
LECTURES ON INSTANTONS AND CONTACT STRUCTURES

STEVEN SIVEK

These notes are a somewhat expanded version of a 4-hour minicourse given at the sum-
mer school on “Gauge Theory and Applications,” held 17–21 July 2018 at the University
of Regensburg. The aim was to introduce instanton gauge theory, first in the form of Don-
aldson’s polynomial invariants and then instanton Floer homology, and then to use this
to explain recent joint work with John Baldwin [BS18] proving that Khovanov homology
detects the trefoils.

1. Yang-Mills theory and Donaldson invariants

The goal of this lecture is to introduce Donaldson invariants, as defined in [Don90], and
some of their basic properties. These are discussed in detail in [DK90] and [Mor98]; see also
[FU91] for background.

Let P → X be a principal SU(2)-bundle over a closed smooth 4-manifold X; these are
classified by their second Chern number c2(P ) ∈ Z. Given a Riemannian metric on X, the
Hodge star ∗ : Ω2(X) → Ω2(X) extends to Ω2(X; ad(P )), where it satisfies ∗2 = 1 and
defines an inner product

〈α, β〉 = −
∫
X

tr(α ∧ ∗β).

We note that elements of su(2) are skew-adjoint, and g∗ = −g implies that − tr(g2) = |g|2,
which explains the minus sign.

Since ∗2 = 1, we can split Ω2(X; ad(P )) into the ±1-eigenspaces Ω2
±(X; ad(P )) of ∗, and

these are orthogonal with respect to 〈·, ·〉. Chern-Weil theory tells us that

8π2c2(P ) =

∫
X

tr(FA ∧ FA),

and if we split the curvature as FA = F+
A + F−A and let ε, ε′ ∈ {+,−} then we have∫

X
tr(F εA ∧ F ε

′
A ) = ε′

∫
X

tr(F εA ∧ ∗F ε
′
A ) = −ε′〈F εA, F ε

′
A 〉,

so that
8π2c2(P ) = ||F−A ||

2 − ||F+
A ||

2.

On the other hand, the Yang-Mills functional YM : A → R measures the L2-norm of the
curvature,

YM (A) = ||FA||2 = ||F+
A ||

2 + ||F−A ||
2

= 8π2c2(P ) + 2||F+
A ||

2.

Thus YM achieves an absolute minimum at any connection with F+
A = 0.

Definition 1.1. A connection A on P → X is anti-self-dual, or ASD, if F+
A = 0.

We will also refer to ASD connections as instantons.
1
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Remark 1.2. From the above formula for 8π2c2(P ), we see that there are no ASD connections
if c2(P ) < 0, and that all ASD connections are flat if c2(P ) = 0. Thus the most interesting
cases are those where c2(P ) > 0.

The space of all ASD connections is enormous whenever it is nonempty: for example, it
is closed under symmetries of the bundle P , so we divide out by these.

Definition 1.3. Let P
π−→ X be a principal G-bundle. A gauge transformation is a

G-equivariant bundle automorphism u : P → P , meaning an invertible map satisfying
π(u(p)) = π(p) and u(p · g) = u(p) · g for all p ∈ P and g ∈ G.

Since a gauge transformation preserves the fibers of P , we can define ũ : P → G by the
formula u(p) = p · ũ(p). These satisfy

(p · g) · ũ(p · g) = u(p · g) = u(p) · g = p · ũ(p)g = (p · g) · g−1ũ(p)g

and so ũ(p · g) = g−1ũ(p)g. Thus the bijection u ↔ ũ identifies the group G of gauge
transformations with sections of Ad(P ) = P ×Ad G. (We use Ad and ad to refer to the
actions of G by conjugation on G and g, respectively.)

The gauge group G acts on the space A of connections by u∗A = u−1Au + u−1du, and
transforms the curvature by Fu∗A = u−1FAu. We will let A∗ ⊂ A denote the space of
irreducible connections, and write B = A/G and B∗ = A∗/G. Letting MP,g ⊂ B∗ be the
moduli space of irreducible ASD connections up to gauge equivalence, we wish to see that
M is a smooth manifold. This will require us to work with appropriate Sobolev completions
throughout, so that all spaces of interest are Banach and we can apply tools such as the
implicit function theorem and the Sard-Smale theorem, but we will omit all of the details.

Proposition 1.4. The tangent space to the orbit OA = G · A at a connection A can be
identified with

Im
(
dA : Ω0(X; ad(P ))→ Ω1(X; ad(P ))

)
.

Proof. Identifying Lie(G) with the space of sections of ad(P )→ X, we fix v ∈ C∞(X, ad(P ))
and compute the tangent vector to the path (etv)∗A at t = 0:

d
dt

(
(etv)∗A

)∣∣
t=0

= d
dt

(
e−tvAetv + e−tvd(etv)

)∣∣
t=0

= dv + [A, v] = dAv. �

We can then identify the tangent space to B∗ at an irreducible [A] with the L2-orthogonal
complement to Im(dA): a Hodge decomposition theorem gives

T[A]B∗ = ker
(
d∗A : Ω1(X; ad(P ))→ Ω0(X; ad(P ))

)
.

As for the moduli space MP,g ⊂ B∗, we linearize the curvature operator at A by

FA+ta = FA + dA(ta) + 1
2 [ta ∧ ta] = FA + tdAa+O(t2).

Letting F+
A = FA + ∗FA denote the self-dual part, we see that the linearization of F+

A = 0

at A is d+
A = 0, where d+

Aa is the projection of dAa ∈ Ω2(X; ad(P )) onto Ω2
+(X; ad(P )).

Thus the tangent space to the ASD moduli space near [A] is governed by the complex

Ω0(X; ad(P ))
dA−→ Ω1(X; ad(P ))

d+A−−→ Ω2
+(X; ad(P )),

which is indeed a complex because d+
A ◦ dA = F+

A = 0, and moreover it is elliptic.
More precisely, the cohomology group H0

A = ker(dA) is the tangent space to the stabilizer
of the G-action on A, so it vanishes if and only if A is irreducible. If H2

A = 0, we say that
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A is regular. The remaining group H1
A = ker(d+

A)/ Im(dA) is identified with T[A]MP,g. For
G = SU(2), we have:

Theorem 1.5. The tangent space T[A]MP,g is isomorphic to the kernel of

DA = d∗A ⊕ d+
A : Ω1(X; ad(P ))→ Ω0(X; ad(P ))⊕ Ω2

+(X; ad(P )),

which is an elliptic operator of index ind(DA) = 8c2(P )− 3(1− b1(X) + b+2 (X)).

Then MP,g has dimension ind(DA) at A precisely when DA has trivial cokernel, which
happens when A is regular and irreducible.

Let C denote the space of Cr conformal structures on X for some fixed r ≥ 3. If c2(P ) > 0,
then Freed and Uhlenbeck’s generic metrics theorem [FU91] says that C contains a countable
intersection of open dense subsets of equivalence classes of metrics g for which all g-ASD
connections are regular. Moreover, one can show that the subspace of all [g] ∈ C which
admit reducible ASD connections is a countable union of codimension-b+2 (X) submanifolds.
Thus if b+2 (X) > 1, the subspace of C where all instantons are regular and irreducible, and
hence MP,g is a smooth manifold, is path-connected.

Ideally, we would also like the MP,g to be compact. Then its bordism class would be a

smooth invariant of X, assuming b+2 (X) > 1: given any two such choices of metric g0 and
g1, we pick a generic path gt between them through the space of such metrics, and the union⋃
t

(
{t}×MP,gt

)
would be a cobordism fromMP,g0 toMP,g1 . (Here genericity means that

the cobordism is transversely cut out, rather than the individual MP,gt .) Unfortunately,
this does not hold in general, but these moduli spaces admit a nice compactification as
follows.

Theorem 1.6 (Uhlenbeck compactness [Uhl82]). Let P → X be a principal SU(2) bundle
with c2(P ) > 0, and let A1, A2, . . . be a sequence of ASD connections on P . Then we can
find a subsequence An1 , An2 , . . . , together with:

• a principal SU(2) bundle P ′ → X, with 0 ≤ c2(P ′) ≤ c2(P );
• finitely many points x1, . . . , xt ∈ X, not necessarily unique, with t = c2(P )− c2(P ′);
• bundle isomorphisms fi : P ′|Xr{x1,...,xt} → P |Xr{x1,...,xt};
• an ASD connection A∞ on P ′

such that the connections f∗i (Ani |Xr{x1,...,xt}) converge to A∞|Xr{x1,...,xt} on compact sets,

and the functions |FAni
| : X → R converge to the measure |FA∞ |+ 8π2

∑
i δxi.

Thus if we fix a metric on X and writeMk =MPk,g where c2(Pk) = k ≥ 0, we can write

Mk ⊂Mk ∪
(
Mk−1 × Sym1(X)

)
∪
(
Mk−2 × Sym2(X)

)
∪ . . . .

We note that generically, each stratumMk−j×Symj(X) has dimension dim(Mk)−4j when

j < k, and is empty for j > k. For j = k, we note that dim(M0×Symk(X)) is independent
of the metric, since M0 consists of flat connections mod gauge and is thus identified with
Hom(π1(X), SU(2))/conjugation. Supposing that π1(X) = 0 for simplicity, there is only
the trivial connection and so this stratum has codimension(

8k − 3(1 + b+2 (X))
)
− 4k ≥ 2

if we are in the stable range k ≥ 1
4(3b+2 (X) + 5); this implies that Mk has a fundamental

class.
For example, if X is simply connected and b+2 (X) = 0, then dim(M1) = 5, and M1 can

be compactified by addingM0×X = {pt}×X, so thenM1 =M1∪X. There are reducible
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ASD connections, one for every pair ±x ∈ H2(X) with x2 = −1 – a reduction amounts to
a splitting P1×SU(2) C2 = L⊕L−1, so 1 = c2(P1) = −c1(L)2 and thus each pair determines

such a splitting – and neighborhoods of these look like cones on CP2
. Thus M1 gives a

cobordism from X to

nX := 1
2#{x ∈ H2(X;Z) | x2 = −1}

copies of CP2
.

Since signature is a cobordism invariant and X is definite, we now have

nX = |σ(X)| = b2(X).

At the same time, we can use any pair ±x of elements of square −1 to decompose the
intersection form QX into orthogonal summands 〈−1〉⊕x⊥, so by induction on the rank we
see that nX ≤ b2(X), and that if equality holds then QX must be the standard form with
matrix −I. This is how Donaldson proved his celebrated theorem:

Theorem 1.7 ([Don83]). Let X be a smooth, simply-connected 4-manifold with negative
definite intersection form QX . Then QX can be diagonalized over the integers.

Returning to more general SU(2)-bundles P → X, we wish to construct smooth invariants
of X out of the moduli spaces MP,g. These will take the form

qX,d : H2(X)⊗d → Z,
which is obtained from the moduli space MP,g of dimension 2d, meaning that

d = 4c2(P )− 3

2
(1− b1(X) + b+2 (X)),

if such P exists (and we let qX,d = 0 otherwise). We do so roughly by constructing a
homomorphism

µ : H2(X;Z)→ H2(MP,g;Z)

and evaluating the cup product µ(α1)∪· · ·∪µ(αk) on the fundamental class [MP,g], though
the fact that MP,g is not compact causes some amount of difficulty.

To construct the map, we first construct the principal SO(3) bundle

P = A∗(P )×G(P ) P → B∗(P )×X.

Then we let µ(Σ) = −1
4p1(P )/[Σ], where / is the slant product

H4(B∗(P )×X)×H2(X)→ H2(B∗(P )),

amounting to integration along fibers; then restriction to MP,g gives the desired µ. (Simi-
larly, given any x ∈ Hi(X) we can define µ(x) ∈ H4−i(MP,g).)

Theorem 1.8. The invariants qX,d(α1, . . . , αd) are smooth invariants of X, assuming

b+2 (X) > 1.

Proof. We can find codimension-2 cycles Vαi Poincaré dual to the classes µ(αi) and in
general position so that qX,d(α1, . . . , αd) is a signed count of points in the finite intersection
MP,g ∩ Vα1 ∩ · · · ∩ Vαd

. Now given two different metrics g0, g1 on X and a generic path
gt of metrics between them, the parametrized moduli space

⋃
tMP,gt gives a cobordism

betweenMP,g0 andMP,g1 , and its intersection with Vα1 ∩ · · · ∩Vαd
is a cobordism between

the corresponding intersections at either end, so they have the same signed number of
points. �
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We state without proof some of the main properties of these invariants, proved by Don-
aldson in [Don90].

Theorem 1.9. Let X be a simply connected Kähler surface, with b+2 (X) > 1 odd, and let
H ∈ H2(X) be the class of a hyperplane section coming from some embedding X ↪→ CPn.
Then qX,d(H,H, . . . ,H) > 0 for all sufficiently large d in the appropriate residue class
(mod 4).

The proof uses prior work of Donaldson [Don85] relating the ASD moduli space for
P → X to the moduli space of H-stable rank-2 vector bundles E → X with c1(E) = 0
and c2(E) = c2(P ): these are bundles E → X satisfying the stability property c1(F ) ·
H < 1

2c1(E) · H for every line bundle F ⊂ E. The analogous result for bundles over
Riemann surfaces is a classical theorem of Narasimhan and Seshadri [NS65], and Atiyah-
Bott [AB83] previously used it in the opposite direction: they calculated the cohomology
of the moduli space of stable bundles on a Riemann surface via the Morse theory of the
Yang-Mills functional.

Theorem 1.10. If X is simply connected with b+2 (X) odd, and X is diffeomorphic to
a connected sum X1#X2 where b+(Xi) > 0 for each i, then the invariants qX,d are all
identically zero.

As a corollary, we can prove the following.

Corollary 1.11. Let X be a K3 surface. If we have a diffeomorphism X = X1#X2, then
one of the Xi is a homotopy sphere.

Proof. Theorems 1.9 and 1.10 together tell us that someXi is negative definite, say b+2 (X2) =
0 without loss of generality. Then the intersection form on H2(X2) is diagonalizable over Z
by Theorem 1.7, so if b = b2(X) = b−2 (X) is positive then there is an integral basis v1, . . . , vb
of H2(X2) for which QX2(vi, vj) = −δij . In particular QX2(v1, v1) = −1, which is impossible
since X has even intersection form. �

2. Instanton Floer homology

This lecture focuses on the construction of instanton Floer homology, which was first
constructed by Floer in [Flo88]. Its construction and basic properties are outlined in [Sav02],
and developed in much more detail in [Don02].

Previously we studied ASD connections on closed 4-manifolds, but now we turn our
attention to 4-manifolds with cylindrical ends, or even better, to 4-manifolds of the form
R×Y . We will restrict our attention to finite-energy connections, i.e. those A which satisfy∫
R×Y |FA|

2 <∞.

We first note that any principal SU(2)-bundle P on a 3-manifold Y is trivial, so we may
take the product connection A0 as our base point for the space A of connections on P and
thus identify a connection with its 1-form a ∈ Ω1(Y ; ad(P )) = Ω1(Y ; su(2)). The same
holds for R× Y , which we give the product metric dt2 + gY .

Suppose we have a connection A on P → Y , and define a connection Ã on [0, 1]× P →
[0, 1]× Y with 1-form tA. Then we have

FÃ = d(tA) + 1
2 [tA ∧ tA]

= dt ∧A+ tdA+ 1
2 t

2[A ∧A],
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and so we compute the integral which would determine c2(P ) if [0, 1] × Y were a closed
manifold:

1

8π2

∫
[0,1]×Y

tr(FÃ ∧ FÃ) =
1

8π2

∫ 1

0

∫
Y
dt ∧ tr(A ∧ 2tdA+ t2A ∧ [A ∧A])

=
1

8π2

∫
Y

tr
(
A ∧ dA+ 1

3A ∧ [A ∧A]
)
.

This is the Chern-Simons functional on the space A of connections on P . On the space
B = A/G of connections up to gauge, it gives a functional

cs : B → R/Z
because one can take connections on [0, 1] × Y corresponding to A and u∗A and glue the
corresponding bundles together by id at one end and u at the other to get a principal SU(2)
bundle on Y -bundle over S1, from which the difference cs(u∗A)−cs(A) is c2 of that bundle.
(In fact, u changes the value of cs by deg(u : Y → SU(2) ∼= S3).) This functional satisfies

cs(A+ sa) = cs(A) +
s

4π2

∫
Y

tr(FA ∧ a) +O(s2),

so its directional derivative in the direction a ∈ Ω1(Y ; su(2)) is

1

4π2

∫
Y

tr(∗(∗FA) ∧ a) = 〈∗FA, a〉

and thus it has L2-gradient ∇cs(A) = ∗FA. In particular, the critical points of cs are flat
connections on P .

We now attempt to understand ASD connections on R× P → R× Y .

Lemma 2.1. Let A be a finite-energy connection on a principal SU(2)-bundle R × P →
R×Y . There is a gauge transformation u such that u∗A is in temporal gauge, meaning that
u∗A has no dt-term.

Proof. Write A = βt + ηt dt, where βt ∈ Ω1(Y ; su(2)) and ηt ∈ Ω0(Y ; su(2)) may depend on
t. The dt-coefficient of u∗A is then

u−1ηtu+ u−1∂u

∂t
,

which vanishes if and only if u solves the first order differential equation u̇+ ηtu = 0; there
is a unique solution for any choice of u|{0}×Y . �

Given a connection Ã = At in temporal gauge on R× Y , we have

FÃ = dÃ+ 1
2 [Ã, Ã] = dt ∧ ∂At

∂t
+ FAt

and from this we compute that

∗FÃ = ∗Y
(
∂At
∂t

)
+ dt ∧ ∗Y FAt ,

which means that Ã is ASD if and only if ∂At
∂t = −∗FAt = −∇cs(At). In other words,

the ASD connections on R × Y up to gauge equivalence can be identified with downward
gradient flow lines of the Chern-Simons functional.

All of the above suggests that we should attempt to construct equivariant Morse homology
for the functional cs : B → R/Z. This would be a complex CI∗(Y ) whose generators are
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flat connections on Y up to gauge equivalence, which are the same as conjugacy classes of
representations π1(Y )→ SU(2) (via the bijection A↔ holA), and whose differential counts
rigid ASD connections on R × Y which limit to given flat connections as t → ±∞. For
homology 3-spheres this construction was carried out by Floer [Flo88].

In this setting we can again try to study the moduli space of ASD connections on P →
X = R× Y near a connection A with 1-form at in temporal gauge. Then dA = d+ at, and
the operator

d∗A ⊕ d+
A : Ω1(X; ad(P ))→ Ω0(X; ad(P ))⊕ Ω2

+(X; ad(P ))

can be expressed in simpler terms. We write 1-forms as βt + ηtdt ∈ Ω0 ⊕ Ω1, and identify
Ω2

+
∼= Ω1 via

dt ∧ ωt + ∗Y ωt ←→ ωt,

and then DA := d∗A ⊕ d
+
A : Ω0 ⊕ Ω1 → Ω0 ⊕ Ω1 has the form

(d∗A ⊕ d+
A)

(
ηt
βt

)
=

(
∂

∂t
+

(
0 −d∗At

−dAt ∗dAt

))(
ηt
βt

)
.

In other words, it can be written ∂
∂t + LA where LA is self-adjoint and elliptic. If α =

lim
t→−∞

A|{t}×Y and β = lim
t→∞

A|{t}×Y are flat connections on Y , then LA is Fredholm if we

work in an appropriately weighted Sobolev space. It has index

ind(DA(α, β)) = sf(Bt),

where Bt is a path of operators from Lα to Lβ and sf denotes spectral flow [APS76].
However, if α′ and α are gauge equivalent and A′ has limiting flat connections α′ and β,
then we only have ind(DA′(α

′, β)) ≡ ind(DA(α, β)) (mod 8); this will lead to a relative
Z/8Z grading on gauge equivalence classes of flat connections.

One serious problem, however, is that some of the flat connections which supposedly
generate CI∗(Y ) are necessarily reducible: up to conjugation, they are identified via their
holonomy with hom(H1(Y ;Z), U(1)). If Y is an integral homology sphere, there is only
the trivial connection, and Floer omitted it from CI∗ but used it to define an absolute
grading. We will instead work with nontrivial SO(3) bundles or U(2) bundles from now on,
as developed by Floer in [Flo90]; see also [Don02, §5.6].

Definition 2.2. A rank-2 unitary bundle E → Y is admissible if there is a closed, embedded
surface Σ ⊂ Y such that the pairing 〈c1(E),Σ〉 is odd.

Since SO(3) ∼= U(2)/Z(U(2)), we can associate to E an so(3) bundle ad(P ), consisting
of the traceless, skew-adjoint automorphisms of E; and a complex line bundle Λ2E. A
connection on E induces connections on ad(E) and Λ2E, and vice versa. We will let A(E)
denote the space of connections on E which induce a fixed connection on Λ2E; the ones
which give a flat connection on ad(E) are called projectively flat, though we will drop the
word “projective” for convenience. We also use a modified gauge group G(E) of determinant-
1 gauge transformations on E, which are the gauge transformations which fix Λ2E. Morally
these behave like SO(3) connections up to gauge, but the reducibles are easier to understand.

Lemma 2.3. If E → Y is an admissible U(2)-bundle then it does not have any reducible
flat connections.

Proof. Let Σ be a surface with 〈c1(E),Σ〉 odd. A reducible connection on E induces a
splitting E = L⊕L′ with connections A and A′ on the summands, where the curvatures of
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A and A′ are equal. (These need not be zero, because the original connection on E is only
projectively flat.) But then 〈c1(E),Σ〉 is equal to

〈c1(L),Σ〉+ 〈c1(L′),Σ〉 =
i

2π

∫
Σ

tr(FA) +
i

2π

∫
Σ

tr(FA′),

and since both terms on the right are integers their sum cannot be odd. �

We can now define instanton Floer homology for a 3-manifold with an admissible bundle.

Definition 2.4. Let w → Y be a Hermitian line bundle such that c1(w) has odd pairing
with some class in H2(Y ). Take a U(2)-bundle E → Y together with a fixed identification
Λ2E ∼= w. Then we define a chain complex

CI∗(Y )w =
⊕
[α]

C〈[α]〉,

where [α] ranges over equivalence classes of projectively flat connections in A(E)/G(E). It
has a relative Z/8Z grading gr(α, β) given by the spectral flow of a path from Lα to Lβ.

Given any two generators α and β, and the product bundle R×E → R× Y , we define a
moduli space

M(α, β) =
{
A ∈ A(R× E)

∣∣∣A is projectively ASD, ||FA||2 <∞,

lim
t→−∞

A|{t}×E = α, lim
t→∞

A{t}×E = β

}
/G(R× E).

If α 6= β then this has a free R-action given by (x · A)|{t}×E = A|{t+x}×E, and we write

M̂(α, β) =M(α, β)/R. Then we define a differential on CI(Y )w by

∂α =
∑
β

#M̂(α, β) · β,

where #M̂ is a signed count of isolated points.

Implicit in this definition is a choice of data D, consisting of a metric on Y and a
perturbation of the ASD equation; we can arrange for the Chern-Simons functional to
be Morse-Smale by defining a suitable family of perturbations and using the Sard-Smale
theorem. We thus write CI∗(Y,D)w for now to indicate the dependence on this data. For
generic D it follows from the above discussion that 〈∂α, β〉 6= 0 only if gr(α, β) = 1, and so
∂ lowers the degree by 1.

The fact that ∂2 = 0 follows just as in Morse theory: a gluing theorem asserts that each
coefficient

〈∂2α, γ〉 =
∑
β

#M̂(α, β) ·#M̂(β, γ)

counts points in the boundary of the 1-manifold built by compactifying the 1-dimensional
components of M̂(α, γ), and this signed count is zero. Thus CI∗(Y,D)w is indeed a chain
complex, and we write I∗(Y,D)w for its homology.

Example 2.5. Consider the Hermitian line bundle w → T 3 with c1(w) Poincaré dual to
an S1 factor. Flat connections on the corresponding SO(3) bundle do not lift to SU(2)
connections: this is obstructed by the second Stiefel-Whitney class, which is c1(w) (mod 2).
However, we can view them as flat SU(2) connections on T 3 rS1 = (T 2 r {pt})×S1, with
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holonomy −1 around a meridian of the S1. By taking holonomy, these are in bijection with
representations

ρ : 〈x, y, z | [x, z] = [y, z] = 1〉 → SU(2), ρ(xyx−1y−1) = −I

where x, y lie in the punctured torus and xyx−1y−1 thus represents the meridian.
Write X = ρ(x) ∈ SU(2) and likewise Y,Z. Then taking traces of both Y XY −1 = −X−1

and XYX−1 = −Y −1 says that tr(X) = − tr(X−1) and tr(Y ) = − tr(Y −1), but elements of
SU(2) are conjugate to and thus have the same trace as their inverses, so tr(X) = tr(Y ) = 0.
There is then a unique ρ in each conjugacy class such that

X =

(
i 0
0 −i

)
, Y =

(
0 1
−1 0

)
,

and Z has to commute with both of these, so it must be ±I. Thus the chain complex
CI∗(T

3)w has two generators, and their relative grading is 4 (mod 8), so the differential
vanishes and thus I∗(T

3)w ∼= C2.

Proposition 2.6. Let X be a cobordism from Y1 to Y2, and let P → W be a U(2)-bundle
whose restrictions to Y1 and Y2 are both admissible. We write w for the associated line
bundle over X. Then any choice D of metric and perturbation on X gives a well-defined
homomorphism

I(X)w : I∗(Y1,D|Y1)w|Y1 → I∗(Y2,D|Y2)w|Y2
which does not depend on D. If (X1, w1,D1) : Y1 → Y2 and (X2, w2,D2) : Y2 → Y3 are
cobordisms for which the bundles wi and data Di agree over Y2, then

I(X1 ∪Y2 X2)w1∪w2 = I(X2)w2 ◦ I(X1)w1

as maps I∗(Y1,D1|Y1)w1|Y1 → I∗(Y3,D2|Y3)w2|Y3 .

Proof (sketch). The map I(X)w is defined at the chain level by the formula

f(α) =
∑
β

#MX(α, β) · β,

where #MX is a count of isolated (perturbed) instantons on the completed manifold(
(−∞, 0]× Y1

)
∪X ∪

(
[0,∞)× Y2

)
which limit to α at {−∞} × Y1 and to β at {∞} × Y2. (Note that there is no longer an
R-action on these moduli spaces.) The proof that f ◦ ∂1 = ∂2 ◦ f again follows as in Morse
theory: we wish to show that for all generators α ∈ CI∗(Y1,D|Y1) and γ ∈ CI∗(Y2,D|Y2),
the expression∑

β1

#M̂Y1(α, β1) ·#MX(β1, γ)−
∑
β2

#MX(α, β2) ·#M̂Y2(β2, γ)

is zero. Again, this is zero because it counts points in the boundary of the compactification
of MX(α, γ).

Now suppose we have two different choices D0 and D1 of metrics and perturbations on X
with the same restriction to ∂X = −Y1 t Y2, and let f0 and f1 be the corresponding chain
maps. Then we choose a generic path Dt between them, and define a chain homotopy from
f0 to f1 by counting instantons of index −1 over the 1-parameter family Dt; this shows that
f0 and f1 induce the same maps on homology. �
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Theorem 2.7. The instanton homology groups I∗(Y )w do not depend on the metric and
perturbation.

Proof. Let X = [0, 1] × Y , and write w for both the bundle on Y and its pullback to X.
For any metric and perturbation D on Y , we take the corresponding R-invariant metric and
perturbation on R× Y to see that the chain map

f : CI∗(Y,D)w → CI∗(Y,D)w

is the identity: the translation invariance says that any nonempty moduli space MX(α, β)
is at least 1-dimensional unless α = β, in which case the only isolated point in MX(α, α)
is the product connection. Thus I(X)w : I∗(Y,D)w → I∗(Y,D)w is the identity for all D.

Pick two choicesD1 andD2, and letX = [0, 1]×Y . Then we glue two copies ofX together,
with perturbation data interpolating between D1 and D2, to see that the composition of
the cobordism maps

I∗(Y,D1)w
I(X)w−−−−→ I∗(Y,D2)w

I(X)w−−−−→ I∗(Y,D1)

is the identity, and likewise if we compose in the other direction, so each I∗(X)w must be
an isomorphism. �

We can specialize the cobordism maps to the case where one end is empty: if X is a
smooth 4-manifold with ∂X = Y and a Hermitian line bundle w → X such that w|Y is
admissible, then we have a relative invariant

ψX,w : Sym(H0(X)⊕H2(X))→ I∗(Y )w.

The invariant ψX,w(1) is just a weighted sum of flat connections α on Y , where α is weighted
by a signed count of isolated, finite-energy instantons which are asymptotic to α along the
boundary. More generally, given z ∈ Sym(H0(X)⊕H2(X)), we can define the cohomology
class µ(z) just as for closed Donaldson invariants and use it to obtain invariants ψX,w(z)
from higher-dimensional moduli spaces.

This leads to some interesting operators on instanton homology, as follows. Let Σ ⊂ Y
be a closed, oriented surface such that 〈c1(w), [Σ]〉 is odd. Then there is a degree-2 operator

µ(Σ) : I∗(Y )w → I∗(Y )w

which we can define as follows. We take the cobordism [0, 1]× Y and remove {1
2} ×N(Σ)

to get a new cobordism X with associated map

I(X)w : I∗(Y )w ⊗ I∗(S1 × Σ)→ I∗(Y )w.

Then we let µ(Σ) = I(X)w
(
· ⊗ψD2×Σ,w(Σ)

)
. If we write X = X1 ∪Y X2 with b+2 (Xi) > 0,

then there is a natural pairing

I∗(Y )w ⊗ I∗(−Y )w → C

for which the relative invariants of X1 and X2 recover the Donaldson invariants on X.
Muñoz [Muñ99] computed the instanton homology groups I∗(S

1×Σg)w where g ≥ 1 and
c1(w) = PD(S1×{pt}). In fact, he determined their ring structure, where the multiplication
maps are cobordism maps corresponding to Σg times a pair of pants. One can deduce
from his presentation that the commuting operators µ(Σg) and µ(pt) have simultaneous
eigenvalues

(2k, 2) and (2k
√
−1,−2), |k| ≤ g − 1,
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and that the (2g − 2, 2)-eigenspace is 1-dimensional. It follows by construction that the
operators µ(Σ) and µ(pt) on I∗(Y )w also have eigenvalues belonging to this set. In fact,
since µ(Σ) depends only on the homology class of Σ, its eigenvalues are at most 2g − 2 in
magnitude whenever there is a genus-g surface homologous to Σ.

3. Sutured manifolds and contact invariants

Our goal for this lecture is to define invariants of contact 3-manifolds with boundary,
as elements of instanton Floer homology for sutured 3-manifolds. Sutured manifolds were
originally defined by Gabai [Gab83], who used them to prove the existence of taut foliations
on many 3-manifolds and then deduce in [Gab87] that 0-surgery on a nontrivial knot K in
S3 is prime and not S1 × S2. (See also the foliation-free approach of [Sch89].) A version of
Heegaard Floer homology for sutured manifolds was developed by Juhász [Juh06, Juh08],
and Honda–Kazez–Matić [HKM09] constructed invariants of contact structures within su-
tured Floer homology. We will study the analogous instanton Floer homology theory due
to Kronheimer and Mrowka [KM10b], and the corresponding contact invariant defined in
joint work with Baldwin [BS16a].

Definition 3.1. A (balanced) sutured manifold (M,γ) consists of a compact 3-manifold M
with nonempty boundary, and an embedded, oriented 1-manifold γ ⊂ ∂M which separates
∂M into two pieces R+(γ) and R−(γ) satisfying:

• Every component of ∂M contains a component of γ.
• R+(γ) and R−(γ) admit orientations such that γ = ∂R+(γ) = −∂R−(γ).
• R+(γ) and R−(γ) have the same Euler characteristic.

Example 3.2. Let F be a connected, oriented surface with nonempty boundary. Then
(F × [−1, 1], ∂F × {0}) is a sutured manifold.

Example 3.3. If Y is a closed 3-manifold, then we let Y (1) = (Y r int(B3), S1).

Example 3.4. If K ⊂ Y is a knot, then Y (K) = (Y r int(N(K)), µ ∪ −µ) where µ is an
oriented meridian.

Example 3.5. Let (M, ξ) be a contact 3-manifold with boundary. We say that ∂M is convex
if it is transverse to some ξ-preserving vector field v on a neighborhood of ∂M . Giroux
[Gir91] proved that this is a C∞-generic condition, and that the dividing curves

Γ = {x ∈ ∂M | v(x) ∈ ξx}
determine ξ up to isotopy on a neighborhood of ∂M . Then (M,Γ) is a sutured manifold.

Kronheimer and Mrowka [KM10b] define invariants of (M,γ) by the following procedure.
They embed (M,γ) in a closed 3-manifold Y with an admissible bundle w and a distin-
guished surface R ⊂ Y rM , so that the topology of Y rM is as simple as possible. Then
they define SHI (M,γ) as the “top” eigenspace of the operator µ(R), acting on I∗(Y )w, and
prove its invariance by an excision theorem relating the top eigenspaces of such operators
before and after cutting along such a surface and regluing. This excision theorem generalizes
Floer’s excision theorem for tori [BD95], and the instanton knot homology

KHI (Y,K) := SHI (Y (K))

was already defined by Floer [Flo90], though SHI is defined for a much larger class of
3-manifolds.



12 STEVEN SIVEK

Definition 3.6. Let (M,γ) be a sutured manifold. We construct a closure (Y,R, η, α) of
(M,γ) by the following procedure.

(1) Fix a tubular neighborhood A(γ) ⊂ ∂M of γ and a surface with boundary T , and
take an orientation-reversing homeomorphism h : ∂T × [−1, 1] → A(γ) for which
h(∂T × {±1}) ⊂ R±(γ) rA(γ).

(2) Let M ′ = M ∪h T × [−1, 1], and identify

∂M ′ = ∂+M
′ t ∂−M ′

where R±(γ) intersects ∂±M
′ nontrivially. We observe that ∂+M

′ is homeomorphic
to ∂−M

′, since they are connected surfaces of the same Euler characteristic.
(3) Choose a homeomorphism φ : ∂+M

′ → ∂−M
′, and form

Y = M ′ ∪ ∂+M
′ × [−1, 1]

by the identifications

∂+M
′ × {−1} id−→ ∂+M

′, ∂+M
′ × {1} φ−→ ∂−M

′.

We then take R = ∂+M
′ × {0} ⊂ Y and write R× [−1, 1] for ∂+M

′ × [−1, 1].
(4) Let η ⊂ R be an oriented, homologically essential curve.
(5) Let α ⊂ Y rM be a closed curve which intersects R× [−1, 1] in an arc of the form
{p} × [−1, 1].

We require that g(R) ≥ 1. Then the sutured instanton homology

SHI (M,γ) := I∗(Y |R)αtη

is defined as the generalized (2− 2g(R), 2)-eigenspace of (µ(R), µ(pt)) acting on I∗(Y )αtη.
Here the subscript means that we have chosen a Hermitian line bundle w on Y where c1(w)
is Poincaré dual to α t η.

Example 3.7. Fix a surface F with boundary and let

(M,γ) = (F × [−1, 1], ∂F × {0}).
As illustrated in Figure 1, we can pick a surface T and gluing map h so that the resulting
M ′ = M ∪h [−1, 1] has the form

M ′ = Σ× [−1, 1], Σ := F ∪∂ T.
Then ∂±M

′ = Σ×{±1}, and we let φ : ∂+M
′ → ∂−M

′ be the identity, so that Y = Σ×S1

and R = Σ × {pt}. We let α = {pt} × S1 and pick η arbitrarily, and then a slight
generalization of Muñoz’s computation from [Muñ99] (using Kronheimer and Mrowka’s
excision theorem [KM10b]) yields

SHI (F × [−1, 1], ∂F × {0}) = I∗(Y |R)αtη ∼= C.

Theorem 3.8 ([KM10b, BS15]). The C-vector space SHI (M,γ) is an invariant of (M,γ)
up to isomorphism. More precisely, for any two choices D,D′ made in the construction,
there is an isomorphism

ΨD,D′ : SHID(M,γ)
∼−→ SHID′(M,γ)

which is canonical up to multiplication by an element of C×, and which also satisfies
ΨD,D′′ = ΨD′,D′′ ◦ΨD,D′ up to a scalar in C× for any D,D′,D′′.



LECTURES ON INSTANTONS AND CONTACT STRUCTURES 13

γ

R+(γ)

R−(γ)

R

(M,γ)

∂
+
M
′
×
I

T × [−1, 1]

φ = id

α

η

Figure 1. The sutured manifold (M,γ) = (D2 × [−1, 1], ∂D2 × {0}), with
R+(γ) shaded (left), and a closure (Y,R) ∼= (Σ3 × S1,Σ3 × {pt}) of (M,γ)
built by taking T to be a genus-3 surface with one boundary component
(right).

The proof in [KM10b] only establishes the invariance of SHI up to isomorphism, but for
some applications we need more. Namely, if (M,Γ) carries a contact structure ξ, then we
wish to define an invariant

θ(ξ) ∈ SHI(−M,−Γ)

as an element of the sutured instanton homology. By promoting SHI to an invariant up to
(nearly) canonical isomorphism in [BS15], we are able to make sense of elements: these are
tuples consisting of one element θD in each SHID, such that the θD are preserved by the
canonical isomorphisms. Since these isomorphisms are well-defined up to scalars, so is the
resulting θ.

We outline the proof of Theorem 3.8 here. We need to show invariance under several
choices, but we focus on the gluing map φ : ∂+M

′ → ∂−M
′. In [KM10b], this is done

in a single step using a cobordism map, as illustrated in Figure 2. The map induces an
isomorphism on the top eigenspace of R,

(3.1) fψ : SHID(M,γ)⊗ I∗(R×ψ S1|R)w → SHID′(M,γ)

for some w, which gives an isomorphism SHID ∼= SHID′ since I∗(R×ψ S1|R)w ∼= C.
Unfortunately, this argument does not show that the composition of the resulting iso-

morphisms SHID → SHID′ and SHID′ → SHID′′ is the same as our isomorphism SHID →
SHID′′ , which is needed for naturality. Thus instead of using the excision isomorphism, if
we wish to change our gluing map from φ to φ ◦ ψ, we write

ψ = Dα1 ◦ · · · ◦Dαk

as a product of right-handed Dehn twists along curves αi ⊂ R, and realize the change of
gluing map by performing −1-framed surgery on curves αi × {ti} ⊂ R× [−1, 1] ⊂ Y . Each
surgery cobordism gives an isomorphism SHI (Y |R)→ SHI (Y ′|R), by Floer’s exact triangle
[Flo90, BD95]: the third term in the triangle has the form SHI (Y ′′|R) where the surgery
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Y

R×ψ S1

Y ′

id
ψ

id
φ

R× [−1, 1]

Figure 2. A cobordism which induces an isomorphism on SHI , changing
the gluing isomorphism from φ to φ ◦ ψ. The middle region in between the
dotted lines represents R times an octagon, glued to Y r R × [−1, 1] above
and to R× [1, 1] below by the indicated maps.

producing Y ′′ has compressed R, and since R is homologous to a surface R′ of strictly
lower genus, the (2 − 2g(R))-eigenspace of µ(R) = µ(R′) is empty. Thus we can take the
isomorphism

ΨD,D′ : SHID(M,γ)→ SHID′(M,γ)

to be the composition of the corresponding cobordism maps.
The fact that the maps ΨD,D′ compose as expected is immediate from their description

in terms of 2-handle cobordisms corresponding to Dehn twists. The fact that they do not
depend on the factorization into Dehn twists is illustrated in Figure 3: the cobordism is the
same as the excision cobordism, after we fill in the R ×ψ S1 boundary component using a
Lefschetz fibration Xψ over D2 with fiber D2 and vanishing cycles the αi. In other words,
we have

ΨD,D′ = fψ(·, z) : SHID(M,γ)→ SHID(M,γ)

where fψ is the map (3.1) and z ∈ I∗(R×ψ S1|R)w is the relative invariant of Xψ, projected
into the (2 − 2g(R))-eigenspace of µ(R). This relative invariant is both nonzero (which is
equivalent to the nonvanishing of Donaldson invariants of symplectic manifolds, see [KM10b,
Siv15]) and an element of I∗(R ×ψ S1|R)w ∼= C, so the elements corresponding to two
different choices differ by a nonzero factor and hence so do the corresponding maps ΨD,D′ .
This explains why these maps are well-defined up to scalars.

We now explain the construction of attaching maps on SHI associated to contact 1- and
2-handles, as done in [BS16a]. A contact 1-handle is a tight contact D1 ×D2, attached to
(M,γ) along a ∂D1 ×D2 neighborhood of two points on γ as in Figure 4. We remark that
(M,γ) need not have a contact structure of its own; the contact structure on the 1-handle
simply tells us where to place the sutures, which are identified with dividing curves.

Proposition 3.9. Let (M ′, γ′) be obtained from (M,γ) by attaching a contact 1-handle H.
Then there is a natural isomorphism

FH : SHI (−M,−γ)→ SHI (−M ′,−γ′),

induced by and depending only on H.
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Y

Xψ

R×ψ S1 Y ′

id
ψ

id
φ

R× [−1, 1] ∼=

Y Y ′

Figure 3. Attaching 2-handles to Y × [0, 1] to perform Dehn twists (right)
produces the same cobordism as if we had used the 2-handles to build a Lef-
schetz fibration Xψ → D2 and glued this to the R×ψS1 boundary component
of the excision cobordism (left).

F

F ′

F ′

Figure 4. Attaching a contact 1-handle to (M,γ) along ∂M (top left) to get
(M ′, γ′) (top right). Here we have again shaded R+(γ). The corresponding
auxiliary surfaces F and F ′ are shown at bottom left and bottom right.

Proof. We take a closure of (M ′, γ′), built by gluing an auxiliary surface F ′ to γ′, and absorb
the 1-handle H into F ′ to get an auxiliary surface F from which we can build a closure of
(M,γ). This is pictured at the bottom of Figure 4. The end result is that the corresponding
closures of (M,γ) and (M ′, γ′) are identical, so for SHI defined from these closures we can
declare FH to be the identity map. For the “natural” claim, we then check that if we define
FH using a different closure of (M ′, γ′), then the two definitions of FH commute with the
canonical isomorphisms relating the different SHI (M,γ) and SHI (M ′, γ′) invariants. �
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c

Figure 5. Attaching a contact 2-handle to (M,γ) along c ⊂ ∂M (left) to
get (M ′, γ′) (right).

Similarly, a contact 2-handle is a tight contact D2 × D1 attached to (M,γ) along a
neighborhood ∂D2 × D1 of a curve c ⊂ ∂M , as in Figure 5. We require that each of
c ∩R+(γ) and c ∩R−(γ) is an arc.

Proposition 3.10. Let (M ′, γ′) be obtained from (M,γ) by attaching a contact 2-handle
H. Then there is a natural homomorphism

FH : SHI (−M,−γ)→ SHI (−M ′,−γ′)
induced by and depending only on H.

Proof. Given a closure (Y,R, η, α) of (M,γ), we construct a closure (Y ′, R, η, α) of (M ′, γ′)
by performing ∂M -framed surgery on the attaching curve c ⊂ ∂M ⊂ Y . Then FH is defined
to be the corresponding 2-handle cobordism map, and again we can check that it is natural
in the same sense as in Proposition 3.9. We remark that the effect on the auxiliary surface
F used to close up (M,γ) is to attach a neighborhood of the arc c ∩ R+(γ) as a 1-handle
to get the surface F ′ which leads to a closure of (M ′, γ′). �

These contact handle maps suggest a way to define a contact invariant. Namely, if ξstd

is the standard tight contact structure on B3 with convex boundary, then since

SHI (−B3,−S1) ∼= C,
we declare θ(ξstd) to be any nonzero element of SHI (−B3,−S1) up to rescaling. Then
for any contact 3-manifold (M, ξ) with dividing curves Γ on the convex boundary ∂M , we
construct (M, ξ) by attaching contact 1- and 2-handles to (B3, ξstd) and let θ(ξ) be the
image of θ(ξstd) under the corresponding handle attaching maps.

Unfortunately, this definition is too general to allow for a proof of invariance, so we
restrict to a particularly nice class of handle decompositions. Closed contact 3-manifolds
are supported by many open book decompositions, which according to the Giroux corre-
spondence [Gir02] are all related by a notion of stabilization. For contact 3-manifolds with
convex boundary we have the following relative Giroux correspondence [HKM09].

Definition 3.11. A partial open book for a sutured contact manifold (M,Γ, ξ) is a tuple
(S, P, h, c), where

• S is a surface with boundary and P ⊂ S is a surface;
• h : P ↪→ S is an embedding which restricts to the identity on ∂P ∩ ∂S;
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P

c

h(c)

Figure 6. A page S of a partial open book for a neighborhood of an over-
twisted disk (left), and the convex boundary of this neighborhood (right).

• c = {c1, . . . , cn} is a set of disjoint, properly embedded arcs in P such that S r {c}
deformation retracts onto S r P .

We form a contact manifold from a partial open book by the following procedure. We take
a handlebody H = H(S) by taking the [−1, 1]-invariant contact structure ξS on S × [−1, 1[
whose dividing curves ΓS on S ×{1} consist of a boundary-parallel arc on each component
of ∂S, oriented the same way as ∂S, and then rounding corners. Its boundary ∂H is the
double of S, with dividing set Γ isotopic to ∂S and R±(Γ) identified with S × {±1}. Next,
we identify disjoint closed curves

(3.2) γi =
(
ci × {1}

)
∪
(
∂ci × [−1, 1]

)
∪
(
h(ci)× {−1}

)
in ∂H, and attach contact 2-handles along each γi to get a contact manifold M(S, P, h, c).
A partial open book decomposition of (M,γ, ξ) is then a tuple

(S, P, h, c, f : M(S, P, h, c)→ (M,Γ, ξ)),

where (S, P, h, c) is a partial open book and f is a contactomorphism.

Example 3.12. A standard neighborhood (B3, ξot) of an overtwisted disk has the partial
open book decomposition shown in Figure 6, as described in [HKM09, Example 1]. In the
resulting sutured contact manifold (M,Γ, ξ), we can identify R+(Γ) with S rP and R−(Γ)
with S r h(P ); both are the disjoint union of an annulus and a disk.

When we form a closure (Y,R, η, α) of (−M,−Γ), the surface R is compressible because
we can identify R+(Γ) with a subsurface of R; the core of the annulus in R+(Γ) is essential
in R and compressible in Y since it bounds a disk in M . Since R is compressible, the
operator µ(R) does not have 2− 2g(R) as an eigenvalue and so

SHI (−M,−Γ) = I∗(Y |R)αtη

is zero.

Definition 3.13. A stabilization of the partial open book (S, P, h, c) is a partial open book
(S′, P ′, h′, c′), where

• S′ and P ′ are obtained by attaching a 1-handle H0 to S and P ;
• h′ = Dβ ◦ h, where Dβ is a right-handed Dehn twist along a curve β ⊂ S′ having a

single transverse intersection with a cocore c0 of H0;
• c′ = c ∪ {c0}.
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Theorem 3.14 ([HKM09]). Every sutured contact manifold (M,Γ, ξ) is supported by a
contact open book. Moreover, any two supporting open books for (M,Γ, ξ) are related by a
sequence of stabilizations.

With the above definitions in hand, we now use partial open book decompositions to
construct our contact invariant. Recall for any surface S with boundary that the prod-
uct handlebody (H(S),ΓS) has sutured instanton homology SHI (−H(S),−ΓS) ∼= C, by
Example 3.7.

Definition 3.15. Let (S, P, h, c, f) be a partial open book decomposition of (M,Γ, ξ), and
let 1 ∈ SHI (−M,−Γ) be any nonzero element. Form (M,γ, ξ) from (H(S), ξS) by attaching
contact 2-handles H1, . . . ,Hn along curves γ1, . . . , γn as defined in (3.2). Then we use the
handle attaching maps

FHn ◦ FHn−1 ◦ · · · ◦ FH1 : SHI (−H(S),−ΓS)→ SHI (−M,−Γ)

of Proposition 3.10 to define

θ(ξ) = (FHn ◦ FHn−1 ◦ · · · ◦ FH1)(1) ∈ SHI (−M,−Γ).

Theorem 3.16. Let (M,Γ, ξ) be a sutured contact manifold. Then the element θ(ξ) ∈
SHI (−M,−Γ) associated to a supporting open book is invariant under stabilization, and
hence an invariant of the contact structure. Moreover, if we build a new contact manifold
(M ′,Γ′, ξ′) by attaching a contact 1-handle or a contact 2-handle, which we call H, then
the map

FH : SHI (−M,−Γ)→ SHI (−M ′,−Γ′)

of Proposition 3.9 or 3.10 satisfies FH(θ(ξ)) = θ(ξ′).

Proof. We explain the proof of invariance here. Let (S, P, h, c = {c1, . . . , cn}) be an open
book supporting (M,Γ, ξ), and let

(S′, P ′, h′, c′ = c ∪ {c0})
be a stabilization. Then M(S′, P ′, h′, {c0}) is formed by attaching a Darboux ball (a can-
celling pair of contact 1- and 2-handles) to H(S), so we have a natural identification

SHI (−M(S′, P ′, h′, {c0})) ∼= SHI (−H(S)) ∼= C

and we claim that the 2-handle attachment map

FH0 : SHI (−H(S′))→ SHI (−M(S′, P ′, h′, {c0})),
induced by a handle H0 attached along γ0, is nonzero as a map C→ C. Then the elements 1
and FH0(1) of SHI (−M(S′, P ′, h′, {c0})) ∼= C agree up to a scalar, hence so do their images
under the analogous map

FHn ◦ · · · ◦ FH1 .

But these images are by definition θ(M(S, P, h, c)) and θ(M(S′, P ′, h′, c′)) respectively, so
the two must be equal.

To prove the claim, we consider γ0 as shown in Figure 7. As a ∂H(S′)-framed curve, it
is isotopic to the (∂H(S′) + 1)-framed curve β′ ⊂ S′ × {1} ⊂ R+(ΓS′), which is a parallel
copy of the curve β for which h′ = Dβ ◦ h. We can then further isotope γ0 into the surface
R′ which is part of the closure data for −H(S′), and thus we realize the cobordism which
defines FH0 as (+1)-surgery on an essential curve in R′. But this is exactly the sort of
cobordism which realizes the canonical isomorphisms between different closures of −H(S′)
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S β

c0
H

γ0

β′

Figure 7. The arc c0 ⊂ S′ (left), and the arc γ0 both before (middle) and
after (right) an isotopy.

– here it matters that we have reversed orientation, so that the framing with respect to
−H(S′) is −1 – and so FH0 is indeed an isomorphism. �

Proposition 3.17. If (M,Γ, ξ) is a sutured contact manifold and ξ is overtwisted, then
θ(ξ) = 0.

Proof. We build (M,Γ, ξ) by attaching contact 1- and 2-handles to a small neighborhood
(B3,Γot, ξot) of an overtwisted disk. Letting F be the composition of the corresponding
handle maps, the map

F : SHI (−B3,−Γot)→ SHI (−M,−Γ)

sends θ(ξot) to θ(ξ) by Theorem 3.16. But we saw in Example 3.12 that SHI (−B3,−Γot) =
0, so θ(ξot) = 0 and hence the same is true of its image. �

We can see from the definition that θ is not uniformly zero: it is nonzero for all product
sutured contact manifolds (H(S), ξS), since these are supported by partial open books with
P = c = ∅. In fact, if (Y, ξ) is a closed contact 3-manifold which is Stein fillable, then
θ(ξ|Y (1)) 6= 0, and it follows that if a sutured contact manifold (M,Γ, ξ) embeds in a Stein
fillable closed contact 3-manifold then θ(ξ) 6= 0. See [BS16a], or [BS16b] for a stronger
version with a different proof.

4. Khovanov homology and the trefoils

In this lecture we build on Kronheimer and Mrowka’s proof that Khovanov homology
detects the unknot [KM11] to prove that it also detects the left- and right-handed trefoils
[BS18]. For further reading, we recommend [BN02] as an introduction to Khovanov homol-
ogy. This lecture also makes use of quite a few notions from 3-dimensional contact geometry,
and all of the necessary background (and more) can be found in Etnyre’s lecture notes on
Legendrian and transverse knots [Etn05] and on open book decompositions [Etn06].

The first categorification of a knot polynomial was given by Khovanov [Kho00], who
defined for any knot K ⊂ S3 a bigraded abelian group

Kh∗,∗(K)

whose graded Euler characteristic recovers the Jones polynomial,

VK(q) =
∑
i,j

(−1)iqj · rank(Khi,j(K)).

(Strictly speaking, we are using Kh to denote reduced Khovanov homology.)
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Figure 8. The cube of resolutions for the Hopf link. We have V00
∼= V11

∼=
Z2 and V10

∼= V01
∼= Z.

Khovanov homology is defined using a “cube of resolutions”, in which we take a diagramD
of K whose crossings are labeled 1, . . . , n and then associate to each element a = (a1, . . . , an)
of {0, 1}n the unlink diagram Da in which crossing i is replaced with its ai-resolution for
all i, according to the following convention:

0

←−

1

−→

(See Figure 8 for an example.) We then place Va = (Z2)⊗(|Da|−1) at each vertex of an
n-dimensional cube, where |Da| is the number of components of Da, and label the edges
from a to b (where b is obtained from a by changing one aj = 0 to 1) with certain maps
Va → Vb determined by whether the change in resolution merges two components of Da

or splits one component into two. All of this is combinatorial and forms a chain complex
whose homology is Kh(K). See [BN02] for details of the original “unreduced” construction,
which is essentially the same but slightly larger.

It is still unknown whether the Jones polynomial detects the unknot U ⊂ S3: in other
words, if VK(q) = VU (q), must K be the unknot? The categorified version of this question
was answered affirmatively by Kronheimer and Mrowka.

Theorem 4.1 ([KM11]). Let K be a knot in S3. Then Kh(K) has rank 1 if and only if K
is the unknot.

The proof of Theorem 4.1 proceeds in several steps. First, Kronheimer and Mrowka define
an invariant I\(K), the singular instanton knot homology of K, which associates abelian
groups to knots in 3-manifolds and homomorphisms to cobordisms between them. They
then construct a spectral sequence with E2 page Kh(K) and converging to I\(K), based on
the observation that the groups and maps in Khovanov’s cube of resolutions are the same
as those assigned by I\ to the various Da and saddle cobordisms between them; this was
originally due to Ozsváth and Szabó [OS05], whose spectral sequence converged instead to

ĤF (Σ(K)). Finally, they prove an isomorphism I\(K) ⊗ C ∼= KHI (K), so all of this gives
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a rank inequality

(4.1) rank(Kh(K)) ≥ rank(KHI (K)),

and it suffices to show that rank(KHI (K)) ≥ 1 with equality if and only if K is unknotted.
This last claim was proven in [KM10b] as follows. There is an Alexander grading

KHI (K) =

g(K)⊕
i=−g(K)

KHI (K, i)

which is symmetric and detects the Seifert genus, fiberedness, and Alexander polynomial of
K, meaning the following:

• KHI (K, i) ∼= KHI (K,−i) for all i;
• rank KHI (K, g(K)) ≥ 1, with equality if and only if K is fibered.
• Each KHI (K, i) has a canonical Z/2Z grading, and these satisfy

(4.2) ∆K(t) = −
g(K)∑

i=−g(K)

χ(KHI (K, i))ti.

(The last property is not needed for unknot detection; it was proved separately in [KM10a].)
So if K is not the unknot then it has Seifert genus g(K) ≥ 1, and the summand

KHI (K, g(K))⊕KHI (K,−g(K)) ⊂ KHI (K)

has rank at least 2 by the above properties.
The goal of this lecture, building on Kronheimer and Mrowka’s work, is to show that

Khovanov homology also detects the trefoils. We remark that it clearly distinguishes the
left and right handed trefoils from each other, since they have different Jones polynomials.

Theorem 4.2 ([BS18]). Let K be a knot other than the unknot. Then rank Kh(K) ≥ 3,
with equality if and only if K is a trefoil.

Proof. By (4.1), it suffices to show that if K is not the unknot, then rank(KHI (K)) ≥ 3
with equality if and only if K is a trefoil. For K which are not fibered, the rank is at least
4 since it must be at least 2 in each of the Alexander gradings g(K) and (by symmetry)
−g(K), so we can assume from now on that K is fibered. We also assume for now the
following proposition.

Proposition 4.3. Let K be a fibered knot in S3. Then rank(KHI (K, g(K)− 1)) ≥ 1.

Supposing that K is fibered with Seifert genus g ≥ 2, it follows from this proposition that

rank(KHI (K, i)) > 0 for i ∈ {−g,−g + 1, g − 1, g},

and these four gradings are all distinct, so KHI (K) has total rank at least four.
The only remaining cases are those where K is a fibered knot with genus 1, in which

case it is either a trefoil or the figure eight. But by (4.2), the rank of KHI (K) is at least
det(K) = |∆K(−1)|; applying this together with the upper bound (4.1), it follows that
KHI has rank 5 for the figure eight knot and 3 for each of the trefoils, so the proof is
complete. �

We now focus on the proof of Proposition 4.3. The analogous statement in knot Floer ho-

mology was discovered first [BVV18], but its proof makes use of the fact that ĤFK (−Y,−K)



22 STEVEN SIVEK

Σ

Γ Γ

p+ p−

Σ′

c− c+

c+

Figure 9. Building a closure of (M,Γ) (left) adapted to the surface Σ by
attaching a handle to Σ inside T × [−1, 1] to form Σ′ (right) and then gluing
c+ to c−.

comes from a filtration on the Heegaard Floer chain complex ĈF (−Y ), and this has no ana-
logue in instanton Floer homology. However, the relevant claim can be rephrased in terms
of the Z/2Z[U ]-module structure of HFK−(−Y,−K), which Etnyre, Vela-Vick and Zarev
[EVVZ17] reinterpreted in terms of contact structures and sutured Heegaard Floer homol-
ogy. This reinterpretation can be translated into SHI , and doing so leads us to the seemingly
ad hoc proof of Proposition 4.3, which we develop over the next few subsections.

4.1. The Alexander grading. The first ingredient in the proof of Proposition 4.3 is an
Alexander grading on SHI , which was defined by Kronheimer and Mrowka for KHI in
[KM10b] and then slightly generalized in [BS18]. We refer back to Definition 3.6 for the
definition of a closure of a sutured manifold.

Definition 4.4. Let (M,Γ) be a sutured manifold, and Σ ⊂ M a properly embedded,
oriented surface with connected boundary which intersects Γ transversely in two points,
p+ ∈ R+(Γ) and p− ∈ R−(Γ). We build a closure (Y,R) of (M,Γ) which is adapted to Σ
by the following steps:

• Fix a properly embedded, nonseparating arc τ in the auxiliary surface T , and arrange
that the homeomorphism

h : ∂T × [−1, 1]→ A(Γ) = Γ× [−1, 1]

sends ∂τ × [−1, 1] to {p+, p−} × [−1, 1]. Define Σ′ ⊂ M ′ as the union of Σ and
τ × [−1, 1].
• Define closed curves in the boundary of M ′ by

c± =
(
∂Σ ∩ (R±(Γ) rA(Γ))

)
∪
(
τ × {±1}

)
⊂ ∂±M ′

and let φ : ∂+M
′ → ∂−M

′ be a homeomorphism taking c+ to c−.

In the closed manifold Y = M ′ ∪ ∂+M
′ × [−1, 1], we define Σ̂ = Σ′ ∪ c+ × [−1, 1].

Given an adapted closure (Y,R), the associated surface Σ̂ is a closed, oriented surface

obtained by gluing a punctured torus to Σ. Thus g(Σ̂) = g(Σ) + 1, and so the eigenvalues

of µ(Σ̂) acting on I∗(Y |R)w are a subset of

{2− 2g(Σ̂), 4− 2g(Σ̂), . . . , 2g(Σ̂)− 2} = {−2g(Σ), 2− 2g(Σ), . . . , 2g(Σ)}.



LECTURES ON INSTANTONS AND CONTACT STRUCTURES 23

Definition 4.5. Let Σ ⊂ (M,Γ) be a properly embedded, oriented surface with connected
boundary which intersects Γ transversely in two points. Then there is a decomposition

SHI (M,Γ) =

g(Σ)⊕
i=−g(Σ)

SHI (M,Γ, [Σ], i),

where SHI (M,Γ, [Σ], i) is the generalized 2i-eigenspace of µ(Σ̂) acting on SHI (M,Γ) as
constructed from an adapted closure.

Theorem 4.6 ([BS18]). The decomposition of Definition 4.5 is independent of the choice
of adapted closure, and depends only on the relative homology class [Σ] ∈ H2(M,∂Σ).

We refer to this decomposition as the Alexander grading on SHI (M,Γ) relative to Σ. In
the case of a sutured knot complement with Seifert surface Σ, this recovers Kronheimer
and Mrowka’s original Alexander grading on KHI ; if the ambient manifold is a homology
3-sphere then the homology class of Σ is uniquely determined and so we can omit it from
the notation.

4.2. Bypasses and the Legendrian invariant. The second ingredient in the proof of
Proposition 4.3 is a Legendrian knot invariant built out of the contact class θ, using a
construction of Stipsicz and Vértesi [SV09] in sutured Heegaard Floer homology which
recovers an Legendrian invariant originally due to Lisca–Ozsváth–Stipsicz–Szabó [LOSS09].
In order to define it, we must first review the notion of a bypass in contact geometry.

A bypass in a contact manifold (Y, ξ) is a particular type of half-disk D, originally defined
by Honda [Hon00, §3.4], which is attached to a convex surface Σ along an arc c. The arc
c intersects the dividing curves Γ ⊂ Σ transversely in exactly three points, two of which
are the endpoints of c. A neighborhood of Σ ∪ D is then smoothly isotopic to a product
Σ × [0, 1], but not necessarily as a contact manifold: the dividing curves on Σ × {0} and
Σ× {1} are generally different.

In more familiar (and precise) terms, we construct this neighborhood by attaching a
contact 1-handle to Σ along ∂c, and then a contact 2-handle along a closed curve consisting
of c and an arc on the boundary of the 1-handle, as shown in Figure 10. If we attach
a bypass D to a sutured contact manifold (M,Γ, ξ) along its boundary, producing a new
sutured contact manifold (M,Γ′, ξ′), then the composition of the 1-handle and 2-handle
maps of Propositions 3.9 and 3.10 is a map

FD : SHI (−M,−Γ)→ SHI (−M,−Γ′)

which takes θ(ξ) to θ(ξ′) by Theorem 3.16.
Now a knot Λ in a contact manifold (Y, ξ) is called Legendrian if it is tangent everywhere

to the contact planes, meaning that TΛ ⊂ ξ|Λ. A Legendrian knot Λ has a standard contact
neighborhood N(Λ) and a natural framing, the Thurston–Bennequin framing tb(Λ), given
by the orthogonal complement of TΛ inside ξ|Λ. The boundary of a standard neighborhood
is then a convex surface with dividing set Γtb a pair of parallel, oppositely oriented curves
of slope tb(Λ), and in the complement Y rN(Λ) there are several interesting ways to attach
a bypass. Two of these are illustrated in Figure 11: one of them, along an arc labeled cSV ,
turns these dividing curves into meridians and thus induces a bypass attachment map

FSV : SHI (−Y rN(Λ),Γtb)→ SHI (−Y rN(Λ), µ ∪ −µ) = KHI (−Y,−K).
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Figure 10. Attaching a bypass to Σ along an arc c (top left) by first attach-
ing a contact 1-handle (top right), then attaching a contact 2-handle along
the very thick curve to get a convex surface isotopic to Σ (bottom left) with
new dividing curves Γ′ (bottom right).

tb

−µ
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−µ

=
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−µ

Figure 11. Attaching bypasses to the complement of a Legendrian knot
along the arcs cSV (top) and c+ (bottom), as viewed from outside the com-
plement.

The other, along the arc labeled c+, turns the complement of Λ into the complement of
its positive stabilization Λ+, which satisfies tb(Λ+) = tb(Λ)− 1. (An identical bypass with
endpoints on the other dividing curve produces the negative stabilization Λ− instead.)
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Definition 4.7 (cf. [SV09]). If Λ is a Legendrian knot in (Y, ξ), we define

L(Λ) = FSV (θ(ξ|Y rN(K))) ∈ KHI (−Y,−K)

as the class θ(ξΛ), where ξΛ is the contact structure obtained by attaching a bypass to the
complement of Λ along the curve cSV .

Evidently L(Λ) is an invariant of Λ up to Legendrian isotopy. If Λ± are the positive and
negative stabilizations of Λ, then Stipsicz and Vértesi [SV09] proved that ξΛ−

∼= ξΛ and
that ξΛ+ is overtwisted, from which we have

L(Λ−) = L(Λ), L(Λ+) = 0.

The first identity implies that L defines an invariant of transverse knots K ⊂ (Y, ξ), by
declaring T (K) := L(Λ) where Λ is any Legendrian approximation of K.

If K ⊂ Y is a fibered knot of genus g, with fibration π : Y r K → S1, then the
open book (K,π) determines a contact structure on Y by a construction of Thurston and
Winkelnkemper [TW75]. This contact structure, which is said to be supported by (K,π),
is nearly tangent to the pages of the open book (i.e., the fibers of π), while K is transverse
to it. It may be overtwisted, but we still have the following:

Theorem 4.8 ([BS18]). Let K ⊂ Y be a fibered knot, with fibration π : Y r K → S1

and Seifert surface Σ which is the closure of a fiber π−1(pt). If we view K as a transverse
knot with respect to the contact structure supported by (K,π), then the transverse invariant
T (K) is a nonzero element of

KHI (−Y,K, [Σ], g(Σ)) ∼= C.

Remark 4.9. There is no contradiction with Proposition 3.17 here, because while the contact
structure on Y may be overtwisted, its restriction to Y r N(K) is not. In other words,
every overtwisted disk in Y has to pass through the binding of the open book.

In particular, Theorem 4.8 says that the sutured manifold Y (K) carries a contact struc-
ture ξY,K,π – this is the ξΛ of Definition 4.7, where Λ is a Legendrian approximation to K
– whose contact invariant θ(ξY,K,π) = T (K) generates KHI (−Y,K, [Σ], g(Σ)).

4.3. The bypass exact triangle. The third ingredient in the proof of Proposition 4.3
is the bypass exact triangle, which was originally described in sutured Heegaard Floer ho-
mology in unpublished work of Honda (see [EVVZ17, §6] for a proof). When we attach a
bypass, there is an obvious candidate for a new attaching arc in a neighborhood of the old
one, and if we attach another bypass and repeat we eventually get a 3-periodic sequence
Γ,Γ′,Γ′′, . . . of dividing curves, as shown in Figure 12. Their sutured instanton homologies
are related as follows.

Theorem 4.10 ([BS18]). Let M be a sutured manifold, and let Γ,Γ′,Γ′′ ⊂ ∂M be sutures
which differ inside a disk as in Figure 12 and agree outside that disk. Then there is an
exact triangle

· · · → SHI (−M,−Γ)→ SHI (−M,−Γ′)→ SHI (−M,−Γ′′)→ . . . ,

where the homomorphisms are bypass attachment maps. In particular, if Γ,Γ′,Γ′′ are the
dividing sets of contact structures ξ, ξ′, ξ′′ on M which differ by attaching bypasses as shown,
then these maps preserve the contact invariants θ(ξ), θ(ξ′), θ(ξ′′).



26 STEVEN SIVEK

Γ

→
Γ′

→

Γ′′

→
Figure 12. A 3-periodic sequence of bypasses.

Proof (sketch). We recall that the 1-handle attachment maps come from identifying appro-
priately chosen closures before and after attaching the handle, so we choose to attach all
three 1-handles first. Then the bypass maps can be identified with the 2-handle attachment
maps, which come from cobordisms induced by surgeries on the respective closures. Some
handle-sliding eventually shows that we can arrange for these surgeries to be precisely the
ones described in Floer’s surgery exact triangle [Flo90, BD95]. The bundles on the bypass
cobordisms do not quite match the bundles on the cobordisms which appear in the exact
triangle, but we can arrange for any two out of three to match and thus verify exactness at
their common vertex of the triangle. �

4.4. Proof of Proposition 4.3. Let K ⊂ Y be a fibered knot, with fiber Σ of genus g ≥ 1,
and suppose that Y 6∼= #2g(S1 × S2). This assumption ensures that the monodromy of the
fibration π : Y rK → S1 is not the identity, so up to replacing K with its mirror image we
may assume that the monodromy is non-right-veering. This notion, due to Honda–Kazez–
Matić [HKM07], implies that the contact structure ξ supported by (K,π) is overtwisted.
More importantly, if Λ is a Legendrian approximation of K in (Y, ξ), it allows us to show
that the complement Y r N(Λ+) of a positive stabilization of Λ is overtwisted [BS18,
Lemma 1.14].

We consider a particular case of the bypass exact triangle shown in Figure 13, beginning
with the sutured manifold (Y r N(Λ),Γtb(Λ)). Labeling the three bypasses c+, cSV , and

c′ in order and their bypass attachment maps F+, F 1
SV , and G, we have a commutative

diagram

(4.3) KHI (−Y,K)

SHI (−Y rN(K),Γtb(Λ))

F 0
SV

55

F+ // SHI (−Y rN(K),Γtb(Λ+))

F 1
SVtt

KHI (−Y,K)

G

ii

in which the triangle is the bypass exact triangle. The arrow labeled F 0
SV is the bypass

attaching map for the bypass cSV of Figure 11, which is attached to the convex surface with
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−µ

Figure 13. A 3-periodic sequence of bypasses on the boundary of Y rN(K).

dividing set Γtb(Λ) whereas F 1
SV corresponds to a bypass attached to a surface with dividing

set Γtb(Λ+).
In (4.3), we now examine the element

x = θ(ξ|Y rN(Λ)) ∈ SHI (−Y rN(K),Γtb(Λ)).

Since ξ|Y rN(Λ+) is overtwisted, we have

F+(x) = θ(ξ|Y rN(Λ+)) = 0,

and so by exactness we can find an element

y ∈ KHI (−Y,K) such that G(y) = x.

But we have F 0
SV (x) = L(Λ) = T (K) by definition, so by Theorem 4.8 the map

Ψ := F 0
SV ◦G : KHI (−Y,K)→ KHI (−Y,K)

sends y to a generator of KHI (−Y,K,Σ, g) ∼= C.

Claim 4.11. The map Ψ : KHI (−Y,K)→ KHI (−Y,K) is zero on KHI (−Y,K,Σ, g).

Proof. Since KHI (−Y,K, g) is generated by L(Λ), it suffices to show that Ψ(L(Λ)) = 0. We
use the fact that

L(Λ) = L(Λ−) = F 1
SV (θ(ξ|Y rN(Λ−))),

where θ(ξ|Y rN(Λ−)) ∈ SHI (−Y rN(K),Γtb(Λ+)) since Λ− and Λ+ have the same Thurston–
Bennequin framing. Then

Ψ(L(Λ)) = (F 0
SV ◦G ◦ F 1

SV )
(
θ(ξ|Y rN(Λ−))

)
,

which is zero since G ◦ F 1
SV = 0 by exactness. �

Claim 4.12. The map Ψ : KHI (−Y,K) → KHI (−Y,K) changes grading by at most 1, so
that if z ∈ KHI (−Y,K,Σ, i) then

Ψ(z) ∈
⊕
|j−i|≤1

KHI (−Y,K,Σ, j).
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Figure 14. A schematic of the cobordism underlying the map Ψ. The
bottom half is a product [0, 1]× (Y rN(K)), while the top contains a pair
of 2-handles.

Proof. Since Ψ is a composition of two bypass attachment maps, we can arrange for it to
be realized by a cobordism W : Y0 → Y1, consisting of a pair of 4-dimensional 2-handles,
between two closures (Y0, R0) and (Y1, R1); we can also arrange for both closures to be
adapted to Σ. The handles are attached to the complement of Y r N(K), so we have
the schematic picture shown in Figure 14. Namely, the Alexander grading on the source
KHI (−Y,K) is the generalized eigenspace decomposition of µ(Σ̂0), where Σ̂0 is obtained
by gluing a punctured torus T0 to the Seifert surface Σ inside Y0; and the grading on the
target KHI (−Y,K) likewise comes from the operator µ(Σ̂1), where Σ̂1 = Σ ∪ T1.

Within the cobordism W , there is a closed surface F of genus 2 and self-intersection 0
such that

[Σ̂0] + [F ] = [Σ̂1]

in H2(W ): it consists of the punctured tori −T0 and T1, together with an annulus of the
form [0, 1]×∂Σ ⊂ [0, 1]× (Y rN(K)) connecting them. One can therefore show (see [BS18,

Proposition 2.8]) that if z ∈ I∗(Y0|R0)w0 lies in the generalized 2i-eigenspace of µ(Σ̂0), then

its image Ψ(z) ∈ I∗(Y1|R1)w1 lies in the direct sum of generalized eigenspaces of µ(Σ̂1) with
eigenvalues

2i+ (2− 2g(F )), 2i+ (4− 2g(F )), . . . , 2i+ (2g(F )− 4), 2i+ (2g(F )− 2),

which in this case is simply 2i − 2, 2i, 2i + 2. These are the summands KHI (−Y,K,Σ, j)
where j = i− 1, i, i+ 1, as claimed. �

We now examine the element y with Ψ(y) = T (K). It may not be homogeneous, but if
we write it as

y = y−g + y−g+1 + · · ·+ yg−1 + yg, yj ∈ KHI (−Y,K,Σ, j) for all j,

then Claim 4.12 says that Ψ(y) = T (K) 6= 0 is in fact the component of Ψ(yg−1) + Ψ(yg) in
Alexander grading g, and Claim 4.11 says that Ψ(yg) = 0, so this is only possible if yg−1 6= 0.
We conclude that KHI (−Y,K,Σ, g − 1) 6= 0, completing the proof of Proposition 4.3 and
hence of Theorem 4.2.
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