CONTACT STRUCTURES AND REDUCIBLE SURGERIES

TYE LIDMAN AND STEVEN SIVEK

ABSTRACT. We apply results from both contact topology and exceptional surgery theory
to study when Legendrian surgery on a knot yields a reducible manifold. As an application,
we show that a reducible surgery on a non-cabled positive knot of genus g must have slope
2g — 1, leading to a proof of the cabling conjecture for positive knots of genus 2. Our
techniques also produce bounds on the maximum Thurston-Bennequin numbers of cables.

1. INTRODUCTION

1.1. Background. Given a knot in S, an important problem in three-manifold topology is
to classify the Dehn surgeries on K. One of the biggest open problems in Dehn surgery is to
determine the knots which admit reducible surgeries. Gabai’s proof of Property R [Gab87]
shows that if O-surgery on K is reducible, meaning that some embedded 2-sphere does not
bound a ball, then K is in fact the unknot. Since an oriented 3-manifold is prime (i.e. not
a nontrivial connected sum) if and only if it is either irreducible or S x 2 it follows that
0-surgery on a knot is always prime. However, many nontrivial knots do have reducible
surgeries. If K is the (p, ¢)-cable of a knot K’ (where p is the longitudinal winding) and U

is the unknot, then S5 (K) = Sg/q(U)#Sg’/p(K’)H Conjecturally, these are the only such

examples.

Conjecture 1.1 ((Cabling Conjecture, Gonzalez-Acuna—Short [GAS86])). Suppose Dehn
surgery on a non-trivial knot K is reducible. Then K = C,4(K') for some K' and the
surgery coefficient is pq.

The cabling conjecture is known for torus knots [Mos71] and satellite knots [Sch90], but
is still open for hyperbolic knots. Two key observations for the reducible surgeries on cables
are that the surgery always produces a lens space summand and the surgery coefficients are
integral. In fact, Gordon and Luecke showed that both of these conditions must hold for a
reducible surgery on any non-trivial knot.

Theorem 1.2 ((Gordon-Luecke [GL87, [GL89])). If some Dehn surgery S2(K) on a non-
trivial knot K 1s reducible, then r € Z and the surgery contains a lens space summand.

One consequence of this is that if n-surgery on K is reducible, then |n| > 2. Another
consequence is that a reducible surgery on a cable knot will have exactly two summands.
It is not known that a reducible surgery on a non-cable knot cannot have more than two
summands; however, it is known that if there are not two summands, the reducible manifold
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1The manifold S;’ / 4(U) is of course a lens space, but we write it this way for now to avoid confusion: it
is often called L(p,q) by 3-manifold topologists but —L(p, ¢) by contact geometers. We will use the latter
convention throughout this paper.
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is a connected sum of two lens spaces and an irreducible homology sphere [How02]. A
weaker version of the cabling conjecture is the three summands conjecture, which says that
reducible surgery never has more than two summands.

In this paper, it is our goal to study when Legendrian surgery on a knot can be reducible.
Recall that for a Legendrian representative of K, performing Legendrian surgery on K is
topologically Dehn surgery with coefficient tb(K) — 1. Let tb(K) denote the maximum
Thurston-Bennequin number of any Legendrian representative of K. Since stabilizations
reduce tb by one, any integral surgery coefficient strictly less than tb(K) will correspond to
a Legendrian surgery.

Our results will all stem from the following theorem of Eliashberg.

Theorem 1.3 ((Eliashberg [EILI90L [CE12])). Suppose that (X, J) is a Stein filling of a non-
prime contact 3-manifold (Y1,&1)#(Y2,&2). Then (X, J) decomposes as a boundary sum
(X1, J1)t(Xe, J2), where (X;,J;) is a Stein filling of (Y;,&).

We will first use Theorem to prove the following in Section

Proposition 1.4. Let K be a knot in S and suppose that S3(K) = L(p,q)#Y where
n < tb(K). Then:
(1) p=|n|, and n < —1;
(2) L(p,q) admits a simply-connected Stein filling with intersection form (n) = (—p);
(3) Y is an irreducible integer homology sphere which admits a contractible Stein filling.

The three summands conjecture follows immediately for S (K) when n < tb(K). If
S3(K) has at least three summands then so does —S3(K) = S2,(K), where K is the
mirror of K, so we conclude:

Corollary 1.5. Let K be a knot in S3. If S3(K) has more than two summands, then
th(K) <n < —tbh(K).

From Proposition[I.4] we are able to apply the existence of the Stein fillings to study the
cabling conjecture via known results in contact topology, such as the classification of tight
contact structures on lens spaces. Our results fall into two classes, corresponding to the
cases th(K) > 0 and tb(K) < 0, which we describe in the following subsections.

1.2. Reducible surgeries for knots with tb(K) > 0. We use Proposition to prove
the following theorem in Section

Theorem 1.6. Let K be a knot in S3 and suppose that tb(K) > 0. Then any surgery on
K with coefficient less than tb(K) is irreducible.

It is a theorem of Matignon and Sayari [MS03] that if S2(K) is reducible for a non-cable
K, then |n| < 2g(K) — 1, where g(K) is the Seifert genus of K. Therefore, if tb(K) is large,
this result can be used together with Theorem to strongly restrict the range of possible
reducible surgeries on K. We illustrate this in Section with positive knots.

Theorem 1.7. Suppose that K is a non-trivial positive knot which is not a cable. If S (K)
is reducible, then n = 2g(K) — 1. Consequently, there are no essential, punctured projective
planes in the complement of K.

Without additional information, one cannot apply Theorem to rule out the case of
(29(K) — 1)-surgery, since Bennequin’s inequality [Ben83] implies that tb(K) < 2g(K) — 1.
However, in some cases, one can in fact rule out this final surgery coefficient. In particular,
we will use additional techniques from Heegaard Floer homology to conclude the following.
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Theorem 1.8. Positive knots of genus at most 2 satisfy the cabling conjecture.

Remark 1.9. In practice, for most knots tb(K) is negative and thus Theorem does not
apply. However, large classes of knots do have tb(K) > 0, such as strongly quasipositive
knots [Rud95], and so this shows that strongly quasipositive knots (among others) do not
have negative reducible surgeries.

Observe that in Theorem [1.6] we do not require that K be a non-cable. Further, since the
maximum Thurston-Bennequin number of the unknot is —1, we do not need a non-triviality
assumption either. In light of Theorem we make the following conjecture.

Conjecture 1.10. Legendrian surgery on a knot in the tight contact structure on S° is
never reducible.

1.3. Knots with tb(K) < 0. While we are not able to prove Conjecture for knots
with tb(K) < 0, we are able to establish some partial results such as the following, which is
the subject of Section

Theorem 1.11. Let K be a knot in S® with tb(K) < 0. If S3(K) is reducible for some
n < %(K), and W is the trace of this surgery, then at least one of the following must hold:
(1) S3(K) = S3(U)#Y . If this is the case then W is necessarily diffeomorphic to DptZ,
where D, is the disk bundle over S? with Euler number n.
(2) th(K) = =6, n = —7, and S3(K) = S3,(To,—3)#Y where Ts _3 is the left-handed
trefoil. Moreover, W is diffeomorphic to XtZ where X is the trace of —T-surgery
on T27_3.

(3) n >4 16,
In each of the first two cases, Y is an irreducible homology sphere bounding the contractible
Stein manifold Z.

Remark 1.12. In case (2) above, we recall that Moser [Mos71] showed that S3.(Ty _3) is in
fact the lens space 557/4(U).

Remark 1.13. If the trace W of a reducible n-surgery on K has the form D,}Z, then the
generator of Hyo(W) = 7Z is represented by a smoothly embedded sphere even if K is not
smoothly slice.

Corollary 1.14. If -8 < tbh(K) < —1, then any reducible surgery on K with coeffi-
cient n < th(K) has the form Si(K) = S3(U)#Y, except possibly when th(K) = —6 and
S3(K) = S3.(Ty,—3)#Y . In both cases Y is an irreducible homology sphere which bounds
a contractible Stein manifold.

Proof. Suppose that the lens space summand of the reducible surgery is not S2(U). The-
orem says that either th(K) = —6 and n = —7, or since tb(K) > —8 we have
n > —10. We will see (Remark that this forces the lens space summand L(|n|,q)
to be S3-(Ty _3) = 537/4(U). If this lens space arises from case (3|) of Theorem then

we have n = =7 > 4L%j + 6, hence th(K) < —7, contradicting the assumption that
n < tb(K). Thus it can only arise from case (2)), in which case tb(K) = —6. O
We cannot guarantee that there do not exist negative reducible surgeries of slope at

least tb(K) which satisfy one of the conclusions of Theorem for example, if K is the
(2, —1)-cable of the right handed trefoil T, 3 then tb(K) = —2 by [ELT12), Theorem 1.7], and



4 TYE LIDMAN AND STEVEN SIVEK

S3,(K) = SiQ(U)#Sil/Q(TZg) = 93, (U)#X(2,3,13). Note that the Brieskorn homology
sphere 3(2,3,13) even bounds a smoothly contractible 4-manifold, as shown by Akbulut
and Kirby [AKT9].

Corollary 1.15. Suppose that % is odd and tb(K) < 0. If S3(K) is reducible for some

n < tb(K), then either (tb(K),n) = (=6, —7) or n > 4LTI’(TK)j + 6.

Proof. Suppose S2(K) is a reducible Legendrian surgery and n < 4 LE(TK)J +6 but (tb(K),n) #
(—=6,—T7). Theorem says that S3(K) = S3(U)#Y, where Y is a homology sphere which
bounds a contractible Stein manifold. The surgery formula for the Casson-Walker invariant
A, as stated by Boyer-Lines [BLI0] (see also Walker [Wal92|), implies that

_ 1A%

n 2

The Casson-Walker invariant is additive under connected sums with homology spheres, so
the left side is equal to A\(Y"), which is an even integer since Y bounds a smoothly contractible
manifold and thus has vanishing Rokhlin invariant [AM90]. We conclude that 2 ¢ 2nZ,

2
AKT(D is odd by assumption. ]

A(Sp(K)) = (S (U)

which is impossible since

Remark 1.16. The requirement that n < tb(K) is necessary in order to rule out S3(U)
summands: if K is the (3, —1)-cable of the right handed trefoil 75 3, then tb(K) = —3 by
[ELT12, Theorem 1.7], and §%,(K) = $%,(U)#5? 4(Tz3) is reducible but Z5% = 9 is

2
odd. (In this case we would have Y = ¥(2, 3,19), and so A(Y)) is odd.)

1.4. Maximum Thurston-Bennequin numbers for cables. Combining Theorem [I.6]
with the fact that cables have reducible surgeries, we are also able to say something about the
maximum Thurston-Bennequin numbers of cables, cf. [EH05, [ELT12| [Tos13]; this technique
was originally used by Etnyre-Honda [EHOI, Lemma 4.9] to compute tb for negative torus
knots. Let Cp 4(K) denote the (p, g)-cable of K, and note that for nontrivial cables we can
assume that p > 2 since C) 4(K) = C_p, _4(K) up to orientation.

Corollary 1.17. Suppose that p > 2 and ged(p, q) = 1, and assume that ¢ # —1.
o Ifqg<p-th(K), then tb(Cpq(K)) =pg.
o If qg>p-th(K), then pg — (q — p - tb(K)) < tb(Cp,q(K)) < pg.

Proof. Letting K’ = C,, ,(K), we first prove that tb(K’) < pg. We suppose for contradiction
that tb(K') > pg. Recalling that pg-surgery on K’ yields Sg/q(U)#Sg’/p(K), we note that if

q > 0 then tb(K') > pg > 0 and so this is ruled out by Theorem (unless S;’/p(K) =53,

in which case K is the unknot and ¢ = 1 [GL89], hence tb(K’) = —1 < pq anyway); and
if ¢ < —1 then this contradicts Proposition since Sg’ /p(K ) is not a homology sphere.
Thus th(K') < pq as long as q # —1.

Given a tb-maximizing front diagram for K, we can construct a front for K’ as illustrated
in Figure 1L We first take p parallel copies of this front, each copy pushed off the preceding
one by a small distance in the z-direction, to produce the (p, p - tb(K))-cable of K. If the
front for K has writhe w and ¢ cusps, and hence th(K) = w— %c, then this p-copy has writhe

pPw — p(pT_l)c and pc cusps, hence tb(Cp p%(K)(K)) =p? - th(K). If ¢ < p - tb(K), then we
insert p-tb(K) — q negative %—twists, each of which adds —(p—1) to the writhe and 2 to the
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Ficure 1. Using a front diagram for the Legendrian figure eight knot K
with tb(K) = —3, we take three parallel copies of K and insert two positive
1-twists (left) or four negative 3-twists (right) to build front diagrams for
the (3, —7)-cable and (3, —13)-cable of K, respectively.

?

N\
N\

7

number of cusps and hence adds —p to tb, to get tb(K') = pq. If instead ¢ > p-tb(K), then

we insert ¢ — p - th(K) positive %—twists, each of which adds p — 1 to the writhe and 0 to the

number of cusps and hence adds p — 1 to tb, to get tb(K') =pg—q+p- tb(K). Thus the
front we have constructed provides the desired lower bounds on tb(K') for arbitrary ¢. O

Corollary shows that for ¢ # —1, the reducible surgery on C), ,(K') cannot be realized
as a Legendrian surgery, since it has slope pq and tb(Cp (K)) < pq. This provides further
evidence for Conjecture [1.10

Remark 1.18. The claim that tb(C, 4(K)) < pq is actually false for ¢ = —1, because if U is
the unknot then so is Cp _1(U) for any p > 2 and so tb(Cp —1(U)) = —1 > —p. One can
also see that extending the results of Corollary to ¢ = —1 more generally would require
removing the possibility of the first conclusion in Theorem since 5% (Cp,—1(K)) =
53 (U)#Y where Y = Sil/p(K).

It turns out that in the case that ¢ > p - tb(K) in Corollary we are still sometimes
able to determine the maximum Thurston-Bennequin numbers for cables. We illustrate this
for a family of iterated torus knots, namely the ones which are L-space knots, below.

Recall that a knot is an L-space knot if it admiti\a positive L—S/pgce surgery, i.e. a
rational homology sphere Y with |H(Y;Z)| = rank HF(Y'), where HF' denotes the hat-
flavor of Heegaard Floer homology. L-space knots are fibered and strongly quasipositive
[Ni07, [Hed10] and thus satisfy si(K) = 2g(K) — 1 [EVHMII] and tb(K) > 0 [Rud95]. We
make the following conjecture, which together with Theorem would immediately imply
the main result of [HLZ13].

Conjecture 1.19. If K is an L-space knot, then th(K) = 2g(K) — 1.
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In Section [3.2] we give evidence for this conjecture, including the fact that it holds for
Berge knots (Proposition , which are the only knots known to have lens space surgeries;
and that if it holds for the L-space knot K then it also holds for any cable of K which is
also an L-space knot (Proposition . This implies, for example, that th(K) = 2g(K) — 1
whenever K is an iterated torus knot — meaning there is a sequence of cables

Ky = Tpl,qlaKQ = sz,qz(Kl)a oo Ky = pn,qn(anl)

with K = K, — such that K7 is a positive torus knot and 1% > 2¢g(K;—1) — 1 for all
1 > 2. These conditions on an iterated torus knot are equivalent to it being an L-space knot
[Hed09, Hom11].

Organization. In Section [2| we review the relevant background on contact topology and
Stein fillings and prove Proposition [I.4] In Section [3] we give a short proof of Theorem
we then discuss knots which satisfy tb = 2g — 1, show that this holds for positive knots
(establishing Theorem and complete the proof of Theorem In Section 4| we develop
some of the background needed to study the case tb < 0 and use this to give another proof of
Theorem Finally, in Section [5] we use this background material to prove Theorem [1.11

Acknowledgements. We would like to thank Mohan Bhupal, John Etnyre, Bob Gompf,
Cameron Gordon, and Jeremy Van Horn-Morris for helpful discussions. We would also
like to acknowledge that John Etnyre was independently aware some years ago that The-
orem could be applied to study the cabling conjecture. Theorem was completed
at the “Combinatorial Link Homology Theories, Braids, and Contact Geometry” workshop
at ICERM, so we would like to thank the organizers for a productive workshop and the
institute for its hospitality. Finally, we thank the referee for many useful comments which
helped to improve the exposition.

2. BACKGROUND

2.1. Reducible surgeries. To simplify future references, we collect the list of theorems
about reducible surgeries mentioned in the introduction.

Theorem 2.1. Let K be a non-trivial knot in S® and n,m relatively prime integers such
that m > 1. If Si/m(K) is reducible, then

(1) |[GL87, Theorem 1] m = 1;

(2) [GL89, Theorem 3] S2(K) = L(p, q)#Y for some non-trivial lens space L(p,q), and
thus |n| > 2;

(3) [MS03l, Theorem 1.1] either |n| < 2g(K) — 1 or K is not hyperbolic;

(4) [MosT71l,ISch90] if K is not hyperbolic, then it is an (r,s)-cable and n = rs.

Note that since Hy(S3(K)) = Z/|n|Z, we must have that |n| = p-|H;(Y)|. Also, in item
above we consider torus knots to be cable knots, since they are cables of the unknot.

2.2. Legendrian knots. For background on Legendrian knots we refer to the survey
[Etn05] by Etnyre. In this paper we will only be concerned with Legendrian knots K in
the standard tight contact structure &xq on S2, i.e. knots K C 83 which satisfy TK C &gq.
If the front projection of an oriented Legendrian knot K has writhe w and cy (resp. c_)
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upwardly (resp. downwardly) oriented cusps, then its two classical invariants, the Thurston-
Bennequin number and rotation number, are defined by

1h(K) :w—%(c++c_), r(K) = %(c_—c_,_).

The operations of positive and negative stabilization, which produce a new Legendrian
knot K. which is topologically isotopic to K but not Legendrian isotopic to it, change
these invariants according to

th(K1) = th(K) — 1, r(Ky) =r(K)£1.

Reversing the orientation of K preserves tb(K) while replacing r(K) with —r(K).

The classical invariants of a Legendrian knot are constrained in general by the Bennequin
inequality [Ben&3]

th(K) + |r(K)| <2g9(K) -1,

where g(K) is the Seifert genus of K. This inequality has been strengthened several times,
so that the right side can be replaced by 2¢s(K) — 1, where g5(K) < g(K) is the smooth
slice genus [Rud93]; by 27(K) — 1, where 7(K) < gs(K) is the Ozsvath-Szabé tau invariant
[Pla04]; or by s(K) — 1, where s(K) < 2¢5(K) is Rasmussen’s s invariant [Pla06, [Shu07].

2.3. Stein fillings. A contact manifold (Y, ¢) is said to be Stein fillable if there is a Stein
manifold (X,.J) with a strictly plurisubharmonic exhausting function ¢ : X — R such
that Y = ¢~ !(c) for some regular value ¢ of ¢ and ¢ = TY N J(TY). The subdomain
(07 Y((—o0,]),J) is a Stein filling of (Y, €).

Eliashberg [EIi90] and Gromov [Gro85] proved that if (Y3, ¢) admits a Stein filling, then
¢ is tight. Moreover, Eliashberg characterized the manifolds which admit Stein structures
in terms of handlebody decompositions as follows.

Theorem 2.2 ((Eliashberg, cf. [Gom98])). Let X be a compact, oriented 4-manifold. Then
X admits a Stein structure if and only if it can be presented as a handlebody consisting of
only 0-, 1-, and 2-handles, where the 2-handles are attached along Legendrian knots with
framing tb — 1 in the unique tight contact structure on #*(S* x S2).

In particular, we see that given a knot K in S3, the manifold obtained by attaching a
2-handle to B* with framing at most tb(K) — 1 admits a Stein structure, since by stablizing,
we can obtain a Legendrian representative with tb(K) = n for any n < tb(K).

Since lens spaces have metrics of positive scalar curvature, the topology of their Stein
fillings is heavily constrained.

Theorem 2.3 ((Lisca [Lis98])). Let (X, J) be a Stein filling of a lens space. Then b3 (X) =
0.

We also recall the definition of the ds invariant, due to Gompf [Gom98], of oriented plane
fields ¢ with torsion Chern class on a closed, oriented 3-manifold.

Theorem 2.4. Let (X,J) be an almost complex manifold with 0X =Y and & = TY N
J(TY). If c1(§) is torsion, then

_a(X,J)? = 30(X) - 2x(X)
(21) ds(€) = = .

s an invariant of the homotopy class of €& as an oriented plane field.
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All of the three-manifolds we will be concerned with in this paper will be rational homol-
ogy spheres, so for any oriented plane field ¢ that we will consider, ¢;(§) will be torsion.

Ezample 2.5. If (Y, §) is the boundary of a contractible Stein manifold X, then d3(§) = —
Examples include the tight contact structure on S2, which is filled by B*.

1
3

Now, if (Y;,&;) bounds an almost complex manifold (X, J;) for i = 1,2, then we can glue
a Weinstein 1-handle to X1 LI X2 to exhibit the boundary sum X;4X5 as an almost complex
manifold with boundary (Y1#Y5, &1#E&2), and so

(22 dy(€1#62) = da() + (&) + 5.

Combining this fact with Example we see that if (Y2, &2) is the boundary of a contractible
Stein manifold then

(2.3) d3(&#&2) = ds(&1).

2.4. Reducible contact manifolds. As mentioned in the introduction, our main input
into the proof of Proposition will be Theorem [1.3| proved by Eliashberg [Eli90, [CE12].
It states that any Stein filling of a non-prime contact 3-manifold decomposes as a boundary
sum of Stein fillings of the connected summands.

Proof of Proposition[1.J} By Theorem a reducible surgery on a non-trivial knot is nec-
essarily integral and has a non-trivial lens space summand. Let X be the 2-handlebody
obtained by attaching an n-framed 2-handle to the four-ball along K. Observe that X is
simply-connected and has intersection form (n). By Theorem if n < th(K) — 1, then
X admits a Stein structure J. Now, Theorem implies that if (X, J) is a Stein filling
of (S3(K),&) = (L(p,q),&1)#(Y, &), for Y # S°, then X decomposes as a boundary sum,
say X = (Wy, J1)§(Wa, J2), where (W7, J1) is a Stein filling of (L(p, q),&1) and (Wa, J3) is
a Stein filling of (Y, &2).

It is clear that W3 and W5 are simply-connected. Since 71 (W7) = 0 and Hy(0W7) # 0, we
must have Hy(W7) # 0. Then Hy(W7) is a summand of Ho(W1)@® Hao(Wa) = Ho(X) = Z, so
Hy(W1) carries Ho(X). Thus Wi has intersection form (n) and Hy(W2) = 0. Consequently,
we have Hy(0W1) = Z/|n|Z, and so |n| = |p|. Since m(W3) = Ha(Ws) = 0, and W,
has no 3- or 4-handles by Theorem we see that W is contractible and thus H;(Y) =
Hy(0W5) = 0.

In summary, we have S3(K) = L(|n|,q)#Y, where Y is an integer homology sphere,
(W1, J1) provides a simply-connected Stein filling of L(|n|,q) with intersection form (n),
and (Wa, J2) provides a contractible Stein filling of Y. If S3(K) has at least three nontrivial
connected summands then all but one of them are lens spaces by Theorem [2.I] and since
Y is a homology sphere we conclude that it must be irreducible. Finally, if n > 0 then
by (W1) > 0, contradicting Theorem so it follows that n < 0. O

2.5. Tight contact structures on lens spaces. We recall the classification of tight con-
tact structures on the lens space L(p, q), due to Giroux and Honda. We use the convention
here and from now on that L(p, q) denotes —%—surgery on the unknot, and that 1 < ¢ < p.

Theorem 2.6 ([Gir00, Hon00]). If —2 has continued fraction

[a1,a2,...,ay] == a1 — —
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where a; < —2 for all i, then Legendrian surgery on a chain of topological unknots of length
n in which the ith unknot has Thurston-Bennequin number a; + 1 and rotation number

ri € {a; +2,a; +4,a; + 6,...,|a;| — 2}

produces a tight contact structure on L(p,q). This construction gives a bijection between the
set of such tuples (r1,...,ry), which has [[;(Ja;| — 1) elements, and the set of tight contact
structures on L(p,q) up to isotopy.

The Legendrian surgery construction of Theorem also produces a Stein filling (X, Jz)
of each (L(p,q),&7), where & is the contact structure determined by the ordered set of
rotation numbers

¥ = <7“1,7’2,.. . ,Tn>
once we orient each unknot in the chain so that every pair of adjacent unknots has linking
number 1; we make this choice of orientation to simplify the linking matrix, and consequently
the matrix presentation of the intersection form for X. Then o(X) = —n since X is
necessarily negative definite, and x(X) =n+1, so

2
(2.4 dy(g) = AT A2
According to Gompf [Gom98], the Chern class in this formula is Poincaré dual to -, 7;[D;] €
Hy(X,0X), where each disk D; is the cocore of the 2-handle attached to 9B* = S along
the ith unknot. We will use this description later to compute ¢; (X, Jr)?: first we will con-
sider the case where there is a single 2-handle in the proof of Proposition [3.1], and then we
will discuss the general case in Section [4.1

Remark 2.7. The tight contact structures on L(p,q) come in conjugate pairs £ = & and
€ = £_5, which are isomorphic as plane fields but with opposite orientations. The discus-
sion above implies that the corresponding almost complex structures satisfy ¢ (X, J7) =
—c1(X, J_z), and hence that d3(&) = d3(€). Conjugation acts as an involution on the set of
tight contact structures on L(p, q), with at most one fixed point (¥ = (0,0,...,0)), which

satisfies d3(§) = ”T_2 and which only exists if all of the a; are even.

Remark 2.8. There is a canonical contact structure &can on L(p, q), defined as follows: the
standard contact structure &gq on S® is Z/pZ-equivariant under the action used to define
L(p, q), and &cap is defined as the quotient of &q under this action. We know that &y is
the contact structure &(|q,|-2,|az|—2,....Jan|—~2)> i Which each r; is as large as possible [0zb08|
Proposition 3.2] (see also [BO1I, Section 7]).

We can use Theorem to bound the number of tight contact structures on L(p,q) as
follows.
Proposition 2.9. Take relatively prime integers p and q, p > q > 1, and write —% =
[a1,...,ay] with each a; < —2. If m = min, |a;|, then L(p,q) has at most
m—1
——(p—-(n—1)(m -1t
S (p— (= )m— 1))
tight contact structures up to isotopy, with equality if and only if either n < 2 orp = q+ 1.
Proof. We remark that if n > 2 and —2 = [ag, ..., a,], then

P lai|s —r
2. _ £ _ _
(25) p_ _lubor
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hence ¢ = s (so in fact —4 = [ag, ..., a,]) and p = |a1|g — r. We then note that
p=q=(laf=1)g—r=(af=1(g—7r) = (m—-1)(g-7),

with equality only if |a1| = m = 2. Applying this repeatedly gives p — ¢ > (m — 1)" with
equality if and only if either |a;| = m = 2 for all 4, in which case p=¢+ 1, or n = 1.

We now prove the proposition by induction on n: certainly when n = 1 we must have
—’ql = [-p] = =%, som = p, and L(p,1) has exactly p — 1 = mﬁfl - p contact structures by
Theorem 2.6 Suppose that n > 2 and that a; = —m for some 7 > 1. Then

| Tight(L(p, )| = (la1| — 1) - [ Tight(L(g, 7))|
(laa| = 1) - (m = 1)(g = (n — 2)(m — 1)"?)

m
m—1 .
= = ((larlg = @) = (Jas| = (n = 2)(m — 1))
m—1 .-
ST(p—(q—r)—(n—Q)(m—l) o)
m—1
<——(p-(n-1)m-1""
<——(p—m-1m-1""),

where we use the facts that p = |ailg — 7, |a1] > m, n > 2, and ¢ —r > (m — 1)}

as shown above. If we have equality at each step then ¢ —r = (m — 1)"~!, hence either
n =2 or g =r + 1; in the latter case we have m = 2, and assuming n > 2 we must have
la1]| —1 =m—1 as well, so a; = —2 for all i, and thus p = ¢+ 1. Conversely, if n = 2 then it
is easy to see that equality is preserved, and likewise if p = ¢ + 1 since this implies a; = —2
for all 4.

If on the other hand n > 2 but only a; is equal to —m, then we apply the same argument
to L(p, q') where —5 = [ap, ..., a1] and observe that this is homeomorphic to L(p, q), since
they are presented by surgery on the same chain of unknots viewed from two different
perspectives. This completes the induction. ]

3. REDUCIBLE LEGENDRIAN SURGERIES FOR tb(K) > 0

3.1. A proof of Theorem Proposition [1.4] guarantees that associated to a reducible
Legendrian surgery is a certain Stein filling of a lens space, and consequently a tight con-
tact structure on this lens space. We will prove Theorem [I.6] by showing that reducible
Legendrian surgeries on knots with tb > 0 produce too many tight contact structures in
this fashion, appealing to Giroux and Honda’s classification of tight contact structures on
L(p, q) (Theorem . We recall our conventions that L(p, q) is —g—surgery on the unknot
and that 1 < g¢q <p.

Proposition 3.1. Let K be a knot, and suppose that S2(K) is reducible for some n <
th(K) — 1; write n = —p for some p > 2. If S3(K) = L(p, q)#Y, then Legendrian surgery
on any representative of K with tb = 1 — p and rotation number v induces a tight contact
structure & on L(p, q) with d3(§) = —4—117(7’2 +p).

Proof. By Theorem the reducible Legendrian surgery gives us a Stein filling (X, J) of
a reducible contact manifold

(Sp(K),€x) = (L(p,a), O# (Y, E),
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where (Y, ¢’) bounds a contractible Stein manifold by Proposition . Then equation
says that ds(§) = d3(£x), so it remains to compute d3(). By Proposition[L.4] o(X) = —1
(since n < 0) and x(X) = 2. Thus d3(éx) = 2(c1(X, J)? —1).

In order to compute ¢;(X,.J)?, we observe that ¢ = PD(cy(X,J)) is the class r[D] €
Hy(X,0X) [Gom98], where D is the cocore of the 2-handle attached along K. Then
Hy(X) = Z is generated by a surface ¥ of self-intersection n, obtained by capping off a
Seifert surface for K with the core of the 2-handle, and the map Hy(X) — Ha(X,0X)
sends [X] — n[D]. In particular, it sends —r[X] to —rn[D] = pc, and so

p*c® = (—r[%])? = r*n = —r?p,

or ¢? = —%. We conclude that ds(&) = d3(€k) = % (-% - 1)> as desired. _

At this point we can give a simple proof of Theorem m which says that if tb(K) > 0
then n-surgery on K is irreducible for all n < tb(K).

Proof of Theorem[1.6. Suppose that S3(K) is reducible for some n < th(K). We know by
Proposition that n < —2 and the reducible manifold has a summand of the form L(p, q)
with p = —n. Since K has a Legendrian representative with tb = tb(K) > 0, and tb + r is
odd, after possibly reversing the orientation of K, it has a representative with tb = 0 and
r =19 > 1. We can stabilize this representative p — 1 times with different choices of signs
to get representatives with tb =1 — p and

Te{To_p+17T0_P+37T0_p+5a-‘~77”0+]7_1}7

and by reversing orientation we also get one with tb =1—p and r = —rg —p+ 1. Thus the

Legendrian representatives of K with tb = 1 — p collectively admit at least p 4+ 1 different

t |l
2

rotation numbers, hence at leas —‘ values of 72.

For each value of r as above, Proposition says that L(p,q) admits a tight contact

structure £ with dz(§) = _ 74P Thig value of d3(€) is uniquely determined by r2, so the
4p

set of rational numbers
(3.1) {ds(&) | € € Tight(L(p,q))}

has at least {%W elements.

Now we know from Proposition that L(p, q) has at most p—1 tight contact structures.
Moreover, by Remark all but at most one of them come in conjugate pairs. Observe
that conjugate contact structures have the same d3 invariant, and so the set (3.1)) has at

most {%—‘ elements. We conclude that

ptl < p—1 ’
2 - 2
which is absurd. O

3.2. Knots with tb = 2g—1. In this subsection we discuss the question of which nontrivial
knots K can have th(K) = 2g(K) — 1, where g(K) is the Seifert genus. We have already
shown that reducible surgeries on such knots must have slope at least 2g(K) — 1. Recall
from Theorem [2.1] that if K is also hyperbolic, then Matignon-Sayari showed that reducible
surgeries on K have slope at most 2g(K) — 1, so then n-surgery on K cannot be reducible
unless n = 2¢g(K) — 1.
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Proposition 3.2. If K is a positive knot, then tb(K) = 2g(K) — 1.

Proof. Hayden—Sabloff [HS15] proved that if K is positive then it admits a Lagrangian
filling, hence by a theorem of Chantraine [Chal(] it satisfies th(K) = 2gs(K) — 1, where
gs(K) is the slice genus of K, and Rasmussen [Ras10] proved that gs(K) = ¢g(K) for positive
knots. O

Proof of Theorem [1.7. Tt follows from Proposition and item (4) of Theorem [2.]1] - that if
n-surgery on a posmve knot K is reducible, then elther Kisa cable and n is the cabling
slope, or K is hyperbolic and n = 2g(K) — 1. If K is also hyperbolic, the claim that there
are no essential punctured projective planes in its complement follows exactly as in [HLZ13|,
Corollary 1.5]. O

In the case g(K) = 2, we can use Heegaard Floer homology to eliminate the remaining
possibility n = 2¢g(K) — 1 as well: this establishes Theorem which asserts that positive
knots of genus at most 2 satisfy the cabling conjecture.

Proof of Theorem [I.8, The cabling conjecture is true for genus 1 knots by [BZ96] (see also
IMS03l, [HLZ13]). If n-surgery on the genus 2 positive knot K is a counterexample then K
must be hyperbolic by Theorem (in particular, K is prime) and n = 2g(K) — 1 =3 by
Theorem As a positive knot of genus 2, K is quasi-alternating [JK13], hence it has thin
knot Floer homology [MOOS8]. The signature of K is at most —4, since positive knots satisfy
0(K) < —4 unless they are pretzel knots [PT10, Corollary 1.3] and the cabling conjecture

is known for pretzel knots [LZ94] (in fact, for all Montesinos knots). Since |J( I
bound for the slice genus of K, and hence for g(K) = 2, we have o(K) = —4.

We claim that K cannot be fibered. Indeed, Cromwell [Cro89, Corollary 5.1] showed that
fibered homogeneous knots have crossing number at most 4g(K), and since positive knots
are homogeneous we need only check the knots with at most 8 crossings in KnotInfo [CL]
to verify that 