interval T for each of the intervals I from
Assumption a) such that fn can be extended di↵eomorphically to T and fn(T )
is some uniformly scaled neighbourhood of fn(I) then we can apply the last
part of the Koebe Principle, see Theorem IV.1.1, and get Assumption a) with
� = 1. We shall come back to this in the next section.

2. Instead of Assumption a) one can require that the following two conditions
are met
2.a. there exists �, C > 0 such that f |I

i

is a C1+� di↵eomorphism for each i
and that for each i and each x, y 2 I

i

, the following Hölder condition holds
�

�

�

�

Df(x)
Df(y)

� 1
�

�

�

�

 C · |f(x)� f(y)|�

(so we only require Assumption a) from above for n = 1); 2.b. it is expanding:
there exist K > 0 and � > 1 such that |Dfn(x)| � K · �n for any n 2 N and
x 2 N for which f j(x) 2 [

i

I
i

for all 0  j  n.
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Let us show that these two conditions imply Assumption a). Take x, y 2 I as
in Assumption a). By the Chain Rule and the above assumptions

|Dfn(x)|
|Dfn(y)| =

n�1
Y

m=0

|Df(fm(x))|
|Df(fm(y))| 

n�1
Y

m=0

�

1 + C · |fm+1(x)� fm+1(y)|�
�

and
|fn(x)� fn(y)| � K�n�m�1|fm+1(x)� fm+1(y)|.

Therefore,

|Dfn(x)|
|Dfn(y)| 

n�1
Y

m=0

⇢

1 + C ·
✓

|fn(x)� fn(y)|
K

�m+1�n

◆

�

�


1
Y

m=0

⇢

1 + C ·
✓

|fn(x)� fn(y)|
K

��m

◆

�

�

<1.

Assumption a) follows from this and by interchanging the role of x and y.

3. Sometimes it is more natural to require instead of Assumption a) that

|D2f(y)|
|Df(z)|2  C

for each I
i

and each y, z 2 I
i

.

4. Assumption b) prohibits that certain intervals are only mapped partly over
some other intervals and is the main reason such a map is called Markov. As-
sumption c) prohibits that images of the intervals I

i

can be too small. This
last Assumption can be somewhat weakened but it is certainly not possible to
dispense with it altogether if we want to have that Markov maps necessarily
have an absolutely continuous invariant probability measure, see for example
Lasota and Yorke (1973) and Blank (1991). Often we shall assume that one has
an additional Assumption which guarantees that one can get from any interval
to any other interval in a finite number of steps: see the theorem below. This
additional assumption implies that the system is ‘transitive’. Of course, the
Hölder condition as in Remark 2 above also follows from the expanding condi-

tion and
�

�

�

�

Df(x)
Df(y)

� 1
�

�

�

�

 C 0 ·|x�y|� (and, therefore, holds if for example log |Df |
is Lipschitz); however, the condition in Remark 2 sometimes holds even when
this Hölder condition does not:

Exercise 2.1. Consider the Gauss map G : (0, 1) ! (0, 1) defined by G(x) =
1
x
�


1
x

�

. Show that this map has a finite absolutely continuous invariant

measure d µ =
1

log 2
dx

1 + x
. Show that G also satisfies Properties b)-c) of the

definition Markov maps. Show that it does not satisfy the following Hölder
Property: there exists � > 0,

�

�

�

�

DG(x)
DG(y)

� 1
�

�

�

�

 C · |x� y|� .
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However, it does satisfy Assumption a). Note that there are infinitely many
branches of G near 0 and, therefore, that G is ‘infinitely expanding near this
point’. (Compare this exercise with the last exercise in this section.)

The main result of this section shows that such Markov maps have very good
mixing properties. Not only is there an absolutely continuous invariant measure
for such maps, this measure even has some very strong mixing properties. As
before we say that an f -invariant probability measure µ is ergodic if any Borel set
A which is (completely) invariant, f�1(A) = A, either has full or zero measure
with respect to µ. Furthermore, we say that µ is exact if there exist no Borel
sets A, A1, A2, . . . with 0 < µ(A) < 1 such that A = f�n(A

n

) for any n � 0.
Moreover, we say µ is mixing if for any Borel sets A, B,

lim
n!1µ(f�n(A) \B)! µ(A)µ(B).

It is not hard to show that any exact measure is mixing (although it is not so
easy to see this from the definitions) and, therefore, also ergodic.

Exercise 2.2. Show that a f -invariant probability measure µ cannot be exact
if this map is almost everywhere invertible on the support of the measure. It
follows from this that the Bowen-Ruelle-Sinai measure on the attracting Cantor
set in the infinite renormalizable case is not exact. Show that this measure is
not mixing either.

Exercise 2.3. Let f : [0, 1] ! [0, 1] be defined by f(x) = 2x mod 1. Show
directly from the definition that the Lebesgue measure is an exact invariant
measure. (Hint: if A is of the form f�n(A

n

) then this means that x 2 A if and

only if x+
1
2n

2 A (modulo 1). Suppose that A has positive Lebesgue measure.

Then A has a density point d. Letting I
n

be the interval of the form [
p

2n

,
p + 1
2n

)

containing d one has
|A \ I

n

|
|I

n

| ! 1. Because of the translation invariance one

has
|A \ [0, 1]|
|[0, 1]| =

|A \ I
n

|
|I

n

| and, therefore, A has full Lebesgue measure in [0, 1].)

Exercise 2.4. Show that µ is ergodic if it is mixing. (Hint: let B be the
complement of A and apply the definitions.)

As usual, let � be the Lebesgue measure on N . We may assume that � is a
probability measure, i.e., �(N) = 1. Often we will denote the Lebesgue measure
of a Borel set A by |A|.

Theorem 2.2. Let f : N ! N be a Markov map and let [I
i

be corresponding
partition. Then there exists a f-invariant probability measure µ on the Borel
sets of N which is absolutely continuous with respect to the Lebesgue measure.
This measure satisfies the following properties:
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a) its density
dµ

d�
is uniformly bounded and Hölder continuous. Moreover,

for each i the density is either zero on I
i

or uniformly bounded away from
zero.

If for every i and j one has fn(I
j

) � I
i

for some n � 1 then

b) the measure is unique and its density
dµ

d�
is strictly positive;

c) f is exact with respect to µ;

d) lim
n!1 |f�n(A)| = µ(A) for every Borel set A ⇢ N . If f(I

i

) = N for

each interval I
i

then

e) the density of µ is also uniformly bounded from below.

Let us first sketch the main idea of the proof of this result. Let P
n

be
the partition of N defined by iterating the partition [I

i

of N . More precisely,
I 2 P

n

if and only if I is a maximal interval such that I, . . . , fn�1(I) are all
contained in the union of the open intervals I

i

. (If each point in N \ [I
i

is
a discontinuity point or a turning point of f then I is a maximal interval on
which fn is a homeomorphism.) Let �

n

be the measure on N by pulling back
the Lebesgue measure by fn, i.e., take

�
n

(A) = |f�n(A)|.

Since the space of measures on N is compact with respect to the weak topology,

there exist certainly convergent subsequences of the measures µ
n

:=
1
n

P

n�1
i=0 �i

(in this topology). Let µ be a limit of µ
n(k). Then µ is an invariant measure.

Indeed, for each Borel set A,

µ(f�1(A)) = lim
k!1

1
n(k)

n(k)�1
X

i=0

|f�i(f�1(A))|

= lim
k!1

8

<

:

1
n(k)

n(k)�1
X

i=0

|f�i(A)|� 1
n(k)

|A|+ 1
n(k)

|f�n(k)(A)|

9

=

;

= lim
k!1

1
n(k)

n(k)�1
X

i=0

|f�i(A)|

= µ(A).

Let us explain why µ will be absolutely continuous. Take a measurable set A.
By Assumption a), fn|I has bounded distortion for each I 2 P

n

. Hence it will
follow that

|f�n(A) \ I|
|I|  K

|A \ fn(I)|
|fn(I)|  K

|A|
|fn(I)| .
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Now it follows from Assumptions b) and c) that there exists r > 0 such that for
each n � 1, |fn(I)| � r. Therefore, we get

|f�n(A) \ I|  K

r
· |A| · |I|.

Taking all intervals I 2 P
n

, we get

|f�n(A)|  K

r
|A|.

Clearly this implies that

µ(A)  K

r
�(A)

and, therefore, µ is absolutely continuous and has a density which is uniformly
bounded from above by K/r. If fn(I) = N for each I 2 I

n

then one also has
that A \ fn(I) = A and

|f�n(A) \ I|
|I| � 1

K

|A \ fn(I)|
|fn(I)| =

1
K

|A|
|N |

and therefore |f�n(A)| � 1
K|N | |A|; clearly this implies that µ(A) � 1

K|N |�(A)

and so in this case the density of µ is also bounded from below.
Let us now give a proof of this theorem which also gives the additional

properties of the density of µ with respect to �. First of all we claim that �
n

is

absolutely continuous and that its density S
n

=
d�

n

d�
with respect to � is equal

to
S

n

(x) =
X

z2f

�n(x)

1
|Dfn(z)| .

Indeed, it is enough to show that for each A ⇢ I 2 P
n

one has

�
n

(A) =
Z

A

S
n

d�.

But this is easy to prove. Indeed,

(⇤) �
n

(A) = |f�n(A)| =
X

I2P
n

|f�n(A) \ I|.

Because the restriction of fn to each interval I 2 P
n

is a di↵eomorphism we get
from the transformation rules for integration

(⇤⇤)
|f�n(A) \ I| =

Z

f

�n(A)\I

d� =
Z

A

|D(fn|I)�1(x)| d�(x)

=
Z

A

1
|Dfn(z(x))| d�(x)

where (fn|I)�1 is the inverse of fn|I and z(x) = f�n(x) \ I. Putting (⇤) and
(⇤⇤) together one gets

�
n

(A) =
X

I2P
n

Z

A

|D(fn|I)�1(x)| d�(x) =
Z

A

X

z2f

�n(x)

1
|Dfn(z)| d�(x)

=
Z

A

S
n

(x) d�(x).



2. INVARIANT MEASURES FOR MARKOV MAPS 347

In order to show that µ is absolutely continuous with respect to the Lebesgue
measure we will estimate the functions |Dfn(x)| and S

n

(x).
But before we do this let us first connect what we have done so far with the

Perron-Frobenius operator. This operator associates to a density function u on
[0, 1] the function

Pu(x) :=
d

dx

Z

f

�1([0,x])

u(t) dt.

This means that if µ is the measure with density u then the measure f⇤µ has
density Pu. In order to calculate Pu(x) one has to consider all inverse images
of x and in this way one gets

Pu(x) :=
X

z2f

�1(x)

u(z)
|Df(z)| .

So in other words we have simply that

S
n

= Pn 1

where 1 is the constant function with value equal to 1 (so the density function of
the Lebesgue measure). In other words, we are iterating the Perron-Frobenius
operator and determining its limits. In Section 4 of this chapter we will also
iterate the Perron-Frobenius operator but apply some ‘sliding’ as well. Then it
will turn out that it may not always be advantageous to really use the Perron-
Frobenius operator, but to think more of pulling back mass.

So let us come back to the estimates on S
n

.

Lemma 2.1. There exists K < 1 such that for every n 2 N and every x, y 2
I0 2 P0,

S
n

(x)  K,

|S
n

(x)� S
n

(y)|  K · S
n

(x) · |x� y|� .

Proof. Because of Properties b) and c), |fn(I)| � r for all n � 0 and all
I 2 P

n

and from Assumption a) it follows that there exists K < 1 such that
|fn(I)|  K|Dfn(z)| · |I| for each z 2 I 2 P

n

. Therefore,

S
n

(x) =
X

z2f

�n(x)

1
|Dfn(z)| 

X

I

K · |I|
|fn(I)| 

X

I

K · |I|
r
 K

r

where the last two sums run over all intervals I 2 P
n

with f�n(x) 2 I since
each element I 2 P

n

can only contain at most one element of f�n(x). Next
notice that from the Markov Assumption b) one has that if x, y 2 I0 2 P0, then
f�n(x) \ I consists of at most one point for each I 2 P

n

and this set is non-
empty if and only if f�n(y)\I is non-empty. Enumerate the points z1, z2, . . . in
f�n(x) and the points in z01, z

0
2, . . . in f�n(y) so that z

k

, z0
k

are both contained
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in the same element of P
n

. Then, using Assumption a),

|S
n

(x)� S
n

(y)| 
X

| 1
|Dfn(z

k

)| �
1

|Dfn(z0
k

)| |


X 1

|Dfn(z
k

)| ·
�

�

�

�

1� |Dfn(z
k

)|
|Dfn(z0

k

)|

�

�

�

�


X 1

|Dfn(z
k

)| ·K · |fn(z
k

)� fn(z0
k

)|�

Hence

|S
n

(x)� S
n

(y)| 
X 1

|Dfn(z
k

)| ·K · |x� y|�  S
n

(x) ·K · |x� y|� .

Lemma 2.2. There exists a sequences n(k) ! 1 such that the measures

µ
n(k) :=

1
n

P

n(k)�1
i=0 �

i

converge (in the weak topology) to an invariant mea-
sure µ with a density which is Hölder continuous and bounded (with respect to
the Lebesgue measure). If for every i and j one has fn(I

j

) � I
i

for some n � 1
then i) the restriction of the density is uniformly positive on each interval I

i

and ii) the measure is exact.

Proof. According to the previous lemma the density Ŝ
n

=
1
n

P

n�1
i=0 S

i

of µ
n

satisfies
Ŝ

n

(x)  K,

|Ŝ
n

(x)� Ŝ
n

(y)|  K · Ŝ
n

(x) · |x� y|�

for each x, y 2 I0 2 P0. It follows that Ŝ
n

: [ I
i

! R is bounded and equicon-
tinuous on each interval I

i

, and consequently there exists a subsequence of Ŝ
n

which converges uniformly to a function S such that

S(x)  K,

|S(x)� S(y)|  K · S(x) · |x� y|�

for each x, y 2 I0 2 P0. Let µ be the corresponding measure. From the
definition of Ŝ

n

it follows as before that S and therefore µ is invariant. Let us
first show that the density S is bounded from below on each interval I

i

. Indeed,
if inf

x2I

i

S(x) = 0 for some I
i

2 P0 then |S(x) � S(y)|  K · S(x) · |x � y|�
implies that S(y) = 0 for all y 2 I

i

. But then µ(I
i

) = 0. Now take an arbitrary
I
j

2 P0. If the last additional assumption is satisfied then there exists n � 0
such that fn(I

j

) � I
i

then But then I
j

\ f�n(I
i

) 6= ; and µ(I
j

\ f�n(I
i

)) 
µ(fn(I

j

) \ I
i

) = 0. From the previous argument it follows that µ(I
j

) = 0. By
assumption this would hold for all j and therefore we would have µ(N) = 0, a
contradiction.

It remains to show that f is exact with respect to µ. So assume by contradic-
tion that there exist Borel sets A, A1, A2, . . . with 0 < µ(A) < 1 and such that
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A = f�n(A
n

). But fn|I has bounded distortion on I 2 P
n

. More specifically,
there exists a constant K <1 such that for each I 2 P

n

,

|fn(I)|
|I| � 1

K

|A
n

|
|f�n(A

n

) \ I|
and since |fn(I)| � r for all n � m, we get

|A \ I|
|I| =

|f�n(A
n

) \ I|
|I| � 1

Kr
|A

n

|

for each I 2 P
n

. If µ(A
n

) = µ(A) > 0 then, because the density of µ is strictly
positive on each I 2 P0 and µ is absolutely continuous, there exists a constant
c > 0 such that |A

n

| > c and the last inequality implies that N \ A has no
density points, and, therefore, that |N \A| = 0, i.e., µ(A) = 1.

Proof of Theorem 2.2: Statement a) follows from the previous lemmas. So
let us prove Statements b)-d) under the additional assumption made in these
statements. As we have seen in the previous lemmas, each invariant measure µ
has a strictly positive and bounded density. Moreover, µ is exact and therefore
ergodic. Birkho↵’s Ergodic Theorem then implies that for Lebesgue almost
every x and for each open interval U one has µ(U) = lim

n!1#{0  i <
n ; f i(x) 2 U}/n. It follows that µ is unique. Moreover, because µ is exact it
Statement d) holds, see Mañé (1987, Proposition II.8.3). Statement e) follows
from the previous lemma.

Exercise 2.5. In this exercise we will show that piecewise monotone expand-
ing maps which do not satisfy the Markov Assumption also have absolutely
continuous invariant measures. This result is due to Lasota and Yorke (1973).
A generalization of this result, using the ideas from Section 4 of this chapter
appeared in Kondah and Nowicki (1990). So let f : [0, 1] ! [0, 1] be C2 except
possibly in 0 = a0 < a1 < a2 < · · · < a

r

= 1, such that i) |Df(x)| � � > 1 and

ii)
|D2f(x)|
|Df(x)|2  c < 1 on I

i

= (a
i�1, ai

) for each i. Then f has an absolutely

continuous invariant probability measure. (A related and stronger theorem can
be proved using the techniques from Section 4 of this chapter.) The result will
proved in a few steps.
a) Let u : [0, 1]! R have bounded variation and let [a, b] ⇢ [0, 1]. Show that

Var10(u1[a,b])  2Varb

a

(u) +
2

b� a

Z

b

a

|u(x)| dx.

(Hint: let 1[a,b] be the indicator function on [a, b]. Then clearly Var10(u1[a,b]) 
Varb

a

(u)+ |u(a)|+ |u(b)|. So for each c 2 [a, b], Var10(u1[a,b])  Varb

a

(u)+ |u(a)�
u(c)|+ |u(b)� u(c)|+ 2|u(c)|  2Varb

a

(u) + 2|u(c)|. Choosing c suitably one has
|u(c)|  1/(b � a)

R

b

a

|u(x)| dx and this gives the result.) b) Let u be as in a)
and v be C1. Show that

Var(uv)  sup |v|Var(u) +
Z

|u(t)v0(t)| dt.
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(Hint: since
P

|a
i

b
i

� a
i�1bi�1| =

P

|b
i

(a
i

� a
i�1) + a

i�1(bi

� b
i�1)|, one has

X

|u(x
i

)v(x
i

)�u(x
i�1)v(x

i�1)| 


X

{|v(x
i

)||u(x
i

)� u(x
i�1)|+ |u(x

i�1)||v(x
i

)� v(x
i�1)|}

 sup |v|Var(u) +
X

|u(x
i�1)||v0(⇠i)||xi

� x
i�1|

which in the limit is at most sup |v|Var(u) +
R

|u(t)v0(t)| dt.) c) If k
n

is a
sequence of real numbers such that for some ⇢ < 1 one has k

n+1  ⇢ · k
n

+
L for all n 2 N. Then k

n

is bounded. d) Let u be a positive function of
bounded variation such that its integral over [0, 1] is one and let P be the
Perron-Frobenius operator. Furthermore, let f be as above. Then there exists
a universal constant L such that

Var10(Pu)  2
�

Var(u) + L.

(Hint: as we have seen before

Pu(x) =
X

z2f

�1(x)

u(z)
|Df(x)| =

r

X

i=1

u(f�1(x) \ I
i

)
|Df(x)| 1

I

i

(x)

(if f�1(x) \ I
i

= ; then the corresponding term is zero). Using this and the
second inequality from part a) of this exercise,

Var10(Pu)  2
r

X

i=1

Var
I

i

u(f�1(x))
|Df(x)| +

r

X

i=1

2
|I

i

|

Z

I

i

u(f�1(x))
|Df(x)| .

Using part b) of this exercise, |Df(x)| � � and |D 1
Df

|  c (which follows from

the second assumption one gets

Var
I

i

u(f�1(x)
|Df(x)| 

1
�

Var(u(f�1(x))) + c

Z

I

i

u(f�1(x))

and hence

Var10(Pu)  2
�

X

Var(u(f�1(x))) + 2
X



c +
1
|I

i

|

�

Z

I

i

u(f�1(x)).

So one gets the required inequality with L = 2
P



c +
1
|I

i

|

�

since
R

u = 1. Note

that this step fails if f is not piecewise monotone, as is for example the case
for the Gauss map. e) Prove the result stated at the beginning of this exercise.
(Hint: since � > 1, some iterate of f satisfies |Dfk| > 2. So we may assume that
� > 2. But then one gets from parts c) and d) of this exercise that Var(Pnu)
is bounded for all n. Since

R

Pnu = 1, it follows that some subsequence of Pnu
has a limit which also has bounded variation and, therefore, is in L1. This limit
is the density of an invariant absolutely continuous probability measure.)
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Exercise 2.6. Show that the measure from the previous exercise does not need
to be ergodic. (Hint: construct a map f : [0, 1]! [0, 1] which maps both [0, 1/2]
and [1/2, 1] into itself.)

Exercise 2.7. Show that the measure is ergodic if sup
n>0 |fn(U)| = 1 for each

open interval U . In Bowen (1977) it is shown that in this case f is even weakly
mixing.

3 Constructing Invariant Measures by Inducing

In the presence of critical points the expanding conditions in the definition of
Markov maps fails: we no longer have expansion and control of the non-linearity.
However, as we have seen in Chapter III, we may get expansion if we stay long
enough away from the critical points to compensate the contraction we get near
the critical point. Also, as in Chapter IV, we may recover some control of non-
linearity by using the Koebe Principle. Using these ideas we will show below
that in many situations we can associate to some maps a Markov map and,
using Theorem 2.2, we will prove the existence of absolutely continuous invari-
ant measures for such maps. In the next section we shall construct invariant
measures using an alternative strategy.

Definition. We say that a map f : I ! I induces a Markov map if there is an
interval J ⇢ I and a Markov map F on J , defined on a subset [1

j=1Ij

of J with
full Lebesgue measure such that, for each j 2 N, the restriction of F to I

j

is an
iterate fk(j) of f with fk(j)(I

j

) ⇢ J . We say that F is induced by f on J .

As we have seen in the previous section, the Markov map F has an absolutely
continuous invariant probability measure. In general this need not imply that
f also has such a measure. However,

Lemma 3.1. Let f : I ! I induce the Markov map F : [1
j=1 I

j

! J , let k(j) be
so that F |I

j

= fk(j) and let ⌫ be the absolutely continuous invariant probability
measure of F . If

(3.1)
1
X

j=1

k(j)⌫(I
j

) <1

then f has an absolutely continuous invariant probability measure. If

1
X

j=1

k(j)|I
j

| <1

then (3.1) holds.
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Proof. By Theorem 2.2, F has an invariant probability measure ⌫ which is
absolutely continuous with respect to the Lebesgue measure. Let ⌫

j

denote the
measure ⌫|I

j

, namely, ⌫
j

(A) = ⌫(A \ I
j

). Hence ⌫ =
P1

j=1 ⌫j

. Let us define a
measure µ by the formula

µ =
1
X

j=1

k(j)�1
X

i=0

f i

⇤⌫j

,

where �⇤⌫ denotes the measure obtained by pushing forward ⌫ by �, i.e.,
�⇤⌫(A) = ⌫(��1(A)). Clearly, µ is absolutely continuous because |A| = 0
implies that ⌫(A) = 0 and hence f i

⇤⌫j

(A) = ⌫
j

(f�i(A)) = 0. It remains to
prove that µ is f -invariant. In fact,

f⇤µ =
1
X

j=1

k(j)�1
X

i=0

f i+1
⇤ ⌫

j

=
1
X

j=1

0

@

k(j)�1
X

i=1

f i

⇤⌫j

+ fk(j)
⇤ ⌫

j

1

A .

Since fk(j)
⇤ ⌫

j

(A) = ⌫
j

(f�k(j)(A)) = ⌫(f�k(j)(A) \ I
j

) = ⌫(F�1(A) \ I
j

) and
⌫(F�1(A)) =

P1
j=1 ⌫(F

�1(A) \ I
j

), ⌫(A) =
P1

j=1 ⌫(A \ I
j

), we get, by the
F -invariance of ⌫, that

P1
j=1 fk(j)

⇤ ⌫
j

=
P1

j=1 ⌫j

. Therefore, f⇤µ = µ. Since

(3.2) µ(I) =
1
X

j=1

k(j)�1
X

i=0

f i

⇤⌫j

(I) =
1
X

j=1

k(j)⌫(I
j

)

one has f⇤µ = µ if (3.1) holds. The last statement also follows from this because
the density of ⌫ is bounded from above.

Let us give some examples of this strategy.

The Misiurewicz case

First we shall apply this idea to Misiurewicz maps. Misiurewicz (1981) has
shown the existence of an absolutely continuous invariant measures for C3 maps
f : I ! I having a finite number of critical points, negative Schwarzian deriva-
tive, no attracting periodic orbit and satisfying the so called Misiurewicz con-
dition: no critical point is in the !-limit set of a critical point. This result was
extended in Van Strien (1990) to C2 interval maps. More precisely,

Theorem 3.1. Let f : I ! I be a mapping satisfying the following conditions:

1. f is C2 and is non-flat in each critical point;

2. all periodic points of f are hyperbolic repelling;

3. f satisfies the Misiurewicz condition: the forward orbit of a critical point
of f does not accumulate onto critical points.
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Then f has an invariant probability measure which is absolutely continuous with
respect to the Lebesgue measure.

We have already indicated in Exercise III.6.1 how this result follows from
the quasi-polynomial behaviour of Misiurewicz maps. Here we will follow an
alternative strategy and deduce it from the following results, see Theorem III.6.1
and Theorem III.5.1.

Proposition 3.1. If f : I ! I is a C2 map satisfying conditions 1), 2) and 3)
of Theorem 3.1 then there exists C > 0 such that

n�1
X

i=0

|f i(T )| < C

for each n 2 N and each interval T for which fn|T is a di↵eomorphism.

Proposition 3.2. If f : I ! I is a C2 map satisfying conditions 1) and 2) from
Theorem 3.1 then for each neighbourhood U of C(f) there exists K <1 with the
following property. For each n 2 N and each interval T such that f i(T )\U = ;
for all i = 0, 1, . . . , n� 1, the distortion of fn|T is uniformly bounded by K.

In Van Strien (1990), see also Section III.6, it was shown that the iterates
fn are quasi-polynomial on each branch and for each n 2 N. This easily implies
the existence of an invariant measure, see Exercise 6.1 in Section III.6. Here we
shall use Proposition 3.2 to show that the induced map satisfies good distortion
properties.

Using the above propositions we will prove the following lemma, see also
Lemma 3.3 of Vargas (1991).

Lemma 3.2. Let f be a unimodal map satisfying the hypothesis of Theorem
3.1. Then there exists an interval J containing the critical point of f such that
the first return map of f to J is a Markov map R.

Proof. Let W be an open interval neighbourhood of the critical point c such
that fn(c) /2 W for all n = 1, 2, . . . . It follows that if x is so that fn(x) 2 W
then there exists an interval neighbourhood T

n

(x) of x such that fn|T
n

(x) is
monotone and fn(T

n

(x)) � W . Now take a periodic point p 2 W such that
f i(p) /2 (p, ⌧(p)) for all i � 0 and let J = (p, ⌧(p)). Let R be the return map to
J . Since c 2 !(x) for almost every x, the domain of R has full Lebesgue measure
in J . Let I

j

be the intervals from the domain of R. This map clearly satisfies
Properties b)-d) of the definition of a Markov map. Indeed, J is contained in
W and therefore when x 2 J and n > 0 is minimal so that fn(x) 2 J then
fn(T

n

(x)) � W � J where fn|T
n

(x) is monotone. So by the choice of the
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endpoints of J , we get that the interval I 3 x such that fn(I) = J is contained
in J . It follows that R(I

j

) = J on each component I
j

of the domain of R. So
let us prove that it also satisfies Property a). If n 2 N and an interval I is
so that Ri(I) is contained in

S

j

I
j

for each i = 0, 1, . . . , n, then there exists k
such that Ri+1|I = fk|I and fk(x) 2 J . Hence fk is monotone on the interval
neighbourhood T

k

� I from above and fk(T
k

) �W . From Proposition 3.1 and
the Koebe Principle (Theorem IV.3.1) one immediately gets that

�

�

�

�

Dfk(x)
Dfk(y)

� 1
�

�

�

�

 C · |f(x)� f(y)|

for all x, y 2 I.

Lemma 3.3. Assume that f are as above and J is as in Lemma 3.2. Let R be
the first return map of f to J . Let [

j

I
j

be the domain of R and let R|I
j

= fk(j).
Then

P

j=1 k(j)|I
j

| <1.

Proof. Take J as in the proof of Lemma 3.2. Let

⇤
n

= J \
[

{j ; k(j)<n}
I
j

= {x 2 J ; f i(x) /2 J for all i = 1, 2, . . . , n� 1}.

We claim that the Lebesgue measure of ⇤
n

goes exponentially fast to zero as
n!1. The lemma follows from this claim because

X

j

k(j) · |I
j

| =
X

n

X

{j ; k(j)=n}
n|I

j

| 
X

n

n|⇤
n�1|

and by the claim this last expression is bounded from above.
So let us prove the claim and take a component E of ⇤

n

. Both endpoints
of E are contained in intervals of the form I

j

with k(j) < n or in @J and
f i(E) \ J = ; for i = 1, . . . , n � 1. fn|E is monotone except if E contains the
critical point. Since forward iterates of @J never enter J it follows that E is
contained in the interior of J and that the endpoints of E hit @J in less than n
iterates. Let us first assume that E does not contain c. Since fn|E is monotone,
both endpoint of fn(E) are distinct points in the forward orbit of the periodic
point p and therefore there exists � > 0 such that |fn(E)| � �. Hence there
exists a universal constant N < 1 (which does depend on J but not on n)
such that c 2 int (fk(E)) for some (minimal) k with n  k  n + N . Since
fk|E is monotone, fk(E) � J . Because f i(E) \ J = ; for i = 1, 2, . . . , n � 1,
fk�1|f(E) has universally bounded distortion by Proposition 3.2. Combining
this gives that the Lebesgue measure of {x 2 E ; fk(x) 2 J} is at least a
universal constant times the Lebesgue measure of E. Since

(⇤
n

\ ⇤
n+N

) \ E ⇢ {x 2 E ; fk(x) 2 J},

the Lebesgue measure of ⇤
n+N

\E is at most the Lebesgue measure of ⇤
n

\E
times a universal factor ⌧ < 1.
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Since f is Misiurewicz, this argument can also be applied to the unique
component E

n,0 of ⇤
n

which contains the critical point: let (x
n

, c) be one of the
components of E

n,0 \ {c}. Then x
n

is mapped to @J in i < n iterates and f i(c)
is outside W . So we get as before a universal integer N and constant ⌧ < 1 such
that |E

n+N,0|  ⌧ · |E
n,0|. It follows that the Lebesgue measure of ⇤

n

tends
exponentially fast to zero.

Proof of Theorem 3.1: Follows from Lemmas 3.1-3.3. A similar proof also
works for the general multimodal case. The di↵erence is that we have to consider
a Markov map defined on a disjoint collection of intervals.

Keller’s Theorem

Let us strengthen this result: we shall derive a necessary and su�cient condition
for the existence of an absolutely continuous invariant probability measure due
to Keller (1990a). As before, let T

n

(x) be a maximal interval containing x on
which fn is monotone. (If x is not in the backward orbit of c then there exists
only one such interval.) Furthermore, let R

n

(x) and L
n

(x) be the components
of T

n

(x) \ x and define r
n

(x) to be the minimum of the lengths of fn(R
n

(x))
and fn(L

n

(x)).
This result states that f has an absolutely continuous invariant probability

measure if and only if f has a positive Liapounov exponent in almost every
point:

Theorem 3.2. (Keller) Let f : [�1, 1] ! [�1, 1] be a unimodal map with one
non-flat critical point with negative Schwarzian derivative. Then the following
statements are equivalent:

1. f has an absolutely continuous invariant probability measure;
2. for almost all x,

(3.3) lim sup
n!1

1
n

n�1
X

i=0

r
i

(x) > 0;

3. for almost all x,

(3.4) lim sup
n!1

1
n

log |Dfn(x)| > 0.

If such a measure exists then f has no absorbing Cantor set and the density of
this measure is uniformly bounded from below on the attractor of f (which, as
we saw in Theorem 1.3, consists of a finite union of intervals in this case).

We shall prove this theorem using the Folklore Theorem similarly as before.
Let us first deduce the following corollary from it.
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Corollary 3.1. Let f : [�1, 1] ! [�1, 1] be a unimodal map with one non-flat
critical point with negative Schwarzian derivative. Then there exists a constant
�

f

such that for almost all x,

lim sup
n!1

1
n

log |Dfn(x)| = �
f

.

Moreover,

1. �
f

> 0 if and only if f has an absolutely continuous invariant probability
measure; in this case lim

n!1 1
n

log |Dfn(x)| = �
f

for almost every x.

2. �
f

< 0 if and only if f has a hyperbolic periodic attractor.

Proof. If f has a hyperbolic periodic attractor then, as we have seen in the
first section, almost every point is in the basin of this attractor. Therefore,
lim

n!1 1
n

log |Dfn(x)| exists and is equal to some negative constant �
f

(the
eigenvalue of this periodic attractor).

So assume that f has no hyperbolic periodic attractor. Then, as we have
seen in Section 1, for almost every x, we have c 2 !(x). For each such x we
can define a sequence k(i)!1 such that k(0) = 0 and so that k(i + 1) > k(i)
is the smallest integer such that fk(i+1)(x) 2 (fk(i)(x), ⌧(fk(i)(x))). Therefore,
fk(i)(x) 2 V

k(i+1)�k(i) where

V
k

= {y ; f i(y) /2 [y, ⌧(y)] for all 0 < j < k and

fk(y) 2 [y, ⌧(y)]}.

This set was also used in Guckenheimer’s proof of Theorem II.6.3, see Exercise
II.6.1. As was shown in that exercise, if T = [u, v] is a component of V

k

then
fk|T is monotone and fk(u) = u, fk(v) = ⌧(v) (or vice versa). Since f has no
repelling periodic attractors, this implies |Dfk(u)| � 1 and |Dfk(⌧(v))| � 1.
Because of the non-flatness of c this implies that there exists a universal constant
C 2 (0, 1) so that |Dfk(u)| � 1 and |Dfk(v)| � C. Hence, by the Minimum
Principle, |Dfk(y)| � C for all y 2 T . It follows that

|Dfk(j)(x)| � Cj .

Since k(j + 1)� k(j)!1 and therefore k(j)/j !1 it follows that

lim sup
n!1

1
n

log |Dfn(x)| � 0.

The previous theorem implies that this measure µ exists if and only if lim sup 1
n

log |Dfn(x)| >
0 for almost all x. The remainder of the corollary follows: if f has an abso-
lutely continuous invariant probability measure µ then by Birkho↵’s Ergodic
Theorem,

lim
n!1

1
n

log |Dfn(x)| =
Z

log |Df | dµ

for almost every x.
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Remark. We say that the set of periodic points of f has a hyperbolic struc-
ture if there exists � > 1 such that for each periodic point p of period n one has

|Dfn(p)| > �n. The previous proof shows that this implies lim
n!1

1
n

log |Dfn(x)| �
� for almost all x.

Proof of Theorem 3.2: Our proof is quite di↵erent from Keller’s. He uses a
classification of positive L1 operators and the tower construction from Section
II.3.b. Our proof is based on using Theorem 2.2 from the previous section.
First note that each of the Statements 1), 2) and 3) is impossible if f has an
attracting periodic point.

First we observe that if lim sup
n!1 r

n

(x) > 0 for almost all x then by the
ergodicity of f , there exists � > 0 such that

lim sup
n!1

1
n

n�1
X

i=0

r
i

(x) � �

for almost all x. As before, let T
n

(x) the maximal interval containing x on
which fn is a di↵eomorphism.

Statement 1 implies 3: Assume that Statement 1 holds, i.e., f has an abso-
lutely continuous invariant probability measure µ. As we have seen in Exercise
V.1.4 the metric entropy h

µ

(f) of such a measure is positive (we refer to Walters
(1982) or Mañé (1987) for the definition of the definition of the metric entropy
of a measure). As is well known we have the Rochlin formula

h
µ

(f) =
Z

log |Df | dµ,

see for example Ledrappier (1981). Moreover, by Birkho↵’s Ergodic Theorem,

lim
n!1

1
n

log |Dfn(x)| = lim
n!1

1
n

n�1
X

i=0

log |Df(f i(x))| =
Z

log |Df | dµ.

Since the last term is positive, the limit on the left is also positive. This proves
that Statement 3 holds. We should note that one can also prove Statement 2
quite easily using Keller (1989a). Indeed, in that paper it is shown that such a
measure can be lifted to an absolutely continuous probability measure µ̂ which
is defined on the tower from Section II.3.b and leaves invariant the lift f̂ to
the tower of the map f . Then pick some interval D

k

in the tower and take
the middle third interval U

k

in D
k

. Because of Birkho↵’s Ergodic Theorem for
almost all x one has that #{0  i < n ; f̂ i(x) 2 U

k

}/n tends to µ̂(U
k

) > 0 as
n ! 1. When f̂ i(x) 2 U

k

then r
i

(x) � |D
k

|/3 because by definition of the
tower, f i maps a neighbourhood of x di↵eomorphically to the interval then D

k

and so it follows that

lim
n!1

1
n

n�1
X

i=0

r
i

(x) � µ̂(U
k

) · |D
k

|/3
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for almost all x.

Statement 2 implies Statement 1: So assume that there exists � > 0 so
that the set

X = {x ; lim sup
n!1

1
n

n�1
X

i=0

r
i

(x) � �}

has full Lebesgue measure. We start by taking a finite forward invariant set
P ⇢ [�1, 1] so that each component of [�1, 1] \ P has length  �/4. We can do
this by taking P to be a finite union of periodic orbits. Let �0 be the length of the
smallest of these components. We shall use the partition generated by P to show
that we can define a Markov map F if the set X 0 = {x ; lim sup r

n

(x) � �} has
full Lebesgue measure. As we will show, this Markov map F has an absolutely
continuous invariant measure. This measure can be used to get an absolutely
continuous invariant measure for f provided Statement 2 holds. So let J(x)
denote the interval of the partition [�1, 1] \ P containing x (we add the right
endpoints to each component of [�1, 1] \ P to get a covering of [�1, 1]). Let
N be so large that each interval of monotonicity of fN has length  �0/2.
Take x 2 X 0 and let k(x) � N be minimal so that fk(x)(T

k(x)(x)) contains
J(fk(x)(x)) and its two neighbours from the partition. By the choice of the
partition such an integer exists for each x 2 X 0. Let I(x) ⇢ T

k(x)(x) be so that
fk(x)(I(x)) is equal to J(fk(x)(x)). By definition, for each y 2 I(x) one has
I(y) = I(x) and k(x) = k(y). So it makes sense to define F :

S

x2X

I(x)!
S

J
i

by F |I(x) = fk(x) and let k(j) = k|I
j

. Let us show that F is a Markov map.
By definition F maps I(x) into one interval from the partition. Moreover, I(x)
never contains a point of P in its interior because the points of P are mapped
again into P . This implies that F maps I(x) into a union of intervals I(y

i

).
It satisfies the Markov Assumption b) from the previous section. Moreover,
|F (I(x))| � �0 and therefore it satisfies Assumption c) from the definition of
Markov maps. So let us show that it also satisfies the Markov Assumption a)
that for each k � 0 and the restriction of F k to each branch is not too non-
linear. So take s � 0 and for x 2 X 0 let I

s

(x) be the domain of F s containing
x. Let m(s, x) be so that F s(x) = fm(s,x)(x). By the choice of N , the interval
T

m(s,x)(x) is contained in the union of at most two elements of the partition.
Moreover, by definition fm(1,x) maps T

m(1,x) di↵eomorphically over J(F (x)) and
its two neighbours from the partition. From this the following assertion can be
proved by induction on s: for each x 2 X 0 the interval T

m(s,x)(x) is mapped
di↵eomorphically by fm(s,x) over J(F s(x)) and also over its two neighbours
from the partition. Since fm(s,x)|T

m(s,x)(x) is an extension of F s|I
s

(x) and
since Sfm(s,x) < 0 it follows from the Koebe Principle that F s satisfies

�

�

�

�

DF s(x)
DF s(y)

� 1
�

�

�

�

 C · |F s(x)� F s(y)| for all x, y 2 I.

It follows from Theorem 2.2 that F has an absolutely continuous invariant
probability measure ⌫. From Lemma 3.1, the map f has also an absolutely
continuous invariant probability measure if

P

k(j)⌫(I
j

) <1. We shall use the
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assumption to show that this condition is met. So assume by contradiction that
P

k(j)⌫(I
j

) =1. Because of Birkho↵’s Ergodic Theorem for ⌫-almost all x,

n(s)
s

=
k(x) + k(F (x)) + · · ·+ k(F s(x))

s

tends to
Z

[�1,1]

k(x)d⌫(x) =
X

k(j)⌫(I
j

) =1

as s ! 1. Let F i(x) = fn(i)(x). By construction if n(i)  n  n(i + 1) and
r
n

(x) � � then either n(i)  n  n(i) + N or n = n(i + 1). Indeed, if r
n

(x) � �
then fn maps some interval T containing x di↵eomorphically to a � neighbour-
hood of fn(x). So, in particular, fn�n(i) maps fn(i)(T ) di↵eomorphically to
J(fn(x)) and its two neighbours from the partition. Because of the minimality
of k(i) either n� n(i) = k(i) (and therefore n = n(i + 1)) or n� n(i)  N). So
take n and let s be so that n(s)  n < n(s + 1). Then

#{0  i < n ; r
i

(x) � �}
n

 (N + 1)s
n(s)

.

Because of the previous limit, this last ratio converges to zero as s ! 1.

It follows that lim sup
n!1

1
n

P

n�1
i=0 r

i

(x) < � for ⌫-almost all x. Since ⌫ is
absolutely continuous, this contradicts the assumption. It follows that f has
also an absolutely continuous invariant probability measure µ. From Theorem
2.2, the density of ⌫ is uniformly bounded from below in one of the intervals
I
j

. So the density of µ is also uniformly bounded from below on I
j

. Let L
be the finite union of transitive intervals in the non-wandering set of f . Take
a component L0 of L. Then there exists k such that fk(I

j

) � L0. It follows
from this, the invariance and since Dfk is bounded that the density of µ is also
uniformly bounded from below on each component of L.

Statement 2 implies 3: Because f is ergodic, 2) implies that there exists
� > 0 such that

lim sup
n!1

1
n

n�1
X

i=0

r
i

(x) � �

for almost all x. Because r
i

(x)  1 for each x and each i, this implies that there
exists arbitrarily large integers n such that

3
4
�  1

n

X

0i<n

r
i

(x)

=
1
n

X

{0i<n ; r

i

(x)�/2}
r
i

(x) +
1
n

X

{0i<n ; r

i

(x)>�/2}
r
i

(x)

 �

2
+

#{0  i < n ; r
i

(x) � �/2}
n

.

So for almost all x there exist infinitely many integers n such that

1
n

#{0  i < n ; r
i

(x) � �/2} � �/4.
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From this it easily follows that there exist arbitrarily large integers n with

(3.5)
1
n

#{0  i < n ; r
i

(x) � �/2 and r
n

(x) � �/2} � �/4

Take a point x and an integer n 2 N for which (3.5) is satisfied. For each � > 0
there exists an integer N which only depends on � such that each interval of
length �/8 in [�1, 1] contains a point of [N

m=0f
�m(c). So fN is never monotone

on an interval of length � �/8. In particular, if r
i

(x) � �/2 then f i(T
i

(x))
contains a �/2 neighbourhood of f i(x). Because of the previous sentence this
implies that f i(T

i

) must contain a �/8-scaled neighbourhood of f i(T
i+N

(x)).
Hence from the Macroscopic Koebe Principle, there exists a constant  < 1
which only depends on � such that for each integer i with r

i

(x) � �/2,

|T
i+N

(x)|   · |T
i

(x)|.

Because of (3.5), for at least �/4 of the integers i = 0, 1, 2, . . . , n one has r
i

(x) �
�/2 and therefore |T

i+N

(x)|   · |T
i

(x)|. Hence there exists ⇢ < 1 and C > 0
depending only on � with

|T
n

(x)|  C · ⇢n.

Since r
n

(x) � �/2, the Koebe Principle implies that there exist K < 1 and
C 0 > 0 with

|Dfn(x)| � 1
K
· |f

n(T
n

(x))|
|T

n

(x)| � 1
K
· �

|T
n

(x)| �
C 0

⇢n

.

Statement 3 follows.

Statement 3 implies 2: Assume that lim sup
1
n

log |Dfn(x)| > 0 for almost
all x. As before, the ergodicity of f implies that there exists a constant �

f

> 0

such that lim sup
1
n

log |Dfn(x)| = �
f

for almost all x. Let � 2 (0,�
f

). Let
l : R+ ! R+ be maximal so that

(3.6) |x� c|  � and f i(x) = c implies i � 2l(�).

Note that we can choose the function l so that l(�) ! 1 as � ! 0. Let � > 0,
a

i

2 {0, 1} and define

S
�

(a0, a1, . . . , as

) = {x ; r
i

(x) � � if a
i

= 1 and 0 < r
i

(x) < � if a
i

= 0}.

Note that if I is a component of this set then f i|I is a di↵eomorphism for
0  i  s (because r

i

> 0 on such a component) and |f i(I)|  2� if a
i

= 0.
Moreover, the partition of S

�

(a0, . . . , as+1) refines that of S
�

(a0, . . . , as

): each
component of the first set is contained in one of the second set and each compo-
nent of the last set is a union of components of the first set (with their boundary
points). Note that fs is monotone on each component of S

�

(a0, . . . , as

) and so
fs+1 can have at most two monotone branches over such a component. Fur-
thermore, S

�

(a0, . . . , as

, a
s+1) may have at most three parts in a component
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of S
�

(a0, . . . , as

) on which fs+1 is monotone. Let #S denote the number of
components of the set S. Then this kind of argument gives:

(3.7) #S
�

(a0, . . . , as

, 0) + #S
�

(a0, . . . , as

, 1)  6#S
�

(a0, . . . , as

).

Proof of (3.7): Let I be a component of the last set with endpoints u and v.
Let us consider what may happen to this interval.

Case 1: a
s

= 0 and fs+1|I is a di↵eomorphism. Because a
s

= 0, the map fs

has a critical point at one endpoint u of I and either

a. v is not a turning point of fs. In this case I is split up into at most
two intervals. It is split into two intervals precisely if r

s+1(v) � � and so
‘space’ is created on this side of I: in this case the interval containing u in
its boundary is in S

�

(a0, . . . , as

, 0) and the other one is in S
�

(a0, . . . , as

, 1).

b. v is a turning point of fs. In this case, it is not split if |fs+1(I)|  � and
otherwise into three intervals I

l

, I
m

, I
r

: the closures of the components
I
l

, I
r

contain the endpoints of I and are contained in S
�

(a0, . . . , as

, 0) and
a middle one I

m

which is contained in S
�

(a0, . . . , as

, 1).

Case 2: If fs+1|I is a di↵eomorphism and a
s

= 1 then I might be split up into
at most three intervals (because one might ‘loose’ the space on the sides of I).

Case 3: If fs+1|I is not a di↵eomorphism then I is split up in at most six
similar intervals: it is cut in two because of the critical point and each of these
intervals can be split in at most three intervals for the same reasons as before.
Combining this proves (3.7). Next we want to prove that for any l  l(�),

(3.8) #S
�

(a0, . . . , as

, 0l+1)  6#S
�

(a0, . . . , as

, 0).

where 0i is a string of i consecutive 0’s.

Proof of (3.8): Consider a component I of S
�

(a0, . . . , as

, 0). Then |fs+1(I)| 
2�. Because of the choice of l then fs+i(I) 3 c for at most one i 2 {1, . . . , l+1}.
Now fs+i|I is a di↵eomorphism. If I 0 2 S

�

(a0, . . . , as

, 0i) and I 0 ⇢ I then I 0

has at least one common endpoint with I. So I is split up in at most two
subintervals which are contained in S

�

(a0, . . . , as

, 0i). Because fs+i+1|I is not
a di↵eomorphism, one of these subintervals is split up in at least two pieces and
at most six pieces of S

�

(a0, . . . , as

, 0i+1) (as in Case 3 above). Continuing one
gets (3.8). Combining (3.7) and (3.8) gives that

(3.9)
X

#S
�

(a0, . . . , an

)  6l�n6n(1��)/l

if we sum over all (a0, . . . , an

) with a0 + · · · + a
n

 �n. This holds because
there are most �n of 0’s which appear in a block of less than l zeros and of 1’s.
Therefore, if we define

X
n

(�) = {x ;
1
n

n�1
X

i

r
i

(x) < �, r
n

(x) > 0}
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then

(3.10) #X
n

(�)  6l�n6n(1��)/l.

Now choose l so that
61/l < e�/4.

Next choose � > 0 so small so that l < l(�) and so that

(3.11) 6�l61/l  e�/2.

Furthermore, let
Y

n

= {x ; |Dfn(x)| � en�}.
By definition,

(3.12) [
n�n0 Y

n

has full Lebesgue measure for each n0.

We will show that for � > 0 su�ciently small,

(3.13) |Y
n

\X
n

(�)|  e�n·�/4.

Let us show that this implies that there exists � > 0 such that

{x ; lim sup
n!1

1
n

n�1
X

i=0

r
i

(x) � �}

has full Lebesgue measure. Indeed, by ergodicity otherwise this set would have
zero Lebesgue measure. Hence for each ✏ > 0 there exists a set A of Lebesgue
measure  ✏ such that

X
n

(�) [A � [�1, 1] for all n � n0

provided n0 is su�ciently large. Therefore

|Y
n

\A|  |Y
n

\X
n

(�)|  e�n·�/4.

So
| [

n�n0 Y
n

|  | [
n�n0 (Y

n

\A)|+ |A| 
X

n�n0

e�n·�/4 + ✏

which by (3.12) is smaller than 2✏ if n0 is su�ciently small. This contradicts
(3.12) because we can choose ✏ > 0 as small as we like. Hence, we only need to
prove (3.13).

Let us show that (3.10) and (3.11) imply (3.13). So take a component I
from the collection Y

n

\X
n

(�). But this implies that for each such component
I,

(3.14) |fn(I)|/|I| � e(3/4)·�·n

provided � > 0 is su�ciently small. Indeed, first note that fn|I is monotone
and that most of the intervals I, . . . , fn�1(I) are small. For example,

(3.15) #{i 2 {0, 1, . . . , n� 1} ; |f i(I)| �
p

2�} 
p
� n.
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Moreover,

(3.16) |Dfn(x)| � e�·n

for each x 2 I. Indeed, there exists for each  2 (0, 1) and ↵ > 0 some � > 0
such that

(3.17) |f i+1(I)|/|f i(I)| �  · |Df(f i(x))| if dist(f i(I), c) � ↵, |f i(I)| 
p

2�.

Moreover, by the non-flatness of the critical point of f , there exists C > 0 such
that

(3.18) |f i+1(I)|/|f i(I)| � C · |Df(f i(x))|

for any i = 0, 1, . . . , n � 1 and any x 2 I (because f i(I) does not contain the
critical point). On the other hand, since c is not periodic, it takes a small
interval near c very long to come back close to c. So for each ⇠ > 0 one has for
each ↵, � > 0 su�ciently small,

#{0  i < n ; d(f i(I), c)  ↵}  ⇠ n

because, as we explained above, most of the iterates I, . . . , fn(I) are small, see
(3.15). Using this and (3.15) it follows that we for ‘most’ i we can use (3.17)
and for the others we still have (3.18):

|fn(I)|/|I| � |Dfn(x)| · (1�⇠�p�)n · C(⇠+
p
�)·n

Because of (3.16) this is at least

e�n(1�⇠�p�)n · C(⇠+
p
�)·n.

Notice that we can take  < 1 arbitrarily close to one and ⇠ > 0 arbitrarily close
to zero by taking � > 0 su�ciently close to zero. Hence one gets (3.14). Thus
we get that for each component I of Y

n

\X
n

(�),

|I|  e�(3/4)·�·n.

Because the number of components of X
n

(�) is at most e��n/2 (and each com-
ponent of X

n

(�) contains at most one component of Y
n

\X
n

(�) because of the
Minimum Principle) one gets (3.12).

Exercise 3.1. Assume that f and f̃ are C3 maps with negative Schwarzian
derivative and without absorbing Cantor attractors. Show that any absolutely
continuous conjugacy h between these maps is, in fact, C1+Hölder. (Hint: be-
cause of Theorem 1.4 there exists a neighbourhood U of c such that the return
map R is defined almost everywhere. Moreover, R has bounded distortion on
each branch. Because of Theorem 2.2, R has an absolutely continuous invariant
probability measure µ with a density u which is strictly positive and Hölder.
Similarly, one has R̃, µ̃ and ũ for f̃ . Since h is absolutely continuous and since U
and Ũ can be defined topologically, h⇤µ = µ̃. Therefore, Dh(x) = ũ(h(x))/u(x)
is Hölder.)
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4 Constructing Invariant Measures by Pulling

Back

The aim of this section is to show that for unimodal maps of the interval a very
weak condition guarantees the existence of an invariant probability measure
which is absolutely continuous with respect to the Lebesgue measure.

We will do this by an inductive pullback argument. In general, the existence
of an absolutely continuous measure of some interval map is related to the
amount of expansion this map has. Indeed, if a map f : [0, 1] ! [0, 1] is every-
where expanding, C2 and the f -image of each maximal interval of monotonicity
is not ‘too small’ then it has an absolutely continuous invariant probability
measure as we saw in Section 2 of this chapter. However, if the map has a
critical point there is no universal expansion. Nevertheless, by some analytical
means one can estimate the counter play between the contraction ruled by the
derivative near the critical point and the expansion ruled by the derivative near
the critical value. We have already seen this in the case of Misiurewicz maps
in the previous section. However, in the Misiurewicz case the turning point is
not recurrent and this is a very special situation. (One can show that in the
family f

a

(x) = ax(1�x) the parameters a for which these maps are Misiurewicz
maps and have no hyperbolic attractor has Lebesgue measure zero.) So let us
get to weaker conditions which imply the existence of invariant measures. Let
f : [�1, 1]! [�1, 1] be a C3 unimodal map with negative Schwarzian derivative
and a non-flat critical point c, i.e., there exists l � 1 and constants O1, O2 such
that

(NF) O1|x� c|`�1  |Df(x)|  O2|x� c|`�1.

Moreover, let c1 = f(c) and assume that the growth-rate of |Dfn(c1)| is expo-
nential, i.e, there exists K > 0 and � > 1 such that

(CE1) |Dfn(c1)| � K · �n for all n � 0.

Combining a result of Collet and Eckmann (1983) and Nowicki (1985b) and
(1988), it follows that maps of this type have a unique absolutely continuous
invariant probability measure µ which is ergodic and of positive entropy.

Remark. More precisely, it was shown by Nowicki (1985b), (1988) that (CE1)
implies that there exists K 0 > 0 and �0 > 1 such that for each z with fn(z) = c
and each n � 1 one has

(CE2) |Dfn(z)| � K · �n.

Collet and Eckmann proved that (CE1) and (CE2) imply the existence of such
an invariant measure.

In this section we will give a stronger result from Nowicki and Van Strien
(1991a), see also (1988), which shows that a much weaker growth rate of |Dfn(c1)|
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is su�cient for the existence of such invariant measures. The proof of this result
is no harder than the proof given in Collet and Eckmann (1983).

Theorem 4.1. Let f be a unimodal C3 map with negative Schwarzian derivative
and assume that the critical point c of f is of finite order l � 1, i.e., assume
that there are constants O1, O2 so that

(NF) O1|x� c|`�1  |Df(x)|  O2|x� c|`�1.

Furthermore, assume that the growth-rate of |Dfn(c1)| is so fast that

(SC)
1
X

n=0

|Dfn(c1)|�1/` <1.

Then f has a unique absolutely continuous invariant probability measure µ
which is ergodic and of positive entropy. Furthermore, there exists a positive
constant K such that

µ(A)  K|A|1/`,

for any measurable set A ⇢ (0, 1).

As we saw in the previous section, Keller (1987), (1989) has given other
non-uniform conditions equivalent to the existence of an absolutely continuous
invariant probability measure.

Remark. 1. As we will show below the density ⇢ of the measure µ with respect
to the Lebesgue measure is a L⌧� function where ⌧ = `/(`�1), L⌧� = [1t<⌧

Lt

and Lt = {⇢ 2 L1 ;
R

|⇢|t dx < 1}. In Nowicki (1991), an alternative proof of
Theorem 4.1 and sharp estimates for the density of µ are given.

2. It is not hard to show that there exist many parameters a for which the qua-
dratic map f(x) = ax(1�x) satisfies condition (SC) but not the condition (CE1)
(this can be shown easily with the techniques of Section 6 of this chapter). In
fact, Lyubich and Milnor (1991) have shown that the quadratic Fibonacci map
from Section II.3 satisfies (SC) and definitely not (CE). So the condition (SC)
is much weaker than the well-known Collet-Eckmann condition. Benedicks and
Young (1990) proved the existence of absolutely continuous invariant measures
for maps with a non-flat critical point for which |Dfn(c1)| is at least e↵

p
n and

for which, moreover, the distance of fn(c1) to c is at least of the form e�↵n, see
also Benedicks and Carleson (1985). Clearly, Theorem 4.1 implies their result.

3. Of course the estimate µ(A)  K|A|1/` shows that the poles of the invariant
measure µ are at most of the form |x� x0|el�1. It is not hard to show that any
absolutely continuous invariant probability measure has a pole of this order at
the critical values fn(c), n � 1, and, therefore, this estimate is optimal. Even
for maps for which |Dfn(c1)| grows exponentially fast this result does not follow
from Collet and Eckmann (1983) or Nowicki and Van Strien (1988). In those
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papers only some bounds for the order of the poles are given. Notice that the
density of the invariant measure is always a L⌧� function (where ⌧ = `/(`�1)),
independently of the size of

P1
n=0 |Dfn(c1)|� el < 1. In Nowicki and Van

Strien (1991a) it is conjectured that these maps f either have an absolutely
continuous invariant probability measure with a L⌧� density or do not have a
finite absolutely continuous invariant measure at all.

4. In Kondah and Nowicki (1991) the ideas from this section were used to
generalize the results of Lasota and Yorke (1973) for expanding maps.

5. Contrary to what was conjectured in Nowicki and Van Strien (1991a) the
condition (SC) is not optimal. Indeed, Bruin (1992b) has given an example of a
unimodal map with negative Schwarzian derivative and a non-flat critical point
which has an absolutely continuous invariant probability measure but for which
(SC) fails. In fact, his example is topological: each combinatorially equivalent
map with negative Schwarzian derivative and non-flat critical point has the same
properties.

Step 1: A reformulation of Theorem 4.1 and an outline of
its proof

As we saw in Section 1 any unimodal map with negative Schwarzian deriva-
tive is ergodic (w.r.t. the Lebesgue measure) and in Exercise 1.4 of that section
it was shown that any absolutely continuous invariant probability measure µ has
positive metric entropy. Therefore, in order to prove Theorem 4.1 it is enough to
establish the existence of an absolutely continuous invariant probability measure
µ.

Often invariant measures are constructed by considering iterations of the
Perron-Frobenius operator. This operator associates to the density of a measure
⌫ the density of f⇤⌫. Of course f⇤⌫ will have poles at the critical values of f
even if ⌫ does not. Therefore, in order to show that iterations of the Perron-
Frobenius operator (i.e. the densities fn

⇤ ⌫) have a nice limit density, one has to
choose a good ‘topology’ on a space of densities with infinitely many poles. In
some cases one chooses L

p

spaces, in other cases spaces with weighted norms.
Rather than to look at the densities of fn

⇤ ⌫, in Nowicki and Van Strien
(1988) it was proposed to compare the measures fn

⇤ ⌫ with the Lebesgue measure.
More precisely, it is easy to see that f has an absolutely continuous invariant
probability measure provided that for any ✏ > 0 there exists � > 0 such that for
any measurable set A with |A| < � one has that |f�n(A)| < ✏ for all n > 0. In
fact we will show that there exists a constant K such that for every n and every
measurable set A,

|f�n(A)| < K|A|el.

Let us first explain why this inequality implies that f has an absolutely contin-
uous invariant probability measure with a Lel� density. For simplicity assume
that |I| = 1 and let � be the Lebesgue measure on I. Define �

n

(A) = |f�n(A)|
(which is nothing but the probability measure fn

⇤ � from above when � is the
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Lebesgue measure) and let µ
n

=
1
n
⌃n�1

i=0 �i

, i.e., µ
n

(A) =
1
n
⌃n�1

i=0 |f�i(A)|. Since
the space of probability measures on I is compact (with respect to the weak
topology), there exist a sequence n

i

! 1 and a probability measure µ such
that µ

n

i

converges weakly to µ. From the definition of µ
n

it follows easily as in
Section 2 that µ is invariant, µ(f�1(A)) = µ(A), and from |f�n(A)| < K|A|el
one has that µ(A)  K|A|el for each measurable set A. Hence, µ is absolutely
continuous.

Let ⇢ be the density of µ with respect to the Lebesgue measure, i.e, µ(A) =
R

A

⇢(x) dx. Informally speaking, the inequality µ(A)  K|A|el implies that the
poles of the density can be at worse of the form x�(`�1)/`: if dµ ⇡ x�(`�1)/` dx
then integrating gives

R

✏

0
x�(`�1)/` dx = ✏el. So one expects the density to be in

the space L⌧� where ⌧ = `/(`�1). Let us make this argument precise. Take t �
1 and C

k

= {x ; k  ⇢t(x)  k + 1} and D
k

= [1
l=k

C
l

= {x ; ⇢t(x) � k}. Since
µ(A)  K|A|el one has k1/t|D

k

| 
R

D

k

⇢ dx = µ(D
k

)  K · |D
k

|el. Therefore,

|D
k

|  K 0 · k�`/((`�1)·t) = K 0 · k�⌧/t.

Hence,
Z

⇢⌧dx  ⌃1
k=0(k + 1)|C

k

| = ⌃1
k=0|Dk

|,

i.e.,
Z

⇢⌧dx  ⌃1
k=0K

0 · k�⌧/t <1

whenever 0 < t < ⌧ . This shows that ⇢ 2 L⌧�.

Let us now come to the main result of this step: in order to show

|f�n(A)| < K|A|el

it is su�cient to estimate the size of preimages of the interval (c � ✏, c + ✏).
The reason this simplifies the situation is because it allows us to consider only
preimages of the special intervals (c�✏, c+✏). If the image under some iterate of
a branch has ‘some space’ around this interval then we will be able to get good
estimates for the preimage of (c � ✏, c + ✏) under this iterate using the Koebe
Principle (or rather a one-sided version of it). In this way we will be able to get
an estimate for f�n(c� ✏, c + ✏) by induction.

Proposition 4.1. Let f be a unimodal C3 map with negative Schwarzian deriva-
tive and which satisfies (NF) and (SC). Suppose that there exists a constant K 0

such that for any n and any ✏ > 0,

|f�n(c� ✏, c + ✏)| < K 0✏.

Then there exists a constant K such that for any measurable set A,

|f�n(A)|  K · |A|el.
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For the proof of this proposition we need some lemmas. First of all we need
a one-sided version of the Koebe Principle, see Corollary 2 from Section IV.1.

Lemma 4.1 (A one-sided version of the Koebe Principle). Let g have negative
Schwarzian derivative. Then for each ⇢ 2 (0, 1) there exists K < 1 with the
following property. Assume that g is a di↵eomorphism on an interval T = [a, b]
and choose x 2 [a, b] so that

|g(x)� g(a)|
|g(T )| � ⇢

then
|Dg(x)| � 1

K
|Dg(b)|.

Next we want to show that one can transport mass to the top or bottom of
branches: let us show that in our estimation of |f�n(A)| we can assume A to
be an interval which contains some extremal values of fn.

Lemma 4.2. Let g have negative Schwarzian derivative. Then there exists a
constant K < 1 with the following property. Let A be a measurable set and
assume that g is a di↵eomorphism on an interval I = (↵,�). Let I

↵

and I
�

be the maximal interval of length at most |A| which are contained in g(I) and
which contains g(↵) respectively g(�). Then

|g�1(A) \ I|  K ·
�

|
�

g�1(I
↵

[ I
�

)
�

\ I|
 

.

Proof. Follows immediately from the Minimum Principle.

It follows that restricted to each branch of fn one can compare the size
of f�n(A) with the preimage under fn of some special interval which contain
a critical value c

s

= fs(c) of fn. However, each branch has di↵erent critical
values and so one has to take di↵erent intervals. In the next lemma they are all
transported to ‘canonical intervals’ of the form (c� ✏, c + ✏). Here ✏ depends on
how large s is. For each ✏ > 0 define

A
i

(✏) = f�i(c1 � ✏, c1)

for i 2 N. Then we have the following

Lemma 4.3. Let f be as above. Then there exists a constant K <1 such that
for any interval I for which (i) fn|I is monotone, (ii) fn has a critical point at
one of the endpoints of I and (iii) |fn(I)|  ✏, one has

I ⇢ A
i

✓

K · ✏
|Dfn�i(c1)|

◆

for some 0  i  n.
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Proof. Let a be the (an) endpoint of I which is a critical point of fn and let
0  i < n be such that c

i

= fn(a); here we use the notation that c
i

= f i(c).
If |fn(a) � c1|  3✏ then I ⇢ A

n

(4✏) and the required inequality follows by
taking K = 4. So assume that |fn(a) � c1| > 3✏. Let D

n

be the component
of f�n[c

i

� 3✏, c
i

+ 3✏] containing I and C
n

= D
n

\ f�n[c
i

� ✏, c
i

+ ✏]. Let
index(D

n

) be the minimum of {j � 1 ; c
j

is a critical value of fn|D
n

}. From
|fn(a) � c1| > 3✏ and the fact that a is a critical point of fn it follows that
index(D

n

) is well-defined and that 1 < index(D
n

)  n. Let s = index(D
n

)� 1.
From the way s is defined

1. fn�s(D
n

) contains c1 (and is contained in (0, c1]);

2. fs|fn�s(D
n

) has some values in [c
i

� ✏, c
i

+ ✏] and also assumes the value
c
i

� 3✏ or c
i

+ 3✏;

3. fs|fn�s(D
n

) has no critical values.

From this and Lemma 4.1 one gets a universal constant K <1 such that

fn�s(C
n

) ⇢ [c1 �
K · ✏

|Dfs(c1)|
, c1].

Hence,

I ⇢ C
n

⇢ f�(n�s)



c1 �K · ✏

|Dfs(c1)|
, c1

�

⇢ A
n�s

✓

K · ✏
|Dfs(c1)|

◆

.

Now we can prove Proposition 4.1 by simply adding all the contributions.
One gets in this way:

Proof of Proposition 4.1: Let A be a measurable set of Lebesgue measure ✏
and consider a branch I of fn. As before, let I

↵

and I
�

be the maximal intervals
of length  ✏ each containing one of the endpoint of fn(I). From Lemma 4.2
one gets a constant K1 <1 such that

|f�n(A) \ I|  K1 ·
�

�

�

f�n(I
↵

) [ f�n(I
�

)
�

\ I
�

� .

Using Lemma 4.3 one gets a constant K2 <1 such that

�

f�n(I
↵

) [ f�n(I
�

)
�

\ I ⇢
n

[

i=0

A
i

(
K2 · ✏

|Dfn�i(c1)|
).

Since this is true for any branch one gets

|f�n(A)|  K1 ·
n

X

i=0

|A
i

(
K2 · ✏

|Dfn�i(c1)|
)|.

Using the assumption that the turning point of f has order ` one concludes from
the assumption

|f�n(c� ✏, c + ✏)| < K3✏
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of the proposition that

|A
i

(✏)|  K4✏
el for all i � 0.

Combining the last two inequalities one gets that

|f�n(A)|  K5 ·
n

X

i=0

✓

✏

|Dfn�i(c1)|

◆el

.

Using the summability condition (SC) the proposition follows.

Step 2: Branches which will be ‘slided’ later on

The main idea in the proof of

|f�n(c� ✏, c + ✏)| < K 00✏

is to show that each component of f�n(c� ✏, c + ✏) is either contained in or at
least can be compared in size (this process we will call sliding) with a set of the
form

f�(n�k)

✓

c� C✏

|Dfk(c1)|el
, c +

C✏

|Dfk(c1)|el
◆

.

Using this and the summability condition, inequality |f�n(c� ✏, c + ✏)| < K 00✏
will then be proved by induction.

Let us explain the idea of sliding first in words. Suppose that we have proved
by induction that |f�k(c� ✏, c + ✏)| < K 00✏ for k < n. Consider a component I
of f�n(c � ✏, c + ✏) such that fn is monotone on I. Then let T be the largest
interval containing I on which fn is monotone and let n1 be the largest integer
< n such that fn1(T ) contains c in its closure. Furthermore, let R1 be the
interval in fn1(T ) between I1 = fn1(I) and c and let L1 the other component
of fn1(T ) \ I1. Let us explain why there are three di↵erent cases. The first case
(which we will later subdivide into the transport case and the regular case) is
that I1 is quite close the c in the sense that |R1|  |I1|. In this case we will
estimate the length of I (which is a component of f�n1(I1)) from above by

|f�n1(I1 [R1)|  |f�n1(c� ✏0, c + ✏0)| < K 00✏0

where ✏0 > 0 is so that I1 [R1 ⇢ (c� ✏0, c + ✏0).
However, if |I1| is much smaller than |R1| the estimate we would obtain is

extremely bad and so we have to find a di↵erent strategy. The second and third
possibilities are related to sliding. The second possibility is that |R1| � |I1|,
so I1 is far away from c, but, on the other hand, |L1| (or rather the length of
some related interval A1 � L1 which we will introduce below) is large compared
to |R1|. In this case we have a lot of space on both sides of I1 and, using a
Koebe argument, we will be able to ‘slide’ the interval I1 closer to c. So we
will compare the size of I with the size of f�n1(J) where J is some interval
of roughly the same size as I1 but which does have c in its boundary. This
sliding will be explained in Step 2.b below. The third and final possibility is
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that |R1|  |I1| but that there is not much space on the other side. In that case
we cannot ‘slide’ and in the present step we will analyze this situation. We show
that all the pullbacks fn(I) can be estimated until we reach a moment when
we can ‘slide’. At that moment we are again in the second case. The stopping
rule for this is given by (⇤ ⇤ ⇤a) and (⇤ ⇤ ⇤b) below.

Let us be more precise now. Let fn be monotone on an interval I and
assume that fn(I) = (c � ✏, c + ✏). Let T be the largest interval containing
I on which fn is monotone and label the endpoints ↵ and � of T so that
|fn(↵)� c|  |fn(�)� c|. Denote the endpoints of I by � and � so that either
↵ < � < � < � or ↵ > � > � > �. In this section we will assume that

(⇤) |fn(↵)� fn(�)| � 2✏.

Let
A0 = fn(↵, �), I0 = fn(I) = fn(�, �), R0 = fn(�,�).

By (⇤) one has

(⇤⇤) |R0| � |A0| � |I0|.

The reader should think here of the case that A0 is much bigger than I0. This
means that although we could apply the Macroscopic Koebe Principle because
there is space on both sides of I0 and |I0| = 2✏, the ratio |I|/|T | is not necessarily
smaller than some universal constant times ✏. (In order to get this we would need
to assume that there exists a universal constant � > 0 such that |R0|, |A0| � �.
We will treat this case separately in Step 3 below.)

Later on we shall show that if |R0| is not too large compared to |A0| then the
set I0 = fn(I) can be ‘slided’. In this section we will show that if I0 cannot be
‘slided’ at least some smaller iterate fk

s(I) of I can be ‘slided’. If |A0[I0| � |R0|
then set s = 0 and we are finished. Otherwise we shall define inductively a finite
sequence of intervals T i = [↵

i

,↵
i�1] and integers n

i

as follows. Let n0 = n,
↵0 = ↵, ↵�1 = � and T 0 = [↵0,↵�1] = [↵,�] (i.e. T 0 = T ). By maximality of
T one can choose n1 such that 0 < n1 < n and fn1(↵0) = c. Now choose ↵1 such
that T 1 is the maximal interval of the form T 1 = [↵1,↵0] which contains T 0 and
on which fn1 is monotone (of course one may have T 1 = T ). Now assume that
n

i�1 and T i�1 = [↵
i�2,↵i�1] are defined. Then simply define n

i

< n
i�1 such

that fn

i(↵
i�1) = c, and let T i be the maximal interval of the form [↵

i

,↵
i�1]

which contains T i�1 = [↵
i�2,↵i�1] and on which fn

i is monotone. It follows
that for i � 1, T i and T i�1 have precisely one common boundary point and
that

I ⇢ T 0 ⇢ · · · ⇢ T i.

Figure 4.1: The intervals R
i

, I
i

, L
i

and A
i

.
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Let us now define the integers k
i

and intervals I
i

, R
i

, A
i

, L
i

as follows:

k
i

= n
i

� n
i+1, I

i

= fn

i(I),

R
i

= fn

i(↵
i�1, �) \ I

i

, A
i

= fn

i(↵
i

, �) \ I
i

, L
i

= fn

i(↵
i�2, �) \ I

i

.

In other words, R
i

is the component of fn

i(T i\I) which contains c in its closure
and A

i

is the other component. Furthermore, L
i

is contained in A
i

and

fk

i(I
i+1) = I

i

, fk

i(R
i+1) = A

i

, fk

i(L
i+1) = R

i

,

for all i = 0, . . . , s� 1. We stop the construction at i = s, when

(⇤ ⇤ ⇤a) |A
s

[ I
s

| � |R
s

|

or when n
s

= 0. In particular,

(⇤ ⇤ ⇤b) |A
i

[ I
i

|  |R
i

|, for i = 0, 1, . . . , s� 1.

That (⇤ ⇤ ⇤b) holds implies that fk

i(I
i

), i = 1, 2, . . . , s � 1 is very far from c
compared to its size. This is bad: if we wanted to get back into induction
we would need an interval containing the critical point. The smallest interval
containing I

i

with the property is R
i

[I
i

and so this interval could be very large
compared to I

i

for i = 1, 2, . . . , s�1. If n
s

> 0 then fk

s(I
s

) is relatively close to
c and, as we will later see, this means that we can ‘slide’ I

s

towards c. Instead
of I

s

we will consider another interval J which contains c and which will allow
us to get back into induction. This interval J is the ‘slided’ one. If n

s

= 0 then
there will be no need to do this sliding.

The main result of this section is that as long as one has (⇤ ⇤ ⇤b) one can
estimate the e↵ects of this pulling back completely. So although we would rather
be in case (⇤⇤⇤a), condition (⇤⇤⇤b) allows us to apply Koebe and get a very good
estimate on the size of I

s

. Note that the intervals I
i

are not of the ‘canonical
form’ (c � ✏, c + ✏) and we will, therefore, not use induction to get back to the
canonical form till the very end. As before, let ` be the order of the critical
point. More precisely we will prove the following

Proposition 4.2. There exist constants K 0, K 00 such that

|I
s

|  K 0
|fn(I)|

Q

s�1
i=0 K 00|Dfk

i(c1)|el
.

In order to prove this proposition we need some lemmas:

Lemma 4.4.

|I
s

|  |I1|
|A1 [ I1 [R1|

|A1|

s�1
Y

i=1

|R
i+1|
|R

i

| .
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Proof. Since cross-ratio’s are expanded by fk

i we have

|fk

i(L
i+1)|

|L
i+1|

|fk

i(R
i+1)|

|R
i+1|

<
|fk

i(I
i+1)|

|I
i+1|

|fk

i(L
i+1 [ I

i+1 [R
i+1)|

|L
i+1 [ I

i+1 [R
i+1|

.

By definition of the sequences of intervals A
i

, L
i

, I
i

, R
i

this is equivalent to

|I
i+1|  |Ii

| |Li+1|
|A

i

|
|R

i

[ I
i

[A
i

|
|R

i+1 [ I
i+1 [ L

i+1|
|R

i+1|
|R

i

| .

By induction we get

|I
s

|  |I1|
|A1 [ I1 [R1|

|A1|
⇥

s�1
Y

i=1

|R
i+1|
|R

i

| ⇥

⇥
s�1
Y

i=2

✓

|L
i

|
|A

i

|
|R

i

[ I
i

[A
i

|
|R

i

[ I
i

[ L
i

|

◆

⇥ |L
s

|
|L

s

[ I
s

[R
s

| .

The last factor is clearly less than 1, and we can say the same about the last but
one factor because these terms are of the form l(a+w)

a(l+w) and because l(a + w) <
a(l + w) for positive l, a, w and l < a.

Next we need two distortion lemmas. In order to clarify the proof we use
the notation O(⌧) for a constant which only depends on ⌧ and O(KL) for a
universal constant which comes from the Koebe Principle. O(NF ) stands for a
universal constant which depends on the non-flatness condition.

Lemma 4.5. Assume that fk is a di↵eomorphism on (c, w) and that for some
z 2 (c, w) one has fk(z) = c and |fk(c, z)| < ⌧ |fk(z, w)| for some ⌧ 2 (0, 1).
Then

|fk(c, z)|
|(c, z)| � O(⌧)|Dfk(c1)|

el
.

Proof. Using the chain-rule, the non-flatness condition, the one sided Koebe
Principle (see Lemma 4.1), and fk(z) = c one has

|Dfk(c1)| = |Df(fk�1(c1))||Dfk�1(c1)|
 O(NF )|fk�1(c1)� c|`�1|Dfk�1(c1)|

 O(NF )O(KL, ⌧)|fk�1(c1)� c|`�1 |fk�1(f(c, z))|
|f(c, z)|

= O(NF )O(KL, ⌧)
|fk(c, z)|`
|f(c, z)| .

Using again the non-flatness condition gives the required estimate.

Lemma 4.6. Assume that fk is a di↵eomorphism on (c, z), that fk(z) = c and
that for some y 2 (c, z) one has |fk(c, y)| < ⌧ |fk(y, z)| for some ⌧ 2 (0, 1).
Then

|fk(y, z)|
|(c, y)| � O(⌧)|Dfk(c1)|

el
.
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Proof. From the non-flatness condition and since |fk(y, z)| � 1
⌧

|fk(c, y)| one
has

✓

|fk(y, z)|
|c, y|

◆

`

� O(NF )
|fk(y, z)|`�1|fk(y, z)|

|f(c, y)|

� O(NF )
⌧

|fk(y, z)|`�1 |fk(c, y)|
|f(c, y)| .

Since |fk(c, y)| < ⌧ |fk(y, z)| one gets from the one-sided Koebe Lemma 4.1 that
the last factor is at least O(⌧,KL)|Dfk�1(c1)|. Moreover, one has |fk(y, z)| �

1
1+⌧ |fk(c, z)| = 1

1+⌧ |fk(c)� c|. From all this

✓

|fk(y, z)|
|(c, y)|

◆

`

� O(1)|fk(c)� c|`�1|Dfk�1(c1)| .

By the non-flatness condition |fk(c) � c|`�1 � O(NF )|Df(fk(c))|, and, there-
fore, the lemma follows.

Lemma 4.7. If s > 0 then there exists a constant K <1 such that

|I1|
|A1 [ I1 [R1|

|A1|
 K

|fn(I)|
|Dfk0(c1)|el

,

|fk0(R1)|
|R1|

� 1
K
|Dfk0(c1)|

el
,

|R
i

|
|R

i+1|
� 1

K
|Dfk

i(c1)|el for i = 1, . . . , s� 1

Proof. Since cross-ratio’s are expanded by fk

i we have

|I1|
|A1 [ I1 [R1|

|A1|
 |fk0(I1)|

|R1|
|fk0(R1)|

|fk0(A1 [ I1 [R1)|
|fk0(A1)|



 |fn(I)| |R1|
|fk0(R1)|

✓

1 +
|I0 [A0|
|fk0(L1)|

◆

 |fn(I)| |R1|
|fk0(R1)|

✓

1 +
|I0 [A0|
|R0|

◆

.

By (⇤⇤) this gives

|I1|
|A1 [ I1 [R1|

|A1|
 |fn(I)| |R1|

|fk0(R1)|
· 3.

Therefore, in order to prove the second and third inequality it is enough to
prove that |fk0(R1)|/|R1| > O(1)|Dfk0(c1)|

el. So let us prove this. One has
fk0(R1) = A0. Let R01 ⇢ R1 [ I1 be the smallest interval containing R1 such
that fk0(R01) contains c. We want to apply Lemma 4.5 by taking (c, w) to be
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the interval T1 and (c, z) the interval R01. Since fk0(T1 \ R01) � fk0(L1) = R0

and since s > 0 we get from (⇤ ⇤ ⇤b),

|fk0(T1 \R01)| � |R0| � |A0 [ I0| � |fk0(R01)|.

From all this it follows that we can apply Lemma 4.5 and get that

|fk0(R01)|/|R01| > O(1)|Dfk0(c1)|
el
.

But since |fk0(R01)| = |A0|+ ✏ < 2|A0| = 2|fk0(R1)|, this implies

|fk0(R1)|
|R1|

� 1
2
|fk0(R01)|
|R01|

>
O(1)

2
|Dfk0(c1)|

el
.

So the first two statements of the lemma follow.
To prove the third statement let as before R0

i+1 ⇢ R
i+1[I

i+1 be the smallest
interval containing R

i+1 such that fk

i(R0
i+1) contains c. Because the construc-

tion did not stop at i, |fk

i(L
i+1)| = |R

i

| � |A
i

[ I
i

| � |fk

i(R0
i+1)|. Therefore,

one can apply Lemma 4.6 and we get

|R
i

|
|R

i+1|
� |R

i

|
|R0

i+1|
=
|fk

i(L
i+1)|

|R0
i+1|

�
|fk

i(R0
i+1)|

|R0
i+1|

� O(1)|Dfk

i(c1)|el.

This proves the third statement of the lemma.

Proof of Proposition 4.2: This follows immediately from Lemmas 4.4 and
4.7.

Step 3: A subdivision into three cases

In this section we shall prepare the estimates for the preimages of the intervals
around the critical point c. So consider the set E(�) = (c � �, c + �) and
its preimages E

n

(�) = f�n(E(�)). For a given ✏ > 0 we shall subdivide the
collection of components of E

n

(✏) into three subcollections.
Let � be some positive number and let ✏ 2 (0, 1

2�). We define ⌫(�) as
inf{k > 0 ; fk(c)� c| < �}. Clearly ⌫(�) is monotone and ⌫(�) tends to infinity
as � ! 0. Later on we shall choose � appropriately.

Let I be a component of E
n

(✏). Suppose that I ⇢ I 0 ⇢ I 00, where I 0 is a
component of E

n

(2✏) and I 00 is a component of E
n

(�). If Dfn

|I00 6= 0 then I
belongs to the collection R

n

. If I /2 R
n

but Dfn

|I0 6= 0 then I belongs to the
collection S

n

. All the other components form the collection T
n

. These are the
three cases mentioned above.

Step 3.a: The collection Rn, the regular case

If I 2 R
n

, then fn is a di↵eomorphism on I and there exists � 2 I such that
fn(�) = c. Let (↵,�) be the maximal interval containing I on which fn is
a di↵eomorphism. By definition of R

n

we have |fn(↵, �)| , |fn(�, �)| � �.
Therefore, we can use the one-sided Koebe Lemma on I and obtain:
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Proposition 4.3. There exists a constant K
R

such that for ✏ < �/2 and any
regular component I as above, one has

|I|
|(↵,�)|  K

R

✏

�
.

Proof. If y 2 I then fn(↵, y) and fn(y,�) have at least length �. Therefore,
by the one-sided Koebe Principle, one has

|Dfn(x)|  O(KL)|Dfn(y)|

for any x 2 (↵,�) and y 2 I. Hence,

�

|(↵,�)| 
|fn(↵,�)|
|(↵,�)|  O(1)

|fn(I)|
|I|  O(1)

✏

|I| .

Corollary 4.1. For I 2 R
n

let �
n

(I) be the maximal interval on which fn is
a di↵eomorphism. By the previous proposition we obtain

X

I2R
n

|I| 
X

I2R
n

|I|
|�

n

(I)| |�n

(I)|  K
R

✏

�

X

I2R
n

|�
n

(I)|  K
R

✏

�
.

Step 3.b: The collection Sn, the case to slide

Let I 2 S
n

. Then there exists s � 0 and a sequence n
s

< n
s�1 < · · · < n0 = n

as in Step 2 such that if n
s

> 0 (in the terminology used there) |A
s

[ I
s

| > |R
s

|.
Since fn

s is a di↵eomorphism on T s � I, since fn

s(T s) � R
s

and since R
s

contains c in its closure there exists an interval J ⇢ T s such that G = fn

s(J)
contains c and such that

|I| = |J |.

In other words, by choosing an appropriate x
s

2 [x0
s

, c] = I
s

[R
s

one can assure
that the preimage J of G = [x

s

, c] has the same size as I. This process we call
sliding. Note that fn

s(J) contains c. Because |A
s

[ I
s

| > |R
s

| we can use the
one-sided Koebe Lemma 4.1 and obtain

|fn

s(J)|
|J |  O(KL)

|fn

s(I)|
|I|

and, therefore, |G|  O(1)|I
s

|. Therefore, by Proposition 4.2,

|G|  O(1)K 0|fn(I)|
Q

s�1
j=0 K 00|Dfk

j (c1)|el
 O(1)K 02✏
Q

s�1
j=0 K 00|Dfk

j (c1)|el
.

So for each such component I of E
n

(✏) = f�n(E(✏)), there exists an interval J
as above such that |I| = |J | and, therefore, such that |I| is at most the size of
the fn

s -preimage of
 

c� O(1)K 02✏
Q

s�1
j=0 K 00|Dfk

j (c1)|el
, c +

O(1)K 02✏
Q

s�1
j=0 K 00|Dfk

j (c1)|el

!
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that is contained in T s. Now even for a given sequence of 0 < n
s

< n
s�1 <

· · · < n0 = n, there may be several such components I in T s. Even worse, some
of these may give the same interval J (or at least overlapping intervals). But
for every given sequence of n

s

< n
s�1 < · · · < n0 = n, there exist at most

2s di↵erent components I of E
n

(✏) of type S
n

, such that the corresponding
intervals J overlap. Indeed, at the first step of the construction two intervals I
and Ĩ can only slide onto overlapping intervals J1 and J̃1 if there is precisely
one turning point of fn1 between these two intervals. Similarly at the i-th step
two intervals J i�1 and J̃ i�1 can only slide onto overlapping intervals J i and J̃ i

if there is precisely one turning point of fn

i between these two intervals. So
at each step the number of intervals I 2 S

n

which correspond to overlapping
intervals J can at most double. Thus we get

X

{I2S
n

; n

s

>0}
|I| 

X

P
s�1
j=0 k

j

n

2s|f�n

s(c� |G|, c + |G|)|.

Clearly also
X

I2S
n

; n

s

=0

|I| 
X

P
s�1
j=0 k

j

n

|f�n

s(c� |G|, c + |G|)| .

So

(⇤)
X

I2S
n

|I| 
X

P
s�1
j=0 k

j

n

2s

�

�

�

�

�

f�n

s(E

 

K
S

✏
Q

s�1
j=1 K 00|Dfk

j (c1)|el

!

)

�

�

�

�

�

.

Lemma 4.8. There exists �0 > 0 such that k0, . . . , ks�1 � ⌫(�) for each � 2
(0,�0).

Proof. Choose �0 > 0 so small that for each � 2 (0,�0) and each k > ⌫(�)
one has |Dfk(c1)|el > 2K where K is the constant from Lemmas 4.5. Because
⌫(�)!1 as � ! 0 and |Dfk(c1)|!1 as k !1 this is possible.

By definition of k0, fk0(c) is contained in the closure of A0. Since I 2 S
n

, at
least one critical value of fn|T0 is contained in (c��, c+�). As T0 = [↵,�] and
as |fn(↵)� c|  |fn(�)� c|, this implies fn(↵) = fk0(c) 2 (c��, c+�). Hence,
k0 � ⌫(�) and, observing the definition of A0, we have A0 ⇢ (c��, c+�). Next
notice that

(⇤⇤) |R
i

[ I
i

[A
i

|  � implies k
i

� ⌫(�), for i = 1, . . . , s� 1.

Indeed, c is contained in the closure of R
i

[ I
i

[ A
i

, this interval has at most
length � and fk

i(c) is contained in the closure of A
i

. Therefore, k
i

� ⌫(�)
follows from the definition of ⌫(�).

Let us show by induction that for � 2 (0,�0), |Ri

[ I
i

[ A
i

|  � for i =
1, . . . , s � 1. Assume s � 2 and let us first prove that this inequality holds for
i = 1. From Lemma 4.7, |fk0(R1)| � 1

K

|Dfk0(c1)|el |R1|. Therefore,

|R1 [ I1 [A1|  2|R1|  2K
|fk0(R1)|
|Dfk0(c1)|el
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= 2K
|A0|

|Dfk0(c1)|el
 |A0|,

where the last inequality holds provided � 2 (0,�0) because k0 � ⌫(�), and
|Dfk(c1)| > 2K for k � ⌫(�). Since |A0|  �, the induction assertion is proved
for i = 1. Similarly, we get for i < s, using the third inequality of Lemma 4.7,
that

|R
i

[ I
i

[A
i

|  2|R
i

|  2K
|R

i�1|
|Dfk

i�1(c1)|el
.

From the inductive assumption we know that |R
i�1[I

i�1[A
i�1|  � and from

(⇤⇤) this implies k
i�1 > ⌫(�) and so we get again

|R
i

[ I
i

[A
i

|  |R
i�1|  |Ri�1 [ I

i�1 [A
i�1|  �

when � 2 (0,�0). Therefore, one has k
j

� ⌫(�).

Using this, (⇤) and the estimate for |G| one gets the following

Proposition 4.4. There exists a constant K
S

such that for � 2 (0,�0),

X

I2S
n

|I| 
X

k

j

�⌫(�)P
s�1
j=0 k

j

n

2s

�

�

�

�

�

f�n

s(E

 

K
S

✏
Q

s�1
j=1 K 00|Dfk

j (c1)|el

!

)

�

�

�

�

�

.

Step 3.c: The collection Tn, the case to transport

We shall now reduce the estimation of the n-th preimage I 2 T
n

to the estima-
tion of some k-th preimage, with k < n. Let I 2 T

n

and let I 0 (resp. I 00) be the
component of E

n

(2✏) (resp. E
n

(�)) containing I. By definition fn has at least
one critical point in I 0 � I.

Since fn has a critical point in I 0 there exists an integer k < n such that
c 2 fk(I 0). Let k be the largest such integer. For simplicity we say that I
belongs to the subcollection T k

n

of T
n

. From the properties just stated one has

fn�k(c) 2 (c� 2✏, c + 2✏).

Since c /2 f i(I 0) for i = k + 1, . . . , n� 1, the map fn�k�1 is clearly a di↵eomor-
phism on fk+1(I 0).

Proposition 4.5. There exists a constant K
T

such that for every n

X

I2T
n

|I| =
X

k

X

I2T k

n

|I| 
X

k

�

�

�

�

�

f�k(E

 

K
T

✏

|Dfn�k(c1)|el

!

)

�

�

�

�

�

.

Proof. Let fk+1(I 0) = (x, c1] � fk+1(I). As we saw fn�k�1 is a di↵eomorphism
on (x, c1). Moreover, fn(I) ⇢ (c � ✏, c + ✏), fn�k�1(x) = c ± 2✏ and fn(I 0) ⇢
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(c � 2✏, c + 2✏). Therefore, one gets from the one sided Koebe Principle (see
Lemma 4.1) immediately that

|fn(I)|
|fk+1(I)| � O(KL)|Dfn�k�1(c1)| .

Hence,
|fk+1(I)|  O(1) · ✏

|Dfn�k�1(c1)|
.

From the non-flatness condition this gives

|fk(I)|  O(NF ) · |fk+1(I)|el  O(1)
✓

✏

|Dfn�k�1(c1)|

◆el

.

Since fn�k�1(c1) 2 (c� 2✏, c + 2✏), the non-flatness condition implies that
✓

✏

|Dfn�k�1(c1)|

◆el

 O(1) · ✏

|Dfn�k(c1)|el
,

i.e.,
|fk(I)|  O(1) · ✏

|Dfn�k(c1)|el
.

Since fn(I) ⇢ (c� ✏, c + ✏) it follows that there exists a constant K
T

such that

I ⇢ f�k(fk(I)) ⇢ f�kE

✓

K
T

✏

|Dfn�k(c1)|el
◆

.

The proposition follows.

Step 4: The proof of the Theorem 4.1

Let � be so small that for every n,

(⇤)
X

k

j

�⌫(�),1jsP
k

j

n

3K
S

s�1
Y

j=0

2
K 00|Dfk

j (c1)|el
 1 ,

and

(⇤⇤)
X

k>⌫(�)

3K
T

|Dfk(c1)|� el  1 .

That one can choose � so that (⇤⇤) holds simply follows from the summability
condition and because ⌫(�) tends to infinity as � ! 0. That (⇤) is possible
follows also from this and because of the following

Lemma 4.9. Suppose that d
k

� 0 and
P1

k=0 d
k

< 1. Then for any ⌘, ⇣ > 0
there exists ⌫0 such that

P =
X

n

Y

k

j

�⌫0P
s�1
j=0 k

j

n

(⌘d
k

j

) < ⇣ .
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Proof. Consider S
k0 =

P

k>k0
⌘d

k

. Then both S
k0 and S =

P

s2N Ss

k0
tend to

zero when k0 tends to infinity. Clearly P  S which proves the assertion.

We shall now prove Theorem 6.1 in the following formulation:

Theorem 4.2. For any n and ✏  �/2,

|f�n(c� ✏, c + ✏)|  3K
R

✏

�
.

Proof. With the notations from the previous section we have

f�n(c� ✏, c + ✏) =
[

I2R
n

I [
[

I2S
n

I [
[

I2T
n

I ,

and
|f�n(c� ✏, c + ✏)| 

X

I2R
n

|I|+
X

I2S
n

|I|+
X

I2T
n

|I| .

Therefore,

(⇤ ⇤ ⇤)

|f�n(c� ✏, c + ✏)|  K
R

✏

�
+

X

k

j

�⌫(�),0js�1P
k

j

n

2s

�

�

�

�

�

f�n

s(E

 

K
S

✏
Q

s�1
j=0 K 00|Dfk

j (c1)|el

!

)

�

�

�

�

�

+
X

k�⌫(�)

�

�

�

�

�

f�k(E

 

K
T

✏

|Dfn�k(c1)|el

!

)

�

�

�

�

�

.

We shall now prove the theorem by induction. For n small only the first term
in (⇤ ⇤ ⇤) is non-zero and, consequently, the assertion of the theorem is true.
Suppose that it is true for any ✏ < �/2 and any n < N . Then by the choice of
�, and by (⇤), (⇤⇤), (⇤ ⇤ ⇤) and the induction assumption we have

|f�N (c� ✏, c + ✏)|  K
R

✏

�

+
X

k

j

�⌫(�),0js�1P
k

j

N

2sK
S

3K
R

✏/�
Q

s�1
j=0 K 00|Dfk

j (c1)|el

+
X

⌫(�)kN

K
T

3K
R

✏/�

|DfN�k(c1)|el

 3K
R

✏

�
,

which completes the proof.

5 Transitive Maps Without Finite Continuous

Measures

In this section we will show that many maps from the quadratic family x 7!
ax(1 � x) do not have an absolutely continuous invariant probability measure,
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even if they are transitive on some interval. This result is due to Johnson (1987).
In fact, we will prove a more general result due to Hofbauer and Keller (1990a)
and (1990b).

In Section 1 of this chapter we have seen that unimodal maps f : [0, 1]! [0, 1]
with negative Schwarzian derivative and with a repelling fixed point in 0 can be
of three types.

1. f has a periodic attractor;

2. f is infinitely often renormalizable;

3. f has no periodic attractor and is not infinitely often renormalizable. In
this case f is ergodic and transitive on a finite union I1 [ . . . I

p

intervals.

Furthermore, either

a) !(c) is a minimal Cantor set and the attractor A of f is !(c), i.e., for
almost all points x one has !(x) = !(c) = A, or,

b) the attractor A of f is the finite union of intervals: for almost all points
x 2 [0, 1] one has !(x) = A.

We should emphasize that a non-renormalizable map for which !(c) is a
minimal Cantor set can still be as in 3b). In fact, the Fibonacci map from
Example 2 in Section II.3.b is such a map: if such a map has negative Schwar-
zian derivative and a non-degenerate critical point then it has an absolutely
continuous invariant probability measure, see Lyubich and Milnor (1991). As
we saw in Section 1 this implies that !(x) is the interval [f2(c), f(c)] for almost
all x 2 [0, 1] and so this map is as in 3b). For a long time it was believed that
any map as in 3) would have a finite absolutely continuous invariant measure.
(Because, as we have seen in Section 1, the set !(c) has Lebesgue measure zero
if it contains no intervals and because the support of an invariant measure is
contained in the attractor this would have implied that case 3a) does not occur.)
However, Johnson (1987) proved that in general such measures do not always
exist.

Theorem 5.1. (Johnson) Let f
a

: [0, 1] ! [0, 1] be a full family of unimodal
maps with negative Schwarzian derivative, non-flat critical point and depending
continuously on the parameter. Then there exist parameters a such that f

a

is
ergodic and transitive on an interval and f

a

has no finite absolutely continuous
invariant measure.

The proof of Johnson has the same flavour as the construction of the counter-
examples of Arnol’d from Section I.5.
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Hofbauer and Keller improved this result in a rather remarkable way. They
consider Bowen-Ruelle-Sinai measures. More precisely they define the set

!̂
f

(µ) = {⌫ ; ⌫ is an accumulation point of
1
n

n�1
X

k=0

µ � f�k}

where we take the weak topology on the space of probability measures. Let �
x

be the Dirac measure in x. Then an element of !̂
f

(�
x

) is a limit of the measures

µ
n

=
1
n

n�1
X

i=0

�
f

i(x).

(Hence the density of µ
n

is simply given by the ‘histogram’ of the relative
frequency of visits of x, . . . , fn�1(x) to parts of the interval [0, 1].) Therefore,
one can think of this set as the set of physical measures. Hofbauer and Keller
(1990a) proved that these physical measures can be rather unexpected. For
example the physical measure can be a point mass in a repelling fixed point.
In other words, typical orbits can be almost all the time near a repelling fixed
point! Indeed, letting � be the Lebesgue measure on [0, 1] we have

Theorem 5.2. (Hofbauer and Keller) Let f
a

be a full family of unimodal
maps with negative Schwarzian derivative, non-flat critical point and depending
continuously on the parameter. Let p

a

be the repelling orientation reversing fixed
point of f

a

. Then there exist parameters a such that

1. f
a

is ergodic and transitive on an interval;

2. f
a

has no absolutely continuous invariant probability measure;

3. !̂
f

(�
x

) = !̂
f

(�
c

) = !̂
f

(�) = �
p

for almost all x.

Moreover, one can choose f
a

such that !(c) is a (non-minimal) Cantor set.

Remark. 1. If for almost all x 2 [0, 1] the set !̂
f

(�
x

) consists of a unique
measure then this measure is of course a Bowen-Ruelle-Sinai measure and vice
versa each Bowen-Ruelle-Sinai measure is of this form. Furthermore, as we have
seen in Section 1 any finite absolutely continuous invariant measure is Bowen-
Ruelle-Sinai and, therefore, unique. Thus Theorem 5.1 follows immediately from
Theorem 5.2.

2. Such a map f is certainly not infinitely renormalizable because otherwise
the measure !̂

f

(�
c

) would have its support on the Cantor set !(c) which has
Lebesgue measure zero. It is not even once renormalizable. Indeed, if I is a
central interval such that fn(I) ⇢ I and I, . . . , fn�1(I) are disjoint then the
orbit of c visits each of the intervals I, f(I), . . . , fn�1(I) with frequency 1/n
and, therefore, !̂

f

(�
c

)(f i(I)) = 1/n for each i = 1, 2, . . . , n� 1. So !̂
f

(�
c

) 6= �
p

.
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3. Hofbauer and Keller (1990a), (1990b) also have examples of quadratic maps
which are ergodic and transitive on an interval, such that !̂

f

(�
x

) = !̂
f

(�
c

) =
!̂

f

(�) for almost all x and such that the metric entropy of the ergodic measures
in !̂

f

(�) is not constant. (We refer to Walters (1982) and Mañé (1987) for the
definition of the metric entropy of a measure.)

Of course, Theorem 5.2 follows immediately from the following two theorems.
The first one states that f has an absolutely continuous invariant probability
measure if for any x from a set of positive measure the orbit of x does not
shadow c too much. More precisely,

Theorem 5.3. (Keller) Let f : [0, 1]! [0, 1] be a unimodal map with negative
Schwarzian derivative, non-flat critical point and without attracting periodic
points. If f has no absolutely continuous invariant probability measure then for
Lebesgue almost all points x one has that !̂

f

(�
x

) is contained in the convex hull
of !̂

f

(�
c

).

The idea of the proof of the next result is somewhat similar to that of the
proof of Johnson’s example (1987) but gives more precise information about the
support of any limit measure.

Theorem 5.4. (Keller) In every full family f
a

of unimodal maps with negative
Schwarzian derivative there exists a parameter a(1) such that if we let p be the
orientation reversing fixed point of f = f

a(1) then �
p

2 !̂
f

(�
x

) for almost all x
and !̂

f

(�
c

) = �
p

.

Before giving the proof of Theorems 5.3 and 5.4 let us show that they imply
Theorem 5.2.

Proof of Theorem 5.2: The map f = f
a

from the previous theorem has
no absolutely continuous invariant probability measure. Indeed, if f has such a
measure µ then Theorem I.5 would imply that !̂

f

(�
x

) = µ for almost all x. This
would contradict !̂

f

(�
x

) 3 �
p

for almost all x because µ is absolutely continuous.
Therefore, from Theorem 5.3 we get that !̂

f

(�
x

) = !̂
f

(�
c

) for almost all x.

Let us start with the proof of Theorem 5.3.

Proof of Theorem 5.3: Assume that f is as above and has no absolutely
continuous invariant probability measure. As before, let T

n

(x) be a maximal
interval containing x on which fn is monotone. (If x is not in the backward
orbit of c then there exists only one such interval.) Let R

n

(x) and L
n

(x) be
the components of T

n

(x) \ x and define r
n

(x) to be the minimum of the length
of fn(R

n

(x)) and fn(L
n

(x)). Since f has no absolutely continuous invariant
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probability measure, we get by Theorem 3.2 that for each ⇢ > 0 and almost all
x,

(5.1) lim
n!1

1
n

#{i ; r
i

(x) � ⇢ and 0  i  n� 1} = 0.

So long branches occur quite infrequently. Let us show that (5.1) implies that
!̂

f

(�
x

) is contained in the convex hull of !̂
f

(�
c

) for Lebesgue almost all points
x. We do this by showing that for any neighbourhood U of !̂

f

(�
c

) each element
of !̂

f

(�
x

) is a convex combination of elements of U . Choose n0 so large and
⇢ > 0 so small that for each n � n0, the measure

(5.2)
1
n

n�1
X

k=0

�
x

i

is contained in U when n � n0 and |x
i

� f i(c)| < ⇢ for all i = 0, 1, . . . , n.
Moreover, choose these numbers such that c /2 fk(J) when 0  k  n0 and such
that J is a neighbourhood of c of size  ⇢. Furthermore, take m0 such that fm0

is not a homeomorphism on J whenever J is an interval with |J | � ⇢.
Now choose a point x which satisfies (5.1). If x is a preimage of c then clearly

!̂
f

(�
x

) has the same set of limits as !̂
f

(�
c

). So assume x is not a preimage of
c and let I

n

be the maximal interval containing x on which fn|I
n

is monotone.
Let �1 < �2 < �3 . . . be the integers � for which c 2 f�(I

n

). Furthermore,
let ⌧

n

be the maximal integer �
n

 ⌧
n

 �
n+1 such that r

k

(x)  ⇢ for all
k = �

n

, . . . , ⌧
n

� 1. (Of course if r
�

n

(x) � � then ⌧
n

= �
n

.) From the choice of
m0 it follows that for all n 2 N,

|�
n+1 � ⌧n|  m0.

Since r
⌧

n

(x) � ⇢, it follows from this and (5.1) that

(5.3)
P

⌧

i

m

|�
i+1 � ⌧i|

m
 m0 ·

#{i ; r
i

(x) � ⇢ and 0  i  m� 1}
m

tends to 0 as m!1. Similarly, we get from (5.1) that

(5.4)
1
m

X

{|⌧
j

� �
j

| ; ⌧
j

 m and |⌧
j

� �
j

|  n0}! 0

as m ! 1. Indeed, c /2 fk(J) when 0  k  n0 and J is a neighbourhood of
c of size  ⇢. So if ⌧

j

= �
j+1 and |⌧

j

� �
j

|  n0 then r
�

j

(x) � ⇢. Moreover,
by definition, if ⌧

j

< �
j+1 then r

⌧

j

+1(x) � ⇢. Hence, the expression on the left
hand side of (5.4) is at most n0 times #{i ; r

i

(x) � ⇢ and 0  i  m � 1}/m.
Thus (5.4) follows from (5.1). Let us take m 2 N and choose j(m) so that
�

j(m)  m  �
j(m)+1. In order to be definite assume that ⌧

j(m)  m (the other
case goes similarly). Then

1
m

m

X

i=0

�
f

i(x) =

=
j(m)
X

j=1

2

4

1
m

⌧

j

�1
X

i=�
j

�
f

i(x) +
1
m

�

j+1�1
X

i=⌧
j

�
f

i(x)

3

5 +
1
m

m

X

i=⌧
j

�
f

i(x).
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The total mass contribution of the middle and the last term is at most

j(m)
X

j=1

|�
j+1 � ⌧j |

m

and, therefore, tends by (5.3) to 0 as m ! 1. Hence
1
m

P

m

i=0 �fi(x) has the
same limits as

(5.5)
j(m)
X

j=1

1
m

⌧

j

�1
X

i=�
j

�
f

i(x) =
j(m)
X

j=1

⌧
j

� �
j

m

1
⌧
j

� �
j

⌧

j

�1
X

i=�
j

�
f

i(x).

By definition, for each j with |⌧
j

� �
j

| � n0 the measure

1
⌧
j

� �
j

⌧

j

�1
X

i=�
j

�
f

i(x)

is contained in U . Furthermore, by (5.4),

1
m

X

{|⌧
j

� �
j

| ; j = 1, . . . , j(m) and |⌧
j

� �
j

| � n0}

tends to one. It follows that (5.5) converges (in the weak topology) to a convex
combination of measures in U . This completes the proof.

Proof of Theorem 5.4: In the proof of this theorem we will inductively
construct a nested decreasing sequence of parameter intervals J(n), parameters
a(n) 2 @J(n) and integers k(n)  l(n)!1 such that for each n � 1,

a) f
a(n) has a restrictive interval I

n

of period k(n): this means that the inter-
vals I

n

, . . . , fk(n)�1
a(n) (I

n

) are disjoint, fk(n)
a(n) (@I

n

) ⇢ @I
n

and fk(n)
a(n) (In

) ⇢ I
n

.
So f

a(n) is renormalizable to I
n

with period k(n);

b) most of the iterates of I
n

are near the orientation reversing repelling fixed
point p

n

of f
a(n): for each n 2 N, each m with k(n)  m  nl(n) and

each a 2 J(n),

(5.6)
#{0  i < m� 1 ; f i

a

(I
n

) ⇢ (p
n

� 1
n

, p
n

+
1
n

)}
m

� 1� 1
n

;

c) for each a 2 J(n), the set

B
n

=
n

x ; there exists l0(n) < l(n) with f l

0(n)
a

(x) 2 I
n

o

has at least size 1� 1
n

.
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Let us first show that the theorem follows from a)-c). Take a 2
T

n�0 J(n) and
let f = f

a

. Because of (5.6) and since f i(c) 2 f i(I
n

) we know that

µ(p
n

� 1/n, p
n

+ 1/n) � (n� 1)/n for alln 2 N

and each measure µ 2 !̂
f

(�
c

). Therefore, !̂
f

(�
c

) contains just the measure �
p

.

Similarly, since B
n

has at least Lebesgue measure 1 � 1
n

for each n 2 N, for
almost all x there exists an integer n(x) such that x 2 B

n

for all n � n(x).
(This follows from Borel-Cantelli: the set of points x for which there exists such
an integer n(x) is the set

\

m�0

[

n�m

B
n

= lim
m!1

[

n�m

B
n

.

This set has full Lebesgue measure because the complement of [
n�m

B
n

is con-

tained in \
n�m

(B
n

)compl and, therefore, has at most Lebesgue measure
1
n
! 0.)

Thus, if n(x) < 1 there exists l0(n) < l(n) with f l

0(n)(x) 2 I
n

and, therefore,
for each ✏ and each n � n(x) large enough, we get by (5.6),

#
�

0  i < nl(n) ; |f i(x)� p| < ✏
 

nl(n)

�
#
�

0  j < nl(n)� l0(n) ; dist(f j(I
n

), p) < ✏
 

nl(n)� l0(n)
� 1

n

�
#
�

0  j < nl(n)� l0(n) ; f j(I
n

) ⇢ (p
n

� 1/n, p
n

+ 1/n)
 

nl(n)� l0(n)
� 1

n

� n� 1
n
� 1

n
! 1 as n!1.

Since ✏ is arbitrary, it follows that for such points x, !̂
f

(�
x

) contains the measure
�
p

. Now �
p

is a Dirac measure and as we have seen in Section 1, if f has
an absolutely continuous invariant probability µ measure then !̂

f

(�
x

) = µ for
almost all x. But since !̂

f

(�
x

) 3 �
p

for almost all x, it follows that f has no
absolutely continuous invariant probability measure.

It remains to construct a map satisfying conditions a)-c). In order to do
this we will inductively choose parameters a(n) such that also the following
condition is satisfied:

d) There exist parameters a arbitrarily near a(n) such that f
a

is not renor-
malizable of period k(n). Therefore, fk(n) either maps I

n

onto itself or
fk(n) has a one-sided attractor in the boundary of I

n

.

To start this construction choose t 2 (
p

2, 2] such that the turning point of
the tent map F

t

: [0, 1] ! [0, 1] with slope ±t has period k(1). Since f
a

is a
full family, there exists a parameter a(1) such that f

a(1) is semi-conjugate to
F

t

. Furthermore, as we saw in Section III.4, f
a(1) has a restrictive interval I1 of

period k(1) such that fk(1)
a(1) is a unimodal map from I1 into itself. Of course we

can choose a(1) so that there exists a parameter a arbitrarily near a(1) such that
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f
a

is not renormalizable of period k(1) and so fk(1) either maps I1 onto itself
or fk(1) has a one-sided attractor in the boundary of I1. Since I1 is forward
invariant and contains the orbit of the critical point, the set of points which
always stays outside I1 has Lebesgue measure zero. So there exists l(1) 2 N
such that the Lebesgue measure of

n

x ; there exists 0  l0(1) < l(1) with f l

0(1)
a(1) (x) 2 I1

o

is at least 2/3. Since f
a

depends continuously on the parameter, there exists
therefore an interval J(1) containing a(1) such that the Lebesgue measure of

n

x ; there exists 0  l0(1) < l(1) with f l

0(1)
a(1) (x) 2 I1

o

is at least 1/2 for each a 2 J(1). This proves statements a)-d) for n = 1.
Let us now assume that a)-d) holds for some integer n. By d) there exists

a parameter a arbitrarily close to a(n) for which f
a

is not renormalizable with
period k(n). One of the endpoints of I

n

has period k(n) and it is easy to see
that the preimages of p

n

accumulate onto this periodic point. (Indeed, f
a

is
semi-conjugate to a non-renormalizable tent map T and this statement holds
for T because the inverse iterates of each point in the interval [T 2(c), T (c)] form
a dense set since the slope of T is �

p
2, see Exercise III.4.1.) So we can

find a0(n + 1) arbitrarily close to a(n) such that the critical point of f
a

0(n+1) is
eventually mapped into the orientation reversing fixed point p

n+1. Furthermore,
preimages of the critical point accumulate onto p

n+1 and, therefore, there exists
â(n + 1) arbitrarily close to a0(n + 1) such that the turning point is periodic
under f

â(n+1) with period k(n + 1). This period k(n + 1) becomes arbitrarily
large when we choose â(n+1) su�ciently close to a0(n+1): by choosing â(n+1)
su�ciently close to a0(n+1) we get that more and more of the iterates of c stay
close to p

n

. More precisely, we can choose â(n + 1) so that

(5.7)
1

k(n + 1)
#
⇢

0  j < k(n + 1) ; f j

â(n+1)(c) ⇢ (p
n+1 �

1
n

, p
n+1 +

1
n

)
�

is as close to 1 as we like. Since the critical point of f
â(n+1) is periodic of some

period k(n + 1), there exists a maximal parameter interval J̃(n + 1) containing
â(n + 1) such that f

â(n+1) is renormalizable of period k(n + 1). Since we can
find such parameters â(n + 1) as close as we like to a0(n + 1), and for each such
parameter there exists such an interval J(n + 1) (which are mutually disjoint
when we take di↵erent parameters â(n + 1)), we can also find a(n + 1) in the
boundary of such a maximal interval J(n+1) arbitrarily close to a0(n+1). But
if a(n+1) 2 @J(n+1) then f

a

is not renormalizable of period k(n+1) for some
a arbitrarily near a(n + 1). Letting I

n+1 be the restrictive interval of f
a(n+1) of

period k(n + 1) we have proved statements a) and d). Because the set of point
which stay outside I

n+1 has Lebesgue measure zero, taking l(n + 1) su�ciently
large, we get that the Lebesgue measure of

n

x ; there exists 0  l0(n + 1) < l(n + 1) with f l

0(n+1)
a(n+1) (x) 2 I

n+1)
o
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is at least 1� 1
n + 1

. By choosing a(n + 1) su�ciently close to a0(n + 1), we get

as in (5.7) for k(n + 1)  m  (n + 1)l(n + 1) that

#
⇢

0  j < m� 1 ; f j

a(n+1)(c) ⇢ (p
n

� 1
n + 1

, p
n

+
1

n + 1
)
�

m
� 1� 1

3n

is as close to 1 as we like. Since all the iterates I
n+1, . . . , f

k(n+1)�1
a(n+1) (I

n+1) are
disjoint, we can even make sure that for each k(n + 1)  m  (n + 1)l(n + 1),

#
⇢

0  j < m� 1 ; f j

a(n+1)(In+1) ⇢ (p
n

� 1
n + 1

, p
n

+
1

n + 1
)
�

m
� 1� 1

2n
.

Now choosing J(n + 1) to be a su�ciently small one-sided neighbourhood of
a(n+1) (such that f

a

is not renormalizable of period k(n+1) for a 2 J(n+1))
we get that the Lebesgue measure of

n

x ; there exists l0(n + 1) < l(n + 1) with f l

0(n+1)
a

(x) 2 I
n+1)

o

is at least 1� 1
n + 1

and that

#
⇢

0  j < m� 1 ; f j

a(n+1)(In+1) ⇢ (p
n

� 1
n + 1

, p
n

+
1

n + 1
)
�

m

is at least 1� 1
n + 1

for all a 2 J(n + 1). This proves b) and c) and completes

the proof of the theorem: for the proof that we can make sure that !(c) is
a Cantor set we simply choose all the maps f in the construction so that no
forward iterate of c enters a neighbourhood of the periodic points of period 2.
Since f is not renormalizable, this implies that the closure of !(c) contains no
intervals and is, therefore, a Cantor set.

6 Frequency of Maps with Positive Liapounov

Exponents in Families and Jakobson’s Theo-

rem

As we saw in the previous section one can construct unimodal maps with nega-
tive Schwarzian derivative whose attractors consist of intervals and which have
no finite absolutely continuous invariant measures. In this section we shall prove
Jakobson’s result that this last phenomenon is not typical: for a large set of pa-
rameters a the quadratic map Q

a

(x) = ax(1� x) has an absolutely continuous
finite invariant measure, see Jakobson (1981). More precisely, we will give the
proof of Benedicks and Carleson (1991) that the set of parameters a for which
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the quadratic map Q
a

(x) = ax(1 � x) has a positive Liapounov exponent has
positive Lebesgue measure. Using Theorem 4.1, for each such parameter the
corresponding map certainly has a finite absolutely continuous invariant mea-
sure.

In fact, we will consider a more general situation. Let I be some interval,
and let FU be the class of families of C2 unimodal maps f

a

: I ! I which
depend on a real parameter a and for which

1. f
a

has a quadratic critical point;

2. the fixed point of f
a

on the boundary of I is repelling;

3. the map (x, a) 7! (f
a

(x), Df
a

(x), D2f
a

(x)) is C1.

(We should emphasize that we do not require that f
a

has negative Schwarzian
derivative.) Denote the critical point of f

a

by c. Without loss of generality we
may assume that c does not depend on a.

Now suppose that f
a⇤ is a Misiurewicz map, i.e., the forward iterates of

f
a⇤(c) stay outside a neighbourhood U of the turning point and assume that

f
a⇤ has no periodic attractors. Let K

a

be the maximal invariant set of points
whose forward orbit stays outside U . As we saw in Chapter III this set K

a

is
hyperbolic and therefore persists for a near a⇤. In particular, there exists a point
x

a

2 K
a

such that the kneading sequence of x
a

(with respect to f
a

) is the same
for each a near a⇤ and such that x

a⇤ = f
a⇤(c). Since K

a

is hyperbolic, a 7! x
a

is di↵erentiable for a su�ciently close to a⇤. An example of this situation is
when f

a⇤(c) is a repelling periodic point of f
a⇤ and x

a

the periodic point of f
a

near this orbit.
Of course the family Q

a

satisfies these conditions when a = 4 but also for
each parameter when the critical point is eventually periodic. Furthermore, let
D

n

(a) be the expansion at the critical value c1 = f
a

(c) (this point depends on
a):

D
n

(a) = Dfn

a

(c1).

Then one has

Theorem 6.1. (Benedicks and Carleson) Consider a family f
a

2 FU and
a⇤ such that f

a⇤ is a Misiurewicz map and has no periodic attractors. Moreover,
assume that

d

da
(x

a

� f
a

(c)) 6= 0

at a = a⇤, where x
a

is defined as above. Then there exist C0, � > 0 and a subset
E of parameters having a⇤ as a density point such that for each a 2 E,

|D
n

(a)| � C0 · e�n for all n � 1.

A sketch of the proof of this result was given by Benedicks and Carleson
(1991) for the case that f

a

= ax(1 � x) and a⇤ = 4. An outline of the proof
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of this result is given in Mora and Viana (1989). Since the proof of Theorem
6.1 is rather technical and the available proofs are rather sketchy, we will prove
Theorem 6.1 in detail. Thieullen, Tresser and Young (1992) also have a complete
proof of Theorem 6.1. Tsujii (1992b) has given an alternative proof of Theorem
6.1. His proof is shorter than the one given here because he considers a slightly
smaller set of parameters where the parameter dependence will be uniform by
definition. In Benedicks and Carleson’s proof (and ours) the fact that this
dependence on parameters is uniform follows from the inductive assumption on
the growth of spatial derivatives, see the remark at the end of Step 4.

Before going into the proof of this result let us discuss its history and some
of its ramifications. In an earlier paper of Benedicks and Carleson (1985), it
was proved that the expansion at the critical value grew subexponentially fast
for a set E as above: |D

n

(a)| � e
p

n� . (For an outline of the proof of this result
and results on stochastic perturbations of these maps, see Benedicks and Young
(1992).) Related to the above is the following important result of Rees (1984)
on rational maps: in the space of rational maps of a given degree, there exists a
subset E of positive Lebesgue measure such that for every R 2 E the following
properties are satisfied: i) the forward orbit of each critical point is dense in
the Riemann sphere; ii) there exists � > 0 such that |DRn(R(c))| > e�n for
every critical point c; iii) R is ergodic with respect to the Lebesgue measure,
i.e., every totally invariant subset has Lebesgue measure equal to either one or
zero.

From Theorem 4.1 and Theorem 6.1 one gets an alternative proof of the
following remarkable result of Jakobson (1981):

Corollary 6.1. (Jakobson) Let Q
a

: [0, 1]! [0, 1], a 2 (0, 4], be the quadratic
family Q

a

(x) = ax(1� x). There exists a subset C ⇢ (0, 4] of positive Lebesgue
measure with the following properties:

1. If a 2 C then Q
a

has an absolutely continuous invariant probability mea-
sure with positive entropy.

2. The parameter value a = 4 is a Lebesgue density point of C, namely,

lim
✏!0

�(C \ [4� ✏, 4])
✏

= 1.

Johnson (1986), using a construction due to Guckenheimer (1984), gave
another proof of Jakobson’s result by constructing an induced expanding map
as in Section 3 for each map f

a

for a 2 C. But, unlike in Jakobson’s proof,
the expanding map constructed is not Markov because it has an infinite image
partition. We will not follow this approach but prove Theorem 6.1 since this
gives more information.
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Step 1: An outline of the proof and some notation

So let us start by giving an outline of the proof of Theorem 6.1. Following
Benedicks and Carleson (1991), we will make two basic assumptions on the
iterates of the critical point which, when satisfied, will ensure that |D

n

(a)| grows
exponentially. The basic tool to get this exponential growth was already proved
in Chapter III and will be stated in Step 2. In Steps 3 and 4 we will use this
tool to get the exponential growth up to the n-th iterate provided the critical
orbit satisfies the two basic assumptions up to this iterate. In the remainder of
the proof it is shown that there is a rather large set of parameters a such that
the critical orbit of the corresponding map f

a

satisfies the basic assumptions
for all iterates. This is done by removing for each n the parameter values for
which the n-th iterate of the critical point fails these assumptions. To do this,
we will prove in Step 5 that the position of the n-th iterate of the critical point
depends very uniformly on the parameter inside a parameter interval for which
assumptions hold up to the n-th iterate. This, and some exponential growth,
allows us to prove in Step 6 that the proportion of the parameters which has to
removed at the n-th iterate is exponentially small in terms of n. Thus we get
left with a positive set of parameters for which one has exponential growth for
all iterates.

To simplify the notation in the proof, we will use the letter C0 (respectively
C) for all positive constants that appear in estimates from below (respectively
above) that do not depend on n and also not on a constant � which we will
introduce below (provided this � is large enough). During the proof we will
decrease C0 (respectively increase C), but every inequality will continue to hold.
Moreover, these constants will depend on their previous values and we will
sometimes write expressions like C = 2C. If in a formula we get an estimate
in which a large power (say the power is s) of a previous constant C appears,
we will explicitly show this by writing Cs. Furthermore, we denote by O(1) a
function which is uniformly bounded from above and below.

For simplicity, let
D

n

(a) = Dfn

a

(c1)

and
⇠
n

(a) = fn

a

(c).

Step 2: Basic results and definitions

As long as the orbit of the critical point stays away from a neighbourhood of
the critical point, D

n

(a) increases exponentially. This is shown in Proposition
6.1. However, for almost all parameter values the orbit of the critical point will
return arbitrarily close to c. But forward iterates of such a return shadow a
previous piece of the orbit of the critical point. This information will be used
in an inductive argument. To make full use of this shadowing, we will classify
these returns according to which interval I

r

, defined presently, it falls into. This
classification is used throughout the entire proof. So let U

r

be an exponentially
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fast shrinking sequence of neighbourhoods of c, i.e.,

U
r

= (c� e�r, c + e�r).

Furthermore, we introduce the pair of intervals

I
r

= U
r

\ U
r+1

(I
r

consists of two components one on each side of c) and we will split each
component of I

r

into r2 intervals,

I
r,1, Ir,2, . . . , I

r,r

2

of equal length (so I
i,j

consists of two components). Throughout the proof we
will only consider r � � (or sometimes r � � � 1) where � will be some
very large integer. Since f

a⇤ satisfies the Misiurewicz condition there exists a
neighbourhood W of c such that

⇠
k

(a⇤) /2W

for all k > 0. Also define
U = U�.

We only consider parameters a with |a � a⇤| < ✏ where ✏ > 0 will be small.
Later on we shall increase � repeatedly and therefore shrink U . By decreasing
✏ we will always be able to keep the constants C, C0 and so on independent of
�.

The main tool used to get exponential expansion is the following proposition
which states that a piece of the orbit is expanding as long as it stays outside
U = U�:

Proposition 6.1. Let f
a

2 FU and suppose that f
a⇤ is a Misiurewicz map

without periodic attractors. Then there exist �0 > 0, C0 > 0 and a neighbourhood
W of c such that for each � su�ciently large, there exists ✏ > 0 such that if
|a� a⇤| < ✏ and f j

a

(x) /2 U� for 0  j  k � 1 and fk

a

(x) 2W then

(6.1) |Dfk

a

(x)| � C0 · e�0k.

If f j

a

(x) /2 U� for 0  j  k � 1 but not necessarily fk

a

(x) 2W , then

(6.2) |Dfk

a

(x)| � C0 · e�0k inf
j=0,...,k�1

|Df
a

(f j

a

(x))|.

Moreover, if x, f
a

(x), . . . , fk�1
a

(x) /2W then

(6.3) |Dfk

a

(x)| � C0 · e�0k.

Finally, for each neighbourhood V of c with cl (V ) ⇢ int (W ) there exists a
constant K < 1 such that for each interval [x, y] and each n 2 N for which
fn[x, y] ⇢ V one has

|Dfn

a⇤(x)|
|Dfn

a⇤(y)|  K.
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Remark. The remarkable thing is that the constants C0 and �0 do not depend
on U (as long as one allows ✏ > 0 to shrink to zero if U becomes small). This
fact will turn out to be crucial in the remainder of the proof.

Proof. See Theorems III.6.3 and III.6.4 for the first statements. The last state-
ment follows from Theorem III.6.1.

Let �̄ = sup
a,x

|Df
a

(x)| and take � with 0 < � < min(�0, 1/40) and ↵,�, ⌧ >
0 such that

(6.4)
0 < ↵ < � < 10�4 min

✓

�, �0 � �,
�(�0 � �)
� + �̄

,
�2

� + �̄

◆

0⌧ <
�0 � � � ↵

�0
.

From now on ↵,�, �, �0, �̄ and ⌧ will not change.
The next Proposition shows that parameter and space derivatives are of the

same order provided one has exponential growth of D
n

(a).

Proposition 6.2. There exist constants C, ✏ > 0 and N0 (which do not depend
on �) such that if |a� a⇤| < ✏, n � N0 and

|D
k

(a)| � e�k for all k = N0, . . . , n� 1

then for all k = N0, . . . , n,

1
C
 |⇠0

k

(a)|
|D

k�1(a)|  C.

Proof. Let x(a) be the point whose kneading sequence with respect to f
a

is the
same as the kneading sequence of x(a⇤) = c1(a⇤). Of course, for a close to a⇤,
the point x(a) is contained in a hyperbolic forward invariant set K

a

. Since K
a

is hyperbolic, the set K
a

depends smoothly on a and in particular the absolute

value of
d

da
fk

a

(x(a)) is universally bounded for all k � 0. By assumption

d

da
(x(a)� f

a

(c))
�

�

a=a⇤
6= 0.

Now ⇠
k

(a) = fk�1
a

(c1(a)) = fk�1
a

(x(a) + [c1(a)� x(a)]) and by the Chain Rule
this gives,

⇠0
k

(a⇤) =
d

da

�

fk�1
a

(x(a))
�

�

�

a=a⇤
+Dfk�1

a⇤ (c1(a⇤))
d

da
(c1(a)� x(a))

�

�

a=a⇤
.

Since D
k�1(a⇤) = Dfk�1

a⇤ (c1(a⇤)) grows exponentially with k,

d

da
(x(a)� c1(a))

�

�

a=a⇤
6= 0
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and d

da

�

fk�1
a

(x(a))
�

�

�

a=a⇤
is universally bounded from above and below, there

exist universal constants D 2 (1,1) and N 0 such that

1
D
 |⇠0

k

(a⇤)|
|D

k�1(a⇤)|
 D

for all k � N 0. Let us now show that the same holds for a su�ciently close
to a⇤. By the Chain Rule, D

k�1(a) = Df
a

(⇠
k�1(a))D

k�2(a) and ⇠0
k

(a) =
Df

a

(⇠
k�1(a))⇠0

k�1(a) + @
a

f
a

(⇠
k�1(a)). Therefore,

�

�

�

�

⇠0
k

(a)
D

k�1(a)
�

⇠0
k�1(a)

D
k�2(a)

�

�

�

�

 |@
a

f
a

(⇠
k�1(a))|

|D
k�1(a)| .

From this, and since |D
j

(a)| � e�j for j = N0, . . . , n� 1,

�

�

�

�

⇠0
k

(a)
D

k�1(a)
�

⇠0
N0

(a)
D

N0�1(a)

�

�

�

�

 1
2D

provided N0 � N 0 is su�ciently large. Combining this and

1
D


|⇠0
N0

(a⇤)|
|D

N0�1(a⇤)|
 D,

the proposition follows.

So let N0, ✏, C0, �0 be as in the previous Propositions and fix N > N0 so
large that

(6.5a)

e�↵N � 10e��N

C0 · e�0k � e�k

|⇠
k

(a⇤)� c| � 10e�↵k

for all k � N . Since f
a⇤ is Misiurewicz, all iterates of ⇠

k

(a⇤) stay outside a
neighbourhood of c and so this is possible. So there exists a neighbourhood W
of c so that

(6.5b) lim
a!a⇤

inf{k > 0 ; ⇠
k

(a) 2W} =1.

Next let

⌫1(a) := inf{k > 0 ; ⇠
k

(a) 2 U�}

and take � so large and ✏ > 0 so small that ⌫1(a) � N for each |a � a⇤| < ✏.
By Proposition 6.1, we get that

|D
n

(a)| � e�n for all n = N, . . . , ⌫1(a)� 1

and each |a�a⇤| < ✏. We should emphasize that we shall not change N anymore.
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Step 3: The two assumptions (BA) and (FA) on the pa-
rameters

We begin by taking a (possibly one-sided) interval neighbourhood !0 of a⇤ of
size smaller than ✏. Let us consider ⇠

k

(!0): this is the set of all possible images
of c under fk

a

for varying parameter values a 2 !0. Clearly ⇠
k

(!0) is an interval.
Furthermore, if we take as before x

a

to be the point in K
a

whose kneading
sequence does not vary with a and such that x

a⇤ = f
a⇤(c), then

d

da
(x

a

� f
a

(c)) 6= 0 at a = a⇤.

Therefore, the kneading itinerary of c1(a) = ⇠1(a) changes if a varies. But it
can only change if some iterate ⇠

k

(a) hits the turning point c and therefore for
each interval !0, the interval ⇠

k

(!0) contains c for k large enough. So choose
⌫1 minimal such that c 2 ⇠

k

(!0) for k = ⌫1. Since !0 has size < ✏, we get from
the definition of ✏ and the integer N , that ⌫1 � N . One end point of ⇠

k

(!0) lies
on the forward orbit of the point f

a⇤(c1). Because f
a⇤ is a Misiurewicz map the

orbit of this point stays away from c. So the interval ⇠
k

(!0) does become big
because it eventually will contain the critical point c. By shrinking !0 we can
assume that ⇠

k

(!0) \ U = ; for all k = 1, . . . , ⌫1 � 1 and

⇠
⌫1(!0) �W.

Later on, we shall increase � and therefore shrink U . We will also shrink !0.
In both cases ⌫1 increases. We will always shrink !0 in such a way that the
property ⇠

⌫1(!0) �W is still satisfied.
We will show by induction that for each parameter a which satisfies two

assumptions to be defined presently, one has |D
n

(a)| � e�n for all n � N . Let
us say that ⌫ is a return if ⇠

⌫

(a) 2 U . The first condition which we will impose
disallows returns to be too close to the critical point. This condition requires
that

(BA
n

) |⇠
k

(a)� c| � e�↵k for k = N, . . . , n.

Note that by assumption ⇠
k

(a) /2 U for a 2 ! and k  N . In Step 6 we
shall show that ‘most parameters’ a near a⇤ satisfy (BA

n

) for every n. Be-
fore stating the second condition let us go into the purpose of (BA

n

). Take
a parameter a which satisfies (BA

n

) for each n � N . By the Chain Rule,
|D

n

(a)| = |D
n�1(a)| · |Df

a

(⇠
n

(a))|. Now if ⇠
n

(a) 2 U then |Df
a

(⇠
n

(a))| is not
too small because of (BA

n

). Therefore, we can hope to compensate this small
term |Df

a

(⇠
n

(a))| by a subsequent part of the orbit as follows. Consider a re-
turn ⇠

⌫

i

(a). If the first p subsequent iterates, ⇠
⌫

i

+1(a), . . . , ⇠
⌫

i

+p

(a), are very
close (in a way to be defined below) to the corresponding iterates of c, i.e., to
⇠1(a), . . . , ⇠

p

(a) then ⇠
⌫

i

+1(a), . . . , ⇠
⌫

i

+p

(a) is called a bound orbit. For such a
bound orbit we will show that |Dfp

a

(⇠
⌫

i

+1(a))| is close to |D
p

(a)|. Therefore,
even though several of the points ⇠

⌫

i

+1(a), . . . , ⇠
⌫

i

+p

(a) could come close to c,
the induction assumption that |D

p

(a)| is exponentially large and the definition
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of p will imply that |Dfp

a

(⇠
⌫

i

+1(a))| is large enough to compensate for the small
term |Df

a

(⇠
⌫

i

(a))|. Indeed, |Dfp+1
a

(⇠
⌫

i

(a))| � e�p/4. The first integer ⌫ > ⌫
i

+p
such that ⇠

⌫

(a) 2 U is defined to be ⌫
i+1 and is called the next free return. By

Proposition 6.1, all this implies

|Df⌫i+1�⌫i

a

(⇠
⌫

i

(a))| = |Df⌫i+1�⌫i

�p�1
a

(⇠
⌫

i

+p+1(a))| · |Dfp+1
a

(⇠
⌫

i

(a))|
� C0 · e�(⌫i+1�⌫i

�p�1).

So let us be more precise now. For each parameter a 2 E and each r � �
let p(r, a) be the maximal integer p such that

|f j

a

(x)� ⇠
j

(a)|  e��j for 0  j  p,

for each x 2 U
r

. In other words, p(r, a) is so that

(BP) |f j

a

(U
r

)|  e��j for 0  j  p(r, a) and |fp(r,a)+1
a

(U
r

)| > e��(p(r,a)+1).

If ⇠
⌫

(a) is a return let r � � be so that ⇠
⌫

(a) 2 I
r

. In this case we say that p(r, a)
is the binding period associated to the return ⇠

⌫

(a) and ⇠
⌫

(a), . . . , ⇠
⌫+p(r,a)(a) is

the binding orbit associated to this return. We say that ⇠
⌫

(a) is a free return if it
is a return and does not belong to the binding period associated to the previous
free return. More precisely, define these free returns inductively as follows: first
of all, ⌫1(a) := min{k ; ⇠

k

(a) 2 U} � N is a free return. If ⌫1(a) < · · · < ⌫
i

(a)
are the first free returns of ⇠

j

(a) for j  ⌫
i

(a), then define p
i

(a) to be the binding
period associated to the return ⇠

⌫

i

(a)(a) and let ⌫
i+1(a) be the largest integer

such that ⇠
j

(a) is outside U for all j = ⌫
i

(a) + p
i

+ 1, . . . , ⌫
i+1(a)� 1.

In order to define the second assumption assume that ⌫1(a) < ⌫2(a) < · · · <
⌫

s

(a)  n are the free return times of ⇠
j

(a) for 0  j  n to U� and let
p1(a), p2(a), . . . , p

s

(a) be the binding periods associated to these free returns.
Furthermore, let

(6.6)

q0(a) = ⌫1(a)

q1(a) = ⌫2(a)� 1� (⌫1(a) + p1(a))
... =

...

q
s�1(a) = ⌫

s

(a)� 1� (⌫
s�1(a) + p

s�1(a)).

If n > ⌫
s

(a) + p
s

(a) we also define q
s

(a) = n � (⌫
s

(a) + p
s

(a)). Furthermore,
define

(6.7) F
n

(a) =

(

q0(a) + · · ·+ q
s�1(a) if n  ⌫

s

(a) + p
s

(a)
q0(a) + · · ·+ q

s

(a) otherwise.

The second condition we will impose on parameters is that

(FA
n

)
F

k

(a)
k
� (1� ⌧) for k = 1, . . . , n,

for each n. We require this condition because over the total bound period we
only we get a growth of the derivative of the form e�p/4, see Statement c) in
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Lemma 6.1 below. If we had no condition like (FA
n

) then the induction we will
apply below would show that |D

k

(a)| � e�k for k < n implies something like
|D2n

(a)| � e�n/4. Doing this again would imply |D4n

(a)| � e�n/16. Continuing
this would therefore give no definite lower bound for the growth rate of D

n

(a).
The condition (FA

n

) will enable us to compensate for this loss, see also the
remark following the proof of Theorem 6.2 below. Let BA

n

and FA
n

denote
the sets of parameters which satisfy the corresponding conditions.

Step 4: Parameters satisfying (BA) and (FA) give rise to
exponential growth

Theorem 6.2. For each � su�ciently large there exist ✏ > 0 such that if |a �
a⇤| < ✏ and a 2 BA

n

\ FA
n

then we have exponential growth of the derivative
up to time n:

(EX
n

) |D
k

(a)| � e�k for all k = N, . . . , n.

Note that (BA
n

), (FA
n

) and (EX
n

) all depend only on the first n iterates
of c. Since |D

k

(a)| � e�k for all k = N, . . . , ⌫1(a) � 1, the theorem holds for
n = N, . . . , ⌫1(a) � 1. So let us prove Theorem 6.2 by induction. For this we
will use the following lemma. Assume that a 2 BA

n

\ FA
n

and that

(EX
n�1) |D

k

(a)| � e�k for all k = N, . . . , n� 1.

We will show that (EX
n

) also holds.

Lemma 6.1. There exists a constant C0 > 0 such that for every � su�ciently
large there exists ✏ > 0 such that for any a 2 BA

n

\ EX
n�1 with |a � a⇤| < ✏

the following statements hold. Suppose that ⌫  n is a return of ⇠
i

(a) to U��1

and p(r, a) is the bound period of ⇠
⌫

(a), where r � � � 1 is the largest integer
such that ⇠

⌫

(a) 2 U
r

. Then

a) p(r, a)  3r/�  3↵⌫/� < 1
100n and in particular p(r, a) < n;

b) for every x 2 U
r

and 1  j  p(r, a),

C0 
|Df j

a

(f
a

(x))|
|D

j

(a)|  1
C0

;

in particular, |Df j

a

(f
a

(x))| � C0 · e�j for 1  j  p(r, a).

c) p � C0 · r and |Dfp(r,a)+1
a

(x)| � e�p(r,a)/4 for each x 2 I
r

.

Proof. Let us first prove b). Consider x 2 U
r

. By the Chain Rule,

|Df j

a

(f
a

(x))|
|Df j

a

(f
a

(c))|
=

j

Y

i=1

|Df
a

(f i

a

(x))|
|Df

a

(⇠
i

(a))| .
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Since (x, a) ! (f
a

(x), Df
a

(x), D2f
a

(x)) is C1 and the critical point of f
a

is
non-degenerate, |Df

a

(x)|
|x�c| is bounded from below and from above and

|Df
a

(x)|
|x� c|

|y � c|
|Df

a

(y)| = 1 + O(|x� y|),

where O(t) denotes some function for which O(t)/t is bounded as t ! 0. By
definition of p(r, a), we have |f j

a

(x)� ⇠
j

(a)|  e��j for 0  j  p(r, a) and this
implies

(6.8)
j

Y

i=1

|Df
a

(f i

a

(x))|
|Df

a

(⇠
i

(a))| = O(1) ·
j

Y

i=1

|f i

a

(x)� c|
|⇠

i

(a)� c| .

Now by assumption |⇠
i

(a)� c| � e�↵i for i = N, . . . , n. Hence,
�

�

�

�

|f i

a

(x)� c|
|⇠

i

(a)� c| � 1
�

�

�

�

 |f i

a

(x)� ⇠
i

(a)|
|⇠

i

(a)� c|  e��i

e�↵i

for i = N, . . . , min(p(r, a), n). Since ↵ < �, this implies that

j

X

i=N

�

�

�

�

|f i

a

(x)� c|
|⇠

i

(a)� c| � 1
�

�

�

�

is uniformly bounded from above and below. Hence (6.8) is universally bounded
from above and below provided the first N factors from the right hand side of
(6.8) are universally bounded from above and below. But, since f

a⇤ is Misi-
urewicz f i

a

(x) stays outside some fixed neighbourhood of c for all x 2 U and
all i  N provided U and |a� a⇤| are su�ciently small (note that N is a fixed
number). Hence,

Q

N

i=1
|fi

a

(x)�c|
|⇠

i

(a)�c| is universally bounded from above and below.
All this implies that the expression in (6.8) is uniformly bounded from below
and above for j = 1, . . . ,min(p(r, a), n). Thus Statement b) is proved, provided
we can show that p(r, a) < n.

The first part of the proof gives that |f j+1
a

(x) � ⇠
j+1(a)| is equal to O(1) ·

|D
j

(a)| · |f
a

(x) � f
a

(c)| for j = 1, . . . ,min(p(r, a), n) for x 2 U
r

. Since f
a

is
quadratic at c, one has |f

a

(x) � f
a

(c)| = O(1) · e�2r for x 2 I
r

. Hence, taking
x 2 I

r

,

(6.9) |f j+1
a

(x)� f j+1
a

(c)| = O(1) · |D
j

(a)| · e�2r

for j = 1, . . . ,min(p(r, a), n). But by assumption |D
j

(a)| � e�j for j = N, . . . , n�
1 and since the left hand side in (6.9) can be no more than 1 for j  p(r, a), this
implies that min(p(r, a), n)  3r

�

when � is su�ciently large since r � � � 1.
Moreover, since ⇠

⌫

(a) 2 I
r

, ⌫ � N and |⇠
⌫

(a) � c| � e�↵⌫ this implies that
r  ↵⌫  ↵n. Therefore, p(r, a) < n and in fact p(r, a)  3r

�

< n/100. This
completes the proof of Statements a) and b).

Furthermore, if x 2 I
r

, by the definition of p = p(r, a), one has |fp

a

(x) �
⇠
p

(a)|  e��p and |fp+1
a

(x)� ⇠
p+1(a)| > e��(p+1). Therefore, |fp

a

(x)� ⇠
p

(a)| =
O(1) · e��p and by (6.9),

(6.10) e��p = O(1) · |D
p

(a)| · e�2r.
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Since |D
p

(a)| � e�̄p this implies that p � C0 · r. Moreover,

|Dfp+1
a

(x)| = |Df
a

(x)| · |Dfp

a

(f
a

(x))| = O(1) · e�r · |Dfp

a

(f
a

(x))|,

for each x 2 I
r

. Using Statement b) of this lemma,

|Dfp+1
a

(x)| = O(1) · e�r · |Dfp

a

(f
a

(x))| � C0 · e�r · |D
p

(a)|.

By (6.10) and because |D
p

(a)| � C0·e�p this gives |Dfp+1
a

(x)| � C0·e��p/2
p

|D
p

(a)| �
e�p/4 provided � is su�ciently large (because then p � C0 · r � C0 · � is
large).

From Statement a) of Proposition 6.1 the binding period following a return
⌫  n is much less than n (which will allow us to use induction) and by State-
ment c) the small derivative at a return is compensated by the expansion of the
binding orbit which follows this return.

Proof of Theorem 6.2: By the Chain Rule

(6.11) |D
n

(a)| = |Df⌫1�1
a

(c1)|⇥
s�1
Y

i=1

|Df⌫i+1�⌫i

a

(⇠
⌫

i

(a))|⇥ |Dfn+1�⌫
s

a

(⇠
⌫

s

(a))|.

Because of the induction assumption we can apply the previous lemma to the
binding orbit. Since this lemma implies that p

i

< n, Statement c) of Lemma
6.1 and the induction assumption gives

|Dfp

i

+1
a

(⇠
⌫

i

(a))| � e�p

i

/4.

From Proposition 6.1,

|Dfq

i

a

(⇠
⌫

i

+p

i

+1(a))| � C0 · e�0q

i .

Hence,
|Df⌫i+1�⌫i

a

(⇠
⌫

i

(a))| � C0 · e�p

i

/4 · e�0q

i .

If n > ⌫
s

+ p
s

then we can deal with the last factor in (6.11) by using (6.2) of
Proposition 6.1:

|Dfn+1�⌫
s

a

(⇠
⌫

s

)| � C0 · e�0q

s · inf
⌫

s

+p

s

jn

|⇠
j

(a)� c|.

Since for j  n, |⇠
j

(a)�c| � e�↵j � e�↵n, combining all this we get in this case

|D
n

(a)| � Cs+1
0 · e�(n�F

n

)/4 · eF

n

�0 · e�↵n.

If n  ⌫
s

+ p
s

then we write the last factor in (6.11) as

(6.12) |Dfn+1�⌫
s

a

(⇠
⌫

s

(a))| = |Df
a

(⇠
⌫

s

(a))|⇥ |Dfn�⌫
s

a

(⇠
⌫

s

+1(a))|.

The second factor in this expression corresponds to the first piece of a binding
orbit and by Statement b) of the previous lemma is at least C0 · |Dn�⌫

s

(a)| �
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C0 · e�(n�⌫s

) � C0. Since f is quadratic in c, the first factor in (6.12) is at least
C0 · |⇠⌫

s

(a)� c| � C0 · e�↵⌫s since a 2 BA
n

. Hence,

|D
n

(a)| � Cs+2
0 · e�(n�F

n

)/4 · e�0F

n · e�↵⌫s � Cs+2
0 · e�(n�F

n

)/4 · e�0F

n · e�↵n

if n  ⌫
s

+ p
s

. So in both cases

|D
n

(a)| � Cs+2
0 · e�(n�F

n

)/4 · e�0F

n · e�↵n.

Using (FA
n

), and since p
i

� C0� we get that s/(n � F
n

) ! 0 as � ! 1;
hence, we have

|D
n

(a)| � e�0(1�⌧)n�↵n � e�n

provided ⌧,↵ > 0 satisfies (6.4) and � is su�ciently large.

Remark. 1. In Benedicks and Carleson (1985), see also Benedicks and Young
(1990), a weaker theorem is shown instead of Theorem 6.1: there exists a set of
parameters a with positive Lebesgue measure for which D

n

(a) grows at least as
fast as e

p
n. In this case condition (FA

n

) is not necessary. Indeed, as before, we
certainly have D

n

(a) � e
p

n for n = N, . . . , ⌫1(a), provided a is su�ciently close
to a⇤. Now suppose that |D

j

(a)| � e
p

j for j = N, . . . , n � 1. Then redefine
p(r, a) as the largest integer so that |f j

a

(x)�⇠
j

(a)|  e��
p

j for j = 0, . . . , p(r, a)
and all x 2 U

r

. Similarly, redefine the (BA
n

) condition by |⇠
k

� c| � e�
p

k for
k = N, . . . , n. Then, exactly as in Lemma 6.1, we get that |Dfp(r,a)+1(x)| �
e
p

p(r,a)/2 and p(r, a) < n. But since

e
p

ne
p

p(r,a)/2 � e
p

n+p(r,a)

because
p

n +
p

p/2 �
p

n + p

for p  n this gives similarly as in the proof of Theorem 6.2 that

D
n

(a) � e
p

n

when a satisfies the new (BA
n

) for all n. Therefore, there is no need for the
condition (FA

n

) in this case.

2. In Tsujii (1992b) more parameters are excluded: a stronger condition is given
which replaces conditions (BA) and (FA). This new condition implies very easily
that the uniform dependence on parameters from the next part of the proof is
automatically satisfied. For this reason his proof is shorter. Even so, that
the exponential growth of space derivatives implies results on the parameter
dependence is interesting in itself.
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Step 5: Uniformity of parameter dependence over small
parameter intervals

We have shown so far that parameters satisfying (FA) and (BA) give rise to an
exponential expansion along the orbit of the critical value. We want to show
that these conditions (FA) and (BA) are satisfied for a large set of parameters.
For this we need some results which state that parameter and space derivatives
are comparable and that the parameter dependence is uniform. Since this only
holds for small parameter intervals we will first subdivide the parameter interval
!0.

First of all, we say that ⌫ is a return of an interval ! ⇢ !0 if ⇠
⌫

(a) 2 U
for some a 2 !. Moreover, since we will apply Lemma 6.1 to intervals of
parameters instead of single parameters, we also define binding periods and free
returns associated to parameter intervals. Firstly, let

p(r,!) = min
a2! p(r, a).

As before, the first free return ⌫1(!) of ! is the smallest integer k for which
there exists a 2 ! with ⇠

k

(a) 2 U . Similarly, if ⌫
i

(!)  n is a free return,
then let r be the largest integer such that ⇠

⌫

i

(!)(!)\ I
r

6= ; and define p
i

(!) =
p(r,!) to be the binding period associated to this free return. The next free
return of ! is the largest integer ⌫

i+1(!) such that ⇠
j

(a) is outside U for all
j = ⌫

i

(!) + p
i

(!) + 1, . . . , ⌫
i+1(!)� 1 and all a 2 !.

Let us define inductively a partition E
n

of !0\EX
n�1 for n � N . We should

note that !0 is a neighbourhood of a⇤ of size < ✏ and so in this way E
n

depends
on ✏. Let E

N

= {!0} and suppose that E
n�1 is defined. (We should point

out that this partition is in many ways a quantitative version of the partitions
generated by Hofbauer’s tower construction which we sketched in Section II.3.)
The partition E

n

will refine the partition E
n�1 restricted to EX

n�1. So take an
interval ! ⇢ EX

n�1 in E
n�1 and let us consider all the possibilities.

a) n is not a free return of !. In this case we do not partition ! any further
and we let ! 2 E

n

.

b) n is a free return of ! and ⇠
n

(!) does not completely contain an interval
of the form I

r,r

0 with r � �� 1. In this case ⇠
n

(!) is strictly contained in the
union of at most two intervals I

r,r

0 , or ⇠
n

(!) is the union of a piece of at most
one interval of the form I�,⇤ and possibly a piece outside U . Then we take again
! 2 E

n

and we call such a return inessential.

c) n is a free return of ! and ⇠
n

(!) contains at least one interval I
r,r

0 , with
r � �, completely. In this case we say that this return of ! is essential and
decompose ! into a number of disjoint intervals. This is done as follows. Since
! 2 E

n�1 we have by Proposition 6.2 that ⇠
n

: ! ! I is a di↵eomorphism.
Therefore, its image covers a number of intervals I

r,r

0 , and at each end possibly
a piece of I \U or a piece of an interval I

r,r

0 . So one can decompose ! into pieces
!0 and !

r,r

0 with the property that !0 contains the points which are mapped
by ⇠

n

outside U and similarly ⇠
n

(!
r,r

0) is contained in I
r,r

0 for r � �. Now we
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join the two intervals at the end of ! from this partition to their neighbours if
necessary: if an end interval does not cover an entire interval of the form I

r,r

0

with r � � � 1, 1  r0  r2 then we add this interval to its neighbour in this
partition, see Figure 6.1. In this way we get a partition Ẽ

n

refining E
n�1. We

subdivide this interval !0 once more to obtain our desired partition E
n

. To do
this, first notice that we have for each subinterval !̃ 2 Ẽ

n

of ! (assuming this
interval has an essential return at time n) one of the following possibilities.

1. ⇠
n

(!̃) contains an interval I
r,r

0 with r � � and possibly a piece of a
neighbouring interval I

r±1,r

0±1; the interval I
r,r

0 is called the host interval
of ⇠

n

(!̃) or, more loosely speaking, the host interval of !̃ at time n.

2. ⇠
n

(!̃) is completely outside U�+1. In this case we say that !̃ is an escape
component of !. If |⇠

n

(!̃)| �
p

|U | then we say that ! has a substantial
escape at time n and we subdivide !̃ into subintervals so that the lengths
of the images under ⇠

n

of these smaller subintervals is between
p

|U |/2
and

p

|U |. For simplicity we shall say that I��1 is the host interval of
⇠
n

(a) for each a in one of these subintervals of !̃.

Next we let E
n

be the partition which we obtain after subdividing the elements
from Ẽ

n

as in 2) above.

Figure 6.1: The decomposition of !.

For each a 2 !0 \ EX
n�1 let !

n

(a) be the interval in E
n

which contains
a. Such an interval is generated as follows. Let ⌫̂1 = ⌫1(!0). By definition
⇠
⌫̂1(!0) � U and so !0 has an essential return at ⌫̂1. When n � ⌫̂1 let !

⌫̂1(a) be
the element of E

⌫̂1 containing a. Then let ⌫̂2 be the essential return of !
⌫̂1(a) and

if n � ⌫̂2 let !
⌫̂2(a) ⇢ !

⌫̂1(a) be the element of the partition E
⌫̂2 containing a.

Continuing in this way we have intervals !
n

(a) ⇢ !
⌫̂

s

�1(a) ⇢ · · · ⇢ !
⌫̂1(a) ⇢ !0

and essential returns ⌫̂1 < ⌫̂2 < · · · < ⌫̂
s

 n for which !
⌫̂

i�1 has an essential
return at time ⌫̂

i

. Moreover, !
j

(a) is subdivided exactly when j 2 {⌫̂1, . . . , ⌫̂s

}:

!
⌫̂

i�1(a) 6= !
⌫̂

i

(a)

and
!

j

(a) = !
⌫̂

i

(a)

for j = ⌫̂
i

, . . . , ⌫̂
i+1 � 1. These times are called the essential return times of

a. If !
⌫̂

i

is an escape component then it has no return (to U�+1) at time ⌫̂
i

.
Escapes will play an extremely important role in the proof of Theorem 6.1.

Notice that, by definition, each parameter a in an interval ! 2 E
n

has the
same return times for the first n � 1 iterates. In an informal sense, E

n

defines
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a partition on BA
n

and FA
n

. To formalize this, we define BA0
n

to be the set
of parameters a such that !

n

(a) \ BA
n

6= ;. Note that if a 2 ! 2 E
n

and
a 2 BA

n

then, by construction of !, |⇠
k

(b)� c| � e�↵k/2 for k = N, . . . , n and
each b 2 !. So without altering anything else, BA0

n

can be used instead of the
set BA

n

in the estimates of the previous step. Similarly, for a component !
of E

n

, let ⌫1(!) < · · · < ⌫
s

(!)  n be its free returns, p
i

(!) the corresponding
binding periods and q

i

(!) as before. Then we say that ! is contained in FA0
n

if F
k

(!)/k � (1 � ⌧) for k = 1, . . . , n and otherwise ! is outside this set FA0
n

.
Therefore, by definition, E

n

defines a partition on BA0
n

and FA0
n

.
In the next proposition we will prove that

BA0
n�1 \ FA0

n�1 ⇢ EX
n�1.

Moreover, this proposition shows that the parameter dependence of the position
of the iterates ⇠

n

(a) is uniform on the intervals of E
n�1 which are contained in

BA0
n�1 \ EX

n�1.

Proposition 6.3. [Uniform parameter dependence] There exists a positive
constant C such that for each su�ciently large � there exist ✏ with the following
properties. For each n � N and each ! 2 E

n�1 which has a free return at n and
for which ! ⇢ BA0

n�1 \ EX
n�1 one has if ⇠

n

(!) ⇢ U�/2 then

|⇠0
k

(a)|
|⇠0

k

(b)|  C for all a, b 2 ! and for all k = 0, . . . , n.

Moreover,
BA0

n�1 \ FA0
n�1 ⇢ EX

n�1.

In the proof of this proposition we will make use of three lemmas and the
following fact. If C 0 is so that |@

a

f
a

|  C 0 then

(6.13) |@
a

f j

a

(x)|  C 0 ·
j�1
X

i=0

|Df j�1�i

a

(f i(x))|.

Let us prove this by induction. For j = 1 this expression is trivial. By the
Chain Rule

@
a

f j+1
a

(x) = @
a

f
a

(f j

a

(x)) + Df
a

(f j

a

(x)) · @
a

f j

a

(x).

Hence, by induction,

|@
a

f j+1
a

(x)|  C 0 + |Df
a

(f j

a

(x))| · |@
a

f j

a

(x)|

 C 0 + |Df
a

(f j

a

(x))| · C 0 ·
j�1
X

i=0

|Df j�1�i

a

(f i(x))|

 C 0 + C 0 ·
j�1
X

i=0

|Df j�i

a

(f i(x))|

 C 0 ·
j

X

i=0

|Df j�i

a

(f i(x))|.
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The first lemma which we will now state shows that the estimates from Lemma
6.1 still hold if we replace p(r, a) by p(r,!). So let ! 2 E

n�1 and assume that
⌫ < n is a free return of !. Then by definition ⇠

⌫

(!) is contained in the union
of an interval of the form I

r,r

0 with possibly pieces of its two neighbours. Let
HD-dist(I, J) be the Hausdor↵ distance of two intervals I and J . So this number
is < ✏ if I is contained in a ✏-neighbourhood of J and vice versa.

Lemma 6.2. For each � there exists ✏ > 0 such that if ! 2 E
n�1 is as above

and is contained in BA0
n�1 \ EX

n�2, then for each a, b 2 !, we have

HD-dist(f j

a

(I
r

), f j

b

(I
r

)) <
1

1000
|f j

a

(I
r

)|,

HD-dist(f j

a

(U
r

), f j

b

(U
r

)) <
1

1000
|f j

a

(U
r

)|

and for each interval !̃ ⇢ !,

HD-dist
�

⇠
⌫+j

(!̃), f j

a

(⇠
⌫

(!̃))
�

<
1

1000
|f j

a

(⇠
⌫

(!̃))|

for all 1  j  p(r,!) + 1.

Proof. Take x 2 I
r

. By the Mean Value Theorem |f j

a

(x)�f j

b

(x)|  |@
a

f j

ã

(x)| |a�
b| for some ã 2 [a, b]. By Lemma 6.1 we have p(r, ã) < n and therefore
|Df i

ã

(f
ã

(x))| = O(1) · |D
i

(ã)| and that these numbers grow exponentially for
i = 1, . . . , p(r, ã). Since (6.13) implies

|@
a

f j

ã

(x)|  C 0 · |Df
ã

(x)| · |Df j�2
ã

(f
ã

(x))|+ C 0 ·
j�1
X

i=1

|Df j�1�i

ã

(f i

ã

(x))|

 C 0 · |Df j�2
ã

(f
ã

(x))|
 

j�2
X

i=0

1
|Df i

ã

(f
ã

(x))| + 1

!

,

we get |@
a

f j

ã

(x)|  C · |D
j�2(ã)|  C · |D

j�1(ã)| and therefore

|f j

a

(x)� f j

b

(x)|  C · |D
j�1(ã)| · |a� b|.

By Statement 1b) of Lemma 6.1, f j�1
ã

has bounded distortion on f
ã

(I
r

) for
j = 1, 2, . . . , p(r, ã) + 1 and hence

|f j

a

(x)� f j

b

(x)|  C · |D
j�1(ã)| · |a� b|  C · |f j

ã

(I
r

)| · |!|
|f

ã

(I
r

)|

 C · |f j

ã

(I
r

)| · |!|
|⇠
⌫

(!)| ·
e�r/r2

|f
ã

(I
r

)| .

Using Proposition 6.2 from Step 2 and using the fact that f
ã

has a quadratic
critical point, this gives that for some a0 2 !,

|f j

a

(x)� f j

b

(x)|  C · |f j

ã

(I
r

)| · 1
|D

⌫�1(a0)|
· e�r/r2

e�2r

 C · |f j

ã

(I
r

)| · e��⌫+r/r2.
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Since ! ⇢ BA0
n�1 one has r  2↵⌫ and it follows that

HD-dist(f j

a

(I
r

), f j

b

(I
r

)) <
1

4000
· |f j

ã

(I
r

)|  1
4000

·max
a

02!
|f j

a

0(I
r

)|,

for j = 1, . . . , p(r, ã) + 1 provided ✏ > 0 is small (because then ⌫ is large). Since
this last inequality holds for all a, b 2 !, the first inequality follows. The other
inequalities are proved similarly.

Corollary 6.2. The estimates from Lemma 6.1 hold for a 2 ! even if one
replaces p(r, a) by p(r,!).

Proof. Statements a) and b) of Lemma 6.1 hold trivially. In order to prove
Statement c), take ã 2 ! such that p(r, ã) = p(r,!). From the previous lemma
one has that |f j

a

(U
r

)| = O(1) · |f j

b

(U
r

)| for j = 1, . . . , p(r,!) + 1 and a, b 2 !.
Therefore, from the definition of p(r,!) we get for each a 2 ! that

|fp(r,!)+1
a

(U
r

)| = |fp(r,ã)+1
a

(U
r

)| = O(1) · |fp(r,ã)+1
ã

(U
r

)|
� O(1)e��p(r,ã) = O(1)e��p(r,!).

From this it follows that we can replace p(r, a) by p(r,!) in the proof of Lemma
6.1.

By Proposition 6.2 we have that for an interval ! ⇢ BA0
n�1 \ EX

n�2,
|!|/|⇠

j

(!)| is exponentially small in terms of j when j  n � 1. However, we
also need that |⇠

j

(!)|/|⇠
⌫

(!)| is exponentially small in terms of ⌫ � j when
j < ⌫  n� 1 and ⌫ is a free return of !. This is proved in the next lemma.

Lemma 6.3. There exists C0 such that for each su�ciently large � there exists
✏ > 0 such that for each ! 2 E

n�1 which is contained in BA0
n�1\EX

n�1 and for
each !̃ ⇢ ! one has the following. For any consecutive free returns ⌫ < ⌫0  n
of !,

|⇠
⌫+j

(!̃)| � C0 · e�j · |⇠
⌫+1(!̃)|

for j = 1, . . . , p(r,!) + 1 and |⇠
⌫+p(r,!)+1(!̃)| � e�p(r,!)/4 · |⇠

⌫

(!̃)|. Moreover,

(6.14) |⇠
⌫

0(!̃)| � C0 · e(⌫0�j)�0 · |⇠
j

(!̃)|

for j = ⌫ + p(r,!) + 1, . . . , ⌫0 and

(6.15) |⇠
⌫

0(!̃)| � 2 · |⇠
⌫

(!̃)|

Proof. Let p = p(r,!). By the second inequality from the previous lemma one
has HD-dist

�

⇠
⌫+j

(!̃), f j

a

(⇠
⌫

(!̃))
�

< 1
1000 · |f j

a

(⇠
⌫

(!̃))| for j = 1, . . . , p + 1 and
so Lemma 6.1 implies |⇠

⌫+j

(!̃)| � C0 · e�j · |⇠
⌫+1(!̃)| for j = 1, . . . , p + 1 and

|⇠
⌫+p+1(!̃)| � e�p/4 · |⇠

⌫+1(!̃)|.
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So let us prove the last two inequalities. As before, let �̄ = sup
a,x

|Df
a

(x)|.
By (6.13), |@

a

f j

a

(x)|  C · e�̄j . By Proposition 6.2 and since ! ⇢ EX
n�1 one

has |a� b|  C · e��j · |⇠
j

(!̃)|. Hence,

|fk�j

a

(⇠
j

(b))� fk�j

b

(⇠
j

(b))|  C · e�̄(k�j) · e��j · |⇠
j

(!̃)|

when ⌫ + p + 1  j < k  ⌫0. Taking ⇠
k

(!̃) = [⇠
k

(a), ⇠
k

(b)] one gets from this
and from the second inequality in Proposition 6.2,

(6.16)

|⇠
k

(!̃)| = |fk�j

a

(⇠
j

(a))� fk�j

b

(⇠
j

(b))|
� |fk�j

a

(⇠
j

(a))� fk�j

a

(⇠
j

(b))|� |fk�j

a

(⇠
j

(b))� fk�j

b

(⇠
j

(b))|

�
⇣

|Dfk�j

a

(x̃
j

)|� C · e�̄(k�j) · e��j

⌘

· |⇠
j

(!̃)|

where x̃
j

2 ⇠
j

(!̃). Because the factor e�̄(k�j)e��j can become very large if
(k � j) >> j we shall have to use the previous inequality with care. Now if
k � j  �

(� + �̄)
j then, because of the choice of � in (6.4),

e�̄(k�j)e��j  e
�

 �̄

� + �̄
�1

!
j

 e��j

which is small if j is large. Hence, using (6.16), we get for k � j  �

(� + �̄)
j,

(6.17) HD-dist
�

⇠
k

(!̃), fk�j

a

(⇠
j

(!̃))
�

 e��j |⇠
k

(!̃)|.

Now let W
i

, i = 1, . . . , 4 be interval neighbourhoods of c as in Proposition
6.1 of size i·� where � is some fixed positive number (independent of �). Choose
integers k0, . . . , ku

with ⌫ + p + 1 = k0 < k1 < · · · < k
u

= ⌫0 so that for each
i = 0, . . . , u� 1,

k
i+1 � k

i

 �

(� + �̄)
k

i

.

As before, this implies that the last term in (6.16) is very small for k
i

 j < k 
k

i+1. Moreover, we can choose these integers k0, k1, . . . , ku

so that ⇠
k

i+1(!̃) \
W4 = ; implies that

�

2(� + �̄)
k

i

 k
i+1 � k

i

as well as ⇠
m

(!̃) \W4 = ; for all

m = k
i

+ 1, . . . , k
i+1 � 1. (Note that if k0 is large then the subsequent steps

k
i+1 � k

i

are also large. In particular, if � is large and ✏ > 0 is small enough
then we may assume that k

i+1 � k
i

is large for each i = 0, . . . , u� 1. We shall
need this remark in the next lemma.)

If ⇠
k

i+1(!̃)\W2 6= ; and ⇠
k

i+1(!̃) does not contain a component of W3 \W2

then (6.17) implies that fk

i+1�k

i

a

(⇠
k

i

(!̃)) is contained in W4. Since ⇠
j

(!̃)\U = ;
for j = k

i

, . . . , k
i+1�1, (6.17) also implies that f j�k

i

a

(⇠
k

i

(!̃)) is outside a slightly
smaller interval U 0 for these integers j. From (6.1) of Proposition 6.1,

|Dfk

i+1�j

a

(x̃
j

)| � C0 · e�0(ki+1�j) for j = k
i

, . . . , k
i+1.

If ⇠
k

i+1(!̃) \W2 6= ; and ⇠
k

i+1(!̃) contains a component of W3 \ W2 then
⌫0 � k

i+1 is universally bounded from above. Hence, from (6.2) in Proposition
6.1,

|Dfk

i+1�j

a

(x̃
j

)| � C0 · e�0(⌫
0�j) for j = k

i

, . . . , ⌫0
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and the last term in (6.16) is small for k
i

 j  k  ⌫0.
Finally, if ⇠

k

i+1(!̃)\W2 = ; we get again from (6.17) that fm

a

(x̃
j

) /2W1 for
m = 0, . . . , k

i+1 � j and as before we get by (6.3) from Proposition 6.1,

|Dfk

i+1�j

a

(x̃
j

)| � C0 · e�0(ki+1�j) for j = k
i

+ 1, . . . , k
i+1.

From the choice of ↵ and k
i

and using (BA0
n�1), this also implies

|Dfk

i+1�k

i

a

(x̃
k

i

)| � C0 · e�0(ki+1�k

i

) · e�↵k

i � e�(ki+1�k

i

).

From all this, (6.14) follows. Since ⌫0 � ⌫ tends to infinity as ✏ tends to zero,
the last inequality also follows.

Lemma 6.4. [Main Distortion Lemma] There exists C < 1 such that for
each � su�ciently large there exists ✏ > 0 such that the following holds. For
each component ! 2 E

n�1 with ! ⇢ BA0
n�1 \EX

n�1 which has a free return at
time n � N , one has

(6.18)
|D

k

(a)|
|D

k

(b)|  C

for all k = 0, . . . , n� 1 and all a, b 2 ! when ⇠
n

(!) ⇢ U�/2.

Proof. First we make the following remark. By the construction of the set E
n

,
the iterates ⇠

i

(a) have free returns at the same times ⌫1 < ⌫2 < ⌫3 < · · ·  n
for each a 2 !̃. Now choose s so that ⌫

s

 k < ⌫
s+1. By assumption ⇠

⌫

j

(!)
is contained inside an interval of the form I

r

j

,r

0
j

(plus pieces of at most two of
its neighbours) for each j = 1, 2, . . . , s, where r

j

� � and 1  r0
j

 r2
j

. By
the previous lemma |⇠

⌫

j+1(!)| � 2|⇠
⌫

j

(!)| because ⌫
j+1 � ⌫j

is large when � is
large.

Take k 2 {0, 1, . . . , n� 1}. By the Chain Rule

|D
k

(a)|
|D

k

(b)| =
k

Y

i=1

|Df
a

(⇠
i

(a))|
|Df

b

(⇠
i

(b))| .

Let k0  n be maximal so that |⇠
k0(!)|  |U |. Let us first estimate

k

Y

i=1

|Df
a

(⇠
i

(a))|
|Df

b

(⇠
i

(b))|

for k  k0. Note that |Df

a

(⇠
i

(a))|
|Df

b

(⇠
i

(b))|  (1 + C · |b� a|) |⇠i

(a)�c|
|⇠

i

(b)�c| and, by Proposition
6.2, |!|  Ce��n and therefore (1 + C · |b � a|)n is universally bounded. So it
su�ces to estimate

Q

k

i=1
|⇠

i

(a)�c|
|⇠

i

(b)�c| or in other words

k0
X

i=1

|⇠
i

(a)� ⇠
i

(b)|
|⇠

i

(b)� c| .
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Let us split this sum up in several parts: the binding pieces and the following
piece of the orbit which is outside U . So let

S000 =
⌫0�1
X

i=1

|⇠
i

(a)� ⇠
i

(b)|
|⇠

i

(b)� c|

and for 0 < j < s,

S0
j

=
⌫

j

+p

j

X

i=⌫
j

|⇠
i

(a)� ⇠
i

(b)|
|⇠

i

(b)� c| and S00
j

=
⌫

j+1�1
X

i=⌫
j

+p

j

+1

|⇠
i

(a)� ⇠
i

(b)|
|⇠

i

(b)� c| .

If ⌫
s

+ p
s

< k take

S0
s

=
⌫

s

+p

s

X

i=⌫
s

|⇠
i

(a)� ⇠
i

(b)|
|⇠

i

(b)� c| , S00
s

=
k�1
X

i=⌫
s

+p

s

+1

|⇠
i

(a)� ⇠
i

(b)|
|⇠

i

(b)� c| .

If k  ⌫
s

+ p
s

then take S0
s

=
P

k

i=⌫
s

|⇠
i

(a)�⇠
i

(b)|
|⇠

i

(b)�c| and S00
s

= 0. So we need to
estimate the sum of the terms S0

j

and S00
j

.
Let us first estimate the sum of the terms S00

j

for j = 1, . . . , s. By the previous
lemma, |⇠

i

(a) � ⇠
i

(b)| ‘grows’ exponentially fast for i = ⌫
j

+ p
j

+ 1, . . . , ⌫
j+1.

More precisely, the sum of these terms is bounded by C times the last one.
Furthermore, |⇠

i

(b)� c| � |U | for i = ⌫
j

+ p
j

+ 1, . . . , ⌫
j+1 because this part of

the orbit is free. So it follows that S00
j

 C · |⇠⌫

j+1 (!)|
|U | . Since

|⇠
k

(!)| � 2|⇠
⌫

j+1(!)| � 4|⇠
⌫

j

(!)|

for j = 0, 1, . . . , s� 1, this implies that
s

X

j=1

S00
j


s�1
X

j=1

C ·
|⇠
⌫

j+1(!)|
|U | + C · |⇠k(!)|

|U |

 C · |⇠k(!)|
|U |  C.

Similarly, S000 is universally bounded.
So let us bound

P

S0
j

. For ⌫
j

< i  ⌫
j

+ p
j

, one has the following. By
Lemmas 6.1 and 6.2, |⇠

i

(b)� ⇠
i

(a)|  C · |f i�⌫
j

�1
a

(⇠
⌫

j

+1(!))| and Df
i�⌫

j

�1
a

has
bounded distortion on some neighbourhood of f

a

(c). This gives

|⇠
i

(b)� ⇠
i

(a)|  C · |D
i�⌫

j

�1(a)| · |⇠
⌫

j

+1(!)|  C · |D
i�⌫

j

�1(a)| · |f
a

(!
⌫

j

(!))|.

Furthermore, from the definition of p
j

,

|D
i�⌫

j

�1(a)| · |⇠
⌫

j

+1(a)� c1(a)| = O(1) · |f i�⌫
j

a

(⇠
⌫

j

(a))� ⇠
i�⌫

j

(a)|
 C · e��(i�⌫

j

).

Hence,

|⇠
i

(b)� ⇠
i

(a)|  C · |D
i�⌫

j

�1(a)| · |f
a

(!
⌫

j

(!))|  C ·
|f

a

(!
⌫

j

(!))| · e��(i�⌫
j

)

|⇠
⌫

j

+1(a)� c1(a)|

 C ·
|!
⌫

j

(!)| · e��(i�⌫
j

)

|U
r

j

| ,
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where the last step follows since f |I
r

has bounded distortion, !
⌫

j

(!) ⇢ I
r

j

and
|I

r

j

| = O(1)·|U
r

j

|. Moreover, if i  ⌫
j

(a)+N then by definition of N , ⇠
i

(b) /2W
and so |⇠

i

(b)�c| � C. On the other hand, if i � ⌫
j

(a)+N , then from (BA0
n�1),

(6.2a) and since i  ⌫
j

+ p
j

,

|⇠
i

(b)� c| � |⇠
i�⌫

j

(b)� c|/2� |⇠
i

(b)� ⇠
i�⌫

j

(b)|
� (e�↵(i�⌫

j

)/2� e��(i�⌫
j

)) � e�↵(i�⌫
j

)/4.

It follows that

S0
j


⌫

j

+p

j

X

i=⌫
j

|⇠
i

(b)� ⇠
i

(a)|
|⇠

i

(b)� c|  C ·
⌫

j

+p

j

X

i=⌫
j

|!
⌫

j

(!)| · e��(i�⌫
j

)

|U
r

j

| · e�↵(i�⌫
j

)
 C ·

|!
⌫

j

(!)|
|U

r

j

| ,

where we have used that 0 < ↵ < �. Now let (r) denote the set of indices j < s
such that !

⌫

j

(!) \ I
r

6= ;. Since |!
⌫

j+1(!)| � 2|!
⌫

j

(!)|,

X

j2(r)

|!
⌫

j

(!)|
|U

r

|  C max
j2(r)

|!
⌫

j

(!)|
|U

r

|

and since, for j  s, the largest !
⌫

j

(!) is still contained in at most three of the
r2 subintervals I

r,r

0 of I
r

,
|!
⌫

j

(!)|
|U

r

|  3
r2

.

In particular,

s

X

j=1

S0
j

 C ·
s

X

j=1

|!
⌫

j

(!)|
|U

r

j

|  C ·
X

r

max
j2(r)

|!
⌫

j

(!)|
|U

r

|  C ·
X

r

3
r2

< 10 · C.

It remains to consider the case that k 2 {k0, . . . , n � 1}. So we need to
estimate

k

Y

i=k0

|Df
a

(⇠
k

(a))|
|Df

b

(⇠
k

(b))| =
Dfk�k0

a

(⇠
k

(a))
Dfk�k0

b

(⇠
k

(b))

from above. First notice that |⇠
i

(!)| grows exponentially and in particular,

(6.19) |⇠
i

(!)| � C0 · |U | for i = {k0, . . . , n}.

Since ! 2 E
n�1 the intervals ⇠

i

(!) never contain an interval from the collection
I
r

with r � � for i = k0, . . . , n� 1. This together with (6.13) implies that the
intervals ⇠

i

(!) do not intersect U�+q

for i = k0, . . . , n � 1 where q depends on
C0 (for example, if C0 = 1 then q = 1 works). Now fix � for the moment. We
claim that there exists n0(�) < 1 such that n � k0  n0(�) for each ! ⇢ !0

provided |!0| is su�ciently small. This holds because f
a⇤ has no homtervals

and therefore (6.19) implies that there exists n0(�) <1 for which

int (f j

a⇤(⇠k0(!))) intersects c for some j 2 {0, 1, . . . , n0(�)}
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for each ! ⇢ !0. If we let |!0| be small enough then the previous claim follows.
In particular, for each ⇠,� > 0 there exists ✏ > 0 such that

sup
x

|f j

a

(x)� f j

b

(x)|  ⇠ for all j = 0, 1, . . . , n� k0, a, b 2 !0

provided |!0| < ✏. So the Hausdor↵ distance between ⇠
k

(!) and fk�k0
a⇤ (⇠

k0(!))
is at most ⇠ for k = k0, . . . , n�1. Since ⇠

n

(!) ⇢ U�/2 this implies fn�k0
a⇤ (⇠

k0(!))
is contained in a small neighbourhood of c. Since f

a⇤ is a Misiurewicz map we
can use the last part of Proposition 6.1 and therefore there exists a universal
constant K <1 such that

|Df j

a⇤(x)|
|Df j

a⇤(y)|
 K

for each j = 0, 1, . . . , k � k0 and each x, y 2 I provided fk�k0
a⇤ [x, y] is contained

in a su�ciently small neighbourhood of c. Combining all this shows that

|Df j

a

(x)|
|Df j

b

(y)|
 2K

for each a, b 2 !, x, y 2 ⇠
k0(!) and each j 2 {0, 1, . . . , n � k0}. Provided ✏ > 0

and therefore |!0| is su�ciently small.

Proof of Proposition 6.3: The proof of Proposition 6.3 follows immediately
from Proposition 6.2 and the previous two lemmas.

Step 6: The exclusions of the parameters

Let us now compare the size of BA0
n�1 with the size of BA0

n

. So take an interval
! 2 E

n�1 contained in BA0
n�1 \EX

n�1 with a return at time n. The part of !
which fails to satisfy condition (BA0

n

) corresponds precisely with the intervals
!

r,r

0 ⇢ ! from the partition above with r > ↵n. But we have

Lemma 6.5. There exists a constant C0 > 0 such that for every su�ciently
large � there exists ✏ > 0 such that for each n 2 N and each element ! of E

n�1

which has a return at time n and which is contained in BA0
n�1 \ EX

n�1,

|! \ [
r�↵n

!
r,r

0 |
|!| � 1� e�↵nC0

for n � N .

Proof. Since ! is an element of E
n�1, there exists a free return ⌫ < n with

binding period p such that ⇠
⌫

(!) covers an interval I
r,r

0 and therefore |⇠
⌫

(!)| �
e

�r

r

2 for some r  ↵⌫ < ↵n. From Lemma 6.3 in Step 5, |⇠
n

(!)| � e�p/4|⇠
k

(!)|.
But by Lemma 6.1, p � C0r and hence

(6.20) |⇠
n

(!)| � e�p/4 e�r

r2
� e(�1+C0)r

r2
� e(�1+C0/2)↵n
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because r  ↵n and n is large when ✏ is small. By possibly taking the largest
interval !̃ ⇢ ! with ⇠

n

(!̃) ⇢ U�/2 we get that |⇠
⌫

(!̃)| also satisfied (6.20)
provided ✏ > 0 is su�ciently small because then n tends to infinity. As in
Proposition 6.3 in Step 5, the distortion of ⇠

⌫

: !̃ ! I is bounded by C and
since ⇠

⌫

([
r>↵n

!
r,i

) ⇢ U
↵n

it follows by (6.20) that

| [
r>↵n

!
r,i

|
|!|  | [

r>↵n

!
r,i

|
|!̃|  C · e�↵n

|⇠
n

(!̃)|  C · e�C0↵n/2  e�C0↵n/4

provided ✏ > 0 is su�ciently small (because then n becomes very large).

From this lemma it follows that |BA0
n

|/|BA0
n�1 \EX

n�1| � 1� e�↵nC0 for
n � N and ✏ > 0 su�ciently small. So the set of parameters which violates BA0

n

is very small compared to BA0
n�1. Let us now show that a similar statement also

holds for the set FA0
n

. In order to do this we use a large deviation argument.
First we shall show that essential returns occur quite frequently.

Lemma 6.6. For any su�ciently large � there exists ✏ > 0 such that for any
! 2 E

⌫̂

with an essential return and host interval I
r,r

0 , r � ��1, at time ⌫̂ one
has the following. (Here, by convention, r = ��1 when an escape takes place.)
If ⌫̂0 is the next essential return of ! and ! ⇢ EX

⌫̂

0�1 \BA0
⌫̂

0�1 then

(6.21a) ⌫̂0 � ⌫̂  4r/�

and

(6.21b) if ⌫̂0 � ⌫̂ = 4r/� then ! has a substantial escape at time ⌫̂0.

Moreover,

(6.22) |!0|  C · e6�r/� · e�r̂ · |!|

when !0 ⇢ ! is so that ⇠
⌫̂

0(!0) ⇢ I
r̂,r̂

0 .

Proof. If ! has an escape at time ⌫̂ then replace ! by the subset !̃ for which
⇠
⌫̂

(!̃) = I�,�2 . Let ⌫̂ = ⌫0 < · · · < ⌫
k

= ⌫̂0 be the free returns of ! between
time ⌫̂ and ⌫̂0. By definition these returns are inessential and k � 1. Let p

j

be
the binding period of ! following the return ⌫

j

and let L
j

= ⌫
j+1 � ⌫j

� p
j

� 1.
By lemma 6.2 the Hausdor↵-distance between ⇠

⌫

j

+p

j

(!) and f
p

j

a

(⇠
⌫

j

(!)) is very
small compared to the size of these intervals. Furthermore, if ⇠

⌫

j

(!) ⇢ I
r

j

,r

0
j

then by the choice of p
j

, |fp

j

a

(U
r

j

)| = O(1) · e��p

j and by Lemma 6.1, f
p

j

a

|I
r

j

has bounded distortion. Therefore, and since p
j

 3r
j

/�,

|⇠
⌫

j

+p

j

(!)|
|⇠
⌫

j

(!)| � C0 ·
e��p

j

|I
r

j

,r

0
j

| � C0 · e��p

j r2
j

er

j � e[1�4�/�]r
j · e�p

j

/2.

because r
j

� � � 1 and � is large. Since ! ⇢ EX
n�1 and ⌫̂0  n, Lemma 6.3

gives

|⇠
⌫

j+1(!)| � C0 · e�0L

j · |⇠
⌫

j

+p

j

(!)|
� C0 · e�0L

j · e[1�5�/�]r
j · e�p

j

/2 · |⇠
⌫

j

(!)|
� e�L

j · e[1�5�/�]r
j · |⇠

⌫

j

(!)|
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for ✏ > 0 su�ciently small, since L
j

+ p
j

!1 as ✏ tends to zero. By definition
|⇠
⌫0(!)| = O(1)e�r/r2 and so the last inequality gives

|⇠
⌫1(!)| � e�L0 · e[1�4�/�]re�r/r2 � e�L0 · e�[5�/�]r

since r � �� 1 and � is large. In particular, L0  5�r

�

2 . Moreover, we have for
j = 2, . . . , k,

|⇠
⌫

j

(!)| � |⇠
⌫1(!)|

j�1
Y

m=1

e�L

me[1�5�/�]r
m � e�L0e�5�r/�

j�1
Y

m=1

e�0L

me[1�5�/�]r
m .

Hence,

(6.23) |⇠
⌫

j

(!)| � e�5�r/� for j = 1, . . . , k

and
k�1
X

m=1

{�L
m

+ [1� 5�/�]r
m

} � 5�r/� implies |⇠
⌫

k

(!)| � 1.

From this and the choice of �,

k�1
X

m=1

{�L
m

+ 3r
m

} � 16�r/� implies |⇠
⌫

k

(!)| � 1.

Hence, because p
j

 3r
j

/� by Lemma 6.1, either

⌫
k

� ⌫0 =
k�1
X

m=0

(p
m

+ L
m

)  3r/� + 5�r/�2 +
k�1
X

m=1

{3r
m

/� + L
m

}

 1
�

"

3r + 5�r/� +
k�1
X

m=1

{�L
m

+ 3r
m

}
#

 1
�

[3r + 5�r/� + 16�r/�]  4r

�

or |⇠
⌫

k

(!)| � 1. From this (6.21a) and (6.21b) follow. So let us prove (6.22).
By Proposition 6.3, if |⇠

⌫̂

0(!)|  |U | then the ratio of |!0| to |!| is at most C
times the ratio of |⇠

⌫̂

0(!0)| and |⇠
⌫̂

0(!)|. This and (6.23) imply (6.22), provided
� is su�ciently large. f |⇠

⌫̂‘(!)| � |U | then we can prove again (6.22) simply by
shrinking !.

Let a have an essential return at time ⌫̂ and let ⌫̂ = ⌫̂0 < ⌫̂1 < ⌫̂2 < · · · <
⌫̂

s

 n the subsequent essential returns of a. Let I
r

i

,r

0
i

be the host interval of
⇠
⌫̂

i

(!
⌫̂

i

(a)). By (6.20) from the previous lemma,

(6.24)

|!
⌫̂

s

(a)|
|!
⌫̂

(a)|  Cs exp

(

s

X

i=1

[6�r
i�1/� � r

i

]

)

 Cs exp

(

�(7/8)
s

X

i=1

r
i

+ 6� · r/�
)
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where we write r0 = r and r
i

= �� 1 if an escape takes place at time ⌫
i

.
As we shall show below, substantial escapes can be used to estimate the

function F
n

and therefore be used to show that the condition FA
n

holds for
many parameters. Therefore we define for an essential return ⌫̂ of a,

E(a; ⌫̂) = inf{k > 0 ; !
⌫̂+k

(a) has a substantial escape at time ⌫̂ + k}.

Let us estimate this function.

Lemma 6.7. For each � su�ciently large there exists ✏ > 0 such that for each
n 2 N and each ! 2 E

⌫̂

which has an essential return at time ⌫̂ < n, which is
contained in BA0

n�1 \ EX
n�1 and has host interval I

r,r

0 where r � � one has
Z

{a2! ; 6r/�E(a;⌫̂)n�⌫̂}
e�E(a;⌫̂)da  e�r/8 · |!|,

Z

{a2! ; E(a;⌫̂)6r/�}
e�E(a;⌫̂)da  er/6 · |!|.

Here we define the integral over the empty set to be zero.

Proof. The second inequality holds trivially. Also, we may confine ourselves
to parameters a 2 ! for which E(a; ⌫̂)  n � ⌫̂ because the other parameters
do not contribute to the first integral. So take such a parameter a 2 ! and
let ⌫̂ = ⌫̂0 < ⌫̂1 < · · · < ⌫̂

s

 ⌫̂
s+1  n be the essential returns of a where

!
⌫̂

i

(a) at time ⌫̂
i+1 has no substantial escape for i = 0, . . . , s � 1 and does

have a substantial escape for i = s. Let J
i

be the host interval of !
⌫̂

i

(a) for
i = 1, . . . , s and let R = r1 + · · · + r

s

. Of course, J
i

= I
r

i

,r

0
i

with r
i

� � � 1
when the interval does not escape and by convention J

i

= I��1 if it does escape.
We want to consider all possible paths of host intervals (J1, . . . , Js

) with given
length s and fixed R = r1 +r2 + · · ·+r

s

. In other words, given s and R we want
to estimate the number of strings ((r1, r01), (r2, r02), . . . , (rs

, r0
s

)) of non-negative
integers with

R = r1 + · · ·+ r
s

and r0
i

 r2
i

.

Since r
i

� � � 1, one has s  R/�. Fixing s it is easy to check that there

are
✓

R + s� 1
s� 1

◆

solutions of R = r1 + · · · + r
s

with r
i

� 0. One can see this

for example by thinking of a row consisting of R + s � 1 holes each filled with

a marble.
✓

R + s� 1
s� 1

◆

configurations can be created by taking s � 1 of these

marbles out; moreover, these empty holes partition the remaining R marbles
into s groups of r

i

� 0, i = 1, . . . , s, marbles. Distinguishing the orbits which
enter the left and right components of I

r

and counting the r0
i

gives

2s

✓

R + s� 1
s� 1

◆

·
s

Y

i=1

r2
i



414 CHAPTER V. ERGODIC PROPERTIES AND INVARIANT MEASURES

possibilities. Let us estimate this from above. Since by Simpson’s Formula,
n! ⇡ (n/e)n

p
2⇡n, and using that s  R/�, it follows that there are at most

C · 2s

(s + R� 1)s+R�1

RR(s� 1)s�1

s

s + R� 1
(s� 1)R

· e(1/16)
P

s

i=1 r

i  eR/16 · (1 + o(�))R

possibilities, where o(�) is a function such that o(�)! 0 as �!1 and where
we have used that t2  et/16 for t large. Let A

s,R

be the set of parameters
a 2 ! which have their first substantial escape at the (s + 1)-th essential return
following ⌫̂, which have an essential return with host interval inside I

r

at time
⌫̂ and for which

P

s

i=1 r
i

= R. Since r
i

� �, we get A
s,R

= ; when s > R/�.
By the previous argument this set has at most eR/16(1 + o(�))R components.
Let !̂

s

be the largest one. So we get

|A
s,R

|  eR/16 · (1 + o(�))R|!̂
s

|.

We claim that for each a 2 ! \A
s,R

for which E(a; ⌫̂)  n� ⌫̂,

E(a; ⌫̂)  (4R + 4r)/�.

Indeed, by the previous lemma, ⌫̂
i

� ⌫̂
i�1 < 4r

i�1/� for i = 1, . . . , s (where
r0 = r) because the corresponding intervals !

⌫̂

i�1(a) do not have a substantial
escape at time ⌫̂

i

for i  s. Moreover, ⌫̂
s+1 � ⌫̂s

 4r
s

/� and ⇠
⌫̂

s+1(!⌫̂
s

(a)) is
certainly a substantial escape when equality holds. Furthermore, by definition
t  ⌫̂

s+1� ⌫̂0. From this the claim follows. Similarly, s > R/� because r
i

� �.
So if we write B

s,R,t

= {a 2 ! ; E(a; ⌫̂) = t}\A
s,R

then B
s,R,t

= ; if s > R/�
if n� ⌫̂  t < (4R + 4r)/�. Therefore, for any t  n� ⌫̂,

|{a 2 ! ; E(a; ⌫̂) = t}| =
X

s,R

|B
s,R,t

| 
X

sR/�,R��t/4�r

|A
s,R

|


1
X

R=�t/4�r

R/�
X

s=1

eR/16 · (1 + o(�))R · |!
s

|.

Using (6.24) this gives

|{a 2! ; E(a; ⌫̂) = t  n� ⌫̂}|


1
X

R=�t/4�r

R/�
X

s=1

Cs · eR/16 · (1 + o(�))R · exp {�(7/8)R + 6�r/�} · |!|


1
X

R=�t/4�r

(1 + o(�))R · exp
⇢

�3
4
R + 6�r/�

�

· |!|


1
X

R=�t/4�r

exp
⇢

(o(�)� 3
4
)R
�

· exp {6�r/�} · |!|

 C · exp
⇢

(o(�)� 3
4
)(
�t

4
� r)

�

· exp {6�r/�} · |!|.
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If n� ⌫̂  t  6r/� this implies

|{a 2 ! ; E(a; ⌫̂) = t}|  C · exp
⇢

(o(�)� 3
4
)

t

12

�

· exp {6�r/�} · |!|

 exp
⇢

� t

20

�

· |!|,

provided � is su�ciently large. Since � < 1/40 it follows that
Z

{a2! ; 6r/�E(a;⌫̂)k}
e�E(a;⌫̂) da 

X

t�6r/�

e�te�t/20|!|  e�r/8|!|,

for � large enough. The last inequality in the statement of this lemma is
obvious.

Now take a 2 !0. Let ⌫1 be as in Step 3 and define e1 = ⌫1. Note that
⇠
k

(!0) \ U = ; for all k = 1, . . . , ⌫1 � 1 and ⇠
⌫1(!0) � W . So !0 has a

substantial return at this time e1. So take !
e1(a)(a) to be the component of

E
e1(a) containing a. Suppose that e1(a), . . . , e

i

(a) are defined so that !
⌫̄

i�1(a)(a)
has a substantial return at time ⌫̄

i

(a) where ⌫̄
i

(a) = e1(a) + · · · + e
i

(a). Then
let e

i+1(a) be the smallest integer such that !
⌫̄

i

(a) has a substantial return at
time ⌫̄

i

(a) + e
i+1(a). Furthermore, for i � 0, let

E
i

(a) =

(

0 if a escapes at time ⌫̄
i

(a)
e
i+1 otherwise.

Note that if a escapes at one of these times then the escape if substantial by
definition. Also define

T
n

(a) =
s�1
X

i=0

E
i

(a),

where s is the maximal integer such that e1(a) + e2(a) + · · · + e
s

(a)  n and
the empty sum is defined to be zero. By definition T

n

(a) is constant on each
component of E

n

.

Lemma 6.8. For � su�ciently large, we have for any ! 2 EX
n�1\BA0

n�1 the
following. If a has a substantial escape at time ⌫̄

i

(a) and if ⌫̄
i+1(a)  n is the

next return of a to U then this return has a substantial escape. In particular,

F
n

(a) � n� T
n

(a).

Proof. n � T
n

(a) is the sum of E
i

for those indices i for which !
⌫̄

i

(a)(a) is a
substantial escape component at time ⌫̄

i

(a). So for these indices, ⇠
⌫̄

i

(a)(!⌫̄
i

(a))
contains an interval of at least size �

p

|U | and is outside U . As in the proof
of Lemma 6.6, for the smallest integer ⌫0

i

(a) > ⌫̄
i

(a) for which !
⌫̂

i

(a)(a) has a
return one has

|⇠
⌫

0
i

(a)(!⌫̄
i

(a))| �
p

|U |.
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It follows that this return has again a substantial escape. So ⌫0
i

(a) = ⌫̄
i

(a) +
E

i

(a) = ⌫̄
i+1(a) and ⇠

k

(!
⌫̄

i

(a)) stays outside U for k = ⌫̄
i

(a), . . . , ⌫̄
i

(a) + E
i

(a).
Moreover, this part of the orbit is not part of a bound period. So it follows that
⌫̄

i

(a), . . . , ⌫̄
i

(a) + E
i

(a) is part of a free orbit of length E
i

(a). It follows that
F

n

(a) � n� T
n

(a).

So let us estimate T
n

.

Lemma 6.9. For � su�ciently large one has the following. Let !̂ be the union
of the components ! 2 E

n�1 which are contained in EX
n�1 \BA0

n�1. Then
Z

!̂

e�T

n

(a) da  e⌧n · |!̂|

and
|{a 2 !̂ ; T

n

(a) > ⌧n}|  e�⌧n�/2 · |!̂|.

Proof. Let !s be the part of !̂ which has s substantial escapes and let !(r̄1,...,r̄

s

)

be the set of parameters in !s which experience precisely substantial return at
⌫1 < ⌫2 < · · · < ⌫

s

and with host intervals J
i

. Here J
i

is an interval I
r̄

i

as
above where r̄

i

is of the form (r
i

, r0
i

), r
i

� � � 1 and r0
i

2 {1, . . . , r2
i

}. By
definition r

i

= �� 1 occurs in the case of a substantial escape component. For
convenience of notation let

!(r̄1,...,r̄

s�1,⇤) =
[

r̄

s

!(r̄1,...,r̄

s�1,r̄

s

),

and, more generally,

!(r̄1,...,r̄

k

,⇤,...,⇤) =
s

[

i=k+1

[

r̄

i

!(r̄1,...,r̄

s

).

Notice that E0, . . . , Es�2 are constant on !(r̄1,...,r̄

s�1,⇤) and therefore
Z

!(r̄1,...,r̄

s�1,⇤)

e�T

n

(a) da = e�
P

s�2
i=0 E

i

(a)

Z

!(r̄1,...,r̄

s�1,⇤)

e�E

s�1(a) da.

Furthermore, since E
i

> 0 only if r̄
i

� � and since E
s�1(a) < n � ⌫̂

s�1 for
a 2 !(r̄1,...,r̄

s�1,⇤),
Z

!(r̄1,...,r̄

s�1,⇤)

e�E

s�1(a) da


1
X

r

s

=�

r

2
s

X

r

0
s

=1

"

Z

!(r̄1,...,r̄

s

)

e�E

s�1(a) da

#

+ |!(r̄1,...,r̄

s�1,⇤)|

=
1
X

r

s

=�

r

2
s

X

r

0
s

=1

"

Z

{a2!(r̄1,...,r̄

s

) ; 6r

s

/�E

s�1(a)n�⌫̂
s�1}

e�E

s�1(a) da

+
Z

{a2!(r̄1,...,r̄

s

) ; E

s�1(a)6r

s

/�}
e�E

s�1(a) da

#

+ |!(r̄1,...,r̄

s�1,⇤)|.
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Hence, by Lemma 6.7,
Z

!(r̄1,...,r̄

s�1,⇤)

e�E

s�1(a) da


1
X

r

s

=�

r

2
s

X

r

0
s

=1

|!(r̄1,...,r̄

s

)|
h

e�r

s

/8 + er

s

/6
i

+ |!(r̄1,...,r̄

s�1,⇤)|.

Using Proposition 6.3 and that the escape is substantial, this gives

(6.25)

Z

!(r̄1,...,r̄

s�1,⇤)

e�E

s�1(a) da


( 1
X

r

s

=�

C · e�r

s/r2
s

e��/2

h

e�r

s

/8 + er

s

/6
i

+ 1

)

|!(r1,...,r

s�1,⇤)|

 C · |!(r̄1,...,r̄

s�1,⇤)|.

Furthermore,
Z

!(r̄1,...,r̄

s�2,⇤,⇤)

e�(Es�1(a)+E

s�2(a)) da


1
X

r̄

s�1=��1

1
X

r̄

s

=��1

"

Z

!(r̄1,...,r̄

s

)

e�E

s�2(a)e�E

s�1(a) da

#

.

Since all the previous integrals can be written as infinite sums, we get from the
last inequality and using (6.25) twice,

Z

!(r̄1,...,r̄

s�2,⇤,⇤)

e�(Es�1(a)+E

s�2(a)) da


1
X

r̄

s�1=��1

h

e�E

s�2(a) · C · |!(r̄1,...,r̄

s�1,⇤)|
i

=
Z

!(r̄1,...,r̄

s�2,⇤,⇤)

C · e�E

s�2(a) da

 C2 · |!(r̄1,...,r̄

s�2,⇤,⇤)|.

Repeating this argument s times,
Z

!

s

e�T

n

(a) da  Cs · |!s|  e⌧
2
n · |!s|

where we used that s/n tends to zero as � ! 1 and ✏ ! 0. (This last
statement holds because c is a non-periodic point for f

a⇤ . Therefore there
exist for each l 2 N constants  > 0, ✏ > 0 such that if |a � a⇤| < ✏, L is
an interval of length  p and U is a neighbourhood of c of length  then
f i

a

(L) \ U 6= ; for at most one i 2 {0, 1, . . . , l}. It is precisely for this reason
that we subdivided the substantial escape intervals in Section 5 into intervals
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of length 2 [
p

|U |/2,
p

|U |] so that they are short when a return occurs.) Since
this holds for any such set !s, one gets

Z

!̂

e�T

n

(a) da  e⌧
2
n · |!̂|.

Therefore,

|{a 2 !̂ ; T
n

(a) > ⌧n}|  e�⌧�n

Z

!̂

e�T

n

(a) da  e�⌧n(��⌧) · |!̂|.

This completes the proof of this lemma.

It follows that the proportion of ! which is not in E
n+1 because it violates

condition (FA
n+1) is exponentially small in terms of n.

Step 7: The conclusion of the proof of Theorem 6.1

It follows from the estimates from the previous step that the total length of the
components from E

n

which satisfy conditions (FA
n

) and (BA
n

) is at least

|!0| ·
n

Y

i=0

⇥

1� C · e�iC0
⇤

where these constants C, C0 can be taken as close to 0 as one likes by choosing
✏ > 0 su�ciently small. Since the infinite product of these terms is bounded
away from zero, the size of the set of parameters in !0 which satisfy these
conditions for all n, is a definite proportion of the size of the set !0. This
proportion even tends to one as !0 shrinks to a⇤. In particular, a⇤ is a density
point of the set

T

n�0(BA
n

\ FA
n

). This completes the proof of Theorem
6.1.

7 Some Further Remarks and Open Questions

In the first section of this chapter we have shown the ergodicity of unimodal
maps satisfying the negative Schwarzian derivative condition. The ergodicity in
the multimodal case has also been shown by Blokh and Lyubich (1989c) and
(1990c), see also Lyubich (1991). One question which had been open for some
time was whether absorbing Cantor attractors can exist. Recently, several pa-
pers have been written – using entirely di↵erent methods – showing that Cantor
attractors do not exist for maps with negative Schwarzian derivative and a qua-
dratic critical point. Jakobson and Świa̧tek (1991a) show this for maps near the
full map f(x) = 4x(1�x) using an inductive inducing method, see also Gucken-
heimer and Johnson (1990). Milnor and Lyubich (1991) and Keller and Nowicki
(1992) show that a Fibonacci map as above has no absorbing Cantor attractor
by showing that it has an absolutely continuous invariant probability measure.
In the paper of Milnor and Lyubich, complex methods are used similar to those
developed in the last chapter which show that the summability condition from
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Section 4 is satisfied. Keller and Nowicki extend the latter result: they do not
use complex extensions and also show that such a measure exists provided the
critical point is of order l < 2 + ✏ (in fact, if l > 2 the summability condition
is not satisfied). Lyubich (1992a) has given the proof of the absence of absorb-
ing Cantor attractors in the case of unimodal maps with negative Schwarzian
derivative and with quadratic critical point. It is now generally believed that
absorbing Cantor attractors can exist in the general case:

Conjecture 1: If f : [�1, 1]! [�1, 1] is smooth unimodal Fibonacci map with
a critical point of order l then f has an absorbing Cantor attractor when l � 6.

Taking a slightly di↵erent direction we can pose questions of the following
type. Suppose that f is a smooth, non-renormalizable unimodal map and has a
non-flat critical point. Moreover, suppose that f has a periodic attractor which
does not attract the turning point. What it the size of the basin of the attractor?
If this map satisfies the Misiurewicz condition then it is shown in Van Strien
(1990) that the basin has full measure. In general, it could be conceivable that
the set of points which do not tend to a periodic attractor has positive Lebesgue
measure.

Similarly, consider a unimodal map f : [0, 1] ! [0, 1] with negative Schwar-
zian derivative. Martens has shown that the attractor of f has either zero
Lebesgue measure or consists of intervals, see Section 1. However, there is still
another way to define the attractor of a map as the union of the supports of the
measures from the collection

!̂
f

(�
x

) = {⌫ ; ⌫ is an accumulation point of
1
n

n�1
X

i=0

�
f

i(x)}.

As we saw in Section 5, Keller and Hofbauer have shown that the support of
these measures can be quite unexpected. In one example, !̂

f

(�
x

) = �
p

for
almost all x where p is a repelling fixed point. So in this example, the ‘physical
attractor’ consists of a repelling fixed point. However, this set of limit measures
can also be much larger. So one may ask how large the union of the supports
of these physical limit measures is. For example, is it true that

[
x2[0,1]

�

supp(⌫) ; ⌫ 2 [
!̂

f

(�
x

)

 

either has Lebesgue measure zero or that f has an absolutely continuous invari-
ant measure?

As we have seen in this chapter, unimodal maps for which the summability
condition from Section 4 is satisfied have absolutely continuous invariant proba-
bility measures. Compared to the situation for circle di↵eomorphisms this is far
from satisfactory. There, some natural topological conditions (the Diophantine
conditions on the rotation numbers) were su�cient to get absolutely continuous
invariant probability measures. In the case of smooth unimodal maps with neg-
ative Schwarzian derivative only a few topological conditions are known to imply
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the existence of an absolutely continuous invariant probability measure: i) the
Misiurewicz condition, ii) the Fibonacci map, see Lyubich and Milnor (1991)
and also Keller and Nowicki (1992), iii) some maps satisfying some ‘starting con-
ditions’, see Jakobson and Świa̧tek (1991b) and iv) some topological conditions
in the case of ‘long-branched maps’, see Bruin (1992b) and (1992c). Most likely,
much more general topological conditions can be found which are su�cient to
obtain invariant measures. One possible condition is the following:

Conjecture 2: Suppose that f is a unimodal map with Sf < 0. Suppose that

sup{i � 1 ; f ik is a di↵eomorphism on [fn(c), fn+k(c)] for k, n 2 N} <1.

Then f has an absolutely continuous invariant measure.

This proposal is related to the one given by Nowicki and Przytycki (1989).
Note that the integer i in this conjecture is like the depth we encountered in
Chapter IV and which was first defined by Blokh and Lyubich (1989d). For
the maps without absolutely continuous invariant probability measures which
were constructed in Section I.5 and V.5 (having almost saddle-nodes and almost
restrictive intervals respectively) the supremum is infinite. On the other hand,
for Misiurewicz maps the supremum is finite.

Appropriate topological conditions should also imply a certain ‘smoothness’
of the invariant measures. The idea is that the condition stated in the conjecture
above is the analogue of the condition that the rotation number of a circle
di↵eomorphism is of constant type. Let us make this more precise. In the
circle case two conjugate circle di↵eomorphisms having a su�ciently irrational
rotation number are smoothly conjugate. Now we cannot expect anything like
this for intervals. Indeed, if two maps are smoothly (or even Lipschitz) conjugate
then their eigenvalues at corresponding periodic orbits are the same and this
is rather exceptional. Even so, it is possible that some topological conditions
imply that conjugacies are smooth at special points.

Another analogy with circle di↵eomorphisms springs to mind. Herman’s
result for families states that the set of parameters for which maps from the
Arnol’d family of circle maps f

a

are smoothly linearizable (and therefore have
an absolutely continuous invariant measure) has positive Lebesgue measure.
The analogue of this result in the interval case is Jakobson’s theorem from the
previous section. Even though the results are similar the proofs are completely
di↵erent. The proof of Herman’s result is based on two facts:

1. There is a set of full Lebesgue measure such that if ⇢(f
a

) is in this set
then f

a

is smoothly conjugated to a rotation;

2. if f
a0 is C1 linearizable then a 7! ⇢(f

a

) is Lipschitz at a0.

From these facts the result follows very easily. So it would be very interesting to
prove Jakobson’s result in a similar way for interval maps. The analogue of 1)
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would be a more precise version of Conjecture 2 above. A result in the direction
of 2) can be found in Guckenheimer (1980) for families of unimodal maps.

A similar question is whether there is a topological condition which allows for
recurrent critical points and which still implies positive Liapounov exponents.
In short, one hopes to get an analogue of Herman’s theory for interval maps.
Similarly, consider the quadratic family f

µ

. As we remarked above, Świa̧tek
(1992b) has shown that the set of parameters µ for which f

µ

(x) = µx(1 � x)
has a periodic attractor forms a dense set. From the result of Section 6 the
complement of this set has positive Lebesgue measure. In fact one would expect
the following

Conjecture 3: Let f
µ

be the quadratic family. Consider the set of parameters µ
for which f

µ

has either a periodic attractor or an absolutely continuous invariant
probability measure. This set has full Lebesgue measure.

Of course, this conjecture would follow from Conjecture 4 from Section III.7.
Many results on ergodic properties of interval maps are not even mentioned in

this chapter. For example, in Hofbauer’s work and Hofbauer and Keller (1982),
see also Newhouse (1991), the reader will find a discussion on invariant measures
of maximal metric entropy. Those are the measures for which the metric en-
tropy coincides with the topological entropy; in fact this is the supremum of all
possible metric entropies, see for example Mañé (1987, pp. 244). Also we have
not dealt at all with the thermodynamical theory, singularity spectra, decay of
correlations and such matters. Some papers on these subjects are listed in the
references.



Chapter VI.

Renormalization

In this chapter we will discuss the renormalization techniques which were in-
troduced in one-dimensional dynamics independently by Feigenbaum (1978),
(1979) and Coullet and Tresser (1978) to explain some quantitative and univer-
sal phenomena appearing in bifurcations of one parameter families of unimodal
maps. More precisely, let f

t

be a full one parameter family of unimodal maps
of the interval I = [�1, 1]. For instance, f

t

may be the quadratic family. As we
saw in Section II.5, because f

t

is a full family, there exists an interval [a1, b1]
in the parameter space such that for every t in this interval, f

t

has a restric-
tive interval I1,t

= [p0(t), p(t)] of period 2 where p(t) is a fixed point of f
t

and
f

t

(p0(t)) = p(t). Furthermore, f2
t

is a unimodal map from I1,t

into itself and the
family [a1, b1] 3 t 7! f2

t

| I1,t

is again full. In particular, f2
b1
| I1,b1 is a surjective

unimodal map and there is a parameter value b̃1 2 (a1, b1) such that the critical
point of f2

b̃1
| I1,b̃1

is a fixed point. Since this family of first return maps is again
full, we can repeat the argument and we get, by induction, a decreasing sequence
of intervals [a

n

, b
n

] in the parameter space, and, for each t 2 [a
n

, b
n

] an interval
I
n,t

⇢ I such that the first return map of f
t

to I
n,t

is a unimodal map which
coincides with the restriction of f2n

t

to this interval. Furthermore, t 7! f2n

t

|I
n,t

is a full family of unimodal maps. In particular, there exists b̃
n

2 [a
n

, b
n

] such
that the critical point of f

b̃

n

is periodic of period 2n and f
t

has zero topological
entropy for t  b̃

n

. Let a1 be the limit of a
n

when n ! 1. As we have seen
before f

a1 has an attracting Cantor set and the dynamics of the restriction of
f

a1 to this Cantor set is conjugate to the adding machine, see Section III.4.
All these topological facts were quite well known before Coullet-Tresser and

Feigenbaum made the following quantitative discoveries based on numerical ex-
periments.

Numerical observations.

1) The parameters b̃
n

corresponding to the quadratic family converge to a1
geometrically, i.e., there exists a number � > 1 such that

b̃
n+1 � b̃

n

b̃
n

� b̃
n�1

! 1
�
.

422
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Furthermore b
n

also converges to a1 with the same rate.

2) Of course, the value a1 depends very much on the family f
t

because one
can change it by reparametrizing the family. However, numerical experiments
indicate that the value � might be universal. Indeed, for each full family of uni-
modal maps with a quadratic turning point one gets numerically � = 4.669 . . ..

3) There seems to be a universal metric structure related to the attracting
Cantor set of f

a1 . For example, if c is the critical point of f
a1 ,

|f2n+1

a1 (c)� c|
|f2n

a1(c)� c| ! �

and again � seems independent of the family.

In Feigenbaum (1978), (1979) and Coullet and Tresser (1978), a conjec-
tural explanation was suggested for these numerical results. In those papers
the renormalization operator (which will be defined in the next section) was
introduced and it was shown that these numerical results could be explained if
this operator, defined on an appropriate space of functions, would have a hy-
perbolic fixed point. As we will see in Section 1, these conjectures were proved
using rigorous computer estimates by Lanford (1982)-(1986) and Eckmann and
Wittwer (1987). The existence of this fixed point was also proved ‘by hand’ in
Campanino et al. (1981), (1982) and Epstein (1986). For further references, see
Eckmann and Epstein (1986), Eckmann (1986) and Sullivan (1992).

Recently, Sullivan (1992) has introduced many new techniques from complex
analysis in order to give a conceptual proof of the above conjectures and also of
some generalizations. For example he showed that the renormalization operator
has a ‘hyperbolic’ invariant set which contains the fixed point mentioned above.
From this he proves the validity of the third numerical observation. Under some
additional hypothesis, evidence is given in Jiang et al. (1991) that the numerical
observations 1) and 2) also hold. Most of this chapter is devoted to explaining
Sullivan’s ideas. In the next section we will state Sullivan’s result explicitly.

1 The Renormalization Operator

In this chapter we will explain Sullivan’s conceptual proof of the renormaliza-
tion conjectures mentioned above. In fact, we will discuss some generalizations
of these conjectures. In this section we describe these generalized conjectures
in terms of the renormalization operator, we mention some of the computer-
assisted proofs and we state Sullivan’s theorem on the dynamics of the renor-
malization operator and the rigidity theorem that follows from it.

We will consider unimodal maps on a compact interval. Such a map f has
a critical point c0 = c0(f) and, disregarding some trivial dynamical situations,
we may assume that the critical value c1 = f(c0) lies to the right of the critical
point c0, that its image, c2 = f(c1), is to the left of the critical point and that
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c3 = f(c2) belongs to the interval (c2, c1). Hence, the interval [c2, c1], which is
called the dynamical interval of f , is invariant by f and in fact it is the smallest
invariant interval that contains the critical point. Conjugating f by an a�ne
transformation we can assume that the dynamical interval of f coincides with
[0, 1], i.e., f2(c0) = 0 and f(c0) = 1. Furthermore, (in this chapter) we define

C(f) = cl {fn(c0) ; n 2 N}.

We will consider smooth maps with quadratic singularities. More precisely,
we will consider the space Ur of maps f : [0, 1]! [0, 1] of the form f = ��Q� 
where  : [0, 1]! [ (0), 1] is an orientation reversing Cr di↵eomorphism,  (0) 2
(�1, 0), Q : [ (0), 1] ! [0, 1] is the quadratic map Q(x) = x2 and � : [0, 1] !
[0, 1] is an orientation reversing Cr di↵eomorphism. As we shall see, in the
present theory it will be natural to consider the case when �, are analytic
di↵eomorphisms and also the case when �, are Cr di↵eomorphisms with r � 2.
More generally, we shall consider the case when �, are C1 di↵eomorphisms
such that log D� and log D satisfy the little Zygmund condition, see Section
IV.2.a. The corresponding classes of maps are denoted by U!, Ur and U1+z.
(We should note that U1+z � U2.) The fact that the critical point of f is of
quadratic type plays an important role in the theory explained below. Note that
maps that appear in generic families of su�ciently smooth unimodal maps will
have this type of critical point. Take the metric on Ur for 1  r < 1 defined
by

d
r

(f, g) = sup{Dk(f � g)(x) ; 0  k  r and x 2 [0, 1]}.

We say that J is a unimodal interval for some interval map g if J contains

precisely one turning point c of g, g(J) = J and if no subinterval of J has
these properties. Hence J = [g2(c), g(c)]. We say that J is a periodic unimodal
interval for f of period m if it is a unimodal interval for fm. As we have proved
in Section II.5 for such an interval J, . . . , fm�1(J) are pairwise disjoint. One of
the intervals fk(J) is of the form [f2m(c0), fm(c0)] where c0 is the critical point
of f .

Definition. First we say that f 2 Ur is renormalizable, or that f 2 Dr(R), if
f has a periodic interval of period m > 1. The corresponding renormalization
operator is the map R : Dr(R)! Ur defined by

Rf = A�1 � fm �A

where m > 1 is the smallest possible period as above, A : [0, 1]!4 is the a�ne
map such that A(1) = fm(c0) and where � = [f2m(c0), fm(c0)] is the unimodal
periodic interval of period m that contains c0.

Remark. 1. As before we are using the following notation: [a, b] denotes the
interval with endpoints a, b even when b < a. So we are not assuming that
f2m(c0) is smaller than fm(c0).
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We should note that some people prefer to use the larger restrictive intervals
of period m (fm maps the boundary of such a restrictive interval into itself)
instead of the unimodal intervals from above.

3. Notice that Dr = D0 \ Ur and that the renormalization operator preserves
all classes of di↵erentiability. However, as we will observe later on, the renor-
malization operator is not smooth in the space of Cr maps endowed with a Cr

metric if r <1.

3. The renormalization operator is not invertible: Rf does not depend on f
outside the orbit of the unimodal interval. However, we have

Proposition 1.1. The restriction of the renormalization operator to the space
of real analytic renormalizable maps is injective.

Proof. Suppose f = R(g1) = R(g2) where g1 and g2 are real analytic. Then
f = A�1

1 � gm1
1 � A1 = A�1

2 � gm2
2 � A2. Let us first prove that m1 = m2.

From this equation it follows that f extends analytically to A�1
1 [0, 1][A�1

1 [0, 1].
Lemma II.5.1 implies that each unimodal interval of f in A�1

i

[0, 1] is the image
under A�1

i

of a unimodal periodic interval of g
i

of period m
i

. Since g
i

is a
unimodal map, f maps A

i

[0, 1] into itself. Hence f maps A�1
1 [0, 1] \ A�1

2 [0, 1]
into itself. But then gm

i

i

maps A
i

(A�1
1 [0, 1]\A�1

2 [0, 1]) into itself, but since the
period of the unimodal periodic interval of g

i

is precisely m
i

this implies that
A�1

1 [0, 1] = A�1
2 [0, 1]. Therefore m1 = m2 and A1 = A2. So gm

1 = gm

2 where
m = m1 = m2. Let us now consider the fixed point p of g1. Because gm

1 = gm

2 ,
p has to be also the fixed point of g2 and the derivatives of g1 and g2 at p are the
same. Let � be this eigenvalue. Let a

j

(g
i

) be the j-th coe�cient of the power
series expansion of g

i

in p. Then one has by induction

a
j

(gm

i

) = P
j,m

(�) · a
j

(g
i

) + Q
j,m

(a1(gi

), . . . , a
j�1(gi

))

where P
j,m

and Q
j,m

are polynomials. Hence, because gm

1 = gm

2 , we get by
induction on j that a

j

(g1) = a
j

(g2) for all j � 1. It follows that g1 = g2.

1.1. The renormalization conjectures in the period dou-
bling case

The domain Dr(R) of the renormalization operator R has infinitely many con-
nected components. One of these components is the set Ur

0 of maps f 2 Ur

whose critical orbit satisfy the inequality: 0 = c2 < c0 < c4 < c3 < c5 < c1 = 1.
In this component the renormalization operator is just the doubling operator
R(f)(x) = A�1 �f2 �A with A : [0, 1]! [f2(c0), f4(c0)] an orientation reversing
a�ne map. If a map in Ur can be renormalized infinitely often and all the iter-
ates of the renormalization operator belong to this component of the domain we
say that f is a Feigenbaum map. In order to explain the quantitative numerical
discovery in the bifurcation structure of one-dimensional parametrized families
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of unimodal maps, Feigenbaum and also Coullet and Tresser made the following
conjectures on the structure of the renormalization operator

Conjectures.

1. There exists a Banach space of analytic functions B such that the restriction
of the renormalization operator to B \ U2

0 is a bounded C2 operator which has
a fixed point � (which is often referred to as the Feigenbaum fixed point).

2. The derivative DR(�) is a compact operator whose spectrum has a unique
eigenvalue � = 4.66920 . . . outside the unit circle and the other eigenvalues are
in the interior of the unit disc.

3. Let ⌃
n

⇢ B \ U2
0 be the set of maps in the neighbourhood of � having

zero topological entropy and for which the critical point is periodic of period
2n. Then ⌃

n

, which is a codimension one Banach submanifold, intersects the
local unstable manifold of R transversally for n large enough.

Fig. 1.1:

From the smoothness of the operator and this spectral property, the first
two of these conjectures would imply, using the Stable and Unstable Manifold
Theorem, see Hirsch and Pugh (1970) or for example Palis and de Melo (1982),
that there exist a local unstable manifold Wu of dimension one, tangent to
the eigenspace associated to the eigenvalue � and a local stable manifold Ws

intersecting Wu transversely at �. The local stable manifold of R is the set
of maps  in a neighbourhood of � such that all iterates Rn( ) are defined,
remain in this neighbourhood and converge exponentially fast to �. One can
also define the global stable manifold of the fixed point � as the set of maps  
such that Rn( ) converges to �. However, since the renormalization operator
is not invertible, one cannot define the global unstable manifold. Even so, for
each  2 Wu and for each positive integer j, there exists a unique  

j

2 Wu

such that Rj( 
j

) =  . Furthermore, the sequence  
j

converges geometrically
to � with rate ��1, i.e., ||��  

j

|| ⇡ ��j .
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As R(⌃
n+1) ⇢ ⌃n

, the third conjecture would imply that the submanifolds
⌃

n

accumulate at the local stable manifold geometrically with rate ��1. Simi-
larly, many others “bifurcation submanifolds” accumulate at Ws with the same
rate. For instance, if n is big enough, there exists a codimension one Banach
submanifold ⌃̃

n

, transversal to Wu, such that for all  2 ⌃̃
n

, Rn( )(1) = 0
(in which case Rn( ) is the full map). Clearly ⌃̃

n

and ⌃
n

accumulate at Ws

from di↵erent sides. If f
µ

is a one parameter family of maps contained in the
neighbourhood of the fixed point, which intersects Ws transversely at f

µ1 then
it will intersect ⌃

n

(resp. ⌃̃
n

) transversely at f
a

n

(resp. f
ã

n

). Since the opera-
tor R is C2 on B \ U0, it follows, from the stable manifold theory, that a

n

and
ã

n

converge geometrically to µ1 with rate ��1. This explains Feigenbaum’s
universal constant �. This hyperbolic picture, see Figure 1.1, is Feigenbaum’s
and Coullet and Tresser’s explanation for the numerical discoveries 1) and 2)
from the introduction of this chapter. As we will see at the end of this chapter
it also explains the numerical observation 3).

Lanford (1984a) gave the first complete proof of Conjectures 1) and 2), see
also Lanford (1984b) and (1986). In his case the space B is the set of maps of the
type x 7! g(x2) where g is holomorphic in the complex disc containing the real
interval [�1, 1] and preserves the real axis. The proof combines non-rigorous
computer estimates to find an approximate solution for the fixed point of R,
with rigorous computer estimates in a given neighbourhood of the approximate
solution and finally a modification of Newton’s method to prove the existence of
a solution of the so called Cvitanović-Feigenbaum functional equation �(x) =
� 1
�

� � �(��x) in the given neighbourhood of the approximate solution.

Eckmann and Wittwer (1987) gave a di↵erent computer assisted proof of the
same first two conjectures and also a proof of the third one. This proof consists
of looking for fixed points of an operator, which is essentially the doubling
operator, acting on a space of one-parameter families of analytic maps in a
neighbourhood of an approximate solution for the unstable manifold. This
approximate solution for the unstable manifold is obtained using non-rigorous
computer estimates. Using rigorous computer estimates and applying Newton’s
method, they prove that the approximate solution has a neighbourhood where
the operator is a contraction and has a unique fixed point. This is the unstable
manifold. Furthermore, there are several proofs of the existence of a solution for
the Cvitanović-Feigenbaum functional equation that do not rely on computer
estimates: Epstein (1986), Eckmann and Epstein (1986), see also Campanino,
Epstein and Ruelle (1981), (1982) and Eckmann (1986) for further references.
Sullivan has given a conceptual proof of some of these conjectures. His proof
gives a good conceptual understanding of the mechanism of renormalization for
analytic maps. He shows that if � and  are combinatorially equivalent infinitely
renormalizable analytic maps of bounded combinatorial type (for the definition
see below) in U! then the distance between Rn(�) and Rn( ) converges to
zero. This means that under iteration of the renormalization operator, any
infinite renormalizable map converges to a ‘hyperbolic strange attractor’ of the
renormalization operator. This attractor is conjectured to be expanding in
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the sense that the distance between the iterates of two maps which are very
close together and have di↵erent kneading sequences expands exponentially to
a definite size. Moreover, he shows that in the C2 case the renormalization
operator also converges. More precisely, for combinatorially equivalent infinitely
renormalizable maps �, 2 U1+z of bounded combinatorial type, the distance
between Rn(�) and Rn( ) converges to zero.

Remark. 1. Let us make a remark on a technical di�culty for the understand-
ing of renormalization theory in the space of Cr maps when r < 1. Here one
can formulate the same conjecture: the orbits of the renormalization operator
through any two combinatorially equivalent Cr maps which are infinitely renor-
malizable converge exponentially to a unique orbit contained in a hyperbolic
expanding attractor of the renormalization operator. To have any hope for this
conjecture to hold we need to assume that r is not too small, say r � 2. However
there is a di�culty: the renormalization operator is not a smooth map when r is
finite. Indeed, the renormalization operator associates to a map, up to scaling,
a restriction of an iterate of the map and the composition map (h, g) 7! h � g is
not di↵erentiable if we consider the space of Cr maps with r <1. Note however
that R : Dr+s ! Ur is Cs, see Irwin (1972). To bypass these problems most
results on renormalization work in the C1 category. However, Davie (1992)
and Lanford (1992) have some C2 results.

2. Let us mention an interesting remark by Jakobson (1986) which uses his
theorem discussed in Section V.6 and the hyperbolic structure of the renormal-
ization operator near the fixed point from above. Let f

t

be a one parameter
family of unimodal maps that intersects transversely the local stable manifold
of the renormalization operator at the parameter value µ1. Suppose that for
t  µ1, the map f

t

has zero topological entropy. Let S = {t > µ1 ; f
t

satisfies
the Axiom A } and C = {t > µ1 ; f

t

has an absolutely continuous invariant
probability measure}. Then f

t

is structurally stable for t 2 S and it is ‘chaotic’
for t 2 C. The important consequence of Jakobson’s result and of the hyper-
bolicity of Feigenbaum’s fixed point, is that there exist a constant k > 0 such
that

|S \ [µ1, µ1 + ✏]|
✏

> k

and
|C \ [µ1, µ1 + ✏]|

✏
> k

where | · | denotes the Lebesgue measure of a set. So, after crossing the stable
manifold of the Feigenbaum’s fixed point we meet, with positive probability,
both stable and chaotic situations.

1.2. The domain of the renormalization operator

Let us now analyze the domain of the renormalization operator in more detail.
As we have mentioned above, the domain Dr of the renormalization operator
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has infinitely many connected components. In each connected component of Dr

the return time m of the unimodal interval 4 is the same for each map f . Since
the corresponding intervals f i(4), 0  i < m are all disjoint it follows that
they are embedded in [0, 1] in the same order for each map in one component
of Dr. We will code these as in Section II.5: let X = {x1, . . . , xn

} be a finite
set endowed with an order relation �. As before we say that a permutation
� : X ! X is unimodal with respect to the order relation � if it satisfies the
following condition. Embed X monotonically into the real line, draw the graph
of � on R2 and connect the consecutive points of the graph by a line segment.
If the curve so obtained is the graph of a unimodal map then we say that the
permutation is unimodal. It is renormalizable if X is the disjoint union of p sets
X

i

each containing m points and such that

1. each X
i

is mapped by � onto some X
j

;

2. for each i 6= j, either X
i

� X
j

or X
j

� X
i

(here X
i

� X
j

means that
x

i

2 X
i

, x
j

2 X
j

implies x
i

� x
j

).

It follows that a unimodal renormalizable permutation � of (X,�) defines a
unimodal permutation of {X1, X2, . . . ,Xp

} endowed with the order relation in-
duced from �.

Proposition 1.2. a) Let f 2 Ur be renormalizable with a maximal unimodal
periodic interval 4 of period m and let X be the collection of intervals

{4,41 = f(4), . . . ,4m�1 = fm�1(4)}

with the ordering induced from that of the real line. Then the permutation
� = �0(f) : X ! X defined by �(4i) = 4j whenever f(4i) = 4j, is unimodal
and non-renormalizable.

b) Conversely, given a unimodal non-renormalizable permutation � : X ! X,
there exists in each full family of unimodal maps a renormalizable map f such
that �0(f) = �.

Proof. Let us prove b). Since � is a unimodal permutation, there is an element
x0 of X that is mapped into the greatest element x1 of X and this x1 is mapped
into the smallest element x2. Next we represent the elements of X by disjoint
subintervals of [0, 1] so that the order they have in X is the same as the order of
the real line. So to each x

i

2 X there corresponds an interval 4i. We map 4
onto 41 by a folding map. For each j, we map the interval 4j , corresponding
to the element x 2 X onto the interval 4j+1 by an orientation preserving (resp.
reversing) a�ne map g if x � x0 (resp. x0 � x). It is easy to see that, since � is a
unimodal permutation, we can extend g to a unimodal map of the interval [0, 1]
(for example one can define g to be a�ne on each component of the complement
of the intervals corresponding to elements of X). Then 4 is a unimodal interval
of g. Since � is non-renormalizable it follows that 4 is not contained in a larger
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unimodal interval of period � 2 and therefore that �0(g) = �. From Section
II.5 it follows that there exists a map f in each full family of unimodal maps
which is combinatorially equivalent to g. It follows that �0(f) = �.

Example. The permutation �, �(4i) = 4i+1, represented in Figure 1.2, is a
unimodal permutation because the corresponding map is unimodal. The map
depicted in Figure 1.3 is clearly renormalizable.
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Fig. 1.2: A unimodal permutation

with the corresponding unimodal map.
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Fig. 1.3: A renormalizable map.

Let � be a unimodal, non-renormalizable permutation and

Dr

�

= {f 2 Dr ; �0(f) = �}.

From Proposition 1.2, we have that Dr is equal to
S

�

Dr

�

where � runs over
all unimodal non-renormalizable permutations and each Dr

�

is non-empty. We
will also consider iterates Rk = R �Rk�1 of the renormalization operator. The
domain Dr

k

of Rk is the disjoint union of sets of the form Dr

�0,�1,...,�

k�1
where

�
i

is a unimodal non-renormalizable permutation and

Dr

�0�1,...,�

k�1
= {f 2 Dr

k

; �0(Rif) = �
i

for i = 0, 1, . . . , k � 1}.

It follows that the set Dr

1 =
T

k�1Dr

k

of infinitely renormalizable maps may be
written as the uncountable disjoint union Dr

1 =
S

Dr

�0,�1,...

. For f 2 Dr

1 let us
write

�(f) = (�0,�1, . . . )

if f 2 Dr

�0,�1,...

. If f 2 Dr

1 then �(f) = �(g) implies that these maps have
the same kneading invariants and are combinatorially equivalent. Notice that
R(Dr

�0,�1,...

) = Dr

�1,�2,...

. This means that the renormalization operator acts
as the shift map in the space of sequences of permutations. In particular, if
(�0,�1, . . . ) is a periodic point of period k for the shift map then Dr

�0,�1,...

is
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invariant by Rk. Let r � 1 + z (for the definition of the class of C1+z maps see
Section IV.2.a) and (�0,�1, . . . ) as above. The main result to be proved in this
chapter implies that Rk has a unique fixed point in Dr

�0,�1,...

, that this fixed
point is a real analytic map and that it is a global attractor for Rk | Dr

�0,�1,...

.

Let us apply these results to families of unimodal maps. Firstly, all these
types occur in full families:

Proposition 1.3. If f
a

2 Ur is a full family of unimodal maps and (�0,�1, . . . )
a sequence of unimodal, non-renormalizable permutations then there exists a
parameter value a0 such that �(f

a0) = (�0,�1, . . . ).

Proof. Follows from Theorem II.4.1 see also Theorem II.5.2.

Let |�
i

| denote the number of elements permuted by �
i

. The next propo-
sition tells us that the topological type of an infinitely renormalizable map is
determined by these permutations.

Proposition 1.4. Let f, g 2 U1+z be two infinitely renormalizable maps such
that �(f) = �(g) = (�0,�1, . . . ). Let q(n) = |�0| · |�1| · · · |�n

| and denote by 4
n

be the interval [f2q(n)(c0), fq(n)(c0)]. Then

1. fq(n)(4
n

) = 4
n

and

C(f) = cl {fn(c0) ; n 2 N}

is a Cantor set which is equal to
T

F
n

where F
n

= [q(n)�1
i=0 f i(4

n

);

2. The map
h : {fn(c0(f)) ; n 2 N}! {gn(c0(g)) ; n 2 N}

defined by h(fn(c0(f))) = gn(c0(g)) extends continuously to a conjugacy
h : C(f)! C(g) between f and g;

3. there exists n0 2 N such that Rnf and Rng are topologically conjugate for
n � n0.

Proof. Statement 1) follows from the non-existence of wandering intervals.
Indeed, since F

n+1 ⇢ F
n

, C(f) ⇢
T

F
n

and each component of
T

F
n

contains
a point of C(f). On the other hand, since f has no wandering intervals and
q(n) ! 1, the set

T

F
n

contains no intervals. Thus, C(f) is a Cantor set. (If
f has wandering intervals then C(f) could have isolated points). From this and
the fact that the original map h is ordering preserving Statement 2) follows.

So let us prove Statement 3). From the finiteness of attractors, see Theorem
IV.B, it follows that the turning points of f and g are not accumulated by
periodic attractors when f, g 2 Ur and r � 2. So for n large enough, Rnf and
Rng have no wandering intervals and no periodic attractors. Since �(f) = �(g),
the orbits of the turning points of f and g are ordered in the same way. Using



432 CHAPTER VI. RENORMALIZATION

Theorem II.3.1 the result follows. Next, if two infinitely

renormalizable maps are Ck conjugate with k � 1 then the renormalizations of
these maps tend to each other in the Ck topology:

Proposition 1.5. Let 1 + Z  r  ! and f, g 2 Ur be two infinitely renorma-
lizable maps. If h : [0, 1] ! [0, 1] is a Ck conjugacy between f and g with k a
finite integer  r then the Ck distance between Rn(f) and Rn(g) goes to zero
as n!1.

If r = ! and h is analytic then there exists a neighbourhood U of [0, 1]
in C such that both Rn(f) and Rn(g) have holomorphic extensions to U and
Rn(f)�Rn(g) converge uniformly to zero on U .

Proof. Let �
n

be as before; Rn(f) is up to an a�ne change of coordinates
equal to fq(n)|�

n

. Because there are no wandering intervals, |�
n

| ! 0 and
therefore h

n

= A�1
n

� h � A
n

goes to the identity map in the Ck topology. If
f, g, h are analytic then they extend to holomorphic maps F,G, H on a neigh-
bourhood U of [0, 1] and H is in fact a conjugacy in this neighbourhood. Take
this neighbourhood so that H is univalent on U . Hence H

n

= A�1
n

�H � A
n

is
univalent on U

n

= A�1
n

(U) and these sets ‘get big’: distance(C \ U
n

, 0) ! 1.
Moreover, H

n

(0) = 0, H
n

(1) = 1. Hence by Koebe’s Distortion Lemma H
n

tends uniformly to the identity on U . In Section

2 we will improve this proposition by showing that the convergence above is
exponentially fast (because we shall show that the lengths of the intervals �

n

go to zero exponentially fast).

1.3. The results of Sullivan on renormalization

Now we state the results of Sullivan that will be proved in this chapter. First
we need some definitions.

Definition. We say that f 2 Dr

1 has bounded combinatorial type if there exists
an integer N such that |�

i

|  N for all i = 0, 1, 2, . . . , where �(f) = (�0,�1, . . . )
and |�

i

| denotes the number of elements permuted by �
i

. Let Dr

(N) be the
corresponding space of maps.

Definition. Let f
n

: [0, 1]! [0, 1] be a sequence of real analytic maps. We say
that f

n

converges strongly to f if there exist a neighbourhood W of [0, 1] in the
complex plane and holomorphic extensions F

n

: W ! C of f
n

and F : W ! C of
f such that F

n

converges uniformly to F on W . We say that a subset C of real
analytic functions is strongly compact if any sequence in C has a subsequence
that converges strongly to an element of C.
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Remark. Since the uniform convergence of a sequence of holomorphic functions
implies the uniform convergence of the sequence of all of its derivatives on
compact parts of the domain, the strong convergence of f

n

to f implies the
convergence of the sequence in the Cr norm for all r 2 N. Hence a strongly
compact subset of real analytic functions is also a compact subset of the space
of Cr maps for every r 2 N.

Definition. Let a > 0. We say that the real analytic map f : [0, 1] ! [0, 1] in
U belongs to the Epstein class E

a

if f(x) = � �Q �  where Q is the quadratic
map Q(z) = z2,  is an a�ne map and � : [0, 1] ! [0, 1] is a di↵eomorphism
whose inverse ��1 has a holomorphic extension which is univalent in the domain
(C \ R) [ [�a, 1 + a].

Definition. A quadratic-like map is a holomorphic map F : U ! V such that
U and V are simply connected domains with the closure of U contained in V
and such that F is a degree two branched covering map, i.e., F has a unique
critical point c and the restriction of F to U \ {c} is a degree two covering map
onto V \ {F (c)}. The quadratic-like maps we will consider here are symmetric
with respect to the real line, i.e., they commute with complex conjugation. We
say that the conformal type of a quadratic-like map F : U ! V is bounded by
B if the conformal modulus of the annulus V \ cl (U) is at least 1

B

and the
conformal modulus of the annulus V \ [F 2(c), F (c)] is bounded by B, see the
Appendix for the definition of the modulus of an annulus. Such an annulus is
called a fundamental domain of F . An orbit through a point in U which does
not belong to the filled Julia set

J(F ) = {z 2 U ; F k(z) 2 U for all k � 0}

has a unique point in V \ cl (U) or in the boundary of U .

Remark. If f is a real analytic map that has a quadratic-like extension then
there exist a map g that belongs to some Epstein class and is analytically con-
jugate to f . Moreover, g has an extension which is quadratic-like. This fact will
be proved in Corollary 3 of Theorem 4.3.

The Main Result of this chapter is the following theorem due to Sullivan
(1992).

Theorem 1.1. Let N 2 N and let D1+z

(N) be the set of infinitely renormalizable
maps of combinatorial type bounded by N .

1. There exists a strongly compact, R-invariant set A ⇢ D!(N) such that if
f 2 D1+z

(N) then the C1+↵ distance between Rn(f) and A converges to zero
as n goes to infinity for any ↵ 2 (0, 1).
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2. There exist a > 0 and B > 0 such that A ⇢ E
a

and all maps in A have
quadratic-like extensions whose conformal type is bounded by B.

3. The restriction of R to A is a homeomorphism which is topologically con-
jugate to the full shift on a finite number of symbols.

4. If f 2 A then the stable set of f ,

W s(f) = {g ; Rn(g)�Rn(f) converges to zero},

is the set of maps such that Rm(g) and Rm(f) have the same combinato-
rial type for some m � 0.

5. There exists a strongly compact subset C � A with the following properties:
i) for any real analytic map g of combinatorial type bounded by N and
belonging to some Epstein class, there exists n0(g) such that Rn(g) 2 C
for n � n0(g); ii) if f, g 2 C have the same combinatorial type then
Rn(f)�Rn(g) converges strongly to zero.

In Section 9 we prove that if two infinite renormalizable maps f, g 2 D1+z

have the same bounded combinatorial type and the distance between Rn(f)
and Rn(g) converges to zero exponentially fast, then, for each 0  ↵ < 1, there
exists a C1+↵ di↵eomorphism h of the real line that maps the attracting Cantor
set C(f) of f onto the attracting Cantor set C(g) conjugating the two maps in
their attracting Cantor sets. Using Theorem 1.1 we also prove a weaker rigidity
result: if two maps f, g 2 D1+z have the same bounded combinatorial type then
the asymptotic geometry of their attracting Cantor set is the same, i.e., they
have the same scaling function.

1.4. An outline of the proof of Theorem 1.1

The complete proof of Theorem 1.1 will occupy Sections 2 to 8. Here we will
give an outline of the proof and discuss the tools we will use.

Step 1. The real bounds

If f is an infinitely renormalizable map of combinatorial type bounded by N ,
there exists a decreasing sequence 4

n

of intervals containing the critical point
and a sequence q(n) of return times to these intervals such that Rn(f) is, up
to a�ne conjugacy, equal to the restriction of fq(n) to 4

n

. The combinatorial
type is bounded by N if and only if q(n+1)

q(n)  N . The orbit of the interval 4
n

is
a closed set F

n

that has q(n) connected components. In Section 2 we prove the
following fundamental result: the ratio of the length of a connected component
of F

n

to the length of either a component of F
n+1 or of F

n

\ F
n+1 contained

in the first component, is bounded away from zero and from one by a constant
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that depends only on f . Furthermore, if n is large enough, this bound becomes
universal, i.e., we get a bound that does not even depend on f . This holds for
maps in U1+z.

The ingredients of the proof of the real bounds are the control of the distor-
tion of the cross-ratio under iteration and Koebe’s Distortion Principle we have
discussed in Chapter 4.

From the real bounds we prove in Section 2 that any limit of renormalization
belongs to an Epstein class.

Step 2. The complex bounds

The main result of Section 5 is the existence of a universal constant B, depending
only on the bound for the combinatorial type N with the following property.
Let f be a real analytic map which is infinitely renormalizable of combinatorial
type bounded by N and either has a quadratic-like extension or belongs to some
Epstein class. Then, provided n is su�ciently large, Rn(f) has a holomorphic
extension to a neighbourhood of the dynamical interval in the complex plane
which is quadratic-like and has a conformal type bounded by B.

The main ingredient of the proof of the complex bounds are the real bounds.
Here we use some hyperbolic geometry, the Schwarz Theorem on the contraction
of the hyperbolic metric by holomorphic maps and Koebe’s Distortion Theorem.

Koebe’s Distortion Theorem implies that the set C, defined as the set of
real analytic unimodal maps that have a quadratic-like extension of conformal
type bounded by B, is strongly compact. So take a real analytic function f
of bounded combinatorial type which is either in some Epstein class or has
a quadratic-like extension. The complex bounds give that for n su�ciently
large Rn(f) is in the above strongly compact set. In particular, any limit of
renormalization has a quadratic-like extension of bounded combinatorial type.

Step 3. The pullback argument

In Section 4 we prove that two quadratic-like maps with the same bounded
combinatorial type are quasiconformally conjugate. Furthermore, the conformal
distortion of this quasiconformal conjugacy depends only on the behaviour of
the maps near the closure of a fundamental domain in the complex plane. In
particular, we get that if the maps are C0 close to each other near the closure of a
fundamental domain, the conformal distortion of the quasiconformal conjugacy
is close to one.

The proof uses the real bounds and the compactness of the set of quasi-
conformal homeomorphisms with uniformly bounded conformal distortion. The
conjugacy is obtained by a pullback construction starting with a map that con-
jugates the two maps at the critical orbit and at the boundary of the domain.

As a consequence of the pullback argument we get that given two quadratic-
like maps F and G of the same bounded combinatorial type, there exists a non-
negative number d

JT

(F,G) such that if K > exp(d
JT

(F,G)) then there exists a
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K-quasiconformal conjugacy between F and G defined in some neighbourhood
of the filled Julia set J(F ) = {z 2 U ;Fn(z) 2 U for all n 2 N}. We also
prove in Section 4 that d

JT

(F,G) = 0 if and only F and G are holomorphically
conjugate in some neighbourhood of their filled Julia sets. This clearly defines
an equivalence relation and d

JT

defines a metric, called the Julia-Teichmüller
metric, in the space G

�

of holomorphic equivalence classes of quadratic-like maps
of the same bounded combinatorial type �.

The renormalization operator extends to a map R : G
�0,�1,�2,...

! G
�1,�2,...

.
In fact, the renormalized map of the restriction of a quadratic-like map to the
dynamical interval is, up to a�ne conjugacy, the restriction of an iterate of
this map to an interval around the critical point. As we will see, if the map is
quadratic-like, the restriction of this iterate has an extension to a neighbourhood
of the interval in the complex plane which is quadratic-like. Since the renormal-
ization operator is just the restriction of the iterate to some neighbourhood of
the critical point it does not increase the Julia-Teichmüller distance.

Let C be the strongly compact set defined in Step 2). If f, g 2 C have
the same combinatorial type we may define d

JT

(f, g) as the Julia-Teichmüller
distance between their quadratic-like extension. This is again a metric on the
set of conformal equivalence classes. From Koebe’s Distortion Principle and the
property of the pullback argument discussed above we get that there exists a
constant l0 such that the Julia-Teichmüller distance between any two maps in
C with the same combinatorics is bounded by l0.

Step 4. The contraction of the Julia-Teichmüller metric

This is the main part of the proof of Theorem 1.1: if f, g 2 C have the same
combinatorial type then d

JT

(Rn(f),Rn(g)) converges to zero as n!1.
The proof of the above statement relies on the complex bounds and on ex-

tension of some ideas from Teichmüller theory. Using the Measurable Riemann
Mapping Theorem with parameters due to Ahlfors and Bers, see the Appendix,
we define a special class of one parameter deformations of holomorphic equiv-
alence classes of quadratic-like maps, called Beltrami paths, that have the fol-
lowing properties.

a) The image of a Beltrami path under the renormalization operator is again
a Beltrami path.

b) Roughly speaking, we say that a Beltrami path is e�cient if the distance
between its end points is not much smaller then the sum of the distance
of consecutive points on the path. A Beltrami path satisfies the Almost
Geodesic Principle: if an infinitesimal beginning piece of the Beltrami
path is e�cient then it is e�cient on a definite piece of the path.

The second property is the main ingredient in the proof that the renormalization
operator contracts the Julia-Teichmüller distance. We start with two maps f, g
of the same bounded combinatorial type. Take a quasiconformal conjugacy
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between quadratic-like extensions of f and g whose conformal distortion is very
close to the exponential of their Julia-Teichmüller distance. We consider the
Beltrami coe�cient of this quasiconformal conjugacy and we deform it along
a Beltrami path up to a distance (in the parametrization) much larger than
the constant l0 in Step 3. Notice that since the Beltrami path is very e�cient
between f and g, by the above property b), it remains quite e�cient up to
the other endpoint. Hence the Teichmüller distance between the endpoints is
much larger than l0. On the other hand, by the complex bounds, there exists
an n such that the endpoints of the image of this Beltrami path by Rn belongs
to C. Using part b) of the Almost Geodesic Principle we conclude that the
Teichmüller distance between Rn(f) and Rn(g) must be smaller than the time
needed to go from one to the other along the Beltrami path by a definite factor
which is essentially equal to the Teichmüller distance between f and g. To get
a definite contraction of the Julia-Teichmüller distance under this iteration we
use a converse of the Almost Geodesic Principle that is proved in Section 8.

In order to prove this Almost Geodesic Principle we associate in Section
6 to each germ of a quadratic-like map a compact space that is laminated by
Riemann surfaces so that two maps are holomorphically equivalent if and only
if the corresponding Riemann surface laminations are equivalent in the sense of
Teichmüller. In this way we embed the space of holomorphic equivalence classes
of quadratic-like maps in a Teichmüller space of Riemann surface laminations.
In Section 6 we reproduce the main ingredients of the classical Teichmüller
theory for compact Riemann surfaces and extend them to Riemann surface
laminations. As we will show in Section 7, the Almost Geodesic Principle will
then follow from an extension of the so-called Grötsch inequality.

Step 5. The structure of the attractor A of the renormal-
ization operator

The set A of limit points of the renormalization operator is clearly non-empty,
Namely, if f is real analytic infinitely renormalizable of bounded combinatorial
type then Rn(f) 2 C for n large enough and C is strongly compact. Also A is
a subset of C.

Let f0 2 A. Since f0 = lim Rn

i(f) and C is strongly compact we can, by
taking convergent subsequences of the sequences Rn

i

�m(f), construct a bise-
quence . . . , f�m

, . . . , f�1, f0, f1, . . . in A such that R(f
m

) = f
m�1 for all m 2 Z.

If . . . , g�m

, . . . , g�1, g0, g1, . . . is another such sequence and f
m

has the same
combinatorial type as g

m

for all m 2 Z, then we prove in Section 8 that g0 = f0.
The proof of this uniqueness theorem follows from the contraction of the Julia-
Teichmüller metric (which implies that d

JT

(f
m

, g
m

) = 0), and the pullback
argument.

Next one proves that given any bisequence . . . ,��m

, . . . ,�0,�1, . . . of uni-
modal permutations of bounded type there exists a unique map f0 2 A and a
bisequence f

m

as above such that f�m

2 D
��m

,...

. The proof of the existence of
f0 in the case of periodic combinatorial type follows from the compactness of C
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and the uniqueness. In the general situation it follows from the existence in the
periodic case, the uniqueness and the compactness of C. From this result we get
the third statement of Theorem 1.1 since the restriction of the renormalization
operator to the set of renormalizable real analytic maps is injective and the
attractor A is contained in this set.

From the real bounds we prove in Section 2, it follows that any limit point of
the renormalization operator in the C0 topology is real analytic. This, together
with the previous step proves the first statement of Theorem 1.1. The other
statements follow from the compactness property given by the complex bounds
and the contraction of the Julia-Teichmüller distance.

2 The Real Bounds

In this section we will prove that the attracting Cantor set of a C2 (or C1+z) in-
finitely renormalizable unimodal map of bounded combinatorial type has bounded
geometry. As we will see, this shows that any map in the !-limit set of the orbit
of an infinite renormalizable C1+z map of bounded combinatorial type under the
renormalization operator is real analytic. In the next section we will analyze the
bounded geometry property and conclude that given two such maps, with the
same combinatorics, there exists a quasiconformal homeomorphism which maps
the critical orbit of one map onto the critical orbit of the other map conjugating
them along the attracting Cantor sets.

To state the next result we introduce some notation. For f 2 D1, with
�(f) = (�0,�1, . . . ), we denote by 4

n

the interval [f2q(n)(c0), fq(n)(c0)] (which
contains the turning point) where q(n) = |�0|·|�1| · · · |�n

|. Note that fq(n) maps
4

n

onto itself. Let
F

n

= 4
n

[41
n

[ · · · [4q(n)�1
n

where 4j

n

= f j(4
n

). Hence each 4j

n

is a connected component of F
n

and it is
called an interval of generation n. Each connected component of F

n�1 \ F
n

is
called a gap of generation n. An interval or a gap of generation n is called an
element of generation n.
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Fig. 2.1: The intervals and gaps of generation 2 and 3.

In the next theorem we shall prove that if we take an infinitely renormalizable
C1+z unimodal map (not necessarily of bounded combinatorial type), with non-
flat critical point, then its renormalizations are all contained in a compact space
of unimodal maps. First we give a definition.
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Definition. We say that a bound L(f) <1 depending on an infinitely renor-
malizable map f is beau, i.e., bounded and eventually universally (bounded),
if the following statement holds. L(Rnf) is finite for each infinitely renormali-
zable maps f within the class considered and furthermore there exists n0 such
that L(Rnf) is bounded from above by some constant L for all n � n0 and
every infinitely renormalizable map f . Similarly, if the estimate is from below
or away from one. In other words, an estimate is beau if the bound appearing
in it holds for each infinitely renormalizable map after a su�cient number of
renormalizations.

Definition. The Hausdor↵ dimension of a subset C ⇢ R is defined as follows.
If O is a finite cover of C by intervals we denote by |O| the maximal length of
elements of O. Let s be a positive real number. The s-Hausdor↵ measure of C
is defined as

HM
s

(C) = lim
✏!0

inf
|O|✏

{
X

I2O
|I|s}.

The Hausdor↵ dimension of C is the unique number HD(C) such that HM
s

(C)
is zero for s > HD(C) and is equal to 1 if s < HD(C).

Theorem 2.1. [Real C1 Bounds] Let f 2 U1+z be an infinitely renormalizable
map. Then there exists a constant L(f) such that the following statements hold.

1. For each n 2 N, the distortion of

fk : 4j

n

!4j+k

n

is bounded by L(f) if 0 < j  j + k  q(n) where 4q(n)
n

= 4
n

. The
Cantor set C(f) = \1

n=0Fn

is the closure of the critical orbit and has zero
Lebesgue measure.

1’. The previous bound is beau: there exists a constant L such that for each
f as above, L(Rnf)  L for n su�ciently large.

2. If the combinatorial type of f is bounded then there exist constants 0 <
�(f) < µ(f) < 1 depending only on f , such that if I is an interval of
generation n and J ⇢ I is an element of generation n + 1 then

�(f) <
|J |
|I| < µ(f).

In particular, the Hausdor↵ dimension of the attracting Cantor set is pos-
itive and bounded away from one in this case.

2’. The previous bounds are beau: given N 2 N, there exist constants 0 <
� < µ < 1 such that for each f as above of combinatorial type  N ,
�  �(Rnf) < µ(Rnf)  µ for n su�ciently large.
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The proof of this theorem is based on two Koebe Principles – Theorems
IV.1.2 and IV.3.3 – which can be stated in our setting as follows. We say
that V contains a �-scaled neighbourhood of U if each component of V \ U
has at least length �|U |. Furthermore we say that a collections of intervals
T

i

has intersection multiplicity  if each point is contained in at most  of
these intervals. These Koebe Principles state that for each  2 N there exist
positive functions B0, K : R+ ! R+ with the following property. Let f 2 U1+Z

and suppose that for some pair of intervals M ⇢ T , and some i 2 N f i|T is
a di↵eomorphism and let  be the intersection multiplicity of the collection of
intervals T, . . . , f i�1(T ). If ⌧ is so that f i(T ) contains a ⌧ -scaled neighbourhood
of f i(M) then the Macroscopic Koebe Principle claims that

T contains a B0(⌧)-scaled neighbourhood of M

and the (Infinitessimal) Koebe Principle gives that

Df i(x)
Df i(y)

 K(⌧) for all x, y 2M.

To prove Theorem 2.1 will need the following lemma. Before stating this
lemma we should note that q(2) � 4 and that the interval�3

n

has two neighbours
from the collection �0

n

, . . . ,�q(n)�1
n

if n � 2. Since �1
n

and �2
n

have only one
neighbour we shall therefore assume n � 2 and consider the interval �3

n

.

Lemma 2.1. For each infinitely renormalizable map f 2 U1+z there exist
⌧(f) > 0 and L(f) < 1 such that for each integer n � 2 there is an inter-
val S

n

� �3
n

with the following properties:

1. The restriction of fq(n)�3 to S
n

is a di↵eomorphism and f i�3(S
n

) is a
⌧ -scaled neighbourhood of �i

n

for each 3  i < q(n).

2. The distortion of fq(n)�i on f i�3(S
n

) � �i

n

is bounded by L(f).

3. The first return map to 4
n

is the composition of a quadratic map with a
di↵eomorphism that has bounded distortion, more precisely, for each n � 0
Rnf is of the form f = �

n

� Q �  
n

where  
n

is a C1+z di↵eomorphism
whose distortion tends to zero as n!1, Q is the quadratic map Q(x) =
x2 and �

n

is a C1+z di↵eomorphism whose distortion is bounded by L(f).

Proof. We shall prove that S
n

is not too small, by finding some space on
either side of some interval 4i

n

which can be pulled back to some space near
43

n

by the Koebe Principle. Let I
n

= f�1(41
n

) � 4
n

. Each component of
I
n

\ {c} is mapped homeomorphically onto 41
n

and the intersection of I
n

with
F

n

is equal to 4
n

. For each 3 < i < q(n) let M i

n

� 43
n

= f3(4
n

) = f3(I
n

)
be the maximal interval such that f i�3 is monotone on M i

n

. We claim that
then each connected component of f i�3(M i

n

) \4i

n

contains a component of F
n

.
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Indeed, let M i,�

n

, � 2 {+,�}, be the connected components of M i

n

\41
n

. We
want to prove that f i�3(M i,+

n

) and f i�3(M i,�
n

) both contain a component of
F

n

. Indeed, let � 2 {�,+}; by the maximality of M i

n

there exists k < i � 3
such that fk(M i,�

n

) contains the critical point in its boundary or endpoints of
the dynamical interval [f2(c), f(c)]. The other boundary point of fk(M i,�

n

) is
an endpoint of fk(41

n

) = 4k+1
n

. Since 4k+1
n

\ (I
n

[ �1
n

[ �2
n

) = ; and since
k < q(n) � 3, the interval fk(M i,�

n

) contains either one of the components I 0
n

of I
n

\ {c}, �1
n

or �2
n

. As f(I 0
n

) = 41
n

we get that f i�3(M i,�

n

) contains either
4i�3�k

n

, or 4i�2�k

n

or 4i�1�k

n

. This proves the claim. Now we can define
T i � 43

n

to be the smallest interval such that f i�3|T i is monotone and such
that each component of f i�3(T i) \4i

n

contains a component of F
n

. From the
same easy arguments we have used before in Chapter IV (see, for instance,
Lemma 10.3) we get that the intersection multiplicity of the intervals

{T i, f(T i), . . . , f i�3(T i)}

is at most equal to three.
Let K

n

be the smallest interval containing 4
n

such that each component
K

n

\ 4
n

contains a component of F
n

. We claim that there exists a constant
d0, independent of n, such that K

n

is a d0-scaled neighbourhood of 4
n

. Let us
prove this. For 3  i < q(n) there are components of F

n

on either side of4i

n

. So
for 3  i < q(n) we can take Ki

n

to be the smallest interval containing 4i

n

such
that each component of Ki

n

\4i

n

contains a component of F
n

. Let 3  l < q(n)
be so that |4l

n

|  |4i

n

| for all 3  i < q(n). Of course, since 43
n

= f2(41
n

),
there exists a universal constant d1 such that |41

n

|, |42
n

| � d1|43
n

|. Hence from
the choice of l we get that Kl

n

is a d1-scaled neighbourhood of4l

n

. The mapping
f l�3 maps T l � �3

n

di↵eomorphically onto Kl

n

and, because of the disjointness
statement above we can use the Macroscopic Koebe Principle and we get that
T l is a d2-scaled neighbourhood of 43

n

, where d2 depends only on d1 (and so is
universal). Since f�3(T l) is contained in K

n

the claim follows immediately.
Now we can complete the proof of the lemma. fq(n)�3 maps T q(n)�3 dif-

feomorphically onto K
n

and K
n

contains a d0-scaled neighbourhood of �
n

. So
by the Koebe Principle there exists an interval S

n

with �3
n

⇢ S
n

⇢ T q(n)�3

such that the restriction of fq(n)�3 to S
n

has bounded distortion (simply take
S

n

such that fq(n)�3(S
n

) is a d0/2-scaled neighbourhood of �
n

). In par-
ticular, f i�3(S

n

) is a d̃0-scaled neighbourhood of �i

n

and, applying Koebe
again, fq(n)�i : f i�3(S

n

) ! fq(n)�3(S
n

) has also bounded distortion for each
3  i < q(n). The last statement of the lemma follows since the restriction of f
to 4

n

is quadratic-like and the first return map to 4
n

is

fq(n) = (fq(n)�3|43
n

) � (f3|4
n

).

Hence Rnf is of the form �
n

�Q � 
n

, where Q � 
n

is just a rescaled version of
f and �

n

is a di↵eomorphism whose distortion is universally bounded.

Proof of Theorem 2.1: Lemma 2.1 gives already the bounded distortion part
of the Statement 1) of Theorem 2.1. Let us prove that the attracting Cantor
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set has zero Lebesgue measure. Indeed, by Lemma 2.1 there exists an interval
S

n

� 43
n

such that fq(n)�3 | S
n

is monotone, has bounded distortion and
fq(n)�3(S

n

) is a ⌧ -scaled neighbourhood of 4
n

= fq(n)�3(43
n

) as in Figure 2.2.
In particular, S

n

is a ⌧ 0-scaled neighbourhood of 43
n

.
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fq(n)�3|S
n

Fig. 2.2:

If we let T
n

be the maximal interval containing 4
n

such that f3(T
n

) ⇢ S
n

then we obviously have that T
n

contains a ⌧ 00-scaled neighbourhood of 4
n

.
Since fq(n) restricted to T

n

is unimodal, T
n

does not intersect any component
of F

n

except 4
n

. Hence, the components of T
n

\ 4
n

are contained in the
complement of F

n

as indicated in Figure 2.2 and at least one of them belongs
to F

n�1. From all this it follows that the gap of generation n around 4
n

is not
too small. Now take 3  3 < q(n). The image of W i

n

= f i�3(S
n

) under fq(n)�i

certainly contains T
n

and this map has bounded distortion. Since F
n

is forward
invariant, one can pull this gap back to a gap around �i

n

by this map. So �i

n

is
contained in a ⌧̃ -scaled neighbourhood Si

n

for which Si

n

\ F
n

⇢ �i

n

. Therefore,
the size of each component of F

n�1 \ F
n

is at least a constant times the size of
the neighbouring components of F

n

. This implies that there exists a constant
� < 1 such that |F

n

| < �|F
n�1| and thus the Lebesgue measure of C(f) is zero.

Let us show that the Hausdor↵ dimension of the attracting Cantor set is less
than one. In order to show this, we claim that given µ > 0 and N < 1 there
exists s0 < 1 with the following property. If s 2 (s0, 1), q  N , V is an interval
and U1, . . . , Uq

are subintervals such that the size of U
i

is at most (1/µ) times
the size of the components of V \ (U1 [ · · · [ U

q

) neighbouring U
i

then

|V |s � (|U1|s + · · ·+ |U
q

|s).

Indeed, from this assumption |V |s � ((1 + µ

2 )|U1|+ · · ·+ (1 + µ

2 )|U
q

|)s. Hence
|V |s � (q · (1 + µ

2 ))s⇥ ( 1
q

|U1|+ · · ·+ 1
q

|U
q

|)s. Since s < 1, the function t! ts is
concave and we get that (1

q

|U1|+· · ·+ 1
q

|U
q

|)s � 1
q

|U1|s+· · ·+ 1
q

|U
q

|s. Therefore,
|V |s � (q ·(1+ µ

2 ))s · 1
q

·(|U1|s+· · ·+|U
q

|s) � (|U1|s+· · ·+|U
q

|s) if s is su�ciently
close to one. This proves the claim.
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Since the combinatorics is bounded by N we get from this

(⇤)
q(n)�1
X

i=0

|4i

n

|s �
q(n+1)�1
X

i=0

|4i

n+1|s

when s is close to one. Since the maximal length of components of F
n

goes to
zero exponentially with n, we get that the s-Hausdor↵ measure of C is finite.
Hence the Hausdor↵ dimension of C is smaller or equal to s.

To prove 2) let L̃ = L(f) and C
L̃

be the class from Lemma 2.1. This set is
closed and therefore compact in the C0 topology. Let C

L̃,N

be the maps in C
L̃

of
type � with |�|  N . Again this set is compact. The functions which associate
to a map in C

L̃,N

the length of the smallest interval, the length of the smallest
gap, the length of the largest interval and the length of the biggest gap, are
continuous and strictly positive. Hence, by compactness they are bounded and
bounded away from zero. Since Rnf(x) 2 C

L̃,N

for all n 2 N this proves 2).
The proof of 1’) and 2’) is based on the following fact. By Theorem IV.2.1,

provided f 2 U1+z the lower bound for the cross-ratio distortion of Rnf goes to
one if the total length of the intervals�0

n

, . . . ,�q(n)�1
n

goes to zero as n!1 and
by Statement 1) this assumption is satisfied. From Theorem IV.1.2, it follows
that the constants appearing in Lemma 2.1 can be chosen uniformly.

In the next theorem we shall improve on the previous result and show that
if we take an infinitely renormalizable C1+z unimodal map then its renormal-
izations are even bounded in the C1+↵ sense.

Theorem 2.2. [Real C1+↵ Bounds] Let f 2 U1+z be an infinitely renormali-
zable map of bounded combinatorial type and let ↵ < 1. Then

fk : 4j

n

!4j+k

n

is uniformly C1+↵ for all 0 < j < j + k  q(n) and all n 2 N. More precisely,
there exists some constant L(f) such that

�

�

�

�

Dfk(x)
Dfk(y)

� 1
�

�

�

�

 L(f)

"

|x� y|
|4j

n

|

#

↵

for all x, y 2 4j

n

. Moreover, this estimate is beau: there exists a constant L
such that for each f as above, L(Rnf)  L for n su�ciently large.

Proof. Since the Hausdor↵ dimension of C is less than one, there exists s < 1
for which

P

q(n)�1
i=0 |4i

n

|s is universally bounded (in fact this is inequality (⇤) in
the proof of Theorem 2.1). So the theorem follows immediately from the C1+↵

Koebe Principle, see Theorem IV.3.2.

Remark. Notice that for Statements 1) and 2) in Theorem 2.1 we did not need
to require the map f to be in U1+z. Indeed, as we have seen in Sections IV.2
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and IV.3 the natural di↵erentiability hypothesis in the Koebe Principle is that
the map should belong to the Zygmund class C1+Z for Statements 1) and 2)
and should belong to the class C1+z for Statements 1’) and 2’). (For these
statements it is necessary that the distortion tends to one.)

Next we want to show that any sequence of renormalizations is precompact
in the following sense. From Lemma 2.1, f

n

= Rn(f) can be written in the form
�

n

� Q �  
n

where �
n

is a C1+z di↵eomorphism whose distortion is uniformly
bounded, Q is the quadratic map and  

n

is a C1+z di↵eomorphism whose dis-
tortion tends to zero. It follows that each subsequence of �

n

has a subsequence
which converges in the C0 topology to a homeomorphism �. Moreover,  

n

con-
verges to the space of a�ne maps. In particular, each subsequence of f

n

has
a convergent subsequence in the C0 topology. In the next theorem it is shown
that this limit is not just C0 but even real analytic.

Theorem 2.3. [Infinitely renormalizable C1+z maps are asymptotically
in the Epstein class]

Let f be a C1+z infinitely renormalizable unimodal map of bounded type.
Let f

n

: [0, 1] ! [0, 1] be the sequence f
n

= Rn(f) of renormalized maps. Then
there exists a = a(f) > 0 such that any map f̃ that is a C0 limit of a convergent
subsequence of f

n

belongs to the Epstein class E
a

. Writing f
n

= �
n

� Q �  
n

and f̃ = �̃ �Q �  ̃ we get �
n

! �̃ in the C1+↵ topology and �̃�1 has a univalent
holomorphic extension to the domain (C\R)[[�a, 1+a]. Moreover,  

n

converges
to  in the C1+↵ topology and  is an a�ne map. The number a(f) is beau.

Proof. Because of Proposition 1.5 we may take a C1+z coordinate change and
we can assume that f is of the form h�Q�A where Q(x) = x2, h is C1+z and A
is an a�ne map. From the proof of Lemma 2.1 there exists a > 0 and a-scaled
intervals Si

n

of 4i

n

such that f(Si

n

) = Si+1
n

for i = 1, . . . , q(n)� 1. Let us write,
up to a�ne conjugacy,

f
n

= ( f � f � · · · � f ) � f

and split o↵ the first term f . So consider the chain g
q(n)�1 � g

q(n)�2 � · · · � g1

where
g

i

= f |Si

n

= h �Q �A|Si

n

.

Furthermore, let h̃
i

be the a�ne map from QA(Si

n

) onto h � f(Si

n

) and let

g̃
i

= h̃
i

�Q �A|Si

n

and
f̃

n

= g̃
q(n)�1 � g̃

q(n)�2 � · · · � g̃1.

We want to show that

(⇤)
|D(g

q(n)�1 � · · · � g1) � D(g̃
q(n)�1 � · · · � g̃1)|

 K 00 ·
✓

|x� y|
|S1

n

|

◆

↵

·
q(n)�1
X

i=1

|Si

n

|↵.
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So let us show that replacing g
i

by g̃
i

causes only an error of order |Si

n

|↵ in the
C1+↵ metric. So write x

i

= g
i�1 � · · · � g0(x) and y

i

= g
i�1 � · · · � g0(y). Since

h is a C1+↵ di↵eomorphism for each ↵ < 1, and from the C1+↵ bounds in the
previous theorem this gives

|Dh
i

(Q(A(x
i

))) � Dh
i

(Q(A(y
i

)))|  K 0
✓

|x� y|
|S1

n

|

◆

↵

· |Si

n

|↵.

Similarly, using again the C1+↵ bounds from Theorem 2.2, we can estimate both
�

�D(g
q(n)�1 � · · · � g

i+1)(gi

(x
i

)) � D(g
q(n)�1 � · · · � g

i+1)(gi

(y
i

))
�

�

and
�

�D(g
q(n)�1 � · · · � g

i+1)(g̃i

(x
i

)) � D(g
q(n)�1 � · · · � g

i+1)(g̃i

(y
i

))
�

�

from above by

 K 0
✓

|x� y|
|S1

n

|

◆

↵

· |Si

n

|↵.

Combining this, it follows by the chain-rule that the term

D(g
q(n)�1 � · · · � g1)(x)�D(g

q(n)�1 � · · · � g1)(y)

and the corresponding term with g
i

replaced by g̃
i

di↵er in absolute value at
most by

K 0
✓

|x� y|
|S1

n

|

◆

↵

· |Si

n

|↵.

Using this repeatedly gives (⇤). After scaling it follows from (⇤) that

�

�

⇥

Df
n

(x)�Df
n

(y)
⇤

�
⇥

Df̃
n

(x)�Df̃
n

(y)
⇤

�

� K 00 · |x� y|↵ ·
q(n)�1
X

i=1

|Si

n

|↵.

By Theorem 2.1 this is exponentially small in n and so the C1+↵ distance
between f

n

and f̃
n

goes exponentially fast to zero. Note that f̃
n

is a composition
of quadratic and linear maps, that g̃

n

: S1
n

! Sq(n)
n

is a di↵eomorphism and that
Si

n

is a a-scaled neighbourhood of 4i

n

for each i = 1, . . . , q(n) and each n � 0.
Hence f̃

n

is in E
a

. It therefore follows that f
n

is exponentially close in the C1+↵

sense to a map from the Epstein class E
a

. Let us show that any convergent
subsequence of f

n

even tends to a map from the Epstein class E
a

by showing
that the set E

a

(endowed with the topology of uniform convergence) is compact.
Write f̃

n

= �̃
n

� Q � A
n

where �̃�1
n

has a holomorphic univalent extension to
(C \ R) [ [�a, 1 + a]. By Montel’s Theorem there exists a subsequence of �̃

n

such that �̃�1
n

converges uniformly on compact subsets of (C\R)[ [�a, 1+a] to
a holomorphic map �̃�1 and by Lemma 2.1 �̃�1 is not constant. It follows that
f̃

n

is also in E
a

. From this compactness it follows that the sequence f
n

tends to
a map from the Epstein class E

a

.
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3 Bounded Geometry

Let C ⇢ R be a Cantor set. Because the Cantor sets we will consider are dynam-
ically defined they are naturally given as an intersection of a nested sequence
of finite unions of intervals. In this section we will show that these defining
intervals satisfy some very rigid structure when they correspond to an infinitely
renormalizable map of bounded combinatorial type. Let us start with some
definitions.

Definition. A presentation of a Cantor set C is a decreasing collection F
n

�
F

n+1 of closed sets such that each F
n

is a finite union of closed intervals whose
boundary points are in C; each connected component of F

n

contains the same
number a

n

of connected components of F
n+1 and \1

n=0Fn

= C. Each component
of F

n

is called an interval of generation n and each component of F
n

\ F
n+1 is

called a gap of generation n + 1. Of course, there are many presentation of a
Cantor set. However, if a Cantor set is the forward orbit of the turning point of
an infinitely renormalizable unimodal map then it is natural to take F

n

to be
the union of the intervals 4i

n

from the previous section.

Definition. We say that the presentation {F
n

; n = 0, 1, 2, . . . } of C has
bounded geometry if there exist 0 < � < µ < 1 such that if I is an interval
of generation n and J ⇢ I is either an interval of generation n + 1 or a gap of
generation n + 1 then

0 < � <
|J |
|I| < µ < 1.

It follows from the above definition that if the presentation {F
n

; n = 0, 1, . . . } of
C has bounded geometry then it has bounded combinatorics, namely, the number
a

n

of components of F
n+1 in each component of F

n

is bounded independently
of n.

The main result of this section is the following

Theorem 3.1. Let {F (i)
n

; n = 0, 1, 2, . . . } be presentations of bounded geom-
etry of the Cantor sets C(i) ⇢ R, i = 1, 2. Suppose that these presentations
have the same combinatorics, i.e., the number of components of F (i)

n+1 in each
component of F (i)

n

does not depend on i. Then there exists a quasiconformal
homeomorphism h : C! C which is symmetric and maps C(1) onto C(2).

Corollary 3.1. Let f, f̃ be C2 infinitely renormalizable with the same bounded
combinatorial type. Then there exists a quasiconformal homeomorphism h : C!
C such that h(fn(c)) = f̃n(c).
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Proof. This follows immediately from the real bounds given in Theorem 2.1
and the previous theorem.

In order to prove this theorem we will consider a large disc D containing
the Cantor set C and we will construct a decomposition of the Riemann surface
S = D \ C into countable many pairs of pants whose boundaries are geodesics
in the hyperbolic metric of S. The main step is to prove that the lengths of
these geodesics are bounded from above and from below.

Definition. We say that a set is a pair of pants if it is homeomorphic to an open
disc with two closed discs taken out. Let F

n

be a presentation of the Cantor
set C and S = D \ C as above. We say that a countable family FC of disjoint
simple closed curves in S determines a standard decomposition of S in pairs of
pants if the following properties hold:

1. each connected component of D \[{↵ ; ↵ 2 FC} not containing points of
C is a pair of pants.

2. for each interval I of level n there exists a unique curve ↵ 2 FC such that
the disc D

↵

⇢ D bounded by ↵ contains I and contains no other interval
of level n;

3. let ↵,�, � 2 FC be the boundary of a pair of pants; assume that the disc
D
�

bounded by � contains ↵ and � and that C \ D
↵

is to the left of
C \D

�

; then ↵ is as in 2), namely, D
↵

contains one and only one interval
of level n for some n.

Notice that the above properties define a unique decomposition of S into
pairs of pants up to homotopy. In the special case when each component of F

n

contains exactly two components of F
n+1 then all the boundary curves of the

pants are as in 2), see Figure 3.1 on the left. In Figure 3.2 a decomposition is
drawn in a surface with a hyperbolic structure.

In the proof of Theorem 3.1 we will need the following lemma.

Lemma 3.1. Let F
n

be a presentation of bounded geometry of a Cantor set
C. Let FC be the set of boundary curves of a standard decomposition into
pairs of pants of S = D \ C. For ↵ 2 FC, let ↵0 be the unique hyperbolic
geodesic in the homotopy class of ↵. Then FC 0 = {↵0 ; ↵ 2 FC} defines a
standard decomposition into pairs of pants of S and there exist positive constants
b > a > 0 such that the hyperbolic length of each ↵0 2 FC 0 lies between a and b.

Proof. Let l
S

(↵) denotes the length of the curve ↵ in the hyperbolic metric of
S. Let ↵ 2 FC and let n be such that the disc D

↵

bounded by ↵ contains an
interval I of level n and does not contain any interval of smaller level. Hence all
intervals of level n contained in D

↵

are contained in the same interval of level
n� 1. Let A ⇢ S be the annulus defined as the union of the upper half plane,
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Fig. 3.1: Two standard decompositions in pairs of pants. If each component of F
n

contains exactly two respectively three components of F
n+1

then all the boundary

curves of the pairs of pants are as shown above.

the lower half plane and the two gaps of level n� 1 adjacent to the convex hull
of the union of intervals of level n contained in D

↵

. Now the size of these gaps is
of the same order as the length of this convex hull and therefore we get that the
modulus of A is bounded from below by a universal constant (which does not
depend on ↵). Hence, if � ⇢ A is the simple closed geodesic in the hyperbolic
metric of A, then l

A

(�) is bounded from above by a universal constant. On the
other hand, by construction of A, we have that � is homotopic to ↵. Therefore,
l
S

(�) � l
S

(↵0). On the other hand, since A ⇢ S, we get, from the Schwarz
Lemma (see the Appendix), that l

A

(�) > l
S

(�). Therefore l
S

(↵0) is bounded
from above by a universal constant b.

Let us prove now that the hyperbolic length l
S

(↵0) is also bounded from
below by a constant a which depends only on the bounds of the geometry of C.
So let us show that l

S

(↵) cannot be too small. For this we will use the following
fact about Riemann surfaces: if � is a (small) homotopically non-trivial simple
closed geodesic in a Riemann surface S then � has an annulus neighbourhood
A ⇢ S which is homotopically equivalent to � and whose modulus is, up to
universal constants, inversely proportional to the hyperbolic length of �, see for
example Theorem 6.3 from Douady and Hubbard (1985b). So if l

S

(↵) is very
small we get from this that ↵ is contained in an annulus A homotopic to ↵ with
very large modulus. So, by trimming the annulus and using Koebe’s Lemma,
see Lemma 4.2 in Section 4 of this chapter, there is a univalent map G from a
very thick annulus A

R

= {z 2 C ; 1 < |z| < R} onto an annulus A homotopic to
↵ whose distortion is bounded by a universal constant. Hence, there is a curve
� connecting the two boundary components of A

R

whose image is contained
in a gap J of order n and the image of a circle {z ; |z| = 2} goes around an
interval I of level n such that I and J are both contained in the same interval of
level n� 1. Thus the Euclidean lengths of I and J are comparable, by bounded
geometry. This is not possible for R big since the distortion of G is universally
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Fig. 3.2: The decomposition in pairs of pants in a surface with a hyperbolic structure.

bounded. This proves that the length of the curves in FC 0 is bounded from
below and the lemma is proved.

Proof of Theorem 3.1: Let D be a very large disc centered at the origin
that contains both Cantor sets C(i), i = 1, 2. Let FCi be the family of simple
closed geodesics of S(i) = D \ C(i) which are the boundary curves of the stan-
dard decomposition into pairs of pants. Notice that, since complex conjugation
is a conformal involution of S(i), all gaps of the Cantor sets are geodesics and
all pairs of pants are symmetric (with respect to complex conjugation). Each
boundary of a pair of pants intersects the real axis at two points which we call
special points. The intersection of the real axis with each pair of pants consists
of three geodesic segments connecting special points of the di↵erent boundary
components. Since the two Cantor sets have the same combinatorics, we can
start by defining a monotone map � : C(1) ! C(2) and extend � to a mono-
tone map of the set of special points so that special points in the same pair of
pants are mapped into special points in the same pair of pants. This gives a
correspondence between pairs of pants. Next we extend � to a quasiconformal
map between each corresponding pair of pants in the following way. We start
by extending � to the boundary of each pair of pants by interpolating ‘linearly’
between two special points. Next we extend it symmetrically to the interior of
each pair of pants. Clearly we can do this so that the quasiconformal constant
of � on each pair of pants depends only on the lengths of the boundary com-
ponents of the domain and of the range. From Lemma 3.1, there is a common
bound for the complex dilatation of � in all pairs of pants. As the definition
of � in the boundary of each pair of pants depends only on the special points
and the lengths of the corresponding boundary components, � extends continu-
ously to a quasiconformal map of S(1) onto S(2) (� is K-quasiconformal in each
pair of pants, is continuous and the boundary of the pairs of pants have zero
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Lebesgue measure). Since the restriction of � to the real axis is monotone and
the Euclidean diameter of the pairs of pants tends to zero, we get that � ex-
tends continuously to the closure of S(1). It follows that � is K-quasiconformal
because the Cantor sets Ci have zero Lebesgue measure. This completes the
proof of the theorem.

Remark. It is possible to give a more elementary proof of Theorem 3.1 using
circles which intersect the real axis in special points. However, the notation
becomes more cumbersome in that case.

4 The Pullback Argument

In the previous two sections it was shown that two infinitely renormalizable
unimodal maps in U2 (or even in U1+Z) of the same bounded combinatorial type
are quasi-symmetrically conjugate on the attracting Cantor set. In particular,
there exists a quasiconformal homeomorphism on C which maps the first of
these Cantor sets on the second one and acts as a conjugacy on the Cantor sets.

Now we will show that if these maps have holomorphic extension to a neigh-
bourhood of the interval and these holomorphic extensions are quadratic-like, as
defined below, then we can even find a quasiconformal homeomorphism which
is a conjugacy between their holomorphic extensions to neighbourhoods of the
attracting Cantor sets. In Section 6 we will show that if one su�ciently often
renormalizes a real analytic map, which belongs to some Epstein class and has
bounded combinatorial type, then the resulting map has a holomorphic exten-
sion which is quadratic-like.

4.1. Quadratic-like maps and the pullback argument

The maps we shall consider are quadratic-like in the sense defined by Douady
and Hubbard (1985a):

Definition. Assume that U and V are simply connected domains in C. Then
a holomorphic map F : U ! V is called quadratic-like if the closure of U is
contained in V and if there exists a unique critical point c of F such that F
restricted to U \{c} is a covering map of degree two onto V \{F (c)}. The subset

J(F ) = {z 2 U ; Fn(z) 2 U for all n � 0}

is called the filled Julia set of F .
Let f be a real analytic unimodal map whose critical point is non-degenerate,

i.e., the second derivative of f at the critical point c is non-zero. Then f
has a holomorphic extension F to a simply connected neighbourhood U of the
dynamical interval in the complex plane. By taking U small enough, it is clear
that F maps U onto an open set V as a branched covering, i.e. the restriction
of F to U \ {c} is a holomorphic covering map of degree two onto V \ {f(c)},
where c is the critical point of f . In Figure 4.1 we indicate by a dotted line the
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segment L in the real axis, between the critical value v = f(c) and the boundary
of V , which is not in the image of f . The pre-image of this segment by F is a
curve transversal to the real axis that splits U in two connected components U�
and U+, as indicated in Figure 4.1, and F maps each of them homeomorphically
onto V \ L. We denote the corresponding two branches of the inverse of F by
F�1
± : V \ L ! U±. Being the holomorphic extension of a real analytic map

of an interval, F is symmetric with respect to the real axis, i.e., F (z) = F (z̄)
where z̄ denotes the complex conjugate of the complex number z. If the closure
of U is contained in V then F : U ! V is quadratic-like map as defined above.
These are special type of quadratic-like maps because they are symmetric with
respect to the real axis. So we will call them symmetric quadratic-like. Clearly
J(F ) contains the dynamical interval and all its negative iterates under F . So
it is a rather complicated subset of the plane (except when the second iterate
of the critical point is a fixed point; in this case the filled Julia set is just the
dynamical interval).

Definition. Two symmetric quadratic-like maps F : U ! V and F̃ : Ũ ! Ṽ
are said to be holomorphically equivalent if there exists a symmetric holomorphic
di↵eomorphism � : U1 ! Ũ1 such that � � F = F̃ � �, where U1 ⇢ U (resp.
Ũ1 ⇢ Ũ) is a symmetric neighbourhood of J(F ) (resp. J(F̃ )).

The space of equivalence classes of quadratic-like maps is denoted by G and
[F ] is the equivalence class of F . The elements of G will also be called germs of
quadratic-like maps.

Definition. The conformal type of a symmetric quadratic-like map F : U ! V
are the following two positive real numbers m1 < m2. Here m1 is the modulus
of the annulus V \ U and m2 is the modulus of V \ [F (v), v], where v is the
critical value of F . We say that the conformal type of F is bounded by B if
1
B

 m1 < m2 < B.

Remark. A. Douady has observed that the first inequality of the above in-
equalities is the essential one since once we have this inequality we can get the
other one by changing the domain of the map. However this requires a little
argument and we will not discuss it here.

Any map of the form f(x) = 1�ax2 is quadratic-like (just take U to be some
very large disc). Moreover, by the so-called Straightening Theorem which is due
to Douady and Hubbard (1985a), any quadratic-like map is quasiconformally
conjugate to one of the above maps (with real valued a if it is symmetric). This
result is stated as Theorem 5.10 of the Appendix.

Definition. Let F : U ! V be a quadratic-like map. We say that F is infinitely
renormalizable of combinatorial type (�0,�1, . . . ) if the restriction of F to the
interval [F (v), v] of the real line, if v is the critical value of F , is an infinitely
renormalizable unimodal map of combinatorial type �0,�1, . . . . We denote by
G
�0,�1,...

the set of equivalence classes of quadratic-like maps of combinatorial
type (�0,�1, . . . ). Similarly we say that a quadratic-like map F : U ! V is
of bounded combinatorial type if it is infinitely renormalizable of combinatorial
type �0,�1, . . . and if |�

i

| is bounded.
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Fig. 4.1:

From the Straightening Theorem it follows that if F is infinitely renormali-
zable then J(F ) is connected and, by Sullivan’s Theorem on the non-existence
of wandering domains for rational maps, J(F ) has empty interior (and hence
coincides with the Julia set of F ).

In the next theorem we shall show that two symmetric quadratic-like maps
of the same bounded combinatorial type are quasiconformally conjugate.

Theorem 4.1. (Pullback) Let F : U ! V and F̃ : Ũ ! Ṽ be two infinitely re-
normalizable symmetric quadratic-like maps of the same bounded combinatorial
type. Then there exists a symmetric quasiconformal map h : F (U1) ! F̃ (Ũ1)
such that h � F = F̃ � h on the neighbourhood U1 of J(F ).

Proof. Let V1 � U be a symmetric neighbourhood of U whose boundary is a
real analytic curve in V near the boundary of V . Then the closure of U1 =
F�1(V1) is contained in V1. By conjugating with the Riemann mapping of V1

we may assume that V1 = D. Similarly we may assume that Ṽ1 = D.
First we show that there exists a quasiconformal homeomorphism h0 : D!

D such that

h0(z) = h0(z)

F̃ � h0 = h0 � F on @U1

h0(Fn(c)) = F̃n(c) for all n 2 N.

In fact, since F and F̃ have the same bounded combinatorial type, by Theorem
3.1 there exists a quasiconformal homeomorphism � : C! C that is symmetric
with respect to the real axis and maps the critical orbit of F onto the critical
orbit of F̃ conjugating F and F̃ on the critical orbit. This quasiconformal ho-
meomorphism may be taken to be a smooth di↵eomorphism in the complement
of a neighbourhood of the critical orbit. Next, since the boundary of U1 and Ũ1

are smooth curves, we can construct a smooth di↵eomorphism  : C! C such
that  is symmetric, is the identity on the boundary of D, and conjugates F with
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F̃ at points of the boundary of U1. We can now construct h0 by gluing these two
quasiconformal homeomorphisms: let h0 coincide with  on a neighbourhood
of the fundamental domain D \ U1 and coincide with � on a neighbourhood of
the critical orbit.

Next we will construct a sequence h
n

: D! D of quasiconformal homeomor-
phism satisfying the following properties:

F̃ h
n+1 = h

n

F,

h
n+1 = h

n

on D \ F�n(U1),

h
n+1(z) = h

n+1(z).

h
n+1 conjugates F and F̃ along the critical orbit

This is done by induction. We start with h0 and assume by induction that
we have constructed h

n

. Since h
n

maps the critical value v of F in the critical
value ṽ of F̃ , there exists a unique lift of h

n

to a map h
n+1 : U1 ! Ũ1 that

maps the upper half plane in the upper half plane. In fact, h
n+1 = F̃�1

± �hn

�F
on U1,±, where F̃�1

± are the holomorphic inverse branches of F̃ as above. Since
h

n

is quasiconformal and the other maps are conformal it follows that h
n+1 is

quasiconformal with the same conformal distortion as h
n

. On the other hand,
since h

n

coincides with h0 on D\U1 and h0 conjugates F with F̃ on the boundary
of U1 we see that h

n+1 coincides with h0 in the boundary of U1. Hence it can be
extended continuously to D by setting it equal to h0 on D \ U1. This extension
is quasiconformal and has the same quasiconformal distortion as h

n

because the
boundary of U1 is smooth (hence has zero Lebesgue measure). Now we claim
that h

n+1 maps the critical orbit of F in the critical orbit of F̃ . This follows
because, by induction, h

n

has this property and F has the same combinatorial
type as F̃ . This last condition implies that if p 2 U1,± is in the critical orbit of
F then the point in F̃�1(h

n

(F (p)) that belongs to the critical orbit of F̃ lies in
Ũ1,±. That is, they have the same kneading sequence.

We claim that the sequence h
n

converges uniformly to a quasiconformal
homeomorphism h which is a conjugacy between F and F̃ . Indeed, let K be the
quasiconformal distortion of h0. Since all maps h

n

are K-quasiconformal, and
the set of K-quasiconformal homeomorphisms is compact, we see that there are
subsequences that converges uniformly. On the other hand, since h

n+1 is equal
to h

n

outside of F�n(D) we see that any two limits of convergent subsequences
must coincide in the complement of the Julia set of F . The claim follows because
the filled Julia set of F has empty interior in this setting.

Remark. Suppose there exists a quasiconformal homeomorphism � : D ! D
that conjugates F with F̃ in the boundary of U1 and that the quasiconformal
distortion of � on the fundamental neighbourhood D \U1 is bounded by k. The
conformal distortion K of the map h0 in the above proof may be much larger
than k. However, the conformal distortion of the conjugacy h is precisely equal
to k in the complement of the Julia set of F . This is not su�cient to prove that
the conjugacy is k-quasiconformal and not just K-quasiconformal because the
Julia set might have non-zero Lebesgue measure (this is an open question). We
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will prove in the next subsection that the conformal distortion of the conjugacy
has to be zero on the Julia set and, therefore, the conjugacy is k-quasiconformal.

4.2. The monotonicity of the kneading invariant for the
quadratic family

Let us first deduce two theorems from this pullback argument which were already
announced in Chapter II. These theorems are based on the following lemma.

Lemma 4.1. Let h : C ! C be some quasiconformal homeomorphism and
f : U ! V be a conformal map. Then h � f � h�1 is conformal if the Beltrami
coe�cient µ associated to h satisfies

(4.1) µ(z) = µ(f(z)) · f 0(z)
f 0(z)

almost everywhere.

Proof. It follows from an elementary calculation that (4.1) implies that @̄(h �
f � h�1) = 0. Therefore, by Weyl’s Lemma, h � f � h�1 is almost everywhere
equal to a conformal map. Since this map is continuous it is conformal, see also
Theorem 5.1 on page 28 of Lehto and Virtanen (1973).

The pullback argument gives Sullivan’s unpublished proof of the theorem
below that was also proved by Douady and Hubbard (1982) and Thurston, see
Milnor (1983).

Theorem 4.2. Let f
a

: [�1, 1]! [�1, 1] be the quadratic family f
a

(x) = 1�ax2.
Then the mapping a ! ⌫(a), where ⌫(a) is the kneading invariant of f

a

, is
monotone. So b > a implies that ⌫(b) ⌫ ⌫(a) where ⌫ is the Milnor-Thurston’s
order relation on the set of itineraries.

Proof. Because of results from Section II.10 it is enough to prove that if a1, a2

are such that f
a1 and f

a2 are critically finite maps (this means that the critical
orbit is a finite set, say with cardinality N) with the same kneading invariant
then a1 = a2. So suppose, by contradiction, that a1 6= a2 and f

a1 , f
a2 are com-

binatorially equivalent maps as above. Since ⌫(a1) = ⌫(a2), the orbits of the
critical points of f

a1 and f
a2 are finite and have the same ordering in R. There-

fore there exists a C1-di↵eomorphisms h0 : C! C and a big neighbourhood U
of [�1, 1] in C such that f

a1(C \ U) ⇢ C \ U and

h0(z) = h0(z),

h0(fn

a1
(c)) = fn

a2
(c) for all n = 0, 1, . . . , N,

f
a2h0(z) = h0fa1(z) for z 2 C \ U.

Here c = 0 is the critical point of f
a

. Since h0 is K-quasiconformal for some
K, as in the proof of Theorem 4.1, we can construct a sequence h

n

: C! C of
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K-quasiconformal homeomorphisms so that

f
a2hn+1 = h

n

f
a1 ,

h
n+1 = h

n

on C \ f�n(U),

h
n+1(z) = h

n+1(z).

As before, h
n

converges uniformly to a K-quasiconformal map h1 which is a
conjugacy between f

a1 and f
a2 . Let �(z) be the Beltrami coe�cient of h1. Since

h1 is a conjugacy between f
a1 and f

a2 it follows that the field of ellipses defined
by � is invariant under f

a1 and also by complex conjugation. In other words, �
satisfies the invariance condition (4.1). Then �

u

= u ·� with u 2 C, |u|  1 also
satisfies the invariance condition (4.1). From the Measurable Riemann Mapping
Theorem there exists a unique quasiconformal homeomorphism H

u

: C ! C
whose Beltrami coe�cient is �

u

and such that H
u

(1) =1, H
u

(0) = 0, H
u

(1) =
1. From this theorem, see Ahlfors and Bers (1960), it also follows that u 7!
H

u

(z) is analytic for each z 2 C. As f
a1 preserves the field of ellipses defined

by �1 and f
a1 is conformal, f

a1 also preserves the field ellipses defined by �
u

.
From Lemma 4.1 it follows that

g
u

= H
u

� f
a1 �H�1

u

is a conformal map. Since f
a1 is quadratic, g

u

is also a quadratic polynomial.
Therefore, because g

u

also has its branch point in 0 and g0(0) = 1, one gets

g
u

(z) = 1� '(u)z2

where u 7! '(u) is a holomorphic function. Since '(0) = a1 and '(1) = a2

it follows that the image of ' contains a neighbourhood of a1 in the complex
plane. In particular, every quadratic polynomial f

w

(z) = 1� wz2 for w in this
neighbourhood is critically finite because it is conjugate to f

a1 . But since f
w

(z)
depends analytically on w it follows that for every w the map f

w

(z) = 1� wz2

is critically finite. This is clearly not the case.

Theorem 4.3. Let f
a

: [�1, 1]! [�1, 1] be the family of quadratic polynomials
f

a

(x) = 1 � ax2. If f
a1 is infinitely renormalizable of bounded combinatorial

type (or if f
a1 is a Misiurewicz map) then there is no a 6= a1 such that f

a

is
conjugate to f

a1 .

Proof. From the monotonicity proved in Theorem 4.2a, the set of parameters
a such that f

a

is conjugate to f
a1 is an interval. If it is not a single point then

it is a closed interval [b, c]. Let us consider f
b

and f
c

as polynomial maps of
the Riemann sphere. If f

a1 is infinitely renormalizable then, as in the proof of
Theorem 4.1, we can construct a quasiconformal homeomorphism h0 : C ! C
and a big neighbourhood U of [�1, 1] in C such that f

a

(C \ U) ⇢ C \ U and

h0(z) = h0(z),

h0(fn

b

(0)) = fn

c

(0) for all n 2 N,

h0fb

= f
c

h0 on C \ U.
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If f
a1 is a Misiurewicz map then the same holds using Exercise III.6.1. So

starting from h0 we construct, as before, a sequence of quasiconformal maps
h

n

converging to a quasiconformal conjugacy h : C ! C between f
b

and f
c

.
As before h satisfies (4.1). As in the previous theorem we consider the family
H

u

: C ! C of quasiconformal homeomorphisms, fixing 1, 0 and 1, whose
Beltrami coe�cient is u · µ(z) where µ(z) is the Beltrami coe�cient of h. That
these maps exist follows from the Measurable Riemann Mapping Theorem and
this theorem also implies that z 7! H

u

(z) is analytic. By Lemma 4.1, H
u

� f
b

�
H�1

u

(z) is conformal and therefore is of the form

H
u

� f
b

�H�1
u

(z) = 1� '(u)z2

where '(u) is a holomorphic function with '(0) = b and '(1) = c. In particular,
the image of ' contains a neighbourhood of b in C. This implies that all maps
f

a

for a 2 [b� ", c], for " > 0 small, are conjugate to f
a1 . This contradicts the

definition of b.

Corollary 4.1. The maximal distortion of the quasiconformal map h from The-
orem 4.1 is almost everywhere zero on J(F ).

Proof. Let h be the quasiconformal map from Theorem 4.1 and suppose by
contradiction that the maximal conformal distortion of h is positive on a set
of positive Lebesgue measure. Then the Beltrami coe�cient µ(z) of h is non-
zero in an invariant set of positive Lebesgue measure S ⇢ J(F ) and hence
defines an F -invariant line-field on S. Now it is merely a conjecture that J(F )
has Lebesgue measure zero if it has non-empty interior. So in order to get a
contradiction we again use the so-called Straightening Theorem, see Theorem
5.10 of the Appendix. This theorem states that every quadratic-like map F is
quasiconformally conjugate by a map  : V ! W to a quadratic polynomial
f

a

(z) = 1 � az2, see the Appendix. Since F is symmetric the parameter a is
real. Here W is a neighbourhood of the Julia set of f

a

. But since J(F ) has
positive Lebesgue measure and  is a quasiconformal conjugacy, the Julia set
J(f

a

) of f
a

also has positive measure and has an f
a

-invariant line field defined
on an invariant subset E ⇢ J(f

a

) of positive Lebesgue measure. Let µ(z) = 0
for z /2 E and for z 2 E let µ be so that |µ(z)| = 1/2 and µ(z) points in the
direction of the linefield through z. Since the quasiconformal structure defined
by uµ(z) is invariant by f

a

we have as before that

H
u

� f
a

�H�1
u

(z) = 1� '(u)z2,

where H
u

: C! C is the quasiconformal homeomorphism fixing 0, 1,1 whose
Beltrami-coe�cient is uµ(z) and '(u) is a holomorphic function. We claim that
' is not constant. Indeed, otherwise H

u

would commute with f
a

for all u since
H0 is the identity map. Therefore H

u

is equal to the identity in the Julia set
of f

a

. Consider the set of points in the Julia set which are Lebesgue density
points of J(f

a

) as well as in the set of points where H
u

is di↵erentiable. This
set has full Lebesgue measure (as a subset of the Julia set J(f

a

)). Let us prove
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that the derivative of H
u

is the identity at each point x of this set. Take two
disjoint cones based at x. Since x is a density point we can find sequences
z
n

! x w
n

! x which belong to the Julia set and such that the line through z
n

and x converges to a line in one of the cones while the line through w
n

and x
converges to a line in the other cone. Hence the derivative of H

u

at x, which by
assumption exists, is equal to the identity in two linearly independent directions.
Thus it is equal to the identity and we have shown that the derivative of H

u

is
equal to the identity map in almost every point of J(f

a

). On the other hand, at
almost all points of J(f

a

) the derivative of H
u

maps an ellipse defined by µ (and
therefore with eccentricity away from 1) into a circle. This is clearly impossible
because as we have seen in almost all points of J(f

a

) the derivative of H
u

is the
identity map. So the claim is proved. It follows that the image of ' contains a
neighbourhood of '(0) = 0 and this contradicts Theorem 4.2b.

Remark. 1. It is not known whether J(F ) has Lebesgue measure zero. But if
not then at least we know, by the proof above, there is no measurable invariant
line field on J(f).

2. Let f
a

be the quadratic family. Świa̧tek (1992a) shows that if f
a

and f
b

are
conjugate then they are quasisymmetrically conjugate. This and the previous
result implies the following famous conjecture: the set of real parameters for
which f

a

has a periodic attractor is dense.

Theorem 4.4. Let F : U ! V and F̃ : Ũ ! Ṽ be infinitely renormalizable
symmetric quadratic-like maps with the same bounded combinatorial type. Let
k > 1. Suppose there exists a quasiconformal homeomorphism � : U1 ! Ũ1 with
the following properties:

1. U1 is a neighbourhood of the Julia set J(F ) and F (U1) contains the closure
of U1, i.e., F |U1 is quadratic-like and similarly for Ũ1 and F̃ .

2. � conjugates F and F̃ in the boundary of U1;

3. the conformal distortion of the restriction of � to the fundamental neigh-
bourhood F (U1) \ U1 is bounded by k.

Then there exists a quasiconformal conjugacy between F |U1 and F̃ |Ũ1 whose
conformal distortion is bounded by k.

Proof. Let h be the quasiconformal conjugacy constructed in Theorem 4.1,
starting with a quasiconformal homeomorphism h0 that coincides with � in the
fundamental neighbourhood F (U1) \ U1. As we have remarked after the proof
of Theorem 4.1, the conformal distortion of h restricted to the complement of
the Julia set is bounded by k. On the other hand, by the Corollary of Theorem
4.2b, the conformal distortion of h on the Julia set of F is almost everywhere
equal to zero. This proves the theorem.
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4.3. The definition of the renormalization operator on the
space of germs of quadratic-like maps

Of course, if F : U ! V is a quadratic-like map then its iterate is not even
defined. So in order to define the renormalization operator on the space G of
equivalence classes of symmetric quadratic-like maps we need the result below.

Proposition 4.1. Let F : U ! V be a symmetric quadratic-like map which is k
times renormalizable of type � = (�0, . . . ,�k�1), with |�0| · . . . |�k�1| = m. Then
there exist unique (topological) discs U

�

⇢ U and V
�

such that Fm : U
�

! V
�

is a symmetric quadratic-like map where U
�

contains the critical point of F and
such that V

�

and V coincide outside the real axis.

Remark. As we will see in the proof of this proposition the set V
�

is equal to
V minus two intervals in the real axis if m > 3. So V

�

is a disc with two slits.
It follows that the boundary of U

�

is the union of eight arcs. Four of these arcs
are mapped injectively into @V \D+ or @V \D� and the other four are mapped
into the real axis. The dotted arcs are mapped into the slits in the real axis; the
solid and dashed arcs are mapped into the boundary of the disc as indicated in
Figure 4.2 (for m = 2, 3 there is just one slit).
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Fig. 4.2: The shaded region (and its symmetric with respect to the origin) is mapped

to the upperhalf of the disc.

Proof. By conjugating with the Riemann mapping of V we may assume that
V = D and the critical point of F is 0. Let us denote by F�1

s

, s = ±, the
two inverse branches of F defined on the disc with a slit D \ [F (0), 1) as in
Figure 4.2. So F� maps D \ [F (0), 1) onto the ‘left-half’ U� of U and F+ maps
D \ [F (0), 1) onto the ‘right half’ U+ of U . Let 40 3 0 be the interval bounded
by Fm(0) and F 2m(0) and 4i = F i(40) for 0 < i  m = |�|. The intervals 4i,
i = 0, . . . ,m � 1 are disjoint. For each i = 1, . . . ,m � 1 there exists a unique
choice of s(i) = ± such that F�1

s(i)(4m�i) = 4m�i�1. The mappings

G+ = F�1
+ � F�1

s(m�2) � · · · � F�1
s(0)
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G� = F�1
� � F�1

s(m�2) � · · · � F�1
s(0)

restricted to D+ = D \ (upper half space) and to D� = D \ (lower half space)
are univalent maps. Let U++ = G+(D+), U+� = G+(D�), U�+ = G�(D+)
and U�� = G�(D�). The restriction of Fm to U++ is a conformal isomorphism
between U++ and D+. Since the mapping z ! z0 = F�1

+ F (z) is a conformal iso-
morphism between U� and U+, which is the identity on the common boundary
of U� and U+ and since Fm(z) = Fm(z) it follows that

U+� = {z; z0 2 U++}, U�+ = {z; z0 2 U++}

and U�� = {z; z 2 U++}. Hence Fm is a conformal isomorphism between

U+� and D� , U�+ and D+, and also between U�� and D�.

Now we take U
�

to be the interior of the closure of the union of U++, U+�,
U�+, U�� and we define V

�

= Fm(U
�

). Then Fm : U
�

! V
�

is a symmetric
quadratic-like map and the proposition is proved.

The shape of the regions U
�

and V
�

will play an important role in the next
section. Therefore we will now study these regions in an example.

Example. Take m = 5 and the combinatorial type of the map f : [�1, 1] !
[�1, 1] associated to F as in Figure 4.3. It is easy to check that

G+ = F�1
+ � F�1

� � F�1
+ � F�1

+ � F�1
� ,

G� = F�1
� � F�1

� � F�1
+ � F�1

+ � F�1
� .

The image of D+ under these compositions of the univalent maps is described
in Figure 4.4 where we use the following notation: x�n

denotes one point such
that Fn(x�n

) = x. Hence F 5 | Ũ
�

is as in Figure 4.5.

......................................................... ......................................................... ......................................................... ......................................................... .........................................................

c2 c7 c3 c8 c10

c0

c5 c4 c9 c6

c11

c1

• • • • • • • • • • • •

Fig. 4.3: The relative position of the first 11 iterates of c.

Definition. If [F ] 2 G is renormalizable of combinatorial type �, with |�| = m,
then the renormalization of [F ], which we denote by R([F ]), is the equivalence
class of

Fm : U
�

! V
�

where U
�

and V
�

are as in the above proposition.
The renormalization operator R maps G

�0,�1,...

into G
�1,�2,...

. Now we want
to define a positive function on pairs of elements of G that will play a crucial
role in the theory. In the next subsection we will prove that this function is a
distance function and at the end of the chapter we will prove that it is contracted
under iteration of the renormalization operator.



460 CHAPTER VI. RENORMALIZATION

.................................................................................................................................................................................................................................................................

x0

•
c2

•
c10

•
c5

•
c1

•
y0

•.............
.........
....

..........
...

...........
..

.............
.................................................................

.............
.............

.............
........... ..................................................................... ..........................

F�1
�

......................................................................................................................................................................................................................

c0

•
c4

•
c9

•
c1

•
x�1

•
y�1 •

........................................................
.............

.............
............. ............. ............. ............. ............

.....
.........
..........
...
........
.....
......
......
.

.... ..................................................................... ..........................

F�1
+

............................................................................................................................................................................

c�1

•
c3

•
c8

•
c0

•
x�2•y�2 •

.................................................

........................................................
.............

............. ............. ............. ............. .
............

...........
..
.........
....
.......
......

....................................................................................................................
.........
........

.........
.........
........
F�1

+

............................................................................................................................................................................

c�2

•
c2

•
c7

•
c�1

•
x�3•y�3 •

.................................................

..............................................................
.............
.............
.............
.......................... ............. .............

.............
............
.
..........
...
........
.....
.......
......

.

...............................................................................................

F�1
�

............................................................................................................................................................................

c�2

•
c6

•
c1

•
c�3

•

x�4 • y�4•
........
.........
.........
..........
...........

..

........

.........
.........
..........
...........
.........

......
........
.....
...........
..
.............

............. ............. ............. .............
.............

.............
....

...................
...................

...................
..................................................................
F�1

+

.....................................................................................
............

..........................F�1
�

............................................................................................................c�3 •
c0

• c�3•

x�5 •

x�5•

c�4

•

c�4

•

y�5

•

y�5

•

......................................................................................

........

.........
.........
..........
...........

............
...
.......................................................

..............................................................
..................

...............
......................

Fig. 4.4: The preimages of the halfdisc.

........

.....

.........

....
.........
....
.........
....
.........
....
.........
....

.........
....

..........
...

..........
...

...........
..

...........
..

............
.

.............
.............

.............
.............

.............
...................................................................................................................................................................................................

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............
.............
.............


...............................
........................

.....................
..................

.................
................

...............
..............
.............
.............
............
............
...........
...........
...........
...........
..........
..........
..........
..........
..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
........
........
....................... ........................................................................................................................................................................................................

.................................................................................................................................................................
...................

...............
.............
...........
..........

..........
...........
............
...............

...................
....................................

..............................................................................................................................

.................................................................................................................................................................
...................

...............
.............
...........
..........

..........
...........
............
...............

...................
....................................

..............................................................................................................................

.......................................................................

............
............

............
............

............
...........

..............................................

.............................................. .............
.............

.............

............
.
............
.
............
.

........

.....

........

........

........

.....

........

........

........

.....

.............................................................................................................................................................................................................................................................................................................................................................................................................• • •� �

⇥

⇥

⇥x0

c2 c�3 c0 c5 c1

y0

x�5

y�5

c�4

Fig. 4.5: The disc is slit in the arc connecting x
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and c
2
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0
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1

. Each curve is marked in the same way as its image.
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Definition. Let [F ] and [F̃ ] be germs of maps as above and let d
JT

([F ], [F̃ ]) =
log K where K is the smallest number for which there exists a (K+✏)-quasiconformal
conjugacy between two representatives F and F̃ of the germs [F ] and [F̃ ] for
every positive ✏. This number is called the Julia-Teichmüller distance between
the two elements of G. It is clear that this function satisfies the triangle inequal-
ity. It is not completely clear however that it defines a metric on G. Indeed, if
the Julia-Teichmüller distance between the germs of F and F̃ is zero then for
every ✏ we can find a neighbourhood U

✏

of the Julia set of F and a conjugacy
between F and F̃ on this neighbourhood that has conformal distortion smaller
than 1 + ✏. However, as ✏ goes to zero, the domain of the conjugacy may shrink
down to the Julia set and we may not get a conformal conjugacy in some neigh-
bourhood. In the next subsection we will prove that d

JT

is indeed a distance
function.

Proposition 4.2. If F and F̃ are infinitely renormalizable quadratic-like maps
of the same bounded combinatorial type then

d
JT

(R([F ]),R([F̃ ]))  d
JT

([F ], [F̃ ]).

Proof. This is clear because the renormalization operator is just the restriction
of some iterate to a smaller neighbourhood and the restriction of any conjugacy
to this smaller neighbourhood is a conjugacy between the corresponding iterates.

The next theorem is a very important consequence of the pullback argument.

Theorem 4.5. Let B > 0. Let GB be the set of all germs in G that have a
representative whose conformal type is bounded by B. Then there exists D > 0,
that depends only on B, such that if F and F̃ are infinitely renormalizable
quadratic-like map of bounded combinatorial type whose germs belong to GB

then
d

JT

([F ], [F̃ ])  D.

Proof. The ingredients of the proof are Theorem 4.2c and Koebe’s Distortion
Theorem for univalent functions which states that given ✏ > 0, there exists a
constant K = K(✏) such that if H : D! C is a univalent holomorphic function
then the restriction of H to the disc D1�✏, with centre at the origin and radius
1� ✏, is bounded by K, see the Appendix.
We split the proof into several lemmas.

Lemma 4.2. Given a > 0 there exists b = b(a) such that if H : A
a

! C is
a univalent function on the annulus A

a

= {z 2 C; 1 < |z| < 1 + a} then the
distortion of the restriction of H to the annulus 1

3A
a

= {z 2 C ; 1 + 1
3a < |z| <

1 + 2
3a} is bounded by b.

Proof. We can cover the inner annulus by balls of radius 2
5a such that the

concentric ball of radius 1
2a is contained in A

a

and the number of such balls
depends only on a. Using the Koebe’s distortion lemma in each of these balls
we finish the proof.
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Lemma 4.3. Given m > 0 there exists ✏ = ✏(m) with the following property. If
A ⇢ D is an annulus of modulus at least m such that one of the boundaries of
A is equal to the unit circle and such that A does not contain the origin then A
contains the boundary of the disc D1�✏.

Proof. Suppose this is not the case. This means that there exists one such
annulus such that the other boundary has a point p very close to the unit circle.
On the other hand, there exists a holomorphic homeomorphism H : A

a

! A
where a = a(m). It follows that there exists a curve connecting the boundaries
of A

a

whose image has a very small length. Hence, there exists a point in
the annulus 1

3A
a

such that the derivative of H at this point is very small in
norm. Then the derivative of H is very small on all points of 1

3A because H
has bounded distortion in this annulus. This is not possible because the image
of the circle of radius 1 + 1

2a and centre at the origin is a curve that encloses
the origin and passes near a point in the boundary of D and, therefore, cannot
have a small length.

Let F : U ! V be a quadratic-like map. Then there exist univalent functions
� : D! U ,  : D! V such that F =  �Q � ��1 where Q(z) = z2.

Lemma 4.4. Given B > 0 there exist � = �(B) and M = M(B) satisfying the
following property. Let S be the set of pairs (�, ) of univalent functions on
the unit disc D such that F =  �Q � ��1 is a quadratic-like map of conformal
modulus bounded by B and the dynamical interval of F is [0, 1]. Then the
following holds for all (�, ) 2 S:

1. �(D1��) contains the Julia set of F =  �Q � ��1;

2. the restriction of F to �(D1��) is quadratic-like;

3.  (D1��) contains the closure of F (�(D1��)) and is contained in the disc
D

M

.

Proof. Let (�, ) 2 S and let U = �(D), V =  (D). By hypothesis, V contains
the closure of U and the annulus V \ Ū has at least modulus 1

B

. Hence, the
modulus of the annulus U \ F�1(U), which is equal to one half of the modulus
of V \ U , is at least 1

2B

. If � = ✏( 1
2B

), where ✏ is as in Lemma 4.3, Statements
1 and 2 are satisfied. The first inclusion in Statement 3 is obvious because the
closure of Q(D1�✏) is contained in D1�✏. To prove the second inclusion we will
use Koebe’s Distortion Theorem together with Koebe’s 1

4 -Theorem. This last
theorem states that the image of a univalent function on the unit disc whose
derivative at the origin has norm one contains a disc of radius 1

4 centered at the
image of the origin, see the Appendix. Let R > 0 be such that the modulus of
the annulus D

R

\ [0, 1] is at least B. Let m > 0 be such that m(1�✏)
4 > R + 1.

From Koebe’s 1
4 -Theorem, it follows that if  is univalent on the disc D1�✏,

maps the origin to a point in the interval (0, 1) and its derivative at the origin
has norm larger than m then  (D1�✏) contains the disc D

R

. Since  is univalent
in the unit disc, it follows from Koebe’s Distortion Theorem that its distortion
on D1�✏ is bounded by b = b(✏). Let M = mb. From the Mean Value Theorem
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we have that if  (D1�✏) is not contained in D
M

then the derivative of  at some
point of D1�✏ has norm at least M . Hence, since the distortion is bounded by
b, the norm of the derivative of  at zero is at least m. This is a contradiction
and proves the lemma.

Lemma 4.5. Let S = S(N,B) be the set of pairs (�, ) of univalent functions
on the unit disc with the following properties:

i) the closure of �(D) is contained in  (D);

ii) the mapping  �Q � ��1 (where Q(z) = z2) is a symmetric quadratic-like
map with dynamical interval [0, 1], which is infinitely renormalizable of
combinatorial type bounded by N and conformal type bounded by B.

Then, any sequence (�
n

, 
n

) 2 S has a subsequence that converges uniformly
in compact subsets and any limit point of a convergent subsequence belongs to
S(N,B � �) for any � > 0.

Proof. The lemma follows from Lemma 4.4 because any uniformly bounded
sequence of holomorphic maps has a subsequence that converges uniformly on
compact subsets; the uniform limit of a sequence of univalent mappings is either
univalent or constant. Hence it must be univalent.
Proof of Theorem 4.2d: The theorem follows easily from the above lemmas
and from Theorem 4.2c.

4.4. Quadratic-like maps and expanding maps of the circle

Let us finish this section by quoting a result due to Douady and Hubbard which
relates quadratic-like maps to degree two maps of the circle. Using this result we
will prove that the Julia-Teichmüller metric defined above is really a metric in
each set of G

�0,�1,...

of germs of infinitely renormalizable quadratic-like maps of a
given bounded combinatorial type. We will also prove that the Julia-Teichmüller
distance between two infinitely renormalizable quadratic-like maps of the same
bounded combinatorial type is small if the corresponding degree two expanding
circle maps satisfy certain conditions. This will play an important role in the
proof that d

JT

(Rn([F ]),Rn([F̃ ])) converges to zero as n!1 in Section 8.
As we have observed before, if F : U ! F (U) is an infinitely renormali-

zable quadratic-like map, then its Julia set J(F ) is connected (and also has
empty interior). Therefore, F (U) \ J(F ) is homeomorphic to an annulus. By
the Riemann Mapping Theorem there exist a positive number a > 0 and a
holomorphic di↵eomorphism � : F (U) \ J(F ) ! A

a

, where A
a

is the annulus
{z 2 C ; 1 < |z| < 1 + a}. Let A+ = �(U \ J(F )) and G : A+ ! A

a

be the
holomorphic map G(z) = �(F (��1(z))). By the Schwarz Reflection Principle,
see the Appendix, we can extend G to a holomorphic map of a cylindrical neigh-
bourhood A of the unit circle by symmetry, i.e., G( 1

z̄

) = 1/G(z) if z 2 A+. Since
points near the unit circle are mapped by G near the unit circle, the Schwarz
Reflection Principle implies that G extends continuously to the circle and hence
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to a holomorphic map in the neighbourhood A of the unit circle. Thus the
unit circle is invariant under G. Since G�1(A) is contained in A it follows from
the Lemma of Schwarz that G : G�1(A) ! A expands the Poincaré metric on
A. Since the restriction of the Poincaré metric on A to the unit circle and the
standard metric on the circle are equivalent, the restriction of G to the unit
circle is an expanding degree two map f which is called the external map of F .
Therefore we have proved the following result.

Theorem 4.6. (Douady and Hubbard) Let F : U ! F (U) be a quadratic-
like map whose Julia set J(F ) is connected. Then there exists an expanding
degree two analytic circle map f : S1 ! S1 and a holomorphic conjugacy between
F : U \ J(F ) ! F (U) \ J(F ) and a holomorphic extension f : A+ ! f(A+) of
f . Here A+ is a component of A \ S1 and A is a neighbourhood of S1 = {z 2
C ; |z| = 1}.

Let us first state the main application of this theorem.

Corollary 4.2. Let F, F̃ be symmetric quadratic-like maps of the same bounded
combinatorial type and let f, f̃ be the corresponding expanding analytic circle
maps. Then the following three statements are equivalent:

a) d
JT

([F ], [F̃ ]) = 0;

b) f and f̃ are analytically conjugate;

c) F, F̃ are equivalent, i.e., [F ] = [F̃ ].

Proof of the Corollary: Notice that if there exists a conjugacy h between
F and F̃ with conformal distortion 1 + ✏ defined in some neighbourhood of the
Julia set, then there exists a quasiconformal conjugacy between the holomor-
phic extensions G and G̃ of the corresponding external maps with the same
conformal distortion. Indeed, let � (resp. �̃) be the holomorphic conjugacy
between F and G (resp. F̃ and G̃) in the complement of the Julia set. Since
the external maps f and g are expanding maps of the circle they are quasisym-
metrically conjugate (this can be proved using the Naive Distortion Lemma for
C1+↵ expanding maps, see Exercise II.2.3), and this quasisymmetric conjugacy
can be extended, by a theorem of Ahlfors and Beurling, to a quasiconformal
homeomorphism of the plane. By gluing this homeomorphism with �̃ � h � ��1

we get a quasiconformal homeomorphism h0 that has quasiconformal distortion
1 + ✏ at a fundamental domain of G, conjugates G and G̃ at the boundary
of this fundamental domain (because it coincides with �̃ � h � ��1 in a neigh-
bourhood of this fundamental domain) and conjugates G and G̃ in the circle.
Hence, from the pullback argument we get a conjugacy between G and G̃,on a
neighbourhood of the circle, with the same conformal distortion. By the same
argument the converse is true: if there is a quasiconformal conjugacy h between
G and G̃ on some neighbourhood of the circle with conformal distortion 1 + ✏,
the same happens between F and F̃ . If a) holds, then for every ✏ there exists a
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quasiconformal conjugacy h between G and G̃ with conformal distortion 1 + ✏.
Since a quasiconformal homeomorphism with conformal distortion close to one
is Hölder continuous with exponent close to one, the eigenvalues of the external
maps f and f̃ at corresponding periodic points are equal. Since these maps are
real analytic, if follows from Shub and Sullivan (1986) that they are analytically
conjugate. This proves that a) implies b). If there exists an analytic conjugacy
between f and f̃ , the holomorphic extension of this map is a holomorphic con-
jugacy between G and G̃. Hence there exists a conformal conjugacy between F
and F̃ in some neighbourhood of the Julia set (the above argument with ✏ = 0).

Corollary 4.3. Let F : U ! V be a quadratic-like map such that F (z) = F (z)
and F (�z) = F (z). Then there exists a neighbourhood V1 of J(F ) such that
V1 is invariant by the reflections in the real and imaginary axis and such that
F : F�1(V1)! V1 is a quadratic-like map.

Proof. Let R1 and R2 be defined by R1(z) = z and R2(z) = �z. Then
F �R1 = R1�F and F �R2 = F . Hence R

i

(J(F )) = J(F ). Take a neighbourhood
W ⇢ U of J(F ) such that R

i

(W ) = W . Let W1 ⇢ W be a neighbourhood of
J(F ) such that F (W1) ⇢ W . As before let � be the Riemann mapping of
W \ J(F ) to the annulus A

a

= {z 2 C ; 1 < |z| < 1 + z}. Let G : �(W1)! A
a

be defined by G(z) = � � F � ��1(z) and let T
i

= � � R
i

� ��1. Since W
is symmetric under R

i

this defines a di↵eomorphism of A
a

. By the Schwartz
Reflection Principle, one can extend T

i

to

A = {z 2 C ; z 2 A
a

,
1
z
2 A

a

or |z| = 1}.

Similarly we can extend G holomorphically to the symmetric

{z 2 C ; z 2 �(W1) ,
1
z
2 �(W1) or |z| = 1}

of �(W1). The maps T
i

are conformal di↵eomorphisms of A. Moreover, T1,
T2 � T1 are conformal reflections of A and T

i

� G = G � T
i

. We claim that
T1 and T2 � T1 extend to conformal reflections of the plane (with respect to
lines through the origin). Indeed, let p be a fixed point of T1 and let S be the
reflection with respect to the line through p and the origin. Then S(A) = A
and T1 � S is a holomorphic automorphism of A with a fixed point. Hence
T1 � S = id and T1 = S. Similarly, T2 � T1 is a reflection with respect to some
line through the origin. In particular, T

i

are Euclidean isometries. Now take N
so large that F�N (W1) ⇢W1. Then GN (�(F�N (W1))) ⇢ �(W1) and therefore
from the Lemma of Schwartz, GN expands the Poincaré metric on �(W1). So
let us define a new metric in a neighbourhood of the circle which is invariant
under T

i

such that this metric is expanded by the first iterate of G. Hence
some iterate N 0 of G expands the Euclidean metric on a small neighbourhood
of the circle. Let v be a vector in z, let |v|

z

be the Euclidean norm of v and
let ||v||

z

=
P

N

0

i=0 |DGi(z)v|
G

i(z). Then ||DG(z)v||
G(z) > ||v||

z

for z su�ciently
near the unit circle. Let d be the resulting metric. Since G preserves the unit
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circle the annulus V̂1 = {z ; d(z, S1) < ✏} is invariant by T
i

and the closure
of G�1(V̂1) is contained in V̂1. Hence ��1(V̂1) has the required properties (by
construction it is invariant under R

i

).

Corollary 4.4. If f is a real analytic map that has a quadratic-like extension F
then there exists a map g that belongs to some Epstein class and is analytically
conjugate to F . Moreover, g has an extension which is quadratic-like.

Proof. Let F : U ! V be a quadratic-like extension of f . Then one has F (z) =
F (z) and there exist holomorphic univalent symmetric maps � and  such that
F = ��Q� . So let U1 =  (F�1(U)) and V1 =  (U) then F1 : U1 ! V1 defined
by F1 =  � F �  �1 is a quadratic-like map conjugate to F and F1 =  1 � Q
where  1(z) =  � �. Hence F1(�z) = F (z) and F1(z) = F1(z). As we will
see in Corollary 2 to Theorem 4.3, it follows that one can find a neighbourhood
of the dynamical interval U2 such that V2 = F1(U2) contains the closure of U2

and such that V2 is invariant under the involutions z 7! �z and z 7! z. By the
Riemann Mapping Theorem, there exists a holomorphic di↵eomorphism H from
V2 onto C

J

= (C\R)[J where J is an open interval that contains the dynamical
interval of f (we may choose H so that it fixes the critical point and such that
H 0 is positive in the fixed point). Since V2 is invariant under the involutions,
H is also invariant under these involutions. Let us show that the restriction of
G = H �F �H�1 to the dynamical interval of f belongs to an Epstein class. The
closure of U = G�1(C

J

) is contained in C
J

. Let Q be the real quadratic map
which sends c0 to G(c0). Let U±,± be the components of U minus the horizontal
and vertical lines through c0. Since both G and Q are symmetric with respect
to both involutions, it follows that G maps the upper-right component U+,+

di↵eomorphically onto the intersection of C
J

with the lower halfplane. Using
the fact that this map is invariant by the involutions, it follows that there exists
a unique holomorphic di↵eomorphism � from Q(U) to C

J

that maps the lower
halfplane to the lower halfplane and satisfies G = � �Q. Hence the restriction
of G to the dynamical interval belongs to an Epstein class.

5 The Complex Bounds

In this section we will establish the basic connection between real and complex
dynamics by proving the following theorem which tells us that an important
collection of real analytic infinitely renormalizable maps, after a number of
renormalizations, can be extended to quadratic-like maps of bounded conformal
type. Of course this result is especially useful because it enables us to use
the pullback technique of the previous section and we will conclude that these
renormalized maps are contained in some compact set of maps. So the Main
Result of this section is the following theorem.

Theorem 5.1. For each N > 0 there exists L = L(N) such that if f 2 U! is
an infinitely renormalizable map of combinatorial type bounded by N that either
belongs to some Epstein class or has a quadratic-like extension, then there exists
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n0 = n0(f) such that for n � n0, the mapping Rn(f) extends to a symmetric
quadratic-like map whose conformal type is bounded by L.

If f is quadratic-like then we know already by Proposition 4.1 that Rn(f) is
also quadratic-like. However, now we shall also give bounds for the conformal
moduli. One of the main ingredients of the proof are the real bounds from
Sections 2 and 3. We should emphasize that it is enough to prove Theorem 5.1
for maps in some Epstein class, see Corollary 3 of Theorem 4.3.

Since Theorem 5.1 might also be true for real analytic maps, we first extend
a real analytic map f : [0, 1] ! [0, 1] to a small open set in the complex plane.
Then we get the following:

Lemma 5.1. For each f 2 U! there are neighbourhoods U and V of the dy-
namical interval [0, 1] in the complex plane such that f extends to a holomorphic
map F : U ! V with the following properties:

1. F is a proper degree two covering map of U \ {c} onto V \ {F (c)} and it
is real, i.e., commutes with complex conjugation.

2. F factors as F = � �Q � where Q is the real quadratic map and � and
 are holomorphic univalent functions defined on neighbourhoods of [0, 1]
and Q( [0, 1]).

Proof. Because f is real analytic one can extend f uniquely to a complex
analytic map on a neighbourhood of [0, 1] in the complex plane. By taking this
neighbourhood small enough we get the above properties since f has only one
critical point in the origin and this is a quadratic one.

The holomorphic map F of Lemma 5.1 is in general not a quadratic-like
map because V need not contain the closure of U . Nevertheless, we will use the
notation of Section 4, namely, we slit V at the intersection of [F (0),+1) \ V
and denote by U� and U+ the components of U \F�1([F (0),+1)) as in Figure
5.1. We let F�1

s

: V \ [F (0),1) ! U
s

, for s = ±, be the holomorphic inverse
branches of F .

Let us assume that f is infinitely renormalizable and, as in the previous
sections, let q(n) denote the renormalizing return times and let 4

n

be the
interval [f2q(n)(c), fq(n)(c)]. This interval is fq(n)-invariant and contains the
critical point c. Moreover, let ⌅

n

be the disjoint collection of intervals 4j

n

=
f j(4

n

), j = 0, 1, . . . , q(n) � 1. Hence the collection ⌅
n

is invariant by f and
the intersection over all n of the union of the intervals in ⌅

n

is the attracting
Cantor set ⇤

f

of f . The real bounds give that the sum of the lengths of the
intervals in ⌅

n

goes exponentially to zero as n goes to infinity if f has bounded
combinatorics.

In order to show that some renormalized version of f is quadratic-like, we
want to analyze the backward orbit of F along these intervals. The main aim
is to find a small neighbourhood V of 4

n

whose q(n)-preimage U is mapped
strictly into itself. In order to make this precise, we want to define which
preimages we should take.
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Fig. 5.1:

Definition. Let f be infinitely renormalizable and x�j

be a sequence defined
by x0 = c and by x�(j+1) as the only point in the attracting Cantor set such
that f(x�(j+1)) = x�j

, i.e., x�j

is the only backward branch of the critical
point that remains in the attracting Cantor set. (After all, f is injective on
the attracting Cantor set.) The sign map is the map s : N ! {±} satisfying
F�1

s(j)(x�j

) = x�(j+1) for all j 2 N. The basic backward compositions are the
maps

B
n

= F�1
s(q(n)�2) � · · · � F�1

s(j) � · · · � F�1
s(0).

Let S
n

be the maximal neighbourhood of 41
n

on which fq(n)�1 is monotone
and let W

n

= fq(n)�1(S
n

). Observe that the basic backward composition B
n

maps 4
n

di↵eomorphically onto 41
n

and, as we have already seen in Section 2,
it is also defined and monotone on W

n

. From Section 2 we also get that the
size of each component of W

n

\4
n

is bigger than a universal constant times the
size of 4

n

. In order to prove the Main Theorem of this section, we will have
to understand the distortion properties of the basic backward compositions in
neighbourhoods of the renormalizing interval4

n

in the complex plane. For that
we notice that each factor in a basic composition is a square root composed with
a map which is univalent in a region which is very big compared to the sizes
of the intervals under consideration. So we will analyze the distortion of these
maps with several di↵erent arguments, using the information coming from the
real bounds on the exponential decay in the length of the intervals in ⌅

n

.
First we need some background on the hyperbolic metric on a slit region in

the complex plane.

Definition. Let J be an interval of the real line and C
J

be the set of all complex
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numbers except for the real numbers that are not in J , i.e.,

C
J

= (C \ R)
[

J.

Let C
J

be endowed with the hyperbolic metric and let ⇢
J

be the corresponding
distance function. It is clear that J is a geodesic of C

J

since complex conjuga-
tion, being conformal, is an isometry of the hyperbolic metric and fixes J . If
J = [�1, 1], the composition of the maps z 7! z2 and z 7! z�1

z+1 is a holomorphic
isomorphism between the half-plane {z 2 C ; Re(z) > 0} and C

J

. Hence the
set of points in C

J

whose hyperbolic distance to J is at most k is the union
of two Euclidean discs, symmetric to each other with respect to the real axis,
whose boundaries intersect at the boundary of J (in the next exercise it is
shown that these discs intersect the positive real axis at an angle ✓ such that
k = log tan(⇡2 �

✓

4 )). We shall denote by

D
k

(J) or D(J ; ✓)

any of these so-called Poincaré neighbourhoods of J .

Exercise 5.1. Prove these statements. Moreover, show that the Euclidean
radius of each of the circles which contain @D(J ; ✓) is equal to |J |/(2 sin(✓)).
(Hint: z 7! z2 sends C+ = {z 2 C ; Re(z) > 0} homeomorphically onto C \
{positive real numbers} preserving the positive real axis and z 7! z�1

z+1 maps the
set C+ homeomorphically onto C

J

while mapping the positive real axis onto
J = [�1, 1]. So D

k

(J) is the image under this composition of the set with
distance k to the positive real axis in the hyperbolic metric of C+. Of course
C+ is a rotated version of the usual upper half-plane and therefore the metric
on this set is given by (1/Re(z))|dz|. So in this right half-plane the geodesics
are lines and circles perpendicular to the imaginary axis. So the boundary of
the set with distance  k to the positive real axis consists of two straight lines
going through 0. Moreover, if the angle of such a line with the positive real axis
is ✓/2 then the distance of this line with the real axis is equal to

Z

✓/2

0

1
cos(t)

dt =
Z

✓

0

1
2 cos(t/2)

dt = log tan(
⇡

2
� ✓

4
).

Since the corresponding set in C
J

is the disc D(J ; ✓) the first part follows. From
Figure 5.2 the second statement also follows.)

This hyperbolic metric on C
J

is very useful because ‘square roots contract
this metric’. More precisely, let T be a square root, i.e., T = AF1 � S � AF2

where
S : C \ {negative real numbers}! C

is the standard square root map and AF
i

are real a�ne maps. Suppose T maps
J onto J di↵eomorphically (in particular, its singularity is in R \ J) then T
is a holomorphic map of C

J

into itself. Therefore, by the Lemma of Schwarz
(which can be found in the Appendix), it contracts the Poincaré metric. Since
T preserves J this implies that

T (D
k

(J)) ⇢ D
k

(J) for all k > 0.
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Fig. 5.2: The set of points whose hyperbolic distance to J is equal to k.

Similarly, if T is as above but maps J di↵eomorphically to T (J) then

T (D
k

(J)) ⇢ D
k

(T (J)) for all k > 0.

In the next lemma we will show that something similar holds for univalent
holomorphic maps which are just defined near J and not on all of C

J

. This
lemma will only be used in Lemma 5.3 below. We should point out that Lemma
5.3 will only be used for maps in some Epstein class in which case the proof
is immediate. However, because Theorem 5.1 might also be true for any real
analytic map we have included a proof of Lemma 5.3 in this more general setting.
Given an interval J ⇢ R, let D

J

be the Poincaré neighbourhood of J and ⇢
J

the Poincaré metric on C
J

as above.

Lemma 5.2. Given a > 0 and r0 > 0 there exist K = K(r0, a) and l0 > 0 with
the following property. If � satisfies the conditions:

1. � is holomorphic and univalent on a Euclidean disc of radius a centered
at a point of an interval J ⇢ R and D

r0(J) is contained in this Euclidean
disc;

2. � maps the real axis into the real axis;

3. |J |  l0.

Then, provided k  r0,

⇢�(J)(�(x),�(y))  (1 + K|J |)⇢
J

(x, y)

for all x, y 2 D
k

(J); so in particular �(D
k

(J)) ⇢ D(1+K|J|)k(�(J)).

Proof. Without loss of generality we may assume that �(J) = J . Let B(x0; a)
be the Euclidean disc of radius a centered at a point x0 2 J which contains
D

r0(J) as above. Let us take x0 to be the middle point of J . Furthermore, let
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⇢
J

be the Poincaré metric of C
J

and let ⇢̃
J

be the Poincaré metric of this set
intersected with B(x0; a), i.e., on (B(x0; a) \ R) [ J .

We claim that there exist l0 > 0 and K > 0 such that if x, y 2 D
r0(J) and

|J | < l0 then ⇢̃
J

(x, y) < (1 + K|J |)⇢
J

(x, y).
Before proving this claim let us show that it implies the lemma. Let ⇢ be

the Poincaré metric on (�(B(x0; a)) \ R) [ �(J). Since � is univalent we have
that ⇢(�(x),�(y)) = ⇢̃

J

(x, y). By the Lemma of Schwarz, ⇢�(J)(�(x),�(y)) 
⇢(�(x),�(y)). So the claim implies

⇢�(J)(�(x),�(y))  ⇢(�(x),�(y)) = ⇢̃
J

(x, y) < (1 + K|J |)⇢
J

(x, y)

if x, y 2 D
r0(J).

So it remains to prove the claim. Let ↵0 = ↵0(J) be the smallest angle such
that D(J ;↵0) ⇢ B(x0; a). Notice that ↵0(J) ! 0 as |J | ! 0 and, for |J |  l0
we have ↵0(J)  K0|J | for some constant K0 > 0 depending on l0. This is true
because, if |J | is small enough, D(J ;↵) ⇢ B(x0; a) whenever (2|J |)/(2 sin↵) < a

(here
|J |/2
sin↵

is the radius of the Euclidean circle which contain @D(J ;↵), see the
exercise above). Because ↵0 is the smallest ↵ for which this is true this gives
1
2↵0 < sin(↵0)  |J|

a

. Now, there exists K1 > 0, independent of J , such that
the hyperbolic distance ⇢

J

(x, @B(x0; a)) > log K1
|J| for all x 2 D

r0(J). This is so
because

⇢
J

(x, @B(x0; a)) � ⇢
J

(x, @D(J ;↵0)) � ⇢J

(@D
r0(J), @D(J,↵0))

and since both these curves @D
r0(J) and @D(J,↵0) have a constant distance to

J . This last distance is greater or equal to

log tan
⇣⇡

2
� ↵0

4

⌘

� r0 � log
K1

|J |

for |J | su�ciently small. Here we used 1
2↵0 < sin(↵0)  |J|

a

in the last inequality.
Let �

J

(z)|dz|, �̃
J

(z)|dz| and  (z)|dz| be the Poincaré metrics of C
J

, (B(x0; a)\
R) [ J and of D

x,

K1
|J|

= {z ; ⇢
J

(z, x) < K1
|J| }. If x 2 D

r0(J), D
x,

K1
|J|
⇢ B(x0; a)

and therefore, by the Lemma of Schwarz,  (x) � �̃
J

(x). On the other hand if
 : C

J

! D is a hyperbolic isometry such that  (x) = 0 then  (D
x,

K1
|J|

) is the

Euclidean disc D
s

with radius s, where log K1
|J| = log 1+s

1�s

. But the scalar map
z 7! z/s is an isometry between the hyperbolic metric on D

s

and that of D.
So from this one gets immediately  (x)

�

J

(x) = 1
s

. Thus �̃
J

(x)  (1 + K|J |)�
J

(x).
Hence, for every x, y 2 D

r0(J) we have that

⇢̃
J

(x, y)  (1 + K|J |)⇢
J

(x, y)

and this proves the claim and, therefore, the lemma.

Remark. We can use the same argument with the inverse of � and we get

(1�K|J |)⇢
J

(x, y)  ⇢
�(J)(�(x),�(y))  (1 + K|J |)⇢

J

(x, y)
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Lemma 5.3. Let R > 0 be given. Let S
n

be the maximal neighbourhood of 41
n

on which fq(n)�1 is monotone and let W
n

= fq(n)�1(S
n

). Then there exists n0

such that if n � n0 then the basic composition B
n

is defined and it is univalent
on the Poincaré neighbourhood D

R

(W
n

).

Proof. In fact we shall use Lemma 5.3 only for maps which are in some Epstein
class. In that case the proof is obvious. In order to be complete we give the
proof in the general case. Let W i

n

be the interval neighbourhood of 4i

n

which is
mapped monotonically onto W

n

by fq(n)�i. Since W i

n

is contained in an interval
of the form 4j

n�3, one gets from the bounded geometry that
P

q(n)�1
j=1 |W j

n

| goes
to zero exponentially with n. Let F = � � Q and let a > 0 be such that
� is univalent on the disc of radius a centered at any point of Q(4

n

). Let
K = K(2R, a) be as in Lemma 5.2 and take n0 so large that for n � n0, we
have

Q

q(n)�1
j=1 (1 + K|W j

n

|) < 2 and |Q(W j

n

)| < l0. Because |W i

n

|! 0 as n!1
we can also assume that n0 is so large that D2R

(W i

n

) is contained in a disc with
radius a. From Lemma 5.2 one gets

F�1(D
R

(W
n

)) = Q�1��1(D
R

(W
n

)) ⇢ Q�1D(1+K|W
n

|)R(��1W
n

).

Moreover,

Q�1D(1+K|W
n

|)R(��1W
n

) ⇢ D(1+K|W
n

|)R(F�1W
n

) = D(1+K|W
n

|)R(W q(n)�1
n

)

because, from the Lemma of Schwarz, Q�1 : C\��1W
n

! C\F�1W
n

contracts
the Poincaré metric on these spaces. Hence

F�1(D
R

(W
n

)) ⇢ D(1+K|W
n

|)R(W q(n)�1
n

).

By assumption the set D(1+K|W
n

|)R(W q(n)�1
n

) is contained in a disc of radius
a and so � is univalent on the Q image of this set. So we can repeat all
this and we get that the basic composition B

n

maps D
R

(W
n

) univalently into
D2R

(B
n

(W 1
n

)).
To prove Theorem 5.1, we will show that for n big enough, the map F�1

+ �Bn

maps some neighbourhood of the dynamical interval 4
n

well inside itself. In
view of Lemma 5.2, we will start by analyzing the situation in which all factors
of the composed map B

n

are in fact square root maps. Later, in Remark 2
below Lemma 5.4, we will extend the proof to the situation where some of the
factors are square root maps but the others may be more general holomorphic
maps that are univalent on the upper half-plane. We will select some of these
factors and will treat them as square root maps and we will group the others
into maps with some distortion properties. We state this abstractly as follows.
As before we say that T is a square root if T is of the form T = AF1 � S � AF2

where
S : C \ {negative real numbers}! C

is the standard square root map and AF
i

are real a�ne maps. Next let ⌃ be
the set of square roots maps of the upper half-plane which induce orientation
preserving homeomorphisms from some fixed interval I = [a, b] onto itself (and
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therefore the singularity of T is not contained in I). If a map T 2 ⌃ is such
that its singularity t to the left of a we say that it is a left root; if its singularity
is to the right of b we say that it is a right root. We consider compositions of
the form

A
m

� C
m

� · · · �A2 � C2 �A1 � C1

satisfying the following properties depending on parameters (k, K,�) with 1 <
k < K and � > 0.

1. A1 is a left root with singularity a and A
m

is a right root with singularity
b;

2. If i = 2, 3, . . . ,m � 1, A
i

is a left root whose singularity a
i

< a moves
exponentially fast to the left: 1 < k < |a�a

i+1|
|a�a

i

| < K (so a2 < a� 1);

3. For i = 2, 3, . . . ,m � 1, C
i

is a univalent map of the upper half plane
which is a self homeomorphism of I. This composition has a precise kind
of bounded distortion near the interval [a

i

, a]. Namely, if I
i

� I is the
maximal subinterval of the real axis which is mapped homeomorphically
into the real axis by C

i

then the image of I
i

contains [a
i

, b] � [a, b] and
the preimage J

i

of [a
i

, a] under C
i

is well within I
i

(by this we mean that
I
i

contains a �-scaled neighbourhood of J
i

).

These abstract compositions will later be related to the composition B
n

by
looking carefully at the dynamics of f . In Figure 5.3 we describe the image of
the upper half-plane by the factors of the above composition.

Let N be the Poincaré neighbourhood of I whose Euclidean radius is the
maximum of the numbers |a

k

� a|.

Lemma 5.4. (The Sector Lemma) For each (k,K,�) as above, there exists
✓ > 0 such that the image of the neighbourhood N under any composition

A
m

� C
m

� · · · �A2 � C2 �A1 � C1

which satisfies Properties 1, 2 and 3 from above with parameters (k, K,�), is
contained in the sector bounded by the vertical line at b, the interval I and the
line through a with an angle ✓ with the negative real axis as in Figure 5.4.

Proof. Let the angle of a point z be the angle of the line through a and z with
the negative real axis. We start by analyzing the distortion properties of the
map C

i

. By definition, C
i

= T
n(i) � · · · � T2 � T1 where T

i

2 ⌃. Since C
i

is a
di↵eomorphism on the interior of I

i

, any factor T
j

of the above composition is a
di↵eomorphism on Ij

i

= T
j�1 � · · · � T1(Ii

). In particular, T
i

is holomorphic and
univalent in the Poincaré neighbourhood D1(Ij

i

) and, by the Lemma of Schwarz,
T

j

(D1(Ij

i

)) ⇢ D1(Ij+1
i

) and C
i

is holomorphic and univalent on D1(Ii

). By
Koebe’s Distortion Theorem (see the Appendix), C

i

has bounded distortion on
U

i

= D1(J 0
i

) where J 0
i

� J
i

is well inside I
i

and J
i

is well inside J 0
i

. By Property
3 the interval J

i

[ I is well inside U
i

and therefore the image of U
i

by A
i

� C
i

contains a rectangle R
i

in the upper half-plane whose base is [A
i

(a
i

), a] and
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Fig. 5.3: The action of the maps A
i

, C
i

and the intervals J
i

and I
i

.
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• •
ba

✓

Fig. 5.4:

whose height is a definite proportion of the length of the base as indicated in
Figure 5.5.

Now we prove the Sector Lemma. Start with any point p1 in the upper
half-plane and define p2 = A1 � C1(p1), . . . , p

i+1 = A
i

� C
i

(p
i

) for i > 1. First
note that p2 lies to the right or on a vertical line through a. We will complete
the lemma in three steps now.

Step 1: If p
i

is not in U
i

then p
i+1 /2 R

i

⇢ A
i

� C
i

(U
i

) as in Figure 5.5. Since
the height of R

i

is a definite proportion of its base [a
i

, a], the angle ✓
i+1 of p

i+1,
is bounded away from 0. This is so because p

i+1 = A
i

� C
i

(p
i

) lies to the right
of the vertical line through A

i

(a
i

) and above the rectangle R
i

as in Figure 5.6.
So if p

i

/2 U
i

for all i then we are finished.

Step 2: If p
i

is in U
i

but the angle ✓
i

is very close to ⇡, then, by the bounded
distortion property, ✓

i+i

is not too small.

Step 3: So assume there is a first i so that p
i

2 U
i

and the angle ✓
i

is not
too near ⇡. Since i is minimal we may assume that the angle ✓

i

of p
i

with
the negative real axis is not too small because of Steps 1 and 2 and because
p2 is to the right or on the vertical line through a. Then we apply a fixed
number l of the factors A

i

� C
i

, A
i+1 � C

i+1, . . ., until a
i+l

is much further
away from a than p

i+l

. This happens because of Property 2 and the remark
below. During these l iterations the angle as viewed from a is only distorted by a
bounded amount. The point p

i

is contained in a Poincaré neighbourhood whose
Euclidean size depends on the scale (i.e., on i) and on the angle of p

i

which
is not too small. The next l iterates remain in this Poincaré neighbourhood
since this neighbourhood is invariant whereas the root moves away. Hence,
the subsequent factors A

j

� C
j

, for m > j > i + l, only cause a sequence of
distortions decaying geometrically by Property 2 and the remark below. Thus
the angles of p

i

, . . . , p
m�1 stay away from zero. Moreover, as we are assuming

that p
i

2 U
i

, this point also belongs to the Poincaré neighbourhood N . Since
each T 2 ⌃ preserves I, the lemma of Schwarz implies that C

j

and A
j

map N
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Fig. 5.5:

into itself and so p
i+1, . . . , pm�1 are also in N . But C

m

has bounded distortion
on N . This can be seen as follows. Since I

m

contains a scaled neighbourhood
of (a

m�1, a) and N has radius |a
m�1 � a| (and is ‘based in I) it follows that N

has bounded diameter in terms of the Poincaré metric on C
I

m

. But as before,
this and Koebe’s Distortion Theorem implies that C

m

has bounded distortion
on N . Therefore C

m

only reduces the angle by a bounded factor. Finally A
m

,
the right root, reduces the angle by at most a factor two. This completes the
proof of the Sector Lemma.

Remark. If a holomorphic map is univalent on C
J

then Koebe’s Distortion
Theorem implies that it has bounded distortion on any region R0 as in Figure
5.7. The constants depend on the shape of R0. Furthermore, it has exponentially
small non linearity on a region R

n

which is exponentially small. Hence the
maps have bounded distortion and this yields the bounded distortion of the
composition of the first l iterates (l fixed) we needed in the proof above. The
fact that the regions R

n

go down exponentially fast to zero, yields that the
distortion of the subsequent maps goes exponentially fast to zero.

Next we will prove that once we get control on the angle of the image of N as
in the Sector Lemma, we can bound the height of the image of a smaller region.
Let ✓ 2 (0, ⇡2 ). Let a < b < d, a < a0 < b0 < d and let d0 be a point in the upper
half space with the same real part as b0. Let S be the cone in the upper half
space whose boundary is the union of the interval [a0b0], the vertical line through
b0, d0 and the ray in the positive half plane that starts in a0 making an angle ✓
with the negative real axis as in Figure 5.8. For each R > 0, D

R

denotes the
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Fig. 5.6: The region A
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C
i

(U
i

) is bounded by the line segments [A
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), u
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], [A
i

(a
i

), v
i

]

and a curve connecting u
i

and v
i

in the positive quadrant. p
i+1

lies above R
i

(and

outside A
i

C
i

(U
i

)).
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intersection with the upper half space of the Poincaré neighbourhood of radius
R of the geodesic (a, d) of the Riemann surface C(a,d) = (C \ R) [ (c, d).

Lemma 5.5. Given ✓ > 0 and C > 0, there exists r0 > 0 such that if the dis-
tance between any two of the points a, b, d, a0, b0, d0 is bigger than 1

C

and smaller
than C, then there exists for each L > r0, a constant R > 0 satisfying the prop-
erty below. If F : D

R

! S is a univalent map that maps [a, d] homeomorphically
onto the interval of the boundary of S with endpoints a0, d0, then

F (D
L

) ⇢ D
L/2.

Proof. Let  : H! S be the Riemann mapping normalized so that  (1) =1,
 (a) = a0,  (d) = d0. Let  

R

: D
R

! S be the holomorphic di↵eomorphism
that maps a into a0, d into d0 and the highest point in the boundary of D

R

into
infinity. Hence F �  �1

R

is a univalent map from S into S that maps the arc
a0, d0 of the boundary of S homeomorphically onto itself. We split the proof in
some steps.

Step 1: If � : S ! �(S) ⇢ S is a univalent function that maps homeomorphi-
cally the arc [a0, d0] of the boundary of S homeomorphically onto itself, then

�( (D
r

)) ⇢  (D
r

) for all r > 0.

Proof.  �1 � � �  extends, by symmetry, to a univalent map of C(a,d) into
itself. Hence, by Schwarz, it maps D

r

inside itself for all r > 0.

Step 2: There exists r0 > 0 such that, if L > r0 then

 (D2L

) ⇢ DL

2
.

Proof. Let S̃ be the sector bounded by the vertical ray from b0 and the hori-
zontal ray from b0 in the negative direction. Let G : H! S̃ be the holomorphic
di↵eomorphism that maps 1 into 1, a into a0 and d into d0. From the hy-
pothesis, we get that G is the composition of the square root map with an
a�ne map of bounded distortion. Hence, G(D2L

) ⇢ DL

2
if L is big enough.

On the other hand, since S ⇢ S̃ we have that G�1 �  is a univalent map
of C(a,d) into itself. Therefore, by Schwarz, G�1( (D2L

)) ⇢ D2L

. Hence,
 (D2L

) ⇢ G(D2L

) ⇢ DL

2
.

Step 3: Given L0, there exists R0 such that if L  L0 and R � R0, then

 
R

(D
L

) ⇢  (D2L

.

Step 4: Let � be as in 1) and let R̄ � r0 as in 2). If R � R0(R̄), R0 as in 3),
we have

� 
R

(D
R̄

) ⇢ � (D2R̄

) ⇢  (D2R̄

) ⇢ D
R̄

2
.
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Fig. 5.8: Fig VI.5.8

In the remainder of this section we will show that if f is Epstein and it
is infinitely renormalizable of combinatorial type bounded by N then one can
define a factoring of all the basic backward compositions with the properties
needed in the Sector Lemma. In order to define this factorization, let us recall
the notation we have already introduced in the beginning of this section. Let
F : U ! V be the holomorphic extension of f to a degree two branched covering
map from Proposition 5.1; F�1

s

, s = ± are the two inverse branches of the
inverse of f ; c�k

is the inverse branch of the backward orbit of the critical
point staying in the attracting Cantor set and s : N ! {±} is the sign map:
F�1

s(k)(c�k

) = c�(k+1). Also ⌅
n

is the collection of intervals

{4
n

,41
n

= f(4
n

), . . . , fq(n)�1(4
n

) = 4q(n)�1
n

}.

Definition. The scale map sc : N! N is defined by sc(k) = max{i ; c�k

2 41
i

}.
Since c�k

2 �1
0 for any k this definition makes sense. Note that sc maps

{0, . . . , q(n)� 2} onto {0, . . . , n� 1}.
We also consider a partition of the integers {0, 1, . . . , q(n) � 2} in ‘epochs’

as follows. Let e
n

(j) be the smallest integer in {0, 1, . . . , q(n) � 2} such that
sc(k) < j for all k > e

n

(j). Clearly q(n)�2 � e
n

(1) > e
n

(2) > · · · > e
n

(n�1) �
0. So define

E
n

(1) := {e
n

(2) + 1, . . . , q(n)� 2},

E
n

(j) := {e
n

(j + 1) + 1, . . . , e
n

(j)}

for j = 2, . . . , n� 2 and

E
n

(n� 1) := {1, . . . , e
n

(n� 1)}.

These collections of sets form a partition of {0, 1, . . . , q(n) � 2}. Note that for
j > 1, by definition, the maximal value of the scale function restricted to E

n

(j)
is j and that this maximal value is assumed at the right boundary point of E

n

(j).
Moreover, the number of points where the scale map assumes the maximal value
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in an epoch is universally bounded because of the bounded combinatorics. One
of these maxima corresponds to the closest approach of c�k

to the critical value
for k in the corresponding epoch.

Example. Let us consider the periodic doubling case q(k) = 2k, k  n = 6. In
Figure 5.9 we have drawn the graph of the scale map from 0 to q(6) = 64�2 = 62
and the corresponding epochs.
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Fig. 5.9: The scale map in the period doubling case for n = 6. The end of each epoch

is marked in the graph.

Definition. A root at level n is an integer k 2 {0, . . . , q(n) � 1} such that
k 2 E

n

(sc(k)), i.e., k is an integer where the scale map assumes its maximum in
its epoch. (The maximal value of the scale map on E

n

(j) is by definition j and
so there certainly exists an integer k 2 E

n

(j) such that sc(k) = j.) A root k is
a left (resp. right) root if the interval of ⌅

n

that contains c�k

has the opposite
(resp. the same) orientation as the critical value interval 41

n

, i.e., when the
iterate of f (or F |R) mapping the interval �1

n

to the interval �i

n

containing c�k

is orientation preserving (respectively orientation reversing). Below we shall
show that this terminology corresponds to the one introduced before.

Let us show that the largest element in E
n

(j) is always a left root. Indeed,
let k be the largest element in E

n

(j). By definition we have that sc(k) = j.
Let 4i

n

2 ⌅
n

be the interval that contains c�k

. Since sc(k) = j we have
that 4i

n

⇢ 41
j

and 4i

n

is not contained in 41
j+1. In fact, 4i

n

is precisely the
element of ⌅

n

contained in 41
j

\41
j+1 which is further (in terms of backward

iteration) from 4
n

. Of course this is the first iterate of 41
n

which is contained
in 41

j

\41
j+1. Since fq(j) is the first return map to 41

j

one has J = fq(j)(41
n

).
Since fq(j) : 41

j

! 41
j

is a unimodal map – it has only one turning point (but
does not map the boundary into itself) – and 41

j

and 41
n

contain the critical
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value of f , we have that fq(j)|41
n

is orientation reversing. This shows that the
largest element in E

n

(j) is always a left root.
We can now define the factoring of the n-th basic backward composition

B
n

= F�1
s(q(n)�2) � · · · � F�1

s(j) � · · · � F�1
s(0).

We partition this composition in blocks of maps containing no left roots and
maps which are left roots. More precisely, let C1 = F�1

s(i)�1 � · · · � F�1
s(0) where

s(i) is maximal so that the block {0, . . . , s(i)� 1} contains no left roots. Then
s(i) is the first left root and so we set A1 = F�1

s(i). For m � 2 let C
m

=
F�1

s(j+l)�1 � · · · � F�1
s(j)+1 where j is the (m� 1)-th left root and j + l is the next

left root and we set A
m

= F�1
s(j+l). In this way we get

B
n

= A
m

� C
m

� . . . A1 � C1.

Since the largest elements of E
n

(j) are left roots, the indices s(j)+1, . . . , s(j+l)
of the maps appearing in

A
j

� C
j

= F�1
s(j+l) � · · · � F�1

s(j)+1

are all contained in one epoch.
Let us now explain how all this relates to the abstract situation of compo-

sitions in ⌃ we studied above. So let I = [a, b] be some fixed interval and let
4j(k)

n

be the interval in ⌅
n

containing c�k

. We identify 4j(k)
n

⇢ R with I ⇢ R
via an a�ne map U

k

which is orientation preserving if 4j(k)
n

and �1
n

have the
same orientation and orientation reversing otherwise. Then we define

T
s(k) = U

k

� F�1
s(k) � U�1

k�1.

Clearly, if F is a quadratic map then T
s(k) 2 ⌃ and so T

s(k) maps the upper-half
plane into itself. Let us analyze when T

s(k) is a left root. F�1
s(k) is orientation

preserving on R if s = � and reversing in s = + (this is because f is increasing
to the left of c and decreasing to its right; see also Figure 5.1). In particular,
U

k

is orientation preserving if and only if s(k) = � and U
k�1 is orientation

preserving or if s(k) = + and U
k�1 is orientation reversing. Furthermore, since

F�1
� maps the upper-half plane to the left of some line and F�1

+ maps it to the
right of some line it follows that U � F�1

s

� U 0 is a left root if and only if s = +
and U is orientation preserving or s = � and U is orientation reversing (the
orientation of U 0 is irrelevant for this). But this implies that F�1

s(k) is a left root
if U

k�1 is orientation preserving and a right root otherwise. Hence the above
terminology.

Lemma 5.6. If f = � �Q is an infinite renormalizable map of bounded combi-
natorial type that belongs to some Epstein class then the above factoring of the
basic backward compositions satisfies the conditions of the Sector Lemma.

Proof. The topology is right for property iii). Hence the statement follows
from the real bounds.
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Proof of Theorem 5.1: The main tool for the proof of Theorem 5.1 is the
Sector Lemma. Let ✓ be as in the Sector Lemma, where the parameters k, K,�
are given by the real bounds. Let R and R be as in Lemma 5.5.

Let W
n

= [a, c] be the maximal interval containing 4
n

such that the basic
composition B

n

is defined and monotone on W
n

. Let W
n

i

= f i�1(B
n

(W
n

)) for
i = 1, · · · , q(n). Let [a0, a00] be the maximal symmetric interval containing the
critical point such that fq(n)([a0, a00]) ⇢W

n

. We may assume that fq(n)(a0) = a.
Let b0 be the critical point of f . Of course b = fq(n)(b0) 2 [a0, b] is the extremal
value of fq(n)|4

n

.

The basic composition is well defined and univalent on the Poincaré neigh-
bourhood D

R

(W
n

). From the choice of W
n

, the root A1 has a left singularity
at a and A

m

is a right root with singularity b = F q(n)(b0) = F q(n)(c). By
Lemma 5.7, the factorization of the basic composition satisfy the hypothesis
of the Sector Lemma. From the Sector Lemma we conclude that the image of
D

R

(W
n

) by F�1 � B
n

is contained in a sector S based on the interval [a0, b0]
and with angles ✓ and ⇡

2 . Because of the real bounds the interval [a0, a00] is
contained well inside W

n

as indicated in Figure 5.10. Now we can use Lemma
5.5 to prove that F�1

+ � B
n

maps D
R

(W
n

) well inside itself and the theorem is
proved. This implies that the conformal moduli are bounded from above and
below. The statement of Theorem 5.1 holds also for maps that have quadratic-
like extensions because, as we have already observed in Section 1, such maps
are analytically conjugated to maps that belong to some Epstein class.
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Fig. 5.10: The region F�1

+

B
n

(D
¯

R

(W
n

)) is bounded by the line segments [a0, b0], [b0, d0]

and a curve connecting a0 and d0.
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As we saw before if F has a quadratic-like extension then it is holomorphi-
cally equivalent to a map in some Epstein class. This is the reason we were
able to assume in the proof of Theorem 5.1 above that the maps are Epstein.
Using the compactness properties of the set of quadratic-like maps of bounded
conformal type, see the proof of Theorem 4.2d, we get the following uniform
version of Theorem 5.1.

Theorem 5.2. For each N > 0 there exists L = L(N) such that for each B0 > 0
there exists n0(N,B0) such that for any quadratic-like map F of conformal type
bounded by B0 one has the following properties.

1. If F is an infinitely renormalizable of combinatorial type bounded by N
then for n � n0, the mapping Rn(f) extends to a symmetric quadratic-
like map whose conformal type is bounded by L.

2. If F can be renormalized 10n0 times all with type bounded by N then
Rn0(f) extends to a symmetric quadratic-like map whose conformal type
is bounded by L.

6 Riemann Surface Laminations

In the previous section we have seen that, if a map f belongs to some Epstein
class and is infinitely renormalizable of bounded combinatorial type, then Rn(f)
extends to a quadratic-like map for n large. Furthermore, the renormalization
operator extends to an operator in the space of germs of such quadratic-like
maps. In order to prove the contraction of this operator we will embed the space
of germs of quadratic-like maps in a sort of Teichmüller space of laminations by
Riemann surfaces. In this section we will develop some aspects of a Teichmüller
theory for Riemann surface laminations.

6.1. Riemann surface laminations

Let us start this section by describing Sullivan’s notion of a Riemann surface
lamination and his Teichmüller theory on these laminations. As usual, a Rie-
mann surface is a topological surface with an open cover U

i

and homeomor-
phisms z

i

(called coordinate systems or charts) from U
i

to an open subset of
the complex plane C with the property that when U = U

i

\ U
j

6= ;,

z
j,i

= z
i

� z�1
j

: z
j

(U)! z
i

(U)

is holomorphic.

Definition. Let L be a Hausdor↵ topological space. A Riemann surface lam-
ination atlas on L is a collection of open homeomorphisms Z

i

: U
i

! D ⇥ ⇤
(each one of which we shall call a flow box) where D is the unit disc in C ⇤
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is a topological space and {U
i

} is an open cover of L, satisfying the following
property: the overlap maps Z

i

� Z�1
j

are of the form

(z,�) 7! (Z
j,i

(z,�),⇤
j,i

(�))

where z 7! Z
j,i

(z,�) is holomorphic for each �. A Riemann surface lamination
structure on L is an equivalence class of Riemann surface lamination atlases on
L, where two atlases are equivalent if their union is again an atlas. We call
Z�1

i

(D ⇥ {�}) a plaque. Furthermore, we say x and y in L are equivalent if
there exists a chain x = x0, x1, . . . , xn

= y such that x
i

, x
i+1 belong to the same

plaque. An equivalence class L of this equivalence relation in L is called a leaf.
By definition each leaf has a Riemann surface structure.

Definition. A Riemann surface lamination L is hyperbolic if: i) each leaf L of
L is a hyperbolic Riemann surface, i.e., there exists a holomorphic covering map
⇡

L

: D! L, where D is the Poincaré disc; ii) the Poincaré metric on the leaves
of L is continuous on L, i.e., if V is a continuous vector field tangent to the
leaves of L then the hyperbolic norm of V , p 7! |V (p)|, is a continuous function
on the lamination.

Remark. Candel (1991) has characterized the Riemann surface laminations
which satisfy condition ii) above. In particular, he proves that if there is no
invariant transversal measure then i) implies ii).

Let us give two examples of such laminations. The second example, which is
a special case of the first example as we will show below, will play a fundamental
role in this Chapter.

Example. Let f : S1 ! S1 be an expanding C1+↵ map of degree two. The
reason we consider such a map is because any quadratic-like infinitely renor-
malizable map corresponds to a degree two expanding map of the circle, see
the last result in Section VI.4. To such a circle map we associate a hyperbolic
Riemann surface lamination L

f

as follows. First we need to associate a solenoid
to f . Let S

f

be the collection of all preorbits of f , i.e.,

S
f

= {x = (. . . , x
n

, . . . , x1, x0) ; f(x
n

) = x
n�1}

endowed with the product topology and let ⇡
f

: S
f

! S1 be defined by ⇡
f

(. . . , x
n

, . . . , x1, x0) =
x0. Furthermore, let f̄ : S

f

! S
f

be the homeomorphism defined by

f̄((. . . , x
n

, . . . , x1, x0)) = (. . . , x
n

, . . . , x1, x0, f(x0)).

This is a homeomorphism because its inverse is the shift map, and f̄ covers
f : ⇡

f

� f̄ = f � ⇡
f

. It is called the natural extension of f . Let us show that
⇡

f

: S
f

! S1 is a locally trivial fibration whose fibers are Cantor sets. Indeed,
let p be a fixed point of f and p0 6= p so that f(p0) = f(p) and denote the arcs of



6. RIEMANN SURFACE LAMINATIONS 485

the circle connecting p to p0 by I0 and I1. If x 6= p then one of the preimages of
x is in I0 and the other in I1. In this way each point x in ⇡�1

f

(x0) corresponds
in a unique way to a sequence ⇢(x) = (. . . , ⇢

n

, . . . , ⇢1) 2 {0, 1}N, ⇢
n

= i if
x

n

2 I
i

, which represents its history. Thus ⇡�1
f

(S1 \ {p}) is homeomorphic to
(S1 \{p})⇥{0, 1}N. Moreover, define add: {0, 1}N ! {0, 1}N as the ‘adding one
map’, i.e.,

add(a) = add(. . . , a
n

, . . . , a1, a0) = (. . . , a
n

, . . . , a1, a0 + 1).

Here we use the cash-register convention: if a0 + 1 = 2 we should read zero
for this term and add one term to its left (and repeat this again and again if
necessary). If we define the equivalence relation {p+}⇥ (a) ⇠ {p�}⇥ add(a) on
(S1 \ {p}) ⇥ {0, 1}N (where we write S1 \ {p} = (p�, p+) and f(p+) = f(p�))
then S

f

becomes homeomorphic to (S1 \ {p})⇥ {0, 1}N)/ ⇠.
A connected component of this lamination is called a leaf. Each leaf is home-

omorphic to R and through the local homeomorphism ⇡
f

it inherits naturally
a smooth structure. Because the orbits of add: {0, 1}N ! {0, 1}N are dense,
each leaf is dense in S

f

. Moreover, to each periodic point of f corresponds
precisely one leaf of S

f

which is periodic under f̄ : if p is a periodic point of
f of period n then p 2 S

f

satisfying p
kn

= p8k � 0 is the periodic point of
f̄ . Using this lamination and the distortion theorem for expanding maps we
get a global linearization of f . Indeed, since f is C1+↵ each leaf L of S

f

even
carries a natural a�ne structure. More precisely, one can define a C1+↵ dif-
feomorphism h

L

: L ! R depending continuously (up to postcomposition with
a�ne transformations) on the leaf L such that f̄ becomes a�ne in terms of these
homeomorphisms restricted to each leaf. Indeed, if we take three consecutive
points a, b, c on a leaf L of S

f

we define

h
L

(c)� h
L

(a)
h

L

(b)� h
L

(a)
= lim

n!1
d
�

f̄�n(c) , f̄�n(a)
�

d
�

f̄�n(b) , f̄�n(a)
� .

Here d is the metric on the leaves such that ⇡
f

is a local isometry. Since f is
C1+↵, because of the distortion lemma this defines an a�ne structure which is
compatible with the smooth structure (i.e., h

L

is a C1+↵ di↵eomorphism) and
for which f̄ becomes a�ne on each leaf. A periodic leaf L of period k contains
a unique periodic point q̂ of f̂ that is mapped by ⇡

f

into a periodic point q
of f of the same period k. The multiplication factor of f̂k, which is equal to
h

L

(fk(q1))�h

L

(fk(q))
h

L

(q1)�h

L

(q)) for any q1 2 L di↵erent from q, is equal to the eigenvalue of
f at the periodic point q.

Now define a Riemann surface lamination L̃
f

as follows. Let L̂
f

= {(x, v) ; x 2
S

f

, v 2 T
x

l
x

}. Here l
x

denotes the leaf of S
f

through x and T
x

l
x

its tangent line
at x. We will give a Riemann surface structure on L̂

f

by covering it with two
flow boxes. Let p be the fixed point of f and x 2 S

f

\ ⇡�1
f

(p). Let x� and x+

be the only points on the leaf l
x

such that the interval (x�, x+) of l
x

contains x
and is mapped homeomorphically onto S1 \ {p} by ⇡

f

. Let h
x

: l
x

! R be the
unique C1+↵ di↵eomorphism that maps x� to zero, x+ to one and is a�ne. We
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define � : L̂
f

\ ⇡�1
f

(p)! {0, 1}N ⇥ (0, 1)⇥ R to be

�(x, v) = (⇢(x), h
x

(x),±|Dh
x

(x) · v|),

where we take the + sign if D⇡
f

(x) · v is a positively orientated vector in S1

and the � sign otherwise. We get the other flow box by the same construction,
using p0 instead of p. The lamination L̃

f

is defined as

L̃
f

= {(x, v) 2 L̂
f

; D⇡
f

(x) · v > 0}.

The restrictions of the above trivializations to L̃
f

are the trivializations of L̃
f

.
Since the Poincaré metric at the plaque that contains x is the pullback of the
Poincaré metric of the upper half space by the map Dh

x

we get the continuity
of this metric.

Let F̃ : L̃
f

! L̃
f

be the map

F̃ (x, v) = (f̄(x), Df̄(x) · v),

where Df̄(x) is the derivative of the restriction of f̄ to the leaf through x. In
terms of the local chart �, the expression of F̃ is an a�ne map on each leaf.
Clearly F̃ is an extension of the lift f̄ . Let L

f

= L̃
f

/ ⇠ be the orbit space of
F̃ , i.e., the quotient space of L̃

f

by the equivalence relation ⇠ that identify two
points if and only if they are in the same orbit of F̃ . It is easy to see that L

f

is
a compact Riemann surface lamination. Each leaf of L

f

is the image under the
quotient map, of a leaf of L̃

f

. A leaf associated to leaf of L̃
f

which is periodic
under F̃ is a cylinder. Furthermore, the conformal modulus of each cylindrical
leaf determines the eigenvalues at the corresponding periodic point of f and vice
versa. Clearly, all leaves are dense in L

f

.

Example. We will construct the same example as above from a di↵erent point
of view. Let U be a simply connected domain and F : U ! F (U) � U be a
quadratic-like holomorphic map whose filled Julia set J(F ) is connected. As
before, we consider the inverse limit

L̃
F

= {z = (. . . , z
n

, . . . , z0) ; z0 2 F (U) \ J(F ), F (z
n

) = z
n�1},

the fibration ⇡
F

: L̃
F

! F (U) \ J(F ) defined by ⇡
F

(z) = z0 and the natural
extension F̃ : ⇡�1

F

(U \ J(F )) ! L̃
F

. The Riemann surface lamination we will
actually consider is the space L

F

of orbits of F̃ . Before proving that this is
a Riemann surface lamination and that it is holomorphically equivalent to the
one of the previous example, we should note that L

F

does not depend of F
but only on the germ of F near the Julia set. Indeed, if W ⇢ U is a smaller
neighbourhood of J(F ) with F (W ) � W then L

F |W is the orbit space of F̃
restricted to ⇡�1

F

(F (W ) \ J(F )) and this is clearly equal to the orbit space of
F̃ . It is also easy to see that if two maps are holomorphically conjugate then
the corresponding Riemann surface laminations are holomorphically equivalent,
i.e., there exists a homeomorphism between them which is holomorphic on each
leaf.
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Let us prove that the new example is holomorphically equivalent to the
previous one. Let g : S1 ! S1 be the analytic degree two expanding map
associated to F as in Theorem 4.3, let A be an annular neighbourhood of S1 in
the complex plane and G : A ! G(A) � A be the holomorphic extension of g.
By Theorem 4.3, there exists a holomorphic conjugacy between F |(U \ J(F ))
and G|B where B is a component of A \ S1. Let

L̃
A

= {z = (. . . , z
n

, . . . , z0) ; z0 2 G(A) and G(z
n

) = z
n�1}.

Let ⇡
G

be the projection onto G(A) and let G̃ be the natural extension of G.
Notice that ⇡

G

is a local trivial fibration whose fibre is the diadic Cantor set.
Indeed, consider the complex structure on the leaves so that ⇡

G

restricted to
each leaf is a conformal map. Let us prove that the leaves of L̃

G

are dense and
that each leaf is conformally equivalent to a disc. To do this, we consider the
following trivialization. Let J ⇢ G(A) be a real analytic arc through the fixed
point p of G such that J is transversal to the circle, G(A) \ J is topologically a
square and G(J\A) = J . This curve J can be obtained by taking a holomorphic
linearization of G at the fixed point p and by taking a line which is invariant by
the corresponding linear map. Let J1 be the component of G�1(J) through the
other preimage p1 of p and denote by A0 and A1 the components of A\ (J [J1).
In order to be definite, let A0 be the component one meets first after moving
from p in the positive orientation of the circle. The trivialization of L̃

A

\⇡�1
G

(J),

� : L̃
A

\ ⇡�1
G

(J)! (G(A) \ J)⇥ {0, 1}N,

is given by �(z) = (z0, i(z)), where i(z) = (. . . , i
n

, . . . , i1) and i
j

= k 2 {0, 1} if
and only if z

j

2 A
k

. Notice that if we take a curve z(t) in L̃
A

such that z0(t) is
a closed curve which starts in A0 near J and goes once around the annulus A
then i(z(1)) = add(i(z(0))) where add: {0, 1}N ! {0, 1}N is the adding machine.
Since all orbits of the adding machine are dense, it follows that the leaves of L̃

A

are dense. Also, each leaf of L̃
A

is obtained from a countable number of copies
of the square G(A)\J by gluing the boundaries via the adding machine. Hence,
each leaf is homeomorphic to an open disc. Therefore each leaf is conformally
equivalent to either a disc or the plane. As the restriction of ⇡

F

to a leaf is a
holomorphic covering map of the annulus G(A) which has finite modulus, the
second alternative cannot occur. Thus, each leaf is conformally equivalent to a
disc. So we may picture a leaf as an infinite strip, the preimage of J divides this
strip in a countable number of squares and ⇡

G

maps each square holomorphically
and bijectively onto the square G(A) \ J .

If we consider the Riemann surface lamination L
G

, i.e., the orbit space of G̃
restricted to ⇡�1

G

(B), then we get that L
F

and L
G

are conformally equivalent.
So, we have to prove that L

G

is conformally equivalent to the Riemann surface
lamination L

g

from Example 1. We will construct a global linearization of G via
a direct limit construction on the inverse H̃ of G̃. To do this, we first note that
H̃ : L̃

G

! L̃
G

is just the shift map. It is continuous, one to one, maps leaves into
leaves holomorphically but it is not onto since any point in the image of H̃ is
mapped into A by ⇡

G

and not into G(A). Next we consider the following direct
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limit system. For each integer i, let L
i

be equal to a copy of L̃
A

⇥ {i} and for
j � i let H

i,j

: L
i

! L
j

be equal to H̃j�i. Hence for i  j  k, G
j,k

�G
i,j

= G
i,k

and so we can define the direct limit L̂ of this system. In other words, L̂ is the
quotient space of L̃

A

⇥ N by the equivalence relation that identifies (z, i) with
(w, j) if and only if there exists k � i, j such that H̃k�i(z) = H̃k�j(w). Next
define Ĥ : L̂ ! L̂ by Ĥ(z, i) = (H̃(z), i) and let ⇡

i

: L
i

! L̂ be the inclusion
map which sends a pair (z, i) to its equivalence class. We should note that
⇡

i

(L
i

) ⇢ ⇡
i+1(Li+1). We have that Ĥ is well defined and onto. Moreover, since

H̃ is injective, one also has that both ⇡
i

and Ĥ are injective. Hence L̂ has
a unique Riemann surface lamination structure such that the ⇡

i

: L
i

! L̂ are
continuous embeddings and map leaves of L

i

holomorphically into leaves of L̂.
With this structure, Ĥ is a homeomorphism which maps leaves holomorphically
onto leaves. It is easy to see that the leaves of L̂ are simply-connected (a non-
null closed curve is a compact set and hence belongs to the image of ⇡

i

for i
big enough; since the leaves of L

i

are simply connected, this closed curve is
homotopic to a point in this leaf and ⇡

i

pushes-forward this homotopy to a
homotopy in the leaf of L̂).

Next we prove that the leaves of L̂ are holomorphically homeomorphic to the
plane, and not to the disc. Let L be a leaf of L̂. Then ⇡

i

(L
i

) \ L is a strip L
i

.
One has L

i+1 � L
i

, L = [L
i

and the map �
i

= ⇡
G

� ⇡�1
i

|L
i

is a holomorphic
covering map from L

i

onto the annulus G(A). Notice that ��1
i

(J) is a sequence
of lines that divides the strip L

i

into squares that are mapped holomorphically,
injective and onto G(A)\J . Notice that the restriction of �

i+2 to each square of
L

i+1 maps this square injectively onto a component of A\J[J1. The restriction
of �

i+2 to each square of L
i

maps this square injectively onto a component of
G�1(A)\G�2(J). Let Q

i

and Q0
i

be two consecutive square of L
i

whose common
boundary is mapped by �

i+2 onto J1 \G�1(A). Let Q
i+1 � Q

i

and Q0
i+1 � Q0

i

denote squares of L
i+1 and Q

i+2 be the square of L
i+2 that contains Q

i+1[Q0
i+1

as in Figure 6.1. Let A
i

be the annulus Q
i+2 \ cl (Q

i

[ Q0
i

). We have that the
restriction of �

i+2 to each of these annuli A
i

is a holomorphic bijection between
A

i

and a fixed annulus contained in G(A) \ J , namely, (G(A) \ J) \ (B1 [B2),
where B

i

are the components of G�1(A) \ G�2(J) whose boundaries intersect
J1. Hence the annuli A

i

all have the same modulus. It is easy to see that
we can construct a sequence of such annuli, A

i

, A
i+3, Ai+6, . . . which gives a

decomposition of L as a union of a disc and a sequence of annuli going around
this disc. This shows that L cannot be holomorphic to a disc. Hence the leaves
of L̂ are holomorphically homeomorphic to the plane and, therefore, have the
induced a�ne structure. Since the restriction of Ĝ to each leaf is a holomorphic
homeomorphism onto another leaf, it follows that this restriction is an a�ne
map. Notice that if S

f

⇢ L̃
A

is the solenoid, then ⇡
i

(S
f

) = ⇡
j

(S
f

), and therefore
S

f

is a subset of L̂. As the annulus A is symmetric, each leaf of S
f

is an a�ne
one-dimensional subspace of a leaf of L̂. This gives a new a�ne structure on
the leaves of the solenoid that is invariant under the natural extension. By
uniqueness it must coincide with the a�ne structure of the first example: the
space of orbits of the restriction of Ĝ to the lamination L̂

G

= [
i

⇡
i

(⇡�1
G

(B)⇥{i})
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is holomorphically equivalent to the orbit space of G̃ on ⇡�1
G

(B).

Fig. 6.1: The annuli A
i

.

Definition. Let L be a Riemann surface lamination. We say that L has a
transversal measure if there exist a covering U

i

of L by flow boxes, Z
i

: U
i

!
D ⇥ ⇤

i

, and for each i a finite measure m
i

in the transversal ⇤
i

such that the
following holds. If (z,�) 7! (Z

j,i

(z,�),⇤
j,i

(�)) is the overlapping map Z
i

�Z�1
j

then ⇤
j,i

is a measure preserving local homeomorphism, i.e., if A ⇢ ⇤
j

is in
the domain of ⇤

j,j

then m
i

(⇤
j,i

(A)) = m
j

(A). Similarly, a transversal measure
class in the lamination is a choice of measures on the transversals of a finite
cover by flow boxes such that the overlapping maps are absolutely continuous,
i.e., they preserve the sets of zero measure in the transversal.

Remark. We claim that the laminations of the above examples do not have a
transversal measure. We will just indicate how to prove this statement. A local
transversal through a point of the lamination is a subset which contains this
point and is mapped homeomorphically onto an open set of ⇤ by the composi-
tion of a flow box Z : U ! D⇥⇤ with the projection on the second factor. Let
T be a local transversal of the lamination containing a point z and let � be a
closed curve in the leaf of the lamination through z. By covering � by a finite
number of flow boxes and using the overlapping maps between two consecutive
intersecting flow boxes we can construct a local homeomorphism f of T satis-
fying the property that x and f(x) are always in the same leaf and z is a fixed
point of f . One can show that the germ of this map at z depends only on the
homotopy class of the closed curve and all such germs form a group of transfor-
mation called the holonomy of the leaf. Now, if the lamination has a transversal
measure, the corresponding measure at a local transversal is preserved by the
holonomy group. In our examples a local transversal is homeomorphic to a di-
adic Cantor set and we can show that the group of holonomy of a cylindrical
leaf is generated by the shift map. Since the shift map is expanding at a fixed
point, the only invariant measure by this map is the Dirac measure at the fixed
point. But this is not possible because each leaf is dense and the measure would
not be finite.
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In later sections we will consider transversal measure classes instead of
transversal measures in our laminations.

Let us show that these laminations L
f

can be used to describe the space of
all expanding analytic maps f of the circle up to analytic conjugacy. We want to
define a metric on this space via the space of Riemann surface laminations up to
conformal equivalence (this notion will be defined presently). In order to show
that something like this is possible fix an expanding circle map f0 as above.
Any other such map f is quasiconformally conjugate to f0 (on a neighbourhood
of the circle) and so there exists a quasiconformal homeomorphism h

f0,f

which
sends L

f0 to L
f

. As usual in Teichmüller theory we say that two Riemann
surface laminations L

f1 and L
f2 are conformally equivalent if h

f0,f1 � h�1
f0,f2

is
isotopic to a homeomorphism between L

f1 and L
f2 which sends leaves to leaves

and which is conformal on each leaf. In the next theorem it is shown that the
space of all expanding analytic maps f of the circle up to analytic conjugacy
embeds in a one to one fashion to the space of Riemann surface laminations of
the form L

f

up in conformal equivalence.

Theorem 6.1. Two analytic expanding maps f1, f2 : S1 ! S1 of degree two are
analytically conjugate if and only if the corresponding Riemann surface lamina-
tions L

f1 ,Lf2 are conformally equivalent.

Proof. If f1 and f2 are analytically conjugate then this conjugacy can be lifted
to a homeomorphism between L

f1 and L
f2 which is conformal on each leaf.

On the other hand if these two Riemann surface laminations are conformally
equivalent then this equivalence will send a leaf associated to a periodic orbit
of f1 to a leaf associated to the corresponding periodic orbit of f2. As we
remarked, above these leaves are cylinders and since the equivalence is conformal
the conformal moduli of these cylinders coincide. It follows that the eigenvalues
of corresponding periodic orbits of f1 and f2 are equal. By Shub and Sullivan
(1986) this implies that f1 and f2 are analytically conjugate.

Remark. If the f
i

are merely C1+↵, 0 < ↵ < 1, then one can show that f1

and f2 are C1+↵ conjugate if and only if the corresponding Riemann surface
laminations L

f1 ,Lf2 are conformally equivalent.

Next we define a kind of Teichmüller theory on these Riemann surface lam-
inations. To explain this carefully we define the objects in this theory simul-
taneously with the corresponding objects in the classical Teichmüller theory of
Riemann surfaces.

6.2. Vector fields and Beltrami vectors on Riemann sur-
faces and on Riemann surface laminations

A continuous vector field V on a Riemann surface is given by specifying in
each local chart z

i

: U
i

! C a continuous function V
i

: z
i

(U
i

) ! C, called the
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expression of V in the chart z
i

, such that, when z
i

: U
i

! C and z
j

: U
j

! C
are two overlapping coordinate systems, then

(6.1) V
j

(z
i,j

(z)) =
dz

j

dz
i

(z) · V
i

(z)

for all z 2 z
i

(U
i

) where z
i,j

= z
j

� z�1
i

and dz

j

dz

i

denotes the derivative of z
i,j

.
This transformation rule is often indicated by writing V (z) d

dz

.
A vector field on a Riemann surface lamination L associates to each flow

box Z
i

: U
i

! D ⇥ ⇤ a function V
i

: D ⇥ ⇤ ! C such that in overlapping flow
boxes Z

i

and Z
j

we have

V
j

(Z
i,j

(z,�)) =
@Z

i,j

@z
· V

i

(z,�)

for all z 2 Z
i

(U
i

� U
j

). In particular, restricted to each leaf it is a vector field.
We say that it is continuous if it is continuous in each local chart. (This notion
makes sense because the overlapping maps are holomorphic along leaves and
continuous in the transversal direction.)

A Beltrami vector µ on a Riemann surface is represented, in each coordi-
nate system z

i

: U
i

! C, by a measurable function µ
i

: z
i

(U
i

) ! C with the
transformation rule

µ
j

(z) = µ
i

(z
j,i

(z))
dz

i

/dz
j

(z)
dz

i

/dz
j

(z)

for each z 2 z
j

(U
j

) on overlapping domains of the charts z
i

: U
i

! C and

z
j

: U
j

! C. Here z
j,i

= z
i

� z�1
j

and dz
i

/dz
j

=
d

dz
(z

j,i

) where it is defined. In
other words, given a point p 2 U we have

(6.2) µ
j

(z
j

(p)) = ⇢
i,j

(p) · µ
i

(z
i

(p)),

where

⇢
i,j

(p) =


dz
i

dz
j

�

·


dz
i

dz
j

��1

has norm one. This transformation rule can be abbreviated by writing the

expression µ
dz̄

dz
. From (6.2) it follows that |µ(p)| = |µ

i

(z
i

(p))| is well defined
because in each chart this number is the same. In particular,

||µ||1 = ess sup|µ(p)|

is well defined (here ess sup stands for the essential supremum and is defined to
be the infimum of all k > 0 such that the Lebesgue measure of {p ; |µ(p)| > k}
is zero). If such a di↵erential µ is in L1 (i.e., if ||µ||1 < 1) then µ is called
a Beltrami vector and if ||µ||1 < 1 then it is called a Beltrami coe�cient.
The corresponding spaces are denoted by L1(S) respectively L11 (S). We shall
endow L1(S) with the norm ||.||1 is a Banach space.

If g : S̃ ! S is a holomorphic covering map we can define the pullback of
Beltrami vectors on S in the following way. If µ is a Beltrami vector on S
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then g⇤µ is defined to be the Beltrami vector on S̃ whose local expression in
a local chart z̃ : Ũ ! D is the same as the local expression of µ in the local
chart z̃ � (g|Ũ)�1, where Ũ is such that the restriction of g to Ũ is a conformal
homeomorphism. In particular, if ⇡ : D ! S is a holomorphic covering map
then ⇡⇤µ is an essentially bounded measurable function ⌫ on the unit disc that
satisfy the invariance condition ⌫(x) = ⌫(A(x)) · A

0(x)
A

0(x) for all A in the group
of deck transformations � of the covering map ⇡. Conversely, any essentially
bounded function with the above invariance condition defines a Beltrami vector
on S. Hence, if F is a fundamental domain for the action of the group of deck
transformations on D we can identify L1(S) with L1(F ) since any essentially
bounded measurable function on F can be extended to a function on D by using
the above invariance condition.

Given two Beltrami coe�cients µ and ⌫ we can define their hyperbolic dis-
tance as follows: because of (6.2), the hyperbolic distance between µ and ⌫ at a
point p 2 S is independent of the chart. So let h(µ(p), ⌫(p)) be this hyperbolic
distance and define the hyperbolic distance, h(µ, ⌫), between µ and ⌫, to be the
essential supremum of h(µ(p), ⌫(p)). To each Beltrami coe�cient µ and each
Beltrami vector ⌫ we associate a Beltrami path in the direction of ⌫ as follows.
In each coordinate system z

i

the Beltrami coe�cient µ
i

(z
i

) is almost everywhere
a well defined point in the Poincaré disc and ⌫

i

(z
i

) is a well defined vector in
C. Now let µ

i,t

be such that µ
i,0 = µ

i

, so that for Lebesgue almost all p the
arc t 7! µ

i,t

(z
i

(p)) 2 D has constant speed and goes along a geodesic in the

Poincaré metric on D and such that
d

dt
µ

i,t

(z
i

(p)) at t = 0 is equal to ⌫
i

(z
i

(p))
(for almost all p). Because of (6.2) this path does not depend on the choice
of the coordinate system and so we get a well defined deformation of µ. For
example, if µ = 0 then

µ
i,t

(z
i

(p)) =
e|⌫i

(z
i

(p))|t � 1
e|⌫i

(z
i

(p))|t + 1
· ⌫i

(z
i

(p))
|⌫

i

(z
i

(p))|

defines a Beltrami coe�cient for each t � 0. Next we show that if g : S ! S1

is a quasiconformal homeomorphism, then it induces a pullback map g⇤ from
the Beltrami coe�cients of S1 to the Beltrami coe�cients of S that preserves
the hyperbolic distance and maps Beltrami paths into Beltrami paths. This
construction will follow from the a simple formula concerning quasiconformal
maps between open sets of the complex plane. Let f, g be such maps. The
Beltrami coe�cient of f is defined to be

µ
f

(z) =
@̄f(z)
@f(z)

.

From the chain rule we get

(6.3) µ
f�g(z) =

µ
g

(z) + µ
f

(g(z)) · p
g

(z)
1 + µ

f

(g(z)) · µ
g

(z) · p
g

(z)
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where p
g

(z) = @g(z)
@g(z) . Notice that p

g

(z) has absolute value one. If g : U ! V
is a quasiconformal homeomorphism between open sets of the plane and µ is a
Beltrami coe�cient on V then, by the Measurable Riemann Mapping Theorem,
there exists a quasiconformal homeomorphism f : V ! W , whose Beltrami
coe�cient is µ. We then define g⇤(µ) as the Beltrami coe�cient of f � g. From
(6.3) it follows that g⇤ : L11 (W )! L11 (V ) satisfies the required conditions since
the mapping

u 2 D 7! µ
g

(z) + u · p
g

(z)
1 + u · µ

g

(z) · p
g

(z)

is a hyperbolic isometry. To define g⇤ for Riemann surfaces we just take charts.

One of the essential ideas in Teichmüller theory is that each Beltrami co-
e�cient µ defines, via the Measurable Riemann Mapping Theorem, a complex
structure S

µ

on a Riemann surface S. A deformation of the Beltrami coe�cient
as we defined above, corresponds to deformations of the initial complex struc-
ture. (This deformation might be constant as is the case for paths of trivial
Beltrami coe�cients defined below.) Let us be more specific about this. As a
topological space, S

µ

is equal to S. The charts of the new conformal structure
are obtained from the charts of S as follows. If z

i

: U
i

! C is a chart in S
and µ

i

: z
i

(U
i

)! C is the expression of the Beltrami coe�cient µ then, by the
Measurable Riemann Mapping Theorem, there exists a quasiconformal homeo-
morphism h

i

: z
i

(U
i

) ! h
i

(z
i

(U
i

)) ⇢ C whose Beltrami coe�cient is µ
i

. The
chart of S

µ

is h
i

� z
i

. It is easy to see that the overlapping maps of the new
charts are holomorphic and hence define a new complex structure. The identity
map on S, considered as a map g : S ! S

µ

, is quasiconformal since its local
expressions with respect to the above charts are precisely the h

i

. Furthermore,
from the above definitions we see that µ = g⇤(0), i.e., µ is the pullback of the
Beltrami coe�cient zero of S

µ

. From the above discussion we see that a com-
plex structure on S is a new Riemann surface S1 together with a conformal map
F1 : S ! S1 or the Beltrami coe�cient µ = F ⇤1 (0). We say that the complex
structures F

i

: S ! S
i

, i = 1, 2, are equivalent in the sense of Teichmüller, if
there exists a conformal map F : S1 ! S2 such that F � F1 is homotopic to F2.
The Teichmüller space of S, T (S), is the set of equivalence classes of conformal
structures on S. Alternatively, we say that two Beltrami coe�cients of S, µ1 and
µ2 are equivalent if there exists a quasiconformal homeomorphism g : S ! S,
homotopic to the identity, such that g⇤(µ2) = µ1. From the above discussion it
is easy to conclude that the Teichmüller space of S is again the quotient space of
L11 (S) by the above equivalence relation. The quotient map Q : L11 (S)! T (S)
projects Beltrami paths into curves of the Teichmüller space that we also call
Beltrami paths. The Beltrami coe�cient that are equivalent to 0 are called
the trivial Beltrami coe�cient. So, a Beltrami path does not deform a complex
structure, in the sense of Teichmüller, if its Beltrami coe�cients are trivial. If
g : S ! S is a quasiconformal homeomorphism, the conformal distortion of g
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with respect to the complex structures µ1 and µ2 is defined to be

K
g

= ess sup
z

K
g

(z),

where
K

g

(z) = exp(h(µ1(z), g⇤(µ2(z)))

and h is the Poincaré metric defined above. The Teichmüller distance between
the equivalence class of µ1 and the equivalence class of µ2 is defined as the
infimum of log K

g

over all quasiconformal homeomorphisms g : S ! S that are
isotopic to the identity. This clearly defines a metric on T (S). One of the main
theorems we will prove in section 7 states that if a Beltrami path is an almost
geodesic between two points with respect to the above metric it remains almost
a geodesic up to a definite distance. In particular we recover a classical result
in Teichmüller theory: if the Beltrami path is a geodesic between two points it
remains a geodesic between any other two points.

A Beltrami vector is infinitesimally trivial if it can be written as @̄V where
V is a continuous vector field. Here @̄V 2 L1 is defined in the distribution
sense. In other words, in local coordinates z

i

: U
i

! z
i

(U), @̄V is the function
@̄V

i

2 L1 which satisfies
Z

(@̄V
i

)� =
Z

V
i

· @̄�

for all smooth functions � with compact support in z
i

(U
i

). Here @̄ is defined as
in Section III.1, see also the appendix. In particular, it follows that in this case
@̄V is indeed a Beltrami vector. In order to motivate these notions let us state
the following proposition (which will not be needed).

Proposition 6.1. On a compact Riemann surface a Beltrami vector is infinites-

imally trivial if and only if it can be written as ⌫ =
d

dt
µ

t

where µ
t

is a path of
trivial Beltrami coe�cients depending smoothly on t.

Proof. Because this proposition is only meant as a motivation for the definition
of the notion of infinitesimally trivial Beltrami vectors and is not actually used
we shall not give a complete proof here, see, for example, Gardiner (1987, p.
107). We can also prove the proposition by observing that a continuous vector
field, whose @̄ derivative in the distribution sense is in L1, has a modulus
of continuity � log �. This is enough to guarantee the uniqueness of solutions
for the corresponding ordinary di↵erential equation. Thus it generates a flow
which, in the case of a compact surface, is defined for all time. By a careful
approximation by smooth flows one can show that for small values of t, the
flow of this smooth approximation is quasiconformal (with constants bounded
by the L1 norm of the @̄ derivative of the smooth approximation). Hence one
can use the compactness of the space of quasiconformal homeomorphisms with
a given constant to conclude that the flow of the original continuous vector field
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is quasiconformal. From this the proposition follows. A Beltrami vector on a

Riemann surface lamination L is represented, in each flow box Z
i

: U
i

! D⇥⇤,
by a measurable function µ

i

: Z
i

(U
i

) ! C with the following transformation
rule. If Z

i

� Z�1
j

(z,�) = (Z
j,i

(z,�),⇤
j,i

(�)) then

(6.4) µ
j

(z,�) =
@Z

j,i

/@z (z,�)
@Z

j,i

/@z (z,�)
· µ

i

(Z
i

� Z�1
j

(z,�))

for all (z,�) 2 Z
j

(U
i

) and for each pair of overlapping flow boxes Z
i

: U
i

! D⇥⇤
and Z

j

: U
j

! D ⇥ ⇤. Moreover, in each such flow box it is weakly continuous
in the leaf direction: if �

n

! �1 then

lim
n!1

Z

µ
i

(z,�
n

)� dz dz̄ =
Z

µ
i

(z,�1)� dz dz̄

for each � 2 L1(D). The space of such vectors endowed with the || ||1 norm
is denoted by L1(L). If V is a continuous vector field for which @̄V (where the
derivatives are taken in the sense of distributions) is a well defined L1 function
in each local coordinate system, then it is easy to show that @̄V is a Beltrami
vector. As before Beltrami vectors which can be written in this form will be
called infinitesimally trivial.

If we have a Beltrami coe�cient µ whose local expression µ
i

: D⇥⇤! C, in
each flow box Z

i

: U
i

! D⇥ ⇤ is such that � 7! µ
i

(·,�) 2 L1(D) is continuous
in the L1 topology, we can use the Ahlfors-Bers Measurable Riemann Mapping
Theorem, and construct a homeomorphisms H

i

: D⇥⇤! D⇥⇤ by integrating
each Beltrami coe�cient on D ⇥ {�} (this theorem guarantees the continuity
with respect to � of the quasiconformal homeomorphisms of the disc). Hence,
the flow boxes H

i

�Z
i

define a new Riemann surface lamination. However, if the
Beltrami coe�cients are only weakly continuous with respect to the transversal
parameter we cannot guarantee the continuity of H

i

in �. So it seems that we
have more Beltrami coe�cients than complex structures on a Riemann surface
lamination: some Beltrami coe�cients can be integrated and give rise to new
complex structures on a lamination while some others cannot! However, in our
context we shall be able to forget about the complex structure of the lamination
and just work with Beltrami coe�cients and vectors.

6.3. Quadratic di↵erentials on Riemann surfaces and Rie-
mann surface laminations

A quadratic di↵erential on a Riemann surface is given in local coordinates
z
i

: U
i

! z
i

(U
i

) by integrable complex valued functions �
i

: z
i

(U
i

) ! C such
that

(6.5) �
i

(z) = �
j

(z
i,j

(z))(
dz

j

dz
i

(z))2

for each z 2 z
i

(U
i

), where z
i,j

= z
j

� z�1
i

and
dz

j

dz
i

=
dz

i,j

dz
. In other words,

these di↵erentials are of the form � dz2. To such a quadratic di↵erential one
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can associate a measure |�|. Indeed, since |�
i

(z
i

)| = |�
j

(z
j

)| · |dz
j

/dz
i

|2 and
|dz

j

/dz
i

|2 is the Jacobian of this overlap map, |�| defines a surface element
and therefore a measure. Similarly,

p

|�| defines a metric ( a line element). A
quadratic di↵erential is holomorphic (meromorphic) if all its local expressions
are holomorphic (meromorphic) functions. If the quadratic di↵erential � is
holomorphic and non-zero in a neighbourhood of a point, we can find a chart
in this neighbourhood such that � = dz2, i.e., its local expression is identically
equal to one in this chart. In such a coordinate system the metric

p

|�| is just the
euclidean metric and its geodesics are the straight lines. Some of the geodesics
of � play a special role: a parametrized curve � is called a horizontal (vertical)
trajectory of � if �(�(t))�0(t)2 > 0 (respectively �(�(t))�0(t)2 < 0) in local
coordinates. These horizontal and vertical trajectories define two transverse
foliations in the complement of the zeros of �. If � has a zero of order m � �1
in p then m+2 horizontal trajectories and also m+2 vertical trajectories emanate
from p. Trajectories which enter a singular point are called separatrices.

Since |�| defines a measure on S we can define

||�|| =
Z

S

|�|.

Quadratic di↵erentials for which ||�|| < 1 are called integrable and the corre-
sponding space is denoted by L1(S). As in the case of Beltrami di↵erentials, we
can define the pullback of the quadratic di↵erentials via a holomorphic covering
map ⇡ : D ! S. Associated to each quadratic di↵erential � on S is a locally
integrable function ⇡⇤� = �̃ : D ! C which satisfies the invariance condition:
�̃(A(z))(A0(z))2 = A(z) for all elements A of the group of deck transformations
�. However, �̃ is not integrable over D: the integral (Lebesgue) of |�̃| over a
fundamental domain F of � coincides with the integral of |�| over S. Conversely,
any integrable function on the fundamental domain F generates a function with
the above invariance condition and, therefore, a quadratic di↵erential on S.
Thus, L1(S) can be identified with L1(F ).

One of the main features of the integrable quadratic di↵erentials is the nat-
ural duality between Beltrami vectors and quadratic di↵erentials defined below.
If µ is a Beltrami vector and � is a quadratic di↵erential then µ�, which in local
charts is just the product of the expression of µ by the expression of �, is a
measure on S. Therefore, the following bilinear map is well defined:

L1(S)⇥ L1(S)! C, (µ,�) 7!
Z

S

µ�

If ⇡ : D! S is a holomorphic covering map, µ̃ = ⇡⇤µ and �̃ = ⇡⇤� we have that
R

S

µ� =
R

F

µ̃�̃, where F is a fundamental domain of the group of deck transfor-
mations. Hence the above duality is precisely the classical duality between L1

and L1. This duality will play a fundamental role in the characterization of the
infinitesimal trivial Beltrami di↵erentials in subsection 6.5.

The notion of quadratic di↵erential on a Riemann surface lamination L is
somewhat more tricky. The definition is such that a sort of duality will be
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established similar to the classical case explained above. Up to now, all the
objects defined on Riemann surfaces and on Riemann surface laminations are
specified by their local expressions which are functions, defined on open sets,
satisfying some invariance condition with respect to the overlapping maps. A
quadratic di↵erential on a Riemann surface lamination is defined by specifying
two objects: a transversal invariant measure class and the local expressions that
are functions depending on a choice of a measure in the measure class. Let us
describe this notion more carefully. Firstly, a quadratic di↵erential associates a
measure class to each local transversal in such a way that this measure class is
invariant under the change of coordinate systems. More precisely, let Z

i

: U
i

!
D⇥ ⇤, Z

j

: U
j

! D⇥ ⇤ be two flow boxes and denote by (⇤, [m]). the space ⇤
with measure class [m]. Then there are measure classes [m

i

] and [m
j

] defined on
each of these transversals ⇤ such that the function ⇤

i,j

: (⇤, [m
i

]) ! (⇤, [m
j

])
defined by

Z
j

� Z�1
i

(z,�) = (Z
i,j

(z,�),⇤
i,j

(�))

is absolutely continuous. Secondly, given a measure m
i

in the measure class [m
i

]
the quadratic di↵erential is represented by *a measurable function �

i

: D⇥⇤!
C, (which depends on the choice of the measure) such that the following holds.
In overlapping coordinate systems Z

i

and Z
j

one has

(6.6) �
i

(z,�) = �
j

(Z
i,j

(z,�),⇤
i,j

(�)) ·


@Z
i,j

(z,�)
@z

�2

· Jac(⇤
i,j

)(�),

where Jac(⇤
i,j

) is the Jacobian of ⇤
i,j

with respect to the measures m
i

and m
j

.
Moreover, the functions �

i

are integrable with respect to the product measure
of the Lebesgue measure on the disc D and the measure m

i

in the transversal. If
we pick two measures in this measure class, the local expression of the quadratic
di↵erential is multiplied by the Radon-Nikodym derivative of the first measure
with respect to the second one. Because of this, integration in local charts can
be defined as the usual Lebesgue integral of the local expression |�

i

| of � with
respect to the measure dzdz̄dm

i

. We shall denote the measure associated to � by
|�|. If

R

L d|�| is finite then we say that � is an integrable quadratic di↵erential.
A quadratic di↵erential is called holomorphic if it is holomorphic on almost all
leaves (w.r.t. to the measure class). We will prove the existence of holomorphic
quadratic di↵erentials on Riemann surface laminations in the next subsection.

Note that a quadratic di↵erential on a Riemann surface lamination does not
satisfy any continuity requirements in the transversal direction. On each leaf
which is in the support of the transverse measure class of a holomorphic quadra-
tic di↵erential, we have horizontal and vertical trajectories as before. Because
the local expression �

j

depends on the choice of the measure in the measure
class, a holomorphic quadratic di↵erential on a Riemann surface lamination does
not define a line element on the leaves. This will create some fun in the next
section.

As in the case of Riemann surfaces, there is a pairing L1(L)⇥ L1(L) ! C
between Beltrami vectors and quadratic di↵erentials. Indeed, if µ 2 L1(L)
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and � 2 L1(L) then we obtain a (complex) measure µ� by defining the mea-
sure of a subset A of the domain of a flow box Z

i

: U
i

! D ⇥ � to be equal to
R

Z

i

(A)
µ

i

�
i

dzdz̄dm
i

. It follows that this number does not depend on the choice
of flow boxes and of the measure m

i

in the measure class defined by �. Also,
(µ,�) 7!

R

L d(µ�) is a well defined bilinear map. We do not claim that L1(L)
is the dual space to L1(L) as is the case for Riemann surfaces. However, the
examples discussed in the next subsection show that the functionals of L1(L)
defined by this pairing separate points in L1(L). This is enough for the char-
acterization of the infinitesimally trivial Beltrami di↵erentials in subsection 6.5.

Let us finish this subsection by discussing some di↵erences between quadratic
di↵erentials on Riemann surfaces and on Riemann surface laminations. Suppose
that we are in the case of a Riemann surface S. Then a quadratic di↵erential �

defines a Beltrami vector
|�|
�

. Now consider the Beltrami path t 7! µ
t

starting at

µ with Beltrami vector
|�|
�

. Therefore, given a quasiconformal homeomorphism

 of S and a quadratic di↵erential � we can consider the conformal distortion
of  between the original complex structure of S and the complex structure
obtained by stretching the original structure by a factor es in the direction of
�. This is defined to be

(6.7) K(z) = exp(h(µ0(z), ⇤(µ
s

)(z))),

where µ
t

is the Beltrami path determined by � and h is the hyperbolic metric
on D.

In the Riemann surface lamination case a quadratic di↵erential � does not

define such a Beltrami vector. Indeed,
|�(z)|
�(z)

need not be a Beltrami vector;

indeed, it need not even be defined on every leaf and also it is not continuous with
respect to the transversal in the weak topology. However, it does transform like
a Beltrami vector when we change coordinates and hence it defines a Beltrami
vector on almost every leaf of the lamination (with respect to the transversal
measure class). So a quadratic di↵erential � on a Riemann surface lamination
L still defines a Beltrami path t 7! µ

t

starting at µ with Beltrami vector |�|
�

not
on the whole lamination but on almost every leaf (with respect to the measure
class corresponding to �). Therefore, the distortion K(z) of a quasiconformal
map  between the structure µ and the stretched structure µ

s

is defined as
above for almost every z (with respect to the measure |�|). It follows that the
expression

R

K(z)d|�| is well defined. We shall need this expression in the next
section.

6.4. Examples of quadratic di↵erentials

We have seen how to define the pullback Beltrami vectors by holomorphic cov-
ering maps. In general, if a map is not invertible, we cannot push-forward
di↵erentials: some compatibility condition must be satisfied in order to obtain
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a di↵erential on the range of the map that corresponds to a di↵erential on the
domain. However, we can always push-forward measures: the measure of a
subset of the range is defined to be equal to the measure of its pre-image. In
this subsection we will show that we can define a similar operation for quadra-
tic di↵erentials and that this operation respects the pairing between quadratic
di↵erentials and Beltrami di↵erentials.

Let us show that each quadratic di↵erential on D defines a quadratic dif-
ferential on a hyperbolic Riemann surface or on a hyperbolic Riemann surface
lamination.

Let us first do this for a Riemann surface. Let ⇡ : D! S be a holomorphic
covering map. To this map we can associate a map ⇡⇤ : L1(D)! L1(S) associ-
ating to each quadratic di↵erential � on D a quadratic di↵erential ⇡⇤(�) on S
satisfying

(6.8)
Z

D
(⇡⇤µ) · � =

Z

S

µ · (⇡⇤�)

for all Beltrami vectors µ 2 L1(S), where ⇡⇤µ is the pullback of µ. Indeed,
let �̃(z) =

P

A2� �(A(z)) · (A0(z))2 where � is the group of deck transforma-
tions (this is called the Poincaré theta series). Let F be a fundamental do-
main of the action of �. Since for every A 2 �,

R

F

|�(A(z))||A0(z)|2dzdz̄ =
R

A(F )
|�(w)|dwdw̄ and

P

A2�

R

A(F )
|�(w)|dwdw̄ =

R

D |�| <1, it follows that the
above series converges absolutely almost everywhere and

R

F

|�̃|dzdz̄ 
R

D |�|dzdz̄.
Since �̃ obviously satisfy the required invariance condition, it defines an inte-
grable quadratic di↵erential ⇡⇤� on S. Let us prove that ⇡⇤� satisfy (6.8). In-

deed, the function µ̃ = ⇡⇤µ satisfy the invariance condition µ̃(A(z) =
A0(z)
A0(z)

µ(z)

for all A 2 �. Hence,
Z

D
�µ̃ =

X

A2�

Z

A(F )

�(w)µ̃(w)dwdw̄ =

=
X

A2�

Z

A

�(A(z))µ̃(z)(A0(z))2dzdz̄ =

=
Z

F

(�̃(z) · µ̃(z)dzdz̄ =
Z

S

(⇡⇤�)µ.

One can prove that if � is holomorphic then ⇡⇤� is a holomorphic quadratic
di↵erential, see Lehto (1987, p. 223).

Similarly, we can construct quadratic di↵erentials with support on a leaf L
of a Riemann surface lamination L. First, take as transversal measure class the
class of atomic measures on the transversals with support on a leaf L. Next
take a classical quadratic di↵erential �

L

on the leaf L. Using this di↵erential we
want to construct a quadratic di↵erential � on L. Let us describe its expression
in a flow box Z

i

: U
i

! D⇥⇤. For each � such that Z�1
i

(D⇥{�}) is a plaque of
the leaf L, let �

L,i

(z,�) be the local expression of �
L

in the chart Z
i

evaluated
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at (z,�). Let ⇤
L

be the collection of � 2 ⇤ for which h(D⇥ {�}) ⇢ L. Since L
is a single leaf, ⇤

L

is countable. So write ⇤
L

= {�
i

}
i2N and define a measure m

i

on ⇤ by choosing a sequence a
i

> 0 with
P

i2N a
i

= 1 and take m
i

=
P

i2N ��i

,
where �

�

denotes the Dirac measure on ⇤ with support {�}. After choosing this
measure, the local expression of � is given by

�
i

(z,�) =

8

<

:

1
a

j

�
L,i

(z,�) if � = �
j

2 ⇤
L

0 otherwise.

It is clear that this defines a quadratic di↵erential � on L and that
R

L |�| is
equal to the integral of |�

L

| over L. Thus we have constructed a push-forward
map which we shall denote by

(i
L

)⇤ : L1(L)! L1(L)

such that

(6.9)
Z

L
µ((i

L

)⇤�) =
Z

L

((i
L

)⇤µ)�

for each µ 2 L1(L). Here i
L

: L ! L is the inclusion of the leaf L and
(i

L

)⇤ : L1(L)! L1(L) is the map that restricts Beltrami vectors of the lami-
nation to the leaf L.

6.5 Infinitesimally trivial Beltrami coe�cients on Riemann
surfaces and on Riemann surface laminations

The next theorem holds for both Riemann surfaces and Riemann surface lami-
nations and is the main result of this section.

Theorem 6.2. Let S be a compact Riemann surface or a compact hyperbolic
Riemann surface lamination. Then one has the following properties.

1. The set of infinitesimally trivial Beltrami vectors is closed in the weak
topology on L1(S) (this means that µ

n

! µ when
R

µ
n

� !
R

µ� for all
quadratic di↵erentials in L1(S)).

2. Two Beltrami vectors µ, ⌫ di↵er by a trivial deformation, i.e., µ�⌫ = @̄V
for some continuous vector field V on S if and only if

R

µ� =
R

⌫� for all
holomorphic quadratic di↵erentials � 2 L1(S).

Proof. Let us first show that 1) implies 2). Consider the space of all infinites-
imally trivial Beltrami vectors and the pairing map

L1 ⇥ L1 ! C.
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Since we have assumed that Statement 1) holds, the trivial vectors form a closed
set with respect to the weak topology on L1 and therefore we get by Hahn-
Banach that there exists a closed subspace Z ⇢ L1 such that µ� ⌫ is infinites-
imally trivial if and only if

R

µ� =
R

⌫� for all � 2 Z. So it remains to show
that all forms in Z are holomorphic. But this is clear because if � 2 Z then
R

@̄V � = 0 for all V . In particular, if we take a smooth vector field V with
compact support contained in some flow box one has

R

@̄V � =
R

V @̄� and since
this holds for every such V one gets @̄� = 0. Hence, by Weyl’s Lemma, which
states that if the @̄ derivative of a function is zero in the distribution sense then
the function is equal almost everywhere to a holomorphic function, one has that
� is holomorphic.

So it remains to be shown that the space of all trivial Beltrami vectors forms
a closed set. Take a sequence µ

n

of trivial Beltrami vectors converging weakly
to a vector µ. Then µ

n

can be written as µ
n

= @̄V
n

where V
n

is a continuous
vector field on S. If we are working on a Riemann surface then we lift everything
to the universal cover. Thus we get a sequence µ̃

n

, Ṽ
n

: D! C on the universal
cover such that µ̃

n

= @̄Ṽ
n

. By Green-Stokes’ Theorem

Ṽ
n

(z) =
Z

D

@̄Ṽ
n

(!)
w � z

dw dw̄ +
Z

@D

Ṽ
n

(!)
w � z

dw .

But since Ṽ
n

is the lift of a continuous vector field V
n

on S, Ṽ
n

is bounded in
the Poincaré metric of D and therefore, its Euclidean norm goes to zero at the
boundary of D. Consequently,

Ṽ
n

=
Z

D

µ̃
n

(!)
w � z

dw dw̄.

Now we need the construction from (6.4): there exists a push-forward map
⇡⇤ : L1(D)! L1(S) such that for each quadratic di↵erential � on D the quadra-
tic di↵erential ⇡⇤(�) on S satisfies

(6.13)
Z

D
�⇡⇤µ =

Z

S

(⇡⇤�)µ

for all Beltrami vectors µ 2 L1(S). Next choose �
z

2 L1(D) to be �
z

(!) =
1

! � z
d!2. So from (6.13) one gets

Ṽ
n

(z) =
Z

D

µ̃
n

(!)
w � z

dw dw̄ =
Z

D
µ̃

n

(!)�
z

dwdw̄ =
Z

S

(⇡⇤�z

)µ
n

.

Since µ
n

converges in the weak topology it follows that V
n

(z) converges for each
z to

Ṽ (z) =
Z

D

µ̃(!)
w � z

dw dw̄.

From this expression it follows that V is continuous and that Ṽ
n

converges
uniformly on compacta. In particular, the limit V is also a vector field on S, i.e.,
Ṽ (g(z)) = g0(z)Ṽ (z) for every element g of the group of deck transformations �.
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The above expression also implies that @̄V = µ proving that µ is infinitesimally
trivial. Thus the proof is completed in the case of Riemann surfaces.

If we are on a Riemann surface lamination we go about it in the following
way. Take a sequence of V

n

such that µ
n

= @̄V
n

and µ
n

converges weakly to µ in
L1. Take a leaf L of the lamination and let ⇡

L

: D! L be the universal cover.
As before let µ̃

n,L

and Ṽ
n,L

be the lifts of µ
n

and V
n

(through ⇡
L

: D ! L).
Since V

n

is bounded, Ṽ
n,L

is zero at the boundary of D (here we use the fact
that the Poincaré metric on L extends to a continuous metric on the lamination
and, since the lamination is compact, the Poincaré norm of the vector field is
again bounded). Therefore, as before,

Ṽ
n,L

(z) =
Z

D

µ̃
n

(!)
w � z

dw dw̄.

The map (⇡
L

)⇤ : L1(D)! L1(L) constructed in subsection 6.4 has the property
(6.13), i.e.,

Z

D
�(⇡⇤µ) =

Z

L
((⇡

L

)⇤�) µ

for each Beltrami di↵erential µ on L and each quadratic di↵erential �. So if

we take the quadratic di↵erential �(!) =
dw2

! � z
with transverse measure class

supported on L we get as in the Riemann surface case that

Ṽ
n,L

(z) =
Z

D

µ̃
n,L

(w)
w � z

dw dw̄

converges pointwise to

Ṽ
L

(z) =
Z

D

µ̃
L

(w)
w � z

dw dw̄.

This convergence holds for all leaves L. To prove the continuity notice that
one can approximate Ṽ

L

(z) for z near the center of the circle by integrating the
previous expression on a disc of (Euclidean) radius close enough to one. Fixing
this closeness and using that the restriction of the universal covering to this
compact disc depends continuously on the leaf (because the Poincaré metric
is continuous) one gets the continuity. Therefore these vector fields Ṽ

L

push
forward to a continuous vector field on the lamination.

6.6. Dynamical Beltrami coe�cients and the push-forward
of quadratic di↵erentials

In this subsection we will construct some Beltrami vectors and corresponding
Beltrami paths in the Riemann surface laminations of Example 2. These Bel-
trami vectors will be related to the dynamics which defines the lamination and
will define Beltrami paths not only of laminations but also paths of dynamical
systems.

Let F : U ! V be a quadratic-like map and let L be the Riemann surface
lamination associated to its germ: L is the orbit space of the natural extension
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F̃ : F̃�1(L̃)! L̃ of F to the inverse limit L̃ of

F |(U \ J(F )) : U \ J(F )! V \ J(F ).

Recall that a Beltrami path in L in the direction of a Beltrami vector ⌫ is
a one parameter family µ

t

2 L11 (L) such that in each flow box, the curve
t 7! µ

t

(z,�) 2 D goes along a hyperbolic geodesic and is tangent at t = 0
to the vector ⌫(z,�). Given such a Beltrami path, we can pull it back to a
Beltrami path µ̃

t

in L̃. For each t, the Beltrami coe�cient µ̃
t

is invariant, as a
Beltrami di↵erential, by the natural extension F̃ , i.e., F̃ ⇤⌫̃ = ⌫̃. Conversely, any
F̃ -invariant Beltrami path on L̃ gives rise to a Beltrami path in L. Similarly,
the Beltrami vectors in L correspond to F̃ -invariant Beltrami vectors in L̃. Here
we will construct a special class of Beltrami vectors and Beltrami paths on L
which we shall call dynamical. We start by taking a representative F of the
germ that defines L. Next, we take an L1 function ⌫̂ : V \ J(F )! C satisfying
the following invariance condition:

(6.10) ⌫̂(z) = ⌫̂(F (z))
F 0(z)
F 0(z)

for every z 2 U \ J(F ). Such a function can be obtained by starting with
any measurable and essentially bounded function on the fundamental domain
V \U = F (U) \U and extending it to V \J(F ) by using the above equation. It
follows that, if we take the pullback L̃ of ⌫̂ via the natural projection, we get a
Beltrami vector ⌫̃ which is invariant under F̃ and hence, a Beltrami vector ⌫ on
L. Such a ⌫ is called a dynamical Beltrami vector. Notice that we can cover L̃ by
flow boxes such that the expression of ⌫̃ in each of these boxes is independent
of the transversal coordinate. Let us mention some special properties these
Beltrami vectors have:

Property 1: In contrast to general Beltrami vectors on a Riemann surface
lamination, a Beltrami path generated by such a dynamical Beltrami vector can
be ‘integrated’ and gives rise to a one parameter family of Riemann surfaces
laminations L

t

which are quasiconformally equivalent to L.

Proof. If µ
t

is this Beltrami path and µ̃
t

is the corresponding F̃ -invariant
Beltrami coe�cients on L̃, then µ̃

t

is the pullback of µ̂
t

where µ̂
t

is the Beltrami
path on V tangent to ⌫̂ at t = 0. By the invariance of ⌫̂ under F as a Beltrami
di↵erential, it follows that µ̂

t

is also invariant under F . We extend µ̂
t

to V by
setting it equal to zero on the Julia set. By the Measurable Riemann Mapping
Theorem, there exists a quasiconformal homeomorphism H

t

: V ! V whose
Beltrami coe�cient is µ̂

t

. From the F -invariance of µ̂
t

it follows that F
t

=
H

t

� F �H�1
t

is conformal and therefore a quadratic-like map quasiconformally
conjugated to F . The Riemann surface lamination L

t

associated to the map F
t

is the one parameter family of Riemann surface laminations which we associate
to the Beltrami path µ

t

.

Property 2: Given two dynamical Beltrami coe�cients µ0 and µ1 there exists
a dynamical Beltrami path µ

t

between them.
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Proof. Proof This can be obtained using the Beltrami coe�cient of a quasi-
conformal conjugacy between the corresponding quadratic like maps.

Property 3: The integral of the product of a dynamical Beltrami vector and
a quadratic di↵erential can also be interpreted in the dynamical plane. Indeed,
if � is an integrable quadratic di↵erential on L we can pull it back to L̃ by the
quotient map and we get a quadratic di↵erential �̃ on L̃ which is invariant by F̃
as a quadratic di↵erential. Notice that �̃ is not integrable over all L̃. However,
if ⌫ is a Beltrami vector on L and ⌫̃ its pullback to L̃, then

R

L ⌫� is equal to
the integral of ⌫̃�̃ over the fundamental domain

L̃ \ F̃�1(L̃).

It follows that we can define the push-forward map

(6.11) ⇡⇤ : L1(L)! L1(V \ U)

by: ⇡⇤�(z) is the average of �̃ on the fibre ⇡�1(z) with respect to the transversal
measure of the quadratic di↵erential. (Compare this also with the push-forward
map from (6.9).) More precisely, let W be a small disc around z0 2 V \ U
such that F�n(W ) \ W = ; for all n 2 N. Then there exists a flow box
Z : ⇡�1

F

(W ) ! W ⇥ {0, 1}N that maps each fiber ⇡�1
F

(z) onto z ⇥ {0, 1}N. The
local expression of ⌫̃ in this flow box is defined to be (z,�) 7! ⌫̄(z) (it does not
depend on the second coordinate). It is easy to see that by covering L̃ by such
flow boxes and taking these local expressions we get a Beltrami vector which is
F̃ -invariant. Therefore, we get a special type of Beltrami vectors on L that we
call dynamical Beltrami vectors. If we start with an F -invariant function whose
L1 norm is smaller than one we get a Beltrami coe�cient. Since these Beltrami
coe�cient are continuous with respect to the transversal parameter in the L1

topology, we get a new Riemann surface lamination structures on L as we have
seen in subsection 6.2. Here we get even more: such a dynamical Beltrami
coe�cient defines a new dynamical system; the Riemann surface lamination
associated to it by the construction of Example 2 is precisely the lamination we
are discussing. To see this, we just extend ⌫̄ to an F -invariant Beltrami vector.
The arc F

t

from 1) above defines an arc of dynamical systems.
If m is a measure on {0, 1}N in the measure class of the quadratic di↵erential,

then, with respect to this measure, the quadratic di↵erential �̃ is represented by
a function �(z,�). Then we define �̂(z) =

R

⇤
�(z,�)dm(�). The push-forward

map ⇡⇤ : � 7! �̂ is natural in the sense that the pairing between a dynamical
Beltrami vector and any quadratic di↵erential in L1(L) can also be interpreted
in the dynamical plane. In fact, given any fundamental domain N ⇢ B of F ,

(6.12)
Z

L
⌫� =

Z

N

⌫̄⇡⇤�

for all quadratic di↵erentials �.

Notice that we can push forward quadratic di↵erentials on L to integrable
quadratic di↵erentials on any fundamental domain of any representative of the
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germ. In general we cannot push forward Beltrami vectors: only the dynamical
Beltrami vectors are pullbacks of Beltrami vectors in the dynamical plane.

Remark. If ⌫ is a dynamical Beltrami vector on the lamination L then we
can cover L by a finite number of flow boxes such that the expression of ⌫ in
these flow boxes does not depend on the transversal direction. Conversely, any
Beltrami vector of L that is locally constant in the transversal direction is a
dynamical Beltrami vector that ‘lives’ in a small enough neighbourhood of the
Julia-set. Using a partition of unit – see Moore and Schochet (1988, pp. 44) –
we can prove that the set of dynamical Beltrami vectors is dense in L1(L) with
respect to the weak topology.

Theorem 6.3. 1. Suppose S is a Riemann surface. Then given a Beltrami
vector µ, there exists a Beltrami vector ⌫ such that µ�⌫ is infinitesimally
trivial and such that

||⌫||1 = sup
|�|=1

|
Z

µ�|

where the supremum runs over all holomorphic quadratic di↵erentials with
respect to a given complex structure.

2. If L is the Riemann surface lamination from the examples above, then
given a Beltrami vector µ and any ✏ > 0, there exists a Beltrami vector ⌫
such that µ� ⌫ is infinitesimally trivial and such that

(1� ✏) · ||⌫||1  sup
|�|=1

|
Z

L
µ�|

where the supremum runs over all holomorphic quadratic di↵erentials with
respect to a given complex structure.

3. If in 2) the Beltrami vector µ is dynamical then there exists a dynamical
Beltrami vector ⌫ such that µ� ⌫ = @̄V with V dynamical and

(1� ✏) · ||⌫||1  sup
|�|=1

|
Z

L
µ�|.

Proof. To prove 1), let us consider the functional M : H ! C, defined by
M(�) =

R

S

µ�, where H ⇢ L1(S) is the space of holomorphic quadratic dif-
ferentials. By Hahn-Banach, M extends to a functional of L1(S) of the same
norm. Since L1(S) is the dual of L1(S), there exists ⌫ 2 L1(S) whose L1

norm is the norm of M as a functional and such that M(�) =
R

S

⌫� for all
� 2 L1(S). This proves 1. For 2) and 3) we use a slightly extended version of
Hahn-Banach.
To state this version of Hahn-Banach, suppose that B0 and B1 are the following
Banach spaces related by a non degenerate pairing. For the proof of Statement
2) we take B0 to be the Beltrami vectors on L, B1 to be the L1 quadratic
di↵erentials on L, and the pairing to be the one defined above: (µ,�) =

R

L � ·µ.
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For the proof of Statement 3), we take B0 to be the dynamical Beltrami vectors
and B1 and the pairing as before.

Fact 1: The L1 norm on B1 induces by the pairing the L1 norm on B0 in each
case above. That is, if a norm |.| on B0 is defined by 8x 2 B0, |x|  1 if and
only if |(x, y)|  1 for all y 2 B1 with |y|  1, then this is the L1 norm on B0.

Fact 2: The L1 norm on B1 is induced from the pairing by the L1 norm on
B0 (in either case).

Proof. Fact 1 can be proved by using Hahn-Banach and using local charts.
Fact 2 follows from Fact 1 and the symmetry of the above definition.

Now in the proof of Statement 2), let T0 ⇢ B0 be the trivial Beltrami vectors
and A0 the quotient B0/T0 with the induced L1 norm on B0 and let H1 ⇢ B1

be the holomorphic quadratic di↵erentials in B1. By Theorem 6.2, T0 is closed
in B0 with respect to the norm topology. Now, A0 is dually paired to H1

by Theorem 6.2. The norm on H1 induced by the norm on A0 is clearly the
restriction of the norm on B1 induced by B0 because the unit ball in A0 is the
image of the unit ball in B0. Thus the L1 norm on H1 and the L1 norm on
A0 = B0/T0 are related by the pairing. Thus the statement of 2) follows by
definition.

Let us now prove Statement 3). As in the proof of Statement 2), one has a
Beltrami vector ⌫1 such that the inequality from Statement 3) holds; further-
more, µ�⌫1 = @̄V1 but V1 is not necessarily dynamical. However, locally, @̄V1 is
constant in the transversal direction and V1 is continuous. Thus locally we can
approximate V1 in the |V |0+|@̄V |1 topology by a dynamical V . A standard par-
tition of unit argument approximates V1 globally in the |V |0 + |@̄V |1 topology
by a transversally locally constant V . Now let ⌫ be defined by µ� ⌫ = @̄V .

Definition. A Beltrami vector for which

||⌫||1 = sup
|�|=1

Z

|⌫�|

is called extremal.
Next define the infinitesimal Teichmüller norm of a Beltrami vector by

|⌫|
T

= sup
|�|=1

|
Z

L
⌫�|

where the supremum is taken over all holomorphic quadratic di↵erentials of L1

norm one. Notice that the infinitesimal Teichmüller norm of a Beltrami vector
is bounded by its L1 norm. Furthermore, from Theorem 6.3 it follows that
the Teichmüller norm of a Beltrami vector ⌫ is equal to the infimum of the
L1 norms of all Beltrami vectors that di↵er from ⌫ by an infinitesimal trivial
Beltrami vector.
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7 The Almost Geodesic Principle

In this section we shall prove that a Beltrami path which is almost e�cient near
one endpoint remains almost e�cient up to a given size. The precise statement
of this ‘Almost Geodesic Principle’ will be given below. This principle and the
complex bounds from Section 5 will imply that renormalization contracts the
Teichmüller metric.

1. A Geometric Inequality

Let  be a quasiconformal homeomorphism of a Riemann surface or a Riemann
surface lamination S which is quasiconformally isotopic to the identity map
and let � be a holomorphic quadratic di↵erential on S. Let |�| be the measure
corresponding to �.

Proposition 7.1. Let S be a Riemann surface or a Riemann surface lamina-
tions,  and � as above with ||�|| = 1 and let

D(z) =
|D (z)v|

�

|v|
�

where v is tangent to the horizontal foliation of �. (Since  is quasiconformal
D and therefore D is defined almost everywhere.) Then

Z

S

D d|�| � 1.

Proof in the case of a Riemann surface: First note that there exists a
constant M such that for any arc ↵ in a horizontal trajectory of � the following
holds. The length of  (↵) (with respect to the metric corresponding to �) is
at least the length of ↵ minus 2M . The proof of this fact is elementary, see
Lehto (1987, p. 174) and also the proof below of Proposition 7.1 in the case of
Riemann surface laminations. Let us show that

1 = ||�|| =
Z

S

d|�| 
Z

S

D d|�|.

By the first argument, there exists a constant M such that if ↵ : [0, T ]! S is a
parametrization of an horizontal arc by arc length (with respect to the metricp
�), then

R

T

0
D(↵(t))dt � T � 2M . Hence 1

T

R

T

0
D(↵(t))dt � 1� 2M

T

. Suppose
first the horizontal foliation is orientable. The set A of all separatrices of the
horizontal foliation has �-measure zero. In S \ A we can consider the flow X

t

such that for each z, t 7! X
t

(z) is a parametrization of the horizontal leaf by arc
length. This flow preserves the measure |�|. By the Birkho↵ Ergodic Theorem,
see the Appendix, we see that the time average 1

T

R

T

0
D(X

t

(z))dt converges
almost everywhere and its integral with respect to |�| is the space average of D.
By the above condition, the time average is greater or equal to one. This proves
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the inequality. If the horizontal foliation is not orientable then lift everything
to a double cover S̃, such that the lift of the horizontal foliation is orientable.
Then one can use again the Ergodic Theorem ”upstairs”. Notice that the lift of
the quadratic di↵erential has total mass 2, and so, in order to use the Ergodic
Theorem, one has to multiply this quadratic di↵erential upstairs by a factor 1/2
in order to get a probability measure.

In the remaining of this subsection we shall prove the analogous result in
the case of a hyperbolic Riemann surface lamination. This proof will also work
for Riemann surfaces.

Let  be a quasiconformal homeomorphism of a hyperbolic Riemann surface
lamination L and let  

t

be a quasiconformal isotopy from the identity map to
 1 =  preserving the leaves. Lift the map  and the isotopy to the universal
cover to an arbitrary leaf L and denote this lifts by  

L

: D! D and  
L,t

; notice
that the lift  

L,t

of the isotopy  
t

is uniquely defined if we start with  
L,0 equal

to the identity. Let us fix a finite cover of L by flow boxes. By compactness,
there exists an integer N such that for every p 2 L, the curve t 7!  

t

(p) is
covered by at most N plaques of the lamination coming from the chosen finite
collection of flow boxes. Since the diameter of a plaque in the Poincaré metric is
uniformly bounded, it follows that, the Poincaré distance between z and  

L

(z)
is bounded and that these bounds do not dependent on the leaf L. In particular,
 

L

extends continuously to the identity map on the boundary of the disc D.
Let � be a holomorphic quadratic di↵erential on the lamination. By defini-

tion, the expression of a quadratic di↵erential di↵ers by a multiplicative constant
on each leaf if we choose two di↵erent measures in the measure class. Therefore,
� defines in almost every plaque, with respect to the transversal measure class,
a holomorphic quadratic di↵erential which is well defined up to multiplication
by a positive real number. Hence there exists a quadratic di↵erential �

L

in the
universal cover D of L, for almost every leaf L (with respect to the transversal
measure class), such that the restriction of (i

L

)⇤(�L

) to each plaque, coincides
with a positive multiple of the local expression of � ((i

L

)⇤ is the push-forward
map of section 6.4). This quadratic di↵erential �

L

is obtained by analytic con-
tinuation. Since the universal cover D of L is simply connected, �

L

is everywhere
well-defined but it is only unique up to multiplication by a positive constant.
Of course, �

L

is not necessarily invariant, as a quadratic di↵erential, by the
group of deck transformations because if A : D! D is an element of the group
of deck transformation then A⇤�L

is a positive multiple of �
L

and this multiple
is not necessarily equal to one (this means that the corresponding quadratic
di↵erential on the leaf is multivalued). Even so, � defines horizontal and ver-
tical foliations on almost every leaf; these are simply the push-forward of the
horizontal lamination of �

L

, since the horizontal foliation does not change if
we multiply the quadratic di↵erential by a positive number. The Teichmüller
metric

p

|�| is not well-defined since �
L

is only defined up to multiplication by
a positive constant. Moreover, the �

L

-length of the lift C̃ of a curve C to L
depends on the lift of the curve. In particular, the �

L

distance between the
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endpoints of the lift of the curve t 7!  
t

(p), i.e., the �
L

-distance between z
and  

L

(z), may not be bounded. However, ratios of lengths are well defined
because the metric is defined up to a multiplicative constant. So �

L

defines an
a�ne structure on each leaf: ratios of lengths of vectors are well defined.

Another di↵erence between the present situation and the case of a compact
Riemann surface discussed before, is that here, the horizontal trajectories of �
may have finite �

L

-length. In fact, this is the case for the special quadratic
di↵erentials discussed before, obtained by pushing forward, via i

L

: D! L ⇢ L,
a quadratic di↵erential on the disc D whose trajectories have finite length (dz2

is an example). If this is the case for most trajectories, then, the lift each
such trajectory to the universal covering of the corresponding leaf is a curve
connecting two boundary points of the disc. As the lift  

L

of the map  is the
identity at the boundary of the disc, it follows that the geometric inequality we
need in the proof is automatically satisfied: the �

L

-length of the  
L

image of a
full horizontal trajectory divided by the length of the trajectory is bigger or equal
to one because the endpoints do not move. There is another possibility, which
is similar to the case of the compact situation where the horizontal trajectories
of the quadratic di↵erentials are recurrent. In fact, in the general case we have
a decomposition of L into four subsets X,C1, C2, Y1, Y2 which are invariant by
the horizontal trajectories as follows: i) the trajectories in X are homeomorphic
to the real line and have infinite Teichmüller length; ii) the trajectories in C1

are compact and the a�ne structure the quadratic di↵erential induces in each
trajectory in C1 is equivalent to R/Z; iii) the a�ne structure of each trajectory
in C2 is equivalent to the Hopf circle R+/�R+, � > 0; iv) the trajectories in
Y1 are homeomorphic to the real line but have finite Teichmüller length; the
trajectories in Y2 are a�nely equivalent to R+, i.e they are half infinite. This
statement follows because there are only two a�ne structures on S1; the first
is the one coming from the additive structure on R and the other from the
multiplicative structure on R+.
The first and the second case also occur in compact Riemann surfaces. The
third situation may occur in a cylindrical leaf if the quadratic di↵erential is
multivalued. In this case the compact trajectory must be necessarily isolated
in the leaf because the nearby trajectories are asymptotic to it. (This can be
seen by going to the universal cover of the leaf and noting that the quadratic
di↵erential is multivalued). Hence C2 has |�|-measure zero. The dynamics of
the horizontal trajectories is dissipative in Y1. Indeed, we can define a Borel
subset of Y1 by choosing in each trajectory the middle point (with respect to
the Teichmüller length). This proves the dissipativeness of Y1. We will prove
below that Y2 has |�|-measure zero. Since the quadratic di↵erential is in L1, it
follows from the Poincaré recurrence theorem that almost all trajectories in X
are recurrent.

Let us formulate the geometric inequality we have to prove more precisely.
Notice first that if z is in the universal cover of a typical (with respect to the
measure |�|) leaf L then the ratio D

L

(z) between the �
L

-length of the D 
L

(z)
image of a vector tangent to the horizontal foliation by the �

L

-length of this
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vector is well defined (i.e., does not depend on the choice of �
L

) and is invariant
by the group of deck transformations. Hence it defines a function D at almost
all points of L. We have to prove that the integral of D with respect to the
measure |�| is at least one. To prove the geometric inequality we may disregard
the subset C2 since it has |�|-measure zero.

Definition. Let ⇠ be a partition of a subset T of L and let d⇠ be the push-
forward measure of |�| by the quotient map from T to T/⇠. Then the partition ⇠
is called measurable if the measure |�| on T can be disintegrated on the atoms of
⇠, i.e., for almost every C 2 ⇠ (with respect to d⇠) there exists a measure µ

C

on
a �-algebra M

C

of subsets of C satisfying the properties: i) a subset A ⇢ T is
measurable if and only if A\C 2M

C

for almost all C (with respect to d⇠) and
ii) |�|(A) =

R

T/⇠

(µ
C

(A\C))d⇠. A tube in L is a set T of positive measure having
a measurable partition ⇠ whose atoms are arcs of horizontal trajectories of the
quadratic di↵erential �. We refer to Rohlin (1962) and (1966) for properties of
measurable partitions.

Lemma 7.1. Let U be a flow box of the lamination L. Let T be the complement
in U of the set of zeros of the quadratic di↵erential. Then T is a tube and the
|�|-measure of T is equal to the |�|-measure of U .

Proof. Each connected component of the intersection of a trajectory with T
is an interval that have finite |�|-length. Hence the set S of middle points of
the above components is a measurable set that intersects each component of a
trajectory in T in a unique point. The partition of T by these components is
clearly a measurable partition.

Lemma 7.2. Given any compact arc of horizontal trajectories, there exists a
flow box that contains this arc.

Proof. First we cover the arc by a finite number of flow boxes. Using a partition
of unity, we can glue these boxes together and construct a neighbourhood of the
arc and a quasiconformal homeomorphism of this neighbourhood to a product
of the disc by a neighbourhood of the transversal (i.e., a quasiconformal triv-
ialization). Next we push forward, via this quasiconformal homeomorphism,
the conformal structure on the leaves and we get a quasiconformal structure
on the plaques of the product. Finally, by the Measurable Riemann Mapping
Theorem with parameters (the Ahlfors-Bers Theorem, see the Appendix), there
is a quasiconformal homeomorphism of D ⇥ ⇤ that maps this quasiconformal
structure on D ⇥ {�} in the usual conformal structure of D ⇥ {�}. The com-
position of the two quasiconformal homeomorphisms above gives the required
trivialization.

Lemma 7.3. The |�|-measure of the set Y2 of half infinite horizontal trajectories
is equal to zero.
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Proof. First we note that we may assume that the foliation of Y2 is ergodic:
this means that each invariant subset either has measure zero or its complement
has zero. Indeed, if the foliation of Y2 by trajectories is not ergodic then we take
the ergodic decomposition and use the arguments from below for each ergodic
component. So let us assume that the foliation by Y2 is ergodic and assume by
contradiction that Y2 has positive measure. To reach a contradiction let us call
a map ⌧ : A ! B is admissible if: i) ⌧ is one-to-one and measure preserving;
ii) for each x 2 A, ⌧(x) belongs to the same horizontal trajectory as x and
is closer to the finite end than x; iii) the restriction of ⌧ to each horizontal
trajectory preserves any measure in the trajectory that is compatible with the
a�ne structure (notice that any two measures on a trajectory compatible with
the a�ne structure di↵er from each other by a positive constant factor; thus if
a map preserves one of these measures it preserves any other such a measure).
Claim: Given two disjoint sets A and B in Y2, with positive measure, there
exist subsets A0 ⇢ A, B0 ⇢ B of positive measure and a measure preserving
bijection ⌧ : A0 ! B0 such that either ⌧ or ⌧�1 is admissible.
Before proving the claim let us show that it gives a contradiction. Indeed, let
C be the collection of admissible maps ⌧ : A! B. In C we consider the partial
order relation ⌧1 � ⌧2, ⌧i : A

i

! B
i

, if there exists a subset Z1 ⇢ A1 of measure
zero such that A1 \Z1 ⇢ A2 and ⌧1(z) = ⌧2(z) for every z 2 A1 \Z1. Let F ⇢ C
be a totally ordered subfamily. Let ⌧

n

: A
n

! B
n

be a sequence of elements
of C such that the measure of A

n

converges to the supremum of the measures
of the domains of maps in F . Clearly, there exists ⌧ : A ! B in C such that
⌧
n

� ⌧ for all n. Here A = [A
n

\ Z where Z has measure zero, if x 2 A
then x 2 A

n

for all b � n0 and ⌧
n

(x) = ⌧
n0(x) for all n � n0. Let ⌧̃ : Ã ! B̃

be an element of F . If ⌧̃ � ⌧
n

for some n then ⌧̃ � ⌧ . If ⌧
n

� ⌧̃ for all n,
it follows that the measure of Ã is equal to the measure of A and ⌧̃ � ⌧ (as
well as ⌧ � ⌧̃). Therefore, F has an upper bound. Thus, by Zorn’s Lemma,
there exists ⌧ : A! B which is a maximal element of C. By the claim, A must
have full measure in Y2. The intersection of a typical trajectory with A has
full measure in the trajectory with respect to any measure compatible with the
a�ne structure. The restriction of ⌧ to a typical trajectory gives a one to one
measure preserving mapping ⌧ : R⇤ ! R⇤ such that ⌧(x) < x for every x. This
contradicts the Poincaré’s Recurrence Theorem.

Let us now prove the claim. Since A has positive measure, we can choose
a tube T , with cross section S, such that any plaque T

x

, x 2 S, intersects
A in a set of positive measure with respect to the measure in T

x

obtained by
disintegration of the measure |�|. For each n 2 Z. let T

x

(n) be the interval in the
trajectory through x that contains n consecutive interval of equal length (with
respect to the a�ne structure) in the direction of the infinite end if n > 0 and, if
n < 0, either |n| intervals in the direction of the finite end or the whole interval
between the finite end and T

x

if these intervals do not exist (for each x the last
situation will always occur if �n is big enough). Let T (n) = [

x2S

T
x

(n). The
union of T (n) for n 2 Z is a union of trajectories and have positive measure. By
ergodicity it intersects B in a set of positive measure. Hence, there exists n 2 Z
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such that T (n) intersects B in a set of positive measure. Suppose n > 0. Let
T̃ = T (n)\S�, where S� is the set of end points of the plaques T

x

that is closer
to the finite end of the corresponding trajectory. We claim that T̃ is a tube such
that a positive set of plaques of T̃ intersects both A and B. In fact, S� \B has
zero measure and each T

x

(n) is divided into a finite number of intervals by S�.
So we can construct a cross section S̃ of T̃ by choosing the middle point of each
of these intervals and the conclusion follows. Let T̄ be the union of all plaques
T̃

x

of T̃ that intersects both A and B in a set of positive measure in the plaque.
Then T̄ is again a tube. Using this tube it is easy to construct the local map
⌧ . For that we choose sets of positive measure A1 ⇢ A \ T̄ , B1 ⇢ B \ T̄ such
that: i) the points of A1 \ T̄

x

, resp. B1 \ T̄
x

, are density points of A\ T̄
x

, resp.
B \ T

x

for almost all x 2 S̄: each plaque T̄
x

contains an interval J
x

such that
A1 \ T̄

x

and B1 \ T̄
x

are contained in di↵erent components of T̄
x

� J
s

and they
have the same measure. Therefore, for each x we take the measure preserving
bijection ⌧

x

from A1 \ T̄
x

onto B1 \ T̄
x

. If the set of x 2 S̄ such that B1 \ T̄
x

lies between the finite end and A1 \ T̄
x

has positive measure, we can construct
a map ⌧ which is admissible by taking A0 to be the intersection of A1 with the
corresponding plaques of T̄ . If this set has measure zero, we construct a map ⌧
from A1 to B1 such that the inverse of ⌧ is admissible.

Let ✏ > 0. For each integer n, let X
n

be the set of points x 2 X such that
the �

L

distance between x̂ and  
L

(x̂) is less than ✏ times the �
L

-length of each
arc of horizontal trajectory with endpoint x̂ and Poincaré length n.

Lemma 7.4. X = [
n

X
n

.

Proof. The horizontal trajectory through each point x 2 X is not bounded.
Hence x 2 X

n

if n is large enough.

Definition. A tube T is ✏-good if for almost all arcs C (with respect to d⇠)
of the partition of T by horizontal arcs satisfies: the sum of the �

L

distance
between each endpoint of C and its  

L

image is less than ✏ times the �
L

-length
of the arc.

Lemma 7.5. Let A ⇢ X be a set of positive measure. Then there exists an
✏-good tube T such that T \A has positive measure.

Proof. Since A has positive measure and the sets X
n

grows to X, it follows
that B = A \X

n

has positive measure if n is big enough. Since the horizontal
foliation is recurrent in X, almost every point x 2 X is an endpoint of an arc
of the horizontal foliation having Poincaré length bigger than n and the other
endpoint y is also in B. Now take a flow box containing one of those arcs and
let T be the union of all of the above arcs that are contained in the flow box.
It follows from Lemma 7.1 that T is a tube and we can choose T so that T \B
has positive measure.
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Lemma 7.6. Given � > 0 there exists a finite number of disjoint ✏-good tubes
T1, . . . , Tn

in X such that µ([T
i

) � (1� �)µ(X).

Proof. First we notice that if T1 and T2 are ✏ good tubes then T1[T2 is covered
by the disjoint union of three ✏-good tubes. In fact, let S1 be the union of all
horizontal arcs in the partition of T1 that do not intersect T2, let S2 be the set
of horizontal arcs in the partition of T2 that do not intersect T1 and let S3 be
the union of each arc C which is the union of an arc of T1 that intersects T2 with
the corresponding arc of T2. We have that S

i

, i = 1, 2, 3, are disjoint ✏-good
tubes whose union is T1 [ T2. Now, from Lemma 7.5 it follows that there exists
a countable family of ✏-good tubes whose union contains almost all points in X.
Hence, by taking a finite number of them we cover a subset of X of measure
(1� �)⇥ µ(X). By the above argument, we can make them disjoint.

Lemma 7.7. Let C be an atom of the measurable partition of a tube T by
horizontal arcs and µ

C

the measure on C given by the disintegration of µ. Then
if an endpoint x of C belongs to a typical leaf L and C̃ is a lift of C to the
universal cover then

R

C

Ddµ
C

is equal to the ratio between the �
L

-length of
 

L

(C̃) and the �
L

-length of C̃. In particular, if T is an ✏-good tube then
Z

C

Ddµ
C

� 1� ✏.

Proof. This is simply the chain rule.

Proof of Proposition 7.1 for Riemann surface laminations: Let T1, . . . , TN

be a collection of disjoint ✏-good tubes whose union has measure at least (1� ✏)
times the measure of X. Then

Z

X

Ddµ �
N

X

i=1

Z

T

i

Ddµ =
X

Z

(
Z

C

Ddµ
C

)d⇠

�
N

X

i=1

(1� ✏)µ(T
i

) = (1� ✏)(1� ✏)µ(X).

On the other hand, let us consider tubes whose atoms are full horizontal trajec-
tories. Let us call a tube like that a special tube. Given any subset A of positive
measure in the dissipative part, there exist a special tube T that intersects A
in a set of positive measure. As above, we can then construct a finite number
of disjoint ✏-good tubes in the conservative part such that the measure of the
union of these tubes is almost equal to the measure of the conservative part
Y . Since  

L

does not move the endpoints of the trajectories (they are in the
boundary of D) we have that the �

L

-length of the  
L

image of such a trajectory
is at least the �

L

-length of the trajectory. Therefore,
R

Y

Ddµ is bigger than the
measure of the union of these special tubes which is almost the measure of Y .
This concluded the proof of the proposition. The subset C2 is treated as in the
classical case; in fact the closed trajectories can only occur in cylindrical leaves
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and in this case all the trajectories in the same leaf are also closed. Since the
number of cylindrical leaves is at most countable, we get that either C2 has
measure zero or the measure gives positive mass to some cylindrical leaves and
the situation the same as in the classical case.

2. The Almost Geodesic Principle

Now we come to the main result of this section. Assume that ⌫ is a Beltrami
vector at some Beltrami coe�cient µ which is ✏-extremal. This means that there
exists a holomorphic quadratic di↵erential � with ||�|| = 1 with respect to the
µ structure such that

|
Z

�⌫| � (1� ✏)||⌫||1.

So the Beltrami vector ⌫ is 0-extremal if

sup |
Z

�⌫| = ||⌫||1.

As we have seen in the corollary to Theorem 6.1 such Beltrami coe�cients
exist. In the next theorem it is shown that the Beltrami path corresponding
to an almost extremal vector does not coil: if the tangent Beltrami vector is
almost extremal then the Beltrami path remains almost a geodesic for a long
(but a priori fixed) time.

Theorem 7.1. (‘Almost Geodesic Principle’)
Given ✏, l > 0 there exists � > 0 such that the following holds. Suppose that ⌫

is a �-extremal Beltrami vector at a Beltrami coe�cient µ0 on a Riemann surface
or on a compact Riemann surface lamination S. Let  be quasiconformally
isotopic to the identity and let µ

l

be the Beltrami coe�cient which is obtained
from µ0 = µ by stretching a distance l in the direction of ⌫. If K is the maximal
distortion of  between µ0 and µ

l

then

l  K(1 + ✏).

Proof. We may assume that ||⌫||1 = 1 and that µ
t

is the Beltrami path passing
through µ0 and tangent to ⌫. Since ⌫ is �-extremal, there exists a holomorphic
quadratic di↵erential � (holomorphic with respect to the conformal structure of
µ0), such that

|
Z

�⌫| � (1� �)||⌫||1 = (1� �).

Let µ̃
l

be the conformal structure we get by deforming µ0 in the direction |�|/�
a distance l. Let

K̃(z) = ⇢
⇣

( �1)⇤(µ0)(z), µ̃
l

(z)
⌘

and
K(z) = ⇢

⇣

( �1)⇤(µ0)(z), µ
l

(z)
⌘

,
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where ⇢ is the Poincaré distance in D. Since µ0 is obtained from µ̃
l

by con-
tracting by 1

l

in the direction of the horizontal trajectories of �, we have the
Grötzsch inequality,

Z

K̃(z) d|�| � l.

Indeed, if T is the Jacobian of  �1 with respect to the measures |�| and the
measure obtained by contracting the horizontal trajectories of � by 1

l

we have
that D(z)  K̃(z) ·T (z) almost everywhere with respect to |�|. Here D(z) is the
ratio of the Teichmüller length of the image by the derivative of  �1 at z of a
vector tangent to the horizontal trajectory of � having Teichmüller length equal
to one. By the geometric inequality of section 6.1, we have that

R

L D(z)d|�| � 1.
Therefore, since

R

L T (z)d|�| = 1
l

, we get:

1  (
Z

L
Dd|�|)2  (

Z

L

q

K̃(z) ·
p

T (z)d|�|)2


Z

L
K̃(z)d|�| ·

Z

L
T (z)d|�|


Z

L
K̃(z)d|�| · 1

l
.

The third inequality above is the Cauchy-Schwarz inequality. This proves the
Grötzsch inequality.

Let us compare the Beltrami vector ⌫ with the Beltrami vector |�|/�. By
considering local charts we see that there exist globally defined functions ✓ : S !
R+ and � : S ! R+ such that

⌫
i

(z
i

(p)) = ei✓(z)e��(z) |�i

(z
i

(p))|
�

i

(z
i

(p))

for any local chart z
i

on S. Hence,
Z

S

⌫� =
Z

S

ei✓(z)e��(z) d|�|.

By the choice of �, it follows that the last integral is real and � (1� ✏). Thus,
Z

S

cos(✓(z)) e��(z) d|�| � 1� ✏.

From the last inequality it follows that the set

A
⌫

= {z 2 S ; ✓(z) >
p
⌫ or �(z) >

p
⌫}

has �-measure of the order O(p⇢). Moreover, if ⌫ > 0 is su�ciently small then
⇢(µ

l

(z), µ̃
l

(z))  ✏l, for z /2 A
⌫

. Therefore, for z /2 A
⌫

, |K̃(z) � K(z)|  ✏l.
Thus,
Z

K(z) d|�| =
Z

K̃(z) d|�| �
Z

(K(z)� K̃(z)) d|�|

� l �
 

Z

A

⌫

|K(z)� K̃(z)| d|�| +
Z

A

c

⌫

|K(z)� K̃(z)| d|�|
!

� l �O(
p
⌫)� l✏ � l

1 + ✏/2
.



516 CHAPTER VI. RENORMALIZATION

This proves the theorem.

8 Renormalization is Contracting

In this section we will combine the results of the previous sections to prove the
contraction of the renormalization operator. We will split the proof into two
steps.

Step 1: The Coiling Lemma

In this step we will deduce a result for dynamical Beltrami paths which gives
a kind of converse to the Almost Geodesic Principle. By the Almost Geodesic
Principle, if we start with a dynamical Beltrami vector which is �-e�cient and
consider the deformation of the initial germ by a hyperbolic distance d along
the tangent Beltrami vector, then the Julia-Teichmüller distance between the
endpoints is at least (1 � ✏)d. Now we want the converse: given that this
distance is at least (1 � �)d we want to conclude that the tangent Beltrami
vector at the origin is ✏-e�cient, where � depends only on d and ✏. This means
that if we deform a conformal structure along a Beltrami path tangent to a
Beltrami vector which is not e�cient we cannot go too far in terms of the Julia-
Teichmüller distance, i.e., the Beltrami path necessarily ‘coils’.

Let us formulate this statement more precisely. We fix a germ of a quadratic-
like map and let F : U ! V be a representative of this germ. A dynami-
cal Beltrami vector ⌫ in the lamination L[F ] is given by a measurable func-
tion ⌫ which is defined in some neighbourhood W of the filled Julia set of F ,
vanishes at the Julia set, satisfies the invariance condition F ⇤⌫ = ⌫, where
F ⇤⌫(z) = ⌫(F (z)) · @F (z)

@F (z) and is essentially bounded. As we have seen in Section
6, the Teichmüller norm of ⌫ coincides with the infimum of the L1 norms of
all Beltrami vectors that are equivalent to ⌫ in the sense that they have the
same period, i.e., they give the same value when paired with L1-holomorphic
quadratic di↵erentials of the lamination L[F ]. A dynamical element of the Te-
ichmüller space of L[F ] may be represented by a measurable function µ, defined
in some neighbourhood of the filled Julia set of F such that: i) µ vanishes at
the filled Julia set of F ; ii) F ⇤µ = µ and iii) |µ|1 < 1. This function µ is
called a dynamical Beltrami coe�cient and the original structure, i.e., the ele-
ment of the Teichmüller space represented by L

F

is represented by the Beltrami
coe�cient identically zero. Conversely, any Beltrami coe�cient µ satisfying the
above conditions defines an element [µ] of the Teichmüller space T (L). Indeed,
if � is a quasiconformal homeomorphism whose Beltrami coe�cient is µ then,
by the invariance condition ii) it follows that G = � �F ���1 is a quadratic-like
map and the Teichmüller equivalence class of the associated Riemann surface
lamination is an element of T .

Two dynamical Beltrami coe�cients µ1 and µ2 are equivalent as Beltrami
coe�cients if �1 � F � ��1

1 is holomorphically conjugate to �2 � F � ��1
2 in some
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neighbourhood of the Julia set, where �
i

is a quasiconformal homeomorphism
with Beltrami coe�cient µ

i

defined on some neighbourhood of the filled Julia
set of F .

Definition. We denote by |⌫|
T

the Teichmüller norm of a Beltrami vector
⌫ and by |µ|

JT

the infimum of the L1 norm of Beltrami coe�cients that are
equivalent to µ. Notice the Julia-Teichmüller distance between [F ] and the germ
associated to µ is equal to log 1+|µ|

JT

1�|µ|
JT

. We say that ⌫ is ✏-e�cient as a Beltrami
vector if |⌫|

T

� (1 � ✏)|⌫|1. Similarly, a Beltrami coe�cient is ✏-extremal if
|µ|

JT

� (1� ✏)|µ|1. We can restate the Almost Geodesic Principle in the above

language as:

Theorem 8.1. (The Almost Geodesic Principle) Given ✏ > 0 and 1 > d >
0, there exists � = �(d, ✏) such that if ⌫ is a �-e�cient Beltrami vector of F then
the Beltrami coe�cients µ

t

= t⌫, 0  t  d

|⌫|1 are ✏-extremal.

Now we will prove the converse.

Theorem 8.2. (The Coiling Lemma) Given ✏ > 0 and d > 0, there exists
� = �(✏, d) such that if ⌫ is a Beltrami vector of the germ of F and the Beltrami
vector µ

t

= t⌫ is �-extremal for some t < d

|⌫|1 then ⌫ is ✏-e�cient.

Firstly we will prove the statement of Theorem 8.2 for Teichmüller spaces
of Riemann surfaces. We start with the classical situation. Let � be a Fuchsian
group, i.e., a group of Moebius transformations that acts discontinuously in D.
A Beltrami vector of � is an essentially bounded measurable map ⌫ 2 L1(D)
which is invariant under � as a Beltrami di↵erential:

A⇤⌫(z) = ⌫(A(z))
@A(z)
@A(z)

= ⌫(z)

for all z 2 D and for all A 2 �. A holomorphic quadratic di↵erential of � is
a holomorphic map � : D ! C such that |�| is integrable on each fundamental
domain of � and � is invariant under � as a quadratic di↵erential, i.e.,

A⇤�(z) = �(A�1(z)) · (@(A�1(z))2 = �(z)

for all z 2 D and for all A 2 �. The Teichmüller norm |⌫|
T

of the Beltrami vector
⌫ is defined as the infimum of |⌘|1 over all Beltrami vector ⌘ of � satisfying the
property that

R

N

⌘ · �dzdz̄ =
R

N

⌫ · �dzdz̄ for all holomorphic quadratic di↵er-
entials � of �, where N is a fundamental domain of �. A Beltrami coe�cient of
� is a Beltrami vector of L1 norm smaller than one. The Beltrami coe�cients
µ1 and µ2 are equivalent if the quasiconformal homeomorphisms hµ

i : D ! D
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coincide in the boundary of D, where hµ

i denotes the quasiconformal homeo-
morphism with Beltrami coe�cient µ

i

normalized so that the points 1, i,�1 are
fixed points. The Beltrami coe�cient µ is ✏-extremal if

|µ|1  (1 + ✏) inf{|µ̃|1 ; µ̃ is a Beltrami coe�cient of � equivalent to µ}.

Lemma 8.1. Given ✏ > 0 and 0 < d < 1, there exists � > 0 with the following
property. If � is any Fuchsian group, ⌫ is a Beltrami vector of � and the
Beltrami coe�cient µ

t

= t⌫ is �-extremal for some t  d/|⌫|1 then ⌫ is ✏-
e�cient.

Proof. We will only sketch the main steps of the proof and refer to Section 7,
Chapter V from Lehto (1987) and Chapters 5 and 6, Gardiner (1987) for the
details.

Step 1: Let ⌫ be a Beltrami vector of � and take w 2 C with |w|  1. Let
h

w·⌫ denote the quasiconformal homeomorphism of the Riemann sphere whose
Beltrami coe�cient coincides with w · ⌫ on D and vanishes on C̄ \ D. Then

lim
w!0

S(h
w·⌫)(z)
w

= 0

for all z 2 C \ D, where S denotes the Schwarzian derivative, if and only if ⌫ is
infinitesimally trivial.

Proof of Step 1: We can normalize h
w⌫

so that it fixes infinity and its deriva-
tive at infinity is equal to one. With this normalization, we can use the repre-
sentation of quasiconformal mappings, see Lehto (1986, pp. 27). This gives

h
w⌫

(z) = z + w ·X(z) + O(w2)

where X is the vector field in the Riemann sphere that vanishes at infinity and
satisfies @̄X = ⌫, i.e., X(z) = T⌫(z) = � 1

⇡

R

C
⌫(u+iv)
u+iv�z

dudv. Since ⌫ vanishes
in C \ D we also have that X(z) =

R

D
⌫(u+iv)
u+iv�z

dudv. On the other hand, since
⌫ is infinitesimally trivial, there exists a vector field V on D that vanishes at
the boundary of D and is such that @̄V = ⌫ on D, see Theorem 6.2. Hence
V is equal to X on D. This implies that X vanishes at the boundary of D
and since X is holomorphic on C \ D we have that X vanishes at C \ D. Since
h

w⌫

= z + w ·X(z) + O(w2), the limit in question at a point z 2 C \D is equal
to the third derivative of X at z which vanishes. This proves step 1.

Step 2: If ⌫ is an infinitesimally trivial Beltrami vector then, for each 0 
t  1

2|⌫|1 , there exists a Beltrami coe�cient �
t

, which is equivalent to t⌫ as a
Beltrami coe�cient and which satisfies

|�
t

|1  3(|⌫|1)2t2.
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Proof. Proof of Step 2 The proof of this statement follows from Step 1) and
some universal estimates on the Schwarzian derivatives of univalent functions.
In fact, the proof of this step requires many arguments from classical Teich-
muller theory and is contained in Lemma 7.1 from Lehto (1987, p.227), see also
Chapters 5 and 6 from Gardiner (1987). Let us briefly sketch the proof of Step 2
and refer to these monographs for the details. (Notice that there is a di↵erence
in the formulas in Lehto and Gardiner because Lehto uses the Poincaré disc D
as the universal cover of the Riemann surfaces whereas Gardiner uses the upper
half-plane. In our book we are following the notation of Lehto. Hence we con-
sider the Poincaré disc D and also the disc E which is the complement of D in
the Riemann sphere. The group � of deck transformations acts both in D and
in E. The mapping I : E! D, I(z) = 1

z̄

is an anti-holomorphic di↵eomorphism
that commutes with the elements of � and can be used to transform �-invariant
objects on E into � invariant objects on D. In particular, if � is a �-invariant
quadratic di↵erential of E then z 7! z�4�( 1

z̄

).
Let us summarize the arguments that are used for the proof of Lemma 7.1

of Lehto (1987).
The argument goes as follows. Define � : w 7! S(h

w·⌫). This is a map
from the space of Beltrami coe�cients into the space of holomorphic quadratic
di↵erentials. Now let the norm in the space of holomorphic �-invariant quadratic
di↵erentials be the hyperbolic supremum norm, i.e., the sup of the absolute
value of � multiplied by the Poincaré density to the power �2 (this defines a
function on the quotient space because this product is �-invariant). Note that �
is complex analytic and goes into the ball of radius 6. This follows from Nehari’s
inequality, see Lehto (1987, Thm.1.3, p.60) and Gardiner (1987, Lemma 6, p.99).

This map � from the space of Beltrami coe�cients into the space of holo-
morphic quadratic di↵erentials has a holomorphic cross section ' ! µ

'

where
µ
'

= '· (Poincaré metric)�2 over the ball of radius 2. This follows from a result
of Ahlfors-Weill, see Gardiner (1987, Lemma 7, p.100) and Lehto (1987, Thm
5.1, p. 87).

Now � exactly collapses Teichmüller equivalence classes to points because
the quadratic di↵erential precisely determines the quasicircle boundary (up to
Moebius transformations) which is the image of the boundary of the upper half
plane (or disk), see Gardiner (1987, Lemma 3, p.98).

Since the Teichmüller metric is induced from the metric on Beltrami coef-
ficients and � is holomorphic, Schwarz’s lemma implies that the Teichmüller
metric is bigger than the Poincaré metric P (6) on the ball of radius 6. Since the
cross section is holomorphic on the ball of radius 2 we see that the Teichmüller
metric on ��1 (ball of radius 2) is smaller than the Poincaré metric P (2) on the
ball of radius 2. Since P (6) and P (2) are equivalent to the Banach space supre-
mum metric on the ball of radius 1 we deduce the map � is an equivalence of
metrics between the Teichmüller metric and the Banach space metric on a small
ball of universal size (say 1). (Notice we are close but have not had to introduce
a complex manifold structure on the Teichmüller space for this argument.) See
Gardiner (1987, Thm 3, p.104) for this.
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From Step 1 when ⌫ is infinitesimally trivial, the map � on the ⌫ disk {w ·⌫}
vanishes to first order at the origin. By Cauchy’s Integral Formula the 2nd

derivative is bounded (between domain � and the Banach space) on a fixed size
ball. By the above the Teichmüller length is O(|w|2) with universal constants.

Step 3: Next we use a small modification of the proof of Lemma 7.2 from Lehto
(1987, p. 227). Suppose that µ is a �-extremal Beltrami coe�cient satisfying
|µ|1  d which is not ✏-e�cient as a Beltrami vector. So by definition there
exists a Beltrami vector µ1 such that |µ1|1  (1 � ✏)|µ|1 and ⌫ = µ � µ1 is
infinitesimally trivial. For t < |µ|1

10 , let �
t

be the Beltrami coe�cient of the
normalized quasiconformal homeomorphism

h�t = hµ � (ht⌫)�1

and hence
�

t

(w) =
µ(z)� t⌫(z)
1� tµ(z)⌫(z)

,

where w = ht⌫(z). We claim that there exist positive numbers �0 and t0 that
depend only on ✏ and on d such that

|�
t

|1  |µ|1 � �0t for t  t0 · |µ|1.

Proof of Step 3: Let E1 = {z 2 D ; |µ(z)|  (1 � ✏

2 )|µ|1} and E2 = C \ E1.
Since |⌫|1  |µ|1 + |µ1|1  2|µ|1  2, we have that, for z 2 E1,

|�
t

(w)|  |µ(z)|+ 2t|µ|1
1� 2t

 |µ|1 � �1 · t

if t  t1|µ|1 where t1 = ✏

100 and �1 = 1. For u 2 C \ {0} and v 2 C, |v|  2,
the derivative at t = 0 of the mapping t 7! | u�tv

1�tuv

| is equal to � 1�|u|2
|u| Re(u · v).

Therefore, the supremum C over the set
⇢

1
t2

�

�

�

�

u� tv

1� tuv
� u +

1� |u|2
|u| Re(u · v) · t

�

�

�

�

; |u| � (1� ✏)|µ|1, t  |µ|1|
10

�

is positive and depends only on ✏ and on |µ|1. Therefore, if z 2 E2, we have
that

|�
t

(w)|  |µ(z)|� 1� |µ(z)|2
|µ(z)| Re(µ(z)⌫(z)) · t + Ct2

for all t  |µ|1
10 . On the other hand, for z 2 E2,

1� |µ(z)|2
|µ(z)| Re(µ(z)⌫(z)) � (1� |µ(z)|2)(|µ(z)|� |µ1(z)|)

� (1� |µ|21)
⇣

(1� ✏

2
)|µ|1 � |µ1|1

⌘

� (1� |µ|1)
✏

2
|µ|1 � (1� d)

✏

2
|µ|1.

Therefore, there exist positive numbers t2 and �2 that depends only on ✏ and
on d such that |�

t

(w)|  |µ|1� �2t for t  t2|µ|1. Taking �0 = min{�1, �2} and
t0 = min{t1, t2}, we complete the proof of the Step 3.
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Step 4: Let us now complete the proof of the lemma. Given ✏ > 0 and d > 0, let
t0 = t0(✏, d) and �0 = �0(✏, d) be as in the previous step. Let � 2 (0, �0t̄/2) where
t̄  t0 satisfies

�

1� �0t̄ + 12t̄2
�

/
�

1� 12t̄2
�

 1� �0t̄/2. Because of Step 2 and
since |⌫|  2, there exists �

t

equivalent to t⌫ as a Beltrami coe�cient, such that
|�

t

|1  12t2. Therefore, if ⌧
t

is the Beltrami coe�cient of the quasiconformal
homeomorphism h⌧t = h�t�h�t then ⌧

t

is equivalent to µ as a Beltrami coe�cient
and

|⌧
t

|1 
|�

t

|1 + |�
t

|1
1� |�

t

|1
<
|µ|1 � �0t + 12t2

1� 12t2

for all t  t0|µ|1. Therefore, by the choice of �,

|⌧
t̄·|µ|1 |  (1� �)|µ|1.

This is impossible because µ is �-extremal and since ⌧
t

is equivalent to µ as a
Beltrami coe�cient.

Let us now sketch the proof of the statement of Lemma 8.1 in the setting of
the lamination L of a quadratic-like mapping.

The lamination L has a Z cover L̂ whose natural boundary is the solenoid
and whose deck transformation becomes the dynamics on the solenoid, which is
the mapping lim (degree two mapping of the circle). We think of L̂ as obtained
by naturally attaching an upper half plane to each a�ne line of the solenoid.
We can further unwrap L̂ in the solenoidal direction to obtain a further covering
space Û whose natural boundary is the (real line ⇥ Cantor set) with a 2 gen-
erator covering group, which we denote �. One generator comes from the deck
transformation of L̂ and the other a translation in the R-direction ⇥ (adding
one on the 2-adic Cantor set). The details of this action are not important, we
only need to work equivariantly with respect to this � whatever it is.

Now we consider the Steps 1, 2, 3, 4 of the above proof of Lemma 8.1. Instead
of one hyperbolic plane invariant under a Fuchsian group, we now have a Cantor
set of hyperbolic planes permuted isometrically by our group �. We construct
� using the solution of the Beltrami equation. Continuous dependence on the
Cantor set direction � follows if we assume ⌫ is lifted from a Beltrami vector on
the lamination with its complex structure which is smooth in the leaf direction
and continuous in the transverse direction �. For the ⌫ lifted is �-continuous
for convergence on compact sets of the open disk D containing support ⌫, and
such continuity gives required � continuity of the map �. This amounts to the
fact that a large Poincaré disk about z near the boundary of D contains most
of the mass of the integrals used to construct �, see Theorem 6.2.

The equivariance with respect to � is automatic and the other considerations
of Steps 1 and 2 go through automatically. Steps 3 and 4 are exactly the same.

Proof of Theorem 8.2: The above discussion proves the analogue of Lemma
8.1 and Theorem 8.2 for Beltrami vectors ⌫ on the lamination which are ad-
missible, i.e., leafwise smooth and transversally continuous, with respect to the
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sup dilation metric between admissible isotopy classes of admissible conformal
structures on the laminations. Now the transversally locally constant part of
these objects (denoted by TLC) is what concerns us for Theorem 8.2 because
these are precisely the ones coming from the dynamical plane.

Easy vector field approximation arguments using a partition of unity shows
leafwise smooth TLC conformal structures and TLC Beltrami vectors are dense
and the TLC Teichmüller metric agrees with the lamination Teichmüller metric
restricted to the dense TLC subset, see the proof of Theorem 6.3.

Step 2: The contraction of the renormalization operators

Now we complete the proof of Theorem 1.1. Take two germs of infinitely renor-
malizable quadratic-like maps [F ] and [F̃ ] which are combinatorially equivalent
and of combinatorial type  N .

Theorem 8.3. If [F ] and [F̃ ] are germs of symmetric quadratic-like maps which
are infinitely renormalizable and of the same bounded combinatorial type then
d

JT

(Rn([F ]),Rn([F̃ ])) goes to zero as n!1.

Proof. It is enough to prove that there exists 0 < � < 1 such that for each pair
of germs [F ], [F̃ ], as in the statement of the theorem, there exists an integer n,
that may depend on F and F̃ , such that d

JT

(Rn([F ]),Rn([F̃ ])  �d
JT

([F ], [F̃ ]).
The proof will combine Theorem 8.1, Theorem 8.2 and the complex bounds.
To get a definite contraction we start by taking the Beltrami coe�cient of a
quasiconformal conjugacy which almost realizes the Julia-Teichmüller distance.
Using this Beltrami coe�cient as a Beltrami vector we construct, by multiplying
the Beltrami vector by a positive real parameter, a very long arc of Beltrami
coe�cient so that the Julia-Teichmüller distance of the end-points is 10 times
the constant given by the complex bounds. Next we iterate the arc by the
renormalization operator long enough to see, via the complex bounds, a big
contraction of the Julia-Teichmüller distance of the end-points. By Theorem
8.1, this implies that the tangent Beltrami vector at the origin of the image
path cannot be too e�cient. Combining this with Theorem 8.2 we get a definite
contraction of the Julia-Teichmüller distance between the original germs under
this iteration.
Let us be more precise. Let ↵ : [0, 1) ! [0,1) be defined by ↵(x) = log 1+x

1�x

.
Let l0 be the constant given by the complex bounds: for each pair of germs
[F0], [F1] of the same bounded combinatorial type, there exists n such that
d

JT

(Rn([F0]),Rn([F̃1]))  l0. Let 0 < d1 < d5 < d10 < 1 be such that
↵(d

i

) = i ⇥ l0. In the hypothesis of Almost Geodesic Principle, we take
d = d10, 1 � ✏ = d1

d5
and the corresponding � we call a. Now in the hy-

pothesis of Theorem 8.2 we take ✏ = a, d = d10 and the corresponding � we
denote by b. Let c > 0 be such that (1 + c)(1 � b) < 1 and (1+c)d5

d10
< 1. Let

� = max{↵((1�b)(1+c)y)
↵(y) , ↵((1+c)d5d10/z)

↵(z) ; 0 < y, z  d10}. Clearly, 0 < � <



8. RENORMALIZATION IS CONTRACTING 523

1. Choose a quasiconformal conjugacy between representatives F : U ! V ,
F̃ : Ũ ! Ṽ , whose Beltrami coe�cient µ satisfy

|µ|1  (1 + c) · |µ|
JT

i.e., the logarithm of the conformal distortion of this conjugacy is very near the
Julia-Teichmüller distance between [F ] and [F̃ ]. Let us consider the Beltrami
coe�cient of F , µ1 = d10

µ

|µ|1 . Let F1 = hµ1 � F � (hµ1)�1. By the com-
plex bounds, there exists an integer n such that d

JT

(Rn([F1]),Rn([F ]))  l0.
This is the same as |Rn(µ1)|JT

 d1, where Rn(µ1) is the restriction of µ1 to
a neighbourhood of the Julia set of Rn(F ) which is a restriction of Fn to a
neighbourhood of the critical point of F . If |Rn(µ)|1  d5

d10
|µ|1 then

|Rn(µ)|
JT

 |Rn(µ)|1 
d5

d10
|µ|1 

(1 + c)d5

d10
|µ|

JT

.

Therefore,

d
JT

(Rn([F̃ ]),Rn([F ])) = ↵(|Rn(µ)|
JT

)  �↵(|µ|
JT

) = �(d
JT

([F̃ ], [F ]))

by the choice of �. So we can assume that

|µ|1 � |Rn(µ)|1 �
d5

d10
|µ|1

Since Rn(µ1) = d10
|µ|1R

n(µ) we get that

d10 = |µ1|1 � |Rn(µ1)|1 �
d10

|µ|1
d5

d10
|µ|1 � d5.

Since |Rn(µ1)|JT

 d1 (the complex bounds), we have that

|Rn(µ1)|1 �
d5

d1
|Rn(µ1)|JT

.

Because of the Almost Geodesic Principle, this implies that

|Rn(µ)|
T

< (1� a)|Rn(µ)|1.

From this last inequality we get

|Rn(µ)|
JT

 (1� b)|Rn(µ)|1,

see Theorem 8.2. Therefore,

|Rn(µ)|
JT

 (1� b)|Rn(µ)|1  (1� b)|µ|1  (1� b)(1 + c)|µ|
JT

.

Thus,

d
JT

(Rn([F̃ ]),Rn([F ])) = ↵(|Rn(µ)|
JT

)

 ↵((1� b)(1 + c)|µ|
JT

)

 �↵(|µ|
JT

) = �d
JT

([F̃ ], [F ]).
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This completes the proof.

Next we will use the previous results to prove the contraction of the renor-
malization operator in the Cr topology for every r. Let D

N

be the set of real
analytic maps of the interval [0, 1] that are infinitely renormalizable with combi-
natorial type bounded by N . We will consider several topologies on this space.
As usual, we say that f

n

converges to f in the Cr topology if f
n

� f , together
with all its derivatives up to order r converges uniformly to zero. We say that f

n

converges strongly to f if there exists an open neighbourhood W of the interval
[0, 1] in the complex plane, and holomorphic extensions F

n

of f
n

and F of f
to W such that F

n

converges uniformly to F on W . Clearly, if f
n

converges
strongly to f then f

n

converges Cr to f for all r.

Lemma 8.2. Suppose that f
n

2 D
N

converges uniformly to f and that each f
n

extends to a quadratic-like map F
n

whose conformal type is uniformly bounded.
Then f

n

converges strongly to f .

Proof. Under the hypothesis of the boundedness of the conformal type we
have, by trimming the domains of the quadratic-like extension as in the proof of
Theorem 4.2d, that there is a neighbourhood of the interval [0, 1] contained in
the domain of all F

n

and that every subsequence of F
n

has a subsequence which
converges uniformly on this neighbourhood. Since the sequence f

n

converges,
it follows that the limit of all convergent subsequences of F

n

must be equal to
f on the interval [0, 1]. Hence the sequence F

n

converges uniformly.

Lemma 8.3. Let F
n

: U
n

! V
n

be a sequence of quadratic-like maps normalized
so that the dynamical interval is always [0, 1]. If the conformal type of F

n

is
bounded by B for all n then there exist a sequence n

i

! 1, a quadratic-like
map F : U ! V with the same normalization and a neighbourhood W of [0, 1]
in the complex plane, with the following properties:

1. F
n

i

|W converges to F |W uniformly;

2. W is an open neighbourhood of J(F ) and of J(F
n

i

) for all i;

3. F |W is quadratic-like.

Proof. Follows from Lemma 4.5.

Lemma 8.4. Given ✏̃ > 0, there exists ✏ > 0 and L >> 10 with the following
property. If H is a (1 + ✏)-quasiconformal homeomorphism that maps the unit
interval in itself fixing the endpoints, whose domain and range contains the disc
of radius L then

(⇤) |H(z)� z| < ✏̃ , |H�1(z)� z| < ✏̃

for all z 2 D10 = {z 2 C ; |z|  10}.
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Proof. Follows from Koebe’s Distortion Lemma and from compactness prop-
erty of the set of quasiconformal homeomorphisms of the unit disc.

Lemma 8.5. Let f, g 2 D
N

be maps of the same combinatorial type. Then
Rn(f)�Rn(g) converges strongly to zero.

Proof. If f, g 2 D
N

have the same combinatorial type, we define d
JT

(f, g) to be
the Julia-Teichmüller distance between quadratic-like extensions F and G of f
and g respectively. By Theorem 8.3 we have that d

JT

(Rn(f),Rn(g)) converges
to zero. Let W be a neighbourhood of the dynamical interval that is contained
in the domains of F

n

and G
n

. It is enough to prove that for n big enough,
||F

n

|W �G
n

|W ||0  1
2 ||F0|W �G0|W ||0. Let ✏̃ > 0 be such that if F̃ , G̃ : W !

C are arbitrary maps such that G̃ = H�1 � F̃ � H with H a quasiconformal
homeomorphism satisfying (⇤), then |F̃ (z) � G̃(z)|  1

2 ||F0 � G0||0 for all z 2
W . Let ✏ > 0 be as in Lemma 8.4. Since d

JT

(Rn(f),Rn(g)) ! 0 there
exists a (1 + ✏)-quasiconformal conjugacy � between F

n1 and G
n1 defined on a

neighbourhood W1 of the dynamical interval. By rescaling, � defines a (1 + ✏)-
quasiconformal homeomorphism H

n

that conjugates F
n

and G
n

in W for n � n1

and such that the domain and range of H
n

contains a disc whose radius increases
exponentially with n. Hence, for n � n̂, for some integer n̂ big enough, the
domain and range of H

n

contains the disc of radius L. Hence the lemma follows
from Lemma 8.4.

Lemma 8.6. Given ✏ > 0, there exists � > 0 such that if f, g 2 D
N

have
quadratic-like extensions of conformal type bounded by B and d

JT

(f, g) � ✏,
then the C0 distance between f and g is at least �.

Proof. Suppose, by contradiction, that there exist maps f
n

, g
n

satisfying the
conditions of the lemma and such that f

n

� g
n

converges uniformly to zero. By
taking a subsequence we may assume that f

n

converges uniformly to a map f 2
D

N

. By Lemma 8.3, there exist a neighbourhood W of the dynamical interval
such that for n big enough, both f

n

and g
n

have quadratic-like extensions F
n

, G
n

to W and they converge uniformly to a quadratic-like extension F of f . Hence,
for n big enough, we can construct fundamental domains of F

n

and G
n

and
a quasiconformal map between these fundamental domains that conjugates F

n

with G
n

in the boundary and have very small conformal distortion. By the
pullback argument we can extend these maps to quasiconformal conjugacies
between F

n

and G
n

with the same conformal distortion. This is a contradiction
that proves the lemma

Lemma 8.7. Let f
n

and g
n

, n 2 Z be infinitely renormalizable maps of the
same bounded combinatorial type that have quadratic-like extensions F

n

and G
n

of conformal type bounded by B. Suppose the dynamical interval is always [0, 1]
and that R(f

n

) = f
n+1 and R(g

n

) = g
n+1 for all n 2 Z. Then g0 = f0.
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Proof. Let us first prove that the Julia-Teichmüller distance between f
n

and
g

n

is equal to zero. Suppose, by contradiction, that d
JT

(f�n0 , g�n0) � ✏ > 0.
Since the Julia-Teichmüller distance cannot increase under renormalization, we
have that d

JT

(f�n

, g�n

) � ✏ for all n � n0. Hence, there exists � > 0 such that
the C0 distance between f�n

and g�n

is bigger or equal � for all n � n0.

Let us take a subsequence n
i

! �1 such that f
n

i

converges strongly to
f and g

n

i

converges strongly to g. Since f
n

i

and g
n

i

have the same combi-
natorial type then f and g also have the same combinatorial type. Hence,
by Lemma 8.5, there exists k 2 N, such that the C0 distance between Rk(f)
and Rk(g) is smaller than �

2 . On the other hand, the C0 distance between
Rk(f) and Rk(f

n

i

) converges to zero as i ! 1 as well as the C0 distance
between Rk(g) and Rk(g

n

i

). This is a contradiction that proves that the Julia-
Teichmüller distance between f�n

and g�n

must be zero. Therefore, F�n

and
G�n

are holomorphically conjugate in a (probably small) neighbourhood of the
Julia set. By Lemma 8.3, there exist quadratic-like maps F : W1 ! F (W1)
and G : W2 ! G(W2), normalized so that their dynamical intervals are equal
to [0, 1], and a sequence n

i

! 1 such that W1 contains the Julia set of F
n

i

,
W2 contains the Julia set of G

n

i

, F
n

i

|W1 converges uniformly to F and G
n

i

|W2

converges uniformly to G. Clearly F and G are infinitely renormalizable of the
same bounded combinatorial type. Let us prove that the Julia-Teichmüller dis-
tance between F and G is zero. Indeed, since F

n

i

converges uniformly to F ,
there exists a quasiconformal homeomorphism with small conformal distortion
of a neighbourhood of the fundamental domain F

n

i

(W1) \W1 on a neighbour-
hood of the fundamental domain F (W1) \ W1 that conjugates F and F

n

i

in
the boundary of W1. Using the pullback argument, see Theorem 4.2c, and the
Douady-Hubbard construction we get that the Julia-Teichmüller distance be-
tween the external class of F

n

i

and the external class of F goes to zero as i!1.
Similarly, the Julia-Teichmüller distance between the external class of G

n

i

and
the external class of G goes to zero. Again, from the pullback argument, the
external class of F�n

is equal to the external class of G�n

since F�n

and G�n

are holomorphically conjugated in a neighbourhood of the Julia set. Hence, the
Julia-Teichmüller distance between the external class of F and that of G is zero.
This proves (again by the pullback argument) that the Julia-Teichmüller dis-
tance between F and G is zero. Therefore, there exist neighbourhoods U1 ⇢W1

of J(F ), U2 ⇢ W2 of J(G) such that F (U1) contains the closure of U1, and a
there exists a holomorphic conjugacy H : F (U1) ! G(U2) between F and G.
Using again the pullback argument, we get from this that there exist quasicon-
formal conjugacies H

n

i

: U1 ! U2 between F
n

i

and G
n

i

and that the conformal
distortion of these conjugacies goes to zero as i goes to infinity. Now F0 is a
renormalized map of F

n

i

with a very long renormalization period. Hence, the
dynamical interval of F0 inside the dynamical interval of F

n

i

is a very small
interval and the restriction of H

n

i

to this interval is again a conjugacy between
F0 and G0. If we rescale, we get a sequence of quasiconformal homeomorphisms
H̃

n

i

which are defined in neighbourhoods of the dynamical interval of f0 that
grows to infinity with i and such homeomorphisms have conformal distortion
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that goes to zero and they conjugate f0 and g0. By taking a converging subse-
quence we get a conjugacy between f0 and g0 which is holomorphic in the whole
plane. Since the dynamical interval is [0, 1] for both maps, the above conjugacy
must be the identity.

Theorem 8.4. Let A ⇢ S
N

be the set of limit points of the renormalization oper-
ator (in the C0 topology). Given any bi-infinite sequence � = (. . . ,��n

, . . . ,�0, . . . ,�n

, . . . )
of unimodal permutations with |�

i

|  N , there exists a unique sequence f�n

2 A,
n � 0, with the following properties:

1. f�n

2 D
��n

,...,�0,...

for n � 0.

2. R(f�n

) = f�n+1.

Proof. The uniqueness of the above sequence of maps was already proved in
Lemma 8.7. Let us prove the existence. First, we prove the existence in the
case where the sequence � is periodic, under the shift map, of period m. In this
case, D

�

is invariant under Rm. Let g 2 D
�

be a map in some Epstein class
(say g is a quadratic map). By the complex bounds, there exists a sequence
n

i

! 1 such that Rn

i

m(g) converges to a map f0 2 A. By taking the limit
of a convergent subsequence of R(n

i

�1)m we get a map f�m

2 D
�

such that
Rm(f�m

) = f0. Similarly, from this subsequence, we take a subsequence so
that R(n

i

�2)k converges to f�2m

. Repeating this argument, we get a sequence
f�km

2 D
�

such that Rm(f�km

) = f�(k�1)m. From this we get the desired
sequence by taking f�n

= Rkm�n(f�km

) where k is such that km � n � 0.
This proves the existence in the case of periodic data. If � is not periodic, we
take a sequence �

i

of periodic data converging to � (in the product topology),
and, since all the maps belong to the compact set A, we can take convergent
subsequences and get the existence in the non-periodic case.

Proof of Theorem 1.1: Let ⌃
N

be the space of all bi-infinite sequences � =
(. . . ,��n

, . . . ,�0,�1, . . . ) of unimodal permutations with |�
i

|  N . Endowed
with the product topology, ⌃

N

is a compact space. From Theorem 8.4, for each
� 2 ⌃

N

there exists a unique bi-infinite sequence of maps f
n

2 A such that
f

n

2 D
�

n

,�

n+1,...

and R(f
n

) = f
n+1. Let H : ⌃

N

! A be defined as H(�) = f0.
H is clearly surjective and, by the uniqueness of Lemma 8.7 and the compactness
of A, it follows that H is continuous. Furthermore, from Proposition 1.1, H is
injective. Hence H is a homeomorphism conjugating R|A to the shift of ⌃

N

.
Let f, g 2 S

N

be of class C1+z and have the same combinatorial type. We claim
that Rn(f)�Rn(g) converges to zero in the C1+↵ topology for every 0 < ↵ < 1.
Indeed, if this were not the case, by the compactness properties of Section 2,
there exists a subsequence n

i

!1 such that Rn

i(f)! f0, Rn

i(g)! g0 in the
C1+↵ metric and f0 6= g0. By taking convergent subsequences, we may assume
that for each m 2 N, Rn

i

�m(f) ! f�m

and Rn

i

�m(f) ! g�m

. From Lemma
8.4 we get that f0 = g0 which is a contradiction and the claim is proved.

If f, g are of the same bounded combinatorial type and have quadratic-like
extensions of bounded conformal type then, by Lemma 8.5, Rn(f) � Rn(g)
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converges to zero in the strong topology and hence in the Cr topology for any
r < 1. From the complex bounds in Section 5, the same is true if f, g are
of the same bounded combinatorial type either belong to some Epstein class
or have quadratic-like extensions. Conversely, if Rn(f) and Rn(g) converge to
zero in the C0 topology then Rn(f) and Rn(g) have the same combinatorial
type for some n. This follows from the fact that the C0 distance between two
(once) renormalizable maps of bounded period and di↵erent types is bounded
from below.

9 Universality of the Attracting Cantor Set

In Sections 2 and 3 we have seen that the ratio geometry of the attracting
Cantor set of an infinitely renormalizable U1+z map of bounded combinatorics
is bounded.

Using the contraction of the renormalization operator we will prove here that
under the above hypothesis the asymptotic ratio geometry is in fact constant:
it depends only on the combinatorics and not on the map. We will show that
the asymptotic ratio geometry is given by so called scaling functions. These are
continuous functions defined, not on the attracting Cantor set but on a ‘dual’
Cantor set, and these maps are independent of the map. This is the rigidity
result we had mentioned at the introduction of this chapter: two topologically
conjugate infinitely renormalizable maps of bounded combinatorial type have
the same asymptotic geometrical structure. Assuming the iterates of two C1+z

infinite renormalizable maps of the same bounded combinatorial type contract
exponentially fast, we will prove the stronger rigidity result of Theorem 9.4.

Let us start by recalling the notation used in previous sections. Let f be an
infinitely renormalizable map of class U1+z of combinatorial type bounded by
N . We denote by 4

n

the n-th renormalizing interval [f2q(n)(c), fq(n)(c)] and
by ⌅

n

the collection

{4
n

,41
n

= f(4
n

), . . . ,4q(n)�1
n

= fq(n)�1(4
n

)}

of disjoint intervals, where q(1), q(2), . . . is the sequence of renormalizing return
times. Hence, by assumption, a(n) = q(n+1)

q(n)  N for all n. The attracting
Cantor set is

⇤
f

=
1
\

n=1

q(n)�1
[

j=0

4j

n

.

Let us first consider the Feigenbaum case. In this case q(n) = 2n for every
n. Let us consider the Cantor set ⇤ = {0, 1}N. Since for each 0  i < 2n the
interval 4i

n

contains both 4i

n+1 and 4i+2n

n+1 and no other interval of ⌅
n+1 we

see that the map � : ⇤ ! ⇤
f

which associates to each sequence ! : N ! {0, 1}
in ⇤ the point

�(!) =
1
\

n=1

4k(n,!)
n

where k(n,!) =
n�1
X

j=0

!(j)2j
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is a well defined homeomorphism. Under � the interval 4k

n

corresponds to the
cylinder set of all infinite words ! in ⇤ with the same initial block of length n;
more precisely, !(n) = (!(0), . . . ,!(n� 1)), where k =

P

n�1
j=0 !(j)2j , see Figure

9.1. We denote this interval 4k

n

by [!(0), . . . ,!(n� 1)]. Note that

[!(0), . . . ,!(n� 1)] ⇢ [!(0), . . . ,!(n� 2)].

In other words !(0) 2 {0, 1} determines whether we are in �0 or in f(�0) and
so on. � is a conjugacy between the restriction of f to the attracting Cantor
set and the homeomorphism of ⇤ which is the translation by one: the adding
machine. This homeomorphism is defined as follows. Let ! 2 ⇤ and let j

!

be
so that !(j

!

) = 0 and !(k) = 1 for all 0  k < j
!

. Then

(! + 1)(k) =

8

>

>

<

>

>

:

1 if k = j
!

,

0 if k < j
!

,

!(k) if k > j
!

.

If !(j) = 1 for all j then define (!+1)(j) = 0 for all j. Clearly �(!+1) = f��(!).

Definition. The dual Cantor set is the set ⇤⇤ of all left infinite words

{! = (. . . ,!(n), . . . ,!(1),!(0)) ; !(i) 2 {0, 1} }

endowed with the product topology. The ratio functions are the functions
⌃

s

: ⇤⇤ ⇥ N! R defined by

⌃
s

(!, n) =
length of the interval [!(n� 1), . . . ,!(0)]

length of the interval [!(n� 1), . . . ,!(0), s]
, s = 0, 1.

Here, as before, [!(n�1), . . . ,!(0)] stands for the interval�i

n

which corresponds
with this block. Note that [!(n� 1), . . . ,!(0), s] ⇢ [!(n� 1), . . . ,!(0)].

Remark. The reason that ⇤⇤ is called the dual Cantor set is that if we consider
the interval I

n

= [!(n � 1), . . . ,!(0)] then !(n � 1) determines whether I
n

is
contained in 40 or in f(40), i.e., the interval on the largest level. Similarly
!(n� 2) determines the interval on level 1 and so on. So in order to determine
where the interval [!(n � 1), . . . ,!(0)] is positioned in the real line, the coe�-
cients !(j) with the largest j are most important. So if ! 2 {0, 1}N then the
sequence of intervals I

n

= [!(n � 1), . . . ,!(0)] does in general not converge as
n!1.

Theorem 9.1. Let f be a U1+z map of Feigenbaum’s combinatorial type. Then

1. For every ! 2 ⇤⇤ and s 2 {0, 1}, ⌃
s

(!, n) converges to some real number
�

s

(!).
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2. The functions �0,�1 : ⇤⇤ ! R are continuous, strictly positive and do not
depend on f .

Proof. We start by proving the convergence of the sequences ⌃
s

(!, n) for !
in a dense subset of ⇤⇤, namely, we consider left infinite words ! such that
!(j) = 0 for all j big enough. So let p be such that !(j) = 0 for all j >
p. Notice that the intervals [!(m + p), . . . ,!(0)] and [!(m + p), . . . ,!(0), s],
s 2 {0, 1} are contained in [!(m + p), . . . ,!(p + 1)] and since !(j) = 0 for
all j > p, 4

m

= [!(m + p), . . . ,!(p + 1)]. So the end points of the intervals
[!(m + p), . . . ,!(0)] and [!(m + p), . . . ,!(0), s] are determined by the first 2p
iterates of the map f2m |4

m

. On the other hand, by the contraction of the
renormalization operator, this map, after renormalizing the domain, converges
in the C0 topology to Feigenbaum’s fixed point g as m!1. Therefore for each
p, lim

m!1 ⌃s

(!,m + p) exists and is equal to the ratio of the corresponding
intervals whose endpoints are contained in the first 2p iterates of the critical
point by the fixed point of the Renormalization operator in the Feigenbaum
case. This proves already that not only the limit exists but also that it is
independent of the map. So the functions �

s

are defined in a dense subset of
⇤⇤.

Let us prove that �
s

extends continuously to all of ⇤⇤ and that it coincides
with the limits from Statement 1. So let ! be an infinite word in ⇤⇤. We claim
that for each ✏ > 0 there exists p > 0, not depending on !, with the following
property: if ↵ 2 ⇤⇤ is defined by ↵(j) = !(j) for j  p and ↵(j) = 0 for j > p
then |⌃

s

(!, p + m)� ⌃
s

(↵, p + m)| is smaller than ✏ for all m > 0.
Let us finish the proof using the claim. From the claim we get that for m big

enough, the distance between ⌃
s

(!,m+ p) and �
s

(↵) is smaller than 2✏. Hence
the sequence ⌃

s

(!, n) converges since it is a Cauchy sequence. Furthermore,
since p does not depend on ! we get that �

s

is uniformly continuous.
It remains to prove the claim. From the real bounds we get that there exists a

universal constant � < 1 such that the length of the interval [!(m+p), . . . ,!(0)]
is smaller than �p times the length of the interval [!(m + p), . . . ,!(p + 1)] �
[!(m + p), . . . ,!(0)]. In Section 2 we also showed that f2m�j maps an neigh-
bourhood of 4j

m

= [!(m+p), . . . ,!(p+1)] di↵eomorphically onto a universally
scaled neighbourhood of 4

m

. Hence, by the Koebe Principle, its restriction to
the much smaller interval [!(m + p), . . . ,!(0)] has distortion less than 1 + ✏ if
p is big enough. This proves the claim and the theorem. (By the real bounds
⌃

s

(!, n) is uniformly bounded from above and from zero.)

Corollary 9.1. If f, g are U1+z maps with Feigenbaum’s combinatorics then
the attracting Cantor sets of f and g have the same Hausdor↵ dimension.

Now our aim is to show that two Cantor sets with the same scaling func-
tions are ‘geometrically the same’. In order to prove this we need the following
concept.
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Definition. The functions �0 and �1 are called scaling functions. Let � : ⇤!
⇤̃ ⇢ R be a homeomorphism between the two Cantor sets. Let ⌃

s

: ⇤⇤⇥N! R
and �

s

: ⇤⇤ ! R be the ratio and scaling functions of ⇤̃. We say that the scaling
functions �

s

have the geometric approximation property if there exist C > 0 and
0 < � < 1 such that

|�
s

(!)� ⌃
s

(!, n)|  C�n, 8n 2 N and 8! 2 ⇤⇤.

Theorem 9.2. Let �
i

: ⇤ ! ⇤
i

⇢ R, i = 1, 2 be homeomorphisms between
Cantor sets as above such that � = �2 � ��1

1 : ⇤1 ! ⇤2 is monotone. If ⇤1 and
⇤2 have the same scaling functions which are bounded away from zero and they
have the geometric approximation property then there exists ↵ > 0 and a C1+↵

di↵eomorphism h : R! R which maps ⇤1 onto ⇤2.

Proof. We will show that the homeomorphism �2 � ��1
1 extends to a C1+↵

di↵eomorphism of the real line. Let 0  j < q(n) and choose ✏0, . . . , ✏n�1 2
{0, 1} so that j =

P

n�1
k=0 ✏k · q(k). Let 4j

n

(i), i = 1, 2 be the interval of the real
line corresponding under �

i

to the cylinder set

{! 2 ⇤ ; !(k) = ✏
k

for k = 0, . . . , n� 1}.

Let ⌅
n

(i) the collection of intervals {4j

n

(i)} and let F
n

(i) be the union of these
intervals. Then F

n

(i) \ F
n+1(i) are called the gaps of order n + 1. From the

approximation property,

exp(�C1�
n)  ⌃2(!, n)

⌃1(!, n)
 exp(C1�

n)

for some constant C1. From this and the real bounds the following two state-
ments follow easily.

a. The numbers |4j

n

(2)|
|4j

n

(1)| are bounded and bounded away from zero.

b. There exist constants C > 0 and 0 < � < 1 such that if J(i) ⇢ 4j

n

(i) is
either an element of ⌅

n+p

or a gap of order n + p then

|4j

n

(2)|
|4j

n

(1)|
exp(�C�n)  |J(2)|

|J(1)| 
|4j

n

(2)|
|4j

n

(1)|
exp(C�n).

So let us show that the theorem follows from these two statements. Let x 2 ⇤1

and let 4j(n)
n

(1) be the sequence of intervals which contain x. Statement b)
gives that |4j(n)

n

(2)|
|4j(n)

n

(1)| is a Cauchy sequence and therefore converges to a number
l
x

. By Statement a) l
x

is bounded and bounded away from zero. This shows
that if the map �2 ���1

1 is di↵erentiable at x then its derivative must be l
x

. Let
us now investigate how l

x

varies with x. So let ↵ > 0 be such that |4j(n)
n

(i)|↵ �
constant · �n. Then, for x, y 2 ⇤1, we have that

(9.1) |l
x

� l
y

|  constant · |x� y|↵.
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Indeed, let n be the biggest integer such that the interval 4i

n

contains both x
and y. From Statement b) we get that

exp(�C�n)
|4i

n

(2)|
|4i

n

(1)| < l
z

< exp(C�n)
|4i

n

(2)|
|4i

n

(1)|

for z 2 {x, y}. Therefore,

l
y

� l
x

 (exp(C�n)� exp(�C�n))
|4i

n

(2)|
|4i

n

(1)| .

Using Statement a) we get from the above inequality that

|l
y

� l
x

|  constant · (exp(C�n)� exp(�C�n))  constant · �n

 constant · |4i

n

|↵.

Since |x� y|  constant · |4i

n

| this gives (9.1).
Let us extend � as follows to R. Take two gaps G(1) = [a, b] and G(2) =

[�(a),�(b)] of ⇤1 respectively ⇤2. Next take a C1 di↵eomorphism � : G(1) !
G(2) whose left derivative at a is l

a

, whose right derivative at b is l
b

and for
which

(9.2) |�0(x)� �0(y)| < K.|x� y|

where K = 2 ·max{l
a

, l
b

, |G(2)|
|G(1)|}. It is not hard to see that this is possible.

So let us show that � is di↵erentiable. So take x, y 2 ⇤1. If G
i

(1) (re-
spectively G

i

(2) = �(G
i

(1))) are the gaps of ⇤1 (⇤2) between y and x (�(x)
and �(y)) then because ⇤

i

has Lebesgue measure zero, |y � x| =
P1

i=0 |Gi

(1)|
(respectively |�(y)� �(x)| =

P

|G
i

(2)|). From Statement b) we get that

exp(�2C�n) · l
x

<
|G

i

(2)|
|G

i

(1)| < exp(2C�n) · l
x

This clearly implies that

(9.3)
�

�

|�(y)� �(x)|
|y � x| � l

x

�

�  constant · �n

where n is an integer such that x, y 2 4j

n

(i). Using (9.2) and (9.3) we get easily
that � is di↵erentiable at x 2 ⇤1 and its derivative is equal to l

x

. By (9.1) and
(9.2) we get that � is C1+↵.

Theorem 9.3. Let f be a U1+z map with the same combinatorics as the Feigen-
baum’s fixed point. Suppose that the iterates of f under the renormalization
operator R converge C0 to the fixed point g with rate ⇢ < 1, i.e., |Rn(f)� g|0 <
constant · ⇢n. Then the scaling function of the attracting Cantor set ⇤

f

has the
geometric approximation property.
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Proof. It is enough to follow the same steps as in the proof of Theorem 9.1.

Let us now consider the general situation. Suppose that f and g are in-
finitely renormalizable maps with the same bounded combinatorial type. Let
q(1), q(2), . . . be the sequence of return times and let ⇤ be the set of all se-
quences ! : N ! {0, 1, . . . , T � 1} such that !(n) 2 {0, 1, . . . , q(n)

q(n�1)}. In ⇤ we
consider the product topology and, as before, we consider the homeomorphism
between Cantor sets: �

f

: ⇤! ⇤
f

defined by

�
f

(!) =
1
\

n=0

4k(n)
n

(f), where k(n) =
n�1
X

j=0

!(j)q(j).

As before we define �
g

using the renormalizing intervals for g. Since f and
g have the same combinatorics we have that �

g

� ��1
f

: ⇤
f

! ⇤
g

is a mono-
tone homeomorphism. Again, we can define for each s < T the ratio function
⌃

s,f

: ⇤⇥ N! R by the formula

⌃
s,f

(!, n) =
length of the interval [!(n� 1), . . . ,!(0)]
length of the interval [!(n� 1), . . . ,!(0), t]

where t 2 {0, . . . , q(n)
q(n�1) � 1} is equal to s mod q(n)

q(n�1) � 1.

Theorem 9.4. Let f and g be U1+z infinite renormalizable maps with the same
bounded combinatorial type. If there exist constants C > 0 and 0 < � < 1 such
that |Rn(f)�Rn(g)|  C ·�n then there exists a C1+↵ di↵eomorphism h : R! R
that maps the attracting Cantor set of f onto the attracting Cantor set of g.

Proof. The same as the proof of Theorem 9.2 and of Theorem 9.3. Now,

Theorem 2.1 follows from Theorem 1.1 and Theorem 9.4. Finally we want to

show that the add-one map on the Cantor set extends to an expanding C1+↵

di↵eomorphism. Let us do this for the Feigenbaum’s combinatorics. Let f be a
U1+z unimodal map of Feigenbaum’s combinatorial type. Let � : ⇤! ⇤

f

be the
homeomorphism described in the beginning of this section. Here ⇤ = {0, 1}N.
The adding map add: ⇤ ! ⇤ is defined by add(!)(n) = !(n + 1). Hence the
add-one map is a two to one continuous map of ⇤ onto ⇤. We denote by the
same name the two to one continuous map � � add � ��1.

Theorem 9.5. The add-one map � � add � ��1 : ⇤
f

! ⇤
f

extends to a C1+↵

expanding map S of a neighbourhood of ⇤
f

in R.

Proof. We construct a C1+↵ extension of the add-one map to a neighbourhood
of ⇤

f

in the same way as we proceeded in the proof of Theorem 9.2. Let S
be the C1+↵ extension of the add-one map. Since Sn is C1+↵ and maps the
interval corresponding to the cylinder {! 2 ⇤ ; !(n� 1) = ✏

n�1, . . . ,!(0) = ✏0}
di↵eomorphically onto 40, we get, from the bounded geometry of the attract-
ing Cantor set that the distortion of this map is bounded independently of n.
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Since the lengths of the above intervals go to zero with n we conclude that the
derivative of Sn is bigger than one in all intervals of the above type. This proves
that S is an expanding map.

Exercise 9.1. Let J ⇢ R be an interval and J0, J1 be two disjoint subintervals of
J . Let f : J0[J1 ! J be a C1+↵ expanding map that maps J

i

di↵eomorphically
onto J for i = 0, 1. Show that the set ⇤

f

= {x 2 J0 [ J1 ; fn(x) 2 J0 [
J1 for all n} is an invariant Cantor set. Show that the scaling function of ⇤

f

is a
well defined Hölder continuous function which has the geometric approximation
property.

Exercise 9.2. Let � : ⇤⇤ ! R be a Hölder continuous function. Show that
there exists an embedding � : ⇤ ! ⇤̃ ⇢ R such that: i) the convex hull of the
image of the n-cylinders are disjoint intervals; ii) the scaling function of ⇤̃ is
equal to �. Show that the add-one map extends to a C1+↵ expanding map on a
neighbourhood of ⇤̃. So, in contrast to the situation for attracting Cantor sets
of infinitely renormalizable maps, in the case of expanding Cantor sets, there is
no rigidity: each scaling function can appear!

For some ideas in a similar situation for critical circle maps see Feigenbaum
(1988).

10 Some Further Remarks and Open Questions

One of the first questions that springs to mind is why the proof of the theorems
in this chapter require so many deep results from complex analysis and the proof
of the rigidity result for the circle case can be done in a real setting. A possible
answer is that in the case of di↵eomorphisms the canonical maps are well known,
the rigid rotations, whereas in the unimodal case the canonical maps are non-
trivial analytic maps whose existence must be proved. It would be interesting to
find a di↵erent proof of this theorem that would not rely so much on the theory
of quadratic-like maps. Such a proof could give more general results that might
include maps of the type f(x) = �(|x|r) where � is a smooth di↵eomorphism
and r > 1 is a real number. Numerical experiments indicate that the rigidity
results hold for these maps.

In Section 8 we have proved the contraction of the renormalization operator
but without a rate. We do not know yet how to prove the exponential con-
traction of the renormalization operator. This result would imply a stronger
rigidity statement as we pointed out in Section 9. The following question seems
to be an important step towards proving the existence of the above rate of con-
traction. Is the stable set, with respect to the renormalization operator, of an
infinite renormalizable map of bounded combinatorial type a smooth subman-
ifold of the Banach space of mappings that have a holomorphic extension to a
neighbourhood of the dynamical interval in C?

From the results of Section 4, it follows that for the quadratic family f
µ

(x) =
µx(1�x), 0 < µ  4, the set C

N

of parameter values for which the corresponding
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map is infinitely renormalizable of combinatorial type bounded by N is a Cantor
set. We do not know however if this Cantor set has zero Lebesgue measure.
This and many other rigidity statements on the parameter space would follow
from the hyperbolicity of the renormalization operator at the attracting set. Of
course this hyperbolicity of the renormalization operator would also extend the
validity of the rigidity Theorem 9.2 to C1+z maps.

In Section 5 bounds are given for maps of bounded combinatorial type which
are either in some Epstein class or symmetric and quadratic-like. It is not known
whether these bounds can be obtained in any of the following three situations:

1. the initial map is just real analytic and of bounded combinatorial type;

2. unbounded combinatorial type (even in some Epstein class);

3. a quadratic-like map without the symmetry assumption.

Edson de Faria (1992), in his PhD thesis at CUNY, has used many of the
ideas of this chapter to study renormalization of critical circle maps. He proved
the following rigidity theorem. He considers real analytic circle homeomor-
phisms belonging to some class analogous to the Epstein class from Section 1
and which have a unique critical point which is cubic. If two such maps have
the same rotation number of bounded type, then they are C1+↵ conjugate for
each ↵ 2 (0, 1).

The same kind of rigidity question can also be formulated for non-renorma-
lizable maps. In particular, if the !-limit of the critical point of a unimodal
map is a minimal Cantor set, one can investigate the smoothness properties
of the conjugacies between two such maps. For example, Lyubich and Milnor
(1991) have shown metric universalities of these Cantor sets for unimodal maps
of Fibonacci type which are C2 and have a quadratic critical point. (Fibonacci
maps were described in Section II.3.b.) To describe these results, let S(n) be
the n-th Fibonacci number. For maps f within this class |fS(n)(c)� c| tends to
zero in a universal way:

|fS(n)(c)� c|
|fS(n�1)(c)� c| · 2n/3

converges exponentially fast to some positive and finite constant a. So this
universality is slightly di↵erent from the one discussed in this chapter: here
the parameter a still depends on the map f . This implies that the conjugacy
between the Cantor sets of two such maps is in general not di↵erentiable. So
the asymptotic geometry is not rigid: its moduli space has real dimension equal
to one. Lyubich and Milnor’s proof uses many of the ideas developed in this
chapter. In particular, they develop for these maps a renormalization theory.
The renormalized maps are no longer unimodal maps but are maps defined in
a finite number of disjoint intervals and having a unique critical point. The
renormalization consists in taking the first return map to the interval that con-
tains the critical point and restricting it to the components of the domain that
intersect the critical orbit.
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Nowicki and Van Strien (1991b) have shown that if f satisfies Sf < 0 and

the critical point is of order l > 2 then
|fS(n)(c)� c|
|fS(n�1)(c)� c| is bounded from below

and above. In particular, a Fibonacci map with a quadratic critical point and
a Fibonacci map with a fourth order critical point are not Hölder and therefore
not quasisymmetrically conjugate!

It is likely that a more general theory will emerge for maps for which the
closure of the critical orbit is a minimal Cantor set. Ultimately, this theory may
become equally well developed as the one for circle di↵eomorphisms. Lyubich’s
results about the non-existence of absorbing Cantor attractors are steps in this
direction, see the discussion in Section V.7 and Lyubich (1992b).

Świa̧tek (1992b) has proved the following deep rigidity result for the qua-
dratic family f

µ

(x) = µx(1 � x), µ 2 [0, 4]. He proves that if two such maps
are topologically conjugate then they are quasi-symmetrically conjugate. As a
consequence, we get from the arguments in Section 4 that the set of param-
eter values for which the map has the same non-periodic kneading sequence
has only one element. In particular, the set of parameter values for which the
corresponding map has an attracting periodic point is open and dense.

McMullen has announced an alternative proof of the contraction of the renor-
malization operator using the complex bounds of Section 5 and some rigidity
ideas from the theory of Kleinian groups.



Chapter VII.

Appendix

The purpose of this appendix is to present some basic definitions, theorems and
background material for this book. We assume the reader to be familiar with
manifolds.

1 Some Terminology in Dynamical Systems

Let us first give a short introduction to some general terminology used in dy-
namical systems, see also Smale (1967), Devaney (1986) and Palis and de Melo
(1982). If f : X ! X is a continuous map of a metric space X, the iterates of
f are the maps fn defined inductively by f0 = id

X

, f1 = f , fn+1 = fn � f .
If f is a homeomorphism then we can also define the map f�n = (f�1)n for
n 2 N. If f is not invertible then we define f�n(y) = {x ; fn(x) = y} for
n 2 N. The full orbit of a point x 2 X is the set O

f

(x) = {fn(x);n 2 Z} and
the forward orbit is the set {fn(x);n 2 N}. Here, Z denotes the set of integers
and N the set of natural numbers (including 0). Mostly one is interested in
recurrent behaviour, so in periodic, recurrent or non-wandering points. Let us
define these notions. We say that x is a periodic point of period n if fn(x) = x
and f i(x) 6= x for 1  i < n, i.e., the forward orbit of x has exactly n points.
The !-limit set of the orbit of x 2 X is the set

!(x) = {y 2 X ; 9 a sequence n
i

!1 with fn

i(x)! y},

i.e., it is the set of accumulation points of the sequence of forward iterates of a
point in this orbit. Similarly, the ↵-limit set of x is

↵(x) = {y 2 X ; 9 y
i

! y and n
i

!1 with fn

i(y
i

)! x}.

If X is a compact metric space then the !-limit set of any orbit is a non-empty
compact set. If the orbit is periodic then it coincides with its !-limit set and
a non-periodic point for which x 2 !(x) is called recurrent. The ⌦-set, or the
set of non-wandering points of f : X ! X is the set of points x for which there
exists a sequence x

n

! x and k(n) ! 1 with fk(n)(x
n

) ! x (equivalently,

537



538 CHAPTER VII. APPENDIX

for each neighbourhood U of x some forward iterate fn(U) has a non-empty
intersection with U , i.e., U \ fn(U) 6= ;. A set A ⇢ X is transitive if f(A) ⇢ A
and if there exists a point x 2 A whose forward orbit is dense in A. Quite often
such a set is a Cantor set, i.e., perfect (compact and without isolated points)
and totally disconnected (each connected subset consists of at most one point).

Furthermore, we say that two maps f, g : X ! X are topologically conjugate
if there exists a homeomorphism h : X ! X such that h � f = g � h. This
implies that h � fn = gn � h for every integer n. The map h, which is called the
conjugacy between f and g, maps orbits of f onto orbits of g.

2 Some Background in Topology

2.1. General definitions

The topology of a space X can be generated by taking a collection of subsets S of
X, called a subbasis: simply take as open sets in X all sets which can be formed
by taking unions and finite intersections of sets in S together with ; and X.
Given topological spaces X

i

where i belongs to some index set, let X =
Q

i

X
i

and ⇡
i

: X ! X
i

be the natural projections. X has a natural topology with a
subbasis consisting of ‘cylinder’ sets of the form ⇡�1

i

(U
i

) where U
i

is open in
X

i

.

Theorem 2.1. (Tychono↵) Let X
i

be a family of compact sets then X =
Q

i

X
i

is compact.

If ⇠ is an equivalence relation on X then let ⇡ : X ! X/ ⇠ be the natural
projection. X/ ⇠ has a topology: U is open in X/ ⇠ if and only if ⇡�1(U)
is an open subset of X. In general X/ ⇠ is not Hausdor↵, where we say that
a topological space Y is called Hausdor↵ if each two distinct points x, y have
disjoint neighbourhoods. Y is called connected if there exists no disjoint open
sets U, V with U [V = Y and with U and V both non-empty. It is called locally
compact if it is Hausdor↵ and each point has a compact neighbourhood.

Let C(X,Y ) be the space of continuous maps from X to Y where X,Y are
topological spaces. If X, Y are metric spaces then a collection of F ⇢ C(X,Y )
is called equicontinuous if for each ✏ > 0 there exists � > 0 such that for each
x, y 2 X with d(x, y) < ✏ one has d(f(x), f(y)) < � for all f 2 F . If Y is a
metric space, the space C(X,Y ) is endowed with the so-called supremum metric
defined by d(f, g) = sup

x2X

d(f(x), g(x)). If d(f
n

, g) ! 0 then we say that f
n

tends uniformly to g. More generally, if X, Y are topological spaces then there
is the compact-open topology on C(X,Y ) defined by the subbasis with sets of
the form

(K, U) = {f 2 C(X,Y ) ; f(K) ⇢ U}

with K compact and U open.
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Theorem 2.2. (Ascoli) If X is locally compact, X,Y are metric spaces and
F is an equicontinuous family in C(X,Y ) such that for each x the closure of
the set {f(x) ; f 2 F} is compact in Y , then the closure of F is compact in
C(X,Y ).

2.2. Covering spaces

We say that curves ↵,↵0 : [0, 1] ! X are homotopic (relative to endpoints) if
there exists a continuous map � : [0, 1]⇥ [0, 1]! X such that for �

s

(t) = �(t, s)
one has �0 = ↵ and �1 = ↵0 and such that the curves �

s

all have the same
endpoints for each s. In particular, if ↵ is a closed curve with initial and
endpoint equal to x0 then �

s

are also closed curves with endpoints x0. The map
� is a called a homotopy between ↵ and ↵0. Given x0 let ⇡1(X,x0) be the space
of homotopy classes of closed curves with �(0) = �(1) = x0. This space can be
made into a group by defining for each [�1], [�2] 2 ⇡1(X,x0) their sum [�1]+ [�2]
to be the homotopy class of the curve:

�(t) =

(

�1(2t) for t 2 [0, 1/2]
�2(2t� 1) for t 2 [1/2, 1].

A topological space X is simply connected if ⇡1(X,x0) = 0. We say that a
continuous map ⇡ : X̃ ! X is a covering map if each y 2 X has a neighbourhood
V such that ⇡ maps each component of ⇡�1(V ) homeomorphically onto V .
Often we simply say that X̃ covers X. The main property of a covering map
is that curves and homotopies can be lifted: for each continuous ↵ : [0, 1] ! X
there exists a continuous ↵̃ : [0, 1] ! X̃ with ⇡↵̃ = ↵. Moreover, if � is a
homotopy between ↵ and ↵0 then there exists a homotopy �̃ between ↵̃ and
some lift ↵̃0 of ↵0. A cover ⇡ : X̃ ! X is universal if X̃ is simply connected.

Theorem 2.3. Let X be a topological space which is path connected. Then one
has the following.

1. There is a universal cover ⇡ : X̃ ! X.

2. Each continuous map f : Y ! X has a lift. More precisely, for each y 2 Y
and each x̃ 2 ⇡�1(f(y)) there exists a unique continuous map f̃ : Y ! X̃
with ⇡ � f̃ = f and f̃(y) = x̃.

3. If f : Ỹ ! Y is a covering and Y is simply connected then f is a ho-
meomorphism. In particular, the universal covering is unique up to a
homeomorphism.

Proof. Fix a point x0 and let X 0 be the space of curves � : [0, 1] ! X with
�(0) = x0 with the compact-open topology on C([0, 1], X). We say that such
curves �, �0 are equivalent, � ⇠ �0, if �(1) = �0(1). Then X̃ = X 0/ ⇠ with the
projection map ⇡([�]) = �(1) is a universal covering. The last two statements
follow easily.
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Because of the previous theorem one can lift ⇡ : X̃ ! X to a map ⇡̃ : X̃ ! X̃.
Since ⇡ is a covering map, ⇡̃ is also a covering map and since X̃ is simply
connected a homeomorphism. Let � be the space of such lifts,

� = {⇡̃ ; ⇡̃ is a lift of ⇡ : X̃ ! X}.

This space � is a group under composition and called the group of deck trans-
formations.

Remark. 1. If f̃1, f̃2 are lifts of f : Y ! X then f̃1 = ⇡̃ � f̃2 for some ⇡̃ 2 �.

2. Provided X is locally simply connected, the group � acts discontinuously on
X̃ (each point has a neigbourhood U such that �(U) \ U 6= ; for only a finite
number elements � of �). Moreover, the space X is homeomorphic to X̃/�.

3. The group � is isomorphic to ⇡1(X).

4. Usually a structure on X can be lifted to a structure on X̃ which is invariant
under the group of deck transformations. For example, a manifold structure on
X defines a unique manifold structure on X̃ such that ⇡ is local di↵eomorphism
and � is a group of di↵eomorphisms; conversely a manifold structure on X̃
which is invariant by � defines a manifold structure on X. Similarly, given
a Riemannian metric on X there exists a unique Riemannian metric on X̃ so
that ⇡ is a local isometry and elements of � are isometries; conversely, any
Riemannian metric on X̃ such that the elements of � are isometries define a
Riemannian metric on X. In Section 4 of this appendix we shall use similar
observations in the case of a complex structure.

3 Some Results from Analysis and Measure The-

ory

Often we will want to measure the size of subsets of a topological space. In order
to do this in a reasonable way we only consider Borel sets of a topological space.
This is the smallest collection of subsets of X which contains the open subsets
and which is closed under taking complements and unions of countably many
members of this collection. (Such a set is called a �-algebra: countable unions,
intersections and di↵erences of elements of this collection are also contained in
this collection.) These Borel sets of X will be called measurable. We say that
f is measurable if f�1(A) is measurable whenever A is measurable. (So if f is
continuous this is certainly the case.) A function µ which associates to each
Borel set a positive number in such a way that for each countable collection of
disjoint sets A

i

one has
µ([A

i

) =
X

i

µ(A
i

)

is called a measure. It is a probability measure if µ(X) = 1 and a �-finite
measure if X can be written as the countable union of sets with finite measure.
A measurable function f : X ! R is integrable with respect to µ (in the sense of
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Lebesgue) if there exists a sequence of functions f
n

of the form f
n

=
P

n

i=0 �i

1
A

i

where 1
A

is the indicator function of the set A and �
i

2 R and A
i

are measurable
sets such that

lim
n!1 f

n

(x) = f(x) for µ-almost every x 2 X

and
lim

n,m!1

Z

X

|f
n

� f
m

|dµ = 0.

Here the last integral is defined by writing |f
n

� f
m

| in the form
P

N

i=0 �
0
i

1
A

0
i

and letting the integral of this last function be
P

N

i=0 �
0
i

µ(A0
i

). Let L1 be space
of functions which are integrable and for which

R

X

|f | dµ is finite.
Moreover, f : [a, b] ! R is called absolutely continuous if for every ✏ > 0

there exists � > 0 such that, if I
i

⇢ [a, b] are disjoint intervals with total length
at most � then

P

i

|f(I
i

)|  ✏. It has bounded variation if there exists K < 1
such that for any disjoint covering I

i

of [a, b] the total length of f(I
i

) is always at
most K. The smallest upper bound is denoted by Var(f). It is not hard to show
that every absolutely continuous function is of bounded variation. Furthermore
we say that f has the null property if f(A) has Lebesgue measure zero whenever
A has Lebesgue measure zero.

Theorem 3.1. Let f : [a, b]! R. Then the following are equivalent.

a) f is absolutely continuous;

b) f is continuous, of bounded variation and f has the null property;

c) f is the indefinite integral of a Lebesgue integrable function.

d) f is almost everywhere di↵erentiable, f 0 is Lebesgue integrable and f is
the indefinite integral of f 0.

Proof. See for example Natanson (1955) or Rooij and Schikhof (1982).
A measure ⌫ is absolutely continuous with respect to a measure µ if ⌫(A) = 0

for each measurable set A for which µ(A) = 0.

Theorem 3.2. (Radon-Nikodym) If µ is a �-finite measure then ⌫ is abso-
lutely continuous with respect to µ if and only if there exists a function f : X ! R
which is µ-integrable on all Borel sets A with µ-finite measure and

⌫(A) =
Z

A

fdµ.

Proof. See Rudin (1966).
We shall be mainly working with X = [0, 1] or X = S1 and then there is

a unique measure, the Lebesgue measure �, which associates a real number to
each measurable subset of X such that �(I) coincides with the length of I when
I is an interval. This measure has the following remarkable property: if A has
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positive Lebesgue measure then Lebesgue almost every point of A is a density
point. Here we say that x is a density point of A if

�(A \ (x� ✏, x + ✏))
2✏

! 1

as ✏! 0.

Theorem 3.3. (Lebesgue Density Theorem) If A ⇢ R is a measurable set
then almost every point of A is a density point. If A ⇢ X ⇢ R are measurable
sets and for almost all x 2 X,

lim sup
✏!0

�(A \ (x� ✏, x + ✏))
2✏

> 0

then A has full Lebesgue measure in X.

Proof. See for example Natanson (1955) or Rooij and Schikhof (1982).
Finally we define the essential supremum of a real valued measurable func-

tion f to be the infimum of all k such that the set {z ; |f(z)| > k} has measure
zero.

4 Some Results from Ergodic Theory

As before let X be some topological space and f : X ! X some continuous map.
Often one is only interested in the typical behaviour of points and in order to
make this precise one uses a measure on the space. This type of question is
studied in ergodic theory, see for example the monographs by Petersen (1983),
Walters (1982) and Mãné (1987).

Often we are also interested in dynamical measures in particular measures
which are invariant under f . These are measures µ such that f⇤µ = µ. This
means that

µ(f�1(A)) = µ(A)

for each measurable set A. Let us make an intuitive remark on this definition.
If X = [0, 1] and µ(X) = 1 one can think of X as a metal bar with mass 1
and non-homogeneous mass density determined by µ. Then µ(f�1(A)) = µ(A)
means that if one folds X via the f -map one obtains again the original mass
distribution on X! Often one would like to have that X cannot be split into
smaller dynamically invariant sets. One way in which this can be formalized is
by requiring that µ is an ergodic measure. This means that for each measurable
set A for which f�1(A) = A one has µ(A) = 0 or µ(X \A) = 0. This definition
can also be used if µ is not an invariant measure for f . If the Lebesgue measure
is ergodic for a certain map f , then we simply say that f is ergodic.

Furthermore we say that µ is a probability measure if µ(X) = 1 and a finite
measure if µ(X) < 1. If some property holds for a set A ⇢ X for which
µ(X \A) = 0 then we say that it holds for µ-almost all x.

By the Ergodic Theorem one can use ergodic invariant measures to take time
averages of certain functions.
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Theorem 4.1. (Birkho↵ Ergodic Theorem) If µ is an invariant probability
measure of f : X ! X and if g : X ! R is continuous then for µ-almost all x
the limit

lim
n!1

1
n

n�1
X

i=0

g(f i(x))

exists. If µ is also ergodic then

lim
n!1

1
n

n�1
X

i=0

g(f i(x)) =
Z

X

g dµ

for µ-almost all x.

Proof. See, for example, Mañé (1987) and Petersen (1983).
It follows that, if µ is an ergodic invariant probability measure, for each open

set A,

lim
n!1

1
n

n�1
X

i=0

1
A

(f i(x)) = µ(A)

for µ-almost all x, where 1
A

is the indicator function on A. There is just one
snag: µ could be just associate mass 1/n to each point on a periodic orbit of
period n and then the statement µ-almost all x is not very interesting. There-
fore we will be mainly interested in absolutely continuous measures. These are
measures µ for which µ(A) = 0 whenever the Lebesgue measure of A is zero.

Another way of confining ourselves to physically relevant measures is to
require that they are the limits of experimentally found measures. More pre-
cisely, we say that a sequence of measures µ

n

converges in the weak sense to the
measure µ if

R

gµ
n

!
R

gµ for each continuous function g. If µ satisfies the con-
clusion of the Birkho↵ Ergodic Theorem for almost all x 2 X, or equivalently,
if

lim
n!1

1
n

n�1
X

i=0

f i

⇤�x ! µ

for almost every x then it is called a Bowen-Ruelle-Sinai or physical measure.
Here �

x

is the Dirac measure.
We should note that the Birkho↵ theorem does not hold if µ is an infinite

invariant measure. However, some analogue statements still hold in that case.
A map is called conservative with respect to some measure if there exists no set
A of positive measure such that fn(A)\A = ; for all n. If it is not conservative
then it is called dissipative.

5 Some Background in Complex Analysis

In this section we shall give a short introduction into conformal and quasicon-
formal maps. For further background the reader should consult the books by
Ahlfors, Lehto and Gardiner mentioned in the list of references.
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5.1. The Cauchy Integral Formula

Let C denote the set of complex numbers. As usual, a 2 C can be written as
a = Re(a) + i · Im(a) where Re(a) and Im(a) are real numbers called the real
and imaginary parts of a. The complex number a = Re(a) � i · Im(a) is the
complex conjugate of a and |a| =

p
a · a is called the absolute value or the norm

of a. Here · denotes complex multiplication.
For each R-linear map L : C ! C there exists complex numbers a, b 2 C

such that
L(v) = a · v + b · v for all v 2 C.

In other words, the real vector space of R-linear maps of C into C is isomorphic to
C⇥C as a real vector space. Furthermore, the linear map L preserves orientation
if and only if |a| > |b| and it is an isomorphism if and only if |a| 6= |b|. If L
is orientation preserving then L maps the unit circle in an ellipse whose major

axis is in the direction of
r

b

a
and whose eccentricity (ratio of the length of the

major axis by that of the minor axis) is equal to

1 +
�

�

b

a

�

�

1�
�

�

b

a

�

�

.

Similar statements hold for orientation reversing maps except that the direction
of the axis are rotated. In particular, we say that the linear map L is conformal
(i.e., preserves angles) if and only if either a 6= 0 and b = 0 or a = 0 and b 6= 0.

If f : U ⇢ C! C is a di↵erentiable at z then we write

Df(z)(v) = @f(z) · v + @̄f(z) · v̄

and call the complex numbers @f(z) and @̄f(z) the @-derivative respectively the
@̄-derivative of f at z.

Definition. A map f as above is said to be holomorphic if @̄f ⌘ 0 (these
are the Cauchy-Riemann equations). Similarly, f is called anti-holomorphic if
@f ⌘ 0. We say that f is conformal if and only if it is either holomorphic or
anti-holomorphic and the derivative is non-zero at every point.
Finally we say that f : U ! f(U) is quasiconformal if

a) f is an orientation preserving homeomorphism between the open sets U
and f(U);

b) the real part Re(f) and imaginary part Im(f) of f are absolutely contin-
uous on almost all verticals and on almost all horizontals in the sense of
Lebesgue;

c) there exists k < 1 such that for

µ
f

(z) =
@̄f(z)
@f(z)
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one has
|µ

f

(z)|  k for almost all z 2 U.

The conformal distortion of the quasiconformal homeomorphism f is the essen-
tial supremum K(f) of

1 + |µ
f

(z)|
1� |µ

f

(z)| .

Notice that any C1 di↵eomorphism of a compact domain that contains U
restricts to a quasiconformal homeomorphism of U .

The most basic result in complex analysis is the Cauchy Theorem:

Theorem 5.1. (Cauchy Integral Formula) If f is holomorphic on a domain
which contains a closed r-disc around z0 then

|w � z0| < r implies f(w) =
1

2⇡i

Z

|z�z0|=r

f(z)
z � w

dz.

From this formula we immediately get

Corollary 5.1. f is an analytic map, i.e., it is the sum of a convergent power
series f(w) =

P1
n=0 a

n

(w � z0)n for w near z0.

Proof. It is enough to expand
1

z � w
in a power series and integrate term by

term.

Corollary 5.2. (Liouville’s Theorem) If f : C ! C is holomorphic and
bounded then f is constant.

Proof. f 0(w) = @f(w) =
1

2⇡i

R

|z�w|=r

f(z)
(z � w)2

dz. This integral tends to zero

as r !1. Hence f 0 ⌘ 0.

Corollary 5.3. If f
n

: U ! C are holomorphic maps and f
n

! f uniformly on
compact subsets of U then f is holomorphic and each derivative of f

n

converges
uniformly on compact subsets of U to the corresponding derivative of f .

Proof. f 0
n

(w) =
1

2⇡i

R

|z�w|=r

f
n

(z)
(z � w)2

dz. Hence f 0
n

converges uniformly to

�(w) =
1

2⇡i

R

|z�w|=r

f(z)
(z � w)2

dz. So f is di↵erentiable and Df(z)(v) = @�(z) ·
v. This implies that f is holomorphic and @f = �. Similarly we get the
convergence of the higher order derivatives.

Corollary 5.4. Let U be an open domain in C, H(U, C) the vector space of
holomorphic mappings on U , K ⇢ U a compact set and C0(K, C) the Banach
space of continuous maps on K with the supremum norm. Then the restriction
map r : H(U, C) ! C0(K, C) is compact. This means that if B ⇢ H(U, C) is
a subset of uniformly bounded functions then the closure of r(B) is a compact
subset of C0(K, C).
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Proof. From the Cauchy Integral Formula it follows that the derivative of maps
in B are uniformly bounded in a neighbourhood of K. Hence the Corollary
follows from Ascoli’s Theorem.

Another simple consequence of the Cauchy Integral Formula, via Corollary
1, is a local normal form of holomorphic functions. If f : U ! C is a non-
constant holomorphic map and z0 2 U then there exists k 2 N, a neighbour-
hood W of z0 and holomorphic di↵eomorphism � : (W ; z0) ! (�(W ), 0) and
 : (f(W ); f(z0))! ( (f(W )), 0) such that

 � f � ��1(z) = zk for all z 2 �(W ).

In particular, f has only isolated zeros.
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Fig. 5.1: f has a critical point of order k. Then let l be an arc as on the right. Then

f�l consists of k arcs and f restricted to each component of U \f�1(l) is a holomorphic

di↵eomorphism onto f(W ) \ l.

5.2 Hyperbolic Geometry

Definition. Let S be a topological space which is connected, Hausdor↵ and
which has a countable neighbourhood basis. A holomorphic atlas on S is a
collection of homeomorphisms �

i

: U
i

! �
i

(U
i

) ⇢ C, called charts, such that U
i

are open subsets of S which together cover S, �
i

(U
i

) are open sets in C and the
overlapping maps

�
j

� ��1
i

: �
i

(U
i

\ U
j

)! �
j

(U
i

\ U
j

)

are holomorphic. A Riemann surface structure on S is a maximal atlas. (Here
maximality is meant with respect to inclusion: one atlas contains the other if
each chart of the second atlas is a chart of the first one. A map f : S1 ! S2

between two Riemann surfaces is holomorphic if for each z0 2 S1,  � f � ��1 is
holomorphic near �(z0), where � is a chart of S1 near z0 and  is a chart of S2

near f(z0).) The complex plane and all connected open subsets of the plane are

examples of Riemann surfaces. The simplest example of a compact Riemann
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surface is the Riemann sphere C = C[{1} which has a holomorphic atlas with
two charts:

C \ {1}! C defined by z 7! z

and
C \ {0}! C defined by z 7! 1/z and 1 7! 0.

From Liouville’s Theorem (Corollary 2 above) and since holomorphic maps
have only isolated zeros, it is easy to conclude that f : C̄! C̄ is holomorphic if

and only if f(z) =
P (z)
Q(z)

where P and Q are polynomial maps. In particular, f

is a holomorphic di↵eomorphism if and only if f(z) =
az + b

cz + d
with a, b, c, d 2 C

and ad � bc 6= 0. These are called the Möbius transformation and the group
(under composition) of the Möbius transformations if denoted by M(C̄). One
can see very easily that this group is generated by the following family of maps

z 7! 1
z
, z 7! az, z 7! z + b

with b 2 C and a 2 C \ {0}. Notice that a Möbius transformation on C which
is not the identity has at most two fixed points. It is hyperbolic if it has one
attracting and one repelling fixed point. It is parabolic if it has a unique fixed
point. Finally, it is elliptic if it is conjugate to a rotation (as a map on C̄).

Proposition 5.1. 1. A Möbius transformation maps a line either onto a
line or onto a circle and the image of a circle is either a circle or a line.

2. A Möbius transformation preserves the cross-ratio of four points: if

C(z1, z2, z3, z4) =
(z3 � z1)(z4 � z2)
(z2 � z1)(z4 � z3)

and � is a Möbius transformation then

C(�(z1),�(z2),�(z3),�(z4)) = C(z1, z2, z3, z4).

3. Given any three distinct points z1, z2, z3 in the Riemann sphere, there
exists a unique Möbius transformation � such that �(z1) = 0, �(z2) = 1,
�(z3) = 1. Hence any three points can be mapped to any other three
points by a Möbius transformation.

4. The Möbius transformation � which maps the points 1, i,�1 to the points
0, 1,1 is a holomorphic di↵eomorphism between the unit disc D and the
upper half-plane H = {z = x + iy 2 C ; y > 0}.

5. Each Möbius transformation  which map D onto D is of the form  (z) =
(az + c)/(cz + a) where |a|2 � |c|2 = 1.
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6. The subgroup � of all Möbius transformations which map D onto D acts
transitively in D. More precisely, let C be a circle or a straight line that
contains z, w 2 D that is orthogonal to the unit circle D. Let {z1, w1} =
C \ @ D be such that z lies between z1 and w in C \ D as in Figure 5.2.
Then the Möbius transformation  that maps z1 7! z1, z 7! w and
w1 7! w1 maps D di↵eomorphically onto D.

Proof. Elementary. Let us prove for example the last statement. From 1) it
follows C is mapped onto C. Since the unit circle D is orthogonal to C and
�(z1) = z1 and �(w1) = w1 the conformality of �, Statement 1) also implies
that �(@ D) = @ D.

...........................................................................

.................................................................................
.........
.........
.........
........
........
.........
.........
.........
..........
...........

............
..............

.....................
.......................................................................................................................................................................................................................................................................................................................

................
............
...........
..........
..

............. ............. .............
.............

............
.
...........
..
..........
...
.........
....
.........
....
........
.....
.........
....
.........
....

..........
...

...........
..

.............

.......................................
.............

............
.

...........
..

..........
...
.........
....
.........
....
........
.....
.........
....
.........
....
..........
...
...........
..
.............

z1w1

z w
• • ••

D

Fig. 5.2: The points z1, z, w and w1.

Since the subgroup of maps in M(D) which fix the origin is the group of
rotations, we have

Corollary 5.5. Up to a multiplicative factor there is a unique Riemannian
metric on D such that the elements of M(D) are isometries of this metric.

Proof. Since the required Riemannian metric has to be invariant under ro-
tations, it is a positive multiple of the Euclidean inner product at the origin.
This defines the norm | · |0 at 0 2 D. The norm |v|

z

is by definition equal to
|@ (z) · v|0 where  2M(D) is such that  (z) = 0. This is well defined because
if  1 2 M(D) also has the property that  1(z) = 0 then  1 �  �1 is a rotation
and hence @ (z) = ei✓ · @ 1(z).

Definition. The Poincaré or hyperbolic metric on D is the Riemannian metric
on D having the Möbius transformations in M(D) as isometries and such that
|v|0 = 2 · |v| = 2 ·

p
v · v̄. (The choice of the factor two is to make the curvature

of D equal to �1.)
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Remark. 1. Notice that if
�(z) =

z + x

1 + x̄z
,

where x 2 D and where x̄ 2 D is the complex conjugate of x 2 D, then � 2M(D)
and �(0) = x. Since D�(0) · v = (1� |x|2) · v and ||v||0 = ||D�(0) · v||

x

, we have
that

||v||
x

=
1

1� |x|2 ||v||0 =
2

1� |x|2 |v|.

This gives an expression for the Poincaré metric of D. In particular, the confor-
mal map D! D defined by z 7! z̄ is also an isometry of this metric.

2. Similarly, there is a unique Riemannian metric || · || on the upper-half plane
H which is invariant under the group of Möbius transformations which map H
onto H and such that ||v||

i

= |v|. As before it follows that ||v||
z

is equal to
1
y
|v| if z = x + iy 2 H where z, y 2 R. This is called the Poincaré metric on H

and by Statement 4 of Proposition 5.1 it is isometric to the hyperbolic metric
on D defined in the previous remark. (In fact, the derivative of the Möbius
transformation from D to H from this statement is equal to 2i at the point 0.)

Proposition 5.2. 1. The geodesics of the hyperbolic metric of D are the
straight lines and circles perpendicular to @D.

2. If d
P

(z, w) is the infimum of the hyperbolic length of all C1 curves from z
to w then

(⇤) d
P

(z, w) = log
|w � z1|
|z � z1|

|w1 � z|
|w1 � w|

where z1 and w1 are the intersection of the unit circle with the circle (or
line) that contains z, w and is orthogonal to the unit circle. Here z1 is
the point of intersection such that the arc bounded by z and z1 does not
contain w.

Proof. The map z 7! z̄ is an isomorphism. Because there is precisely one
geodesic through a point in a given direction, the geodesic connecting 0 to
w 2 (0, 1) is the curve (0, w). Since distinct points x, y 2 D can be mapped by a
Möbius transformations in M(D) to 0 respectively w 2 (0, 1) the first statement
follows. Since the cross-ratio is invariant under Möbius transformations, the
right hand side of (⇤) is invariant. As the Möbius transformations that preserve
D are isometries under the Poincaré metric, both sides of (⇤) are invariant under
Möbius transformations. It is therefore enough to verify the equation for z = 0
and w 2 (0, 1) (and therefore z1 = �1, w1 = 1). In this case the right hand
side of the above equation is equal to log 1+|w|

1�|w| . Let us compute the left hand
side. Since we already know that the geodesic connecting 0 to w is (0, w),

d
P

(0, w) = 2
Z

w

0

ds

1� s2
= log

1 + |w|
1� |w| .
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Theorem 5.2. (Schwarz Lemma) If f : D ! D is a holomorphic map then
either f strictly contracts the hyperbolic metric or f is a Möbius transformation.

Proof. Suppose f is not a Möbius transformation. Let  
i

2 M(D), i = 1, 2
be such that  1(z) = 0 and  2(f(z)) = 0. Then g =  2 � f �  �1

1 : D ! D
is holomorphic, maps 0 into 0 and is not a rotation. By the classical Schwarz
Lemma, |@g(0)| < 1. Since  

i

are isometries of the hyperbolic metric,

|@f(z)v|
f(z) < |v|

z

.

Corollary 5.6. 1. If � : D ! D is a holomorphic di↵eomorphism then � is
a Möbius transformation.

2. If � : D! D is a hyperbolic isometry then either z 7! �(z) or z 7! �(z) is
a Möbius transformation.

Remark. Let � : D ! D be a Möbius transformation. If � has a fixed point
x 2 D then, if  2 M(D) is the Möbius transformation that maps x to 0,
 � � �  �1 is a rotation. In particular, � has at most one fixed point in D
(unless it is the identity). If � has a fixed point then we say that � is an elliptic
isometry of D.

If � 2 M(D) has no fixed point (in D) then, since � has at least one fixed
point and at most two fixed points in C̄, it follows that � has at least one and
at most two fixed points in @ D.

If � has two fixed points in the boundary then the geodesic connecting these
points is invariant under �. So if we take  to be the Möbius transformation
that maps these fixed points to 0,1 then  � � �  �1 is the map z 7! � · z for
some � 2 R. In this case we say that � is a hyperbolic isometry of D.

The last possibility is that � has a unique fixed point in @ D. Then there
exists a Möbius transformation  : D ! H such that  � � �  �1 is the map
z 7! z + 1 and � is called a parabolic isometry of D.

5.3. The Uniformization Theorem

Theorem 5.3. (Uniformization Theorem) If S is a simply connected Rie-
mann surface then S is holomorphically di↵eomorphic to either D, C or to C̄.

Remark. A special case of Theorem 3 is: if U is a simply connected subset
of C (which is not equal to C) then there exists a holomorphic di↵eomorphism
� : U ! D. Any one of such maps is called a Riemann mapping of U and the
Riemann mapping is completely determined by the image of a point and the im-
age of a direction by the derivative at that point. Furthermore, if the boundary
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of U is a Jordan curve then � extends continuously to a homeomorphism of Ū
onto D̄. In this case � is completely determined by the image of three distinct
points in @U . In this case the proof is much easier. The proof of Theorem 5.3
can be found in Ahlfors (1973).

Let S be a Riemann surface and ⇡ : S̃ ! S be its universal covering map. It
is clear that there exists a unique Riemann surface structure on S̃ that makes
⇡ holomorphic; hence S̃ is holomorphically di↵eomorphic to either C, C̄ or D.
In the first case we say that S is parabolic, in the second case it is elliptic and
in the last case it is a hyperbolic Riemann surface.

Before we give examples of hyperbolic Riemann surfaces we need the follow-
ing important result.

Theorem 5.4. (Schwarz Reflection Principle) Let U ⇢ C be a domain
which is symmetric with respect to complex conjugation. Let U+ = U \ H and
f : U+ ! H be a holomorphic map such that the imaginary part of f extends
continuously to the zero function on U \ R. Then f extends to a holomorphic
function on U which satisfies the symmetry relation f(z̄) = f(z).
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Fig. 5.3: The fundamental domain of the covering of the three punctured sphere.

Corollary 5.7. S = C \ {z1, z2, z3} is a hyperbolic Riemann surface.

Proof. We may assume that z1 = 0,, z2 = 1 and z3 = 1. Let D0 ⇢ H be the
simply connected domain bounded by the vertical lines through 0 and 1 and by
the circle � with radius 1/2 and centred at 1/2, as in Figure 5.3.

Let �0 : D0 ! H be the Riemann mapping whose extension to the boundary
maps 0 7! 0, 1 7! 1 and 1 ! 1. Let D1 be the reflection of D0 with respect
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to the vertical line through 1 and D2 be the reflection of D0 with respect to the
geodesic C with endpoints 0 and 1. Using the Schwarz Reflection Principle. we
can extend �0 holomorphically to D1 and D2 mapping these domains holomor-
phically onto the lower half-plane. Now the boundary of D2 consists of � and
two circles perpendicular to the real axis, one going through 0 and 1/2 and one
going through 1/2 and 1. Reflecting D2 in the first circle, we get a new domain
D3. The holomorphic extension of �0 from the Schwarz Reflection Principle,
maps D3 again to the upper half-plane. Continuing this construction we get a
holomorphic covering

h : H! C̄ \ {0, 1,1} = C̄ \ {z1, z2, z3}

that extends �0.

Corollary 5.8. Every open set U ⇢ C̄ such that the cardinality of C \U is � 3
is a hyperbolic Riemann surface.

Proof. If this were not the case then there would exist a holomorphic covering
map ⇡ : C ! U . On the other hand, U ⇢ C̄ \ {z1, z2, z3} and there exists
a holomorphic covering map ⇡̃ : D ! C̄ \ {z1, z2, z3}. The inclusion i : U !
C̄ \ {z1, z2, z3} lifts to a holomorphic map ĩ : C ! D. By Liouville’s Theorem
this map is constant, a contradiction.

Definition. Let F be a family of holomorphic maps on some Riemann surface
S. We say that this family is normal if any sequence of maps in F has a
subsequence which converges uniformly on compact subsets of S.

Corollary 5.9. Let S be a Riemann surface and F a family of holomor-
phic maps from S to the Riemann sphere C̄. If there are three distinct points
z1, z2, z3 2 C̄ that are omitted by the image of each map in F then F is a normal
family.

Let S be a hyperbolic Riemann surface and ⇡ : D! S a holomorphic covering
map. The set � = {� : D ! D ; � is a homeomorphism with ⇡� = ⇡} is called
the group of deck transformations. Since ⇡ is holomorphic, the maps in � are also
holomorphic. Therefore � consists of isometries of the hyperbolic metric, there
exists a unique Riemannian metric on S, called the Poincaré or the hyperbolic
metric of S, such that ⇡ is a local isometry. As a consequence of Theorem 2 we
immediately get the following statement.

Schwarz Lemma. If f : S1 ! S2 is a holomorphic map between hyperbolic
Riemann surfaces then either f strictly contracts the Poincaré metric or it is a
covering map.

Example. Suppose S is homeomorphic to an annulus. Then the fundamental
group ⇡1(S) is isomorphic to Z. Therefore the group � of deck transformations,
which is isomorphic to ⇡1(S), is generated by a unique Möbius transformation
�. There are three cases:
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Fig. 5.4: On the right of the figure we see an isometric embedding of the surface S in

R3 from Example b). The length of the closed curves indicated, which are the images

of the higher and higher horizontal segments in the fundamental domain D
0

, go to

zero as they approach the cusp.

a) If S is not hyperbolic (so S is covered by C), then we may assume that
�(z) = z + 1 up to conjugation with a Möbius transformation in C. The image
by the projection map ⇡ : C! S = C/� of the horizontal lines gives a foliation
on S by closed curves having all the same length. So S = C/� is isometric to
an infinite cylinder.

b) If S is hyperbolic (so S is covered by H), but the group of deck transformation
is generated by a parabolic transformation �, we may assume by conjugating
the group with a Möbius transformation that �(z) = z + 1. The image by the
projection map ⇡ : H ! S = H/� of the horizontal lines gives a foliation on S
by closed curves such that the length of the curves goes to zero in one direction
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Fig. 5.5: On the right of the figure we see an isometric embedding of the surface S

in R3 from Example c). The closed curves in S are also drawn in the fundamental

domain in the figure in the middle (where they are straight lines and where log R = �)

and on the left (where they are circles).
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and to infinity in the other. So S = C/� is isometric to the surface on the right
in Figure 5.4.

c) If � : H! H is a hyperbolic transformation we may assume �(z) = �z where
� > 1. The image by the projection map ⇡ : H ! S = H/� of the horizontal
lines gives a foliation on S by closed curves such that the length of the curves
goes to infinity in both directions. So S = C/� is isometric to the surface drawn
in Figure 5.5. Moreover, S is holomorphically equivalent to

A
R

= {z ; 1 < |z| < R},

where

(⇤) log R =
1

log(hyperbolic length of �)

and � is the unique simple closed hyperbolic geodesic of S (it is the image of
the imaginary axis). The number from (⇤) is called the modulus of the annulus
S. From this definition it follows that this modulus is a conformal invariant:
A

R1 and A
R2 are conformally di↵eomorphic i↵ R1 = R2 (any conformal dif-

feomorphism between A
R1 and A

R2 is an isometry for the Poincaré metric and
therefore preserves the length of the simple closed geodesics).

Proposition 5.3. Let A, A1, A2 be hyperbolic Riemann surfaces homeomorphic
to the annulus. Then

1) if f : A1 ! A2 is a holomorphic covering map of degree n then

modulus of A2 =
1
n

( modulus of A1);

2) if A1 is a proper subset of A2 and the generators of ⇡1(A1) also generate
A2 then

modulus A1 < modulus A2;

3) if A � A1[A2, A1\A2 = ; and the generators of the fundamental groups
⇡1(A1) and ⇡1(A2) both generate ⇡1(A) then

modulus of A � ( modulus of A1) + ( modulus of A2).

Proof. The first two statements follow easily from the Schwarz Lemma. The
last statement is more di�cult to prove, see Theorem 4 in Chapter I of Ahlfors
(1966).

From the Riemann Mapping Theorem and the above discussion, it follows
that any simply connected domain in the plane and any doubly connected do-
main may be mapped conformally onto the disc D respectively on some annulus
A

R

. Therefore a univalent map on the disc D (here we say that a map is called
univalent if it is holomorphic and injective) may have very large nonlinearity.
However, the results below say that this nonlinearity is concentrated near the
boundary of the domain.
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Theorem 5.5. (Koebe’s Distortion Theorem) For each � 2 (0, 1) there
exists B(�) � 1 such that if F : D! C is univalent then

�

�

@F (z)
@F (w)

�

� B(�) for all z, w 2 D
�

= {x 2 C ; |x| < �}.

Furthermore, B(�)! 1 if �! 0.

Proof. See Ahlfors (1973, pp. 84).

Corollary 5.10. For each � 2 (0, 1/2) and each a > 1 there exists D(�, a) � 1
such that if F : A

a

! C is a univalent function then

�

�

@F (z)
@F (w)

�

� D(�, a) for all z, w 2 Ã
a

where Ã
a

= {z ; 1 + �a < |z| < 1 + (1� �)a}.

Theorem 5.6. (Koebe’s 1/4-Theorem) If F : D! C is univalent and |@F (0)| =
1 then F (D) contains a disc of radius 1/4 centred at F (0).

Proof. Ahlfors (1973, pp. 84).

5.4 Deformations of complex structures; Teichmüller spaces

The basic tool for understanding the space of all conformal structures on a given
surface is the Measurable Riemann Mapping Theorem below.

Definition. A Beltrami coe�cient on an open set U ⇢ C̄ is a measurable
function µ : U ! C such that |µ| has essential supremum k < 1. (This means
that the set {z 2 U ; |µ(z)| > k} has zero Lebesgue measure and that k is
the smallest number with this property.) If f : U ! f(U) is a quasiconformal

homeomorphism then µ
f

(z) =
@̄f(z)
@f(z)

is a Beltrami coe�cient. It is called

the Beltrami coe�cient of f . A Beltrami coe�cient can be seen as a field of
ellipses: given a Beltrami coe�cient µ, we can associate a field of ellipses (up to
homothety). Indeed, if µ(z) = 0, the ellipse E(z) is a circle. If µ(z) 6= 0 then the
direction of the major axis of E(z) is given by

p

⌫(z) and the eccentricity (i.e.,
the ratio of major axis by the minor axis) is 1+|µ(z)|

1�|µ(z)| . Conversely, any measurable
field of ellipses, with bounded eccentricity, defines a Beltrami coe�cient. The
next result tells us that we can always integrate such a Beltrami coe�cient:

Theorem 5.7. (Measurable Riemann Mapping Theorem) Let µ : C̄! C
be a Beltrami coe�cient. Then there exists a unique quasiconformal homeomor-
phism f : C̄! C̄ which satisfies the Beltrami di↵erential equation

@̄f(z)
@f(z)

= µ(z) for almost all z 2 C̄

and is normalized such that f(0) = 0, f(1) = 1 and f(1) =1.
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Remark. It follows that if µ : U ! C is a Beltrami coe�cient, there exists
a quasiconformal homeomorphism f : U ! f(U) with Beltrami coe�cient µ.
Indeed, we just extend µ to C̄ (for example by taking µ(z) = 0 for z /2 U) and
use the theorem. The homeomorphism will depend on the extension of µ and any
two such homeomorphisms f1 and f2 di↵er by a holomorphic homeomorphism
� : f1(U)! f2(U) (that is, � � f1 = f2).

The result below describes the dependence of the solutions of the Beltrami
equations on the parameters.

Theorem 5.8. (Ahlfors-Bers Theorem) Let ⇤ ⇢ Cn be an open set and
µ : C̄⇥ ⇤! D be a measurable function satisfying:

a) |µ(z,�)|  k < 1 for all � 2 ⇤ and for almost all z 2 C̄;

b) � 7! µ(z,�) is holomorphic in � for almost all z 2 C̄.

Then there exists a unique function F : C̄⇥ ⇤! C̄ such that

1. F (0,�) = 0, F (1,�) = 1, F (1,�) =1;

2. For every � 2 ⇤ the map z 7! F (z,�) is a quasiconformal homeomorphism
whose Beltrami coe�cient is µ(·,�);

3. � 7! F (z,�) is holomorphic for almost every z.

If instead of b) one has that �
n

! � implies µ(·,�
n

) ! µ(·,�) almost every-
where, then F satisfies Statements 1, 2 and is continuous in both variables.

Let us give some useful properties of quasiconformal homeomorphisms.

Proposition 5.4. 1. If A is a family of quasiconformal homeomorphisms of C̄
whose conformal distortions are uniformly bounded by K then

a) every uniform limit of a sequence in A is either constant or it is a K-
quasiconformal homeomorphism;

b) every sequence in A has a subsequence that converges uniformly.

2. f : U ⇢ C̄ ! V is a 1-quasiconformal homeomorphism if and only if f is
holomorphic.

3. Every quasiconformal homeomorphism � : D! D extends to a quasiconformal
homeomorphism of C.

4. f : C̄ ! C̄ is a K-quasiconformal homeomorphism if and only if for every
annulus A ⇢ C̄

1
K

modulus of f(A)  modulus of A  K modulus of f(A).
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5. If f : U ! V and g : V ! U are quasiconformal homeomorphism then g � f
is quasiconformal and

µ
g�f (z) =

µ
f

(z) + µ
g

(f(z)) · @f(z)
@f(z)

1 + µ
g

(f(z)) · µ
f

(z) · @f(z)
@f(z)

.

In particular, if g is holomorphic then µ
g�f = µ

f

and if f is holomorphic then

µ
g�f = µ

g

(f(z)) · @f(z)
@f(z)

.

Let us introduce some notation. Given an open subset U of C̄, we denote by
B(U) the set of Beltrami coe�cient on U . So B(U) is the unit ball in L1(U).
We define a new metric on B(U) called the Poincaré metric of B(U), as follows:

d
B

(µ1, µ2) = ess sup
z2U

d
P

(µ1(z), µ2(z))

where d
P

(µ1(z), µ2(z)) is the Poincaré distance between two points in D.

Definition. A Beltrami path on U is a path t 7! µ
t

2 B(U) such that for almost
all z 2 U , t 7! µ

t

(z) is a hyperbolic geodesic on D.
Notice that a Beltrami path µ

t

is a straight line in the metric space B(U)
with the metric d

B

. This means that for all t0 < t1 < · · · < t
n

d
B

(µ
t1 , µt

n

) =
n�1
X

i=0

d
B

(µ
t

i

, µ
t

i+1).

In particular, µ
t

is a minimal geodesic: it is the curve of smallest length joining
its endpoints. Here we are using the following concept. In a metric space M
with distance function d, the length of a curve ↵ : [0, 1] ! M is defined as the
supremum of

P

n�1
i=0 d(↵(t

i+1),↵(t
i

)) over all partitions 0 = t0 < t1 < · · · < t
n

=
1 of the interval [0, 1]. From the triangle inequality it follows that the length of
a curve is at least as big as the distance between the endpoints. If it is equal
then the curve is called a geodesic.

If µ
t

is a Beltrami path then its tangent vector at t = t0,

⌫
t0(z) =

d

dt
µ

t

(z)
�

�

t=t0
,

is an essentially bounded measurable function called a Beltrami vector. Con-
versely, any function ⌫ 2 L1(U) is tangent to a unique Beltrami path. The
following lemma will be used in extending these notions to Riemann surfaces.

Lemma 5.1. 1. Let f : U ! V be a quasiconformal map. If µ 2 B(V ) then
its pullback f⇤µ defined by

(⇤) (f⇤µ)(z) =
µ

f

(z) + µ(f(z)) · @f(z)
@f(z)

1 + µ(f(z)) · µ
f

(z) · @f(z)
@f(z)
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is a Beltrami coe�cient on U .

2. The map f⇤ : B(V )! B(U) defined by (⇤) is an isometry of the Poincaré
metric and maps Beltrami paths into Beltrami paths.

Proof. The result follows easily from the fact that for each z 2 U the map

D 3 u 7!
µ

f

(z) + u · @f(z)
@f(z)

1 + u · µ
f

(z) · @f(z)
@f(z)

is in M(D).

Remark. 1. If f : U ! V is a quasiconformal homeomorphism, then the field
of ellipses associated to f⇤(µ) is mapped, by the derivative of f into the field
of ellipses associated to µ. Therefore, the invariance of a Beltrami coe�cient
under a dynamical system or under a Fuchsian group (i.e., f⇤µ = µ for the
dynamical system f or each map from the group) is the same as the invariance
of the corresponding field of ellipses under the derivative of the corresponding
maps. In particular, a Beltrami coe�cient in a Riemann surface S is the same
as a pair (|µ|, l), where |µ| : S ! [0, 1) is a measurable function whose essential
supremum is smaller than one and l is a measurable line field in the set of points
of S where the previous function is non-zero.

2. If f is holomorphic then

(f⇤µ) = µ(f(z)) · @f(z)
@f(z)

a.e.

and this pullback map is well defined even if f is not injective.

3. µ
f

= f⇤(0). In other words, the Beltrami coe�cient of a quasiconformal
homeomorphism is the pullback of the Beltrami coe�cient identically zero.

4. If f : U ! V , g : V !W are quasiconformal homeomorphisms then

(g � f)⇤ = f⇤ � g⇤.

5. The tangent action of f on the Beltrami vector is given by

(Tf⇤(µ))(⌫)(z) =

 

@f(z)
@f(z)

!

(1� |µ
f

|2)
 

1 + µ(f(z)) · µ
f

(z) · @f(z)
@f(z)

!2 ⌫(f(z)).

So if ⌫ is a Beltrami vector tangent to the Beltrami path µ
t

at t = t0 and
µ

t0 = µ then (Tf⇤(µ))(⌫) is the Beltrami vector tangent to the Beltrami path
f⇤(µ

t

) at t = t0. Notice that if f is holomorphic then

(T ⇤f(µ))(⌫)(z) = ⌫(f(z)) · @f(z)
@f(z)

a.e.
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Let us show how to use the Beltrami paths to construct deformations of
holomorphic dynamical systems.

Theorem 5.9. Let F : U ! V be a holomorphic map between open sets such
that V � U . Let µ

t

: V ! C be a Beltrami path in V with µ0 ⌘ 0, satisfying the
condition

F ⇤(µ
t

) = µ
t

for all t.

Let �
t

: V ! V
t

⇢ C be a continuous family of quasiconformal homeomorphisms
with �0 = id such that the Beltrami coe�cient of �

t

is µ
t

. Then

F
t

= �
t

� F � ��1
t

is a continuous family of holomorphic maps.

Proof.

F ⇤
t

(0) = (��1
t

)⇤F ⇤�⇤
t

(0)

= (��1
t

)⇤F ⇤µ
t

= (��1
t

)⇤(µ
t

) = 0.

Hence F
t

is locally 1-quasiconformal and hence conformal.
Let us give another important application of the Measurable Riemann Map-

ping Theorem to holomorphic dynamical systems. Let F : U ! V be a holomor-
phic proper map where U and V are simply connected domains and V contains
the closure of U . Such a map is called polynomial-like. The degree of such a
map is the cardinality of F�1(y) for every y which is not a critical value. Let
J(F ) = {z ; fn(z) 2 U for all n � 0}. This set is called the filled Julia set of
the polynomial-like map F . Douady and Hubbard (1985a) proved

Theorem 5.10. (Straightening Theorem) Let F : U ! V be a polynomial-
like map and d be the degree of F . Then there exists a polynomial map P of de-
gree d, a neighbourhood W of J(F ) such that F : W ! F (W ) is a polynomial-like
map and there exists a quasiconformal homeomorphism � : F (W ) ! P (�(W ))
that conjugates F | W to P | �(W ).

Proof. Let Ṽ ⇢ V be a simply connected domain whose boundary is a smooth
curve in V \ cl (U). Take W = F�1(Ṽ ). Then F : W ! F (W ) is also a
polynomial map of degree d. Let � be a smooth di↵eomorphism of a small
neighbourhood of the closure of F (W ) \W onto a neighbourhood of the closure
of D2d \D2 that maps the boundary of W to the boundary of D2 and conjugates
F |@W to the restriction of zd|@ D2. Let S be the space obtained by taking the
disjoint union of F (W ) and D2 modulo the equivalence relation that identifies
z 2 F (W ) to �(z) 2 D2. Clearly S is homeomorphic to the sphere. Let
⇡ be the projection map and let U1 = ⇡(F (W )) and U2 = ⇡(C̄ \ D2). Let
�̃1 = ⇡�1|U1 and �̃2 = ⇡�1|U2 be the charts. The change of coordinates is
� and so we have a smooth structure on S. Take in C̄ \ D2 the Beltrami
coe�cient µ2 ⌘ 0 and in F (W )\W be µ1 = �⇤(0). Next extend it dynamically:
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F ⇤(µ1) = µ1 on F (W ) \ J(F ). Finally define µ1 ⌘ 0 on J(F ). Let  be
the quasiconformal homeomorphism from F (W ) to its image whose Beltrami
coe�cient is µ1. Let �1 =  � �̃1 and �2 = �̃2. These maps define a holomorphic
atlas on S. Take z 2 S. If z is in the domain of �1 and �1(z) 2 W then
take P (z) = �̃�1

1 (F (�̃1(z)). Otherwise P (z) = �̃�1
2 ([�̃2(z)]d). Now P is a

holomorphic map of degree d (here we use that � can also be defined as a
conjugacy on a small neighbourhood of the closure of F (W )\W to show that P
is well-defined in the intersections of these domains). Since S is homeomorphic
to the sphere, it is conformally the Riemann sphere. Therefore P is rational
map of degree d. Moreover, ��1

2 (1) is both a fixed point and a critical point of
degree d for P . Hence P is a polynomial.

The deformation theory for Riemann surfaces is similar to the above defor-
mation of holomorphic dynamical systems. Let S be a Riemann surface. A
Beltrami coe�cient µ on the Riemann surface S is a collection of Beltrami co-
e�cients µ

i

: �
i

(U
i

) ! C one for each chart �
i

: U
i

! �
i

(U
i

) ⇢ C of S, called
the expression of µ in �

i

, satisfying the compatibility condition

(�
j

� ��1
i

)⇤µ
j

= µ
i

on �
i

(U
i

\ U
j

)

and the boundedness condition

|µ
i

(z)| < k a.e. z 2 �
i

(U
i

)

where k < 1 is independent of i.
A homeomorphism f between two Riemann surfaces S1 and S2 is K-quasiconformal

if all local expressions of f are K-quasiconformal. The pullback map f⇤ : B(S2)!
B(S1) is defined by taking the pullback of the local expressions. The Poincaré
metric on B(S) is defined as

d
B

(µ1, µ2) = sup
i

ess sup
z2�

i

(U
i

)dP

(µ1,i

(z), µ2,i

(z)).

(Note that d
P

(µ1,i

(z), µ2,i

(z)) = d
P

(µ1,j

(z0), µ2,j

(z0)) if ��1
i

(z) = ��1
j

(z0). So
the supremum over i above may be taken over any atlas.) Note that f⇤ is an
isometry, see Statement 2 of Lemma 5.1.

We say that a one parameter family µ
t

of Beltrami coe�cients is a Beltrami
path on S if for each chart �

i

: U
i

! �
i

(U
i

), t 7! µ
i,t

is a Beltrami path in �
i

(U
i

)
where µ

i,t

is the expression of µ
t

in this chart. Similarly, we define a Beltrami
vector ⌫ at the Beltrami coe�cient µ as a collection ⌫

i

: �
i

(U
i

)! C of Beltrami
vectors such that

T (�
j

� ��1
i

)⇤(µ
j

)(⌫
j

) = ⌫
i

and such that the essential supremum |⌫
i

| is uniformly bounded. This invariance
condition can be written in local coordinates as follows

@̄(�
j

� ��1
i

)
@(�

j

� ��1
i

)
· ⌫

j

(�
j

� ��1
i

(z)) = ⌫
i

(z).

As before, each Beltrami vector ⌫ at µ determines a unique Beltrami path µ
t

with µ0 = µ and conversely.
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By the Measurable Riemann Mapping Theorem, each Beltrami coe�cient µ
on S determines a new Riemann surface S

µ

and a quasiconformal map f : S !
S

µ

such that f⇤(0) = µ. Indeed, let A be an atlas on S and for each �
i

2 A
let µ

i

: �
i

(U
i

) ! C be the expression of µ. Let  
i

: �
i

(U
i

) !  (�
i

(U
i

)) be
a quasiconformal map whose Beltrami coe�cient is µ

i

, i.e.,  ⇤
i

(0) = µ
i

. Then
�̃

i

=  
i

��
i

is an atlas Ã of S whose overlapping maps are 1-quasiconformal and
therefore holomorphic maps. Then let S

µ

be the topological space S endowed
with the complex structure defined by Ã. By taking f to be the identity map we
get f⇤(0) = µ. Hence a Beltrami path µ

t

on a Riemann surface S defines a one
parameter family of Riemann surfaces S

µ

t

. If µ0 = 0 then this is a deformation
of the original complex structure on S. Conversely, given any Riemann surface
S1 and a quasiconformal homeomorphism f from S to S1 one gets a Beltrami
coe�cient µ = f⇤(0) on S. Hence, we can identify the space of B(S) with
the space C(S) of all complex structures on the topological space which are
quasiconformally homeomorphic to the original structure.

This discussion is very similar to the corresponding deformation of dynamical
systems. Indeed consider the universal holomorphic covering map ⇡ : D ! S.
Then the group of deck transformations is a group of conformal homeomor-
phisms and the Beltrami coe�cients µ on S correspond precisely to the Beltrami
coe�cients µ̃ on D such that A⇤µ̃ = µ̃ for all A 2 �. Each such Beltrami coef-
ficient determines a quasiconformal homeomorphism  : D ! D and the above
compatibility condition implies that �

µ

=  � � �  �1 = { � � �  �1 ; � 2 �}
is also a group of Möbius transformations.

In general, given a Beltrami coe�cient µ, a complex structure S
µ

can be
holomorphically di↵eomorphic to the original structure S. This is the case if
S is simply connected, see Theorem 5.3. In fact we are going to distinguish
the Beltrami coe�cients using a stronger equivalence relation. Two Beltrami
coe�cients µ1 and µ2 are equivalent in the sense of Teichmüller, µ1 ⇠T

µ2

if µ1 = �⇤µ2 where � : S ! S is a quasiconformal homeomorphism which is
isotopic to the identity. The space of equivalence classes of Beltrami coe�cients
on S is called the Teichmüller space of S and denoted by T (S). Let ⇡ : B(S)!
T (S) be the corresponding projection. The space T (S) has a natural metric:

d
T

([µ1], [µ2]) = d
B

(⇡�1([µ1]),⇡�1([µ2])).

Note that this is precisely the minimum of the Poincaré distance d
P

(µ1,�⇤(µ2))
over all quasiconformal homeomorphisms � : S ! S which are isotopic to the
identity.

Example. Let S = A
R

with R > 1. Then the Teichmüller space of S is home-
omorphic to the real line. Indeed, let m : B(S) ! (0,1) be the modulus of
S

µ

. Then m(µ1) = m(µ2) if and only if there exists a quasiconformal homeo-
morphism � : S ! S with �⇤(µ1) = µ2. This last statement is equivalent to
µ1 ⇠T

µ2 because all homeomorphisms of the annulus are isotopic to the iden-
tity. So m induces an bijection between T (S) and (0,1). It is easy to see that
m is a homeomorphism.
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It is easy to show that a Beltrami path µ
t

is a minimal geodesic in B(S)
with the metric d

B

in the sense discussed before. However, the projection in
the Teichmüller space T (S) is general not a geodesic of the Teichmüller metric
(for example, a Beltrami path could be tangent to a fibre of ⇡). One of the
main goals of the Teichmüller theory is to characterize the Beltrami vectors
that generate Beltrami paths which give geodesics in the Teichmüller space. In
Chapter VI we will give this characterization in the case of compact Riemann
surfaces.

From this characterization one can conclude that the Teichmüller space of a
compact surface of genus g is homeomorphic to the open unit ball in R6g�6.

6 Some Results from Functional Analysis

In the last chapter we will also need the following two theorems.

Theorem 6.1. (Riesz Representation Theorem) Let X be a locally com-
pact metric space and let ⇤ be a positive linear functional on the space of all
continuous functions with compact support. Then there exists a unique positive
Borel measure on X such that

⇤f =
Z

X

f dµ

for all continuous functions with compact support.

Theorem 6.2. (Hahn-Banach Extension Theorem) If M is a subspace of
a normed linear space X and if f is a bounded linear functional on M , then f
can be extended to a bounded linear functional F on X such that ||F || = ||f ||.
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L. Alsedà, J. Llibre, M. Misiurewicz and C. Tresser (1989): Periods and entropy for

Lorenz-like maps. Ann. Inst. Fourier, Grenoble 39, 929–952
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M. Denker and G. Keller (1986): Rigorous statistical procedures for data from dynam-

ical systems. J. of Stat. Ph. 44, 67–93
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A. Finzi (1950): Problème de la géneration d’une transformation d’une courbe fermée.

Ann. Sci. Ec. Norm. Sup. 3e série, 67, 243–305
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M. Urbański (1987): Invariant subsets of expanding mappings of the circle. Ergod.

Th. & Dynam. Sys. 7, 627–645

E. Vargas (1991): Bifurcation frequency of unimodal maps. Commun. Math. Phys.

141, 633–650

E. Vargas (1991): Markov partition in non-hyperbolic interval dynamics. Commun.

Math. Phys. 138, 521–535

J.J.P. Veerman (1989): Irrational rotation numbers. Nonlinearity 2, 419–428

J.J.P. Veerman and F.M. Tangerman (1990a): Scalings in circle maps I. Commun.

Math. Phys. 134, 89-107

J.J.P. Veerman and F.M. Tangerman (1990b): A remark on Herman’s theorem for

circle di↵eomorphisms. Preprint StonyBrook

E.B. Vul, Ya.G. Sinai, K.M. Khanin (1984): Feigenbaum universality and the ther-

modynamic formalism. Russ. Math. Surv. 39, 1–40

P. Walters (1982): An Introduction to Ergodic Theory. Graduate Texts in Math.,

vol. 79. Springer, Berlin New York

J. Willms (1988): Asymptotic behaviour of iterated piecewise monotonic maps. Ergod.

Th. & Dynam. Sys. 8, 111-131

J.-C. Yoccoz (1984a): Conjugaison di↵erentiable des di↵éomorphismes du cercle dont

le nombre de rotation vérifie une condition Diophantienne. Ann. Sci. Ec. Norm.

Sup. 17, 333–361

J.-C. Yoccoz (1984b): Il n’y a pas de contre-example de Denjoy analytique. C.R. Acad.

Sci. Paris, 298, série I, 141–144
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Świa̧tek, 77, 257–259, 533

symbol space S, 96

✓
f

(x; t), 169

TP (f
µ

), 140

Teichmüller metric, 188

infinitesimal, 504

Julia-, 461

tent map, 105, 239

Thieullen at al., 390

Thurston, 192

map, 117–133, 192

contraction, 188

topological entropy, 160

of continuous maps, 164–166

continuous dependence of, 166, 180–

188

independence of metric, 160

monotonicity, 188–191

supported on non-wandering set,

166

transfer

time, map, 320

transitive, 230

transport case, 378

Tsujii, 77, 390

turning point, 78

eventually periodic, 188

uniform parameter dependence, 403

unimodal

interval, 137, 424

map, 89

permutation, 429

pullback, 296

topological properties, 305–309

U

r, U1+z, U!, 424

wandering domains

in dimension two, 316

non-existence, 207

wandering interval, 37, 87, 152, 316

existence, 43, 45, 260, 315, 316

non-existence, 39, 152, 260



586 INDEX

wandering set, 229

Yoccoz, 51–66, 76, 258, 263

Theorem, 51

Young’s Closing Lemma, 216

Zygmund conditions, 283–286


	Introduction
	Circle Diffeomorphisms
	The Combinatorial Theory of Poincaré
	The Topological Theory of Denjoy
	The Denjoy Inequality
	Ergodicity

	Smooth Conjugacy Results
	Families of Circle Diffeomorphisms; Arnol'd Tongues
	Counter-Examples to Smooth Linearizability
	Frequency of Smooth Linearizability in Families
	Some Historical Comments and Further Remarks

	The Combinatorics of Endomorphisms
	The Theorem of Sarkovskii
	Covering Maps of the Circle as Dynamical Systems
	The Kneading Theory and Combinatorial Equivalence
	Examples
	Hofbauer's Tower Construction

	Full Families and Realization of Maps
	Families of Maps and Renormalization
	Piecewise Monotone Maps can be Modelled by Polynomial Maps
	The Topological Entropy
	The Piecewise Linear Model
	Continuity of the Topological Entropy
	Monotonicity of the Kneading Invariant for the Quadratic Family
	Some Historical Comments and Further Remarks

	Structural Stability and Hyperbolicity
	The Dynamics of Rational Mappings 
	Structural Stability and Hyperbolicity
	Hyperbolicity in Maps with Negative Schwarzian Derivative
	The Structure of the Non-Wandering Set
	 Hyperbolicity in Smooth Maps
	Misiurewicz Maps are Almost Hyperbolic
	Some Further Remarks and Open Questions

	The Structure of Smooth Maps
	The Cross-Ratio: the Minimum and Koebe Principle
	Some Facts about the Schwarzian Derivative

	Distortion of Cross-Ratios
	The Zygmund Conditions

	Koebe Principles on Iterates
	Some Simplifications and the Induction Assumption
	The Pullback of Space: the Koebe/Contraction Principle
	Disjointness of Orbits of Intervals
	Wandering Intervals Accumulate on Turning Points
	Topological Properties of a Unimodal Pullback
	The Non-Existence of Wandering Intervals
	Finiteness of Attractors
	Some Further Remarks and Open Questions

	Ergodic Properties and Invariant Measures
	Ergodicity, Attractors and Bowen-Ruelle-Sinai Measures
	Invariant Measures for Markov Maps
	Constructing Invariant Measures by Inducing
	Constructing Invariant Measures by Pulling Back
	Transitive Maps Without Finite Continuous Measures
	Jakobson's Theorem
	Some Further Remarks and Open Questions

	Renormalization
	The Renormalization Operator
	The Real Bounds
	Bounded Geometry
	The Pullback Argument
	The Complex Bounds
	Riemann Surface Laminations
	The Almost Geodesic Principle
	Renormalization is Contracting
	Universality of the Attracting Cantor Set
	Some Further Remarks and Open Questions

	Appendix
	Some Terminology in Dynamical Systems
	Some Background in Topology
	Some Results from Analysis and Measure Theory
	Some Results from Ergodic Theory
	Some Background in Complex Analysis
	Some Results from Functional Analysis

	Bibliography

