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Abstract. Quasi-alternating links of determinant 1, 2, 3, and 5 were previously classified
by Greene and Teragaito, who showed that the only such links are two-bridge. In this
paper, we extend this result by showing that all quasi-alternating links of determinant at
most 7 are connected sums of two-bridge links, which is optimal since there are quasi-
alternating links not of this form for all larger determinants. We achieve this by studying
their branched double covers and characterizing distance-one surgeries between lens spaces
of small order, leading to a classification of formal L-spaces with order at most 7.

1. Introduction

Quasi-alternating links are a natural generalization of non-split alternating links which
have received a considerable amount of attention over the past decade. First introduced by
Ozsváth-Szabó in [OS05], these links provide a more general family of links whose Khovanov
homology and knot Floer homology are particularly simple – they are homologically thin
[MO08] – and they have exhibited a number of other behaviors found in alternating links.
This can also be translated into topological applications: for example, any branched double
cover of a quasi-alternating link is an example of a manifold which cannot admit a co-
orientable taut foliation [OS05].

For many invariants such as the Alexander polynomial, there are only finitely many
alternating knots which attain a fixed value, and this has had applications to Dehn surgery
questions (most recently, [Gai14, LP14]). For quasi-alternating links, it is harder to obtain
such finiteness results. For instance, it is still unknown if there are only finitely many
quasi-alternating links of any fixed determinant.

In [Gre10], Greene classifies quasi-alternating links with determinant one, two, and three
as the unknot, Hopf link, and the two trefoils respectively. Teragaito [Ter15, Theorem 1.9]
completes the classification of quasi-alternating links with determinant 5 by a different
method – they are the torus knots T2,±5 and the figure eight – and points out that the
classification of quasi-alternating links of determinant 4 is still unknown despite partial
results in this case [Ter14], but he conjectures that the only such links should be the torus
links T2,±4 and the connected sum of two Hopf links. The goal of this paper is to verify this
and to also classify quasi-alternating links with determinants up to 7 as well. Specifically,
we prove:

Theorem 1.1. Let L be a quasi-alternating link with determinant at most 7. Then L is
either two-bridge or a connected sum of two-bridge links.

In particular, L is either the unknot, the figure-eight knot, the torus link T2,n with
2 ≤ |n| ≤ 7, a connected sum of two Hopf links, a connected sum of a trefoil with a Hopf
link, or either the 52 knot or its mirror. This answers a question of Teragaito [Ter15,
Conjecture 1.10]:

Corollary 1.2. If L is a quasi-alternating link which is not alternating, then det(L) ≥ 8.
1



2 TYE LIDMAN AND STEVEN SIVEK

Theorem 1.1 also implies the following about positive knots.

Corollary 1.3. Let K be a nontrivial positive knot of genus at most 2 and determinant at
most 7. Then K is either T2,3, T2,5, or 52.

Proof. Positive knots of genus at most 2 are quasi-alternating [JK13]. Now apply Theo-
rem 1.1 to conclude that K must be one of the knots listed above. �

The main idea of the proof is that used originally by Greene, and by Teragaito [Ter14]
in the determinant 4 case, which is to lift to the branched double cover and rephrase the
problem in terms of Dehn surgery. Greene and Levine [GL14] define a notion of formal
L-space (see Definition 2.2) which is meant to be a 3-manifold analogue of quasi-alternating
links; and indeed the branched double cover of any quasi-alternating link is a formal L-space.
Theorem 1.1 will be a consequence of the following classification result.

Theorem 1.4. If Y is a formal L-space with |H1(Y ;Z)| ≤ 7, then Y is a connected sum of
lens spaces.

In fact, Teragaito nearly completes the determinant-4 classification of Theorem 1.1 in
[Ter14, Lemma 2.3]; he could obtain the desired conclusion if he knew that non-trivial
knots in RP3 cannot have non-trivial distance-one RP3 surgeries. The key technical result
which allows us to extend Teragaito’s work is a recent theorem of Gainullin [Gai15] giving
a Dehn surgery characterization of the unknot for nullhomologous knots in L-spaces, which
extends a result of Kronheimer-Mrowka-Ozsváth-Szabó for knots in S3 [KMOS07]. We
remark that while the case of |H1(Y ;Z)| ≤ 3 in Theorem 1.4 follows from Greene’s work,
Teragaito’s classification of determinant 5 quasi-alternating links does not determine the
order 5 formal L-spaces.

One could likely use the arguments in this paper to extend the classification of quasi-
alternating links to slightly larger determinants. However, the obstruction to continuing
this process for all values of the determinant is that one needs the classification of lens
space surgeries on knots (the Berge conjecture) as well as a complete list of links whose
branched double cover gives a fixed manifold.

Moreover, for any n ≥ 8 there are quasi-alternating links of determinant n which are not
connected sums of two-bridge links. Indeed, if k ≥ 2 then the (2, k,−3)-pretzel link is quasi-
alternating [CK09, Theorem 3.2] but not alternating. One can show that its branched double
cover is (k + 6)-surgery on the right handed trefoil, which implies that det(P (2, k,−3)) =
k + 6. Note that this branched double cover is a formal L-space. This is because S3

7(T2,3)
is the lens space L(7, 4), the branched double cover of a two-bridge link, hence quasi-
alternating, and S3

p+1(K) is a formal L-space whenever S3
p(K) is.

Remark 1.5. Here, and throughout the rest of this paper, we use the convention that L(p, q)
is p

q -surgery on the unknot in S3. We will also write F = Z/2Z.

Outline. In Section 2 we recall the definition and properties of quasi-alternating links, show
that Theorem 1.1 follows from Theorem 1.4, and review other related material necessary for
the setup. In Sections 3 and 4 we prove some results characterizing when knot complements
in lens spaces of small order can have distance-one fillings which are also lens spaces of small
order. Finally, we use these results in Section 5 to prove Theorem 1.4.

Acknowledgments. We would like to thank Fyodor Gainullin for helpful discussions. The
first author was partially supported by NSF RTG grant DMS-1148490. The second author
was supported by NSF grants DMS-1204387 and DMS-1506157.
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2. Quasi-alternating links, branched double covers, and surgery

We begin by recalling the definitions of quasi-alternating links and formal L-spaces.

Definition 2.1 ([OS05]). The set Q of quasi-alternating links is the smallest set of links
in S3 containing the unknot such that for any link L, if L admits a diagram with a crossing
whose two resolutions L0, L1 satisfy

• L0, L1 ∈ Q,
• det(L) = det(L0) + det(L1),

then L ∈ Q.

In particular, all non-split alternating links are quasi-alternating [OS05], and Q is also
closed under taking mirrors and connected sums. (This last claim follows for K#L by
induction on det(L): if K ∈ Q then K#U ∈ Q, and given resolutions L0, L1 of L as above
we have K#L0,K#L1 ∈ Q by hypothesis, so K#L ∈ Q as well.)

We say a collection of closed, oriented 3-manifolds (Y1, Y2, Y3) forms a triad if there is a
3-manifold M with torus boundary and a collection of oriented curves γ1, γ2, γ3 ⊂ ∂M at
pairwise distance 1 such that each Yi is the result of Dehn filling along γi. This is precisely
the condition under which the Heegaard Floer homologies of the Yi (in some order) fit into a
surgery exact triangle. We will define det(Y ) to be |H1(Y ;Z)| if b1(Y ) = 0 and 0 otherwise;
note that if L is a link then its branched double cover satisfies det(Σ(L)) = det(L).

Definition 2.2 ([GL14, Section 7]). The set F of formal L-spaces is the smallest set of
rational homology 3-spheres containing S3 such that whenever (Y, Y0, Y1) is a triad with
Y0, Y1 ∈ F and

det(Y ) = det(Y0) + det(Y1),

we have Y ∈ F as well.

This definition can be interpreted as a 3-manifold analogue of the notion of a quasi-
alternating link. Indeed, given any triple of links (L,L0, L1) as in Definition 2.1, the
branched double covers (Σ(L),Σ(L0),Σ(L1)) form a triad, and Σ(U) = S3, so the branched
double cover of any quasi-alternating link is a formal L-space. It is easy to see that F
contains all lens spaces and is closed under orientation reversal and taking connected sums.

We recall that we are interested in classifying quasi-alternating links and formal L-spaces
with small determinant. This classification has been carried out for determinant at most 3
by work of Greene.

Theorem 2.3 ([Gre10]). If Y is a formal L-space with det(Y ) equal to 1, 2, or 3, then Y
is S3, RP3, or ±L(3, 1) respectively.

In order to deduce the classification of quasi-alternating links from the classification of
formal L-spaces, we appeal to the following.

Theorem 2.4 (Hodgson-Rubinstein [HR85]). If L ⊂ S3 is a link whose branched double
cover is the lens space L(p, q), then L is the two-bridge link with continued fraction equal to
p/q.

Theorem 2.5 (Kim-Tollefson [KT80]). If the branched double cover of a non-split link
L ⊂ S3 is a connected sum Y1#Y2, with each Yi prime, then L is a connected sum L1#L2

of links such that Σ(L1) = Y1 and Σ(L2) = Y2.

We now show that Theorem 1.1 follows from Theorem 1.4.
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Proof of Theorem 1.1. Recall that if L is a quasi-alternating link, then Σ(L) is a formal L-
space; if det(L) ≤ 7, then Σ(L) is a connected sum of lens spaces by Theorem 1.4. It follows
that L is a connected sum of two-bridge links, and these links are determined uniquely by
the lens space summands, so Theorem 1.1 follows immediately from Theorem 1.4. �

Thus, the remainder of the paper is devoted to proving Theorem 1.4.

2.1. Some general facts about surgery. The following lemma will be useful in the
proof of Theorem 1.4. We first recall that a knot K in a rational homology sphere Y is
primitive if it generates H1(Y ). If M denotes the exterior of K, then primitivity implies that
H1(M) ∼= Z and there exists a curve µ on ∂M which represents the generator of H1(M).
Further, we have that µ and the rational longitude λ form a basis for H1(∂M), and so
∆(µ, λ) = 1. (Recall that the rational longitude is the unique slope on the boundary of a
rational homology solid torus P which is torsion in H1(P ).) Given an arbitrary slope α, we
have |H1(M(α))| = ∆(α, λ).

Lemma 2.6. Let K be a primitive knot in a rational homology sphere Y . If a non-trivial
filling on the exterior M results in a rational homology sphere Y ′, possibly homeomor-
phic to Y , then the distance from this filling slope to the trivial slope is a multiple of
gcd(|H1(Y )|, |H1(Y ′)|). In particular, if |H1(Y )| and |H1(Y ′)| are not relatively prime,
then such a filling cannot have distance one from the trivial slope.

Proof. Let γ and η be slopes on M for which Dehn filling yields Y and Y ′ respectively, and
let p = |H1(Y )| and q = |H1(Y ′)|. Then we can write γ = pµ + aλ and η = qµ + bλ for
some integers a and b, since ∆(γ, λ) = p and ∆(η, λ) = q. Then ∆(γ, η) = |pb− qa|, which
is clearly a multiple of gcd(p, q) as claimed. �

Remark 2.7. In particular, if K represents a core of a genus one Heegaard splitting of
L(p, q), then K is primitive. It follows from Lemma 2.6 that no fillings which are distance
one from the trivial filling can yield L(p, q′) for any q′.

We will occasionally make use of the Casson-Walker invariant [BL90, Wal92] in order to
study manifolds arising from several surgeries on the same knot. This invariant λ(Y ) ∈ Q
agrees with the usual Z-valued Casson invariant if Y is a homology sphere, and it satisfies
a surgery formula for a knot K in a homology sphere Y :

(2.1) λ(Ya/b(K))− λ(S3
a/b(U)) = λ(Y ) +

b

a
A(K).

Here A(K) =
∆′′

K(1)
2 , where we normalize the Alexander polynomial so that ∆K(t−1) =

∆K(t) and ∆K(1) = 1.
The Casson-Walker invariant λ(Y ) is related to the Heegaard Floer d-invariants [OS03]

by the following formula, which was first proved by Ozsváth–Szabó [OS03, Theorem 1.3]
for homology spheres and then generalized to all rational homology spheres by Rustamov
[Rus04, Theorem 3.3].

Theorem 2.8 ([OS03, Rus04]). If Y is a rational homology sphere, then

|H1(Y ;Z)| · λ(Y ) =
∑

t∈Spinc(Y )

(
χ(HF+

red(Y, t))− 1

2
d(Y, t)

)
.
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Another useful tool for us will be the linking form. For notation, if H1(Y ) is cyclic of
order p, then we will say that Y has linking form a

p if there exists a generator with self-

linking a
p . We note for cyclic groups, the two forms a

p and b
p are equivalent if and only if

a ≡ u2b (mod p) for a unit u ∈ Z/pZ. In this notation, if K is a knot in a homology sphere
Y , then the linking form of Yp/q(K) is q

p .

2.2. Heegaard Floer homology and surgeries. If t is a torsion Spinc structure on Y , the
Heegaard Floer invariants HF ◦(Y, t) (◦ = +,−,∞) admit an absolute Q-grading [OS06].
This has already appeared implicitly in the statement of Theorem 2.8: given a rational
homology sphere Y , the d-invariants d(Y, t) ∈ Q are defined in [OS03] as the lowest grading
of a nonzero element x ∈ HF+(Y, t) such that x ∈ Im(Uk) for all k ≥ 0. In this subsection
we will review some properties of surgeries and their relationship to gradings in Heegaard
Floer homology.

Theorem 2.9 (Ozsváth-Szabó [OS06]). The absolute grading on HF ◦(Y, t) has the follow-
ing properties:

• If (W, s) is a Spinc cobordism from (Y1, t1) to (Y2, t2), with t1, t2 torsion, then the
induced map F ◦W,s : HF ◦(Y1, t1)→ HF ◦(Y2, t2) changes grading by

gr(F ◦W,s) =
c1(s)2 − 2χ(W )− 3σ(W )

4
.

• The natural map π : HF∞(Y, t)→ HF+(Y, t) preserves the absolute grading.
• The U -action on HF ◦ has degree −2.

The cobordism maps on HF∞ are particularly simple. If b+2 (W ) > 0, then the map F∞W,s
is zero for all s [OS06, Lemma 8.2]. On the other hand, if W is a 2-handle cobordism with
b−2 (W ) = 1 between rational homology spheres Y1 and Y2, and s ∈ Spinc(W ) restricts to Yi
as ti for i = 1, 2, then

F∞W,s : HF∞(Y1, t1)→ HF∞(Y2, t2)

is an isomorphism [OS03, Proposition 9.4] between F[U ]-modules of the form F[U,U−1], so
it is determined completely by its grading, which in this case simplifies to 1

4(c1(s)2 + 1).

Moreover, in the case b−2 (W ) = 1, the elements of HF+(Yi, ti) which determine d(Y1, t1)
and d(Y2, t2) are both in π(HF∞(Yi, ti)) ⊂ HF+(Yi, ti) by definition, so we must have

(2.2) d(Y2, t2)− d(Y1, t1) ≡ gr(F∞W,s) =
c1(s)2 + 1

4
(mod 2).

Lemma 2.10. Let W be a 2-handle cobordism between rational homology spheres Y1 and Y2.
If b+2 (W ) = 1 and Y1 is an L-space, then the map F+

W,s : HF+(Y1, s|Y1)→ HF+(Y2, s|Y2) is

zero. If instead b−2 (W ) = 1 and Y2 is an L-space, then F+
W,s is surjective.

Proof. Write ti = s|Yi , i = 1, 2. The cobordism maps F ◦W,s fit into a commutative diagram

HF∞(Y1, t1)
F∞
W,s //

π1
��

HF∞(Y2, t2)

π2
��

HF+(Y1, t1)
F+
W,s // HF+(Y2, t2).
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If b+2 (W ) = 1 and Y1 is an L-space, then F∞W,s = 0 and so F+
W,s ◦ π1 = 0, but π1 is surjective

so we must have F+
W,s = 0. On the other hand, if b−2 (W ) = 1 and Y2 is an L-space, then

F∞W,s is an isomorphism and π2 is surjective, so their composition π2 ◦ F∞W,s = F+
W,s ◦ π1 is

surjective, hence F+
W,s is surjective as well. �

The cobordism maps induced by various surgeries on a knot (namely, any three which
form a triad) fit into exact triangles; the surgery exact triangle first appeared in [OS04],
but we cite the version from [OS11].

Theorem 2.11 (Ozsváth-Szabó [OS11, Theorem 6.2]). Let K ⊂ Y be a rationally null-
homologous knot with framing λ and meridian µ. Then there is a long exact sequence

· · · → HF+(Yλ(K))→ HF+(Yλ+µ(K))→ HF+(Y )→ . . . ,

in which the maps are the HF+ cobordism maps corresponding to attaching 2-handles.

The maps in the exact triangle are described via holomorphic triangle counts in [OS04,
OS11], but the claim that they are cobordism maps follows from the fact that 2-handle
cobordism maps are defined in [OS06] using precisely these counts. Each cobordism comes
from attaching a 2-handle to a meridian of the core of the previous surgery.

The signature of each 2-handle cobordism in the exact triangle can be computed according
to [KM07, Lemma 42.3.1]: let Z ⊂ Y be the exterior of K, and λ ⊂ ∂Z a primitive oriented
curve which generates ker(H1(∂Z) → H1(Z)). If W is the 2-handle cobordism from the
Dehn filling of Z along γ to the Dehn filling along γ′, where γ and γ′ are oriented so that
γ · γ′ = −1, then W has signature +1 (respectively −1) if γ · λ and γ′ · λ have the same
sign (respectively opposite signs). (If either of these is zero then σ(W ) = 0.) If all three
manifolds in the triangle are rational homology spheres, it follows that two of the cobordisms
are negative definite and one is positive definite.

For example, if we let Y ′ = Y2(K) and let K ′ ⊂ Y ′ be the image of an n-framed meridian
of K, then the surgery triangle corresponding to (Y ′,K ′) has the form

(2.3) · · · → HF+(Y2− 1
n

(K))→ HF+(Y2− 1
n+1

(K))→ HF+(Y2(K))→ . . . .

We can verify that the cobordism from Y2(K) to Y2− 1
n

(K) is positive definite for n ≥ 1.

Indeed, if µ and λ are the meridian and longitude of K in its exterior Z, then the boundary
orientation of ∂Z gives µ · λ = −1. The manifolds Y2(K) and Y2− 1

n
(K) are Dehn fillings

along γ = 2µ + λ and γ′ = (2n − 1)µ + nλ respectively, satisfying γ · γ′ = −1. We have
γ · λ = −2 and γ′ · λ = −(2n− 1), and since n ≥ 1 these have the same sign.

Finally, we use Dehn surgery to verify the following property of the d-invariants.

Lemma 2.12. If H1(Y ;Z) ∼= Z/pZ, then d(Y, t) ∈ 1
2pZ for all t ∈ Spinc(Y ). Further, if the

linking form of Y is equivalent to that of L(p, q), then the set of d-invariants of Y agrees
mod 2 with that of L(p, q).

Proof. We first claim that d(L(p, q), t) ∈ 1
2pZ for all t ∈ Spinc(Y ). By [Tan09, Theorem 4],

we can write

d(L(p, q), i) = 3s(q, p) +
n

2p

for some n ∈ Z, where s(q, p) is a Dedekind sum. Since s(q, p) ∈ 1
6pZ when gcd(p, q) = 1

[RG72], we have the desired claim.
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Now, fix Y with H1(Y ;Z) ∼= Z/pZ and suppose the linking form of Y is equivalent to
q
p . Then it follows from [CGO01, Corollary 3.9 and Proposition 3.17] that we can obtain Y

from L(p, q) by a sequence of ±1-surgeries on nullhomologous knots. Therefore, it suffices to
show that ±1-surgery on a nullhomologous knot in a rational homology sphere preserves the
set of d-invariants mod 2. Here we will implicitly use the canonical identification between
Spinc(Y ) and Spinc(Y±1(K)).

If Y2 is obtained by −1-surgery on Y1, then we consider the corresponding 2-handle
cobordism W from Y1 to Y2 which is negative definite. By (2.2), it suffices to show that for
each s ∈ Spinc(W ), the grading shift gr(F∞W,s) is an even integer. We have

gr(F∞W,s) =
c1(s)2 + 1

4
=
−(2k − 1)2 + 1

4

for some integer k, and since (2k − 1)2 ≡ 1 (mod 8), it follows that d(Y1, t1) ≡ d(Y2, t2)
(mod 2), where ti = s|Yi . On the other hand, if Y2 is obtained from Y1 by +1-surgery on a
knot, then Y1 is obtained from Y2 by −1-surgery on the dual knot, and we can apply the
same argument. Since we have shown that the d-invariants of L(p, q) are in 1

2pZ, we must

have the same for Y . �

2.3. Lens space surgeries and L-spaces. Greene states Theorem 2.3 in [Gre10] as a
classification of quasi-alternating links of determinant up to 3, namely that they are the
unknot, the Hopf link, or a trefoil; but his proof, which passes through branched double
covers, actually establishes Theorem 2.3 as stated here. Theorem 2.4 then yields the classi-
fication for the branch sets. We recall the argument here in order to suggest how our own
classification will proceed and to introduce some necessary results.

The only formal L-space with determinant 1 is S3 by definition. To classify formal L-
spaces Y with det(Y ) = 2, Greene observes that there must be a triad (Y, Y0, Y1) with
det(Y0) = det(Y1) = 1, and hence Y0 = Y1 = S3; thus both Y and Y1 = S3 result from
nontrivial surgeries on a knot J ⊂ Y0 = S3, and only the unknot in S3 has a nontrivial S3

surgery. Therefore, J is the unknot and Y is therefore RP3. In order to classify Y with
det(Y ) = 3, we must likewise have a triad (Y, S3,RP3), so both Y and RP3 arise as surgeries
on the same knot J ⊂ S3; but the only knot in S3 with an RP3 surgery is the unknot, so Y
must be a lens space of order three.

The key input needed for the above argument is an understanding of which knots in S3

have lens space surgeries. While this is a difficult question in general, it is understood for
lens spaces of small order.

Theorem 2.13 ([KMOS07, Corollary 8.4]). Suppose that S3
p/q(K) results in a lens space

for |p| ≤ 8. Then K is the unknot or a trefoil. In particular, if |p| ≤ 4 then K is the unknot.

Similarly, we will occasionally need to understand when knots in Heegaard Floer L-
spaces have lens space surgeries. We will use a recent result of Gainullin [Gai15], who
proved the following Dehn surgery characterization of the unknot, generalizing the main
result of [KMOS07] (see also [OS11, Corollary 1.3]).

Theorem 2.14 ([Gai15, Theorem 8.2]). Let K be a nullhomologous knot in an L-space Y .
If HF+(Yp/q(K)) and HF+(Yp/q(U)) are isomorphic as absolutely-graded F[U ]-modules,
then K is the unknot.

It follows that nullhomologous knots in L-spaces are determined by their complements.
In our applications of Theorem 2.14, we will have the stronger assumption that Yp/q(K) and
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Yp/q(U) are orientation-preserving homeomorphic, except in the case when Y is a homology
sphere L-space. We remark that in the case of a homology sphere, the result can be proved
exactly as in [OS11, Corollary 1.3]. (Here, the only change necessary from the case Y = S3

is to use [Ni06], which shows that knot Floer homology detects the unknot in homology
spheres.)

Under some additional mild conditions, Theorem 2.14 yields two stronger results.

Corollary 2.15. Let K be a knot in an L-space Y with |H1(Y ;Z)| prime. If a non-trivial
surgery on K which is distance one from the trivial surgery gives Y , then K is the unknot.

Proof. If K is nullhomologous, then the result follows from Theorem 2.14. On the other
hand, if K is not nullhomologous, we see that K is primitive, because |H1(Y )| is prime.
Therefore, it follows from Lemma 2.6 that the distance between the trivial and non-trivial
surgeries is a multiple of |H1(Y )|, which is a contradiction. �

Corollary 2.16. Let Y be an invisible 3-manifold, i.e. a homology sphere L-space with
d(Y ) = 0. If there is a knot K ⊂ Y and a rational number p

q satisfying Yp/q(K) = L(p, q),

then Y = S3 and K is the unknot.

Proof. We have HF+(Yp/q(K)) = HF+(L(p, q)) = HF+(Y#L(p, q)) = HF+(Yp/q(U)) by

the Künneth formula [OS04] for HF+ and the fact that HF+(Y ) = HF+(S3). Now K is
the unknot by Theorem 2.14, so L(p, q) = Yp/q(K) = Y#L(p, q) implies that Y = S3. �

3. Primitive knot complements with several lens space fillings

In this section we will prove the following theorem, which we will use to study when two
lens spaces L(p, 1) and L(p+ 1, 1) can belong to a triad.

Theorem 3.1. Let M be a homology S1 ×D2 with torus boundary, and suppose there are
a pair of slopes γ, γ′ ⊂ ∂M with ∆(γ, γ′) = 1 and a positive integer p 6≡ 1 (mod 24) such
that Dehn filling along γ and γ′ produces the lens spaces L(p, 1) and L(p+1, 1) respectively.
Then M is a solid torus.

Let λ ⊂ ∂M be a closed, oriented curve such that [λ] generates ker(H1(∂M)→ H1(M)),
and declare a meridian to be any oriented curve µ ⊂ ∂M such that µ·λ = 1. For convenience,
given a simple, closed curve s ⊂ ∂M we will also use s to denote its homology class in
H1(∂M) ∼= Z2 and its induced slope. More generally, the notation λ for a slope will now
always be used to refer to the rational longitude.

Lemma 3.2. Given M,γ, γ′ satisfying the hypotheses of Theorem 3.1, there is a meridian
µ and a sign ε ∈ {±1} such that γ = pµ+ ελ and γ′ = (p+ 1)µ+ ελ.

Proof. Fix an initial choice µ0 of meridian, so that µ0 and λ generate H1(∂M) as an abelian
group. Then Dehn filling along aµ0 + bλ produces a closed 3-manifold Ya/b with first
homology Z/aZ, so for some orientations of γ, γ′ and integers c, d we can write

γ = pµ0 + cλ, γ′ = (p+ 1)µ0 + dλ.

Letting µ = µ0 + (d− c)λ and ε = (p+ 1)c− pd, it follows that

γ = pµ+ ελ, γ′ = (p+ 1)µ+ ελ,

and by definition we have |ε| = ∆(γ, γ′), which is 1 by assumption. �
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In other words, Lemma 3.2 yields a slope µ such that Dehn filling M along µ produces a
homology sphere Y with core K such that Yεp(K) = L(p, 1) and Yε(p+1)(K) = L(p + 1, 1).
In fact, under the hypotheses of Theorem 3.1 we claim that we can take ε = 1.

Lemma 3.3. If Y is a homology sphere and K ⊂ Y a knot such that Y−p(K) = L(p, 1) and
Y−(p+1)(K) = L(p+ 1, 1) for some positive integer p, then p ≡ 1 (mod 24).

Proof. The two sides of Y−p(K) = L(p, 1) have linking forms −1
p and 1

p , so these are

equivalent and thus −1 is a square mod p. It follows that p cannot be a multiple of 4 or of
any prime q ≡ 3 (mod 4), since −1 is not a square modulo any of these numbers. Moreover,
p cannot be 3 (mod 4), since it is a product of primes which are either 1 (mod 4) or 2, so
p must be either 1 or 2 modulo 4. Since it is not a multiple of 3, it must also be either 1 or
2 modulo 3. But the same holds true for p + 1, since the linking forms − 1

p+1 and 1
p+1 are

also equivalent, and so the only way this can be possible is if p ≡ 1 and p+ 1 ≡ 2 modulo
both 3 and 4. In particular, we have p ≡ 1 (mod 12).

Now suppose that p ≡ 13 (mod 24). In this case p + 1 is even, and p+1
2 ≡ 7 (mod 12),

so in particular p+1
2 ≡ 3 (mod 4). We conclude as above that −1 is not a square mod p+1

2 ,
hence it is not a square mod p+ 1, and so we must have p ≡ 1 (mod 24) as claimed. �

Given Yp(K) = L(p, 1) = S3
p(U) and likewise Yp+1(K) = S3

p+1(U), (2.1) now implies that

(3.1) λ(Y ) +
1

p
A(K) = λ(Y ) +

1

p+ 1
A(K) = 0,

and thus λ(Y ) = A(K) = 0.

Proposition 3.4. Let Y be a homology sphere with λ(Y ) ≥ 0, and suppose for some knot
K ⊂ Y and integer p ≥ 2 that Yp(K) = L(p, 1) and Yp+1(K) is an L-space. Then Y
is invisible, i.e. an L-space homology sphere with correction term d(Y ) = 0, and in fact
λ(Y ) = 0.

Proof. Writing Yp+1 = Yp+1(K) for convenience, we use the surgery exact triangle

. . .
F+
V−−→ HF+(Y )

F+
W−−→ HF+(L(p, 1))→ HF+(Yp+1)→ . . .

where W and V are the corresponding 2-handle cobordisms from Y to L(p, 1) and from
Yp+1 to Y respectively. The latter two groups in the triangle have the form

HF+(L(p, 1)) =

p−1⊕
i=0

HF+(L(p, 1), ti) =

p−1⊕
i=0

T +
d(L(p,1),i)

and HF+(Yp+1) =
⊕p

i=0 T
+
d(Yp+1,i)

, with the subscripts denoting the grading of the bottom-

most element 1 in each tower T + = F[U,U−1]/(U · F[U ]). In particular we have

d(L(p, 1), i) =
(2i− p)2

4p
− 1

4
,

computed as in [OS03]. We also know that HF+(Y ) ∼= T +
d(Y ) ⊕ HF

+
red(Y ), with d(Y ) an

even integer and HF+
red(Y ) = HF+(Y )/ Im(Uk) for k � 0. Our goal is to show that

HF+
red(Y ) = 0 and d(Y ) = 0.

The map F+
W : HF+(Y ) → HF+(L(p, 1)) decomposes into summands F+

W,s for each

s ∈ Spinc(W ). If we let Σ ⊂ W be the result of capping off a Seifert surface for K then
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H2(W ) ∼= Z is generated by [Σ], which has self-intersection p, and we can label the Spinc

structures on W as sn (n ∈ Z) such that 〈c1(sn), [Σ]〉 = 2n + p. Then the Spinc structure
tn(mod p) = sn|L(p,1) is determined by n (mod p). Now if [D] ∈ H2(W,∂W ) ∼= Z is the
cocore of the 2-handle, then we must have c1(sn) = (2n + p)PD([D]). The natural map

H2(W )→ H2(W,∂W ) sends (2n+p)[Σ] to p(2n+p)[D], so c1(sn)2 = (2n+p)2

p2
[Σ]2 = (2n+p)2

p .

It follows from Theorem 2.9 that

deg(F+
W,sn

) =
(2n+ p)2

4p
− 5

4
,

since χ(W ) = σ(W ) = 1.
If x ∈ HF+(Y ) is a homogeneous element of even grading, then F+

W,sn
(x) has grading

gr(x)+deg(F+
W,sn

) ≡ (2n+p)2

4p − 5
4 (mod 2). On the other hand, each element of the codomain

HF+(L(p, 1), tn(mod p)) has grading congruent to

d(L(p, 1), tn (mod p)) =
(2n− p)2

4p
− 1

4
≡
(

(2n+ p)2

4p
− 5

4

)
+ 1 (mod 2),

and so F+
W,sn

(x) must be zero. Thus x ∈ ker(F+
W ).

Next, since every element of HF+(Yp+1) is in Im(Uk) for all k, the same is true for
Im(F+

V ) ⊂ HF+(Y ). By exactness the latter is equal to ker(F+
W ), hence all elements of

HF+(Y ) with even grading are in Im(Uk). It follows that HF+
red(Y ) is supported entirely

in odd gradings, and so by Theorem 2.8 and the assumption that λ(Y ) ≥ 0, we have

1

2
d(Y ) = χ(HF+

red(Y ))− λ(Y ) = − rank(HF+
red(Y ))− λ(Y ) ≤ 0.

Now suppose that either Y is not an L-space or λ(Y ) > 0. Then we have shown that
d(Y ) < 0, and so Y is not the boundary of any smooth, negative definite 4-manifold by
[OS03, Corollary 9.8]. If we take the positive definite 2-handle cobordism W from Y to
L(p, 1), turn it upside down, and reverse its orientation, then we get a negative definite
2-handle cobordism W ′ from L(p, 1) to Y , and L(p, 1) is the boundary of a negative definite
linear plumbing X of disk bundles over S2, so the composition Z = X ∪L(p,1)W

′ is negative
definite with ∂Z = Y . This is a contradiction, so Y must in fact be an L-space with
λ(Y ) = 0, and we have d(Y ) = −2(rank(HF+

red(Y )) + λ(Y )) = 0. �

Proof of Theorem 3.1. Using Lemmas 3.2 and 3.3, we have a homology sphere Y obtained
from M by Dehn filling with core K so that Yp(K) = L(p, 1) and Yp+1(K) = L(p + 1, 1).
It follows from (3.1) that λ(Y ) = 0, and so Proposition 3.4 ensures that Y is an invisible
manifold. Since Y is invisible and Yp(K) = L(p, 1), it follows from Corollary 2.16 that
Y = S3 and K is the unknot, and so the exterior M of K is a solid torus as desired. �

4. Knots in RP3 with distance-one lens space fillings of order 5

In this section we address the question of when RP3 and a lens space of the form L(5, q)
can belong to a triad.

Theorem 4.1. Let M be a manifold with torus boundary for which a pair of distance-one
Dehn fillings produce RP3 and a lens space L(5, q). Then M is a solid torus.

Theorem 4.1 is the final result we will need in order to prove Theorem 1.4. In particular,
this will be a critical part of classifying formal L-spaces with determinant 7.

We begin by determining which lens spaces of order 5 can occur.
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Proposition 4.2. Let M and L(5, q) satisfy the hypotheses of Theorem 4.1. Then M
admits a Dehn filling Y with core K such that Y is a homology sphere, Y2(K) = RP3, and
Y5/p(K) = L(5, p) where p is either 2 or 3. Moreover, every 3-manifold of the form Ya/b(K)

has Casson-Walker invariant equal to λ(S3
a/b(U)).

Proof. We know that M is a homology S1 ×D2, since otherwise the core of the RP3 filling
is nullhomologous and so any other filling would have homology of even order. We identify
curves µ, λ ⊂ ∂M such that λ generates the kernel of the natural map H1(∂M)→ H1(M)
and µ · λ = 1. For some odd integer n, Dehn filling along the curve γ = 2µ+ nλ produces
the RP3 filling. If we write n = 2k + 1 and set µ′ = µ + kλ then we have γ = 2µ′ + λ
and µ′ · λ = 1. Thus Dehn filling along µ′ produces the desired homology sphere Y and
core K such that Y2(K) = RP3. The L(5, q) filling of M is at distance one from 2µ′ + λ by
assumption, so it must be along 5µ′ + pλ where p is either 2 or 3, i.e. Y5/p(K) = L(5, q).
Since L(5, 2) = L(5, 3), we would like to see that Y5/p(K) is not homeomorphic to ±L(5, 1).
However, since p = 2 or 3, the linking form rules this out, and we can take p = q.

For the second claim, we apply the Casson-Walker surgery formula (2.1) to Y2(K) and
Y5/p(K):

λ(Y2(K))− λ(RP3) = λ(Y ) +
1

2
A(K)

λ(Y5/p(K))− λ(L(5, p)) = λ(Y ) +
p

5
A(K).

The left sides of both equations are zero, and we obtain A(K) = λ(Y ) = 0. The surgery
formula then says that λ(Ya/b(K)) = λ(S3

a/b(U)) for all a
b . �

We claim that it suffices to consider the case Y2(K) = RP3 and Y5/3(K) = L(5, 3) (i.e.
p = 3) for now. Let’s see how this implies the remaining case p = 2 of Proposition 4.2,
i.e. Y2(K) = L(5, 2). Following the proof, we could instead take µ∗ = µ + (k + 1)λ =
µ′ + λ and define Y ∗ to be the homology sphere attained by filling along µ∗ with core
K∗. We have γ = 2µ∗ − λ, so Y ∗−2(K∗) = RP3. Then 5µ′ + 2λ = 5µ∗ − 3λ, so that

Y ∗−5/3(K∗) = L(5, 2) = −L(5, 3). If we reverse orientation, then we get (−Y ∗)2(−K∗) = RP3

and (−Y ∗)5/3(−K∗) = L(5, 3). Thus, the p = 3 case would imply that the exterior of −K∗
in −Y ∗, which is orientation-reversing homeomorphic to M , is a solid torus, completing the
proof.

With the preceding understood, we now suppose for the remainder of this section that
Y2(K) = RP3 and Y5/3(K) = L(5, 3). In what follows we will write Ya/b = Ya/b(K) for
convenience.

Lemma 4.3. For all n ≥ 1, there is a short exact sequence

0→ HF+(Y(2n−1)/n)→ HF+(Y(2n+1)/(n+1))→ HF+(RP3)→ 0,

in which the two non-trivial maps are induced by negative definite 2-handle cobordisms.

Proof. These invariants fit into the surgery exact triangle (2.3), so it will suffice to show
that if W is the 2-handle cobordism from Y2 = RP3 to Y(2n−1)/n, corresponding to attaching
a handle along an n-framed meridian of K (after a 2-framed surgery on K ⊂ Y ), then
the induced map F+

W is zero. By the discussion above Lemma 2.12, we see that W is

positive definite for n ≥ 1. Since RP3 is an L-space, F+
W,s = 0 for all s ∈ Spinc(W ) by

Lemma 2.10. �
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Proposition 4.4. If Y2 = RP3 and Y5/3 = L(5, 3), then Y3/2 is an L-space.

Proof. The case n = 2 of Lemma 4.3 produces a short exact sequence

0→ HF+(Y3/2)
F+
V−−→ HF+(L(5, 3))

F+
W−−→ HF+(RP3)→ 0

corresponding to surgeries on K ⊂ Y with slope 3
2 , 5

3 , and 2
1 respectively, and V and W are

each negative definite 2-handle cobordisms. In particular, since W is negative definite and
RP3 is an L-space, Lemma 2.10 says that each F+

W,s must be surjective. In fact, since both

L(5, 3) and RP3 are L-spaces, F+
W,s is a surjective, U -equivariant map of the form

F+
W,s : T +

d(L(5,3),s|L(5,3))
→ T +

d(RP3,s|RP3 )
,

so it is determined entirely by its grading gr(F+
W,s) = 1

4

(
c1(s)2 − 2χ(W ) − 3σ(W )

)
, and

moreover the Spinc structures on either side satisfy

(4.1) d(RP3, s|RP3)− d(L(5, 3), s|RP3) ≡ gr(F+
W,s) =

c1(s)2 + 1

4
(mod 2).

The Spinc structures on L(5, 3) have d-invariants −2
5 ,−

2
5 , 0,

2
5 ,

2
5 in some order, and those

on RP3 have d-invariants −1
4 and 1

4 . It is not hard to check that we can write c1(s)2 = −k2

10

for some integer k whose parity is fixed. If d(RP3, s|RP3) = 1
4 and d(L(5, 3), s|L(5,3)) =

−2
5 , 0,

2
5 then k2 ≡ 64, 0, 16 (mod 80) respectively by (4.1), hence k (mod 20) belongs to

{8, 12}, {0}, or {4, 16} respectively. If instead d(RP3, s|RP3) = −1
4 then we have k2 ≡

4, 20, 36 (mod 80) and so k (mod 20) belongs to {2, 18}, {10}, or {6, 14} respectively. Since
the restrictions of s to L(5, 3) and to RP3 are determined by k (mod 10) and k (mod 4), the
even residue classes mod 20 are in bijection with elements of Spinc(L(5, 3)) × Spinc(RP3),
and although this bijection is not quite unique the pair of d-invariants associated to each
residue class is uniquely determined. In particular, this says that F+

W is uniquely determined
as a map

T +
0 ⊕ (T +

−2/5)⊕2 ⊕ (T +
2/5)⊕2 → T +

1/4 ⊕ T
+
−1/4

of F[U ]-modules, up to possibly reordering the T +
−2/5 summands and the T +

2/5 summands.

The above argument uses only the fact that W is a negative definite 2-handle cobordism,
so it applies equally well if we replace K ⊂ Y with the unknot U ⊂ S3 to get another
cobordism W ′ from L(5, 3) to RP3. There is a natural identification Spinc(W ) ∼= Spinc(W ′)
which preserves these gradings and the d-invariants of the restrictions to either bound-
ary component, so up to possibly reordering Spinc(L(5, 3)) in a way which preserves the
corresponding d-invariants, we conclude that the maps F+

W and F+
W ′ are equal.

Now F+
W ′ fits into a surgery exact sequence of F[U ]-modules of the form

0→ HF+(L(3, 2))
F+
V ′−−→ HF+(L(5, 3))

F+
W ′−−→ HF+(RP3)→ 0.

Since L(3, 2) is an L-space, the U action on HF+(L(3, 2)) is surjective and it follows that
Im(F+

V ′) ⊂ U · Im(F+
V ′). But Im(F+

V ′) = ker(F+
W ′) by exactness, and this is equal to

ker(F+
W ) = Im(F+

V ) since F+
W = F+

W ′ , so Im(F+
V ) ⊂ U · Im(F+

V ) as well. Given any ele-

ment a ∈ HF+(Y3/2) we have F+
V (a) = U ·F+

V (b) for some b, and F+
V is injective so a = Ub.

Thus U : HF+(Y3/2) → HF+(Y3/2) is surjective, and we conclude that Y3/2 is an L-space
as well. �
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It remains to compute the d-invariants of Y3/2. By Theorem 2.8, their sum satisfies

3λ(Y3/2) =
∑

t∈Spinc(Y3/2)

(
χ(HF+

red(Y3/2, t))−
1

2
d(Y3/2, t)

)
,

and from Proposition 4.2 we know that the left side equals 3λ(L(3, 2)); this is 1
12 by another

application of Theorem 2.8 to L(3, 2), an L-space whose d-invariants are {−1
2 ,

1
6 ,

1
6}. By

Proposition 4.4, Y3/2 is also an L-space, so we have∑
t∈Spinc(Y3/2)

d(Y3/2, t) = −1

6
.

Let t0, t1, t2 denote the Spinc structures on Y3/2, with t0 the unique spin structure and

t2 = t1, and let di = d(Y3/2, ti); we note that d1 = d2.

Proposition 4.5. The d-invariants of Y3/2 are d0 = −1
2 and d1 = d2 = 1

6 . In other words,
Y3/2 is a Heegaard Floer L(3, 2).

Proof. By reversing the orientation of the 2-handle attachment X from RP3 to Y3/2, we

obtain a negative definite cobordism −X from Y3/2 to RP3. For any Spinc structure s

on −X, we see from Lemma 2.10 that F+
−X,s : HF+(Y3/2, s|Y3/2) → HF+(RP3, s|RP3) is

surjective. Therefore, since c1(s)2 ≤ 0 it follows that

d(RP3, s|RP3)− d(Y3/2, s|Y3/2) ≤ c1(s)2 − 2χ(−X)− 3σ(−X)

4
≤ 1

4
.

Since d(RP3, s|RP3) = −1
4 or 1

4 , we see that d(Y3/2, s|Y3/2) ≥ −1
2 for each s. It is straight-

forward to check that each Spinc structure on Y3/2 extends over −X, so we see that

d(Y3/2, t) ≥ −1
2 for all t on Y3/2.

By Lemma 2.12, the set of d-invariants for Y3/2 agrees mod 2 with that of L(3, 2), since

the linking form of Y3/2 is 2
3 . However, the d-invariants of L(3, 2) are {−1

2 ,
1
6 ,

1
6}. We

can conclude that the three d-invariants of Y3/2 are each at least −1
2 , agree with the set

{−1
2 ,

1
6 ,

1
6} mod 2, and sum to −1

6 . This implies that the d-invariants of Y3/2 are in fact as
claimed. �

Proof of Theorem 4.1. Now we know that Y2 = RP3 and that Y3/2 is a Heegaard Floer
L(3, 2). We first show that Y1(K) is an invisible 3-manifold. Indeed, we have a short exact
sequence

0→ HF+(Y1)→ HF+(Y3/2)→ HF+(RP3)→ 0

by Lemma 4.3, with the middle two maps coming from negative definite 2-handle cobor-
disms. Arguing as in Proposition 4.4, since Y3/2 is an L-space with the same d-invariants as

L(3, 2), the grading of each F+
W,s : HF+(Y3/2, s|Y3/2) → HF+(RP3, s|RP3) mod 2 uniquely

determines the d-invariants of s|Y3/2 and s|RP3 . Thus the cobordism map F+
W : HF+(Y3/2)→

HF+(RP3) is once again determined entirely by the gradings in each Spinc structure, in ex-
actly the same way as the map HF+(L(3, 2))→ HF+(RP3) arising from the exact triangle
for surgeries on the unknot U ⊂ S3:

. . .→ HF+(S3
1(U))→ HF+(S3

3/2(U))→ HF+(S3
2(U))→ . . .
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Since 1-surgery on U ⊂ S3 is again an L-space (namely S3), we conclude exactly as in
the case of Y3/2 in Proposition 4.4 that Y1 is also an L-space. Proposition 4.2 says that

λ(Y1) = 0, so d(Y1) = 2(χ(HF+
red(Y1))− λ(Y1)) = 0 and thus Y1 is invisible.

Let Y ′ = Y1(K) be the result of Dehn filling the exterior M of K along the curve µ+ λ,
with core K ′. Then since 2µ+ λ = 2(µ+ λ)− λ we have RP3 = Y2(K) = Y ′−2(K ′), so Y ′ is

an invisible 3-manifold satisfying Y ′−2(K ′) = S3
−2(U). Corollary 2.16 now says that Y ′ = S3

and K ′ = U , and since the exterior of K ′ ⊂ Y ′ is also M we conclude that M is a solid
torus, as desired. �

5. The proof of Theorem 1.4

We divide the proof of Theorem 1.4 into several parts, based on the value of the deter-
minant of the three-manifold Y in question. In each case we identify Y as part of a triad
(Y, Y0, Y1) with det(Y ) = det(Y0) + det(Y1), and use the possible values of Y0 and Y1 to de-
termine the possible values of Y . Since the order of the elements in a triad does not matter,
we may assume without loss of generality that det(Y0) ≤ det(Y1) in each of the arguments
below. We will label each case “a + b = c” to indicate that det(Y0) = a, det(Y1) = b, and
det(Y ) = c.

5.1. The case 1+n = (n+1). Since the cases 1+3 = 4, 1+4 = 5, 1+5 = 6, and 1+6 = 7
are all essentially the same, we combine them here to avoid repetition.

Proposition 5.1. Suppose that Y is a formal L-space with det(Y ) = n+ 1 for some n ≤ 6,
and that all formal L-spaces with determinant n are connected sums of lens spaces. If
(Y, Y0, Y1) is a triad of formal L-spaces with det(Y0) = 1 and det(Y1) = n, then Y is also a
connected sum of lens spaces.

Proof. By assumption we have Y0 = S3, so Y and Y1 are the results of surgeries with
consecutive integer slopes on some knot J0 ⊂ S3. Since H1(Y1) is cyclic we cannot have
Y1 = RP3#RP3, so either Y1 is a lens space of order n ≤ 6 or it is ±L(3, 1)#RP3.

If Y1 is a lens space, then Theorem 2.13 says that J0 is either the unknot or a trefoil. If it
is the unknot, then certainly Y is a lens space as well. Otherwise Y1 is a lens space resulting
from a ±n-surgery on a trefoil, and n ≤ 6, so Y1 is either +5-surgery on the right handed
trefoil T2,3 or −5-surgery on the left handed trefoil −T2,3 [Mos71]. Then Y is ±6-surgery

on ±T2,3, and this is ±L(3, 1)#RP3.

If instead we have Y1 = ±L(3, 1)#RP3, then [Gre15, Theorem 1.5] says that J0 must be
±6-surgery on ±T2,3, so Y is the result of ±7-surgery on ±T2,3, and this is ±L(7, 4). �

Remark 5.2. The same argument applies for 1 + 7 = 8 to show that J0 is either an unknot
or a trefoil; in this case Y would be either a lens space or the small Seifert fibered space
S3
±8(±T2,3).

5.2. Formal L-spaces of determinant 4.

Theorem 5.3. Let Y be a formal L-space with det(Y ) = 4. Then Y is either ±L(4, 1) or
RP3#RP3.

Proof. We suppose that Y belongs to a triad (Y, Y0, Y1) with det(Y0) + det(Y1) = 4 and
det(Y0) ≤ det(Y1) as above. By Proposition 5.1, we need only consider the case 2 + 2 = 4,
in which Y0 = Y1 = RP3 by Theorem 2.3. We then have a knot J0 ⊂ Y0 = RP3 with a
non-trivial Y1 = RP3 surgery. Since the nontrivial filling has to be distance one from the
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trivial filling, Corollary 2.15 says that J0 is an unknot in RP3. Since det(Y ) = 4, we have
H1(Y ) = Z/2Z⊕ Z/2Z. It follows that Y = RP3#RP3, and this completes the proof. �

5.3. Formal L-spaces of determinant 5.

Theorem 5.4. Let Y be a formal L-space with det(Y ) = 5. Then Y is a lens space.

Proof. Suppose that Y belongs to a triad (Y, Y0, Y1) of formal L-spaces with det(Y0) +
det(Y1) = det(Y ) = 5 and det(Y0) ≤ det(Y1). In the case 1 + 4 = 5, Proposition 5.1 says
that Y is a lens space, so we need only consider the case 2+3 = 5, in which case Theorem 2.3
says that Y0 = RP3 and Y1 = ±L(3, 1).

The three members of the triad (Y, Y0, Y1) all arise as Dehn fillings of the same manifold
M along slopes with pairwise distance 1. In particular, either M or −M has two distance-
1 slopes with Dehn fillings L(2, 1) and L(3, 1), where the sign is determined by whether
Y1 = L(3, 1) or Y1 = −L(3, 1), so by Theorem 3.1 we know that ±M and hence M itself is
S1 ×D2. Since Y is another Dehn filling of M , it must be a lens space L(5, q). �

5.4. Formal L-spaces of determinant 6.

Theorem 5.5. Let Y be a formal L-space with det(Y ) = 6. Then Y is either ±L(6, 1) or
±L(3, 1)#RP3.

Let Y belong to a triad (Y, Y0, Y1) of formal L-spaces with det(Y0)+det(Y1) = det(Y ) = 6
and det(Y0) ≤ det(Y1). Again, Proposition 5.1 proves this theorem in the case 1 + 5 = 6,
so we need only consider two cases: 2 + 4 = 6 and 3 + 3 = 6.

Proposition 5.6. If det(Y0) = 2 and det(Y1) = 4, then Y = ±L(3, 1)#RP3.

Proof. We must have Y0 = RP3, and Y1 is either ±L(4, 1) or RP3#RP3 by Theorem 5.3.
Let J0 ⊂ RP3 be the knot on which surgery produces Y1 and Y . A filling of its exterior
at distance one from the trivial filling produces Y1, and gcd(|H1(Y0)|, |H1(Y1)|) = 2, so J0

cannot be primitive by Lemma 2.6; thus J0 is nullhomologous.
Now since some p-surgery on J0 produces Y1 we have H1(Y1) = Z/2Z ⊕ Z/pZ, and

in particular it cannot be Z/4Z = H1(±L(4, 1)). We must have Y1 = RP3#RP3 and
p = ±2. But then p-surgery on J0 is homeomorphic to p-surgery on the unknot in RP3, so
by Theorem 2.14, J0 must be the unknot. Therefore Y is the result of ±3-surgery on the
unknot in RP3, namely ±L(3, 1)#RP3, as claimed. �

Proposition 5.7. If det(Y0) = det(Y1) = 3, then Y is ±L(3, 1)#RP3.

Proof. We must have Y0 = ±L(3, 1) and Y1 = ±L(3, 1), though not necessarily with the
same orientation. Again, we identify J0 in Y0 for which Y1 and Y are obtained by distance
one surgeries. Applying Lemma 2.6 to Y1, we see that J0 must be nullhomologous. If Y0

and Y1 have the same orientation, then Theorem 2.14 says that J0 is the unknot, and then
det(Y ) = 6 implies that Y = Y0#RP3 = ±L(3, 1)#RP3.

In the remaining case we have Y0 homeomorphic to −Y1, and we claim that this can
never happen. Indeed, in this case Y1 must be ±1-surgery on J0 ⊂ Y0, since these are the
only distance-one surgeries which preserve the order of H1. Since J0 is nullhomologous, this
contradicts [CGO01, Corollary 3.10]. �
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5.5. Formal L-spaces of determinant 7.

Theorem 5.8. Let Y be a formal L-space with det(Y ) = 7. Then Y is a lens space.

Once again, we let Y belong to a triad of formal L-spaces (Y, Y0, Y1) with det(Y0) +
det(Y1) = det(Y ) = 7 and det(Y0) ≤ det(Y1). In the case 1 + 6 = 7, Proposition 5.1 says
that Y must be a lens space; we wish to prove the same conclusion for 2 + 5 = 7 and
3 + 4 = 7.

If J0 ⊂ Y0 is a knot whose exterior produces each of these 3-manifolds through pairwise
distance-one fillings, we note that J0 must generate H1(Y0), since det(Y0) and det(Y1) are
relatively prime. In the case 2 + 5 = 7, we have Y0 = RP3 and Y1 = L(5, q) for some q by
Theorem 5.4, so Theorem 4.1 says that the exterior of J0 is a solid torus, hence Y is a lens
space. Thus the only case which remains to be proved is 3 + 4 = 7.

Proposition 5.9. If det(Y0) = 3 and det(Y1) = 4, then Y = L(7, q) for some q.

Proof. We have Y0 = ±L(3, 1) and J0 ⊂ Y0 is primitive, so any Dehn surgery on J0 must have
cyclic first homology. This means that Y1 cannot be RP3#RP3, so we have Y1 = ±L(4, 1)
by Theorem 5.3.

If Y0 = L(3, 1) and Y1 = L(4, 1), then the exterior M of J0 must be a solid torus by
Theorem 3.1, so Y is necessarily a lens space. The same argument applies if Y0 = −L(3, 1)
and Y1 = −L(4, 1), since L(3, 1) and L(4, 1) are then a pair of distance-one fillings of −M .

In the remaining cases we have Y0 = ±L(3, 1) and Y1 = ∓L(4, 1), and we claim that this
is impossible. After possibly reversing orientation, we can assume that Y0 = L(3, 1) and
Y1 = −L(4, 1). As in the proof of Lemma 3.2, we can choose a meridian µ0 on the exterior
M of J0 so that Y0 is the result of Dehn filling along a curve γ0 = 3µ0 + nλ for some n
of the form 3k ± 1, with λ the rational longitude. Using the meridian µ = µ0 + kλ, we
have γ0 = 3µ ± λ. If Y1 results from Dehn filling along γ1, then since |H1(Y1)| = 4 and
∆(γ0, γ1) = 1 we must have γ1 = 4µ±λ. In particular, if Z is the homology sphere resulting
from Dehn filling along µ with core K ⊂ Z, then we have Y0 = Z±3(K) and Y1 = Z±4(K).

From this, we see that Y0 (respectively Y1) has linking form ±1
3 (respectively ±1

4). Since

Y0 = L(3, 1) has linking form +1
3 , which is not equivalent to −1

3 , we see that Y1 must have

linking form +1
4 . However, this is not equivalent to −1

4 , the linking form of −L(4, 1) = Y1.
This yields the desired contradiction. �
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