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Abstract

We provide several classes of examples to show that Stanley's plethysm conjecture

and a reformulation by Pylyavskyy, both concerning the ranks of certain matrices

Kλ associated with Young diagrams λ, are in general false. We also provide bounds

on the rank of Kλ by which it may be possible to show that the approach of Black

and List to Foulkes' conjecture does not work in general. Finally, since Black and

List's work concerns Kλ for rectangular shapes λ, we suggest a constructive way to

prove that Kλ does not have full rank when λ is a large rectangle.

1 Introduction

Let λ = (λ1, λ2, . . . , λr) be the shape of a Young diagram with |λ| =
∑

λi boxes in rows
of length λ1 ≥ λ2 ≥ . . . ≥ λr, and de�ne a tableau as a way to �ll such a diagram
with the numbers 1, 2, . . . , |λ| in some order. Following the notation in [4], we declare
two tableaux to be h-equivalent, denoted ≡h, if one can be obtained from the other by
permuting elements within a row and swapping rows of equal length, and likewise two
tableaux are v-equivalent, denoted ≡v, if the same can be done by manipulating columns
rather than rows. In other words, two tableaux are h-equivalent if they represent the same
partition of {1, 2, . . . , |λ|} with shape λ (i.e. in blocks of length λ1, . . . , λr), and they are
v-equivalent if they represent the same partition with shape λ

′
, where λ

′
denotes the

transpose of λ.
Denoting by T λ the set of all tableaux of shape λ, we can now de�ne row tabloids to

be members of the set of ≡h-equivalence classes Hλ := T λ/ ≡h and column tabloids to be
members of the set V λ := T λ/ ≡v. We de�ne an orthogonality relation as follows: given
Γ ∈ Hλ and ∆ ∈ V λ, we say Γ ⊥ ∆ if for every row r of Γ and column c of ∆ we have
|r ∩ c| ≤ 1. Equivalently, we �rst de�ne orthogonality on T λ by saying that Γ ⊥ ∆ for
Γ, ∆ ∈ T λ if there exists some tableau T such that Γ ≡h T and ∆ ≡v T , and then we can
extend this naturally to a relation between Hλ and V λ. Finally, we construct a matrix
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(µ) = + (λ)

Figure 1: µ extends λ, where µ = (5, 2, 1, 1), λ = (4, 1), and µ − λ = (1, 1, 1, 1).

Kλ with |Hλ| rows and |V λ| columns, each indexed by the members of their respective
sets, such that for Γ ∈ Hλ and ∆ ∈ V λ, the entry Kλ

Γ,∆ is 1 if Γ ⊥ ∆ and 0 otherwise.
We may think of Kλ as a map QV λ → QHλ of Sym(|λ|)-modules, though here it will
generally su�ce to simply view it as a matrix.

Let SkV denote the kth symmetric power of a �nite-dimensional complex vector
space V . Foulkes' plethysm conjecture states that if n ≥ m, then the Sym(mn)-module
Sn(SmV ) contains Sm(SnV ) as a submodule. Though the conjecture is still unresolved,
Black and List suggested a method of attack in [1] by constructing a particular map
φm,n : Sm(SnV ) → Sn(SmV ) (or equivalently, QV n×m → QHn×m) given by the matrix
Kn×m, where the shape �n × m� is a rectangle with n rows and m columns. They then
showed that if this map is injective for n ≥ m > 1, or equivalently if Kn×m has full rank,
then Kn×r also has full rank (i.e. φr,n is injective) for all pairs (n, r) where m ≥ r ≥ 1, and
so Foulkes' conjecture holds for all of these pairs. Stanley generalized this by conjecturing
in [5] that if λ is a shape such that λ ≥ λ

′
in dominance order, then the rows of Kλ are

linearly independent. Noting that some shapes with this property yield matrices with
more rows than columns, Pylyavskyy modi�ed the conjecture in [4] to the following:

Conjecture 1.1. Kλ has full rank for all λ.

This conjecture is in general false: Müller and Neunhö�er showed in [2] that K5×5

does not have full rank, so not only do Stanley's and Pylyavskyy's conjectures fail but
the approach of Black and List does not su�ce to prove Foulkes' conjecture.

We will show that Conjecture 1.1 fails for many more cases in the sense that every
shape λ can be nested inside some µ for which Kµ does not have full rank, and furthermore
that the rank of Kλ can be arbitrarily small compared to min(|Hλ|, |V λ|). We will then
address the case where λ is an m× n rectangle and consider two ways to prove that such
Kλ are not rank-maximal, �rst by attempting to �nd an upper bound on rank(Kλ) and
then by conjecturing that ker(Kλ) contains vectors of a particularly convenient form.

2 Extending shapes

Let λ and µ be Young diagrams. We will say that µ extends λ if for some k ≥ 1, we can
delete the leftmost k columns from µ so that the remaining shape is λ. We will denote
the shape of these k columns by µ − λ; see Figure 1 for an example.
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Many of our counterexamples to Conjecture 1.1 will be constructed from the following
lemma.

Lemma 2.1. Given a shape λ, if there exists a nonzero vector v with Kλv = 0, then there
exists a nonzero vector w such that Kµw = 0 for any µ which extends λ.

Proof. Recall that the entries of Kλ are indexed by pairs (Γ, ∆) of row and column
tabloids. If v = (v∆)∆∈V λ , then

∑
∆∈V λ KΓ,∆

λ v∆ = 0 for all row tabloids Γ ∈ Hλ.
Suppose that λ has b boxes, µ has c > b boxes, and µ − λ has k columns; clearly it

su�ces to consider the case k = 1. For each ∆ ∈ V λ, construct a column tabloid ∆
′
of

shape µ by �lling in the rightmost columns which correspond to the shape λ exactly as
in ∆, and assigning b + 1, . . . , c to the �rst column. Finally, construct w = (wδ)δ∈V µ as
follows: set w∆′ = v∆ for all ∆ ∈ V λ, and let all other wδ be 0. Note that for any distinct
∆1, ∆2 ∈ V λ, we have ∆

′
1 6≡v ∆

′
2 since ∆1 6≡v ∆2, so this construction is well de�ned, and

that since v is nonzero we have v∆ 66= 0 for some ∆, hence w is nonzero.
We must now show that Kµw = 0. Fix an arbitrary row tabloid Γ

′ ∈ Hµ. If Γ
′

is orthogonal to none of the ∆
′
, then the corresponding entry of Kµw is clearly zero.

Otherwise, for �xed ∆ such that Γ
′ ⊥ ∆

′
, each row of Γ

′
has exactly one entry from the �rst

column of ∆
′
, since the length of this �rst column is equal to the number of rows of Γ

′
and

by orthogonality no row of Γ
′
can contain two elements from any column of ∆

′
. Therefore

we may remove the leftmost column from∆
′
and the corresponding elements from the rows

of Γ
′
; the resulting tabloids will have shape λ, and ∆

′
will be reduced to ∆. Furthermore,

the elements removed from Γ
′
are precisely the integers b+1, . . . , c, so the resulting Γ ∈ Hλ

is independent of the choice of ∆. Therefore Γ
′ ⊥ ∆

′
if and only if Γ ⊥ ∆. But then the

entry of Kµw corresponding to Γ
′
is

∑
∆′∈V µ Kµ

Γ′ ,∆′w∆′ =
∑

∆∈V λ Kλ
Γ,∆v∆ = 0, and so we

conclude that Kµw = 0 as desired.

Calling a shape λ rank-maximal precisely when Kλ has maximal rank, we see that
Lemma 2.1 provides an easy way to construct shapes which are not rank-maximal. For
if we can extend a given λ with associated nonzero v ∈ ker(Kλ) to a shape µ such that
|Hµ| ≥ |V µ|, then the existence of a nonzero w ∈ ker(Kµ) tells us that rank(Kµ) < |V µ|
and hence that µ is not rank-maximal.

For example, this implies Black and List's theorem mentioned above, given their con-
struction of the maps φm,n.

Corollary 2.2. Given integers n, m, and r such that n ≥ m > 1 and m ≥ r ≥ 1, if φm,n

is injective, then φr,n is injective as well.

Proof. Suppose that Kn×r does not have full rank. It is easy to show that Kn×m has at
least as many rows as columns, and an n×m rectangle extends an n× r rectangle. Hence
by Lemma 2.1 there must be a nonzero v ∈ ker(Kn×m), meaning that Kn×m does not
have full rank either. Equivalently, if Kn×m has full rank, then so does Kn×r, and so if
φm,n is injective then φr,n is injective as well.

We now wish to �nd shapes with more row tabloids than column tabloids to which we
can apply Lemma 2.1. Consider a shape λ = (λ1, λ2, . . . , λr). For j ≥ 1, let mj be the

the electronic journal of combinatorics 13 (2006), #R24 3



number of i such that λi = j. It is easy to show that the number of row tabloids in Hλ

is given by

|Hλ| =
|λ|!

(
∏r

i=1 λi!) ·
(∏

j mj !
) , (1)

or equivalently, |Hλ| =
( |λ|

λ1,...,λr

)
(
∏

mj !)
−1. This is true because the �rst factor is the

number of ways to assign λ1 numbers to the �rst row, λ2 of the remaining numbers to the
second row, and so on, and the (

∏
mj !)

−1 factor compensates for the fact that the order
of the rows of a given size within a row tabloid does not matter.

If we extend λ by a single column of length l ≥ r to get a new shape µ, then it
follows from this formula that |Hµ| = (|λ|+1)···(|λ|+l)Q

i(λi+1)·(l−r)!
|Hλ|, where the (l − r)! term re�ects

the number of newly created rows of size 1. We may construct column tabloids with shape
µ by choosing l numbers to place in the �rst column and then �lling the rest of µ (i.e. λ)
in any possible way. Constructing µ from λ changes the number of columns of length l
from λl to λl + 1 (where λl = 0 if l > r), so |V µ| = 1

λl+1

(|λ|+l
l

)|V λ|. Combining these
equations yields

|Hµ|
|V µ| =

(
l(l − 1) · · · (l − r + 1) · (λl + 1)∏

(λi + 1)

) |Hλ|
|V λ| , (2)

and so for su�ciently large l we will have |Hµ|
|V µ| ≥ 1, or |Hµ| ≥ |V µ|.

Theorem 2.3. Given any shape λ, there exists a shape µ constructed by adding a single
row to the top of λ, a single column to the left of λ, or both, such that µ is not rank-
maximal.

Proof. If |V λ| > |Hλ|, then the columns of Kλ must be linearly dependent, so there exists
a nonzero v such that Kλv = 0. Extend λ by prepending a su�ciently long column as
described above, so that the new shape µ satis�es |Hµ| ≥ |V µ|. Then by Lemma 2.1 there
exists a nonzero vector w satisfying Kµw = 0, and thus Kµ cannot have maximal rank.

If |V λ| < |Hλ|, then since Kλ
′
= (Kλ)T we have |V λ

′ | > |Hλ
′ |. If we add a su�ciently

long column to λ
′
to get a shape µ

′
which is not rank-maximal, then µ is not rank-maximal

either. But then µ is the desired shape, since it consists of a single row added on top of
λ.

Otherwise, we must have |V λ| = |Hλ|. If we add a su�ciently long column to λ, the
resulting shape ν will satisfy |V ν | < |Hν |, and so we can add a long row on top of ν to
get a shape µ which is not rank-maximal.

In other words, we have shown that any shape can be placed inside a large enough
�hook� (possibly degenerate) to get a shape which is not rank-maximal. This shows that
Conjecture 1.1 fails over a large class of shapes. Furthermore, it is easy to see that if λ
is any symmetric shape, i.e. if λ = λ

′
, then we may choose the hook to be symmetric

in the proof of Theorem 2.3, since the resulting shape µ will satisfy |Hµ| = |V µ|. But
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Figure 2: Reinforced hooks such as (4,2,1,1) are not rank-maximal, but ordinary hooks
such as (4,1,1,1) are.

symmetric shapes satisfy µ ≥ µ
′
in dominance order, so we get in�nitely many shapes µ

satisfying the hypothesis of Stanley's conjecture for which the rows of Kµ are not linearly
independent and thus µ is not rank-maximal.

Following the proof of Theorem 2.3 with the shape λ = (1), for example, we see that
the �reinforced hooks� (m, 2, 1, 1, . . . , 1) with n rows, as shown in Figure 2, are not rank-
maximal when m, n ≥ 4. Removing a single box from the second row, however, yields
ordinary hooks, which are known to be rank-maximal [5].

Although Theorem 2.3 allows us to construct many counterexamples to Conjecture
1.1, it is unknown how many shapes which are not rank-maximal can be constructed in
this way. The author wrote a C program to generate Kλ for any shape λ, and used this
together with PARI/GP to determine which Kλ do not have maximum rank for all shapes
λ with at most 10 boxes except (due to memory constraints) the shape (4, 3, 2, 1). Among
these shapes, the only ones which failed to be rank-maximal were (4, 2, 1, 1), (5, 2, 1, 1),
(5, 2, 2, 1), (5, 2, 1, 1, 1), (6, 2, 1, 1), (4, 3, 3), and their transposes. Only the last of these
was not explained by Theorem 2.3, which also does not account for the larger known
counterexample (5, 5, 5, 5, 5) (see [2]).

3 Minimizing the rank of Kλ

A natural question at this point is to what extent a given matrix Kλ can fail to have full

rank. In other words, how small can the ratio rank(Kλ)
min(|Hλ|,|V λ|) be? (Note that this ratio is 1

if and only if λ is rank-maximal.) In order to determine this, we strengthen Lemma 2.1
as follows:

Lemma 3.1. Suppose ker(Kλ) has dimension d, and that λ has r rows. If µ extends λ
in such a way that every column of µ − λ has more than r elements, then

dim(ker(Kµ)) ≥ d

(|µ|
|λ|

)
· |V µ−λ|.

Proof. We may decompose Q|V µ| into a direct sum of
(|µ|
|λ|

)|V µ−λ| subspaces Wi, each of

dimension |V λ|, as follows: in creating a column tabloid of shape µ, there are
(|µ|
|λ|

)|V µ−λ|
ways to pick the |µ| − |λ| numbers which will �ll the columns of µ − λ and then assign
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them to columns in vertically inequivalent ways. Fix such an assignment, and for all
column tabloids ∆j which match this assignment, let v∆j

be the vector whose only nonzero
coordinate is a 1 in the entry corresponding to ∆j . The subspace Wi associated with the
chosen assignment is then de�ned as the span of these v∆j

. These subspaces intersect only
at 0, and hence we have a direct sum, because the columns of µ − λ have more than r
elements each; this allows us to identify a unique �lling of µ−λ with each column tabloid
because the columns of µ− λ are longer than the columns of λ and hence they cannot be
exchanged.

We now claim that dim(ker(Kµ) ∩ Wi) ≥ d for all i. Let {v1, . . . , vd} be a basis of
ker(Kλ). As in the proof of Lemma 2.1, it is clear that we may construct from these a
set of d linearly independent vectors w1, w2, . . . , wd ∈ ker(Kµ) which all lie in a particular
subspace W1. By symmetry, then, we may similarly �nd d linearly independent vectors
in any ker(Kµ) ∩ Wi. Hence dim(ker(Kµ)) ≥ d · (|µ||λ|

)|V µ−λ|, as desired.
Consider the symmetric reinforced hooks λ = (m, 2, 1, . . . , 1) with m rows, which are

clearly counterexamples to both Conjecture 1.1 and Stanley's conjecture. Then |Hλ| =

|V λ| = (2m)!
m!2!(m−2)!

=
(
2m
m

)(
m
2

)
by Equation 1. These shapes extend the hooks ν = (m −

1, 1) by a single column of length m. Since |Hν| = m and |V ν | =
(

m
2

)
, we know that

dim(ker(Kν)) ≥ (
m
2

) − m, and in fact we have equality since hooks are rank-maximal.

By Lemma 3.1, we get dim(ker(Kλ)) ≥ ((
m
2

) − m
) (

2m
m

)
, and so rank(Kλ) =

(
2m
m

)(
m
2

) −
dim(ker(Kλ)) ≤ m

(
2m
m

)
. It follows that

rank(Kλ)

min(|Hλ|, |V λ|) ≤ m
(
2m
m

)
(
2m
m

)(
m
2

) =
2

m − 1
, (3)

which goes to zero as m → ∞. We have therefore shown the following.

Proposition 3.2. The ratio of rank(Kλ) to the number of rows or columns (whichever
is smaller) of Kλ can be arbitrarily close to zero.

4 Rank-maximality of squares

We now consider the rank-maximality of squares, since we are especially interested in
rectangles for the application to Foulkes' conjecture and squares are in some sense the
simplest of these shapes; in particular, Kn×n is a square matrix, and it is known that
K5×5 does not have maximum rank while nothing is known for similarly-sized rectangles.
It seems likely that n× n squares are not rank-maximal for n ≥ 5, so we will consider an
approach toward a proof of this conjecture.

Supposing that an n×n square is not rank-maximal, we will �nd a lower bound on the
size of ker(Kn×(n+1)). If this bound is large enough to show that n × (n + 1) rectangles,
and hence (n + 1) × n rectangles, are not rank-maximal, we note that (n + 1) × (n + 1)
squares extend (n+1)×n rectangles and then apply Lemma 2.1. We cannot apply Lemma
3.1 directly, since the column added in the extension to an n × (n + 1) rectangle is no

the electronic journal of combinatorics 13 (2006), #R24 6



longer than the columns of the original square, and so we require a new way to estimate
the dimension of ker(Kn×(n+1)).

Lemma 4.1. Let d = dim(ker(Kn×n)). Then dim(ker(Kn×(n+1))) ≥ (
n2+n−1

n−1

)
d.

Proof. As in the proof of Lemma 3.1, we may �ll the leftmost column of the n × (n + 1)
rectangle with any n of the numbers 1, . . . , n2 + n and then use the remaining numbers
to construct elements of ker(Kn×(n+1)) from elements of ker(Kn×n). The

(
n2+n

n

)
resulting

d-dimensional subspaces of ker(Kn×(n+1)) may intersect in such a way that a linear de-

pendence is created. However, the
(

n2+n−1
n−1

)
subspaces which we identify with the tabloids

containing the number n2 + n in the leftmost column will not. The reason for this is that
if we decompose Q|V n×(n+1)| into subspaces Wi, where similarly to Lemma 3.1 we de�ne
each Wi to be the span of the vectors v∆j

over all ∆j with a �xed column containing the

number n2 + n, then each d-dimensional subspace of ker(Kn×(n+1)) is contained within a

unique Wi. It follows that dim(ker(Kn×(n+1))) ≥ (
n2+n−1

n−1

)
d, as desired.

The matrix Kn×(n+1) has (n2+n)!
(n+1)!n·n!

rows and (n2+n)!
n!n+1·(n+1)!

columns, and it can be shown

that the latter of these numbers is greater, so n× (n+1) rectangles are not rank-maximal
if and only if dim(ker(Kn×(n+1))) exceeds the number of columns minus the number of
rows. Using the estimate of Lemma 4.1, then, it su�ces to know that(

n2 + n − 1

n − 1

)
d >

(n2 + n)!

n!n+1

(
1

(n + 1)!
− 1

(n + 1)n

)
,

or, simplifying, that

d >
(n2 + n) · (n − 1)! · (n2)!

n!n+1

(
1

(n + 1)!
− 1

(n + 1)n

)

=

(
(n2)!

n!n+1

) (
1 − (n + 1)!

(n + 1)n

)
.

The factor on the left is the number of rows (or columns) of Kn×n, and as explained above
we know via Lemma 2.1 that the matrix K(n+1)×(n+1) does not have full rank if Kn×(n+1)

does not, so we conclude the following.

Proposition 4.2. Suppose that an n × n square is not rank-maximal. If rank(Kn×n)
|Hn×n| <

n!
(n+1)n−1 , then the (n + 1) × (n + 1) square is not rank-maximal either.

For example, we know that K5×5 does not have full rank. If rank(K5×5)
|H5×5| < 5

54
, which is

currently unknown since we do not even have an estimate of rank(K5×5), then K6×6 does
not have full rank either. This method may su�ce in general to prove that many rectangles
are not rank-maximal � in particular, it would already show this for n× (n+1) rectangles
� and therefore that the method of Black and List cannot resolve many cases of Foulkes'
conjecture. We leave it as an open problem to strengthen the bound of Proposition 4.2 if
possible.
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5 The kernel of Kλ

Let λ be any shape for which ker(Kλ) has positive dimension; this is the case when λ is
not rank-maximal, but it is also true of rank-maximal shapes satisfying |V λ| > |Hλ|. The
following statement seems to be generally true.

Conjecture 5.1. If ker(Kλ) has positive dimension, then there exists a nonzero vector
v ∈ ker(Kλ) all of whose entries are 0, 1, or −1. Equivalently, there exist two disjoint
subsets A, B ⊂ V λ such that |{∆ ∈ A : Γ ⊥ ∆}| = |{∆ ∈ B : Γ ⊥ ∆}| for all Γ ∈ Hλ.

The equivalence follows from letting A consist of the ∆ corresponding to positive
entries and likewise assigning the ∆ with negative entries to B. Using the �rst of these
conditions, we immediately see by the proof of Lemma 2.1 that if Conjecture 5.1 is true
for some λ, then it is also true for any shape µ which extends λ.

We also propose a very strong version of this conjecture, for which there is currently
much less evidence:

Conjecture 5.2. There is a basis of ker(Kλ) consisting of vectors whose entries are all
0, 1, or −1.

This can be easily checked for some simple cases, such as λ = (3, 1) (the smallest
shape for which dim(ker(Kλ)) > 0), but it is not yet known in any more general sense.
However, the weaker version can be proved for a large class of shapes.

Theorem 5.3. Conjecture 5.1 is true for any m × n rectangle, where n > m > 1.

Proof. We give an explicit construction of the sets A and B: Fix a way to assign the
numbers n + 1, . . . , mn to an m × n rectangular diagram so that every column contains
exactly m − 1 numbers. Then let A consist of n!

2
column tabloids, where each one has

n + 1, . . . , mn assigned in the �xed way, and 1, . . . , n are placed one per column with the
order determined by an arbitrary even permutation. B is constructed identically, except
that the n!

2
odd permutations of 1, . . . , n are used.

To show that these sets have the desired property, �x Γ ∈ Hλ and let A′ and B′ be the
subsets of A and B whose members are orthogonal to Γ. Since n > m, some row of Γ must
contain at least two of the numbers 1, . . . , n, so assume without loss of generality that 1
and 2 are in the same row. Then the map σ : V λ → V λ which swaps 1 and 2 is its own
inverse (in particular, it is injective), and it preserves orthogonality to Γ. But σ(A′) ⊂ B′,
since applying the transposition (1 2) sends even permutations to odd ones, and likewise
σ(B′) ⊂ A′. Therefore σ restricts to a bijection σ′ : A′ → B′, and in particular |A′| = |B′|
as desired.

This type of construction seems useful because it might provide a better understanding
of precisely why certain shapes are not rank-maximal. In particular, such a description
of any member of ker(K5×5) might be easily extensible to a proof that no n × n square
is rank-maximal when n ≥ 5, or even more generally that m× n rectangles are not rank-
maximal for m, n ≥ 5. Neither of these statements is known to be true or false for any
cases except for 5× 5 squares, which are not rank-maximal, but it seems likely that both
statements are true.
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6 Open questions

In addition to Conjectures 5.1 and 5.2, the following questions are still open and of
particular interest because of their relation to Foulkes' conjecture:

1. For which integers m and n does Km×n have full rank? In particular, are any
m×n rectangles rank-maximal when m, n ≥ 5? Pylyavskyy proved in [4] that 2×n
rectangles are rank-maximal, but the 3 × n case of this remains open even though
Foulkes' conjecture is known to be true for m = 2, 3, 4.

2. Can the bound of Proposition 4.2 be improved? Alternatively, can we bound
rank(K5×5) from above well enough to show by Proposition 4.2 that 5 × 6 rect-
angles and 6 × 6 squares are not rank-maximal?

3. Describe any nonzero element of ker(K5×5) satisfying Conjecture 5.1. It is known
that Kn×n has full rank for n ≤ 4 [2], so why is there nothing analogous to this
element for Kn×n with n small?
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